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Abstract Investigations on microbial symbioses in Tephritidae have increased over the
past 30 years owing to the potential use of these relationships in developing new con-
trol strategies for economically important fruit flies. Bactrocera oleae (Rossi)—the olive
fruit fly—is a monophagous species strictly associated with the olive tree, and among
all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Er-
winia dacicola is the major persistent resident endosymbiont in wild B. oleae populations.
Its relationship with B. oleae has been investigated since being identified in 2005. This
endosymbiont is vertically transmitted through generations from the female to the egg. It
exists at every developmental stage, although it is more abundant in larvae and ovipositing
females, and is necessary for both larvae and adults. Studying B. oleae–Ca. E. dacicola,
or other B. oleae–microbe interactions, will allow us to develop modern biological control
systems for area-wide olive protection and set an example for similar programs in other
important food crops. This review summarizes the information available on tephritid–
microbe interactions and investigates relationships among fruit flies, bacteria and host
plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to
promote environmentally friendly control strategies for area-wide pest management.
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Introduction

Relationships between true fruit flies (Diptera: Tephri-
tidae) and microorganisms, in particular bacteria, have
been studied for well over 100 years. Much is known
about the biology and behavior of these flies; however,
like many studies that address symbioses, challenges re-
main in fully defining microbial influences on fly hosts
and vice versa. Interest in symbiotic interactions among
bacteria and hosts, as well as the benefits that these asso-
ciations bring to both, has increased from the beginning
of the last century, as reviewed by Moran (2006) and Dale
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and Moran (2006). In particular, investigations on tephri-
tid microbial symbioses have increased over the past 30
years owing to the potential use of these symbionts to
develop new control strategies for economically impor-
tant fruit flies, such as those in the genera Bactrocera,
Rhagoletis, Anastrepha and Ceratitis (Lauzon, 2003; Be-
har et al., 2009; Noman et al., 2020; Raza et al., 2020).
This review focuses on the important olive pest, Bactro-
cera oleae (Rossi), the olive fruit fly, a monophagous
species that is strictly associated with the olive tree and
the most investigated of all the tephritids in the area of
symbioses, but it also includes some general information
on tephritid–microbe interactions.

Pioneering research on symbiosis in B. oleae

Petri was the first scientist reported to study tephritid–
bacterial interactions using B. oleae in the early 1900s,
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and he has been credited with initiating the study
of tephritid microbial symbioses. He described many
“long-shaped bodies” (later determined to be bacterial
masses) inside midguts of both larvae and adult flies,
noting that as larvae molted, the bacteria were not lost
and, in fact, seemed to increase. He also found these
masses in a specialized foregut eversion that he described
as a cephalic vesicle or pharyngeal gland. Later, re-
searchers called this organ the esophageal bulb (Giro-
lami, 1973; Drew & Lloyd, 1987; Stamopoulos & Tzane-
takis, 1988; Capuzzo et al., 2005; Sacchetti et al., 2008).
Petri isolated two bacterial species from larval guts, Bac-
terium savastanoi (Pseudomonas savastanoi) and As-
cobacterium luteum (Pantoea agglomerans). Petri hy-
pothesized that these bacteria were important in larval
digestion, adult female egg production and male sper-
matogenesis (Petri, 1909); however, he never proved these
roles. Interestingly, both of the bacterial species isolated
by Petri have been implicated in olive knot disease, and
P. agglomerans is a symbiont of tephritids in Bactro-
cera, Rhagoletis, Anastrepha and Ceratitis (Jang & Nishi-
jima, 1990; Lauzon et al., 2000; Marchini et al., 2002;
Robacker & Lauzon, 2002; Robacker et al., 2009). Ap-
proximately 70 years later, Yamvrias (1970) and Giro-
lami (1973) cultured a variety of Gram-negative bacte-
ria from olive flies. Yamvrias focused on the esophageal
bulb and eggs of adults, and he cultured primarily Pseu-
domonas spp. and unidentified species within the fami-
lies Enterobacteriaceae and Achromobacteriaceae. None
of the pseudomonads were identified as P. savastanoi.
Girolami carried out morphological and histological anal-
yses of alimentary organs from several fruit fly species
in the subfamilies Dacinae, Trypetinae and Tephritinae.
His comparisons revealed structural differences among
the esophageal bulbs and cephalic organs, as well as
the bacterial contents in each. In Tephritinae species, the
esophageal bulbs lacked microbial symbionts, while in
the other pest fruit flies, they contained bacterial masses
(Girolami, 1973).

