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Abstract
In this paperwe analyzemetastability and nucleation in the context of theKawasaki dynamics
for the two-dimensional Ising lattice gas at very low temperature. LetΛ ⊂ Z

2 be a finite box.
Particles perform simple exclusion on Λ, but when they occupy neighboring sites they feel a
binding energy −U1 < 0 in the horizontal direction and −U2 < 0 in the vertical one. Thus
the Kawasaki dynamics is conservative inside the volume Λ. Along each bond touching the
boundary ofΛ from the outside to the inside, particles are created with rate ρ = e−Δβ , while
along each bond from the inside to the outside, particles are annihilated with rate 1, where
β > 0 is the inverse temperature and Δ > 0 is an activity parameter. Thus, the boundary of
Λ plays the role of an infinite gas reservoir with density ρ. We consider the parameter regime
U1 > 2U2 also known as the strongly anisotropic regime.We takeΔ ∈ (U1,U1 +U2), so that
the empty (respectively full) configuration is a metastable (respectively stable) configuration.
We consider the asymptotic regime corresponding to finite volume in the limit as β → ∞.
We investigate how the transition from empty to full takes place with particular attention
to the critical configurations that asymptotically have to be crossed with probability 1. The
derivation of somegeometrical properties of the saddles allows us to identify the full geometry
of the minimal gates and their boundaries for the nucleation in the strongly anisotropic case.
We observe very different behaviors for this case with respect to the isotropic (U1 = U2) and
weakly anisotropic (U1 < 2U2) ones. Moreover, we derive mixing time, spectral gap and
sharp estimates for the asymptotic transition time for the strongly anisotropic case.

Unfortunately my coauthor Francesca Nardi passed away on 21 October 2021 during the review process of
the paper. I wish to thank her for the bright person and talented mathematician she was

Communicated by Aernout van Enter.

B Simone Baldassarri
simone.baldassarri@unifi.it

Francesca R. Nardi
francescaromana.nardi@unifi.it

1 Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze,
Florence, Italy

2 Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven,
The Netherlands

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-022-02874-x&domain=pdf
http://orcid.org/0000-0001-9548-6370


   34 Page 2 of 46 S. Baldassarri, F. R. Nardi

Keywords Lattice gas · Kawasaki dynamics · Metastability · Critical droplet · Large
deviations · Pathwise approach · Potential theory

Mathematics Subject Classification 60J10 · 60K35 · 82C20 · 82C22 · 82C26

1 Introduction

Metastability is a dynamical phenomenon that occurs when a thermodynamic system is close
to a first order phase transition, that takes place when some physical parameter such as the
temperature, pressure or magnetic field changes. The phenomenon of metastability for very
low temperature dynamics is characterized by the tendency of the system to remain for a long
time in a state (the metastable state m) different from the stable states X s . Moreover, the
system leaves this apparent equilibrium at some random time performing a sudden transition
to the stable state. This transition is called metastability or metastable behavior. Metasta-
bility is an ubiquitous phenomenon with many examples from physical systems such as
supersatured vapour, superheated and supercooled water, magnetic hysteresis loop, and from
wireless networks. In the study of metastablity there are three main issues that are tipically
investigated. The first one is the study of the typical transition time from the metastable to
the stable state. The second and third issues, that are physically more interesting, concern
the geometrical description of the gate configurations (also called critical configurations)
and the tube of typical trajectories, that we will discuss in the sequel. A central role in these
descriptions is played by the gates W (m,X s) from m to X s , that are sets of configura-
tions typically visited during the last excursion from m to X s (see Sect. 3 point 4 for the
precise definition). A minimal gate has the physical meaning of “collection of critical con-
figurations” and it is defined as a gate such that removing any configuration from it, the new
set has not the gate property. Because of this, the characterization of the union of minimal
gates G (m,X s) (see (3.13)) is important. The third issue concerns the identification of the
so-called tube of typical trajectories. This is the set of typical paths followed by the system
during the transition from the metastable to the stable state. We note that the hypotheses
needed to discuss the gates are weaker than the ones necessary to completely characterize
the tube of typical paths. The geometrical characterization of the union of minimal gates
G (m,X s) is a central issue both from a probabilistic and from a physical point of view and
it is a crucial point in the description of the typical trajectories. We remark that in several
models proposed to describe ferromagnetic systems and analyzed in the literature in the con-
text of Freidlin-Wentzell Markov chains evolving under Glauber dynamics, the minimal gate
was unique but, in general, there may exist many minimal sets with the gate property, either
distinct or overlapping. In order to model mathematically phenomena such as superheated
or supercooled water is often proposed the use of lattice gas models evolving according to
Kawasaki dynamics since the dynamics conserves the number of particles.

In this paper we consider the metastable behavior of the two-dimensional Ising lattice gas
with strongly anisotropic interactions at very low temperature and low density that evolves
under Kawasaki dynamics, i.e., a discrete time Markov chain defined by the Metropolis
algorithm with transition probabilities given in (2.9). Let β > 0 be the inverse temperature
and let Λ ⊂ Z

2 be a finite box with open boundary conditions. Particles live and evolve in
a conservative way inside Λ, but when they occupy neighboring sites they feel a binding
energy −U1 < 0 in the horizontal direction and −U2 < 0 in the vertical one (see Sect. 2.1
for more details). Without loss of generality we may assume U1 ≥ U2. Along each bond
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touching the boundary of Λ from the outside to the inside, particles are created with rate
ρ = e−Δβ , while along each bond from the inside to the outside, particles are annihilated
with rate 1, where Δ > 0 is an activity parameter. Thus, the boundary of Λ plays the role
of an infinite gas reservoir with density ρ. We fix the parameters U1, U2 and Δ such that
U1 > 2U2 in what we call the strongly anisotropic case. We take Δ ∈ (U1,U1 +U2), so
that the empty (respectively full) configuration is the metastable (respectively stable) state.
We consider the asymptotic regime corresponding to finite volume Λ in the limit of large
inverse temperature β. We investigate how the system nucleates, i.e., how it reaches � (box
full of particles) starting from � (empty box).

One of the main goals of the paper is to investigate this two-dimensional model in the
strongly anisotropic case giving the geometrical description of the set G (�,�) in Theorem
4.10. We will prove that there are many distinct minimal gates that we will geometrically
characterize together with their union. Let us explain the strategy we adopt in our paper.
In [41, Theorem 5.1] there is a characterization of the set G (m,X s) in terms of essential
saddles (see Sect. 3 point 4 for the definition of essential saddle). Thanks to this equivalence,
we reduce our study to the identification of the set of all the essential saddles that has to
be crossed during the transition between the metastable state � and the stable state �. We
apply the model-independent strategy carried out in [2, Sect. 3.1] to the strongly anisotropic
two-dimensional case, where m = � andX s = {�}, in order to eliminate some unessential
saddles. Thus we need to verify that the required model-dependent inputs are valid in our
case. This study together with the characterization of the essential saddles rely on a detailed
analysis of the motion of particles along the border of the droplet. On the one hand this
is a typical feature of the Kawasaki dynamics, on the other hand this is peculiar in the
strongly anisotropic case. Indeed in the metastable regime, particles move along the border
of a droplet more rapidly than they arrive from the boundary of the box. More precisely,
before the arrival of the next particle, we have that single particles attached to one side of a
droplet tipycally detach (because eU1β � eΔβ and eU2β � eΔβ ), while bars of two or more
particles tipycally do not detach (because eΔβ � e(U1+U2)β ). Roughly speaking, we will
investigate the saddles that are crossed “just before visiting” and “just after visiting” the gate
of the transition G (�,�). Additionally, we prove sharp asymptotics for the transition time
in Theorem 4.12 and we investigate the spectral gap and mixing time in Theorem 4.16.

Some properties of the metastable behavior for the strongly anisotropic case have been
already derived in the literature. More precisely, in [3] the authors derived the asymptotic
behavior of the transition time in probability, law and expectation. Additionally, they gave the
geometrical description of a gate in [3, Theorem 2.4]: we improve that statement in Theorem
4.8. Moreover, our Theorem 4.10 gives a more detailed description of the geometry of the
minimal gates, their union and the entrance in it with respect to their results.

For the isotropic interactions, i.e.,U1 = U2, in [38] the authors investigated the asymptotic
properties of the transition time together with an intrinsic description of a gate (see Sect. 3
point 4 for the precise definition). This paper initiated the study of this model that we describe
in the following discussion. In [12] a geometric characterization of a subset of G (�,�) is
given and this result is improved in [2, Theorem 4.2] with the identification of the minimal
gates and their union G (�,�). For the three-dimensional lattice gas we refer to [34], where
the authors investigated the asymptotic properties of the transition time and an intrinsic
description of a gate. Moreover, for both two and three-dimensional isotropic case, using
the potential theoretic approach the authors investigated in [12] the sharp asymptotics of
the mean transition time, the so-called pre-factor. They proved that it is a constant that
asymptotically depends only on the size of the box and the cardinality of the gate that they
identified, but not on the parameter β. In the framework of the pathwise approach it is natural
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to study the third issue of metastability, namely the tube of typical trajectories realizing the
transition between � and �. This has been analyzed only in [33] for two dimensions, indeed
actually there are no known results about the tube for the three-dimensional isotropic case
and for the anisotropic one. Concerning the weakly anisotropic case, i.e., U1 < 2U2 − 2ε
with ε := U1+U2−Δ, the asymptotic behavior of the transition time in probability, law and
expectation has been derived in [45]. [2, Theorems 4.5, 4.6] give a more detailed description
of the geometry of the minimal gates, their union and the entrance in it with respect to the
geometric description of a gate given in [45]

Thegeometrical analysis of the unionofminimal gateswith their boundary for the isotropic
and weakly anisotropic cases is given in [2] and we discuss the differences and similarities
below. Despite the structure of the gate is similar for the three cases, we emphasize that the
entrance in them is very different. In particular, for the strongly anisotropic case there are
two different mechanisms to enter the gate (see Lemma 5.17), while for the other two cases
there is a unique one (see [2, Lemma 7.13]). This is a consequence of a larger rigidity of
the dynamics in the strongly anisotropic case: an important part of the regularizing motions
of particles along the border of the clusters is lost in such a way that a new mechanism of
entering in the critical configurations set appears, with some impact on the prefactor of the
mean transition time to stability. On the other hand, it is clear that the properties that are
strictly related to the horizontal and vertical interactions are the same for both weakly and
strongly anisotropic cases. While some properties that involve the motion of particles along
the border of the droplet are very different. Intuitively, onemay think of theweakly anisotropic
case as an interpolation between the isotropic and strongly anisotropic ones. Indeed, it has
some properties similar to the first, others to the latter. This specific difference between
these cases motivates together with applications the rigorous investigation of the anisotropic
cases. Moreover, we highlight this difference in the description of the set G (�,�), indeed
for the isotropic case more motions along the border are allowed and thus a totally explicit
geometric description of the set ismore difficult (see [2, Theorem 4.2]), but for the anisotropic
cases we fully obtain it, since the condition U1 �= U2 makes more difficult the sliding of
particles along the border of the droplet. Among the anisotropic cases, by [2, Theorem 4.6]
and Theorem 4.10 it is clear that the structure of the set G (�,�) strongly depends on how
large is U1 with respect to U2, indeed in the case U1 > 2U2 less slidings along the border
are allowed and thus the structure of the union of minimal gates is less rich than the weak
anisotropic case.

State of the art.The first dynamical approach, known as pathwise approach, was initiated
in 1984 in [15], developed in [49,50] and summerized in the monograph [51]. For Metropolis
chains associated with statistical mechanics systems, metastability has been described by this
approach in an elegant way in terms of the energy landscape associated to the Hamiltonian
of the system. This approach focuses on the dynamics of the transition from metastable to
stable states and it is so flexible that has been later developed to treat the tunnelling, namely
the transition from a stable state to another stable state or stable states. Independently, a
graphical approach was introduced in [16] and later used for Ising-like models [17]. Using
the pathwise approach it is possible to obtain a detailed description of metastable behavior of
the system and it made possible to answer all the three questions of metastability. A modern
version of the pathwise approach can be found in [21,22,41,47]. In particular, in [41], for the
Metropolismarkov chains, there aremodel-independent results concerning the transition time
in probability, expectation and distribution, and concerning minimal gates and their union
disentangled with respect to the tube of typical trajectories. In [41] the results on hitting times
are obtained with minimal model-dependent knowledge, i.e., find all the metastable states
and the minimal energy barrier which separates them from the stable states. In [21, Sects.
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2–3] the authors prove model-independent results to treat systems with multiple metastable
states and give a sufficient condition to identify them. In [22] the authors extend the results
of [41] to general Markov chains (reversible and non reversible) with rare transitions setup,
also called Freidlin–Wentzel Markov chains. These results are a useful tool to approach
metastability for non-Metropolis systems such as Probabilistic Cellular Automata. In [47,
Sect. 3] the authors extended the model-independent framework of [41] to study the first
hitting times from any starting configuration (not necessarily metastable) to any target subset
of configurations (not necessarily the set of stable configurations). This approach developed
over the years has been extensively applied to study metastability in Statistical Mechanics
lattice models. In this context, this approach and the one that follows ( [10,41,51]) have been
developed with the aim of finding answers valid with maximal generality and to reduce as
much as possible the number of model dependent inputs necessary to describe the metastable
behavior of any given system.

Another approach is the potential-theoretic approach, initiated in [10].We refer to [11] for
an extensive discussion and applications to different models. In this approach, the metasta-
bility phenomenon is interpreted as a sequence of visits of the path to different metastable
sets. This method focuses on a precise analysis of hitting times of these sets with the help
of potential theory. In the potential-theoretic approach the mean transition time is given in
terms of the so-called capacities between two sets. Crucially capacities can be estimated
by exploiting powerful variational principles. This means that the estimates of the average
crossover time that can be derived are much sharper than those obtained via the pathwise
approach.

These mathematical approaches, however, are not equivalent as they rely on different
definitions of metastable states (see [21, Sect. 3] for a comparison) and thus involve different
properties of hitting and transition times. The situation is particularly delicate for evolutions of
infinite-volume systems, for irreversible systems, and degenerate systems, i.e., systemswhere
the energy landscape has configurations with the same energy (as discussed in [21,22,26]).
More recent approaches are developed in [4,5,9].

Statisticalmechanicalmodels formagnets dealwith dynamics that donot conserve the total
number of particles or the totalmagnetization. They include single spin-flipGlauber dynamics
and many probabilistic cellular automata (PCA), that is a parallel dynamics. The pathwise
approach was applied in finite volume at low temperature in [1,6,7,15,17,19,27,39,40,44,48]
for single-spin-flip Glauber dynamics and in [20,23–25] for parallel dynamics. The potential
theoretic approach was applied to models at finite volume and at low temperature in [8,12,14,
35–37,46]. Themore involved infinite volume limit at low temperature or vanishingmagnetic
fieldwas studied in [13,18,28–32,38,42,43,52,53] for Ising-likemodels under single-spin-flip
Glauber and Kawasaki dynamics.

The outline of the paper is as follows. In Sect. 2 we define the model with open boundary
conditions and the Kawasaki dynamics. In Sect. 3 we give some model-independent defini-
tions and in Sect. 4 we give some geometric definitions valid for Kawasaki dynamics (see
Sect. 4.1). We state our main results concerning the gates in Sect. 4.2 and about the sharp
asymptotics in Sect. 4.3. In Sect. 5 we apply the model-independent strategy carried out in
[2, Sect. 3.1]. In Sect. 5.2 we give some model-dependent definitions, in Sect. 5.3 some tools
that are useful in Sect. 5.4 for our model-dependent strategy. In Sect. 6 we give the proof of
the main results for the strongly anisotropic case regarding the description of the gate (see
Theorem 4.8) and the geometric characterization of the union of all the minimal gates (see
Theorem 4.10). In Sect. 7 we give the proof of the main theorems about the sharp asymptotics
(see Theorems 4.12 and 4.16).
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2 Definition of theModel

2.1 TheModel with Open Boundary Conditions

Let Λ = {0, .., L}2 ⊂ Z
2 be a finite box centered at the origin. The side length L is fixed,

but arbitrary, and later we will require L to be sufficiently large. Let

∂−Λ := {x ∈ Λ : ∃ y /∈ Λ |y − x | = 1}, (2.1)

be the interior boundary of Λ and let Λ0 := Λ \ ∂−Λ be the interior of Λ. With each x ∈ Λ

we associate an occupation variable η(x), assuming values 0 or 1. A lattice configuration
is denoted by η ∈ X = {0, 1}Λ. Each configuration η ∈ X has an energy given by the
following Hamiltonian:

H(η) := −U1

∑

(x,y)∈Λ∗
0,h

η(x)η(y) −U2

∑

(x,y)∈Λ∗
0,v

η(x)η(y) + Δ
∑

x∈Λ

η(x), (2.2)

where Λ∗
0,h (resp. Λ∗

0,v) is the set of the horizontal (resp. vertical) unoriented bonds joining
nearest-neighbors points in Λ0. Thus the interaction is acting only inside Λ0; the binding
energy associated to a horizontal (resp. vertical) bond is −U1 < 0 (resp. −U2 < 0). We may
assume without loss of generality that U1 ≥ U2.

The grand-canonical Gibbs measure associated with H is

μ(η) := e−βH(η)

Z
η ∈ X , (2.3)

where
Z :=

∑

η∈X
e−βH(η) (2.4)

is the so-called partition function.

2.2 Local Kawasaki Dynamics

Next we define Kawasaki dynamics on Λ with boundary conditions that mimic the effect of
an infinite gas reservoir outside Λ with density ρ = e−Δβ. Let b = (x → y) be an oriented
bond, i.e., an ordered pair of nearest neighbour sites, and define

∂∗Λout := {b = (x → y) : x ∈ ∂−Λ, y /∈ Λ},
∂∗Λin := {b = (x → y) : x /∈ Λ, y ∈ ∂−Λ},
Λ∗,orie := {b = (x → y) : x, y ∈ Λ},

(2.5)

and put Λ̄∗,orie := ∂∗Λout ∪ ∂∗Λin ∪ Λ∗, orie. Two configurations η, η′ ∈ X with η �= η′
are said to be communicating states if there exists a bond b ∈ Λ̄∗,orie such that η′ = Tbη,
where Tbη is the configuration obtained from η in any of these ways:

– for b = (x → y) ∈ Λ∗, orie, Tbη denotes the configuration obtained from η by inter-
changing particles along b:

Tbη(z) =
⎧
⎨

⎩

η(z) if z �= x, y,
η(x) if z = y,
η(y) if z = x .

