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Chapter 1

Introduction

Society has become highly dependent on electric energy for school, work,

transportation, communication and even for leisure in the modern world.

Technology has evolved in such a way that more and more devices and

instruments used in everyday life have become energy dependent. These

include: phones, computers, washing machines, water pumps, televisions,

etc. Also, transportation in the near future will be completely electric. This

has brought more generation with the available resources i.e. Coal, Oil and

Gas. Ideally, grid voltages and currents should have a purely sinusoidal

waveform, but in reality they come in a distorted manner. These distortions

vary in form and magnitude and can sometimes be a combination of differ-

ent factors. These disturbances can have multiple sources that can affect

multiple users in a community. These can be caused by the use of nonlin-

ear electronic loads or by the generation of power using renewable sources.

Due to the ongoing global pollution, energy generation has taken steps to

mitigate it’s negative effects on climate. This has brought an increasing in-

terest in technology for renewable generation of energy. Recently, renewable

energy sources have engrossed great tendency because of their potential to

solve problems like increasing the need for electrical power, air pollution, and

global warming. Both the wind energy and solar photovoltaic energy, among

others systems, are combined to form the hybrid power system network to

provide future energy demand. The properties of these sources, like wind

variations and solar insolation changes, have a significant influence on power

quality (PQ), reliability, and safety. Consequently, the low power quality

leads to motor failure, overheating of the lines, inaccurate metering, prema-

1



2 Introduction

Figure 1.1: Global Energy Production by Source

ture aging of devices, and disturbances in communication circuits [1]. As

shown in Figure 1.1, energy production using Oil, Coal and Gas dominate

the current energy market. In recent years, an increase in renewable energy

generation has increased which should mitigate climate change. As said be-

fore, the problem with these technologies is that they are highly non-linear

and brings non-linearities into the power grid. In order to keep up with

the proper functioning of these instruments, energy suppliers and consumers

must keep up with the energy requirements for the proper functioning of

these devices.

Other than renewable energy sources, PQ problems can arise from the

use of electronic devices and appliances that bring severe problems to grid

voltages and currents in the form of Power Quality Disturbances (PQDś). In

recent years, a large number of nonlinear loads and distributed generations

with random characteristics are connected to the power grid [2]. Although

their extensive use in industrial, household, commercial and public sectors

have improved many aspects of everyday life, they have brought negative

effects on the power grid. The use of nonlinear electronic loads has increased

the eventuality of unbalanced currents, unacceptable harmonic levels, and

poor power factor in three-phase distribution systems [3]. In other words,

power electronics technologies and/or nonlinear loads have made life easier

and more comfortable but due to their nonlinear behavior it disturbs the

power grid through voltage and current waveform distortions. As a conse-

quence to the extensive use of nonlinear electronic devices, the purely sinu-
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soidal waveform gets injected with distorting components in an increasing

rate which have degraded PQ levels. If distorting components are injected,

power losses and malfunctioning of electric devices can occur. Common ef-

fects of a degradation of power quality in the industrial sector include: loss of

production, manufacturing interruption, loss of revenue, productivity cost,

decrease competitiveness, lost opportunity, wasted energy, and the decrease

of equipment life [4]. Similar effects can occur in the residential sector as

overheating of AC appliances, TV screens displaying flicker and data loss,

malfunctioning communication equipment and computer failures [5]. Non-

linear electronic loads can also cause disturbance to other consumers and

interference in nearby communication networks [6].

Power Quality (PQ) is defined by the IEEE as “ The concept of pow-

ering and grounding sensitive equipment in a matter that is suitable to the

operation of that equipment” [7]. Any deviation, in voltage and current,

from its nominal values in a certain period of time is considered a PQD.

PQDs are classified as a deviation from its nominal magnitude and/or fre-

quency components for a certain duration in time. Table 1.1 shows the PQDs

characteristics as shown in the IEEE Recommended Practice for Monitoring

Electric Power Quality [8].

In the last decades, PQ research has grown. Figure 4.6 shows the

number of articles published by year as indexed by scopus. It shows a growing

trend and it is expected to grow in the upcoming years. These statistics show

the importance, usefulness, and vast quantities of research opportunities

within this field of study.

Categories Typical

Spectral

Content

Typical

Durations

Typical Volt-

age

Magnitudes

1 Transients

1.1 Impulsive

1.1.1 Nanoseconds 5ns rise 50ns

1.1.2 Microseconds
1

50ns→1ms
s rise

1.1.3 Miliseconds 0.1ms rise 1ms

1.2 Oscillatory
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1.2.1 Low Frequency 5kHz 0.3→50ms 0→4

1.2.2 Medium Frequency 5→500 kHz 20 µs 0→8

1.2.3 High Frequency 0.5→ 5 MHz 5 µs 0→4

2 Short→duration rms variations

2.1 Instantaneous

2.1.1 sag 0.5→30 cycles 0.1→0.9

2.1.2 swell 0.5→30 cycles 1.1→1.8

2.2 Momentary

2.2.1 Interruption 0.5 cycles→3 s <0.1

2.2.2 Sag 0.5 cycles→3s 0.1→0.9

2.2.3 swell 0.5 cycles→3 s 1.1→1.4

2.2.4 Voltage Imbalance 0.5 cycles→3 s 2%→15%

2.3 Temporary

2.3.1 Interruption 3 s → 1 min <0.1

2.3.2 Sag 3 s → 1 min 0.1→0.9

2.3.3 swell 3 s → 1 min 1.1→1.2

2.3.4 Voltage Imbalance 3 s → 1 min 2%→15%

3 Long duration rms variations

3.1 Interruption Sustained 1 min 0

3.2 Undervoltages 1 min 0.8→0.9

3.3 Overvoltages 1 min 1.1→1.2

3.4 Current Overload 1 min

4 Imbalance

4.1 Voltage Steady State 0.5%→5%

4.2 Current Steady State 1.0%→3.0%

5 Wave Distortion

5.1 DC Offset Steady State 0→0.1%

5.2 Harmonics 0→9 kHz Steady State 0→20%

5.3 Interharmonics 0→9 kHz Steady State 0→2%

5.4 Notching Steady State

5.5 Noise broadband Steady State 0→1%

6 Voltage Fluctuations 25 Hz intermitent 0.1→7%

0.2→2

7 Power frequency variations 10 s 0.10 Hz

Table 1.1: IEEE 1159.
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Figure 1.2: Articles published on a 21 year span

NOTE→These terms and categories apply to power quality measure-

ments and are not to be confused with similar terms defined in IEEE Std

1366→2012 [B30] and other reliability→related standards, recommended

practices, and guides.

a The quantity pu refers to per unit, which is dimensionless. The quantity

1.0 pu corresponds to 100%. The nominal condition is often considered to

be 1.0 pu. In this table, the nominal peak value is used as the base for

transients and the nominal rms value is used as the base for rms variations.

b Flicker severity index Pst as defined in IEC 61000→4→15:2010 [B17] and

IEEE Std 1453 [B31].

Many instruments exist today that measure Power Quality (PQ). A

comparison is made with the most common instruments used today shown

in in Table 1.2. All these instruments have there pros and cons.

Table 1.2 Power Quality Measuring Instruments.

Manufacturer Model Cost Sampling Freq Country

Fluke 434-II 6.949,00 eu 200 kHz USA

Dewesoft Sirius XHS 100 15 MHz Slovenia

HT Instruments PQA820 2.059,00 eu 6.4 kHz Italy

Hioki PQ3198 6.897,00 eu 200kHz Japan
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: (a) Normal (b) Sag (c) Swell (d) Harmonics (e) Notch (f) Inter-

ruption

These instruments are very effective at measuring voltage and cur-

rent signals and usually have a high sampling rate making them effective at

capturing high frequency components injected into the grid. The problem is

that these instruments come at a high cost and, with it, they require trained

professional to operate them. They also fail at recognizing PQDs.

1.1 Power Quality Disturbance

Power Quality Disturbances are deviations of voltage and current levels

from their nominal values which can be considered as a wide spectrum of

anomalies that can be considered as PQD. These deviations can be classified

as magnitude deviations and frequency deviations.

The magnitude deviations are changes in there voltage levels from the

accepted values. These deviations are the Sag, Swell and the interruption

which are shown in Figure 1.3 b, c and f. On the other hand, frequency

deviations are frequency components that are added to the supply waveforms

that alter the functioning of given equipment. These include the Harmonics

and the Notch which are shown in Figure 1.3 d and e.
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1.1.1 Magnitude Deviations

Magnitude deviations includes deviations from the nominal working volt-

age levels. These include over voltage and under voltage. Over voltages

include voltages over 10% of its nominal working value. Under voltages in-

clude voltage levels under 10% of its nominal values. Figure 1.4 shows a plot

with a 50 Hz voltage signal where the red shaded area depicts where it is

considered under voltage and the blue regions are considered over voltage.

Figure 1.4: Magnitud deviation, under and over voltage

Voltages are 90% under its nominal value they are considered inter-

ruptions. Figure 1.5 shows a plot with a 50 Hz voltage signal where the red

shaded area depicts the area where an interruption is considered.
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Figure 1.5: Magnitud deviation, interruption

1.1.2 Frequency Deviation

Frequency deviations on a voltage and current supply involve the injection

of harmonic components injected to the grid. Harmonics are defined as

waveforms at multiples of the fundamental input signals frequency. For the

50Hz AC waveform the 2nd harmonic is at 100Hz the 3rd harmonic is at

150Hz and so on. The magnitude of each frequency component has to be

in such a way that the Total Harmonic Distortion (THD) does not surpass

8%. The THD of the voltage supply can be calculated using Equation 1.1.

Similarly the THD for the current supply can be calculated using the same

formula.

THD =

√∑inf
n=2 V

2
nrms

V1rms
(1.1)

As said in [9] The harmonics in which a signal can be decomposed,

as shown before, are entire multiples of the fundamental. A part from the

distinction between Odd (symmetrical) and Even (asymmetrical), they can

be classified according its phase rotation with the fundamental :

� Positive sequence harmonics (4th, 7th, 10th,...) : they do have the same

phase rotation than the fundamental, and circulate between phases.
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Table 1.3 Voltage Distortion Limits.

Bus Voltage V at

PCC

Individual

harmonic (%)

Total Harmonic

Distortion THD

(%)

V ≤ 1.0kV 5.0 8.0

1.0kV < V ≤ 69kV 3.0 5.0

69kV < V ≤ 161kV 1.5 2.5

161kV ≤ V 1.0 1.5

� Negative sequence harmonics (2nd, 5th, 8th,...) : they have the op-

posite phase rotation than the fundamental, and circulate between

phases.

� Zero sequence harmonics (3rd, 6th, 9th, ...), also known as Triplen

harmonics : these harmonics are on phase with the fundamental, and

circulate between phases and neutral. What is the same, they do not

cancel and add up directly in the Neutral conductor. For that reason,

in the presence of significant components of such harmonics in a 3 phase

installation, Neutral conductor will need to be oversized (compared to

phase conductors) to carry out these extra-current. For example, in

the presence of around 10 Arms 3rd order harmonic in each of the

3 phases, will mean an extra current of around 30 Arms in Neutral

conductor (at 150Hz in a 50Hz installation), like in Fig.8. If no triplen

harmonics were present, Neutral current will carry no current (no 50Hz

component present in Fig.8).

In theory, the supply voltage should be in a purely sinosoidal man-

ner. In practice harmonic components will always be existent in the supply

voltage due to many factors. Limits are drawn in order to ensure the proper

functioning of electric and electronic loads. This limits are shown in Table

1.3. Table 1.3 shows the individual harmonic amplitude percentage with

respect to the nominal working voltage of the voltage supply and the total

harmonic distortion limit calculated using Equation 1.1. Table 1.3 is the

IEEE 519 Voltage Distortion Limit standard [10].

The standard also shows the current limits for proper functioning

of electric and electronic loads. As also shown in [10], the limits in this

subclause apply to users connected to systems where the rated voltage at
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Table 1.4 Current distortion limits for systems rated 120 V through 69 kV.

Maximum harmonic limits for systems rated 120V through 69kV

Individual harmonic order (odd harmonics)

ISC/IL 3 ≤ 11 11 ≤ 17 17 ≤ 23 23 ≤ 35 35 ≤ 50 TDD

≤ 20c 4.0 2.0 1.5 0.6 0.3 5.0

20 ≤ 50 7.0 3.5 2.5 1.0 0.5 8.0

50 ≤ 100 10.0 4.5 4.0 1.5 0.7 12.0

100 ≤ 1000 12.0 5.5 5.0 2.0 1.0 15.0

≥ 1000 15.0 7.0 6.0 2.5 1.4 20.0

the PCC is 120 V to 69 kV. At the PCC, users should limit their harmonic

currents as follows:

� Daily 99th percentile very short time (3 s) harmonic currents should

be less than 2.0 times the values given in 1.4.