As more researchers described the abundant presence
of bacteria in the esophageal bulbs of olive fruit flies
(e.g., Poinar et al., 1975), as well as bacterial masses
in alimentary organs and, in some cases, on egg sur-
faces, attention turned to their potential roles in fruit
fly biology. Luthy et al. (1983) incorrectly hypothesized
that, owing to their similarity in cellular morphology,
the bacterial inhabitants belonged to the same species.
Furthermore, they speculated that in female flies, the
bacteria provided essential factors that reached the egg
and that bacteria from the esophageal bulb entered into
the hemolymph and migrated to the ovaries, where they
entered the eggs (Poinar et al., 1975). Mazzini and Vita

investigated this hypothesis further and concluded that
the vertical transmission most likely followed a gut-to-
ovary route. As shown in previous studies, they found
bacterial masses inside the esophageal bulb, as well as
in the remaining part of the gut and in the last tract of
the hindgut, which is common to both the alimentary
canal and the reproductive system. They highlighted the
presence of many bacterial masses inside the gut, and
they hypothesized that these microorganisms were not
damaged by gastric juices. Symbionts were more abun-
dant in the midgut compared with in the last part of the
digestive tract. However, they observed many bacterial
masses (between 60 and 150) in every finger-like process
(approximately 25) present in the last tract of the gut.
Additionally, Mazzini and Vita noticed that these organs
were blind and arranged in paired groups, with each
group being joined to the last part of the anal tract inside
the ovipositor. Finally, sagittal and transverse sections
of laid eggs showed many bacterial colonies that were
internalized inside the micropylar area, as well as on
the external surface. Thus, they showed that bacteria
passed from the female to the progeny through vertical
transmission (Mazzini & Vita, 1981).

Other investigations focused on identifying the bac-
terial members in the Family Enterobacteriaceae that
dominated the alimentary canal organs of B. oleae,
such as Erwinia herbicola, Klebsiella pneumoniae and
Serratia marcescens. Other Gram-negative bacteria, but
nonfermenters, such as Pseudomonas fluorescens and
Xanthomonas campestris, were also isolated frequently.
Gram positive Bacillus spp., Lactobacillus plantarum
and Micrococcus luteus were isolated as well (Tsiropou-
los, 1983). Many of these bacterial species have also
been isolated from other pest tephritids, such as Bac-
trocera tryoni (Drew & Lloyd, 1989), Anastrepha lu-
dens (Robacker et al., 1998; Robacker & Lauzon, 2002),
Rhagoletis pomonella (MacCollom et al., 2009) and Cer-
atitis capitata (Behar et al., 2009; Lauzon et al., 2009).
Additionally, many of these bacterial species were found
to reside on the olive phylloplane (Ercolani, 1978), and
Tsiropoulos later described this commonality in terms of
a host plant–microbe–fly interaction (Tsiropoulos, 1983).

Relationships among fruit flies, bacteria, and the host
plants

Insects encounter numerous and diverse microorgan-
isms in their environments. The impacts of microbial
residence on tephritid host plants have been notably
described by Drew and Lloyd for subtropical and tropical
members of the Dacinae (Drew & Lloyd, 1987). Briefly,
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they found that enteric bacteria that typically inhabit
the alimentary canals of adult Dacines are also found
on host plant structures, but their presence on the latter
may be influenced by the occurrence of foraging fruit
flies (Drew & Lloyd, 1987). Volatiles released by the
plant and by its resident microorganisms likely influence
the chemical ecology of the host plant, and these odors
attract adult flies to food and a reproductive site. Tephri-
tids are attracted to microbial-produced odors (Drew &
Lloyd, 1987; MacCollom et al., 1994; Robacker et al.,
1998; Robacker et al., 2009; Liscia et al., 2013), and in
one report, bacteria that were attractive to Anastrepha
suspensa produced 3-methyl-1-butanol, a known fruit
odor (Epsky et al., 1998).

