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Graphical Abstract

Flow of fluids with pressure-dependent viscosity down an incline:
Long-wave linear stability analysis
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Highlights

Flow of fluids with pressure-dependent viscosity down an incline:
Long-wave linear stability analysis

Benedetta Calusi

• We investigate the linear stability of a piezo-viscous fluid flowing down
an incline.

• We perform the linear stability analysis using the long-wave approxi-
mation method.

• We discuss the effects of the material and geometrical parameters on
the onset of instability.
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Flow of fluids with pressure-dependent viscosity down

an incline: Long-wave linear stability analysis

Benedetta Calusi

aUniversità degli Studi di Firenze, Dipartimento di Matematica e Informatica “Ulisse
Dini”, Viale Morgagni 67/a, Firenze, 50134, Italy

Abstract

In this paper, we investigate the linear stability of a gravity-driven fluid with
pressure-dependent viscosity flowing down an inclined plane. The linear sta-
bility analysis is formulated using the long-wave approximation method. We
show that the onset of instability occurs at a critical Reynolds number that
depends on the material and geometrical parameters. Our results suggest
that the dependence of the viscosity on pressure can influence the stability
characteristics of the flow down an incline.

Keywords: Linear stability, Long-wave approximation method,
Piezo-viscous fluids

1. Introduction

The flow of a fluid down an inclined plane occurs in various geophysical phe-
nomena, industrial and everyday processes. Such flows can exhibit complex
rheological behaviour and can involve complex phenomena and processes
to model. Therefore, numerous theoretical, numerical, and experimental
studies have been developed concerning the flows of complex fluids (e.g.
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) and their stability (e.g. [15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]) down
an incline. There has been an increasing interest on fluids with pressure-
dependent viscosities (see e.g. [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 14, 48]
and references therein). In particular, the problem of elastohydrodynamics
is an example in which the dependence of viscosity on pressure is relevant
[14, 43, 49]. The dependence of fluid viscosity on pressure was recognised
several centuries ago, and the book of Bridgman [38] documents most of the
works until 1931, highlighting that viscosity can change significantly with
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pressure [47]. In this paper we analyse the linear stability of a fluid whose
viscosity depends on pressure, namely a piezo-viscous fluid [14]. In particu-
lar, we choose an exponential dependence of viscosity on pressure, i.e. the
empirical relationship between viscosity and pressure as proposed by Barus
in [50], namely

µ∗(p∗) = µ∗
0e

δ∗(p∗−p∗0), (1)

where, by denoting the “*” as dimensional quantities, µ∗
0 is the viscosity at

the reference pressure p∗0 and δ∗ is the pressure coefficient. A constitutive
relation of the implicit type (there exists an implicit relation e.g. between
quantities such as stress, strain, velocity gradient) is used to describe such
complex fluids [14, 47, 51, 52, 53, 54, 55, 56]. In the work [14], the flow
of a piezo-viscous fluid down an inclined surface in different flow regimes
was investigated using the lubrication theory. Such work was extended in
[11], within the context of the lubrication approximation, by carrying out an
analysis of the flow of a fluid with pressure- and shear-rate-dependent vis-
cosity down an inclined plane. The authors of [55] analysed the stability of
the Rayleigh–Bénard convection for a fluid with temperature- and pressure-
dependent viscosity. The viscosity was assumed to be an analytical function
of temperature and pressure in the context of a generalisation of the Ober-
beck–Boussinesq approximation. In particular, the thermal-convection in a
fluid with viscosity that depends on both the temperature and pressure was
investigated, showing that the linear and non-linear stability coincide. Here,
we follow the approach described in [18, 19, 57] to perform a linear stability
analysis of a fluid with pressure-dependent viscosity down an incline using
the long-wave approximation method. The pioneering works for the analy-
sis of the stability analysis of the flow down an inclined plane are given in
[58] and [59] for the case of Newtonian fluids. In particular, by using the
long-wave approximation method, a proportionality relation between the so-
called critical Reynolds number Rec and the tilt angle θ was shown in [58] and
[59]. This relation was later experimentally validated in [60]. The long-wave
approximation method consists in the assumption of disturbances of long
wavelength and, thus, small wave number α, providing a reliable estimation
of the critical parameters for the onset of instability. To the best of the
authors’ knowledge, the analysis of the onset of instability of piezo-viscous
fluids down an incline using the long-wave approximation method has never
been performed before, and this motivates our investigations. The paper is
organised as follows: in Section 2 we present the mathematical problem with
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the main features of a flow with pressure-dependent viscosity down an in-
cline. In Section 3, we formulate the differential system governing the linear
stability analysis using the long-wave approximation method. In Section 4
and 5, we then report the results and some concluding remarks.