(2.6)
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– For b = (x → y) ∈ ∂∗Λout we set:

Tbη(z) =
{

η(z) if z �= x,
0 if z = x .

(2.7)

This describes the annihilation of a particle along the border;
– for b = (x → y) ∈ ∂∗Λin we set:

Tbη(z) =
{

η(z) if z �= y,
1 if z = y.

(2.8)

This describes the creation of a particle along the border.

The Kawasaki dynamics is the discrete time Markov chain (ηt )t∈N on state space X given
by the following transition probabilities: for η �= η′:

P(η, η′) :=
{ |Λ̄∗, orie|−1

e−β[H(η′)−H(η)]+ if ∃b ∈ Λ̄∗,orie : η′ = Tbη
0 otherwise

(2.9)

where [a]+ = max{a, 0} and P(η, η) := 1 − ∑
η′ �=η P(η, η′). This describes a standard

Metropolis dynamics with open boundary conditions: along each bond touching ∂−Λ from
the outside, particles are created with rate ρ = e−Δβ and are annihilated with rate 1, while
inside Λ0 particles are conserved. Note that an exchange of occupation numbers η(x) for
any x inside the ring Λ \ Λ0 does not involve any change in energy.

Remark 2.1 The stochastic dynamics defined by (2.9) is reversible w.r.t. Gibbs measure (2.3)
corresponding to H .

Remark 2.2 The analysis of the fully conservative model, namely Kawasaki dynamics inside
a large box Λβ ⊂ Z

2, with periodic boundary conditions and Λ ⊂ Λβ , such that
limβ→∞ 1

β
log |Λβ | = ∞, is out of the scope of this paper. An extension of the model

considered in Sect. 2.1 that goes in this direction is what we call simplified model, in which
we consider interactions only inside Λ0 = Λ \ ∂−Λ, where ∂−Λ is defined in (2.1), while
in Λ \ Λ0 we remove interactions and in Λβ \ Λ we remove both interactions and exclusion
so that the dynamics of the gas outside Λ is that of independent random walks.

Following the strategy proposed in [38] for int = is, we are able to derive results concern-
ing the transition time, the gate and supercritical and subcritical rectangles for the strongly
anisotropic simplifiedmodel similar to the one derived in [38, Theorem 1.53] for the isotropic
case. In [38, Sect. 2] the authors give several large deviation estimates concerning exponential
clocks, that hold also for the anisotropic cases. In [38, Sect. 3] the authors give several large
deviation estimates concerning random walks. All these results are valid for the anisotropic
cases (both strong and weak) without changes except for [38, Proposition 3.13], in which
we have to replace U with U1. The recurrence property for the anisotropic simplified model
is obtained with similar arguments carried out in [38, Sect. 6]. To this end, we modify the
definition of the set X̄2 given in [38, eq. (5.8)] by replacing U with U1. Therefore also the
definition of the set X2 given in [38, eq. (6.1)] should be modified accordingly. Thus, if
we define for the anisotropic model T1 = e0β , T2 = eU1β and T3 = eΔβ , [38, Proposition
6.2] holds also for the anisotropic cases. Concerning the reduction, we follow the strategy
proposed in [38, Sect. 7]. In particular, we have to study the behavior of the gas and its
interaction with the dynamics in the box Λ. There are two classes of gas particles with dif-
ferent behavior: particles that have been in Λβ \ Λ for a long time (say of order T3), which
we call green particles; and particles that exit from Λ and afterwards return to Λ in a short
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time (say of order 1), which we call red particles. The effect of green (resp. red) particles is
studied in [38, Sect. 7.6] (resp. [38, Sect. 7.7]) and can be extended to the anisotropic cases
by modifying the times T1, T2 and T3, and the sets X2 and X̄2 as above. In the strongly
anisotropic case, from this discussion and [3, Theorems 2.3, 2.4 and 2.5] the desired results
follow. For the geometrical characterization of the critical droplets in the simplified model
we refer to Remark 4.11.

3 Model-Independent Definitions and Notations

We will use italic capital letters for subsets of Λ, script capital letters for subsets of X , and
boldface capital letters for events under the Kawasaki dynamics. We use this convention in
order to keep the various notations apart. We will denote by Pη0 the probability law of the
Markov process (ηt )t≥0 starting at η0 and by Eη0 the corresponding expectation.
1. Paths and hitting times.

– A path ω is a sequence ω = (ω1, . . . , ωk), with k ∈ N, ωi ∈ X and P(ωi , ωi+1) > 0
for i = 1, . . . , k − 1. We write ω : η → η′ to denote a path from η to η′, namely
with ω1 = η, ωk = η′. A set A ⊂ X with |A | > 1 is connected if and only if for
all η, η′ ∈ A there exists a path ω : η → η′ such that ωi ∈ A for all i . We indicate
with ω1 ◦ ω2 the composition of two paths ω1 and ω2, namely if ω1 = (ω1

1, ..., ω
1
k ) and

ω2 = (ω2
1, ..., ω

2
m) then ω1 ◦ ω2 = (ω1

1, ..., ω
1
k , ω

2
1, ..., ω

2
m).

– Given a non-empty set A ⊂ X , define the first-hitting time of A as

τA :=min{t ≥ 0 : ηt ∈ A }. (3.1)

2. Min-max and communication height

– Given a function f : X → R and a subset A ⊆ X , we denote by

argmaxA f := {η ∈ A : f (η) = max
ζ∈A f (ζ )} (3.2)

the set of points where the maximum of f inA is reached. If ω = (ω1, ..., ωk) is a path,
in the sequel we will write argmaxω H to indicate argmaxA H , with A = {ω1, ..., ωk}
and H the Hamiltonian.

– The bottom F (A ) of a non-empty set A ⊂ X is the set of global minima of the
Hamiltonian H in A :

F (A ) := argminA H = {η ∈ A : H(η) = minζ∈A H(ζ )}. (3.3)

For a set A ⊂ X such that all the configurations have the same energy, with an abuse
of notation we denote this energy by H(A ).

– The communication height between a pair η, η′ ∈ X is

Φ(η, η′) := minω:η→η′ max
ζ∈ω

H(ζ ). (3.4)

Given A ⊂ X , we define the restricted communication height between η, η′ ∈ A as

Φ|A (η, η′) := min
ω:η→η′
ω⊆A

max
ζ∈ω

H(ζ ), (3.5)

where (ω1, ..., ωk) = ω ⊆ A means ωi ∈ A for every i .
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3. Stability level, stable and metastable states

– We call stability level of a state ζ ∈ X the energy barrier

Vζ := Φ(ζ,Iζ ) − H(ζ ), (3.6)

where Iζ is the set of states with energy below H(ζ ):

Iζ := {η ∈ X : H(η) < H(ζ )}. (3.7)

We set Vζ := ∞ if Iζ is empty.
– We call V -irreducible states the set of all states with stability level larger than V :

XV := {η ∈ X : Vη > V }. (3.8)

– The set of stable states is the set of the global minima of the Hamiltonian:

X s := F (X ). (3.9)

– The set of metastable states is given by

X m := {η ∈ X : Vη = max
ζ∈X \ß Vζ }. (3.10)

We denote by Γm the stability level of the states in X m .

4. Optimal paths, saddles and gates

– We denote by (η → η′)opt the set of optimal paths as the set of all paths from η to η′
realizing the min-max in X , i.e.,

(η → η′)opt := {ω : η → η′ such that max
ξ∈ω

H(ξ) = Φ(η, η′)}. (3.11)

– The set of minimal saddles between η, η′ ∈ X is defined as

S (η, η′) := {ζ ∈ X : ∃ω ∈ (η → η′)opt , ω � ζ such that max
ξ∈ω

H(ξ) = H(ζ )}.
(3.12)

– A saddle ξ ∈ S (η, η′) is called unessential if for any ω ∈ (η → η′)opt such that
ω ∩ ξ �= ∅ we have {argmaxω H} \ {ξ} �= ∅ and there exists ω′ ∈ (η → η′)opt such that
{argmaxω′ H} ⊆ {argmaxω H} \ {ξ}.

– A saddle ξ ∈ S (η, η′) is called essential if it is not unessential, i.e., if either

(i) there exists ω ∈ (η → η′)opt such that {arg maxωH} = {ξ} or
(ii) there exists ω ∈ (η → η′)opt such that {arg maxωH} ⊃ {ξ} and {arg maxω′ H} �

{arg maxωH} \ {ξ} for all ω′ ∈ (η → η′)opt .

– Given a pair η, η′ ∈ X , we say that W ≡ W (η, η′) is a gate for the transition η → η′
if W (η, η′) ⊆ S (η, η′) and ω ∩ W �= ∅ for all ω ∈ (η → η′)opt . In words, a gate is a
subset of S (η, η′) that is visited by all optimal paths.

– We say that W (η, η′) is a minimal gate for the transition η → η′ if it is a gate and for
any W ′

� W (η, η′) there exists ω′ ∈ (η → η′)opt such that ω′ ∩ W ′ = ∅. In words, a
minimal gate is a minimal subset of S (η, η′) by inclusion that is visited by all optimal
paths.

– For a given pair of configurations η, η′, we denote by G (η, η′) the union of all minimal
gates:

G (η, η′) :=
⋃

W (η,η′) minimal gate
W (η, η′) (3.13)
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4 Main Results: The Gates for Our Model

In this Section we state our main results: in Sect. 4.2 we obtain the geometrical characteri-
zation of the union of all minimal gates for the strongly anisotropic case. In order to do this
we need some model-dependent definitions for the Kawasaki dynamics (see Sect. 4.1) and
some specific ones for the strongly anisotropic case (see Sect. 4.2). In Sect. 4.3 we derive
sharp estimates for the asymptotic transition time. Moreover, we derive the mixing time and
spectral gap. For the corresponding results obtained in the isotropic and weakly anisotropic
cases, i.e., in the parameter regime U1 = U2 and U1 < 2U2 − 2ε respectively, where ε is
defined in (4.7), we refer to [2, Sects. 4.2, 4.3] for the results concerning the gates and union
of minimal gates and to [2, Sect. 4.4] concerning the asymptotic transition time, mixing time
and spectral gap.

4.1 Geometric Definitions for Kawasaki Dynamics

We give somemodel-dependent definitions and notations in order to state our main theorems.
1. Free particles and clusters

• For x ∈ Λ0, let nn(x) := {y ∈ Λ0 : d(y, x) = 1} be the set of nearest-neighbor sites of
x in Λ0, where d in the entire paper denotes the lattice distance.

• A free particle in η ∈ X is a site x , with η(x) = 1, such that either x ∈ ∂−Λ, or x ∈ Λ0

and
∑

y∈nn(x)∩Λ0
η(y) = 0. We denote by η f p the union of free particles in ∂−Λ and

free particles in Λ0. We denote by n(η) the number of free particles in η.
We denote by ηcl the clusterized part of the occupied sites of η:

ηcl := {x ∈ Λ0 : η(x) = 1} \ η f p. (4.1)

• We denote by η f p the addition of a free particle anywhere in Λ to the configuration η.
• Given a configuration η ∈ X , consider the subset C(ηcl) of R

2 defined as the union of
the 1× 1 closed squares centered at the occupied sites of ηcl in Λ0 and call the maximal
connected components of this set the clusters of ηcl .

• Given a set A ⊂ R
2, we define as |A| the number of 1× 1 closed occupied squares in A

and as ||A|| the numbers of 1× 1 closed squares in A. Note that || · || takes into account
the possibility that the squares are occupied or not.

2. Projections, semi-perimeter and vacancies

• For η ∈ X , we denote by g1(η) (resp. g2(η)) one half of the horizontal (resp. vertical)
length of the Euclidean boundary ofC(ηcl). Recall the definition of n(η) given in Sect. 4.1
point 1. Then the energy associated with η is given by

H(η) = −(U1 +U2 − Δ)|C(ηcl)| +U1g2(η) +U2g1(η) + Δn(η). (4.2)

• Let p1(η) and p2(η) be the total lengths of horizontal and vertical projections of C(ηcl)

respectively. More precisely, let r j,1 = {x ∈ Z
2 : (x)1 = j} be the j-th column and

r j,2 = {x ∈ Z
2 : (x)2 = j} be the j-th row, where (x)1 or (x)2 denote the first or second

component of x . Let
π1(η) := { j ∈ Z : r j,1 ∩ C(ηcl) �= ∅} (4.3)

and p1(η) := |π1(η)|. In a similar way we define the vertical projection π2(η) and p2(η).
• We define g′

i (η) := gi (η) − pi (η) ≥ 0; we call monotone a configuration such that
gi (η) = pi (η) for i = 1, 2.
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Fig. 1 Here we depict the same configuration η on the left and on the right to emphasize different geometrical
definitions. The grey area in both pictures represents C(ηcl ). In particular, on the left-hand side we stress the

frame-angles cαα′
(η), the bars Bα(η), CR−(η) and the circumscribing rectangle CR(η) (respresented with

a dashed line). While on the right-hand side we stress the sites that are in a corner (represented with a dot),
CR+(η) and the external frame ∂+CR(η) (the dashed area)

• We define the semi-perimeter s(η) and the vacancies v(η) as

s(η) := p1(η) + p2(η),

v(η) := p1(η)p2(η) − |C(ηcl)|. (4.4)

3. n-manifold, rectangles and corners

• The configuration space X can be partitioned as

X =
⋃

n

Vn, (4.5)

where Vn := {η ∈ X : |C(ηcl)|+n(η) = n} is the set of configurations with n particles,
called the n-manifold.

• We denote by R(l1, l2) the set of configurations that have no free particle and a single
cluster such that C(ηcl) is a rectangle R(l1, l2), with l1, l2 ∈ N. For any η, η′ ∈ R(l1, l2)
we have immediately:

H(η) = H(η′) = H(R(l1, l2)) = U1l2 +U2l1 − εl1l2, (4.6)

where
ε := U1 +U2 − Δ. (4.7)

• A corner in η ∈ X is a closed 1×1 square centered in an occupied site x ∈ Λ0 such that,
if we order clockwise its four nearest neighbors x1, x2, x3, x4, then

∑
y∈nn(x) η(y) = 2,

with η(xi ) = η(xi+1) = 1, with i = 1, ..., 4 and the convention that x5 = x1 (see Fig. 1
on the right-hand side).

4. Circumscribed rectangle, frames and bars

• If η is a configuration with a single cluster then we denote by CR(η) the rectangle
circumscribing C(ηcl).
We denote ∂+CR(η) the external frame of CR(η) as the union of squares 1× 1 centered
at sites that are not contained in CR(η) such that those sites have Euclidean distance with
sites in CR(η) less or equal than

√
2 (see Fig. 1 on the right-hand side). Note that the

external frame of CR(η) contains only non occupied sites.
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Fig. 2 1-translation of the horizontal bar Bn(η) at cost U1

We denote ∂−CR(η) the internal frame of CR(η) as the union of squares 1× 1 centered
at sites that are contained in CR(η) such that those sites have Euclidean distance with
sites not in CR(η) less or equal than

√
2. If this distance is equal to

√
2, we say that the

unit square is a frame-angle cαα′
(η) in ∂−CR(η), where αα′ ∈ {ne, nw, se, sw}, with

n = north, s = south, etc. Note that the internal frame of CR(η) is a geometrical object
contained in R

2 that can contain both occupied and non occupied sites (see Fig. 1 on
the left-hand side). We partition the set ∂−CR(η)without frame-angles in two horizontal
and two vertical rows rα(η), with α ∈ {n, w, e, s}.
Moreover, we set

CR−(η) = CR(η) \ ∂−CR(η),

CR+(η) = CR(η) ∪ ∂+CR(η).
(4.8)

See Fig. 1 for an example.

Remark 4.1 Note that, for example, the frame-angles cne(η) and cen(η) are the same, but this
distinction will be useful in Definitions 4.4 and 4.5.

• A vertical (respectively horizontal) bar Bα(η) of a single cluster of η with length k is a
1 × k (respectively k × 1) rectangle contained in C(ηcl), with α ∈ {n, w, e, s}, k ≥ 1,
such that each square 1 × 1 of the bar is attached only to one square of C(ηcl) \ Bα(η)

(see Fig. 1 on the left-hand side). In the cases in which it is not specified if the bar is
vertical or horizontal we call it simply bar. If k = 1 we say that the bar is a protuberance.

Remark 4.2 Note that two bars Bα(η) and Bα′
(η), with α, α′ ∈ {n, s, w, e}, can possibly

intersect in the frame-angle cαα′
(η). If this is the case, we get |Bα(η)∪ Bα′

(η)| = |Bα(η)|+
|Bα′

(η)| − 1.

5. Motions along the border
Recall definitions of | · | and || · || (see Sect. 4.1 point 1). In the following, we give the precise
notion of translation by 1 of a bar, for example to the left or to the right, while keeping all
the squares of the bar attached to the cluster below.

Definition 4.3 Given η and a bar Bα(η) of length k, with α ∈ {n, s, e, w}, we say that it is
possible to translate the bar Bα(η) if

k = |Bα(η)| < |∂+Bα(η)|. (4.9)

We define the 1-translation of a bar Bα(η) of length k as a sequence of configurations
(η1, ..., ηk) such that η1 = η and ηi is obtained from ηi−1 translating by 1 a unit square along
the rectangle ∂+Bα(η) ∩ C(ηcl) for any 2 ≤ i ≤ k.