Stamopoulos and Tzanetakis cultured 28 strains of
bacteria from B. oleae and found that microbial popu-
lation was dominated by Gram-positive bacteria (22/28
isolates) and not Gram-negative bacteria (Stamopoulos &
Tzanetakis, 1988) as reported previously and presently.
They concluded that B. oleae collected these bacteria,
which are common to soil and dust, incidentally. They
also stated that these microorganisms may serve as a
food source or suppliers of substances, or both, useful
for insect survival. Ercolani sought to define more com-
pletely the role of phylloplane microorganisms on B.
oleae biology (Ercolani, 1991). The aim of the work was
to evaluate the chronological distribution of several types
of bacteria on olive leaf surfaces. He examined leaves
of different ages at different times of the year. Many of
the bacterial species that were isolated from leaves were
similar to those retrieved from B. oleae esophageal bulbs:
Bacillus, Erwinia, Acetobacter, Escherichia, Klebsiella,
Pseudomonas, Serratia and Xanthomonas, to name a few
(Ercolani, 1991). Others expanded on this work by ex-
amining twigs and olives, and they reported that B. oleae
density was positively correlated with bacterial load on
olives. The authors speculated that B. oleae influences
the microbial ecology of host plant structures, being also
responsible for the bacterial spread on the olive phyllo-
plane (Granchietti et al., 2007; Sacchetti et al., 2008).

Candidatus Erwinia dacicola: an important symbiont of
B. oleae

In 2005, a novel bacterial species was identified as a
symbiont of B. oleae. On the basis of the 16s RNA gene
and phylogenetics, the symbiont was putatively named
Candidatus Erwinia dacicola (Capuzzo et al., 2005). Nu-
cleotide sequencing of the entire 16s RNA gene con-
sistently yielded a single sequence that showed marked
similarity with enterobacterial lineages, including 97%

matches with Erwinia persicina and Erwinia rhapon-
tici (Savio et al., 2012). Analyses were carried out on
dissected esophageal bulbs and midguts, and this bac-
terium dominated these samples. Attempts to culture this
bacterium on standard nutrient media failed, and thus,
the bacterium was defined as an unculturable bacterial
species (Capuzzo et al., 2005). Molecular techniques
have thus expanded what was currently known about mi-
crobial symbionts in B. oleae. The presence of this bac-
terium was later confirmed, and another bacterial species
was also identified as Asaia sp. (Sacchetti et al., 2008).

In addition to Ca. E. dacicola, other culturable bacte-
ria have been cultured from the esophageal bulbs of B.
oleae (Tsiropoulos, 1983; Belcari et al., 2003). It is un-
clear whether any or all of these bacteria contribute to
B. oleae physiology; some could be transient in nature.
While different bacteria have been found in alimentary
canal organs (and are discussed later in this review), most
have not been described to remain in B. oleae through
all its life stages. It is possible that they enter a viable
but nonculturable state in a particular life stage, which
would complicate the symbiotic story. Molecular means
for determining the microbial presence assist greatly in
bacterial detection, but the presence of DNA does not
necessarily mean the presence of a viable bacterium. An-
other complication along a similar line of thought is that
in B. oleae, Ca. E dacicola seems to switch from an in-
tracellular existence to an extracellular one during larval
to adult development. Estes et al. (2012a) suggested that
this transition allows for bacterial survival and their con-
tinued presence within all life stages of the insect. This
phenomenon is interesting because in the related tephri-
tid, Ceratitis capitata, vertically transmitted symbionts
were shown be to extracellular (Robacker et al., 2009)
and culturable, and this intracellular life of Ca. E. daci-
cola may reflect some early strategy of symbionts that
existed in other tephritids long ago. The mechanism of
Ca. E. dacicola’s survival during B. oleae metamorphosis
remains unclear; however, Estes et al. (2009) speculated
that bacterial cells present in regenerative cells may re-
colonize the adult gut.