2. The mathematical problem

Let us consider a fluid flowing down an incline as depicted in Fig. 1 and we
denote throughout the paper the “*” as a dimensional quantity. We suppose
that the domain of the flow is given by

D =
{
(x∗, y∗) ∈ R2|0 ≤ x∗ ≤ L∗, 0 ≤ y∗ ≤ h∗(x∗, t∗)

}
,

where θ ∈ (0, π/2) is the tilt angle, L∗ is the length of the domain and y∗ =
h∗(x∗, t∗) is the upper free boundary (not a priori known) and H∗ = maxh∗.

�

�∗

�∗

�∗ �∗ �∗)

Figure 1: Diagram of the reference framework.

We assume that the Cauchy stress tensor, T∗, is

T∗ = −p∗I+ S∗, (2)

where S∗ is the deviatoric part is given by

S∗ = 2µ∗(p∗)D∗, (3)

where µ∗(p∗) is the fluid viscosity as a function of the pressure p∗ given by
(1) and D∗ = 1/2

(
∇∗v∗ +∇∗v∗T ).

3
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The governing equations for the two-dimensional incompressible flow, v∗ =
u∗ex + v∗ey, are in dimensional form





ρ∗v̇∗ = −∇p∗ + div (S∗) + g∗,

div (v∗) = 0,

(4)

where ˙(·) is the material derivative, g∗ = ρ∗g∗ sin θex − ρ∗g∗ cos θey, g∗ is
gravity and ρ∗ is the constant material density. We consider the non-slip and
impermeability conditions

u∗ = v∗ = 0, on y∗ = 0, (5)

and the kinematical-dynamical conditions




h∗t∗ + u∗h∗x∗ = v∗, y∗ = h∗,

T∗n = 0, y∗ = h∗,

(6)

where n is the outer normal and

(·)t∗ =
∂(·)
∂t∗

, (·)x∗ =
∂(·)
∂x∗

, (·)y∗ =
∂(·)
∂y∗

.

Following [18, 19] and exploiting (4)2, we rewrite (6)1 as

h∗t∗ +

(∫ h∗

0

u∗dy∗
)

x∗
= 0. (7)

We introduce the following dimensionless quantities

x =
x∗

H∗ , v =
v∗

U∗
ref

, t =
U∗
ref

H∗ t
∗, p =

H∗

µ∗
0U

∗
ref

(p∗ − p∗0),

µ(p) =
µ∗(p∗)

µ∗
0

, D =
H∗

U∗
ref

D∗, S =
H∗

µ∗
0U

∗
ref

S∗,

(8)

where U∗
ref is the reference velocity to be defined. Introducing the Reynolds

number

Re =
ρ∗U∗

refH
∗

µ∗
0

, (9)

4



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

and using the adimensionalization (8), system (4) and the constitutive law
(3) become 




Re v̇ = −∇p+ divS+ g,

div(v) = 0,

(10)

S = 2µ(p)D, (11)

respectively, where g = ξex + ξ cot θey,

ξ =
Re

Fr2
sin θ =

ρ∗g∗H∗2

µ∗
0U

∗
ref

sin θ, (12)

and

Fr2 =
U∗
ref

2

g∗H∗ , (13)

is Froude number. From (9) and (12) we have

H∗ =

(
ξµ∗

0
2

ρ∗2g∗ sin θ
Re

)1/3

,

U∗
ref =

µ∗
0

ρ∗H∗Re =

(
g∗µ∗

0 sin θ

ξρ∗

)1/3

Re2/3.

(14)

We look for a one dimensional laminar stationary flow, namely a solution in
the form

v = u(y)ex, (15)

and h = 1, so that system (10) reduces to





0 = −px + S12,y + ξ,

0 = −py − ξ cot θ.