� Weekly 99th percentile short time (10 min) harmonic currents should

be less than 1.5 times the values given in 1.4.

� Weekly 95th percentile short time (10 min) harmonic currents should

be less than the values given in 1.4.

1.2 The objective

PQDs are mainly expressed in magnitude and or frequency deviation from

its nominal values in voltage and current signals. Do to the fact of the nature

of the voltage signals, Machine Learning and Deep Learning algorithms are

able to solve this kind of problems. The objective of this work is to explore,

develop and implement machine learning and or deep learning algorithms for

detection and classification of PQDs. A dataset needs to be created in order

to train and compare different Deep Learning algorithms. The dataset is to

be generated using Matlab Simulink. A comparison is necessary in order to

determine the best one for the task. This comparison includes well→known

deep learning architectures porven to be effective at other tasks. After the

comparison, a new state of the art architecture called the Single Shot Power

Quality Disturbance Detector SSPQDD is to be developed and tested. This
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architecture is designed specifically to tackle PQDs detection and classifi-

cation in a real time environment. The experimental procedure and results

are to be presented in order to show the effectiveness and performance of

this new architecture. This algorithm is to be implemented using embedded

electronics in a real time environment.

1.3 Contributions

The main contribution of this research is to design test and implement a

deep learning architecture that can detect and classify PQDs using measured

data from embedded electronics. This work presents a comparison of state of

the art deep learning architectures for classification of PQDs. Also, this work

presents the design procedure that for a state of the art deep learning archi-

tecture specifically design for detection and classification of PQDs in a real

time environment using embedded electronics. Whith that, the architectures

limitations and performance at detection and classification of PQDs. That

is, its precision, recall, F1-score and the AUC of the ROC and compare them

with previous architectures. In addition to designing and testing a state of

the art architecture for detection and classification of PQDs, the architecture

is implemented using embedded electronics. The measuring device created

measures voltages and currents at 16kHz and detects and classifies PQDs

in a real time environment. This state of the art architecture has higher

precision and lower computational resource requirements than traditional

architectures used for PQDs classification. Above all it is able to identify

the position and duration disturbances and classify them.
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Chapter 2

Literature review

This chapter gives a survey of related work on Power Quality

Disturbances and Power Quality event detection and classifica-

tion using feature extraction algorithms, machine learning algo-

rithms and deep learning algorithms. The first part of the chapter

introduces the term power quality and power quality disturbances,

while the second part summarizes the power quality disturbances

detection algorithms. The third section of the chapter describes

the machine learning algorithms used for detection and classifi-

cation. Going further still, the fourth section explains the deep

learning algorithms used in recent work. Finally, object detection

algorithms are presented and studied in the final section due to

the importance of these algorithms in this thesis.

2.1 Power Quality

As said in Chapter 1, the definition PQ given by the IEEE is: the concept of

powering and grounding of sensitive equipment in a matter that is suitable

to the operation of that equipment. In other words, PQ involves power

levels supplied and consumed at its nominal values. [11] defines PQ as the

following.

� Voltage quality is concerned with deviations of the voltage from the

ideal. The ideal voltage is a single-frequency sine wave of constant

amplitude and frequency.

13
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� Current quality is the complementary term to voltage quality: it is

concerned with the deviation of the current from the ideal. The ideal

current is again a single-frequency sine wave of constant amplitude and

frequency, with the additional requirement that the current sine wave

is in phase with the voltage sine wave.

� Power quality is the combination of voltage quality and current quality.

� Quality of supply is a combination of voltage quality and the non-

technical aspects of the interaction from the power network to its cus-

tomers

� Quality of consumption is the complementary term to quality of supply.

This can me summarize as a deviation from magnitud and or frequency

in voltage and current measurements.

2.2 Power Quality Disturbance Detection Al-

gorithms

Many attempts have been made to detect and classify PQDs in a real time

environment. Fourier transform (FT) [12] [13], short-time Fourier transform

(STFT) [14] [15], wavelet transform (WT) [16] [17] [18], s- transform (ST)

[19] [20] [21] [22] [23], Hilbert Huang transform (HHT) [24] [25].

2.2.1 Fourier Transform

The Fourier Transform is a frequency analysis done to a time signal in order

to extract its frequency characteristics. Naturally a frequency analysis can be

done to a voltage and current signal which shows magnitude and frequency

deviations hidden to the naked eye. The Fourier Transform is shown in

Equation 2.1

X(f) =

∫ ∞
−∞

x(t)e−j2πftdt (2.1)

Due to the nature of the processing, it is necessary for discretization of the

signal. To gather the spectral content of the discrete signal. In order to be

successful the Discrete Fourier Transform is performed. The discrete Fourier

transform (DFT) is a transform in its own right such as the Fourier integral
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transform or the Fourier series transform. It is a powerful reversible mapping

operation for time series. As the name implies, it has mathematical prop-

erties that are entirely analogous to those of the Fourier integral transform.

In particular, it defines a spectrum of a time series; multiplication of the

transform of two time series corresponds to convolving the time series [26].

The DFTis shown in Equation 2.2.

Xk =

N−1∑
n=0

xne
− i2πN kn (2.2)

In order to accelerate the computation of the DFT, an optimized version

was developed called the Fast Fourier Transform (FFT). The FFT iterates

on the array of given complex Fourier amplitudes and yields the result in

less than 2NIog2N operations without requiring more data storage than is

required for the given array A [27].

In [28] the objective was to present unique features that characterize

power quality events and methodologies to extract them from recorded volt-

age and/or current waveforms using Fourier and wavelet transforms. They

utilized these identifying features to build an event identification module.

The identification module extracts relevant identifying features.

[29] presents fractional Fourier transform (FRFT) based feature extrac-

tion a technique for classification of PQDs. FRFT is a generalized version of

Fourier transform (FT) with an additional order control and can give time,

frequency and intermediate time-frequency representations for a signal. The

proposed technique shows better performance in most of the cases, when

compared with Stockwell transform based classification under similar condi-

tions. Further, a validation using real PQDs obtained from an experimental

setup is shown. The corresponding results closely resemble the simulation

outcomes.

The paper [30] discusses the application of the windowed fast Fourier

transform to electric power quality assessment. The windowed FFT is a

time windowed version of the discrete time Fourier transform. The window

width may be adjusted and shifted to scan through large volumes of power

quality data. The value of the WFFT is the rapid evaluation of data when

no problem is detected, yet the ability to focus on detected power quality

problems. There is an error introduced by windowing: this error is governed

by a sinc function multiplier of the desired signal spectrum. It is possible

to adjust parameters of the sinc function multiplier to control calculated
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spectrum error.

2.2.2 Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) is characterized by a Fourier

transform executed in a fixed windowed interval. The window function g(n)

is called Blackmans window function and it is used to multiply a short seg-

ment of the signal by the window function. This avoids sharp sections and

redundant information. A Fourier transform of this small windowed section

Xn(jω) is calculated and stacked up to form a matrix. The STFT equation

is shown in Equation 2.3 and the Blackman Window Function is shown in

Equation 2.4.

X(jω) =
∑

x[n]g[n−mR]e−2πfn (2.3)

w[n] = a0 + a1cos
[2πn

N

]
+ a2cos

[4πn

N

]
(2.4)

The paper [31] deals with the comparison of signal processing tools for

power quality analysis. Two signal processing techniques are considered:

the wavelet filters and the discrete short-time Fourier transforms. Then,

examples of the two most frequent disturbances met in the power system are

chosen. It is designed an adjustable speed drive with a six-pulse converter

using EMTP/ATP and it is presented normal energizing of utility capacitors.

The analysis is tested on a system consists of 13 buses and is representative of

a medium-sized industrial plant. Finally, each kind of electrical disturbance

is analyzed with example representing each tool. A qualitative comparison

of results shows the advantages and drawbacks of each signal processing

technique applied to power quality analysis. Since the center frequencies

of the band-pass filters associated with the discrete STFT can be freely

chosen, e.g. at the harmonics of 60 Hz, discrete STFT is more suitable for

harmonic analysis. By selecting a small window length, STFT is able to

detect transient positions in disturbance data.

In [32] the advantages and disadvantages of STFT and wavelet transform

are compared which are used to analyze signal of transient harmonic in power

system, combining their merits, a novel STFT based on the special frequency

band is proposed in this paper. Multi-resolution analysis is used to detect the

fault time and determine the main frequency range of transient signal. Then

the central point and proper width of window of STFT can be obtained.
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Consequently the accuracy and efficiency of STFT can be improved greatly,

frequency components and its amplitudes of transient signal can be obtained

accurately and quickly by this method.

2.2.3 Wavelet Transform

Wavelet analysis is an exciting new method for solving difficult problems in

mathematics, physics, and engineering, with modern applications as diverse

as wave propagation, data compression, signal processing, image process-

ing, pattern recognition, computer graphics, the detection of aircraft and

submarines and other medical image technology. Wavelets allow complex

information such as music, speech, images and patterns to be decomposed

into elementary forms at different positions and scales and subsequently re-

constructed with high precision [33]. Equation 2.5 shows the Continuous

Wavelet Transform (CWT) where the x(t) is the input signal and the ψ
(
t−b
a

)
is the wavelet function.

T (a, b) =
1√
a

∫
x(t)ψ

( t− b
a

)
dt (2.5)

The wavelet function can be many predefined function like:Mexican Hat

Wavelet 2.6, Morlet Wavelet 2.7, Complex Morlet wavelet 2.8, Gaussian

Derivative Wavelet 2.9, Complex Gaussian Derivative Wavelet 2.10, Shannon

Wavelet 2.11 and Frequency B-spline Wavelet 2.12.

ψ(t) =
2√

3 4
√
π
e−

t2

2 (1− t2) (2.6)

ψ(t) = e−
t2

2 cos(5t) (2.7)

ψ(t) =
1√
πB

e−
t2

B ej2πCt (2.8)

ψ(t) = Ce−t
2

(2.9)

ψ(t) = Ce−jte−t
2

(2.10)

ψ(t) =
√
B
sin(πBt)

πBt
ej2πCt (2.11)
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ψ(t) =
√
B
[sin(πB t

M )

πB t
M

]M
ej2πCt (2.12)

In [34], the paper presents a new approach to detect, localize, and investigate

the feasibility of classifying various types of power quality disturbances. The

approach is based on wavelet transform analysis, particularly the dyadic-

orthonormal wavelet transform. The key idea underlying the approach is to

decompose a given disturbance signal into other signals which represent a

smoothed version and a detailed version of the original signal. The decom-

position is performed using multiresolution signal decomposition techniques.

They demonstrate and test their proposed technique to detect and localize

disturbances with actual power line disturbances. In order to enhance the

detection outcomes, they utilize the squared wavelet transform coefficients

of the analyzed power line signal. Based on the results of the detection and

localization, they carry out an initial investigation of the ability to uniquely

characterize various types of power quality disturbances. This investigation

is based on characterizing the uniqueness of the squared wavelet transform

coefficients for each power quality disturbance.

2.2.4 S-Transform

S-transform (ST) is an effective method to analyze power quality in time

and frequency domains. The S transform [6] is an extension to the ideas of

wavelet transform, and is based on a moving and scalable localizing Gaussian

window and has characteristics superior to either of the transforms. The S

transform is fully convertible from the time domain to two-dimensional 2D

frequency translation domain and to then familiar Fourier frequency domain.

The amplitude frequency time spectrum and the phase frequency time spec-

trum are both useful in defining local spectral characteristics. The superior

properties of the S transform are due to the fact that the modulating si-

nusoids are fixed with respect to the time axis while the localizing scalable

Gaussian window dilates and translates. As a result, the phase spectrum is

absolute in the sense that it is always referred to the origin of the time axis,

the fixed reference point. The real and imaginary spectrum can be localized

independently with a resolution in time, corresponding to the basis function

in question and the changes in the absolute phase of a constituent frequency

can be followed along the time axis and useful information can be extracted.

The phase correction of the wavelet transform in the form of S transform can
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provide significant improvement in the detection and localization of power

quality disturbance transients [35].

As said by [35], the S Transform is an extension of the Wavelet Transform

as show in Equation 2.13 with a Gaussian window with µ = 0 and σ2 = 1 as

shown in Equation 2.14.

WTx(t, σ) =
1√
σ

∫ ∞
−∞

x(τ)ψ
(τ − t

σ

)
dτ (2.13)

ψ(t) =
1√
2π
e
t2

2 (2.14)

Substituting Equation 2.14 in Equation 2.13, Equation 2.15 is obtained. the

Gaussian window function directly affects the time frequency resolution of

ST. Substituting the time shift factor shown in Equation 2.16 in Equation

2.15, the S Transform is obtained as shown in Equation 2.17.