In Fig. 2 (resp. Fig. 3)we depict a 1-translation of a horizontal (resp. vertical) bar at cost U1

(resp. U2).
In the following, we give the precise notion of sliding a unit square from row rα(η) to

rα′
(η) passing through the frame angle cαα′

(η).
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Fig. 3 1-translation of the vertical bar Be(η) at cost U2

Fig. 4 Sliding of a unit square around the frame angle cne(η) at cost U1. In this case α = n, α′ = e, α′′ = w

and α′′′ = s

Definition 4.4 Given η, let αα′ such that cαα′
(η) is a frame-angle.We say that it is possible to

slide a unit square around a frame-angle cαα′
(η) ⊆ ∂−CR(η) from a row rα(η) ⊆ ∂−CR(η)

to a row rα′
(η) ⊆ ∂−CR(η) via a frame-angle cαα′

(η) if

|cαα′
(η)| = 0, |rα(η)| ≥ 1, 1 ≤ |rα′

(η)| < ||rα′
(η)|| + 1. (4.10)

Let α′′ �= α′ such that cαα′′
(η) is a frame-angle. See Fig. 4 for an example. We define a

sliding of a unit square around a frame-angle cαα′
(η) ⊆ ∂−CR(η) as the composition of

a sequence of 1-translations of the bar Bα(η) from rα(η) ∪ cαα′′
(η) to rα(η) ∪ cαα′

(η),
namely (η1, ..., ηk), and the 1-translation of a bar Bα′

(η) = C(ηkcl)∩ (rα′
(η)∪cαα′

(η)) from

rα′
(η) ∪ cαα′

(η) to rα′
(η) ∪ cα′α′′′

(η), where α′′′ �= α is such that cα′α′′′
(η) is a frame-angle.

The definition above is used only to define the following sliding of a bar from row rα(η)

to rα′
(η) passing through the frame angle cαα′

(η), that corresponds to iteratively apply the
sliding of a unit square around a frame-angle.

Definition 4.5 Given η, let αα′ such that cαα′
(η) is a frame-angle. Before sliding a bar around

a frame-angle, we translate the bars Bα(η) and Bα′
(η) at distance 1 to the frame-angle cαα′

(η)

obtaining a configuration η′. We say that it is possible to slide a bar Bα(η′) around a frame-
angle cαα′

(η′) ⊆ ∂−CR(η′) if it is possible to move all the unit squares in Bα(η′) around
a frame-angle cαα′

(η′) from a row rα(η′) ∪ cαα′′
(η′) to a row rα′

(η′) ∪ cα′α′′′
(η′), where

α′′ �= α′ and α′′′ �= α are such that cαα′′
(η′) and cα′α′′′

(η′) are frame-angles. Namely,

|Bα(η′)| + |rα′
(η′)| ≤ ||rα′

(η′)|| + 1. (4.11)

Moreover, we define a sliding of a bar Bα(η′) around a frame-angle cαα′
(η′) as the sequence

of |Bα(η′)| slidings of unit squares around a frame-angle cαα′
(η′).

See the path described in Fig. 7, that connects the configuration η to the configuration (12)
for an example of sliding of the bar Be(η) around the frame-angle cen(η), with η as the
configuration (3).

4.2 Gate for Strongly Anisotropic Interactions

In this Section we impose U1 > 2U2 in (2.2), i.e., we consider strongly anisotropic inter-
actions between nearest neighboring sites. Recall the definition of ε given in (4.7). We
will consider 0 < ε � U2, where � means sufficiently smaller; for instance ε ≤ U2

100 is
enough. Many interesting quantities that follow have lower index sa to remind that they refer
to strongly anisotropic interactions. In order to state our main results for the gates in the
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strongly anisotropic regime we need the following definitions. We define the critical vertical
length l∗2 as

l∗2 :=
⌈

U2

U1 +U2 − Δ

⌉
, (4.12)

where � � denotes the integer part plus 1. We set the critical value of ssa as

s∗
sa := 3l∗2 − 1. (4.13)

Now we need the following definitions.

Definition 4.6 (a) We define Q̄sa as the set of configurations having one cluster anywhere
in Λ0 consisting of a (2l∗2 −3)× l∗2 rectangle with a single protuberance attached to one
of the shortest sides. Similarly, we define Q̃sa as the set of configurations having one
cluster anywhere inΛ0 consisting of a (2l∗2 −3)×l∗2 rectangle with a single protuberance
attached to one of the longest sides.

(b) We define
Γ ∗
sa := U1l

∗
2 + 2U2l

∗
2 +U1 −U2 − 2ε(l∗2 )2 + 3εl∗2 − 2ε. (4.14)

(c) We define the volume of the clusters in Q̄sa as

ncsa := l∗2 (2l∗2 − 3) + 1, (4.15)

and

D̄sa := {η′ ∈ Vncsa | ∃ η ∈ Q̄sa : H(η) = H(η′) and Φ|Vncsa
(η, η′) ≤ H(η) +U1},

D̃sa := {η′ ∈ Vncsa | ∃ η ∈ Q̃sa : H(η) = H(η′) and Φ|Vncsa
(η, η′) ≤ H(η) +U1}.

(4.16)
Note that the last condition in (4.16) is the same as requiring that Φ|Vncsa

(η, η′) <

Γ ∗
sa + H(�) = Γ ∗

sa . We encourage the reader to consult Proposition 5.1, where we give
the geometrical description of the set D̄sa and D̃sa . Roughly speaking, one can think
of D̄sa as the set of configurations consisting of a rectangular cluster with four bars
attached to its four sides, whose lengths satisfy precise conditions.

(d) We define
C ∗
sa := D̄

f p
sa . (4.17)

The reason why only the set D̄sa is relevant for the set C ∗
sa will be clarified later (see

Lemma 5.9). Note that

H(C ∗
sa) = H(D̄

f p
sa ) = H(D̄sa) + Δ = H(Qsa) + Δ

= U1l∗2 + 2U2l∗2 −U1 − 3U2 − εl∗2 (2l∗2 − 3) + 2Δ
= U1l∗2 + 2U2l∗2 +U1 −U2 − 2ε(l∗2 )2 + 3εl∗2 − 2ε
= Γ ∗

sa .

(4.18)

See Fig. 5 for an example of configurations in C ∗
sa .

Remark 4.7 Note that H(Q̄sa) < H(Q̃sa), indeed

H(Q̄sa) = Γ ∗
sa − Δ,

H(Q̃sa) = Γ ∗
sa − Δ +U1 −U2.

(4.19)

The first main result of Sect. 4.2 is the following.

Theorem 4.8 (Gate for strongly anisotropic interactions). The set C ∗
sa is a gate for the tran-

sition from � to �.
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Fig. 5 Critical configurations in C ∗
sa in the strongly anisotropic case. Moreover, if we remove the free particle

we obtain on the left a configuration in Q̄sa and on the right a configuration in D̄sa \ Q̄sa

Fig. 6 Critical configurations in the strongly anisotropic case: on the left hand-side is represented a configu-
ration inPsa,0 and on the right hand-side a configuration in Psa,1

We refer to Sect. 6.1 for the proof of the Theorem 4.8.

Remark 4.9 In Theorem 4.8 we sharpen the previous result obtained in [3, Theorem 2.4].
Indeed in [3] the authors proved thatP1∪P2 is a gate (see (4.20) and (6.1) for the definitions
of Psa,0 = P1 and P2 respectively), while here we refine that result by proving that C ∗

sa
is a gate. In particular, we emphasize that C ∗

sa ⊂ P1 and therefore there is an important
improvement in the statement since our gate is much smaller than the one found in [3].

In order to give the result regarding the geometric characterization of Gsa(�,�), we
need some definitions. For any i = 0, 1 we define Psa,i ⊆ Ssa(�,�) that consists of
configurations with a single cluster and no free particle, a fixed number of vacancies, that is
not monotone with circumscribed rectangles obtained from the one of the configurations in
D̄sa via increasing by one the horizontal or vertical length. More precisely,

Psa,i := {η : n(η) = 0, v(η) = 2l∗2 + il∗2 − i(i + 1) − 2, g′
1(η) = i, g′

2(η) = 1 − i, ηcl is
connected, with circumscribed rectangle in R(2l∗2 − i − 1, l∗2 + i)}, i = 0, 1.

(4.20)
See Fig. 6 for an example of configurations inPsa,0 (on the left-hand side) and inPsa,1 (on
the right-hand side).

The set Gsa(�,�) contains all the configurations that are in the sets defined in (4.20) with
the following further conditions. First, we define the subsets A α′

0 (resp. A α
1 ) of the saddles

in Psa,0 (resp. Psa,1) that contains only one occupied unit square in either a vertical (resp.
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Fig. 7 Transition column to row forR(2l∗2 − 1, l∗2 − 1) in the strongly anisotropic regime: the configuration
(1) has energy equal to Γ ∗

sa − Δ + U2 − U1 and thus the configurations (7) and (11) have energy equal to
Γ ∗
sa . In (12) we indicate with a dashed arrow the detachment of the protuberance at cost U1 and afterwards

movement of the free particle until it connects to the cluster that decreases the energy by U1 +U2

horizontal) row or in one of its two adjacent frame-angles. More precisely,

A α′
0 := {η ∈ Psa,0 : |rα′

(η) ∪ cα′ᾱ(η) ∪ cα′α̃(η)| = 1}, (4.21)

for any α′ ∈ {w, e} and ᾱ, α̃ ∈ {n, s} such that ᾱ �= α̃, and

A α
1 := {η ∈ Psa,1 : |rα(η) ∪ cαα′′

(η) ∪ cαα′′′
(η)| = 1}, (4.22)

for anyα ∈ {n, s} andα′′, α′′′ ∈ {n, s} such thatα′ �= α′′′. Note that in Fig. 6 the configuration
on the right-hand side is in A n

1 .

Next, we define the subsetsA α,α′
k of the saddles inPsa,0 that are obtained from η ∈ Psa,0

during the sliding of the bar Bα′
(η) around the frame-angle cα′α(η). More precisely,

A α,α′
k := {η ∈ Psa,0 : |rα(η)| = k − 1, |rα′

(η)| = l∗2 − k, |cα′α(η)| = 1,
(rα(η) ∪ cα′α(η)) ∩ ηcl = rα,1

cl ∪̇rα,2
cl with d(rα,1

cl , rα,2
cl ) = 2},

(4.23)
where α ∈ {n, s}, α′ ∈ {w, e}, rα,1

cl , rα,2
cl are two disjoint connected components in rα(η) ∪

cα′α(η) and k = 2, ..., l∗2 .Note that the conditions in (4.23) guarantee that these configurations
are obtained during a sliding of a bar around a frame-angle, that is identified by the indeces α

and α′. Note that in this case there is not the index k′ as in [2, eq. (4.4)] and [2, eq. (4.11)] for
the isotropic and weakly anisotropic cases respectively, because in the strongly anisotropic
case less sliding on the border of the droplet are allowed. Indeed, in this case l∗2 −1 denotes the
length of the bar that we are sliding and thus we can consider k′ = l∗2 − 1 fixed. The index k
counts the number of particles that are in rα(η)∪cα′α(η) during the sliding and can be less or
equal than l∗2 . Referring to Fig. 7, configuration (7) (resp. (11)) is an example of configuration

that belongs to A n,e
2 (resp. A n,e

l∗2
). Note that the set A α,α′

k contains k − 1 configurations for

any α, α′ and k, indeed these configurations are crossed during the sliding of the bar Bα′
(η)

around the frame-angle cα′α(η), with η the configuration obtained by R(2l∗2 − 1, l∗2 − 1)
adding a protuberance to one of its longest sides (in Fig. 7 η corresponds to the configuration
(3) and α = n, α′ = e). Thus we set

A α,α′
k = {ξα,α′

1 , ..., ξ
α,α′
k−1 }. (4.24)

Now we are able to give the second main result of Sect. 4.2.

123



Critical Droplets and Sharp Asymptotics for Kawasaki Dynamics... Page 17 of 46    34 

Theorem 4.10 (Union of minimal gates for strongly anisotropic interactions).We obtain the
following description for Gsa(�,�):

Gsa(�,�) = C ∗
sa ∪

⋃

α

⋃

α′

l∗2⋃

k=2

A α,α′
k ∪

⋃

α′
A α′

0 ∪
⋃

α

A α
1 (4.25)

We refer to Sect. 6.2 for the proof of Theorem 4.10.

Remark 4.11 With the strategy carried out in [38] and the argument explained in Remark 2.2,
Theorem 4.10 can be directly extended to the simplified model.

4.3 Main Results: Sharp Asymptotics for Strongly Anisotropic Interactions

For a model-independent discussion concerning the prefactor we refer to [2, Sect. 10.1].
Theorem 4.12 investigates the prefactor for the strongly anisotropic case. This analysis for
the isotropic case is given in [12, Theorem 1.4.4], while for the weakly anisotropic case is
given in [2, Theorem 4.7]. For the proof of Theorems 4.12 and 4.16 we refer to Sect. 7.

Theorem 4.12 There exists a constant Ksa = Ksa(Λ, l∗2 ) such that

E�(τ�) = Ksae
Γ ∗
saβ [1 + o(1)], β → ∞, (4.26)

with
1

Θsa
2

≤ Ksa ≤ 1

Θsa
1

, (4.27)

where Θsa
1 and Θsa

2 are defined in (7.18) and (7.29) respectively. Moreover, as Λ → Z
2,

Ksa(Λ, l∗2 ) → 1

4πNsa

log |Λ|
|Λ| (4.28)

with

Nsa =
4∑

k=1

(
4

k

)(
l∗2 + k − 2

2k − 1

)
(4.29)

the cardinality of D̄sa = D̄sa(Λ, l∗2 ) modulo shifts.

Remark 4.13 For the strongly anisotropic case we obtain a sharp estimate of Ksa in (4.27).
Nevertheless, the asymptotic behavior of the the prefactor Ksa as Λ → Z

2 (see (4.28)) is the
same as Kwa (see [2, eq. (4.14)]) and Kis (see [12, eq. (1.4.9)]).

Remark 4.14 Concerning the asymptotics for the prefactor Ksa given in Theorem 4.12, the
sequential limits β → ∞ and Λ → Z

2 are not the physical relevant ones, but since for
Kawasaki dynamics we are not able to obtain an explicit expression for the prefactor (see
(4.27)), we give its asymptotic behavior for Λ → Z

2. The more interesting limit is the joint
one Λ = Λβ → Z

2 and β → ∞, but this is a much harder problem that is out of the scope
of the present paper.

Remark 4.15 Note that [12, Theorem 1.4.3(iii)] and [2, Theorem 4.8] concerning the uniform
entrance distribution in the gate does not hold for the strongly anisotropic case due to the
two possible entrance mechanisms in C ∗

sa (see Lemma 5.17).
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We define the mixing time as

tmix (ε) := min{n ≥ 0 : max
x∈X ||Pn(x, ·) − μ(·)||T V ≤ ε}, (4.30)

where ||ν − ν′||T V := 1
2

∑
x∈X |ν(x) − ν′(x)| for any two probability distributions ν, ν′ on

X . The spectral gap of the Markov chain is defined as

ρ := a(2) (4.31)

where 1 = a(1) > a(2) ≥ ... ≥ a|X | ≥ −1 are the eigenvalues of the matrix (P(x, y))x,y∈X
defined in (2.9).

Theorem 4.16 For any ε ∈ (0, 1)

lim
β→∞

1

β
log tmix (ε) = Γ ∗

sa = lim
β→∞ − 1

β
log ρ (4.32)

Furthermore, there exist two constants 0 < c1 ≤ c2 < ∞ independent of β such that for
every β > 0

c1e
−βΓ ∗

sa ≤ ρ ≤ c2e
−βΓ ∗

sa (4.33)

Theorem 4.16 holds also for the isotropic and weakly anisotropic cases (see [2, Theorem
4.10]).

5 Useful Model-Dependent Definitions and Tools

In this Section (and only here) we set

Qsa = Q̄sa, Dsa = D̄sa, (5.1)

to show the similarites between the results with the isotropic model. Moreover, since we
are considering the strongly anisotropic model and some properties are in common with the
isotropic and weakly anisotropic models, we choose the lower index int ∈ {is, wa, sa} to
make clear in the notation which of the three models we are referring to.

5.1 Geometric Description of the Protocritical Droplets

In [12, Theorem 1.4.1] the authors obtain the geometric description of the set Dis as
Dis = D̄is ∪ D̃is . In this Section we derive the geometric description of the analogous
sets for the strongly anistropic models D̄sa and D̃sa following the argument proposed in [12].
The geometric description of the sets D̄wa and D̃wa is given in [2, Proposition 7.1]. Recall
definition (4.16).

Proposition 5.1 (Geometric description of D̃sa and D̄sa).We obtain the following geometric
description of D̃sa and D̄sa:

(a) D̃sa = {η ∈ X : n(η) = 0, v(η) = 2l∗2 − 4, ηcl is connected and monotone, 1 ≤
|rα(η)∪cαα′

(η)| ≤ 2, |rα(η)| ≤ 1, with α ∈ {n, s}, α′ ∈ {w, e}, and circumscribed
rectangle in R(2l∗2 − 3, l∗2 + 1)},
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(b) D̄sa is the set of configurations having one cluster η anywhere in Λ0 consisting of a
(2l∗2 − 4) × (l∗2 − 2) rectangle with four bars Bα(η), with α ∈ {n, w, e, s}, attached to
its four sides satisfying

1 ≤ |Bw(η)|, |Be(η)| ≤ l∗2 , l∗2 − 1 ≤ |Bn(η)|, |Bs(η)| ≤ 2l∗2 − 2, (5.2)

and ∑

α

|Bα(η)| −
∑

αα′∈{nw,ne,sw,se}
|cαα′

(η)| = 5l∗2 − 7. (5.3)

Remark 5.2 Let η ∈ D̄sa .

(i) Note that (5.3) takes into account the number of occupied unit squares in ∂−CR(η) due
to Remark 4.2. We deduce that at most three frame-angles of CR(η) can be occupied,
otherwise |∂−CR(η)| = 6l∗2 − 8 > 5l∗2 − 7, which is absurd.

(ii) Since |Bs(η)| + |Be(η)| ≤ 3l∗2 − 6 + k − |cnw(η)|, we get
|Bn(η)| + |Bw(η)| = 5l∗2 − 7 − (|Bs(η)| + |Be(η)|) + k ≥ 2l∗2 − 1 + |cnw(η)|.