(16)

System (16), entails
p(y) = ξ cot θ (1− y) , (17)

and, by noting that 4||D||2 = u′(y)2, we have

u′(y) = ξ(1− y)e−δξ(1−y), (18)

5
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where

δ(Λ, ξ,Re) = δ∗
µ∗
0U

∗
ref

H∗ cot θ =
(14)

δ∗µ∗2/3
0 ρ∗1/3g∗1/3(sin θ)2/3 cot θ

Re1/3

ξ2/3

= Λ
Re1/3

ξ2/3
, (19)





Λ = δmΘ(θ),

δm = δ∗µ∗2/3
0 ρ∗1/3g∗1/3,

Θ(θ) = (sin θ)2/3 cot θ,

(20)

and (1), (8), (11) have been exploited. From (18) and recalling that u(0) = 0,
we have

u(y) =
[1 + ξδ(1− y)] e−δξ(1−y) − (1 + ξδ) e−δξ

ξδ2
, (21)

that is, using (19),

u(y) =

[
1 + Λ (ξRe)1/3 (1− y)

]
e−Λ(ξRe)1/3(1−y)

Λ2ξ−1/3Re2/3

−

[
1 + Λ (ξRe)1/3

]
e−Λ(ξRe)1/3

Λ2ξ−1/3Re2/3
. (22)

By requiring u(1) = 1, we obtain

F(ξ,Re) =
1− (ξδ + 1)e−δξ

ξδ2
=

1−
[
Λ (ξRe)1/3 + 1

]
e−Λ(ξRe)1/3

Λ2ξ−1/3Re2/3
= 1. (23)

Figure 2 displays different velocity profiles by varying the values of ξ ∈
(0.1, 5) in (21) and that the velocity field of the classical Newtonian flow is
recovered when ξ = 2 (red line). In fact, by applying the product rule of limits
and the Hospital’s rule, we obtain that F(Re, ξ) → ξ/2 when Λ → 0 and,
thus, from (23) we have ξ = 2 when Λ → 0 for any Re. Figure 3a shows the
plot F(Re, ξ) for Λ = 0.63, i.e. δ∗ = 0.01 kg/(ms2), and θ = 5◦. In particular,

6
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Figure 2: Plot of u(y) for different values of ξ ∈ (0.1, 5) with Re = 1, Λ = 0.63 (i.e.
δ∗ = 0.01 kg/(ms2)), and θ = 5◦. In particular, the red line represents the case of no
pressure-dependent viscosity, i.e. ξ = 2 for any Re, showing that the velocity field of the
classical Newtonian flow is recovered.

as expected, we obtain a one-to-one relation between Re and ξ and we denote
by ξ̂(Re) the unique solution to (23) so that u(1) = 1. In fact, for given values
of the geometrical and material parameters, from the normalization of u we
obtain a unique value of ξ, denoted as ξ̂, for any Re. Moreover, in Figure
3b the evolution of F(Re, ξ) for Λ → 0, i.e. δ∗ → 0 kg/(ms2), is reported
showing that the classical Newtonian case (no pressure-dependent viscosity)
is retrieved.

3. Differential system governing linear stability analysis: Long-
wave approximation method

In this section, we consider the basic laminar flow (15), i.e. h(x, t) = hb, with
hb = 1, vb = ub(y)ex, where ub(y) is given by (22), p = pb(y) = ξ̂ cot θ(1−y).
We perturb the basic flow by superimposing a “small” 2D disturbance in the

7
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(a) Pressure-dependent viscosity.

(b) No pressure-dependent viscosity.

Figure 3: Plot of F(Re, ξ) for (a) Λ = 0.63, i.e. δ∗ = 0.01 kg/(ms2), and (b) Λ → 0, i.e.
δ∗ → 0 kg/(ms2) (no pressure-dependent viscosity). In particular, for both cases we have
assumed θ = 5◦.