WTx(t, σ) =
1√
σ

∫ ∞
−∞

1√
2π
x(τ)e−

(τ−t)2

2σ2 dτ (2.15)

σ =
1

|f |
(2.16)

S(t, f) =

∫ ∞
−∞

|f |√
2π
x(τ)e−

f2(τ−t)2
2 e−i2πfτdτ (2.17)

In [36] the authors use a modified version of the S Transform using an

improved window function of energy concentration in time-frequency distri-

bution to optimize the shape of each window function. This method deter-

mines the parameters of Gaussian window to maximize the product of energy

concentration in a time-frequency domain within a given time and frequency

interval, so as to improve the energy concentration. The result shows that

compared with the SST with Gaussian window, ST based on the optimally

concentrated window proposed in this paper has better energy concentration

in time-frequency distribution.

2.2.5 Hilbert Huang Transform

The HHT is derived from the principals of empirical mode decomposition

EMD and the Hilbert Transform. When applying the HHT, first, the EMD

will decompose the acquired signal into a collection of intrinsic mode func-

tions IMF. The IMF is a kind of complete, adaptive and almost orthogonal
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representation for the analysed signal. Since the IMF is almost monocompo-

nent, it can determine all the instantaneous frequencies from the nonlinear

or non stationary signal. Second, the local energy of each instantaneous fre-

quency can be derived through the Hilbert Transform. Hence, the result is

an energy frequency time distribution of the signal. Since applying the pro-

cess of HHT is not computational intensive, the HHT becomes a promising

method to extract the properties of nonlinear and non stationary signal [37].

Empirical Mode Decomposition

The essence of the method is to identify the intrinsic oscillatory modes by

their characteristic time scales in the data empirically, and then decompose

the data accordingly [38]. An intrinsic mode function (IMF) is a function

that satisfies two conditions as said in [38]:

1. in the whole data set, the number of extrema and the number of zero

crossings musteither equal or di er at most by one.

2. At any point, the mean value of theenvelope de ned by the local maxima

and the envelope de ned by the local minimais zero.

To obtain the EMD given the requisites of a IMF an algorithm must be

followed. As said in [39], given a signal x(t) , the effective algorithm of EMD

can be summarized as follows:

1. Identify all extrema of x(t).

2. Interpolate between minima (resp. maxima), ending up with some

”envelope” emin(t)(resp. emax (t).)

3. Compute the average m(t) =
(
emin(t) + emax (t)

)
/2.

4. Extract the detail d(t) = x(t)−m(t).

5. Iterate on the residual m(t).

In practice, the above procedure has to be refined by a sifting process which

amounts to first iterating steps 1)−4) upon the detail signal , until this latter

can be considered as zero-mean according to some stopping criterion. Once

this is achieved, the detail is considered as the effective IMF, the correspond-

ing residual is computed and step 5) applies [39].
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Hilbert Transform

The HT is one of the integral transforms (like Laplace and Fourier); it is

named after David Hilbert, who first introduced it to solve a special case of

the integral equations in the area of mathematical physics. The HT of the

function x(t) is defined by an integral transform [40]. The Hilbert Transform

is shown in Equation 2.18.

H[x(t)] = x̃(t) =
1

π

∫ ∞
−∞

x(τ)

t− τ
dτ (2.18)

In [41], the Hilbert-Huang Transform and the Multilayer Perceptron Neu-

ral Network model are implemented in order to detect and classify distur-

bances in power quality. Eight common types of disturbances were analyzed

based on the parameters stated in the IEEE 1159 standard. By means of

instantaneous frequencies and intrinsic mode functions of each disturbance,

the neural network is trained for the classification of these disturbances. The

implemented method reached a precision percentage of 94.6, demonstrating

the versatility and great potential that this method provides when detecting

disturbances in power quality.

2.3 Machine Learning Algorithms

2.3.1 Support Vector Machines

An SVM decision function is more precisely an optimal hyperplane that

serves to separate classify observations belonging to one class from another

based on patterns of information about those observations called features.

That hyperplane can then be used to determine the most probable label for

unseen data. The features used to infer the hyperplane are not typically raw

data; rather, they are most often derivative data resulting from some kind

of interpolation during the feature selection stage Features are further refer-

enced by coordinates based on their relationships to each other and form the

support vectors. As with other forms of machine learning, workin with SVM

involves balancing two complementary aimsd(1) maximizing the percentage

of correct labels assigned to new examples by the classifier (optimizing its

accuracy) and (2) ensuring that the classifier is generalizable to new data (

optimizing its reproducibility). While the former is bound by the informa-

tiveness of the features used (i.e., feature importance), the latter is bound
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by the number of unique examples used to train the model [42].

The authors in [43] aim at automatic classification of power quality

events using Wavelet Packet Transform (WPT) and Support Vector Ma-

chines (SVM). The features of the disturbance signals are extracted using

WPT and given to the SVM for effective classification. Recent literature

dealing with power quality establishes that support vector machine methods

generally outperform traditional statistical and neural methods in classi-

fication problems involving power disturbance signals. However, the two

vital issues namely the determination of the most appropriate feature subset

and the model selection, if suitably addressed, could pave way for further

improvement of their performances in terms of classification accuracy and

computation time. This paper addresses these issues through a classification

system using two optimization techniques, the genetic algorithms and sim-

ulated annealing. This system detects the best discriminative features and

estimates the best SVM kernel parameters in a fully automatic way. Effec-

tiveness of the proposed detection method is shown in comparison with the

conventional parameter optimization methods discussed in literature like grid

search method, neural classifiers like Probabilistic Neural Network (PNN),

fuzzy k-nearest neighbor classifier (FkNN) and hence proved that the pro-

posed method is reliable as it produces consistently better results. Results

show a 98.33% accuracy of the proposed method compared to 96.25% and

97.92% accuracy of other methods.

2.3.2 K-Nearest Neighbor

The k-nearest neighbor decision rule (k-NN) is a commonly used classifica-

tion algorithm in statistical pattern recognition. Each class is given as a set

of sample prototypes, a training set of pattern vectors from that class. When

an unknown vector is to be classified, its k closest neighbors are found from

among all the prototype vectors, and the class label is decided based on a

majority rule. To avoid ties on class overlap regions, the value of k should

be odd. This rule is simple and elegant, and yet the error rate is small in

practice. In theory, it is known that the asymptotic error rate as the num-

ber of prototype samples gets very large is close to the optimal Bayes error

rate and actually tends to it when k is increased. For this reason, the k-NN

rule has become the standard comparison method against which any new

classifiers, e.g. neural networks, are compared [44].

In [45],power quality abnormality present in power supply was detected
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and classified using S Transform and k-nearest neighbors Classifier (KNN).

In this work results show a 96.35% overall accuracy.

2.3.3 Artificial Neural Networks

An artificial neural network (or simply neural network) consists of an input

layer of neurons (or nodes, units), one or two (or even three) hidden layers of

neurons, and a final layer of output neurons. Each connection is associated

with a numeric number called weight. The output, hi, of neuron i in the

hidden layer is as shown in Equation 2.19

hi = σ
( N∑
j=1

Vijxj + Thidi

)
(2.19)

where σ() is called activation (or transfer) function, N the number of

input neurons, Vij the weights, xj inputs to the input neurons, and Thidi the

threshold terms of the hidden neurons. The purpose of the activation func-

tion is, besides introducing nonlinearity into the neural network, to bound

the value of the neuron so that the neural network is not paralyzed by di-

vergent neurons [46].

In [47], a new dual neural-network-based methodology to detect and clas-

sify single and combined PQ disturbances is proposed, consisting, on the one

hand, of an adaptive linear network for harmonic and interharmonic estima-

tion that allows computing the root-mean-square voltage and total harmonic

distortion indices. With these indices, it is possible to detect and classify

sags, swells, outages, and harmonics interharmonics. On the other hand,

a feedforward neural network for pattern recognition using the horizontal

and vertical histograms of a specific voltage waveform can classify spikes,

notching, flicker, and oscillatory transients. The combination of the afore-

mentioned neural networks allows the detection and classification of all the

aforementioned disturbances even when they appear simultaneously. An ex-

periment under real operating conditions is carried out in order to test the

proposed methodology. Results show an 96.31% overall accuracy containing

combined disturbances.
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2.4 Deep Learning Algorithms

Over the years research has brought artificial neural networks ,presented in

section 2.3.3, with feature extraction capabilities, some explained in Sec-

tion 2.2.1 to 2.2.5. The idea of deep learning algorithms are to train the

feature extraction capabilities and the classification in one single learnable

algorithm. Having this in contex, many different types of algorithms have

been developed for different purposes, for example, the reigning algorithm

for image classification is the Convolutional Neural Network (CNN). The

CNN is able to the parameters for filters in order to extract the most impor-

tant parts of an image. On the other hand, the most widely use algorithm

for time series data is the Long-Short Term Memory (LSTM) because of

its ability to eliminate long term, irrelevant data. These algorithms will be

explained in the following sections in more detail.

2.4.1 Long-Short Term Memory

The Long-Short Term Memory (LSTM) architecture is a deep neural network

that uses a series of gates to extract characteristic part of time series data.

The LSTM is a recurrent network architecture in conjunction with an ap-

propriate gradient-based learning algorithm. LSTM is designed to overcome

error backflow problems. It can learn to bridge time intervals in excess of

1000 steps even in case of noisy, incompressible input sequences, without loss

of short-time lag capabilities. This is achieved by an efficient, gradient-based

algorithm for an architecture enforcing constant (thus, neither exploding nor

vanishing) error flow through internal states of special units (provided the

gradient computation is truncated at certain architecture-specific points; this

does not affect long-term error flow, though) [48].

In [49] and [50] uses the LSTM network, to detect and classifies the PQ

events in one step. This technique extracts amplitude, disturbance duration

and total harmonic distortion from the captured waveform, and the LSTM

classify the PQ events. Many simple PQ events such as interruption, sag,

flicker, swell and surge or complex PQ events such as sag plus harmonics and

swell plus harmonics are generated using MATLAB programming environ-

ment to evaluate the performance of LSTM. Also, real-time measurements

are collected from an industrial substation and are used to ensure the effec-

tiveness of the proposed LSTM technique. A comparison with other tech-

niques is conducted and the results verify the good performance of LSTM in
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classifying the PQ problems.

2.4.2 Convolutional Neural Network

CNNs are comprised of three types of layers. These are convolutional layers,

pooling layers and fully-connected layers. When these layers are stacked,

a CNNarchitecture has been formed.The basic functionality of the example

CNN above can be broken down into four key areas as enumerated in [51]:

1. As found in other forms of ANN, the input layer will hold the pixel

values of the image.

2. The convolutional layer will determine the output of neurons of which

are connected to local regions of the input through the calculation

of the scalar product between their weights and the region connected

to the input volume.The rectified linear unit(commonly shortened to

ReLu) aims to apply an elementwise activation function such as sigmoid

to the output of the activation produced by the previous layer.

3. The pooling layer will then simply perform downsampling along the

spatial dimensionality of the given input, further reducing the number

of parameters within that activation.

4. The fully-connected layers will then perform the same duties found in

standard ANNs and attempt to produce class scores from the activa-

tions, to be used for classification. It is also suggested that ReLu may

be used between these layers, as to improve performance.

In [52], the authors propose a novel full closed-loop approach to detect

and classify power quality disturbances based on a deep convolutional neural

network. Considering the characteristics of power quality disturbances prob-

lem, a unit construction which consists of 1-D convolutional, pooling, and

batch-normalization layers is designed to capture multi-scale features and

reduce overfitting. In the proposed deep convolutional neural network, mul-

tiple units are stacked to extract features from massive disturbance samples

automatically. Comparisons with other state of-the-art deep neural networks

and traditional methods proves that the proposed method can overcome de-

fects of traditional signal process and artificial feature selection. Considering

microgrid is an important development form of multi-energy system and an

essential part of smart grid, a typical simulation system is constructed to
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analyze the causes of power quality problems in microgrid and the field data

from a multi-microgrid system are used to further prove the validity of the

proposed method.

2.4.3 Gated Recurrent Unit

Gated Recurrent Neural Networks (Gated RNNs) have shown success in sev-

eral applications involving sequential or temporal data [53]. For example,

they have been applied extensively in speech recognition, music synthesis,

natural language processing, machine translation, etc. Long Short-Term

Memory (LSTM) RNNs and the recently introduced Gated Recurrent Unit

(GRU) RNNs have been successfully shown to perform well with long se-

quence applications. Gated RNNs success is primarily due to the gating

network signaling that control how the present input and previous memory

are used to update the current activation and produce the current state.