(5.4)
By symmetry, we generalize the inequality above for any α ∈ {n, s} and α′ ∈ {w, e}:
we get |Bα(η)| + |Bα′

(η)| ≥ 2l∗2 − 1 + |cαα′
(η)|.

Proof of Proposition 5.1 (a) We introduce only in the proof of this result the following geo-
metrical definition to make the argument more clear

D̃
geo
sa := {η ∈ X : n(η) = 0, v(η) = 2l∗2 − 4, ηcl is connected and monotone,

1 ≤ |rα(η) ∪ cαα′
(η)| ≤ 2, |rα(η)| ≤ 1, with α ∈ {n, s}, α′ ∈ {w, e}, and

circumscribed rectangle in R(2l∗2 − 3, l∗2 + 1)}.
(5.5)

The proof will be given in two steps:

(i) D̃
geo
sa ⊆ D̃sa ;

(ii) D̃
geo
sa ⊇ D̃sa .

Proof of (i). To prove (i) we must show that for all η ∈ D̃
geo
sa ,

(i1) H(η) = H(Q̃sa);
(i2) ∃ ω : Q̃sa → η, i.e., ω = (ω1, ..., ωk = η) such that max

i
H(ωi ) ≤ H(Q̃sa) +U1, with

|ωi | = ncsa for all i = 1, ..., k (see (4.15) for the definition of ncsa).

Proof of (i1).Any η ∈ D̃
geo
sa satisfies n(η) = 0, |C(η)| = (2l∗2 −3)(l∗2 +1)−v(η) = ncsa ,

and g1(η) = 2l∗2 − 3 and g2(η) = l∗2 + 1 since the configuration is monotone. Thus by (4.2)
we deduce that H is constant on D̃

geo
sa . Since Q̃sa ⊆ D̃

geo
sa , this completes the proof of (i1).

Proof of (i2). Consider ζ ∈ Q̃sa and η ∈ D̃
geo
sa . If η ∈ Q̃sa ∩ D̃

geo
sa , i.e., |rα(η) ∪

cαα′
(η)| = 1 for some α ∈ {n, s} and α′ ∈ {w, e}, then η can be obtained from ζ by moving

the protuberance at zero cost along the side which is attached to if the protuberance in ζ

is on the same side as the protuberance in η, otherwise η can be obtained detaching the
protuberance at cost U2 and reattaching it to the other side at cost −U2. If η ∈ D̃

geo
sa \ Q̃sa ,

i.e., |rα(η) ∪ cαα′
(η)| = 2 with |rα(η)| = 1 for some α ∈ {n, s} and α′ ∈ {w, e}, again

we have two cases. If the protuberance in ζ is contained in rα(η) (is in the same side of the
rectangle), we deduce that η can be obtained from ζ by moving the protuberance at zero cost
until it arrives at distance one from cαα′

(ζ ) and then translate the bar Bα′
(ζ ) towards the

frame-angle cα′α(ζ ) at cost U2. Otherwise, if the protuberance in ζ is contained in rα′′
(η)

with α′′ ∈ {n, s} \ {α} (is in the opposite side of the rectangle), the path is constructed as
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before, provided that first the protuberance is detached at costU2 and reattached to the other
side at cost −U2. This concludes the proof of (i2).
Proof of (ii). By (i2), we know that all the configurations in D̃

geo
sa are connected viaU1-path

to Q̃sa . Since Q̃sa ⊆ D̃sa ∩ D̃
geo
sa , in order to prove (ii) it suffices to show that following

U1-paths it is not possible to exit D̃geo
sa . Let η′ ∈ D̃

geo
sa , thus by (i1) and (4.19) we get

H(η′) = Γ ∗
sa − Δ + U1 − U2. Note that no particle can arrive because we impose that the

number of particles is constant to ncsa thus, if η′ ∈ D̃
geo
sa \ Q̃sa , the unique possibility is

to translate the bar Bα′
(η′), with α′ ∈ {w, e}, at cost U2 giving rise to a configuration that

is in D̃
geo
sa ∩ Q̃sa . Then it is possible either yo move the protuberance at zero cost, or to

detach the protuberance at cost U2 and then necessarily reattach it at cost −U2, giving rise
to a configuration that is still in D̃

geo
sa ∩ Q̃sa . Note that no other moves are allowed, since

it is not possible to complete the sliding of a vertical bar around a frame-angle because the
1-translation of a horizontal bar costsU1. Indeed the latter implies that the energy reaches the
valueΓ ∗

sa−Δ+2U1−U2 > Γ ∗
sa , thus the path described is not aU1-path. If η′ ∈ D̃

geo
sa ∩Q̃sa ,

with paths similar to the ones described above (possibly in different order), we can conclude
case (a).

(b) We denote by D̄
geo
sa the geometric set with the properties specified in point (b) that we

introduce to make the argument more clear. The proof will be given in two steps:

(i) D̄
geo
sa ⊆ D̄sa ;

(ii) D̄
geo
sa ⊇ D̄sa .

Proof of (i). To prove (i) we must show that for all η ∈ D̄
geo
sa ,

(i1) H(η) = H(Q̄sa);
(i2) ∃ ω : Q̄sa → η, i.e., ω = (ω1, ..., ωk = η) such that max

i
H(ωi ) ≤ H(Q̄sa) +U1, with

|ωi | = ncsa for all i = 1, ..., k and ω1 ∈ Q̄sa .

Proof of (i1).Any η ∈ D̄
geo
sa satisfies n(η) = 0, |C(η)| = (2l∗2−2)(l∗2−2)+5l∗2−7 = ncsa ,

and g1(η) = 2l∗2 − 2 and g2(η) = l∗2 since the configuration is monotone. Thus by (4.2) we
deduce that H is constant on D̄

geo
sa . Since Q̄sa ⊆ D̄

geo
sa , this completes the proof of (i1).

Proof of (i2). Consider ζ ∈ Q̄sa and η ∈ D̄
geo
sa . Here, without loss of generality, we

assume that the protuberance is in rw(ζ ). Then we have

– |Bw(ζ )| = 1;
– |Bn(ζ )| = |Bs(ζ )| = 2l∗2 − 3;
– |Be(ζ )| = l∗2 ;
– |cne(ζ )| = |cse(ζ )| = 1.

Using the sliding of a unit square around a frame-angle described in Fig. 4 (see Definition
4.4), we move, one by one, |Bn(ζ )|−|Bn(η)| particles around the frame-angle cnw(ζ ). After
that wemove |Be(ζ )|−|Be(η)|+|Bs(ζ )|−|Bs(η)| particles around the frame-angle csw(ζ ).
Finally, we move |Be(ζ )| − |Be(η)| particles around the frame-angle ces(ζ ). The result is
the configuration η ∈ D̄

geo
sa . This concludes the proof of (i2).

Proof of (ii). By (i2), we know that all configurations in D̄
geo
sa are connected via U1-path

to Q̄sa . Since Q̄sa ⊆ D̄sa ∩ D̄
geo
sa , in order to prove (ii) it suffices to show that following

U1-paths it is not possible to exit D̄geo
sa . We call a path clustering if all the configurations in

the path consist of a single cluster and no free particles. Below we will prove that for any
η ∈ D̄

geo
sa and any η′ connected to η by a clustering U1-path, the following conditions hold:
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Fig. 8 Creation and motion of the recess at cost 0

(A) CR(η′) = CR(η);
(B) η′ ⊇ CR−(η).

Proof of (A). Starting from any η ∈ X , it is geometrically impossible to modify CR(η)

without detaching a particle, that contradicts the hypotheses of clustering U1-path.
Proof of (B). Fix η ∈ D̄

geo
sa . The proof is done in two steps.

1.First, we consider clusteringU1-paths alongwhichwe do notmove a particle fromCR−(η).
Along such paths we only encounter configurations in D̄

geo
sa or configurations obtained from

D̄
geo
sa by breaking one of the bars in ∂−CR(η) into two pieces at costU1 (resp.U2) if the bar

is horizontal (resp. vertical). This holds because there is no particle outside CR(η) that can
lower the cost.

If the broken bar is horizontal, then only moves at zero cost are admissible, so any particle
can be detached. This implies that the unique way to regain U1 and complete the U1-path is
to restore the bar.

If the broken bar is vertical, then the admissible moves in a U1-path are those with cost
less or equal than U1 − U2. Again any particle can not be detached, indeed its cost is at
least U1. The moves at cost U2 are possible, thus it is possible to break another vertical bar.
From now on, depending on U1 − 2U2 > 0, it is possible to break other vertical bars. More
precisely, let U1 = nU2 + δ, with n ≥ 2 and 0 < δ < U2 fixed, thus it is possible to break
other n − 2 vertical bars in addition to the previous two. When this sequence of moves is
completed, the unique way to complete theU1-path is to restore all the broken bars. Thus we
have proved that η′ ⊇ CR−(η).
2. Consider now a general clustering U1-path along which we move a particle from a corner
of CR−(η). It is not allowed to move at cost U1 + U2, because it exceeds U1, thus the
overshoot U2 must be regained by letting the particle slide next to a bar that is attached to a
side of CR−(η) (see Fig. 8). If the particle moves vertically (resp. horizontally), we regain
U1 (resp.U2). Since there are never two bars attached to the same side, we can at most regain
U1, thus it is not possible to move a particle from CR−(η) other than from a corner. If the
corner particle has been moved vertically (increasing the energy by U2), the same moves (if
possible) are allowed on another corner. Depending on the difference U1 − 2U2 > 0, it is
possible to break some vertical bars. More precisely, let U1 = nU2 + δ, with n ≥ 2 and
0 < δ < U2 fixed, it is possible to break n − 2 vertical bars. From now on, only moves at
cost at most zero are admissible. There are no protuberances present anymore, because only
the configurations in Q̄sa have a protuberance. Thus no particle outside CR−(η) can move,
except those just detached from CR−(η). These particles can move back, in which case we
return to the same configuration η (see Fig. 8). In fact, all possible moves at zero cost consist
in moving the recess just created in CR−(η) along the same side of CR−(η), until it reaches
the top of the bar, after which it cannot advance anymore at zero cost (see Fig. 8). All these
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moves do not change the energy, except the last one that returns the particle to its original
position and regains U1. This concludes the proof of (B).

From (A), we deduce that CR(η′) = R(2l∗2 − 2, l∗2 ). From (A) and (B), we deduce that
the number of particles that are in ∂−CR(η) is equal to the number of particles that are in
∂−CR(η′), thus (5.3), 1 ≤ |Bw(η′)|, |Be(η′)| ≤ l∗2 and 1 ≤ |Bn(η′)|, |Bs(η′)| ≤ 2l∗2 − 2
hold. In order to prove that following clustering U1-paths it is not possible to exit D̄geo

sa , we
have to prove the lower bound in (5.2) for the lengths |Bn(η′)| and |Bs(η′)|. We set

k =
∑

αα′∈{nw,ne,sw,se}
|cαα′

(η′)|. (5.6)

Since |Bw(η′)| + |Be(η′)| ≤ 2l∗2 − 4 + k, by (5.3) we get

|Bn(η′)| + |Bs(η′)| = 5l∗2 − 7 − (|Bw(η′)| + |Be(η′)|) + k ≥ 3l∗2 − 3. (5.7)

Since |Bs(η′)| ≤ 2l∗2 − 2, (5.7) implies

|Bn(η′)| ≥ 3l∗2 − 3 − |Bs(η′)| ≥ l∗2 − 1. (5.8)

By symmetry we can similarly argue for the length |Bs(η′)|. This implies that following
U1-paths it is not possible to exit D̄

geo
sa . The argument goes as follows. Detaching a particle

costs at least U1 + U2 unless the particle is a protuberance, in which case the cost is U1.
The only configurations in D̄

geo
sa having a protuberance are those in Q̄sa . If we detach the

protuberance from a configuration in Q̄sa , then we obtain a (2l∗2 − 3) × l∗2 rectangle with a
free particle. Since in the sequel only moves at zero cost are allowed, it is only possible to
move the free particle. Since in a U1-path the particle number is conserved, the only way to
regain U1 and complete the U1-path is to reattach the free particle to a vertical side of the
rectangle, thus return to Q̄sa . This implies that for any η ∈ D̄

geo
sa and any η′ connected to η

by a U1-path we must have that η′ ∈ D̄
geo
sa . This concludes the proof. ��

5.2 Definitions

We set
L∗
sa := L − l∗2 . (5.9)

For η ∈ C ∗
sa , we associate (η̂, x)with η̂ ∈ Dsa protocritical droplet and x ∈ Λ the position of

the free particle. We denote by C G
sa(η̂) (resp. C B

sa(η̂)) the configurations that can be reached
from (η̂, x) by a path that moves the free particle towards the cluster and attaches the particle
in ∂−CR(η̂) (resp. ∂+CR(η̂)). In Fig. 9 on the left-hand side we depict explicitly the good
and bad sites for a specific η̂. Let

C G
sa =

⋃

η̂∈D sa

C G
sa(η̂), C B

sa =
⋃

η̂∈D sa

C B
sa(η̂). (5.10)

For η ∈ C ∗
sa , let η̂ ∈ Dsa be the configuration obtained from η by removing the free particle.

For A ⊆ Λ and x ∈ Λ, recall that d(x, A) denotes the lattice distance between x and A. As
in [12, Sect. 3.5], we need the following definitions.

Definition 5.3 Let Λ4 be Λ without its four frame-angles. We define, recursively,

B1(η̂) := {x ∈ Λ4| x /∈ η̂, d(x, η̂) = 1} (5.11)
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Fig. 9 On the left-hand side we represent good sites (G) and bad sites (B) for l∗2 = 8. On the right-hand side
we depict with x the sites in B1(η̂), with y the sites in B̄2(η̂), with z and z̄ the sites in B̄3(η̂) and with z̄ and
w the sites in B̄4(η̂)

and
B2(η̂) := {x ∈ Λ4| x /∈ η̂, d(x, B1(η̂)) = 1},
B̄2(η̂) := B2(η̂),

(5.12)

and
B3(η̂) := {x ∈ Λ4| x /∈ B1(η̂), d(x, B2(η̂)) = 1},
B̄3(η̂) := B3(η̂) ∪ {B̄2(η̂) ∩ ∂−Λ4}, (5.13)

and for i = 4, 5, ..., L∗
sa

Bi (η̂) := {x ∈ Λ4| x /∈ Bi−2(η̂), d(x, Bi−1(η̂)) = 1},
B̄i (η̂) := Bi (η̂) ∪ {B̄i−1(η̂) ∩ ∂−Λ4}. (5.14)

In words, B1(η̄) is the ring of sites in Λ4 at distance 1 from η̂, while B̄i (η̂) is the ring of
sites in Λ4 at distance i from η̂ union all the sites in ∂−Λ4 at distance 1 < j < i from η̂

(i = 2, 3, ..., L∗
sa) (see Fig. 9 on the right-hand side). Note that, depending on the location

of η̂ in Λ, the B̄i (η̂) coincide for large enough i . The maximal number of rings is L∗
sa .

Now we need to introduce specific sets that will be crucial later on.

Definition 5.4 We define

C ∗
sa(i) := {(η̂, x) : η̂ ∈ Dsa, x ∈ B̄i (η̂)}, i = 2, 3, ..., L∗

sa . (5.15)

First, note that the sets C ∗
sa(i) are not disjoint.

Remark 5.5 From the definitions of the set C ∗
sa , we deduce that

C ∗
sa =

L∗
sa⋃

i=2

C ∗
sa(i). (5.16)

For this discussion in the case int ∈ {is, wa} we refer to [2, Sect. 7.2].
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5.3 Useful Lemmas for the Gates

In this Section we give some useful Lemmas that help us to characterize the gates. Here we
state Lemma 5.6 for the case int = sa, but it holds also for the case int ∈ {is, wa} (see [2,
Lemma 7.3]). The proof is the same done in [2, Lemma 7.3] for the weakly anisotropic case.

Lemma 5.6 Starting from C ∗
sa \ Q

f p
sa , if the free particle is attached to a bad site obtaining

ηB ∈ C B
sa, the only transitions that does not exceed the energy Γ ∗

sa are either detaching
the protuberance, or a sequence of 1-translations of a bar or slidings of a bar around a
frame-angle. Moreover, we get:

(i) if it is possible to slide a bar around a frame-angle, then the saddles that are crossed
are essential;

(ii) if it is not possible to slide a bar around a frame-angle, then the path must come back
to the starting configuration and the saddles that are crossed are unessential.

Lemmas 5.8 and 5.9 are valid also in the case int = wa (see [2, Lemma 7.5] and [2, Lemma
7.6] respectively), while Lemma 5.7 has a corresponding version for the case int = wa (see
[2, Lemma 7.4]).

Lemma 5.7 Starting from ηB ∈ C B
sa, the saddles obtained by a 1-translation of a bar are

essential and in A α′
0 ∪ A α

1 . Moreover, all the saddles in A α′
0 ∪ A α

1 can be obtained from
this ηB by a 1-translation of a bar.

Proof Note that H(ηB) = Γ ∗
sa −U2 (resp. H(ηB) = Γ ∗

sa −U1) if the free particle has been
attached to an horizontal (resp. vertical) bar. In the first case, in order to avoid exceeding the
energy value Γ ∗

sa it is possible to translate only the vertical bars. These saddles are in A α
1 .

In the latter case, it is possible to translate both vertical and horizontal bars. If the translated
bar is horizontal, the saddles that are crossed are in A α′

0 . If the translated bar is vertical, the
configurations obtained do not reach the level Γ ∗

sa , thus they are not saddles. To conclude, all
the configurations in A α′

0 ∪ A α
1 can be obtained from a configuration ηB via a 1-translation

of a bar.
It remains to prove that the saddles in A α′

0 ∪ A α
1 are essential. This part of the proof is

analogue to the corresponding one done for int = is in [2, Lemma 8.2]. ��
Lemma 5.8 Starting from a configuration η ∈ C ∗

sa , it is not possible to slide a vertical bar
around a frame-angle without exceeding the energy Γ ∗

sa .

With the following Lemma we can justify the definition of C ∗
sa given in (4.17).

Lemma 5.9 Starting from D̃sa, the dynamics either passes through D̄sa or it is not possible
that a free particle is created without exceeding the energy level Γ ∗

sa .