8



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

form of travelling wave as in [18, 19, 24]




h = 1 + ĥeiα(x−ct),

v = vb(y) + v̂ =
(
ub (y) + û(y)eiα(x−ct)

)
ex + v̂(y)eiα(x−ct)ey,

p = pb(y) + p̂(y)eiα(x−ct),

(24)

and
D = Db + D̂eiα(x−ct), S = Sb + Ŝeiα(x−ct), (25)

where α ∈ R is the wave number, c ∈ C is the complex wave speed and
the notation (̂·) represents the amplitude of the infinitesimal disturbance.
Moreover, the viscosity can be rewritten in terms of the perturbed pressure
as

µ(p) = eδ(pb(y)+p̂(y)eiα(x−ct)) = eδpb(y)eδp̂(y)e
iα(x−ct) ≈ eδpb(y)

(
1 + δp̂(y)eiα(x−ct)

)

= µb(y) + µ̂(y)eiα(x−ct), (26)

where 



µb(y) = eδpb(y) = eδξ̂(1−y) =
(19)

eΛ(ξ̂Re)
1/3(1−y),

µ̂(y) = δµb(y)p̂(y).

(27)

Then, we express the velocity field in terms of the stream function

ψ̂(x, y, t) = ϕ(y)eiα(x−ct),

as
û(y)eiα(x−ct) = ψ̂y = ϕ′ (y) eiα(x−ct),

v̂(y)eiα(x−ct) = −ψ̂x = −iαϕ(y)eiα(x−ct),

(28)

where, here and in the sequel, (·)′ denotes the differentiation w.r.t. y. In-
serting the perturbations (24)-(28) into system (10), we obtain





Re (−iαcϕ′ + iαubϕ
′ − iαu′bϕ) = −iαp̂+ iαŜ11 + Ŝ ′

12,

Re (α2cϕ+ α2ϕ) = −p̂′ + iαŜ12 + Ŝ ′
22.

(29)

9
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Since we have

S = 2µ(y)D = 2
(
µb(y) + µ̂(y)eiα(x−ct)

) (
Db + D̂eiα(x−ct)

)

≈ 2µb(y)Db + 2µb(y)
(
D̂+ δp̂(y)Db

)
eiα(x−ct)

= Sb + Ŝeiα(x−ct), (30)

we can write

Ŝ = 2
(
µb(y)D̂+ δµb(y)p̂(y)Db

)

=




2iαµb(y)û(y) µb(y)(û
′(y) + iαv̂(y)) + δµb(y)p̂(y)

µb(y)(û
′(y) + iαv̂(y)) + δµb(y)p̂(y)u

′
b(y) 2µb(y)v̂

′(y)

=




2iαµb(y)ϕ
′(y) µb(y)(ϕ

′′(y) + α2ϕ(y)) + δµb(y)p̂(

µb(y)(ϕ
′′(y) + α2ϕ(y)) + δµb(y)p̂(y)u

′
b(y) −2iαµb(y)ϕ

′(y)

Therefore, system (29) becomes





iαRe [(−c+ ub)ϕ
′(y)− u′b(y)ϕ(y)] = −iαp̂(y)

+iα (2iαµb(y)ϕ
′(y))

+ [µb(y) (ϕ
′′(y) + α2ϕ(y))]

′

+δ (µb(y)u
′
b(y)p̂(y))

′ ,

α2Re (c+ 1)ϕ(y) = −p̂′(y) + iαµb(y)(ϕ
′′(y) + α2ϕ(y))

+iαδµb(y)u
′
b(y)p̂(y)

−2iα (µb(y)ϕ
′(y))′ ,

(32)

which, following [18, 19, 24], has to be solved by coupling it with the per-

10
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turbed boundary conditions, which, recalling conditions (5) and (6), are





ϕ(0) = 0,

ϕ′(0) = 0,

ĥ(1− c) = −ϕ(1),

ĥp′b(1) + p̂(1)− Ŝ22(1) = 0,

ĥS ′
b12
(1) + Ŝ12(1) = 0.

(33)

After some algebra, system (32) and conditions (33) can be rewritten as





µb(y)ϕ
′′′(y) = (αA01(y) + α2A02(y)

+α3A03(y))ϕ(y) + (αA11(y)

+α2A12(y))ϕ
′(y) + (αA2(y)

+µ′
b(y))ϕ

′′(y) + p̂(y) [αAp(y)

+δ (−u′b(y)µ′
b(y)− µb(y)u

′′
b (y))] ,

p̂′(y) = (α2B01(y) + α3B02)ϕ(y) + αB1(y)ϕ
′(y)

+αB2(y)ϕ
′′(y) + αBp(y)p̂(y),

ϕ(0) = ϕ′(0) = 0,

ϕ′′(1) + ϕ(1)