If Estes et al. are correct then this would help to
explain why newly eclosed wild B. oleae harbor a few
bacterial cells and why B. oleae factory flies lack Ca.
E. dacicola. It would also substantiate, in part, that the
bacteria switch to an intracellular state to escape threats
to their survival. When antibiotics are added to wild cap-
tured B. oleae and they are then reared in the laboratory,
Ca. E. dacicola is eliminated. In fact, Ca. E. dacicola has
never been detected in B. oleae reared on an artificial
diet, while B. oleae laboratory colonies are usually
associated with several bacteria, which are commonly
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The bacterial symbiosis in Bactrocera oleae 877

Fig. 1 (A) Schematic illustration of Ca. E. dacicola path in the gut apparatus of an olive fly female. Esophageal bulb, Malpighian
tubules and ovaries are drawn. (B) Light microscopy micrograph showing the internal gut apparatus of a B. oleae male. The picture
highlights the milky esophageal bulb, filled with bacterial masses. Other organs are arrowed.

found in laboratory-reared insects (Rempoulakis et al.,
2014; Augustinos et al., 2019). Thus, Ca. E. dacicola
may be a persistent, resident endosymbiont that is ver-
tically transmitted through generations from the female
to the egg. It has been found in every fly developmental
stage but is more abundant in larvae and in ovipositing
females. A drawing depicting the vertical transmission
of the endosymbiont, as well as the adult organs known
to be involved in the symbiosis, is displayed in Figure 1.

Savio et al. (2012) surveyed over 300 esophageal bulbs
from B. oleae captured in 26 different olive-producing
areas in Italy over a 3-year period. They provided evi-
dence for the existence of two “lineages” or “haplotypes,”
called htA and htB. The frequencies of htA and htB dif-
fered and were related to the season and geographical lo-
cation, except for two island populations. Sardinian fly
populations harbored htA and Sicilian fly populations

harbored htB. They subsequently attempted to determine
if fly haplotype was correlated with bacterial haplotype.
They found that 16 different fly haplotypes existed with
no apparent correlation between the symbiont and host
fly lineages.

The genetic variation of Ca. E. dacicola necessitates
determining the best means of detecting its presence
in B. oleae. Varying results using different primer sets
(Estes et al., 2009) and approaches, such as standard
PCR, DGGE or ARDRA, or both, have been achieved.
Further analyses of the genome of Ca. E. dacicola
will likely result in designing improved primer sets.
More recently, draft whole-genome sequences have been
reported for Ca. E. dacicola (Blow et al., 2017; Estes
et al., 2018b) that revealed the closeness of this bac-
terium to an Enterobacter sp., which is commonly
isolated from a variety of pest tephritids (Estes et al.,

© 2020 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese
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878 G. Bigiotti et al.

2018a). Comparative genomic analyses have resulted in a
suggested name change for some Ca. E. dacicola isolates
to E. dacicola Oroville (Estes et al., 2018b); however,
this change has not been adopted at present. The change
reflects the possibility that other bacteria are important in
the life history of B. oleae as suggested by Koundatidis
et al. (2009) after finding Acetobacter tropicalis, as well
as Ca. E. dacicola, in larval, pupal, and adult stages of
both wild and laboratory-reared populations. A variety
of bacterial species have since been found in association
with B. oleae and are members of the following genera:
Klebsiella, Pluralibacter, Providencia, Pseudocitrobac-
ter, Stenotrophomonas, Deinococcus, Enterococcus, and
Streptococcus (Koskinioti et al., 2019). Bigiotti et al.
(2019b) found the specific bacterial species, Ewingella
americana, Rosenbergiella collisarenosi, Erwininia
aphidicola, Enterobacter muelleri, S. marcescens, Rah-
nella woolbedingensis, Morganella morganii, Cedecea
lapagei, and Acinetobacter septicus. They also found
a Lactococcus sp. and an Acidobacter sp. The roles, if
any, for these bacteria in B. oleae remain undetermined
but may involve any number of important biological
processes. An up-dated list of bacteria detected using
culture-independent methods is provided in Table 1.