These gates have their own sets of weights that are adaptively updated in

the learning phase (i.e., the training and evaluation process). While these

models empower successful learning in RNNs, they introduce an increase

in parameterization through their gate networks. Consequently, there is an

added computational expense vis-a-vis the simple RNN model. It is noted

that the LSTM RNN employs 3 distinct gate networks while the GRU RNN

reduces the gate networks to two [54].

In [55], The authors present a new concise deep learning based sequence

model to detect the power quality disturbances (PQD), which only uses

original signals and does not require preprocessing and complex artificial

feature extraction process. A simple gated recurrent network (SGRN) with

a new recurrent cell structure is developed, which consists of only two gates :

forget gate and input gate, and two weight matrices. Compared with the

standard Recurrent Neural Network (RNN) model, the training process of

the proposed method is more stable and the prediction accuracy is higher.

In addition, this special structure retains basic nonlinearity and long term

memory, while enabling the simple gated recurrent network model to be

superior to Long Short Term Memory (LSTM) Network and Gated Recurrent

Unit (GRU) Network in terms of the number of parameters (i.e. memory

cost) and detection speed. In the light of the experimental results, the simple

gated recurrent network algorithm can achieve 99.07% detection accuracy,

and contains only 18,959 parameters, which indicates that our proposed

method is easier to deploy in resource constrained internet of things (IoT)
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micro-controllers.

2.4.4 Transformers

Most competitive neural sequence transduction models have an encoder-

decoder structure. Here, the encoder maps an input sequence of symbol

representations (x1, ..., xn) to a sequence of continuous representations z =

(z1, ..., zn). Given z, the decoder then generates an output sequence (y1, ..., ym)

of symbols one element at a time. At each step the model is auto-regressive,

consuming the previously generated symbols as additional input when gen-

erating the next. The Transformer follows this overall architecture using

stacked self-attention and point-wise, fully connected layers for both the

encoder and decoder, shown in the left and right halves of Figure 1, respec-

tively [56].

In [57], the authors proposed a novel method based on visual attention

mechanism and feed-forward neural network to classify single and combined

power quality disturbances caused by non-balanced, nonlinear loads and dis-

tributed generations in the power grid. In the first step of the proposed

method, visual attention mechanism is utilized to extract the disturbance fea-

tures of power quality disturbances, through performing disturbance region

selection, multi-scale spatial rarity analysis, and disturbance feature fusion

on the binary image converted from the original voltage signal successively.

Then, four disturbance feature indexes are selected for the characterization

of power quality disturbances. Finally, a classifier using feed-forward neu-

ral network is constructed to distinguish various single and combined power

quality disturbances. The classification accuracy of the proposed method is

compared with that of several existing methods for the classification of power

quality disturbances from two types of datasources. The power quality dis-

turbances from the simulation operating conditions include eight kinds of

single and thirty-eight kinds of combined power quality disturbances. The

power quality disturbances from the IEEE Work Group P1159.3 and P1159.2

Datasets include seven kinds of single and eleven kinds of combined power

quality disturbances. Comparison results demonstrate that the proposed

method can classify single and combined power quality disturbances more

accurate than the compared classification methods, which verifies the effec-

tiveness of the proposed method.
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2.5 Object Detection Algorithms

Object detection algorithms are algorithms that are specifically design to

detect and classify different objects or anomalies from input signals. Usu-

ally, object detection algorithms are used to detect and classify objects in

an image [58] [59] [60]. The goal of object detection is to detect and classify

objects leading to many specialized fields and applications such as face detec-

tion and face recognition [61]. Over the years, these types of algorithms have

proven useful to efficiently detect and classify object in images. These algo-

rithms have evolved and have included deep learning algorithms. The three

most used deep learning algorithms are the Regional Convolutional Neural

Network (R-CNN), the You Only Look Once (YOLO), and the Single Shot

Detector (SSD).

2.5.1 R-CNN

Recently, advanced deep learning techniques, especially region-based CNN

(R-CNN), have attained remarkable successes in a diversity of tasks in ma-

chine learning, statistics, and computer vision, for example, object detection,

image categorization, image segmentation, etc. This is because CNN only

identifies the objects class, not the location of object in an image. Especially

when multiple objects are in the image then CNN cannot work well due to

interference [62].The problem the R-CNN system tries to solve is to locate

objects in an image (object detection). The R-CNN does this by proposing

regions of interest (ROI) and classifying these regions using a CNN architec-

ture.

In [63], the authors propoes a method, called Mask R-CNN, that extends

Faster R-CNN by adding a branch for predicting an object mask in parallel

with the existing branch for bounding box recognition. Mask R-CNN is

simple to train and adds only a small overhead to Faster R-CNN, running

at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g.,

allowing to estimate human poses in the same framework. the authors show

top results in all three tracks of the COCO suite of challenges, including

instance segmentation, bounding-box object detection, and person keypoint

detection. Mask R-CNN outperforms all existing, single-model entries on

every task, including the COCO 2016 challenge winners.
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2.5.2 YOLO

The YOLO algorithm separates components of object detection into a single

neural network. This network uses features from the entire image to predict

each bounding box. It also predicts all bounding boxes across all classes for

an image simultaneously. This system divides the input image into an S×S
grid. If the center of an object falls into a grid cell, that grid cell is respon-

sible for detecting that object. Each grid cell predicts B bounding boxes

and confidence scores for those boxes. These confidence scores reflect how

confident the model is that the box contains an object and also how accurate

it thinks the box is that it predicts. Formally, the confidence is defined as

Pr(Object)×IOU truthpred . If no object exists in that cell, the confidence scores

should be zero. Otherwise we want the confidence score to equal the inter-

section over union (IOU) between the predicted box and the ground truth.

Each bounding box consists of 5 predictions : x, y, w, h, andconfidence. The

(x, y) coordinates represent the center of the box relative to the bounds of

the grid cell. The width and height are predicted relative to the whole image.

Finally the confidence prediction represents the IOU between the predicted

box and any ground truth box. Each grid cell also predicts C conditional

class probabilities, Pr(Classi|Object). These probabilities are conditioned

on the grid cell containing an object [64].

In [65], the authors propose an improved YOLO-V3 model for detecting

apples during different growth stages in orchards with fluctuating illumi-

nation, complex backgrounds, overlapping apples, and branches and leaves.

Images of young apples, expanding apples, and ripe apples are initially col-

lected. These images are subsequently augmented using rotation transfor-

mation, colour balance transformation, brightness transformation, and blur

processing. The augmented images are used to create training sets. The

DenseNet method is used to process feature layers with low resolution in the

YOLO-V3 network. This effectively enhances feature propagation, promotes

feature reuse, and improves network performance. After training the model,

the performance of the trained model is tested on a test dataset. The test

results show that the proposed YOLOV3-dense model is superior to the orig-

inal YOLO-V3 model and the Faster R-CNN with VGG16 net model, which

is the state-of-art fruit detection model. The average detection time of the

model is per frame at 3000 × 3000 resolution, which can provide real-time

detection of apples in orchards. Moreover, the YOLOV3-dense model can

effectively provide apple detection under overlapping apples and occlusion
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conditions, and can be applied in the actual environment of orchards.

2.5.3 Single Shot Detector

As described in [66], the SSD approach is based on a feed-forward convolu-

tional network that produces a fixed-size collection of bounding boxes and

scores for the presence of object class instances in those boxes, followed by

a non-maximum suppression step to produce the final detections. The early

network layers are based on a standard architecture used for high quality

image classification (truncated before any classification layers), which it is

called the base network. Auxiliary structure to the network are added to

produce detections with the following key features :

Multi-scale feature maps for detection Convolutional feature layers

are added to the end of the truncated base network. These layers decrease

in size progressively and allow predictions of detections at multiple scales.

Convolutional predictors for detection Each added feature layer (or

optionally an ex- isting feature layer from the base network) can produce a

fixed set of detection predic- tions using a set of convolutional filters. For a

feature layer of size m× n with p channels, the basic element for predicting

parameters of a potential detection is a 3× 3× p small kernel that produces

either a score for a category, or a shape offset relative to the default box

coordinates. At each of the m × n locations where the kernel is applied, it

produces an output value.

Default boxes and aspect ratios A set of default bounding boxes are

associated with each feature map cell, for multiple feature maps at the top

of the network. The default boxes tile the feature map in a convolutional

manner, so that the position of each box relative to its corresponding cell

is fixed. At each feature map cell, the offsets relative to the default box

shapes in the cell is predicted, as well as the per-class scores that indicate

the presence of a class instance in each of those boxes. Specifically, for each

box out of k at a given location, c class scores and the 4 offsets relative to the

original default box shape are computed. This results in a total of (c+ 4)k

filters that are applied around each location in the feature map, yielding

(c+ 4)kmn outputs for a m× n feature map.

In [67], a set of benchmarks for object tracking with motion parameters

(OTMP) was designed. The sample images were matched with the spatial

depth of the camera, the pose of the camera, and other spatial parameters

for the training of the detection model. Then, a Fast Depth-Assisted Single-
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Shot MultiBox Detector (FDA-SSD) algorithm suitable for 3D target track-

ing was proposed by combining the depth information of the sample into

the original Single-Shot MultiBox Detector (SSD). Finally, an FDA-SSD-

based monocular motion platform target detection and tracking algorithm

framework were established. Specifically, the spatial geometric constraints

of the target were adapted to solve the target depth information, which was

fed back to the detection model. Then, the normalized depth information

of the target was employed to select the feature window of the convolu-

tional layer for the detector at a specific scale. This significantly reduces the

computational power for simultaneously calculating detectors of all scales.

This framework effectively combines the two-dimensional detection model

and the three-dimensional positioning algorithm. Compared with the origi-

nal SSD method, the network model designed in this study has fewer actual

operating parameters; the measured detection operation speed was increased

by about 18.1% on average; the recognition rate was maintained at a high

level consistent with that of the original SSD. Furthermore, several groups

of experiments were conducted on target detection and target space track-

ing based on monocular motion platforms indoors. The root mean square

error (RMSE) of the spatial tracking trajectory was less than 4.72 cm. The

experimental results verified that the algorithm framework in this study can

effectively realize tasks such as visual detection, classification, and spatial

tracking based on a monocular motion platform.
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Chapter 3

Dataset Generation

In this chapter the dataset generation is described. The first sec-

tion is a brief introduction that explains the disturbances that are

to be generated. In the second section a Matlab/Simulink model

is presented which simulates the generation, transmission, distri-

bution, and the load. The Matlab/Simulink model in this chapter

contains a disturbance block which simulates a Sag, Swell, Har-

monics, Transient, Notch and Interruption disturbances. Section

3 presents a data augmentation procedure that helps generalized

the dataset acquired by the Matlab/Simulink model. Section 4, us-

ing the generated dataset, the STFT is implemented in order to

study and obtain the disturbances in the time-frequency domain.

Finally, a conclusion in section 5 is presented. 1

3.1 Introduction

As a preliminary stage of this work, the voltage and current time signals are

simulated using MATLAB Simulink. By doing this, it is possible to recreate

the disturbances on the line and see how they interact with the appliances

connected to the grid. Thanks to the simulation results, it is possible to

acquire a current and voltage dataset with which the identification algo-

rithms are trained, validated and tested. This dataset includes simulations

1This chapter has been published in part as “A Comparison of Power Quality Dis-

turbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM” in

MDPI Applied Sciences, 2020 [15].
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of several disturbances such as Sag, Swell, Harmonics, Transient, Notch and

Interruption. After that, the networks are fed with an experimental dataset

of voltage and current field measurements containing the disturbances men-

tioned above.

For the generation of the PQD dataset a MATLAB / Simulink model of

a micro grid has been implemented. The model is shown in Figure 3.1 and

it includes several different industrial loads. It is possible to identify a three-

phase dynamic load which could be associated to an electrical motor with

variable load, a linear load and a nonlinear load which injects disturbances

on the net [68]. These disturbances include:

� Sag

� Swell

� Harmonics

� Transient

� Notch

� Interruption

3.2 Simulink Models

Figure 3.1: Simulink Model that generates voltage disturbance in a distri-

bution network.
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The simulink model simulates a power grid beginning from the generation of

power all the way to the load. The simulink models the generation of power

using the three-phase programmable voltage source. The transmission line

is simulated using the General Impedance block. The disturbances are then

generated using the fault block. The fault block is a programmable block in

which the fault is chosen using the Fault Selection block. The Fault Selection

block spans through 1-6 in which 1 is for sag, 2 is for swell, 3 is for harmonics,

4 is for transient, 5 is for notch and 6 for interruption. The distribution line

impedance are simulated using the line impedance block which is connected

to a 1kVA transformer which ends in the simulated loads.

The Fault block for each disturbance is shown in figures 3.2 to 3.7. In

Figure 3.2-a, the functioning of a sag disturbance is show along with the three

phase voltage signal simulation shown in Figure 3.2-b. The sag simulation

is a block that contains a duty cycle block that activates the block. The

three phase voltage signal is then reduced using the three phase to ground

sag fault block.