The proof of Lemmas 5.8 and 5.9 are analogue to the ones done for [2, Lemma 7.5] and [2,
Lemma 7.6] respectively in the case int = wa by replacing Γ ∗

wa (resp. D̃wa) with Γ ∗
sa (resp.

D̃sa).

5.4 Model-Dependent Strategy

Our goal is to characterize the union of all the minimal gates for the strongly anisotropic
interactions. To this end, due to [41, Theorem 5.1], we will characterize all the essential
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saddles for the transition from the metastable to the stable state. In this Section we apply the
model-independent strategy explained in [2, Sect. 3.1] in order to identify some unessential
saddles. Let int = sa.Weapply [2, eq. (3.1)] both forσ = �,A = {�} andΓ = Γ ∗

sa defining
C�

� (Γ ∗
sa), and for σ = �, A = {�} and Γ = Γ ∗

sa − H(�) defining C�
� (Γ ∗

sa − H(�)). We
chose this notation in order to emphasize the dependence on Γ ∗

sa . First, we prove the required
model-dependent inputs (iii)-(a) and (iii)-(b) in [2, Sect. 3.1] (see Proposition 5.10(i) and
Proposition 5.10(ii)). Second, by Theorem 4.8, we know that C ∗

sa is a gate for the transition
from � to �. Thus we apply the model-independent strategy explained in [2, Sect. 3.1] to
Kawasaki dynamics by taking m = �, X s = {�}, W (m,X s) = C ∗

sa , L
B = C B

sa and
L G = C G

sa . In Proposition 5.11 we prove that C ∗
sa ⊆ Gsa(�,�), that allows us to study the

essentiality only of the saddles that are not in C ∗
sa .

In order to apply [2, Propositions 3.3, 3.5], we need to characterize the sets Ksa and
K̃sa (see [2, eq. (3.2)] and [2, eq. (3.3)] respectively for the definitions). This is done in
Proposition 5.12. Due to this result, our strategy consists in partitioning the saddles that
are not in C ∗

sa in three types: the saddles that are in the boundary of C�
� (Γ ∗

sa), i.e., σ ∈
∂C�

� (Γ ∗
sa) ∩ (Sint (�,�) \ C ∗

sa), the saddles that are in the boundary of C�
� (Γ ∗

sa − H(�))

and not in K̃sa , i.e., ζ ∈ ∂C�
� (Γ ∗

sa − H(�))∩ (Ssa(�,�)\ (C ∗
sa ∪ K̃sa)), and the remaining

saddles ξ ∈ Ssa(�,�)\(∂C�
� (Γ ∗

sa)∪(∂C�
� (Γ ∗

sa−H(�))\ K̃sa)∪C ∗
int ). By [2, Propositions

3.3, 3.5], we obtain Corollary 5.13 that states that the saddles of the first and second types are
respectively unessential. In Proposition 5.14 we highlight some of the saddles of type three
that are unessential. We need to distinguish these two cases due to the different entrance in
C ∗
int for int ∈ {is, wa} and int = sa (see [2, Lemma 7.13] and Lemma 5.17 respectively).

Note that in Proposition 5.14 the set ∂C�
� (Γ ∗

sa −H(�))\ K̃sa reduces to ∂C�
� (Γ ∗

sa −H(�))

due to Proposition 5.12(ii). For the case int ∈ {is, wa} this strategy is presented in [2, Sect.
7.4]. Finally, we identify the essential saddles of the third type in Proposition 6.3.

5.4.1 Main Propositions

In this Subsection we give the main results for our model-dependent strategy.
The next proposition shows that when the dynamics reaches C G

sa it has gone “over the
hill”, while when it reaches C B

sa the energy has to increase again to the level Γ
∗
sa to visit � or

�. An analogue version for int = is is proven in [12, Proposition 2.3.9] and for int = wa
is proven in [2, Proposition 7.7], while here we extend that result to int = sa following a
similar argument.

Proposition 5.10 The following hold:

(i) If η ∈ C G
sa , then there exists a path ω : η → � such that maxζ∈ω H(ζ ) < Γ ∗

sa.
(ii) If η ∈ C B

sa, then there are no ω : η → � or ω : η → � such that maxζ∈ω H(ζ ) < Γ ∗
sa.

Proof The proof is analogue to the one done in [2, Proposition 7.7] for the weakly anisotropic
case by using the reference path for the nucleation constructed in [3, Sect. 3.2]. ��
The next Proposition holds also in the case int ∈ {is, wa} (see [2, Proposition 7.8]). We
refer to Sect. 5.4.3 for the proof of Propositions 5.11, 5.12 and 5.14.

Proposition 5.11 C ∗
sa ⊆ Gsa(�,�).

For the corresponding result of Proposition 5.11 for int ∈ {is, wa}we refer to [2, Proposition
7.8].
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Proposition 5.12 The following hold:

(i) Ksa = ∅;
(ii) K̃sa ∩ ∂C�

� (Γ ∗
sa − H(�)) = ∅.

For the corresponding result of Proposition 5.12 for int ∈ {is, wa}we refer to [2, Proposition
7.9].

Corollary 5.13 The following hold:

(i) The saddles of the first type σ ∈ ∂C�
� (Γ ∗

sa) ∩ (Ssa(�,�) \ C ∗
sa) are unessential;

(ii) The saddles of the second type ζ ∈ ∂C�
� (Γ ∗

sa − H(�)) ∩ (Ssa(�,�) \ C ∗
sa) are

unessential.

Proof Combining [2, Propositions 3.3, 3.5] and 5.12 we get the claim. ��
For the corresponding result of Corollary 5.13 for int ∈ {is, wa} we refer to [2, Corollary
7.10].

Proposition 5.14 Any saddle ξ that is neither inC ∗
sa , nor in

⋃
k,α,α′ A α,α′

k , nor in the boundary

of the cycles C�
� (Γ ∗

sa) or C
�
� (Γ ∗

sa −H(�)), i.e., ξ ∈ Ssa(�,�)\ (∂C�
� (Γ ∗

sa)∪∂C�
� (Γ ∗

sa −
H(�)) ∪ C ∗

sa ∪ ⋃
k,α,α′ A α,α′

k ), such that τξ < τC B
sa

is unessential. Therefore it is not in
Gsa(�,�).

For the corresponding result of Proposition 5.14 for int ∈ {is, wa}we refer to [2, Proposition
7.11].

5.4.2 Useful Lemmas for the Model-Dependent Strategy

In this Subsection we give some useful lemmas about the entrance in the gate and some
properties of the setsC ∗

sa(i)with i = 3, ..., L∗
sa .We stress that the behavior for int ∈ {is, wa}

is very different from that observed for int = sa, indeed we note that the weakly anisotropic
model has some characteristics similar to the isotropic and some similar to the strongly
anisotropic model. For the corresponding results obtained in the case int ∈ {is, wa} we
refer to [2, Sect. 7.4.2]. Recall (5.1) and (4.17) for the definitions of Qsa , Dsa and C ∗

sa . The
next lemma generalizes [12, Proposition 2.3.8], proved for int = is, to the case int = sa
following similar arguments. In the case int = wa, this result is given in [2, Lemma 7.12].
The proof of Lemma 5.15 is analogue to the one done in [2, Lemma 7.12] for the weakly
anisotropic case.

Lemma 5.15 (i) Starting from C ∗
sa \ Q

f p
sa , the only transitions that do not raise the energy

are motions of the free particle in the region where the free particle is at lattice distance
≥ 3 from the protocritical droplet.

(ii) Starting from Q
f p
sa , the only transitions that do not raise the energy are motions of the

free particle in the region where the free particle is at lattice distance ≥ 3 from the
protocritical droplet and motions of the protuberance along the side of the rectangle
where it is attached.When the lattice distance is 2, either the free particle can be attached
to the protocritical droplet or the protuberance can be detached from the protocritical
droplet and attached to the free particle, to form a rectangle plus a dimer. From the latter
configuration the only transition that does not raise the energy is the reverse move.
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(iii) Starting from C ∗
sa , the only configurations that can be reached by a path that lowers the

energy and does not decrease the particle number, are those where the free particle is
attached to the protocritical droplet.

Lemma 5.16 The saddles in C ∗
sa(2) are essential.

The proof of Lemma 5.16 is analogue to the one done in [2, Lemma 7.16] for the case int ∈
{is, wa}. The next Lemma investigates how the entrance inC ∗

sa occurs. For the corresponding
result that holds in the case int ∈ {is, wa} see [2, Lemma 7.13]. We encourage the reader to
inspect the difference between Lemma 5.17 and [2, Lemma 7.13], indeed the entrance in the
gate in the strongly anisotropic case is peculiar and different with respect the isotropic and
weakly anisotropic ones. Recall (4.23) and (4.24).

Lemma 5.17 Any ω ∈ (� → �)opt enters C ∗
sa in one of the following ways:

(i) ω passes first through Q̄sa , then possibly through D̄sa \ Q̄sa, and finally reaches C ∗
sa;

(ii) ω passes through the configuration R(2l∗2 − 1, l∗2 − 1), then a free particle is created
and moved towards the rectangle until it is attached to an horizontal side α ∈ {n, s}.
Then for some α′ ∈ {w, e} the path ω passes through the setsA α,α′

k for all k = 2, ..., l∗2 ,
and finally reaches C ∗

sa(2).

Since in Lemma 5.17 we have proved that there are two possible ways to reach C ∗
sa(2),

where the possibility (i) is analogue to the cases int = is and int = wa, to find the minimal
gates for sa for any i = 3, ..., L∗

sa we need to consider C
∗
sa(i) union some particular saddles

belonging to the paths described in (ii).

Lemma 5.18 For any i = 3, ..., L∗
sa and k = 2, ..., l∗2 the set C ∗

sa(i) ∪ ⋃
α,α′ {ξα,α′

j(k) } is a

minimal gate for all 1 ≤ j(k) ≤ k − 1, where {ξα,α′
j(k) } are the elements in A α,α′

k defined in
(4.23) and (4.24).

Remark 5.19 We encourage the reader to inspect the difference between the statement of
Lemma 5.18 and [2, Lemma 7.14]: the sets C ∗

int (i), with i = 3, ..., L∗
int , are minimal gates

if int ∈ {is, wa}, while C ∗
sa(i) are not minimal gates for any i = 3, ..., L∗

sa .

Lemma 5.20 For the strongly anisotropic interactions, we have

C ∗
sa ∪

l∗2⋃

k=2

⋃

α,α′
A α,α′

k ⊆ Gsa(�,�) (5.17)

5.4.3 Proof of Propositions

Proof of Proposition 5.11 The statement of the Proposition follows by Lemma 5.20. ��
Proof of Proposition 5.12 The proof of (i) is analogue to the one done in [2, Proposition 7.9]
for int ∈ {is, wa}.

Now we prove (ii). Let η̄ ∈ K̃sa ∩ ∂C�
� (Γ ∗

sa − H(�)). By the definition of the set K̃sa

we know that there exist η ∈ C ∗
sa and ω = ω1 ◦ω2 from η to � with the properties described

in [2, eq. (3.3)]. We know that η is composed by the union of a protocritical droplet η̂ ∈ Dsa

and a free particle. Since ω1∩C ∗
sa = {η}, we note that η ∈ C ∗

sa(2), otherwise the free particle
has to cross at least B̄2(η̂) and B̄3(η̂), the latter in the configuration η′ ∈ C ∗

sa , with η′ �= η,
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which contradicts the conditions in [2, eq. (3.3)]. Therefore, starting from η, by the optimality
of the path we deduce that the unique admissible move is to attach the free particle to the
cluster. If η̄ is obtained from η by attaching the free particle in a good site giving rise to a
configuration in C G

sa(η̂), by Proposition 5.10(i) we know that ω1 ∩ C�
� (Γ ∗

sa − H(�)) �= ∅,
that contradicts [2, eq. (3.3)], thus t is not possible to find ω1 and ω2, therefore η̄ /∈ K̃sa ,
which is in contradiction with the assumption.

Assume now that η̄ is obtained from η by attaching the free particle in a bad site giving rise
to a configuration inC B

sa(η̂). If η ∈ Q
f p
sa , then by Lemma 5.15(ii) the unique admissible move

is the reverse one, thus we may assume that η ∈ C ∗
sa \Q f p

sa and that the path does not go back
to η, otherwise we can iterate this argument for a finite number of steps since the path has to
reach �. Starting from η, by Lemma 5.6 we know that η̄ is obtained either via a sequence
of 1-translations of a bar or via a sliding of a bar around a frame-angle. If a sequence of
1-translations takes place, by the optimality of the path we deduce that the unique possibility
is either detaching the protuberance or sliding a bar around a frame-angle. In the first case the
configuration that is obtained is in C ∗

sa and thus η̄ /∈ K̃sa , which contradicts the assumption.
by (4.11), Proposition 5.1(b) (in particular conditions in (5.2)) and Lemma 5.8 we deduce
that the only possibility to slide a bar around a frame-angle is that the bar is horizontal and
it has length exactly l∗2 − 1. Thus the configurations visited by the path ω during this sliding

are η̄1, ..., η̄m ∈ A α,α′
k for some α ∈ {n, s}, α′ ∈ {w, e} and k = 2, ..., l∗2 − 1, while the last

configuration η̃ obtainedwhen the last particle of the bar is detached is composed by the union
ofR(2l∗2 −1, l∗2 −1) and a free particle (see the time-reversal of the path described in Fig. 7,
in particular η̄m is the configuration (7) and η̃ is the configuration (2)). Therefore η̃ belongs
to the set B defined in [3, Eq. (3.29)] since s (̃η) = s∗

sa − 1 and p2 (̃η) = l∗2 − 1. Thus by [3,
Theorem 3.7] we deduce that η̃ /∈ C�

� (Γ ∗
sa −H(�)) and therefore η̄m /∈ ∂C�

� (Γ ∗
sa −H(�)),

that implies K̃sa ∩ ∂C�
� (Γ ∗

sa − H(�)) = ∅. ��
Proof of Proposition 5.14 The proof is analogue to the one done for [2, Proposition 7.11] in
the case int ∈ {is, wa}, but in this case we use Lemmas 5.15(ii) and 5.17 and η is the union
of a cluster η̂ ∈ Qsa and a free particle at distance 2 from the cluster. Moreover, ξi is the
union of a rectangle (2l∗2 − 3) × l∗2 with an horizontal dimer. ��

5.4.4 Proof of Lemmas

Proof of Lemma 5.17 By Theorem 4.8 we know that any ω ∈ (� → �)opt passes through
C ∗
sa . We denote by η this configuration, that is composed by the union of a protocritical

droplet η̂ ∈ D̄sa and a free particle in the site x . Note that there exists i = 2, ..., L∗
sa such

that either x ∈ Bi (η̂) if d(∂−Λ4, η̂) > i or x ∈ B̄i (η̂) if d(∂−Λ4, η̂) ≤ i . We set ω =
(�, ω1, ..., ωk , η)◦ ω̄, where ω̄ is a path that connects η to� such that maxσ∈ω H(σ ) ≤ Γ ∗

sa .
In order to analyze the entrance in C ∗

sa we consider the time-reversal of the path ω. Since
H(η) = Γ ∗

sa , the move from η to ωk must have a non-positive cost and thus the unique
admissible moves are:

(i) either moving the free particle at zero cost;
(ii) or removing a free particle at cost −Δ;
(iii) or attaching the free particle at cost −U1 (resp. −U2) or −U1 −U2.

Case (i). In this case we obtain that the configuration ωk is still in C ∗
sa , thus it is analogue to

η and therefore we can iterate the argument by taking this configuration as η.
Case (ii). In this case H(ωk) = Γ ∗

sa − Δ and ωk ∈ D̄sa . If ωk ∈ Q̄sa we get the claim, thus
in the sequel we assume that ωk ∈ D̄sa \ Q̄sa . Since the path ω starts from �, there exist
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k1 < k2 < k such that |ωk1 | = |ωk | − 1 and there is a free particle in ωk2 , i.e., n(ωk2) = 1.
Starting from ωk and considering the time-reversal of the path ω, in order to obtain a free
particle in ωk2 we note that the minimal cost for detaching a particle isU1 +U2 giving rise to
the energy value greater or equal than Γ ∗

sa − Δ +U1 +U2 > Γ ∗
sa , which is in contradiction

with the optimality of the path. Thus the unique possibility is detaching the protuberance
from a configuration in Q̄sa at costU1. This implies that ωk is obtained via aU1-path starting
from a configuration in Q̄sa .
Case (iii). First, we consider the case where from η, again considering the time-reversal, we
attach a particle at cost −U1 giving rise to the configuration ωk , i.e., H(ωk) = Γ ∗

sa − U1.
Since the path ω starts from �, there exists k1 < k such that |ωk1 | = |ωk | − 1, that implies
that there exists a configuration ωk̄ with a free particle during the transition from ωk1 to ωk

(see Fig. 7 where ωk is configuration (12) and ωk̄ is configuration (2)). If ωk̄ ∈ C ∗
sa , we can

iterate the argument by taking this configuration as η. Otherwise if ωk̄ /∈ C ∗
sa , we deduce that

(ωk̄)cl /∈ D̄sa . Starting from ωk̄ , since the activation of a sequence of 1-translations of bars
of configurations in D̄sa gives rise to configurations that are in D̄sa , the unique possibility in
order not to exceedΓ ∗

sa is thatωk is obtained fromωk̄ via a sliding of a bar, say B
α′

(ωk), around
a frame-angle, say cα′α(ωk). In order to do that, by (4.11) and Proposition 5.1(b), we deduce
that the unique possibility to match the two conditions in (5.2) is that during the transition
the path ω crosses Ssa(�,�) through the sets A α,α′

k for any k = 2, ..., l∗2 , with α ∈ {n, s},
α′ ∈ {w, e}. In Fig. 7 we represent this transition with α = n, α′ = e and the configurations
(11)-(3) for the sliding.At the end of this slidingwe obtain the configurationR(2l∗2−1, l∗2−1)
union a free particle. This configuration must be obtained fromR(2l∗2 −1, l∗2 −1) via adding
a free particle, otherwise the path ω is not optimal.