(
α2 − ξ̂

c− 1

)
= 0,

− ξ̂

c− 1
cot θϕ(1) + 2iαϕ′(1) + p̂(1) = 0,

(34)

11
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where 



A01 = −iu′b(y)Re,

A02 = Reδ(c+ 1)− µ′
b(y),

A03 = −iδµ2
b(y)u

′
b(y),

A11 = −i [−2δµ′
b(y)µb(y)u

′
b(y) + Re (c− ub(y))] ,

A12 = µb(y),

A2 = iδu′b(y)µ
2
b(y),

Ap = i
(
1− u′

2

b (y)µ
2
b(y)

)
,

(35)

and 



B01 = −Re (c+ 1) ,

B02 = iµb(y),

B1 = −2iµ′
b(y),

B2 = −iµb(y),

Bp = iδµb(y)u
′
b(y).

(36)

It is worth highlighting that the classical Orr-Sommerfeld equation and the
corresponding boundary conditions for Newtonian case without the pressure-
dependent viscosity are retrieved for δ → 0 (i.e., when δm → 0), and thus
µ̂(y) = 0 (e.g., see [18, 19, 24] when q(y) = 2 and s(y) = 1). Now, following
[18, 19, 57], we consider disturbances of long wavelength λ = 2π/α (i.e.
λ ≫ 1 and α ≪ 1) and we look for solutions of the eigenvalue problem

12
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expanding ϕ and c in powers of α, namely

ϕ(y) = ϕ0(y) + αϕ1(y) + α2ϕ2(y) + · · · ,

c = c0 + αc1 + α2c2 + · · · .
(37)

By inserting (37) into (34)-(36) and expanding in terms of α, at the zero-th
order we get





(µb(y)ϕ
′′′
0 (y))

′ = p̂0(y)δ (−u′b(y)µ′
b(y)− u′′b (y)µb(y)) ,

p̂0(y) = 0,

ϕ0(0) = ϕ′
0(0) = 0,

ϕ′′
0(1) + ϕ0(1)

ξ̂

c0 − 1
,

ϕ0(1)
ξ̂ cot θ

c0 − 1
+ ϕ0(1) = 0,

(38)

whose solution is




ϕ0(y) = p̂0m0(y) +
y2

2
,

p̂0 =
cot θ

(c0 − 1) (1 +m0(1))
,

c0 =

(
cot θ m0(1) +

1− cot θ m′′
0

2

)
ξ̂ + 1,

(39)

where

m0(y) = δ

∫ y

0

(∫ ỹ

0

(
1

µb(˜̃y)

∫ ˜̃y

0

m01(z)dz

)
d˜̃y

)
dỹ, (40)

with
m01(z) = −u′b(z)µ′

b(z)− u′′b (z)µb(z). (41)
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Since the zeroth order analysis leads to a real eigenvalue, such analysis does
not provide sufficient information regarding stability. Thus, we proceed with
investigations of the first order as in [18, 19]. At the first order, by considering
(38), we have





µb(y)ϕ
′′′
1 (y) = A01(y)ϕ0(y) + A11(y)ϕ

′
0(y)

+A2(y)ϕ
′′
0(y)− µ′

b(y)ϕ
′′
1(y) + p̂0αAp(y)

+δp̂1(y) (−u′b(y)µ′
b(y)− u′′b (y)µb(y)) ,

p̂′1(y) = B1(y)ϕ
′
0(y) +B2(y)ϕ

′′
0(y) +B(y)p̂0,

ϕ1(0) = ϕ′
1(0) = 0,

ϕ′′
1(1) + ϕ0(1)

ξ̂

c0 − 1
c1,

ξ̂ cot θϕ0(1)
c1

(c0 − 1)2
+ 2iϕ′

0(1) + p̂1(1) = 0,

(42)

whose solution is




ϕ1(y) =M0(y) +D1M1(y), D1 ∈ R,

p̂1(y) = P1(y) +K1, K1 ∈ R,
(43)

where

M0(y) =

∫ y

0

∫ ỹ

0

1

µb(˜̃y)

∫ ˜̃y

0

[A01(z)ϕ0(z) + A11(z)ϕ
′
0(z)