(a) (b)

Figure 3.2: (a) Precision comparison of deep learning architectures (b) Recall

comparison of deep learning architectures

In Figure 3.3-a, the functioning of a swell disturbance is show along with

the three phase voltage signal simulation shown in Figure 3.3-b. The swell

disturbance in a voltage line is activated using the disturbance control block

and with a step function block. When the swell block is activated, the fault

enable block is then turned on which it is connected to a capacitor with

initial conditions. The effects show a voltage rise measured in the simulated

distribution line.
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(a) (b)

Figure 3.3: (a) Precision comparison of deep learning architectures (b) Recall

comparison of deep learning architectures

In Figure 3.4-a, the functioning of a harmonic disturbance is show along

with the three phase voltage signal simulation shown in Figure 3.4-b. Sim-

ilar to the other disturbances, the harmonics disturbance is generated by

choosing the 3 in the disturbance control block. A duty cycle then activates

the Fault enable block. The fault enable block is connected to three diodes

connected in parallel with capacitors and resistances. The diodes, which

are non-linear components, inject harmonic components with the help of the

duty cycle block and the capacitors with initial conditions.

(a) (b)

Figure 3.4: (a) Precision comparison of deep learning architectures (b) Recall

comparison of deep learning architectures

In Figure 3.5-a, the functioning of a Transient disturbance is show along
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with the three phase voltage signal simulation shown in Figure 3.5-b. The

transient disturbance is also controlled by the disturbance control block

which is connected to a step function block. The difference with this distur-

bance is that it also has a lighting block. The lighting block injects a short

time duration with a linear increment with a high slope. These blocks acti-

vate another generator connected to ac generators in series with a resistance

and an inductive element with initial conditions. This simulink configuration

generates a spike seen clearly in the current signal. This spike is shown in

Figure 3.5.

(a) (b)

Figure 3.5: (a) Precision comparison of deep learning architectures (b) Recall

comparison of deep learning architectures

In Figure 3.6-a, the functioning of a Notch disturbance is show along with

the three phase voltage signal simulation shown in Figure 3.6-b. Works by

connecting the disturbance control block to with the duty cycle block to a

fault enable block or switch. The fault enable block is connected to a silicon

controlled rectifier in parallel with a resistance and an inductor. The silicon

controlled rectifier is activated using a pulse generator block or thyristor.

These simulink model generate the notching effect shown in Figure 3.6-b.
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(a) (b)

Figure 3.6: (a) Precision comparison of deep learning architectures (b) Recall

comparison of deep learning architectures

In Figure 3.7-a, the functioning of a interruption disturbance is show

along with the three phase voltage signal simulation shown in Figure 3.7-b.

The interruption is preformed by adding a fault enable block or switch to

the duty cycle block and to the disturbance control block. This combination

enables the block to cut the voltage supply as shown in Figure 3.7-b.

(a) (b)

Figure 3.7: (a) Precision comparison of deep learning architectures (b) Recall

comparison of deep learning architectures

3.3 Data Augmentation

In order to obtain a more generalized result for training and validation data

augmentation is necessary. Data augmentation is the art of manipulating
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the training and validation set to obtain more data with small variations.

In our problem, the network is trained with all three phases, the negative

is calculated from all phases and oversampled by 2 and 4. That is, from 1

simulation result, 12 new samples are obtained.
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For this work the steps to do are as follows. First, finish the simulink

model and adjust it to gather the fault simulation for every disturbance and

organize it in a cell array. The disturbances that are implemented in the

simulink model are the sag, voltage rise, interruption and no fault. The har-

monic distortion, the transient and the notch were added using the examples

in [69]. After the simulation is completed in simulink, a script was made that

gathers the simulink disturbance data of each fault into a structured array.

After that, each fault was labeled with a number as seen in the following:

� 0 for no fault

� 1 for sag

� 2 for voltage rise

� 3 for harmonics

� 4 for transient

� 5 for notch

� 6 for interruption
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The data for training and the targets should look like in Equation 3.3. To

train the neural network, the data for the Class and Target are shuffled

together in order to obtain a generalized solution for the network.

Class =



Normal

Sag

Swell

Harmonics

Transient

Notch

Interruption


Target =



0

1

2

3

4

5

6


(3.3)

After the time series signals are stored in a structured array and shuffled,

the next step is to train the network, validate and test it. For this, the dataset

containing the time series signals are separated into 75% of the signals for

training and the other 25% for validation. This network trains with a batch

size of 20 data points with a maximum of 30 epoch making a total of 15

iterations per epoch. After the training is completed, the performance of the

network is evaluated using a confusion matrix.

3.4 Short Time Fourier Transform (STFT)

The Short Time Fourier Transform is characterized by a fourier transform

executed in a fixed windowed interval. The window function g(n) is called a

blackman’s window function that is used to multiply a short segment of the

signal with the window function. This avoids sharp sections and redundant

information. A fourier transform of this small windowed section Xn(jω) is

calculated and stacked up to form a matrix. The STFT equation is shown in

Equation 3.4. An illustration of the Blackman’s window and the algorithm

can be seen in Figure 3.8 and 3.9 respectively. This matrix can now be

treated as an image to train a Convolutional Neural Network which is capable

of feature extraction of the frequency component of the signal.

X(jω) =
∑

x(n)g(n−mR)e−2jπfn (3.4)

window function blackmann

w[n] = a0 + a1cos
(2πn

N

)
+ a2cos

(4πn

N

)
(3.5)
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Figure 3.8: Blackman’s Window

DFT DFT DFT DFT

Figure 3.9: Short Time Fourier

Transform algorithm illustration

Figure 3.10 shows the STFT of different PQDs where the x,y and z dimen-

sions represents the samples, frequency and magnitude respectively. Figure

3.10 (a) shows the STFT of a Sag where it clearly shows a decrease in magni-

tude. On the ohter hands, Figure 3.10 (b) shows the STFT of a swell where

it shows an increase in magnitude. Figure 3.10 (c) shows the STFT of a har-

monic distortion where and increase in magnitude in frequencies higher than

the fundamental are shown. Figure 3.10 (d) shows a constant value because

there in no disturbance that causes irregularities in magitude or frequency.

In Figure 3.10 (e) also shows an increase in magnitude in frequencies higher

than the nominal 50Hz due to the injection of high frequency components in

the notch PQD. Finally, the interruption that drops the magnitude to zero

as shown in Figure 3.10 (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: (a)STFT Sag (b) STFT Swell (c) STFT Harmonics (d) STFT

Transient (e) STFT Notch (f) STFT Interruption
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Figure 3.11 shows the STFT as a 2D image for classification using the

Convolutional Neural Network explained in Chapter 5. Figure 3.11 (a) shows

the sag where it clearly shows a reduction in magnitude. 3.11 (b) shows

an increment in magnitude which corresponds to a swell disturbance. 3.11

(c) represents the harmonic distortion which clearly shows the injection of

high frequency components. The Normal STFT is shown in Figure 3.11

(d). The notch is shown in Figure 3.11 (e) which also injects high frequency

components to the voltage signal. Finally, 3.11 (f) shows the interruption

which the magnitude is almost zero.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: (a) STFT Sag (b) STFT Swell (c) STFT Harmonics (d) STFT

Normal (e) STFT Notch (f) STFT Interruption

3.5 Conclusion

This chapter describes the dataset generation used for training machine

learning and deep learning architectures in this thesis. The disturbances

obtained for training machine learning algorithms include the: Sag, Swell,

Harmonics, Transient, Notch, and Interruption. This disturbances were gen-

erated using a Matlab/Simulink model shown in Section 3.2. The dataset
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generated by the Simulink models were augmented in order to obtain a more

generalized dataset so the dataset contains the most cases possible as shown

in Section 3.3.

This chapter also presents a frequency analysis of different possible dis-

turbance in a low voltage distribution lines. The frequency analysis used

in this chapter is the Short-Time Fourier Transform (STFT). The STFT

allows the extraction of the frequency components along its time instances.

To do this, a Blackmann window was used and the discrete fourier transform

(DFT) was then calculated to the window sections. This is shown in Section

3.4.



Chapter 4

Comparison of Different Deep

Learning Architectures for

Detection and Classification of

Power Quality Disturbances

In this chapter a brief introduction on the machine learning al-

gorithms commonly used for PQD classifications. Section 2, the

Long-Short Term Memory (LSTM) is explained in detail includ-

ing the feature extraction cells, the architecture and finally the

classification with results. In Section 3, the Convolutional Neu-

ral Network (CNN) is presented. The feature extraction layer is

explained in detail followed by the architecture used and finally the

classification with results. Section 4 the CNN-LSTM is presented

along with its architecture and the results with the hyperparame-

ter tuning. Section 5 summarizes the comparison of the results

obtained by the LSTM, CNN, CNN-LSTM and the CNN-LSTM

with hyperparameter tuning. The comparison is compared using

the Precision and Recall. The architectures were also compared

with experimental measurements. Section 6 finalizes with a con-

clusion. 1

1The results of this work were published in “A Comparison of Power Quality Dis-

turbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM”in

MDPI Applied Sciences, 2020 [15].
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4.1 Introduction

The most convenient way to classify PQD using classification algorithms is

in the time domain. It is the most convenient way because no preprocessing

is required and thus less computational effort and more classification speed.

In theory, the signal is obtain by a measuring device and directly fed to a

classification algorithm in order to detect and classify PQD. In this chapter

the use of different deep learning algorithms is evaluated in order to detect

and classify PQD. No preprocessing is done in order to evaluate effectiveness

of the algorithms in the time domain. Several approaches have been explored

in literature using different algorithms. In [70], a Kalman Filter is used in

an UPQC to extract the state components of the distorted supply voltage

and load current. The algorithm can classify PQD internally enabling the

conditioning of the PQ signals for power factor correction. The technique

seems to work well with the detection of sag, swell and harmonic distortion,

however it shows a certain lag between the disturbance starting condition

and the detection [71]; furthermore, the algorithm is usually applied to a

restricted number of disturbances. On the other hand, the wavelet trans-

form is used as a tool for analyzing PQD as shown in [72]. The tool is very

useful for the extraction of the signals features for learning algorithms like

the SVM as shown in [73], [74]. However, it does not perform disturbances

detection by itself. The SVM showed interesting performances for the detec-

tion of a wide range of PQ disturbances and it is often used as a benchmark

to assess the performances of other algorithms. The main disadvantage of

the PQD detection techniques mentioned above is that, once the voltage and

current waveforms are acquired, a preprocessing of the signal must be per-

formed before feeding it to the algorithm. This usually consists of a signal

features extraction. Deep learning algorithms solves this problem by implic-

itly applying a feature extraction for the classification of the signal. In other

words, these algorithms could be fed with raw data and still make accurate

classifications. This can help to speed up the identification and classifica-

tion process especially in real time applications. For the training and the

validation of deep learning algorithms, it is necessary an extensive dataset

in order to avoid overfitting and obtain generalization. Unfortunately, it is

not easy to obtain such datasets with experimental data. One reason is that

performing on-field data sampling through measurement campaigns is time

consuming, many of these disturbances indeed are sporadic, and it is not

always possible to record an event with a desired amplitude and duration.
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For that reason, simulated voltage disturbances are used in order to create

the dataset for training and validation as shown in Chapter 3. For further

generalizing the dataset, data augmentation is used, since it has proven to

be efficient in improving accuracy by reducing overfitting [75], [76]. This

chapter explores different deep learning architectures which are trained and

validated using simulated data and tested using experimental data. Once the

simulated data is generated, it is then augmented, in order to obtain a gen-

eralized result and overcome any sampling discrepancy and phase difference

between simulated data and measured data. The signals are pre-processed in

order to compare the accuracy of each architecture in their proven classifica-

tion tasks. With respect to other works in which the training, validation and

testing steps are performed using purely simulated data or purely experimen-

tal data [77] [78] [79], in the present work the training and validation steps

are performed with simulated datasets, while the testing one is performed

with experimental datasets that were acquired on the field.

4.2 Long-Short Term Memory

The first deep learning algorithm tested is the Long-Short Term Memory

(LSTM). The LSTM is a recurrent neural network that was specifically de-

signed for time series data. A recurrent neural network (RNN) is a neural

network that simulates a discrete-time dynamical system that has an input

xt, an output yt and a hidden state ht as defined in [80]. A set back of

RNNs is that they suffer from vanishing or exploding gradient. Truncating

the gradient where this does not harm, LSTM can learn to bridge minimal

time lags in excess of 1000 discrete-time steps by enforcing constant error

flow through constant error carousels within special units [48].