Second, we consider the case where from η we attach a particle at cost −U2 giving rise
to the configuration ωk , i.e., H(ωk) = Γ ∗

sa − U2. We argue in a similar way as above, but
the difference is that in this case the sliding of a bar around a frame-angle at cost U2 is not
allowed by Lemma 5.8.

Third, we consider the case where from η we attach a particle at cost−U1−U2 giving rise
to the configurationωk , i.e., H(ωk) = Γ ∗

sa −U1−U2. Since ηcl ∈ D̄sa , the unique possibility
is that ωk ∈ C G

sa(η̂), therefore by Lemma 5.10(i) we get ωk ∈ C�
� (Γ ∗

sa − H(�)). Since by
Theorem 4.8 we know that C ∗

sa is a gate for the transition, we deduce that there exists k1 < k
such that ωk1 ∈ C ∗

sa . Thus we can iterate the argument by taking this configuration as η. ��

Proof of Lemma 5.18 Let i ∈ {3, ..., L∗
sa}, k ∈ {1, ..., n} and 1 ≤ j(k) ≤ k − 1.

First, we prove that C ∗
sa(i) ∪ ⋃

α,α′ {ξα,α′
j(k) } is a gate. By Theorem 4.8 we know that any

ω ∈ (� → �)opt crosses C ∗
sa . If the path ω enters C ∗

sa without crossing the set Psa,0, then
by Lemma 5.17(i) we know that ω has to pass through C ∗

sa(i). If the path ω enters C ∗
sa after

crossing the set Psa,0, then by Lemma 5.17(ii) we know that ω ∩ ⋃
α,α′ {ξα,α′

j(k) } �= ∅.
Now we prove that C ∗

sa(i) ∪ ⋃
α,α′ {ξα,α′

j(k) } is a minimal gate by showing that for any

η ∈ C ∗
sa(i) ∪ ⋃

α,α′ {ξα,α′
j(k) } the set (C ∗

sa(i) ∪ ⋃
α,α′ {ξα,α′

j(k) }) \ {η} is not a gate: there exists

ω ∈ (� → �)opt such that ω ∩ ((C ∗
sa(i) ∪ ⋃

α,α′ {ξα,α′
j(k) }) \ {η}) = ∅. We consider separately

the cases η ∈ ⋃
α,α′ {ξα,α′

j(k) } and η ∈ C ∗
sa(i).

Case 1. Let η ∈ ⋃
α,α′ {ξα,α′

j(k) }, thus η = ξ
ᾱ,ᾱ′
j(k) for some ᾱ ∈ {n, s} and ᾱ′ ∈ {w, e}. We

can define ω as the reference path defined in [3, Sect. 3.2] that crosses the configurations
ξ

ᾱ,ᾱ′
1 ,...,ξ ᾱ,ᾱ′

k−1 , then it enters C ∗
sa(2) and finally the free particle is attached in a good site

without passing through C ∗
sa(i) with i = 3, ..., L∗

sa (see Fig. 7). From this configuration, the
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path proceeds towards � as the one in Proposition 5.10(i). The constructed ω is optimal and
ω ∩ ⋃

α,α′ {ξα,α′
j(k) } = {ξ ᾱ,ᾱ′

j(k) }, thus this case is concluded.
Case 2. Let η ∈ C ∗

sa(i). We take an arbitrary path starting from � and that enters C ∗
sa(i)

in η = (η̂, z), where η̂ ∈ D̄sa is the protocritical droplet and z is the position of the free
particle at distance i from the cluster. Then the path proceeds by moving the free particle
from z to η̂ such that, the distance between the free particle and η̂ at the first step is strictly
decreasing, and at the later steps is not increasing. Finally the free particle is attached in a good
site x ∈ ∂−CR(η̂) giving rise to a configuration in C G

sa(η̂). From this configuration, the path
proceeds towards� as the one in Proposition 5.10(i). Since the constructedω ∈ (� → �)opt
and ω ∩ C ∗

sa(i) = {η}, the proof is completed. ��
Proof of Lemma 5.20 By Lemma 5.16 we know that the saddles in C ∗

sa(2) are essential and
thus are in the setGsa(�,�) due to [41, Theorem 5.1]. Furthermore, by Lemma 5.18we know
that C ∗

sa(i) ∪ ⋃
α,α′ {ξα,α′

j(k) } is a minimal gate for any i = 3, ..., L∗
sa and j(k) = 1, ..., k − 1,

with k = 2, ..., l∗2 . Therefore we get

Gsa(�,�) ⊇ C ∗
sa(2) ∪

L∗
sa⋃

i=3

l∗2⋃

k=2

⋃

j(k),α,α′
(C ∗

sa(i) ∪ {ξα,α′
j(k) }) = C ∗

sa ∪
l∗2⋃

k=2

⋃

α,α′
A α,α′

k (5.18)

��

6 Proof of theMain Results: Strongly Anisotropic Case

In this Section we give the proof of the main Theorems 4.8 and 4.10 (see Sects. 6.1 and 6.2
respectively).

6.1 Proof of theMain Theorem 4.8

In this Section we give the proof of the main Theorem 4.8. Now we recall the definition of
the set P2 given in [3] as

P2 := {η : n(η) = 1, v(η) = l∗2 − 1, ηcl is connected, monotone,
with circumscribed rectangle in R(2l∗2 − 2, l∗2 )}. (6.1)

In particular, in order to state that the set C ∗
sa is a gate for the transition from � to �, we need

the following

Lemma 6.1 If ω ∈ (� → �)opt is such that ω ∩ P2, then ω ∩ C ∗
sa �= ∅.

We postpone the proof of Lemma 6.1 after the proof of the main Theorem 4.8.

Proposition 6.2 If ω ∈ (� → �)opt is such that ω ∩ Psa,0 �= ∅, then ω ∩ C ∗
sa �= ∅.

We postpone the proof of Proposition 6.2 after the proof of Lemma 6.1.

Proof of themain Theorem 4.8 By [3, Theorem 2.4] taking P1 = Psa,0, we know that the
set Psa,0 ∪ P2 is a gate for the transition from � to �. By Lemma 6.1 we know that every
ω ∈ (� → �)opt that crossesP2 then crosses C ∗

sa , thus we deduce that the setPsa,0 ∪ C ∗
sa

is a gate. Furthermore, by Proposition 6.2 we obtain that every path ω ∈ (� → �)opt that
crosses Psa,0 then crosses also C ∗

sa . This implies that every optimal path ω from � to � is
such that ω ∩ C ∗

sa �= ∅, thus C ∗
sa is a gate. ��
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(a) (b) (c) (d)

Fig. 10 Here we depict in a the configuration η; in b the configuration obtained by η by attaching the free
particle at cost−U1 to Bw(η); in c the configuration η′ obtained from η by attaching the free particle to cse(η)

and then detaching the particle in cnw(CR−(η)) and attach it to Be(η), and in d the configuration η′′ obtained
from η′ by detaching the particle in cne(CR−(η′)) attach it to Bn(η′)

Proof of Lemma 6.1 Consider ω ∈ (� → �)opt . If ω ∩ C ∗
sa �= ∅, we get the claim. Thus we

can reduce our analysis to the case in which the path ω reaches the setP2 in a configuration
η ∈ P2 \ C ∗

sa . We set ω = (�, ω1, ..., ωk , η) ◦ ω̄, where ω̄ is a path that connects η to �
such that maxσ∈ω H(σ ) ≤ Γ ∗

sa . We are interested in the time-reversal of the path. Since η ∈
P2\C ∗

sa , we know that it is composed by the union of a cluster CR−(η) = R(2l∗2 −4, l∗2 −2),
such that at least one frame-angle of CR−(η) is empty, a free particle and four bars attached
to the four sides of CR−(η) in such a way that η contains ncsa + 1 particles (see (4.15) for the
definition of ncsa). Suppose that CR

−(η) contains x empty frame-angles, with 1 ≤ x ≤ 4.
See Fig. 10(a) to visualize the configuration η in the case x = 1. Since H(η) = Γ ∗

sa , the
move from η to ωk must have a non-positive cost and thus the unique admissible moves are:

(i) either moving the free particle at zero cost;
(ii) or removing the free particle;
(iii) or attaching the free particle at cost −U1 (see Fig. 10b) or −U2, or −U1 −U2.

Case (i). In this case the configuration ωk is analogue to η and therefore we can iterate this
argument by taking this configuration as η.
Case (ii). In this case H(ωk) = Γ ∗

sa − Δ. We may assume that the configuration ωk−1 is not
obtained by ωk via adding a free particle, otherwise ωk−1 is analogue to η and thus we can
iterate the argument by taking this configuration as η. By the optimality of the path, again
considering the time-reversal, we deduce that the unique admissible move to obtain ωk−1

from ωk is breaking a horizontal (resp. vertical) bar at cost U1 (resp. U2). Thus it is possible
that either a sequence of 1-translations of a bar or a sliding of a bar around a frame-angle
takes place. In the first case, we obtain a configuration that is analogue to ωk−1 and thus we
can iterate the argument for a finite number of steps, since the path has to reach�. In the latter
case, by Remark 5.2(ii) we deduce that the condition (4.11) is not satisfied and therefore it
is not possible to complete any sliding of a bar around a frame-angle. This implies that the
unique admissible moves are the reverse ones, thus we obtain a configuration that is analogue
to ωk−1 and therefore we can iterate the argument for a finite number of steps, since the path
has to reach �. In this way we can reduce ourselves to consider the case (iii).
Case (iii). (a) We consider the case where from η, again considering the time-reversal, we
attach a particle at cost −U1 in ∂+CR(η) giving rise to the configuration ωk , i.e., H(ωk) =
Γ ∗
sa −U1 (see Fig. 10b). Thus it is possible that either a sequence of 1-translations of a bar or

a sliding of a bar around a frame-angle takes place. In the first case, we obtain a configuration
that is analogue to ωk and thus we can iterate the argument for a finite number of steps, since
the path has to reach �. In the latter case, by Remark 5.2(ii) we deduce that the condition
(4.11) is not satisfied and therefore it is not possible to complete any sliding of a bar around
a frame-angle. This implies that the unique admissible moves are the reverse ones, thus we
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obtain a configuration that is analogue to ωk and therefore we can iterate the argument for a
finite number of steps, since the path has to reach �.

(b) We consider the case where from η, again considering the time-reversal, we attach a
particle at cost−U2 in ∂+CR(η) giving rise to the configuration ωk , i.e., H(ωk) = Γ ∗

sa −U2.
We argue in a similar way as above.

(c) We consider the case where from η, again considering the time-reversal, we attach a
particle at cost −U1 − U2 in ∂−CR(η) giving rise to the configuration ωk , i.e., H(ωk) =
Γ ∗
sa − U1 − U2. Thus it is possible either to have a sequence of 1-translations of a bar, or

to have a sliding of a bar around a frame-angle, or to detach a particle at cost U1 + U2. In
the first two possibilities, analogously to what has been discussed previously in (a) and (b),
the unique admissible moves are the reverse ones and therefore we conclude as above. In the
latter possibility, we have that either ωk−1 is obtained from ωk by detaching a particle from
a bar at cost U1 + U2 or from a corner of η that is in CR−(η). In the first case, the particle
can be attached to an empty frame-angle of CR−(η) and we can repeat these steps at most
x − 1 times (if x ≥ 2), that implies that there exists k̄ < k − 1 such that ωk̄ is composed by
the union of a free particle and a rectangle R(2l∗2 − 4, l∗2 − 2) with four bars attached to its
four sides in such a way that ωk̄ contains n

c
sa + 1 particles, namely ωk̄ ∈ C ∗

sa . In the second
case, we may assume that the detached particle is attached to a bar in ∂−CR(η) giving rise
to a configuration η′ (see Fig. 10c), otherwise we obtain a configuration that is analogue to
η. Starting from η′, similarly we obtain η′′ (see Fig. 10d) if η′ has a corner in CR−(η′). If
this is the case, we can proceed in a similar way until we obtain a configuration η′′′ that has
no corner in CR−(η′′′). Starting from η′′′, by the optimality of the path we deduce that the
unique admissible moves are the reverse ones and therefore the path goes back to η. This
concludes the proof. ��
Proof of Proposition 6.2 Consider any ω ∈ (� → �)opt such that ω ∩ Psa,0 �= ∅. We
consider separately the following three cases.
Case (i). Assume that the path ω crosses the set A := ⋃

α,α′,k A
α,α′
k , with α ∈ {n, s},

α′ ∈ {w, e} and k = 2, ..., l∗2 , in the configuration η. Since H(η) = Γ ∗
sa , as long as the

energy does not exceed Γ ∗
sa , it is impossible to create a free particle before further lowering

the energy by a quantity greater or equal than U1 + U2. Since g′
2(η) = 1, it is possible to

connect at cost −U1 the two protuberances or a bar and a protuberance. Moreover, there
is no admissible move that costs −U2, since g′

1(η) = 0 and there is no free particle that
could been attached to an horizontal side of the cluster. Thus the only admissible moves
are starting a sliding of a bar around a frame-angle cαα′

(η) or cα′α(η), with α ∈ {n, s},
α′ ∈ {w, e}, at cost less or equal thanU1. We consider separately these two possibilities, that
correspond to the two different directions to cross the path described in Fig. 7 starting from
the configuration η. More precisely, one of these possibilities (that we will analyze in (iA)),
gives rise to the configuration (12), while the other (that will be treated in (iB)) corresponds
to the time-reversal of the path described in Fig. 7 starting from the configuration η.

(iA). In this situation it is possible to obtain one or more saddles ξ1, ..., ξn−1 such that
ξi ∈ A for all i = 1, ..., n−1 and for the last configurationwehave |rα′

(ξn−1)∪cαα′
(ξn−1)| =

1, with α ∈ {n, s}, α′ ∈ {w, e} and g′
2(ξn−1) = 1 (see configuration (12) in Fig. 7). From

this configuration, since H(ξn−1) = Γ ∗
sa , by the optimality of the path ω it is impossible

to detach the protuberance before lowering the energy. Thus the unique admissible moves
are either the reverse move or connect the protuberance and the bar at cost −U1 and then
detach the protuberance at cost U1 (see the move starting from the configuration (12) in
Fig. 7 that is described with a dashed arrow). In the latter situation the path reaches a
configuration ξn ∈ C ∗

sa . Thus we have to consider the possibilities that ω visits ξn and
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ω does not visit ξn . In the first possibility, since ω passes through ξn ∈ C ∗
sa we get the

claim. In the latter possibility, the path ω does not pass through the configuration ξn , but
assume that the path ω visits the saddles ξi , ..., ξ j for some 1 ≤ i ≤ j ≤ n − 1. We set
ω = (�, ω1, ..., ωk, ξi , ζi , .., ζh, ξi+1, ζh+1, ..., ζh+m , ..., ξ j )◦ω̄, where ζi , ..., ζh are not sad-
dles, but are crossed during the sliding of a bar around a frame-angle connecting ξi to ξi+1

and so on. Moreover, ω̄ is a path that connects ξ j to � such that maxσ∈ω H(σ ) ≤ Γ ∗
sa .

Note that the configuration ξ j coincides with ξi+1 in the case j = i + 1. If i = j ,
we set ω = (�, ω1, ..., ωk, ξi ) ◦ ω̄, where ω̄ is a path that connects ξi to � such that
maxσ∈ω H(σ ) ≤ Γ ∗

sa . To prove our statement we investigate the structure of the path ω

before entering A , namely we consider the time-reversal of the path. Since ξi ∈ A that
implies H(ξi ) = Γ ∗

sa , we note that the move from ξi to ωk must have a non-positive cost.
Thus the admissible transitions from ξi to ωk are either moving the particle at zero cost or
moving a particle at cost −U1. In the first case, we obtain a configuration that is analogue
to ξi and therefore we can iterate for a finite number of steps this argument until we get the
situation described in the latter case. In the latter case H(ωk) = Γ ∗

sa −U1, thus ωk−1 can be
obtained from ωk by breaking a bar at cost U1 or U2, since it is not possible to detach any
particle because its cost is at leastU1+U2. If the cost isU1, we deduce that ωk−1 is analogue
to the initial configuration ξi and thus we can iterate this argument for a finite number of
steps, because the path has to reach �. If the cost is U2, we can iterate this argument to
deduce that starting from ωk a sliding of a bar around a frame-angle takes place (see the
time-reversal of the path described in Fig. 7, where ωk−1 can be, for example, the configura-
tion (9)). Since the path has to reach �, this implies that there exists k1 < k such that ωk1 is
composed by the union of a rectangleR(2l∗2 − 1, l∗2 − 1) and a protuberance attached to one
of the longest sides. Note that H(ωk1) = Γ ∗

sa − U1. Furthermore, since either moving the
protuberance along the side or detaching it from the cluster are the only admissible moves
with maxσ∈ω H(σ ) ≤ Γ ∗

sa , we note that there exists k2 < k1 such that the configuration ωk2
is composed by the union ofR(2l∗2 − 1, l∗2 − 1) and a free particle. Note that ωk2 belongs to
the setB defined in [3, Definition 3.5] because p2(ωk2) = l∗2 − 1. Thus by [3, Theorem 3.7]
we know that ω reaches a configuration in P2. We get the claim by using Lemma 6.1.

(iB). Note that this situation can be treated as in (iA) for the case in which ω does not
visit ξn , indeed without loss of generality we may assume that η = ξi and then we proceed
as above.
Case (ii). Assume that ω crosses the set A α′

0 ∪ A α
1 in the configuration η, with α ∈ {n, s}

and α′ ∈ {w, e}. By Lemma 5.7 we know that η has been obtained from a configuration
ηB ∈ C B

sa , thus there exists a configuration η̄ ∈ C ∗
sa such that ω passes through η̄ before

crossing ηB .
Case (iii). Assume that ω crosses the set Psa,0 \ (

⋃
α,α′,k A

α,α′
k ∪ ⋃

α′ A α′
0 ∪ ⋃

α A α
1 ) in

the configuration η, thus the path ω crosses either ηB ∈ C B
sa or ηG ∈ C G

sa before passing
through η. In the first case, η is obtained either via a 1-translation of a bar or via a sliding
of a bar around a frame-angle that in both cases can not be completed because η is not in⋃

α,α′,k A
α,α′
k ∪⋃

α′ A α′
0 ∪⋃

α A α
1 . Therefore the pathω, before crossing ηB , passes through

a configuration η̄ ∈ C ∗
sa . In the latter case, we argue similarly. This concludes the proof. ��

6.2 Proof of theMain Theorem 4.10

In this Section we analyze the geometry of the set Gsa(�,�) (recall (3.13)). In particular,
we give the proof of the main Theorem 4.10 by giving in Proposition 6.3 the geometric
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characterization of the essential saddles of the third type that are not in C ∗
sa and that are

visited after crossing the set C B
sa .