+A2(z)ϕ
′′
0(z)− µ′

b(z)ϕ
′′
1(z) + p̂0Ap(z)

+δp̂1(z)m01(z)] dzd˜̃ydỹ, (44)

M1(y) =

∫ y

0

∫ ỹ

0

1

µb(˜̃y)
d˜̃ydỹ, (45)

P1(y) =

∫ y

0

(B1(z)ϕ
′
0(z) +B2(z)ϕ

′′
0(z) +Bp(z)p̂0) dz, (46)

14



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofK1 =

−2iϕ′
0(1)− P1(1) + cot(θ)M ′′

0 (1)− 2 cot(θ)M0(1)

1− cot(θ)m′′
0(1) + 2 cot(θ)m0(1)

. (47)

Moreover, we impose ϕ(1) = ϕ0(1) and, consequently, ϕi(1) = 0 i = 1, 2, ...,
so that the solution (43) is non-trivial provided

c1 = −ϕ
′′
1(1)

ϕ0(1)

(c0 − 1)2

ξ̂
= iG(Re,Λ), (48)

where

ϕ′′
1(1) =M ′′

0 (1) +D1M
′′
1 (1)

=
1

µb(1)

∫ 1

0

[A01(z)ϕ0(z) + A11(z)ϕ
′
0(y) + A2(z)ϕ

′′
0(z)

−µ′
b(z)ϕ

′′
1(z) + p̂0Ap(z) + δp̂1(z)m01(z)] dz +

D1

µb(1)
, (49)

D1 = −M0(1)

M1(1)
, (50)

and ϕ0, p̂0, and c0 are given by (39).
We recall that the critical value of Re, denoted as Rec, can be found as zeros
of the imaginary part of c, namely ℑ (c) = ℑ (c1) = G(Re,Λ) = 0, once the
material and geometrical characteristics are prescribed. In particular, the
αth mode is stable when Re < Rec and is unstable when Re > Rec.

4. Results

The critical value of the Reynolds number, Rec, is computed by solving (23)
and finding zeros of (48) with MATLAB® 2022a, using the function fzero.
The variation of the critical Reynolds number, Rec, with respect of the tilt
angle θ for different values of δm is depicted in 4. The classical Newtonian
case is recovered when δm → 0. In particular, the values of Rec coincide with
5/4 cot θ when δm → 0 as in [18, 19], see Figure 4. Moreover, an increase
of θ induces a flow destabilization [18, 19] at a given δm when δm < δm,c

with δm,c ∈ (0.0066, 0.0067], see Fig.s 4 and 5. In fact, Rec is a decreasing
function of θ at a given δm when δm < δm,c. In a recent work, the two-
dimensional linear stability of a regularized Casson [19] fluid flowing down
an incline by using the long-wave approximation method was studied. In
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Figure 4: Evolution of the critical Reynolds number, Rec, with respect to the tilt angle,
θ, with different values of the “material” parameter δm. The empty circles represent the
case of the classical Newtonian fluid. The trend of Rec is a non-monotone function of δm
and θ between the blue line (δm = 0.006) and the green line (δm = 0.007).

particular, it was shown that for the regularized Casson flow an increase in
the material parameters of the fluid induces a stabilizing effect. Although
we are comparing different models, for δm < δm,c, we found that, similarly
to [19], Rec increases with increasing values of the “material” parameter δm.
Unexpectedly, for values of δm above δm,c we have that the evolution of Rec
is not monotonically

• increasing as δm increases, and

• decreasing as θ increases,

see Fig. 4 and 5. In particular, Figure 5 shows that δm,c ∈ (0.0066, 0.0067].
Thus, the dependence of viscosity on pressure (the pressure coefficient is
proportional to δm, see formulas (1), (19), and (20)) leads to a stabilizing
effect on the flow with respect to the classical Newtonian case when δm < δm,c

at a given θ.
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Figure 5: Zoom of the evolution of the critical Reynolds number, Rec, with respect to the
tilt angle, θ, with different values of δm ∈ [0.006, 0.007], showing that the critical value of
δm is δm,c ∈ (0.0066, 0.0067], i.e. between the magenta and the orange line.