The LSTM has 3 states that help the network to reduce the long term

dependency of the data. These states are called the Forget State, Input State

and the Output State. The Forget State eliminates redundant or useless

data. The Input State process the new data and finally the Output State

process the input data with the cell state. This will be explained further

on.
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Figure 4.1: Block diagram of one cell of a Long Short Term Memory archite-

ture.

4.2.1 Feature Extraction Cells

Forget State

The forget state controls the state parameter s(t) via a sigmoid function σ.

This state controls what the cell should remember through time and what

to forget. The equation of the forget state is seen in Equation 4.1. Where

f (t) is the forget vector, xt and h(t−1) are the input and previous output

respectively. The input and the previous output are multiplied by trained

weights U and W with bias b. This result is then truncated between 0 and 1

via a sigmoid function. Basically the idea is to have an input vector added

with the previous output vector passed through a neural network which

outputs the values to keep with a 1 and the values to forget with a 0.

f
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i = σ
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∑
j

Ufi,jx
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j +

∑
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j

)
(4.1)
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Figure 4.2: Block diagram of one cell of a Long Short Term Memory archite-

ture.

Input State

The new state of the cell is defined in the input state where the previous state

is multiplied by the forget state dropping off irrelevant information. This

can be seen in f
(t)
i s

(t−1)
i of Equation 4.2. Now the relevant information gets

updated in g
(t)
i σ

(
bi+

∑
j Ui,jx

t
j+
∑
jWi,jh

(t−1)
j

)
which is the multiplication

of the input and previous output result from the neural network times g(t)

which are the candidates for the next time step of the cell state. The equation

that generates the vector that contains the candidates for the next cell state

is shown in Equation 4.3.

s
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Figure 4.3: Block diagram of one cell of a Long Short Term Memory archite-

ture.

Output State

The output state decides what should the output of the cell and the new cell

state should be. The output of the cell is seen in Equation 4.4 where the

cell state goes through a hyperbolic tangent and is then multiplied by the

output of another hidden layer seen in Equation 4.5.

hti = tanh
(
s
(t)
i

)
q
(t)
i (4.4)
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Figure 4.4: Block diagram of one cell of a Long Short Term Memory archite-

ture.

4.2.2 Architecture

The LSTM architecture is fairly simple and short. The input size corresponds

to the current datapoint and the 9 previously measured datapoints. That is,

X = (x[n], x[n− 1], x[n− 2], · · · , x[n− 9]). The LSTM is then composed of

100 cells, or hidden layers and then a fully connected layer with 6 outputs

as mentioned earlier. Table 4.1 summarizes the LSTM architecture.

Table 4.1 LSTM architecture

Description Output Shape

Input [1 10 1]

LSTM [1 100 1]

Fully Connected Layer [1 1 6]

4.2.3 Classification

The LSTM training gave an accuracy of 79.14% where most of the problems

were found in the Transient disturbance as shown in the precision and recall

plots. The architecture was not able to detect the transient disturbance

either in the training or the validation signals, that is, the LSTM classified
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the Transient signal as a No Fault in 100% of the cases. Concerning the other

classes it resulted in 10.2%to 14.6% misclassification. Results are shown in

Figure 4.5.
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Figure 4.5: LSTM Confusion Matrix for Training (a) and Validation (b)
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4.3 Convolutional Neural Network

Convolutional neural networks or CNN, are a particular type of neural net-

work for data processing that has a grid-like topology. Convolutional net-

works proved to be successful in several practical applications. They es-

sentially consist of neural networks that use convolution in place of general

matrix multiplication in at least one of their layers [81]. The convolutional

layer is accompanied by a pooling layer which is a type of under sampling

that helps with processing speed. Since the signals of interest are 1-D sig-

nals and the CNN processes a 2-D signal, a pre-processing of each signals is

necessary. Hence, the Short Time Fourier Transform is performed on each

signal before feeding it to the CNN; by doing this, an image containing the

spectral components and amplitude of the signal of interest is generated.

4.3.1 Feature Extraction Layers

Convolutional Layer

Convolution leverages three important ideas that can help improve a ma-

chine learning system: sparse interactions, parameter sharing and equivari-

ant representations. Moreover, convolution provides a means for working

with inputs of variable size [81]. The convolution layer of a convolutional

neural network operates by applying a convolution to each dataset. Since

the hallmark of the CNN is image classification, the 2 dimensional version of

the discrete convolution is used. To serve as a reminder, the 2 dimensional

discrete convolution operation is shown in Equation 4.6.

y[n1, n2] =

M1∑
m1=1

M2∑
m2=1

x[m1,m2]k[n1 −m1, n2 −m2] (4.6)
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Figure 4.6: 2D Convolution

The convolutional layer can also work with 1D siganls. The convolutional

layer in Figure 4.7 and Figure 4.8 shows how the 1 dimensional convolutional

layer works. In Figure 4.7, The input (black outline) multiplies each element

by each of the kernel elements (blue outline). The result is then added to

obtain the result of the first element. This is done moving the kernel 1 step

to the right until it reaches the last element of the input signal. In order to

preserve the dimension of the output signal with respect to the input signal,

zero padding is done. The results of these multiplications and additions are

then concatenated to create the output of the layer.

Figure 4.7: 1D Convolution

In order to reduce the dimension of the output of the convolution, 1

dimensional convolution is done without zero padding. The result is the

convolved input with the kernel which also reduces the dimensionality and

thus reduces the training time and computational effort. An example of the
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process is shown in Figure 4.8 where the input (Black Outline) is convolved

with the kernel (Blue Outline). The first element of the output is the element-

wise multiplication of the kernel with the first 3 elements of the input. The

kernel then shifts one space and multiplies with the second, third and fourth

element of the input. This is done until the kernel multiplies the last element

of the input signal. The result of the element wise multiplications are then

added and concatenated.

Figure 4.8: 1D Convolution

MaxPooling Layer

A pooling function replaces the output of the layer with a summary statis-

tic of the previous layer outputs [81]. The most popular pooling functions

include the max of a rectangular neighborhood, the average, the L2 norm,

or a weighted average based on the distance from the central datum. This

layer in the architecture speeds up the training and classification since it un-

dersamples the dataset and helps the network to obtain a more generalized

result. An illustration of the pooling function is shown in Figure 4.9. The

matematical representation is shown in Equation 4.7 through Equation 4.10.

Figure 4.7 represents the pooling function where Xn is the vector containing

the pooled data of the dataset.

Xn = {xj , ..., xN} (4.7)

For each set of Xn the pooling function is performed. The summary
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statistic of the group of data represented by x̂ is shown in Equation 4.8.

x̂1 = f(x1, x2, x3) = f(X1)

x̂2 = f(x2, x3, x4) = f(X2)

x̂3 = f(x3, x4, x5) = f(X3)

x̂4 = f(x4, x5, x6) = f(X4)

x̂5 = f(x5, x6, x7) = f(X5)

(4.8)

Formaly, Equation 4.8 can be represented as shown in and Equation 4.9.

Where, in this example, the pooling number is 3, the values obtained from

the pooling are n, n + 1, n + 2. The pooling layer can contain either the

maximum of the set, the average, the L2 norm or the weighted average of

the pool. The most common to use is the maxpooling function. In this work

the max pooling is used as shown in Equation 4.10.

x̂n = f(xn, xn+1, xn+2) = f(Xn) (4.9)

Figure 4.9 shows a representation of the maxpooling function in 2 di-

mensions. The representation basically divides the 6 × 6 matrix in a 3 ×
3 cells. Each cell contains 4 elements in a 2 × 2 matrix. The Maxpooling

layer then takes the largest value of these 4 elements and places it in the

corresponding cell. For example, if in the first cell the largest element is 94,

the the maxpooling layer places the value in the (1, 1) position in the output

matrix. This operation reduces the training time and computational effort.

f(Xn) = argmax(Xn) (4.10)

4.3.2 Architecture

Table 4.2 shows the architecture used for this experiment. Using a sampling

frequency of 8kHz, the signal takes as input 160 samples which corresponds

to one period of a voltage signal at 50Hz. The architecture developed for this

experiment is inspired on the VGG16 architecture which is frequently used

in image classification tasks and has good classification rate. The VGG16

architecture reduces the dimension of the of the input signal along the archi-

tecture using the maxpooling function. A the number of samples is reduced

by layer, the number of filters increases. This is done in order to maximize
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Figure 4.9: 2D Max-Pooling

the feature extraction capabilities while reducing the processing time during

training and during the inferencing. The architecture is divided by blocks.

In each block the algorithm computes the convolution in the convolutional

layer, then the batch is normalized using the batch normalization layer, an

activation function is applied using the Relu Layer and finally the Maxpool-

ing layer which outputs a summary statistics of the results. The architecture

starts in the first block with 64 filters in the convolutional layer and reduces

the input signal by half i.e. from 160 to 80. The second block, has an input

dimension of 80 data point and the filter number increases by 2 i.e. 128

filters. Skipping the maxpooling layer, the third block starts with 80 data

point but increases the number of filters to 256. Again ,skipping the max-

pooling layer, the fourth block starts with 80 data point but increases the

number of filters to 512. The fith block reduces the input size by half i.e. to

40 datapoints and increases the number of filters to 1024. Finally, before the

classification section, the input dimension is decreased to 20, or by half, and

the number of filters is increased to 2048. Finally the classification layer with

6 outputs. For the classification, since it is a multiclass problem, a softmax

function is used. The softmax function turns the outputs to a Probability

Density Function (PDF) in which the sum of all the outputs equals to 1.

The class with higher probability is the class that is classified in that specific

forward pass. The classification process is shown in Section 4.3.3.
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Table 4.2 CNN Architecture

Description Output Shape

Input [1 160 1]

[1 3] Convolution 64 filters [1 160 64]

Batch Normalization [1 160 64]

Relu [1 160 64]

[1 2] Max-Pooling [1 80 64]

[1 3] Convolution 128 filters [1 80 128]

Batch Normalization [1 80 128]

Relu [1 80 128]

[1 3] Convolution 256 filters [1 80 256]

Batch Normalization [1 80 256]

Relu [1 80 256]

[1 3] Convolution 512 filters [1 80 512]

Batch Normalization [1 80 512]

Relu [1 80 512]

[1 2] Max-Pooling [1 40 512]

[1 3] Convolution 1024 filters [1 40 1024]

Batch Normalization [1 40 1024]

Relu [1 40 1024]

[1 2] Max-Pooling [1 20 1024]

[1 3] Convolution 2048 filters [1 20 2048]

Batch Normalization [1 20 2048]

Relu [1 20 2048]

Fully Connected Layer [1 1 6]

4.3.3 Classification

The classification is done by a feedforward neural network. After the batch-

normalization a Rectifing linear unit (ReLu) is added in order to eliminate

the negative values. Then, the feedforward neural network is added with 6

outputs corresponding to the 6 classes or disturbances studied in this work.

The output of the neural network is then passed through the softmax func-

tion in order to convert the output to a probability distribution. The maxi-

mum probaility will determine the class or disturbance found in that window

frame. The training of the CNN gave an accuracy of 84.58% which is an im-

provement with respect to the LSTM. The problem with this architecture is
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that it classified 89% of the No Fault as a Transient from the training dataset

and an 88.6% from the validation. Again, it showed confusion between the

two classes as shown in the precision and recall plots. Results are shown in

Figure 4.10.
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Figure 4.10: CNN Confusion Matrix for Training (a) and Validation (b)

4.4 CNN-LSTM

This architecture mixes the CNN with the LSTM. In order to do this a

sequence folding layer right after the input layer is added. The sequence
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folding layer converts a batch of data sequences to a batch of data. After this

layer, the CNN comes into play. After the CNN, there is a sequence unfolding

layer used to convert the batch of data in a batch of sequenced data. The

sequence data are the input to the LSTM. Before the LSTM layer, there is a

flattening layer that reshapes the input data to the input of the LSTM layer.

Then a fully connected layer, a soft max and finally a classification layer

are added respectively.By adjusting the parameters of the above mentioned

architecture the CNN-LSTM with adjusted hyperparameters is obtained.

4.4.1 Architecture

Table 4.3 CNN LSTM architecture

Description Output Shape

Input [1 160 1]

Folding [1 160 1]

[1 3] Convolution 20 filters [1 160 20]

Batch Normalization [1 160 20]

Relu [1 160 20]

Unfolding [1 160 20]

Flatten [1 3200 1]

LSTM [1 100 1]

Fully Connected Layer [1 1 6]

4.4.2 Classification

As regards to the the hybrid CNNLSTM, two similar strategies were tested.