The role of Ca. E. dacicola

The elucidation of the role of Ca. E. dacicola began
in 1966 when Hagen added the antibiotic streptomycin
to the adult B. oleae diet and found that their 1st in-
star larvae did not survive when reared on olives (Ha-
gen, 1966). Additional work by Hagen showed that the
antibiotic hampered protein hydrolysis in the larvae, and
thus, he speculated that the symbiont’s role was to assist
in protein hydrolysis. The symbiont was referred to as P.
savastanoi owing to Petri’s work in the early 1900s, but
no bacterium was identified. Some years later, Tsiropou-
los (1985) conducted experiments on the relevance of di-
etary nitrogen and vitamins for B. oleae using fecundity,
fertility and survival as metrics. Female B. oleae that fed
on a diet enriched with nitrogen and vitamins produced
more eggs that those that fed on diets lacking these com-
ponents, and pyrodoxin (vitamin B6) was found to be
particularly important for amino acid synthesis in adult
B. oleae. It was then assumed that flies obtain vitamins
during larval development through their associated mi-
crobiota (Tsiropoulos, 1983; 1985). The assumption was
further tested, and the data showed more strongly, yet not
definitively, that Ca. E. dacicola was involved in amino
acid synthesis and sustaining egg production (Ben-Yosef
et al., 2010). In that work, they found that female B. oleae

that contained Ca. E. dacicola produced eggs even when
provided a diet lacking essential amino acids, while fe-
males lacking the symbiont that fed on the same diet did
not produce eggs (Ben-Yosef et al., 2010). The role of Ca.
E. dacicola in nitrogen assimilation was later confirmed
(Ben-Yosef et al., 2014).

While more solid data regarding the dietary contribu-
tion of Ca. E. dacicola are emerging, recent studies sug-
gest that the symbiont may contribute to larval survival
in unripe olives (Ben-Yosef et al., 2015). Oleuropein is
a secoiridoid, a phenolic glycoside and a known allelo-
compound of olives (Omar, 2010). The presence and con-
centration of oleuropein decrease during ripening, with
higher levels in green olives and lower levels during mat-
uration to black olives (Omar, 2010). Ben-Yosef et al.
(2015) showed that B. oleae larvae without Ca. E. daci-
cola did not develop to completion on unripe olives, but
could do on ripe olives. The symbiont expresses genes
to support its own detoxification of oleuropein (Pavlidi
et al., 2017; Estes et al., 2018a), but it is not known
whether oleuropein is toxic to B. oleae. Regardless, the
symbiont affords some benefit to the developing larvae.

Applied management of bacterial symbiosis and
conclusions

Insect symbiosis’ potential manipulation has been
reviewed by several authors (Zindel et al., 2011; Ras
et al., 2017; Noman et al., 2020; Raza et al., 2020). Nobre
(2019) presented a comprehensive review that addressed
insect pest–symbiont relationships and their potential use
in pest management strategies. The B. oleae–Ca. E. daci-
cola relationship was highlighted owing to the present
pressing need to protect olives, an undeniably important
economic crop. Clearly, we are closer to understanding
the roles of Ca. E. dacicola in the life history of B. oleae,
but more research is needed to refine symbiont-based
strategies for efficient pest control. This includes the
development of new attractants and pesticides that aim to
disrupt symbioses, as well as the use of probiotics in rear-
ing systems that aim to promote symbioses. Epiphytic
bacteria emit volatiles that act as attractants, enabling B.
oleae to locate the host plant, representing a food source
(Scarpati et al., 1993). Thus, B. oleae follows bacterial
volatile compounds that act as natural attractants. This
was assumed and then confirmed in more recent years
by laboratory observations of B. oleae’s behavioral
responses to volatiles emitted by Pseudomonas putida,
a commonly associated epiphytic bacterium. A P. putida
bacterial filtrate acted as a good attractant of adult B.
oleae (Landini et al., 2007; Sacchetti et al., 2007). Later,

© 2020 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese
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The bacterial symbiosis in Bactrocera oleae 879

Table 1 Bacterial genera and species retrieved in different B. oleae stages and organs. Bacteria founded both in association with the
olive fly and the olive phylloplane are also cited.

Bacterial species or genus B. oleae life stage B. oleae organ Olive tree References
†