5. Conclusions

In this paper we have theoretically investigated the stability analysis of a fluid
with pressure-dependent viscosity down an inclined plane. In particular, we
have selected an exponential dependence of viscosity on pressure as proposed
by Barus in [50]. Following [18, 19, 57], we have analysed the linear stability
using the long-wave approximation method. Our results show the existence
of a critical Reynolds number, Rec, which depends on the tilt angle, θ, and
the material parameters similarly to [18, 19, 24]. The classical Newtonian
case (used as a benchmark in this paper) has been retrieved. In fact, the
classical proportionality relation between the critical Reynolds number, Rec,
and the tilt angle, θ, has been recovered when the “material” parameter
δm → 0. Although we are using a different model, similar results to [19]
have been obtained when δm is below of a critical value δm,c. In particular,
when δm < δm,c, Rec is a decreasing function of the tilt angle for a given δm
(destabilizing effect on the flow), while Rec is an increasing function of δm for
a given θ (stabilizing effect on the flow). Thus, the increase of δm can lead to
an increasingly stable effect when δm < δm,c for a given θ. Unexpectedly, our
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results show that, when δm > δm,c, Rec is a non-monotone decreasing function
of the tilt angle at a given δm and it is a non-monotone increasing function of
δm at a given θ. Since the pressure coefficient, δ∗, in the viscosity expression
(see formulas (1), (19), and (20)) is proportional to δm, the dependence of
viscosity on pressure can influence the stability properties of the fluid flowing
down the incline. As next step it would be extremely interesting to deepen
such stability characteristics when the fluid has pressure-dependent viscosity
with further more exhaustive stability analyses through the comparison of
theoretical, numerical, and experimental studies.
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[43] J. Hron, J. Málek, K. R. Rajagopal, Simple flows of fluids with pres-
sure–dependent viscosities, Proceedings of the Royal Society of London.
Series A: Mathematical, Physical and Engineering Sciences 457 (2011)
(2001) 1603–1622. doi:10.1098/rspa.2000.0723.
URL http://dx.doi.org/10.1098/rspa.2000.0723

[44] K. L. Johnson, R. Cameron, Fourth paper: Shear behaviour of elas-
tohydrodynamic oil films at high rolling contact pressures, Proceed-
ings of the Institution of Mechanical Engineers 182 (1) (1967) 307–330.

23



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

doi:10.1243/pime_proc_1967_182_029_02.
URL http://dx.doi.org/10.1243/PIME_PROC_1967_182_029_02

[45] H. M. Laun, Pressure dependent viscosity and dissipative heating in
capillary rheometry of polymer melts, Rheologica Acta 42 (4) (2003)
295–308. doi:10.1007/s00397-002-0291-6.
URL http://dx.doi.org/10.1007/s00397-002-0291-6

[46] J. Málek, J. Nečas, K. R. Rajagopal, Global analysis of the flows of fluids
with pressure-dependent viscosities, Archive for Rational Mechanics and
Analysis 165 (3) (2002) 243–269. doi:10.1007/s00205-002-0219-4.
URL http://dx.doi.org/10.1007/s00205-002-0219-4

[47] K. R. Rajagopal, Implicit constitutive relations, Continuum Mechanics
III (2011).

[48] S. C. Subramanian, K. Rajagopal, A note on the flow through porous
solids at high pressures, Computers &amp; Mathematics with Applica-
tions 53 (2) (2007) 260–275. doi:10.1016/j.camwa.2006.02.023.
URL http://dx.doi.org/10.1016/j.camwa.2006.02.023

[49] A. Z. Szeri, Fluid Film Lubrication: Theory and Design, Cambridge
University Press, 1998. doi:10.1017/cbo9780511626401.
URL http://dx.doi.org/10.1017/CBO9780511626401

[50] C. Barus, Isothermals, isopiestics and isometrics relative to viscosity,
American Journal of Science s3-45 (266) (1893) 87–96. doi:10.2475/

ajs.s3-45.266.87.
URL http://dx.doi.org/10.2475/ajs.s3-45.266.87

[51] L. Fusi, R. Tozzi, Falkner–skan boundary layer flow of a fluid with
pressure-dependent viscosity past a stretching wedge with suction or
injection, International Journal of Non-Linear Mechanics 163 (2024)
104746. doi:10.1016/j.ijnonlinmec.2024.104746.
URL http://dx.doi.org/10.1016/j.ijnonlinmec.2024.104746
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