Proposition 6.3 Any saddle ξ that is neither inC ∗
sa , nor in the boundary of the cyclesC

�
� (Γ ∗

sa)

nor C�
� (Γ ∗

sa − H(�)) such that τξ ≥ τC B
sa
can be essential or not. For those essential we

obtain the following description:

Gsa(�,�) ∩ (Ssa(�,�) \ (∂C�
� (Γ ∗

sa) ∪ ∂C�
� (Γ ∗

sa − H(�)) ∪ C ∗
sa))

=
⋃

α

⋃

α′

l∗2⋃

k=2

A α,α′
k ∪

⋃

α′
A α′

0 ∪
⋃

α

A α
1

(6.2)

Remark 6.4 In Proposition 5.14wehave proved that the saddles ξ of type three in Sect. 5.4 that
are not in

⋃
k,α,α′ A α,α′

k and such that τξ < τC B
sa
are unessential.Note thatwe have not to study

separately the essentiality of the saddles ξ ∈ ⋃
k,α,α′ A α,α′

k , since
⋃

k,α,α′ A α,α′
k is included

in the essential saddles ξ of type three such that τξ ≥ τC B
sa
, analyzed in Proposition 6.3.

We postpone the proof of Proposition 6.3 after the proof of the main Theorem 4.10.

Proof of Theorem 4.10 By Corollary 5.13 we know that the saddles of the first and second
type, defined in [2, Definition 3.2] and [2, Definition 3.4] respectively, are unessential. By
Propositions 5.14 and 6.3 we have the characterization of the essential saddles of the third
type in Sect. 5.4. We use Proposition 5.11 to get the claim. ��
Proof of Proposition 6.3 Consider a configuration η ∈ C ∗

sa(2) such that η = (η̂, x), with
η̂ ∈ D̄sa and d(η̂, x) = 2. By Proposition 5.1(b), note that η̂ consists of an (2l∗2 −4)×(l∗2 −2)
rectangle with four bars Bα(η), with α ∈ {n, s, w, e}, attached to its four sides satisfying

1 ≤ |Bw(η)|, |Be(η)| ≤ l∗2 , l∗2 − 1 ≤ |Bn(η)|, |Bs(η)| ≤ 2l∗2 − 2, (6.3)

and ∑

α

|Bα(η)| − k = 5l∗2 − 7, (6.4)

with k = ∑
αα′∈{nw,ne,sw,se} |cαα′

(η)|. Assume that the free particle is attached in a bad

site obtaining a configuration η′ ∈ C B
sa . Due to [41, Theorem 5.1], our strategy consists in

characterizing the essential saddles that could be visited after attaching the free particle in a
bad site. By Remark 5.2(i) we consider separately the following cases:

A. three frame-angles of CR(η̂) are occupied;
B. two frame-angles of CR(η̂) are occupied;
C. one frame-angle of CR(η̂) is occupied;
D. no frame-angle of CR(η̂) is occupied.

Note that from case A one can go to the other cases and viceversa, but since the path has
to reach � this back and forth must end in a finite number of steps.
Case A. Without loss of generality we consider η as in Fig. 11 on the left-hand side. If we
are considering the case in which a sequence of 1-translations of a bar is possible and takes
place, then by Lemma 5.7 the saddles that are crossed are essential and in A α′

0 ∪ A α
1 . If a

sequence of 1-translations of a bar takes place in such a way that the last configuration has
at most two occupied frame-angles, then the saddles that are visited starting from it will be
analyzed in cases B, C and D. Thus we are left to analyze the case in which there is the
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Fig. 11 Case A: on the left-hand side we represent a possible starting configuration η ∈ C ∗
sa and on the

right-hand side the configuration η′ obtained from η after the sliding of the bar Bn(η) around the frame-angle
cnw(η′)

(a) (b) (c)

Fig. 12 Case B(i): in a we depict a possible starting configuration η ∈ C ∗
sa . Case B(ii): in b we depict a

possible starting configuration η ∈ C ∗
sa . Case B(iii): in c we depict a possible starting configuration η ∈ C ∗

sa

activation of a sliding of a bar around a frame-angle. In the following we quickly exclude
the cases in which the particles is attached to Bn(η), Bs(η) or Be(η) and then explain the
more interesting case in which it is attached to Bw(η) giving rise to Fig. 11 on the right-
hand side. If the free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 5.8 we
know that it is not possible to complete the sliding of the bar Bw(η) (resp. Be(η)) around
the frame-angle cwn(η′) (resp. ces(η′)). If the free particle is attached to the bar Be(η) or
Bw(η), then it is not possible to slide the bar Bs(η) around the frame-angle cse(η′) or csw(η′)
respectively, since (4.11) is not satisifed. In the last two cases by Lemma 5.6(ii) we know that
the saddles that are visited are unessential. This implies that the unique possibility to activate
and complete a sliding of a bar around a frame-angle is attaching the free particle to the bar
Bw(η), then sliding the bar Bn(η) around the frame-angle cnw(η′) when |Bn(η)| = l∗2 − 1
and |Bw(η)| = l∗2 , otherwise (4.11) is not satisifed. The saddles that are possibly visited

by the path we described are in A α,α′
k,k′ except the last one, thus by Lemma 5.6(i) they are

essential. The last configuration visited during this sliding of a bar is depicted in Fig. 11 on
the right-hand side. This configuration has energy Γ ∗

sa − U1 + U2 and therefore it is not a
saddle. Starting from this configuration, by Lemma 5.17 we know that the saddles that could
be visited are in C ∗

sa or again in A α,α′
k,k′ . This concludes case A.

Case B. If we are considering the case in which a sequence of 1-translations of a bar is
possible and takes place, then by Lemma 5.7 the saddles that are crossed are essential and in
A α′

0 ∪ A α
1 . We consider separately the following subcases:

(i) The two occupied frame-angles are cαα′
(η) and cα′′α′′′

(η), with all the indeces α, α′, α′′
and α′′′ different between each other (see Fig. 12a);

(ii) The two occupied frame-angles are cαα′
(η) and cα′α′′

(η), with α′ ∈ {n, s} and α �= α′′
(see Fig. 12b);
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(iii) The two occupied frame-angles are cαα′
(η) and cα′α′′

(η), with α′ ∈ {e, w} and α �= α′′
(see Fig. 12c).

Case B(i). Without loss of generality we consider η as in Fig. 12a. We can reduce our
proof to the case in which there is no translation of a bar and therefore there is the activation
of a sliding of a bar around a frame-angle. If the free particle is attached to the bar Bn(η)

(resp. Bs(η)), by Lemma 5.8 we know that it is not possible to complete the sliding of the bar
Bw(η) (resp. Be(η)) around the frame-angle cwn(η′) (resp. ces(η′)). By Lemma 5.6(ii), this
implies that the saddles that could be crossed are unessential. If the free particle is attached
to the bar Bw(η) (resp. Be(η)), it is possible to slide the bar Bn(η) (resp. Bs(η)) around
the frame-angle cnw(η′) (resp. cse(η′)) when |Bn(η)| < |Bw(η)| (resp. |Bs(η)| < |Be(η)|),
otherwise (4.11) is not satisifed. By (6.3) and (6.4) we note that |Bn(η)| < |Bw(η)| (resp.
|Bs(η)| < |Be(η)|) is not possible and the case B(i) is concluded.

Case B(ii). Without loss of generality we consider η as in Fig. 12b. If one bar among
Bw(η) and Be(η) is full, it is possible to translate Bs(η) in order to have three occupied
frame-angles. This situation has already been analyzed in case A. Thus we can reduce our
proof to the case in which there is no translation of a bar and therefore there is the activation
of a sliding of a bar around a frame-angle. If the free particle is attached to the bar Bn(η) (or
Bs(η)), by Lemma 5.8 we know that it is not possible to complete the sliding of a vertical
bar around any frame-angle. If the free particle is attached to the bar Bw(η) or Be(η), since
the bar Bn(η) is full, we deduce that (4.11) is not satisfied. This implies that it is not possible
to slide the bar Bn(η) around the frame-angle cnw(η′) and cne(η′). In the last two cases by
Lemma 5.6(ii) we know that the saddles that could be visited are unessential. This concludes
case B(ii).

Case B(iii). Without loss of generality we consider η as in Fig. 12c. If the bar Bn(η) (or
Bs(η)) is full, it is possible to translate Be(η) to occupy the frame-angle cne(η′) (or cse(η′)).
This situation has already been analyzed in case A. Otherwise, it is possible to translate a bar
with one occupied frame-angle in order to have two occupied frame-angles in such a way
that they have no bar in common. This situation has already been analyzed in case B(i). Thus
we can reduce our proof to the case in which there is no translation of a bar and therefore we
can consider only the activation of a sliding of a bar around a frame-angle. If the free particle
is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 5.8 we know that it is not possible to
complete the sliding of the bar Bw(η) around the frame-angle cwn(η′) (resp. cws(η′)). If the
free particle is attached to the bar Be(η), we deduce that (4.10) is not satisfied. In the last two
cases by Lemma 5.6(ii) we know that the saddles that are visited are unessential. If the free
particle is attached to the bar Bw(η), it is possible to slide the bar Bn(η) (resp. Bs(η)) around
the frame-angle cnw(η′) (resp. csw(η′)) when |Bn(η)| < |Bw(η)| (resp. |Bs(η)| < |Bw(η)|),
otherwise (4.11) is not satisifed. By (6.3) and (6.4) we note that |Bn(η)| < |Bw(η)| (resp.
|Bs(η)| < |Bw(η)|) is not possible and the case B(iii) is concluded.
Case C.Without loss of generality we consider η as in Fig. 13 on the left-hand side. If we are
considering the case in which a sequence of 1-translations of a bar is possible and takes place,
then by Lemma 5.7 the saddles that are crossed are essential and inA α′

0 ∪A α
1 . Starting from

this configuration it is possible to obtain two occupied frame-angles, that it has been already
analyzed in Case B. Thus we can reduce our proof to the case in which there is no translation
of a bar and therefore there is the activation of a sliding of a bar around a frame-angle. If
the free particle is attached to the bar Bn(η) (resp. Bs(η)), by Lemma 5.8 we know that
it is not possible to complete the sliding of the bar Bw(η) around the frame-angle cwn(η′)
(resp. cws(η′)). If the free particle is attached to the bar Be(η), we deduce that (4.11) is not
satisfied. In the last two cases by Lemma 5.6(ii) we know that the saddles that are visited
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Fig. 13 Case C: on the left-hand side we depict a possible starting configuration η ∈ C ∗
sa . Case D: on the

right-hand side we depict a possible starting configuration η ∈ C ∗
sa

are unessential. If the free particle is attached to the bar Bw(η), it is possible to slide the
bar Bn(η) around the frame-angle cnw(η′) when |Bn(η)| < |Bw(η)|, otherwise (4.11) is not
satisfied. By (6.3) and (6.4) we note that |Bn(η)| < |Bw(η)| is not possible and the case C
is concluded.
Case D. Without loss of generality we consider η as in Fig. 13 on the right-hand side. If
we are considering the case in which a sequence of 1-translations of a bar is possible and
takes place, then by Lemma 5.7 the saddles that are crossed are essential and in A α′

0 ∪ A α
1 .

Starting from this configuration, it is possible to obtain one or two occupied frame-angles:
these situations have been already analyzed in cases C and B respectively. Thus we can
reduce our proof to the case in which there is no translation of a bar and therefore there is
the activation of a sliding of a bar around a frame-angle. If the free particle is attached to
the bar Bn(η) (resp. Bs(η)), by Lemma 5.8 we know that it is not possible to complete the
sliding of the bar Bw(η) around the frame-angle cwn(η′) (resp. cws(η′)). If the free particle is
attached to the bar Bw(η) or Be(η), we deduce that (4.10) is not satisfied. In the last two cases
by Lemma 5.6(ii) we know that the saddles that are visited are unessential. This concludes
case D. ��

7 Proof of the Sharp Asymptotics

For themodel-independent discussionwe refer to [2, Sect. 10.1]. Following the strategy given
in [12] for the isotropic case, here we apply this argument for the strongly anisotropic one.
For the corresponding strategy in the isotropic and weakly anisotropic cases we refer to [2,
Sect. 10.2].

7.1 Application of the Potential Theory to the Strongly Anisotropic Case

In [11] the authors let the protocritical and critical sets asP∗(m, s) andC ∗(m, s) respectively
(see [11, Definition 16.3] for the definition ofP∗(m, s) andC ∗(m, s)). Since they differ from
our notation, we refer to them as P∗

PT A(m, s) and C ∗
PT A(m, s). In [11] the authors proved

[11, Theorem 16.4] and [11, Theorem 16.5] subject to the two hypotheses

(H1) X m = {m} and X s = {s};
(H2) ξ ′ → |{ξ ∈ P∗

PT A(m, s) : ξ ∼ ξ ′}| is constant on C ∗
PT A(m, s).

For our modelX m
sa = {�} andX s

sa = {�}, thus (H1) holds and Γ ∗ = Φ(�,�) − H(�) =
Γ ∗
sa . Now we abbreviate P∗

PT A = P∗
PT A(�,�) and C ∗

PT A = C ∗
PT A(�,�). Moreover,
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we prove that geometrically P∗
PT A = D̄sa ∪ ⋃

α,α′ ¯A α,α′
2 (see (7.6) for the definition of

¯A α,α′
2 ) and C ∗

PT A = C ∗
sa(L

∗
sa) ∪ ⋃

α,α′ A α,α′
2 (recall (4.23) for the definition of A α,α′

2 ) with
α ∈ {n, s} and α′ ∈ {e, w}. Therefore it is clear that C ∗

sa �= C ∗
PT A. Note that (H2) follows

from Lemma 5.17, indeed each configuration in C ∗
PT A has exactly one configuration in

P∗
PT A from which it can be reached via an allowed move. In particular, the configurations in

C ∗
sa(L

∗
sa) and D̄sa are connected by removing the free particle in ∂−Λ, while those in A α,α′

2

and ¯A α,α′
2 are connected between each other by attaching the two particles separated by an

empty site at cost −U1. Since (H1) and (H2) hold, [11, Theorem 16.4] and [11, Theorem
16.5] should hold, but for the strongly anisotropic case this is not true. More precisely, this
model represents a counterexample of [11, Theorem 16.4(b)], indeed on the one hand [11,
Theorem 16.4(a)] and [11, Theorem 16.5] are valid, but on the other hand [11, Theorem
16.4(b)] does not hold. This relies on a peculiar feature of this model: the entrance in C ∗

PT A
can not be uniform due to the two possibile different entrance mechanisms, as claimed in
Lemma 5.17. This depends on the hypothesis (H2), that takes into account only the map from
C ∗
PT A toP∗

PT A and not the reverse one. Therefore we propose to replace the hypothesis (H2)
with

(H2’) ξ ′ → |{ξ ∈ P∗
PT A(m, s) : ξ ∼ ξ ′}| is constant on C ∗

PT A(m, s) and ξ → |{ξ ′ ∈
C ∗
PT A(m, s) : ξ ′ ∼ ξ}| is constant on P∗

PT A(m, s).

We are convinced that this could be the correct hypotheses, indeed the analysis of the uniform
entrance distribution in C ∗

PT A(m, s) has to take into account the number of configurations
in P∗

PT A(m, s) that communicate with C ∗
PT A(m, s) via one step of the dynamics. Now it

is clear that this model does not satisfy (H2’), indeed each configuration in D̄sa has exactly
4L − 4 configurations in C ∗

sa from which it can be reached via an allowed move, while each

configuration in ¯A α,α′
2 has only one configuration inA α,α′

2 with this property. Therefore [11,
Theorem 16.4(b)] does not hold for this model.

Recall [2, Definition 10.1] for the definition of the wellsZ �
sa, j andZ

�
sa, j and [2, Definition

3.2] and [2, Definition 3.4] for the definition of the saddles σsa, j of the first type and ζsa, j

of the second type respectively. Concerning [11, Theorem 16.5], by [11, Lemma 16.16] for
the case int = sa, we know that h is constant on each wells. For the wells Z m

j and Z s
j this

constant is computed in [2, Lemma 10.4], indeed [11, Lemma 16.15] can be extended for
these sets together with the unessential saddles of the first and second type. Thanks to the
model-independent discussion given in [2, Sect. 10.1] and [2, Lemma 10.4], [2, eq. (10.7)]
becomes

h =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 on C�
� (Γ ∗

sa) ∪
J�⋃

j=1

({σsa, j } ∪ Z �
sa, j ),

0 on C�
� (Γ ∗

sa − H(�)) ∪
J�⋃

j=1

({ζsa, j } ∪ Z �
sa, j ),

ci on Xsa(i), i = 1, ..., Ī ,

(7.1)

where Xsa(i), i = 1, ..., Ī , are all the wells of the transition except
⋃J�

j=1 Z
�
sa, j and

⋃J�
j=1 Z

�
sa, j . This implies that the unessential saddles, not characterizing the typical behav-

ior of the process, can not be neglected in the study of the prefactor K . However, since they
do not communicate with some Xsa(i) via one step of the dynamics together with the fact
that h(σsa, j ) = 1 and h(ζsa, j ) = 0 for any j , the transitions that involve these unessential
saddles do not contribute numerically to the computation of K . The variational formula for
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Fig. 14 We depict the transition that, starting from a configuration in C ∗
sa , passes trough C G

sa and after two
moves reaches an unessential saddle ζsa

Θ = 1/K in [2, eq. (10.11)] is non-trivial because it depends on the geometry of all the wells
and on the form of the function h on the configurations in X ∗

sa \ X ∗∗
sa , namely the saddle

configurations.