Acetobacter tropicalis Adults, larvae, pupae 14
Acidibacter spp. Esophageal bulb 16
Acinetobacter spp. Gut 15
Acinetobacter septicus Esophageal bulb 16
Alcaligenes spp. Esophageal bulb 7
Agrobacterium luteum Gut 2
Asaia spp. Esophageal bulb, gut 12
Ascobacterium luteum Esophageal bulb 1
Bacillus sp. Pupae 11
Bacillus subtilis Pupae Esophageal bulb Phylloplane 6, 7, 8, 11
Bacillus licheniformis Esophageal bulb 7
Bacillus megaterium Pupae Esophageal bulb Phylloplane 6, 8, 11
Bacillus pumilus Esophageal bulb 7
Bacillus cereus Pupae 11
Bacillus thuringiensis Pupae 11
Brevundimonas vescicularis Esophageal bulb 9
Brucella spp. Esophageal bulb 9
Ca. E. dacicola Adults, larvae, pupae Esophageal bulb, gut, crop,

rectal sacs, ovipositor,
larval midgut

10, 13, 14, 16

Cedecea lapagei Esophageal bulb 16
Citrobacter freundii Esophageal bulb 6
Deinococcus spp. Gut 15
Enterobacter spp. Esophageal bulb 3, 6, 13
Enterobacter cloacae Esophageal bulb 7
Enterobacter muelleri Esophageal bulb 16
Enterococcus spp. Gut 15
Enterococcus faecalis Adults, larvae, pupae 14
Erwinia aphidicola Esophageal bulb 16
Erwinia herbicola Esophageal bulb 6, 8
Ewingella americana Esophageal bulb 16
Geobacillus spp. Gut 15
Hafnia alvei Esophageal bulb 6
Klebsiella pneumoniae Esophageal bulb 6
Kokuria rosae Esophageal bulb 9
Kurthia spp. Esophageal bulb 7
Lactobacillus plantarum Esophageal bulb Phylloplane 6, 8
Lactococcus spp. Esophageal bulb 16
Micrococcus roseus Esophageal bulb 7
Micrococcus luteus Esophageal bulb Phylloplane 6, 8
Meiothermus spp. Gut 15
Moraxella nonliquefaciens Esophageal bulb 7
Morganella morganii Esophageal bulb 9, 16
Paenibacillus glucanolyticus Adults, larvae, pupae 14
Pasteurella sp. Esophageal bulb 9
Pluralibacter spp. Gut 15

(to be continued)

© 2020 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese
Academy of Sciences, 28, 874–884
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880 G. Bigiotti et al.

Table 1 Continue.

Bacterial species or genus B. oleae life stage B. oleae organ Olive tree References
†

Proteus mirabilis Esophageal bulb 6
Providencia sp. Pupae Gut 11, 15
Providencia alcafaciens Pupae 11
Providencia stuartii Pupae Esophageal bulb 6, 11
Providencia rettgeri Pupae 11
Pseudocitrobacter Gut 15
Pseudomonas sp. Pupae Esophageal bulb, gut 3, 6, 7, 11, 15
Pseudomonas aeruginosa Esophageal bulb Phylloplane 6, 8
Pseudomonas mendocina Esophageal bulb 7
Pseudomonas fluorescens Pupae Esophageal bulb Phylloplane 6, 9, 11, 8
Pseudomonas putida Esophageal bulb Phylloplane 6, 9
Pseudomonas savastanoi Esophageal bulb Phylloplane 1, 2, 9
Rahnella woolbedingensis Esophageal bulb 16
Rosenbergiella collisarenosi Esophageal bulb 16
Serratia marcescens Esophageal bulb Phylloplane 6, 8, 9, 16
Shigella sp. Esophageal bulb 9
Sphyngobacterium

multivorum
Esophageal bulb 9

Staphylococcus sp. Esophageal bulb 7
Stenotrophomonas spp. Gut 15
Streptococcus spp. Gut 15
Vulcaniibacterium spp. Gut 15
Xanthomonas campestris Esophageal bulb Phylloplane 6, 8

†Reference number cited in the table corresponds to the following authors: 1. Petri (1909); 2. Hellmuth (1956); 3. Yamvrias et al.
(1970); 4. Girolami (1973); 5. Ercolani (1978); 6. Tsiropoulos (1983); 7. Stamopoulos and Tzanekakis (1988); 8. Ercolani (1991); 9.
Belcari et al. (2003); 10. Capuzzo et al. (2005); 11. Rempoulakis et al. (2014); 12. Sacchetti et al. (2008); 13. Estes et al. (2009); 14.
Kounatidis et al. (2009); 15. Koskinioti et al. (2019); 16. Bigiotti et al. (2019b).