The first strategy consisted in joining the LSTM and CNN that were used

in the previous experiment and the second was using the combined architec-

tures while adjusting the hyperparameters. The first strategy, exploiting the

CNN-LSTM, resulted in an improvement of the classification performances of

almost all of the the disturbances except for the Transient which resulted in

100% misclassification as with the LSTM. The other disturbances misclassifi-

cations ranged between 2% to 10%, which was an improvement. Concerning

the second strategy exploiting the hybrid architecture, a significant improve-

ment on the Transient response recognition was reached resulting in a 51.1%

misclassification with the No Fault condition. In both, precision and recall,

it showed more or less a 50% chance of miss-classification. For the other dis-
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turbances the misclassification ranges between 1.3% and 4.8% which is also

an improvement. Results are shown in Figure 4.11. The hybrid CNN-LSTM

with adjusted hyperparameters was able to detect the Transient disturbance

in 48.9% of the signals where the transient was present. The other architec-

tures failed completely in this task. Furthermore, this architecture obtained

better results on the other disturbance classifications. Results are shown in

Figure 4.12.
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Figure 4.11: CNN-LSTM Confusion Matrix for Training (a) and Validation

(b)
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LSTM CNN with adjusted hyperparameters
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Figure 4.12: CNN-LSTM with hyperparameter adjustment Confusion Ma-

trix for Training (a) and Validation (b)

4.5 Comparison

The different deep learning architectures were trained, validated and tested.

A comparison was made using the training and validation results by calculat-

ing the confusion matrix and extracting the precision and recall values. Tests
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were made using an experimental test bench to determine the effectiveness of

the deep learning architectures using experimental measurements. An event

signal was generated containing a signal with no disturbance followed by a

sag and an interruption and finally a reestablishment of the voltage. This

signal comes from the power source containing harmonic some components.

Two other signals were generated one containing a sudden interruption and

the other containing a sudden voltage drop or sag. These tests were con-

ducted by classifying the signal by parts using a sliding window method.

This comparison determines the most suitable architecture for a real time

detection and classification of power quality disturbances using a sliding win-

dow method. The parameters used in this comparison is the Precision and

Recall for the training and validation dataset and the a positive classification

rate in the testing phase using experimental data.

4.5.1 Precision Recall

On each of the confusion matrix of the compared architectures, the precision

and the recall was calculated. The precision of a classifier is defined as the

number of retrieved relevant items as a proportion of the number of retrieved

items for any given class [82]. In other words, it is the ratio between the

positive identifications that are actually correct and the entire set of positive

identifications of any given class in the dataset. Recall, on the other hand, is

defined as the number of retrieved relevant items as a proportion of all the

relevant items, for any given retrieved set [82]. In other words, the proportion

of the actual positives that where identified correctly. The comparison of

precision and recall of different architectures are shown in Figure 4.13. The

precision and recall of the LSTM-CNN with adjusted hyperparameters had

superior results with respect to the other architectures due to the fact that

it had better scores for classifying the transient in both training and testing.

From this experiment it can be said the LSTM CNN had the better results

and thus can be said it is the most suitable for this type of application.
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Figure 4.13: Bar chart of the comparison of the precision and recall of the

LSTM (blue), CNN (red), LSTM-CNN(yellow) and LSTM-CNN with ad-

justed hyperparameters(purple). (a) Precision Training Data, (b) Recall

Training Data, (c) Precision Testing Data, (d) Recall Testing Data.

4.5.2 Classification

The event signal, shown in Figure 4.14, Figure 4.15, Figure 4.16 and Figure

4.17 , is a voltage signal with a harmonic distortion, sag and an interruption.

Each architecture had good results when tested using this signal. However,

the LSTM classified the harmonics as a no fault and misclassified a section

as a notch. The LSTM-CNN also showed the same problem. On the other

hand the CNN misclassified the harmonic disturbance as a transient distur-

bance. While all architectures successfully classified only the Interruption

and the Sag in the testing, the LSTM-CNN with adjusted hyperparameters

was the one that had better results because it classified the harmonics, sag,

interruption correctly without misclasification.

The LSTM had 4 missclassifications where it classified a sag where there
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was no disturbance. It also classified a notch where there was a sag. It

classified a harmonic distortion along with a sag when there was no dis-

turbance. The transition between the normal voltage signal to the distur-

bance injects high frequency components to the classification window that

the LSTM classifies that section of the signal as a notch disturbance or a

harmonic distortion. The overall classification rate for this test is 94.7%.
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Figure 4.14: LSTM Testing Results

The CNN had only 2 missclassifications. During a Sag, it classified a

harmonic distortion and it classified a transient when there was no distur-

bance at the end. The window length for the CNN was larger than the other

architectures. This is due in part because the transition between the normal

functioning of the voltage supply and a disturbance. The transition between

the normal voltage signal to the disturbance injects high frequency compo-

nents to the classification window that the CNN classifies that section of the

signal as a harmonic disturbance. The overall classification rate of the CNN
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for this test is 93.3%.
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Figure 4.15: CNN Testing Results

For the hybrid CNN-LSTM, results gave 4 missclassifications. During a

sag, it classified a notch. It classified a notch, swell and then another notch

during no disturbance. The CNN-LSTM suffers the same missclassifications

as the LSTM and the CNN. The transition between the normal voltage signal

to the disturbance injects high frequency components to the classification

window that the CNN-LSTM classifies that section of the signal as a notch

disturbance. The overall classification rate of the CNN-LSTM for this test

is 93.3% which are good results if the spectral leakage is not considered and

this architecture can be considered for a real time application due to its

simplicity in implementation and low number of layers and parameters.
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Figure 4.16: CNNLSTM Testing Results

The final test done in this comparison is the hybrid CNN-LSTM with

adjusted hyperparameters. For the hybrid CNN-LSTM with adjusted hyper-

parameters, results gave just 2 missclassifications. During a sag, it classified

a swell and during an interruption it classified a transient. This is due to

the transition between normal to disturbance and transition between dis-

turbances. These transitions inject high frequency components in the signal

that leads the deep learning algorithm to a missclassification. Clearly this

was the best results making it the most precise architecture. It also identified

the nartural harmonics found in common voltage supply. Which is totally

normal due to the natural harmonic components injected in the power grid.

The overall classification rate for this test is 97.3% if the harmonic distor-

tions are seen as a normal voltage supply which makes it the most successful

of the architectures compared in this chapter.
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Figure 4.17: CNNLSTM with adjusted hyperparameters Testing Results

Other tests were conducted with experimental datasets using the test

bench shown in Figure 8 in order to compare and prove the effectiveness of

all the architectures previously mentioned. It has been possible to gener-

ate several experimental datasets of the interruption and of the sag distur-

bances. The experimental measurments are shown in Figure 4.19 and Figure

4.20 along with the plots of the classification results below. Each classifi-

cation point consist of 1000 samples of the measured signal. Once again,

the CNN-LSTM with adjusted hyperparameters was the most consistent

in classifying all the disturbances without misclassification. As mentioned

before, the identification algorithms were tested with exerimental datasets

containing interruption and sag disturbances. Concerning the sag distur-
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bance, all of the four architectures performed correct identification. Some

misclassifications occurred when testing the interruption disturbance with

the CNN-LSTM and with the LSTM. Combining these results with the ones

previously mentioned, the CNN-LSTM with adjusted hyperparameters is the

is the one which performed best.

Figure 4.18: Test Bench

Other tests were conducted with experimental datasets using the test

bench shown in Figure 4.18 in order to compare and prove the effective-

ness of all the architectures previously mentioned. It has been possible to

generate several experimental datasets of the interruption and of the sag

disturbances. The experimental measurements are shown in Figure 4.19 and

Figure 4.20 along with the plots of the classification results below. Each clas-

sification point consist of 1000 samples of the measured signal. Once again,

the CNN-LSTM with adjusted hyperparameters was the most consistent

in classifying all the disturbances without misclassification. As mentioned

before, the identification algorithms were tested with exerimental datasets

containing interruption and sag disturbances. Concerning the sag distur-

bance, all of the four architectures performed correct identification. Some

misclassifications occurred when testing the interruption disturbance with

the CNN-LSTM and with the LSTM. Combining these results with the ones

previously mentioned, the CNN-LSTM with adjusted hyperparameters is the

is the one which performed best.
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Figure 4.19: Voltage signal with an interruption measured on the test bench

(top plot). From top to bottom, the classification performances of each

architecture: LSTM, CNN, LSTM-CNN and the LSTM-CNN with adjusted

hyperparameters.
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ture: LSTM, CNN, LSTM-CNN and the LSTM-CNN with adjusted hyper-

parameters.
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4.6 Conclusion

This work investigates the effectiveness of various deep learning architectures

for Power Quality disturbances detection and classification. To do this, it is

imperative to study the mechanism of these algorithms to extract the unique

features of each disturbance and obtaining an efficient and accurate classi-

fication. The training and validation of deep learning architectures depend

on a large number of data to better generalize the classification results. A

Matlab/Simulink model has been designed and implemented in order to gen-

erate these disturbances. To improve the classification performances of the

strategies under evaluation and converge to a generalized result, the data in

the simulated dataset was augmented. Using the resulting datasets the au-

thors have proposed a comparison among the LSTM, the CNN and a joint

architecture that uses both the LSTM and CNN. All of the architectures

were trained and validated using the augmented datasets and then tested

using experimental data. Concerning the experimental validation of the al-

gorithms, it has been possible to generate an experimental dataset of the

interruption and of the sag disturbances. The two datasets were processed

by exploiting the four previously mentioned architectures. The first signal

contained a train of interruptions and the second signal a train of sags. All of

the four architectures successfully classified the sag signal. There were some

discrepancies between the architectures while classifying the signal contain-

ing interruptions. Again, the LSTM-CNN with adjusted hyperparameters

proved to be superior in classifying the disturbances. These results show

that it is possible to train deep learning architectures with simulated data

and operate disturbance identification on experimental data. The transient

disturbance appears to be hardly detectable for all of the architectures under

evaluation, mainly due to the small duration of the disturbance. The archi-

tecture that best performed while classifying the transient disturbance was

the LSTM-CNN with adjusted hyperparameters. Furthermore, concerning

the classifications of other disturbances, the LSTM-CNN with adjusted hy-

perparameters was the most performing one, both considering the simulated

and the experimental datasets.
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Chapter 5

Comparison of Power Quality

Detection and Classification

Algorithms in the Frequency

Domain

In this chapter a comparison of two machine learning algorithms

are presented classifying the PQD in the frequency and time-

frequency domain. These algorithms are the Multi-layer multi

value network (MLMVN) and the Short-Time Fourier Transform

Convolutional Neural Network (STFT-CNN). Section 1 is a brief

introduction were the experiments and comparisons are briefly ex-

plained. Section 2 explains the MLMVNs functioning. Section 3

describes the CNN used in this chapter and how the classification

is done. Section 4 explains data preparation for the MLMVN

and the STFT-CNN and the training procedure. In Section 5,

the training results are presented for the MLMVN and the CNN

followed by the experimental results for both algorithms. Section

6 presents the comparison of both algorithms. Finally, a conclu-

sion is presented in Section 7. 1

1This chapter has been published as “Power Quality Analysis Based on Machine Learn-

ing Methods for Low Voltage Electrical Distribution Lines” in Electric Power Systems

Research, 2022 [83].
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5.1 Introduction

Feature extraction methods have been extensively used as a means of obtain-

ing the most significant parts of a dataset. The objective is to extract the

frequency components of the dataset in order to maximize the perrformance

of Machine Learning algorithms.

This chapter presents two classification methods capable of detecting electri-

cal disturbances in low voltage grids. Both approaches rely on machine learn-

ing techniques that classify voltage signals in the frequency domain. The

first technique here proposed uses the Fourier Transform (FT) of the volt-

age waveform and classifies the corresponding complex coefficients through

a Multilayer neural network with Multi-Valued Neurons (MLMVN). In this

case, the structure of the classifier has three layers and a small number of

neurons in the hidden layer. Therefore, the computational effort is very low,

the learning time is short, and no coding operations are necessary because

the neural network can process complex-valued inputs. The second technique

involves the use of the Short Time Fourier Transform (STFT) and a Con-

volutional Neural Network (CNN) with 2-D convolutions in each layer for

feature extraction and the reduction of dimensionality. The five disturbances

considered in this paper are: voltage sag, voltage swell, harmonic distortion,

voltage notch and interruption. The performances of the two classifiers are

compared during the training phase using simulated data and subsequently

through experimental measurements, obtained from an artificial generator

of disturbances and a variable load. Both techniques represent an innova-

tive approach to this type of problem and guarantee excellent classification

results.

5.2 Complex Neural Network

One of the most innovative aspects presented in this paper is the use of a

MLMVN in the classification of electrical disturbances. This paper repre-

sents the first application of a neural classifier based on Multi-Valued neurons

on the field of power quality evaluation. The MLMVN structure used in this

work is the classic three-layer configuration presented in [84] while the use

of binary neurons in the output layer, the introduction of the Winner Takes

All rule and the choice of processing complex coefficients obtained through

the FFT of the sampled voltage waveforms are specific aspects of this ap-
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plication. This type of neural network is based on a feed forward neural

network structure and a derivative free backpropagation procedure during

the training phase [84]. The absence of derivative terms makes the correc-

tion of the weights very fast compared to other machine learning techniques.