Remark 7.1 In Fig. 14 we depict a transition that, starting from a configuration in C ∗
sa , gives

an unessential saddle ζsa of the third type.

7.2 Proof of Theorem 4.12

Using [2, Lemma 10.4], in order to prove Theorem 4.12 it remains to analyze in detail the
number of possible transitions inside the gates and in-between their boundaries. Finally, we
need to count the cardinality of D̄sa modulo shifts. We denote by Nsa that quantity.

7.2.1 Lower Bound

Recall [2, Definition 10.1] for the definition of the wells Z �
sa, j and Z �

sa, j and [2, Definition
3.2] and [2, Definition 3.4] for the definition of the saddles σsa, j of the first type and ζsa, j of
the second type respectively. Thus we consider the following sets:

X �
sa := C�

� (Γ ∗
sa) ∪

J�⋃

j=1

({σsa, j } ∪ Z �
sa, j ) (7.2)

X �
sa := C�

� (Γ ∗
sa − H(�)) ∪

J�⋃

j=1

({ζsa, j } ∪ Z �
sa, j ) (7.3)

The lower bound Θsa ≥ Θsa
1 is obtained by removing all the transitions that do not involve

either a protocritical droplet and a free particle that moves or the path described in Fig. 7.
The first type of transitions gives a contribute that can be treated in a similar way as in the
lower bound in [12, Proposition 3.3.4]. Indeed we obtain:

∑

η̂∈D̄ sa

minc j (η̂), j=1,2,3,4 min
g:Λ∗→[0,1]

g|∂G η̂
≡0,g|∂Bj η̂

≡c j , j=1,2,3,4,g|∂+Λ≡1

1

2

∑

x,x ′∈Λ+
x∼x ′

[g(x) − g(x ′)]2

≥
∑

η̂∈D̄ sa

CAPΛ+
(∂+Λ,CR(η̂))

(7.4)

where g(x) := h(η̂, x) = h(η) for η̂ ∈ D̄sa and x ∈ Λ \ CR++(η̂), and ∂G η̂ denotes the set
of good sites in ∂−CR(η̂), ∂B

j η̂, j = 1, 2, 3, 4, denote the four bars of bad sites in ∂+CR(η̂)

and

CAPΛ+
(∂+Λ, F) = min

g:Λ+→[0,1]
g|∂+Λ≡1,g|F≡0

1

2

∑

x,x ′∈Λ+
x∼x ′

[g(x) − g(x ′)]2, for any F ⊆ Λ+. (7.5)
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For α ∈ {n, s}, α′ ∈ {w, e} and k = 2, ..., l∗2 , we define

¯A α,α′
k := {η : n(η) = 0, v(η) = 2l∗2 − 2, |rα(η)| = k − 1, |rα(η)| = l∗2 − k, |cαα′

(η)| = 1,
ηcl is connected, monotone,with circumscribed rectangle in R(2l∗2 − 1, l∗2 )}

(7.6)
and

Ã α,α′
k := {η : n(η) = 0, v(η) = 2l∗2 − 2, |rα(η)| = k, |rα(η)| = l∗2 − k, |cαα′

(η)| = 0,
ηcl is connected, monotone,with circumscribed rectangle in R(2l∗2 − 1, l∗2 )}

(7.7)
Referring to Fig. 7, note that the configuration (6) is in ¯A n,e

2 and the configuration (10) is in
¯A n,e
3 , while the configuration (8) is in Ã n,e

2 .
Now we analyze the transitions described in Fig. 7. The configuration (6) is in ¯A n,e

2 ⊆
C�

� (Γ ∗
sa) ⊆ X �

sa and therefore h(
⋃

α,α′ ¯A n,e
2 ) = 1. Thanks to [12, Lemma 3.3.2], we know

that h is constant on the wells and thus we analyze the transitions to and from each wells.
In particular, note that during the transition from Ã α,α′

k and ¯A α,α′
k+1 only configurations with

energy strictly smaller than Γ ∗
sa are crossed, thus they belong to the same well and therefore

we can set h constant on these configurations. We set h(
⋃

α,α′ A α,α′
2 ) = c1, h ≡ c2 on

⋃
α,α′ Ã α,α′

2 and on its wells, and so on until the last set h(
⋃

α,α′ ¯A α,α′
l∗2

) = c2l∗2−2 and

h(η) = c2l∗2−1 for any η ∈ C ∗
sa(2). Thus we have to minimize w.r.t. c1, c2, ..., c2l∗2−1 the

following term:

(1 − c1)
2 + (c1 − c2)

2 + ... + (c2l∗2−3 − c2l∗2−2)
2 + (c2l∗2−2 − c2l∗2−1)

2 + kc22l∗2−1 (7.8)

where k = l∗2 − 1 is the number of good sites of the configuration (12) in Fig. 7. We prove
by induction over n that

cn = 1 + Kncn+1

Kn + 1
, 1 ≤ n ≤ 2l∗2 − 2, (7.9)

where Kn satisfies the following recurrence relation
{
Kn = (Kn−1 + 1)2, 2 ≤ n ≤ 2l∗2 − 2,

K1 = 1.
(7.10)

n = 1 We have to prove that c1 = 1+c2
2 . This can be easily checked by minimizing the

function f (c1, c2) = (1 − c1)2 + (c1 − c2)2 with respect to c1. Indeed we get:

∂ f

∂c1
= 4c1 − 2c2 − 2 = 0 ⇔ c1 = 1 + c2

2
(7.11)

2 ≤ n ≤ 2l∗2 − 2 Assume now that (7.9) holds for n−1 and we prove that it holds also for n.

We consider the function f (cn−1, cn, cn+1) = (cn−1 − cn)2 + (cn − cn+1)
2 and we replace

the expression of cn−1 in terms of cn . Thus we get

f (cn, cn+1) =
(
1 + Kn−1cn
Kn−1 + 1

− cn

)2

+ (cn − cn+1)
2 (7.12)

and therefore

∂ f

∂cn
= 2

(
Kn−1

Kn−1 + 1
− 1

)(
1 + Kn−1cn
Kn−1 + 1

− cn

)
+ 2(cn − cn+1) (7.13)
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The equation ∂ f
∂cn

= 0 gives
cn − 1

(Kn−1 + 1)2
= cn+1 − cn (7.14)

that implies (7.9) by using (7.10). Thus we get the claim.
Now we have to find the value of the constant c2l∗2−1 that minimizes (7.8). By considering

the function f (c2l∗2−2, c2l∗2−1) = (c2l∗2−2 − c2l∗2−1)
2 + (l∗2 − 1)c22l∗2−1 and proceeding in a

similar way as above, we deduce that

c2l∗2−1 = 1

(l∗2 − 1)(K2l∗2−2 + 1)2 + 1
(7.15)

Finally, by (7.9) and (7.15) we get

1 − c1 = 1 − c2
2

and cn−1 − cn = 1 − cn
Kn−1 + 1

(7.16)

Finally, by (7.16) we deduce that the minimizer of the quantity in (7.8) is given by

(1 − c2
2

)2 +
2l∗2−1∑

n=2

( 1 − cn
Kn−1 + 1

)2 + l∗2 − 1

((l∗2 − 1)(K2l∗2−2 + 1)2 + 1)2
(7.17)

where the coefficients c2, ..., c2l∗2−1 can be explicitly derived from (7.9) e (7.15). Combining
(7.4) and (7.17), we get

Θsa ≥
∑

η̂∈D̄ sa

CAPΛ+
(∂+Λ,CR(η̂)) + 4

[(1 − c2
2

)2 +
2l∗2−1∑

n=2

( 1 − cn
Kn−1 + 1

)2

+ l∗2 − 1

[(l∗2 − 1)(K2l∗2−2 + 1)2 + 1]2
]

:= Θsa
1

(7.18)

The first term in the r.h.s. of (7.18) can be treated in a similar way as [12, Lemma 3.4.1] for
Λ → Z

2. Since the remaining part of the r.h.s. of (7.18) does not depend on the size of the
box, that implies that we can neglect its contribute as Λ → Z

2, we deduce that

Θsa
1 → 4πNsa

|Λ|
log |Λ| as Λ → Z

2, (7.19)

where Nsa is computed in Proposition 7.2.

7.2.2 Upper Bound

We define
C++
sa := {η = (η̂, x) : η̂ ∈ D̄sa, x ∈ Λ \ CR++(η̂)}. (7.20)

and we consider the following test function

h(η) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if η ∈ X �
sa ,

ci if η ∈ Xsa(i), i = 1, ..., Ī

g(x) if η ∈ C++
sa ,

0 if η ∈ X �
sa ,

(7.21)
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where g(x) := h(η̂, x) = h(η) for η̂ ∈ D̄sa and x ∈ Λ \ CR++(η̂), i.e., η ∈ C++
sa . Thus by

[2, eq. (10.1)] we get

CAP(�,�) ≤ (1 + o(1))

( ∑

η̂∈D̄ sa

CAPΛ+
(∂+Λ,CR++(η̂)) + minc1,...,cI

min
h:X ∗

sa→[0,1]
h|X �

sa
=1,h|X �

sa
=0,h|X sa (i)=ci ,i=1,..., Ī

1

2

∑

η,η′∈X ∗
μβ(η, η′)cβ(η, η′)[h(η) − h(η′)]2

(7.22)
where CAPΛ+

(∂+Λ, F) is defined in (7.5). We have to analyze the possible transitions
betweenX �

sa andXsa(i)∪⋃
j {ξsa, j }, betweenXsa(i) andXsa( j) with i �= j and between

Xsa(i)∪⋃
j {ξsa, j } andX �

sa , where the saddles ξsa, j are neither saddles of the first type nor
saddles of the second type (recall [2, Definitions 3.2, 3.4]).

We set Xsa(1) = ⋃
α∈{n,s}

⋃
α′∈{w,e} A

α,α′
2 (an example is given in Fig. 7 by the config-

uration (7)). We set Xsa(2) as the union of Ã α,α′
2 , ¯A α,α′

3 and the configurations connecting
these sets in the path described in Fig. 7 that are in the same well. We iterate this construction
until the last set Xsa(2l∗2 − 1) as we did for the lower bound. Furthermore, we set

Xsa(2l
∗
2 ) = C B

sa, Xsa(2l
∗
2 +1) =

⋃

α′∈{e,w}
A α′

0 , Xsa(2l
∗
2 +2) =

⋃

α′∈{e,w}
A α

1 (7.23)

Now we analyze all the transitions that give a non-trivial contribute to (7.22).
Transitions between X �

sa and Xsa(i) ∪ ⋃
j {ξsa, j }. The transition via one step of the

dynamics from η ∈ X �
sa and η′ ∈ Xsa(i) ∪ ⋃

j {ξsa, j } is possible only if either η ∈ D̄sa

and η′ ∈ C ∗
sa or η ∈ ¯A α,α′

2 and η′ ∈ A α,α′
2 for some α ∈ {n, s} and α′ ∈ {w, e}. The latter

transition contributes 4 times to the quantity in (7.22) depending on which frame-angle is
involved in the transition.
Transitions between Xsa(i) and Xsa( j). We consider the sequence of transitions that
forms the path described in Fig. 7, the transitions between C ∗

sa(2) and C B
sa , between C B

sa and
Xsa(2l∗2 + 1) and between C B

sa and Xsa(2l∗2 + 2).
Transitions between Xsa(i) and X �

sa . The transition via one step of the dynamics from
η ∈ Xsa(i) and η′ ∈ X �

sa is possible only if η ∈ C ∗
sa(2) and η′ ∈ C G

sa .
Collecting all these transitions, by (7.21) and (7.22) we get

CAP(�, �) ≤ e−βΓ ∗
sa

Zβ

(1 + o(1))minc̄,c1,...,c2l∗2+2
4
[
(1 − c1)

2 + (c1 − c2)
2 + ... + (c2l∗2−2 − c2l∗2−1)

2

+(l∗2 − 1)c22l∗2−1

]
+

∑

η∈C ∗
sa (2)

η′∈C G
sa

c̄2 +
∑

η∈C ∗
sa (2)

η′∈X sa (2l∗2 )

(c̄2 − c2l∗2 )
2

+2
∑

η∈X sa (2l∗2 )

η′∈X sa (2l∗2+1)

(c2l∗2 − c2l∗2+1)
2 + 2

∑

η∈X sa (2l∗2 )

η′∈X sa (2l∗2+2)

(c2l∗2 − c2l∗2+2)
2

+
∑

η̂∈D̄ sa

CAPΛ+
(∂+Λ,CR++(η̂))

(7.24)
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Rearragging the term, we get

CAP(�,�) ≤ e−βΓ ∗
sa

Zβ

(1 + o(1))

(
minc1,...,c2l∗2−1

4
[
(1 − c1)

2 + (c1 − c2)
2

+... + (c2l∗2−2 − c2l∗2−1)
2 + (l∗2 − 1)c22l∗2−1

]
+ minc̄,c2l∗2 ,...,c2l∗2+2

∑

η∈C ∗
sa(2)

η′∈C G
sa

c̄2

+
∑

η∈C ∗
sa(2)

η′∈X sa(2l∗2 )

(c̄ − c2l∗2 )
2 + 2

∑

η∈X sa(2l∗2 )

η′∈X sa(2l∗2+1)

(c2l∗2 − c2l∗2+1)
2

+2
∑

η∈X sa(2l∗2 )

η′∈X sa(2l∗2+2)

(c2l∗2 − c2l∗2+2)
2 +

∑

η̂∈D̄ sa

CAPΛ+
(∂+Λ,CR++(η̂))

)

(7.25)
Now we analyze separately the two following terms:

Θ̄sa = minc1,...,c2l∗2−1
4
[
(1−c1)

2+(c1−c2)
2+...+(c2l∗2−2−c2l∗2−1)

2+(l∗2−1)c22l∗2−1

]
(7.26)

and

Θ̃sa = minc̄,c2l∗2 ,...,c2l∗2+2

∑

η∈C ∗
sa(2)

η′∈C G
sa

c̄2 +
∑

η∈C ∗
sa(2)

η′∈Xsa(2l∗2 )

(c̄ − c2l∗2 )2 + 2
∑

η∈Xsa(2l∗2 )

η′∈Xsa(2l∗2+1)

(c2l∗2 − c2l∗2+1)
2

+2
∑

η∈Xsa(2l∗2 )

η′∈Xsa(2l∗2+2)

(c2l∗2 − c2l∗2+2)
2 +

∑

η̂∈D̄sa

CAPΛ+
(∂+Λ,CR++(η̂))

(7.27)
Note that the minimum of (7.26) coincides with 4 times the minimum of (7.8) and therefore
Θ̄sa can be computed in the same way as in the lower bound (see (7.9), (7.15) and (7.17)). It
is easy to check that the minimum of (7.27) w.r.t. c̄, c2l∗2 ,..., c2l∗2+2 is obtained for c̄ = c2l∗2 =
c2l∗2+1 = c2l∗2+2 = 0. Thus the term Θ̃sa becomes

Θ̃sa =
∑

η̂∈D̄ sa

CAPΛ+
(∂+Λ,CR++(η̂)) (7.28)

and therefore

Θsa ≤ e−βΓ ∗
sa

Zβ

(1 + o(1))(Θ̄ + Θ̃)

= e−βΓ ∗
sa

Zβ

(1 + o(1))

[
4

((1 − c2
2

)2 +
2l∗2−1∑

n=2

( 1 − cn
Kn−1 + 1

)2

+ l∗2 − 1

[(l∗2 − 1)(K2l∗2−2 + 1)2 + 1]2
)

+
∑

η̂∈D̄ sa

CAPΛ+
(∂+Λ,CR++(η̂))

]
:= Θsa

2

(7.29)
where the coefficients c2, ..., c2l∗2−2, c2l∗2−1 can be explictly derived from (7.9) and (7.15),
where the sequence Kn is defined in (7.10). The first term in the r.h.s. of (7.29) does not
depend on the size of the box, thus we can neglect its contribution as Λ → Z

2. Since the
remaining part of the r.h.s. of (7.29) can be treated in a similar way as [12, Lemma 3.4.1] for
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Λ → Z
2, we deduce that

Θsa
2 → 4πNsa

|Λ|
log |Λ| as Λ → Z

2, (7.30)

where Nsa is computed in Proposition 7.2.

Proposition 7.2

Nsa =
4∑

k=1

(
4

k

)(
l∗2 + k − 2

2k − 1

)
.

Proof We have to count the number of different shapes of the clusters in D̄sa . We do this
by counting in how many ways l∗2 − 1 particles can be removed from the four bars of a
(2l∗2 − 2) × l∗2 rectangle starting from the corners. We split the counting according to the
number k = 1, 2, 3, 4 of corners from which particles are removed. The number of ways in
which we can choose k corners is

(4
k

)
. After we have removed the particles at these corners,

we need to remove l∗2 − 1 − k more particles frome either side of each corner. The number
of ways in which this can be done is

|{(m1, ...,m2k) ∈ N
2k
0 : m1 + ... + m2k = l∗2 − 1 − k}|

= |{(m1, ...,m2k) ∈ N
2k : m1 + ... + m2k = l∗2 − 1 + k}|

=
(
l∗2 + k − 2

2k − 1

)
.

(7.31)

Thus we get the claim. ��

7.3 Proof of Theorem 4.16

Thanks to [47, Lemma 3.6], we deduce that for our model the quantity Γ̃ (B), with B � X ,
defined in [47, eq. (21)] is such that Γ̃ (X \ {�}) = Γ ∗

sa . Thus Theorem 4.16 follows by the
following proposition.

Proposition 7.3 [47, Proposition 3.24] For any ε ∈ (0, 1) and any s ∈ X s

lim
β→∞

1

β
log tmix

β (ε) = Γ̃ (X \ {s}) = lim
β→∞ − 1

β
log ρβ (7.32)

Furthermore, there exist two constants 0 < c1 ≤ c2 < ∞ independent of β such that for
every β > 0

c1e
−βΓ̃ (X \{s}) ≤ ρβ ≤ c2e

−βΓ̃ (X \{s}) (7.33)
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