morphological, electrophysiological and behavioral in-
vestigations demonstrated that B. oleae antennal and
palpal sensilla were responsive to bacterial filtrate odors,
proving that adults are influenced by bacterial volatiles
(Liscia et al., 2013). The abilities of compounds that
act as symbionticides, including copper products, to
interrupt bacterial symbiosis have been investigated.
Tzanakakis was one of the first scientists to investigate
the possibility of indirectly controlling B. oleae using
symbionticides. He tested the effects of antibiotics on
larval growth both in the laboratory and in field trials
as well as the possibility of spraying copper fungi-
cides in the field (Tzanakakis & Stavrinides, 1973;
Tzanakakis & Lambrou, 1975; Tzanakakis, 1985). The
efficacies of copper-based products (such as Bordeaux
mixture, copper hydroxide and oxychloride) to control
B. oleae populations in several field trials in different
Mediterranean countries were evaluated, providing more
evidence that copper could play an important role as a
symbionticide (Belcari & Bobbio, 1999; Belcari et al.,
2005; Caleca & Rizzo, 2007; Caleca et al., 2010; Caleca

et al., 2012; Rosi et al., 2007; Gonçalves & Torres, 2012)
not just as a repellent (Prophetou-Athanasiadou et al.,
1991). This hypothesis was ultimately proven through
laboratory investigations, in which copper hydroxide
significantly reduced the symbiont load in adult B.
oleae (Bigiotti et al., 2019a). In the same study, the
symbionticide effect of propolis, to a less extent, was
also proven, opening new avenues for sustainable B.
oleae control. Very recently, it was shown that both
copper oxychloride and a fungal metabolite produced
by Trychoderma sp. are active against the symbionts
in adult B. oleae (Sinno et al., 2020). As our knowl-
edge of the microbial ecology of B. oleae increases,
the establishment of efficient biological and biotech-
nological control strategies against B. oleae becomes
more likely. Additionally, Sterile Insect Techniques need
improvement before they can be applied to control this
species’ population, and laboratory rearing techniques
need to be optimized (Ben-Ami, 2010; Gavriel et al.,
2011; Estes et al., 2012b). Understanding the symbiotic
relationships of B. oleae will aid in the mass rearing of

© 2020 The Authors. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese
Academy of Sciences, 28, 874–884
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this species. Enterobacteriaceae bacteria have been used
in probiotic diets of different fruit flies to improve mass-
reared insect quality (Augustinos et al., 2015; Kyritsis
et al., 2017; Yao et al., 2017), restore fitness to irradiated
fruit flies (Niyazi et al., 2004; Hamden et al., 2013; Cai
et al., 2018) and improve the rearing process, as high-
lighted by P. putida in B. oleae (Sacchetti et al., 2014).
Increasing both juvenile instar and adult fitness levels
are a primary goals in adult mass rearing for sterilization.

The potential to improve lures through the addition of
novel bacteria-produced chemicals remains great. Thus,
additional research should focus on chemical compounds
that are characterized in bacterial filtrate profiles and that
show attractive effects during laboratory and field tri-
als. The discovery of new powerful attractants will en-
hance modern biological control strategies in olive sys-
tems. Further studies on the changes that occur in the gut
microbiota’s composition after sterilization are needed,
because irradiation may affect the presence of the bac-
teria that positively influence insect fitness, as recently
demonstrated in the oriental fruit fly Bactrocera dorsalis
(Stathopoulou et al., 2019). Additionally, the use of prod-
ucts having antimicrobial activities should be avoided in
the B. oleae rearing process; indeed, common disinfec-
tants and antimicrobials used in egg collection strongly
affect the endosymbiont transmission from the mother to
the progeny (Sacchetti et al., 2019). Of course, additional
studies to fully understand the roles of Ca. E. dacicola or
other bacterial species, or both, harbored in the guts of B.
oleae adults, as well in the gastric caeca cells in young
larvae, are still needed to develop new tools against this
pest fly owing to the effective roles played by microbiota
in both insect physiology and behavior (Dillon & Dil-
lon, 2004; Yuval, 2017; Jose et al., 2019; Hosokawa &
Fukatsu, 2020).

By studying B. oleae–Ca. E. dacicola or other B. oleae–
microbe interactions, we acquire new knowledge that will
aid in developing modern biological control systems for
area-wide olive production and set an example for such
programs in other important food crops.

Disclosure

The authors have declared that no competing interest
exists.
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