Also, the complex nature of MLMVN makes it easily adaptable to electrical

problems. In fact, the electrical quantities in power transmission and dis-

tribution grids are characterized by alternating waveforms and therefore are

represented by phasors. Since each electrical standard has a single frequency

value, line quantities can be expressed as complex numbers characterized by

magnitude and phase. For these reasons, MLMVN has been used with good

results in failure prevention for electrical infrastructures [85] and analog cir-

cuits [86]. From a general point of view, this classifier is a three-layer neural

network in which the elementary unit is the Multi-Valued Neuron (MVN)

described in [84] and the inputs and weights are complex numbers. Figure

5.1 shows the global structure of the MLMVN where, for example, W
(
i k,m)

is the i − th complex-valued weight of the k − th neuron belonging to the

layer m, N(m − 1) is the number of the neurons belonging to the hidden

layer, Nm is the number of the neurons belonging to the output layer and

(X1, X2, · · · , Xn) are the complex-valued inputs.

Figure 5.1: VGG-16 Architecture
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5.3 Convolutional Neural Network

In this work, the use of CNNs was studied by means of a STFT. The STFT

is used to extract the spectral component of the input voltage signal along

with its temporal component. This is then used to classify the input volt-

age signal using the CNN. The STFT for classification using the CNNs has

been previously used in other applications to improve CNN classification re-

sults as shown [87], [88], [89] . CNNs are feedforward neural networks that

uses 2D convolutions in each layer for feature extraction and dimensionality

reduction. The 2-D convolution is shown in Equation 5.1.

S[n1, n2] =

M1∑
m1=1

M2∑
m2=1

x[m1,m2]k[n1 −m1, n2 −m2] (5.1)

The CNN works by adjusting the kernel denoted by parameter k during

training to find the optimum kernel weights for feature extraction of signal

x for each corresponding filter in each convolutional layer. A max-pooling

layer is then added to the convolutional layer to reduce the size of the im-

age, extract the most important parts of the image, and reduce training

time. Pooling layers of a CNN implement a spatial dimensionality reduction

operation designed to reduce the number of trainable parameters for the

next layers and allow them to focus on larger areas of the input pattern [90].

The max-pooling layer can be defined as the summary statistics of the out-

put of the preceding convolutional layer. The max-pooling layer identifies

the maximum of a given section and sets it as the reduced output of the

convolutional layer.

CNNs were originally created for image classification tasks. In order to

create a 2D, image-like signal, the use of a STFT was explored to convert

a 1D signal into a 2D matrix. This is done to exploit the CNN image fea-

ture extraction capabilities. The STFT is a Discrete Fourier Transform in

a windowed section of the signal. The STFT permits frequency analysis in

the time domain using a sliding window. The STFT is an enhanced mathe-

matical methodology, derived from the discrete Fourier transform (DFT), to

explore the instantaneous frequency as well as the instantaneous amplitude

of localized waves with time-varying characteristics [88]. This method allows

the time signal to be converted into a time-frequency signal i.e., a 2D ma-

trix. Some of the disturbances in power quality studied in this work involve

the injection of undesired frequency components (harmonics distortion and
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notch). The other disturbances involve the deviation of voltage levels from

their nominal values which can also be shown in the STFT shown in Chapter

3.4. The heatmap represents a yellow color for a high level of a frequency

component and a blue color for a low level of a frequency component. All

signals have a high level at 50Hz which corresponds to the supply voltage

frequency or fundamental frequency. The harmonic distortion and the notch

show other frequency components and the sag, swell and interruption show a

decrease or an increment in intensity at 50Hz. The window function used in

this work is the Blackman window. The equation to the Blackman window

is shown in Figure 5.2.

X[m,n] =

L−1∑
k=0

x[k]w[k −m]e−j2πnk/L (5.2)

Since the classification task involves multiple classes, the CNN has the

same number of classes as outputs. The output of the CNN involves a fully

connected layer with 6 outputs. Each output represents each class. The

output is then converted to a probabilistic density function by means of a

softmax function. Softmax functions are most often used as the output of

a classifier with the aim of representing the probability distribution over

n different classes [81]. The softmax function converts the output of each

neuron into a probability distribution as shown in Equation 5.3, where exi

is the exponential output of a given neuron and
∑K
j=1 e

xj is the sum of all

the exponential outputs. The sum of all the outputs of the softmax equals

1. Figure 5.2 shows an example of the softmax function which classified a

given voltage signal with a probability of harmonic distortion of 99% and a

probability of other disturbances of 0.2%.

P (ŷ = j|x) =
exi∑K
j=1 e

xj
(5.3)
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Figure 5.2: VGG-16 Architecture

Since this is a classification task and it is a multiclass problem, the loss

function is a cross entropy loss shown in Equation 5.4. In this formula,

P (ŷi|x) is the output of the SoftMax function and yi is the training label.

CE =

C∑
i=1

yilog (P (ŷi|x)) (5.4)

The gradient during training is calculated and the CNN is updated us-

ing the Adaptive Moment Optimizer (ADAM optimizer). The ADAM opti-

mizer is an adaptive learning rate optimizer that uses first and second order

moments of the gradients for updating the individual parameters. In this

work, the input voltage signal is converted to a time-frequency matrix and

then classified using the CNN. To do this, a dataset of voltage signals with

disturbances is generated and transformed into its time-frequency counter-

part using the STFT. The CNN is trained using the time-frequency dataset

obtaining a probability of each disturbance with the SoftMax function. us-

ing the cross-entropy loss function the output is measured with the labeled

classes and the weights are adjusted using the ADAM optimizer.

5.4 Results

This section presents the main results obtained during the training phase

of the machine learning techniques described above. The data used during

the training phase is generated by a simulation procedure on Matlab and

Simulink environments. Therefore, a Matlab script is used to create a large

variability of electrical disturbances in a very short time starting from the
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sinusoidal function of the line voltage, which is characterized by a frequency

of 50 Hz and a root mean square value of 230 V. The amplitude and the

frequency components of this signals are modified to create all the different

disturbances following the formal definitions given in Section I. Starting from

the normal sinusoidal signal shown in Fig. 1a, the value of the maximum

amplitude is chosen randomly in the interval (32.53 ÷ 420.02) V to simulate

the presence of a voltage sag. This problem, in fact, causes a reduction of

the phase voltage between 10% and 90% of the nominal value. Similarly, ex-

amples of voltage swell are created by considering increases in the maximum

amplitude from 10% to 50% of the nominal value. As for the harmonic dis-

turbances, signals with frequencies multiple of the fundamental (50 Hz) are

generated up to the eleventh harmonic and then added to the line voltage.

Notch is a condition when the magnitude of voltage decreases towards zero

for a short period of time, usually microseconds. This condition is simulated

in Matlab by adding impulsive components at specific instants of the nom-

inal voltage waveform. Finally, interruptions are simulated by reducing the

maximum voltage value below 10% of the nominal value. Furthermore, other

examples of PQDs are generated through the Simulink model proposed in

[29] by the Authors. In this way, it is possible to simulate with a high level of

accuracy distortions caused by faults in low voltage distribution networks.

A waveform with a duration of three periods (60 ms) is created for each

signal and 250 examples are generated for each fault class (nominal condi-

tion, voltage sag, voltage swell, harmonic distortion, notch, interruption).

200 of these examples have been generated using the Matlab script and the

remaining 50 using Simulink. Therefore, a set of 1500 simulated signals are

used to train the neural classifiers described above. The simulated voltage

waveforms are sampled with a frequency of 8 kHz resulting in 480 samples

for each example. It should be noted that the training procedure is divided

into two phases: the learning phase and validation phase. During the learn-

ing phase 80% of the dataset is chosen randomly and used for the correction

of the weights. Subsequently, the remaining 20% is used in validation to

verify the classification results. In both phases, the index used to evaluate

the performance is called Classification Rate (CR) and it corresponds to the

ratio between correctly classified samples and the total number of processed

samples.
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5.4.1 Complex Neural Network

The MLMVN training procedure requires a matrix like dataset shown in

Equation 5.5, containing a large variability of electrical disturbances ex-

pressed in the frequency domain. Therefore, the Discrete Fourier Transform

is applied using a Fast Fourier Transform algorithm to the samples of the

voltage waveforms generated in Matlab. In this paper 256 points are consid-

ered for the DFT, and the corresponding complex values are used as inputs

of the MLMVN.

In this paper, the complex-valued inputs (X1, X2, . . . , Xn) are obtained

from the Discrete Fourier Transform (DFT) of the sampled line voltage with

a frequency of 8 kHz. During the training phase, the time-domain samples of

the waveforms are processed using a Fast Fourier Transform (FFT) algorithm

and each complex term obtained is used as an input of the MLMVN. Figure

5.3 summarizes this procedure.

Figure 5.3: Fast Fourier Transform (FFT) algorithm

Since the correction of the weights is based on a supervised learning

algorithm, many sample signals must be used with the corresponding desired

classifications. Therefore, the structure of the dataset matrix used during
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the training phase is
X

(1)
1 X

(1)
2 · · · X

(1)
n 0

...
...

...
...

...

X
(NS)
1 X

(NS)
2 · · · X

(NS)
n 5

 (5.5)

where the last column contains the indexes of the fault classes, n is the

number of points used in the fast Fourier transform algorithm and NS is the

total number of examples. Each termXk (k = 1, . . . , n) is calculated as

Xk =

N∑
j=1

VjW
(j−1)(k−1)
N (5.6)

in which Vj is a voltage sample and WN is obtained using

WN = e(−2πi)/n (5.7)

Once the complex-valued inputs are calculated, all the weights are ini-

tialized to random values and the dataset matrix shown in Equation 5.5

is processed one row at a time. The element in the last column of each

sample is used to calculate the corresponding desired output D, while the

inputs (X1, X2, . . . , Xn) are processed through the two layers of neurons of

the MLMVN. Neurons belonging to the hidden layer are characterized by a

continuous activation function as shown in Equation 5.8

P (z) = ei Arg(z) =
z

|z|
(5.8)

where z is the weighted sum of the inputs in Equation 5.9,

z = W0X0 +

n∑
i=1

WiX1 (5.9)

Wi is the i − th weight of the considered neuron and Xi represents the

corresponding i− th input.

On the other hand, the output layer of the MLMVN contains only dis-

crete neurons, which have a finite number of possible outputs. Each of these

neurons divides the complex plane into k equal sectors and the output corre-

sponds to the lower border of the sector containing z. From a mathematical

point of view, given the total number of sectors k, the output of the neuron
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is equal to the lower limit of the jth sector if the argument of the weighted

sum is between 2πk and 2π(j + 1)/k

P (Z) = Y = εjk = ei2πj/k if 2π/k ≤ arg (z) < 2π(j + 1)/k (5.10)

Therefore, the combination of the output neurons is used to define the

global classification results. In this sense, it is necessary to mention that

the output neurons used in this paper are binary. This is a specific solution

chosen for this kind of application which involves the use of a neuron for each

electrical disturbance in the output layer. Therefore, each neuron has only

two possible outputs : (1 + j0) or (−1 + j0). The first value corresponds to

the lower border of the sector [0π) while the second term is that of the in-

terval [π, 2π). This setting allows the reduction of misclassifications between

consequential sectors but requires the introduction of a specific method for

selecting outputs. In fact, the single failure hypothesis is assumed, and this

means that only one neuron can be activated by detecting the corresponding

disturbance. If, during the training phase, more than one neuron is acti-

vated, the Winner Takes All rule is used. This means that only the neuron

with the lowest error is kept in the activated state. Therefore, each output

neuron is associated with a specific voltage disturbance and the upper half

plane [0π) is used to describe its absence while the lower half plane [π, 2π)

is used to indicate the problem. For example, the first neuron belonging

to the output layer focuses on sensing the voltage sag, as shown in Fig. 8.

Therefore, one neuron for each disturbance is used in the output layer. To

facilitate the interpretation of the results, the first sector of each output neu-

ron is encoded by the value 0 while the second sector by the value 1. Table

5.1 summarizes the organization of the output layer.

Table 5.1 Output Neurons and Disturbance Classes

Fault Class Description Output Combination

0 No Disturbance 0 0 0 0 0 0

1 Voltage Sag 1 0 0 0 0 0

2 Voltage Swell 0 1 0 0 0 0

3 Harmonic Distortion 0 0 1 0 0 0

4 Voltage Notch 0 0 0 1 0 0

5 Interruption 0 0 0 0 0 1
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As said before, MLMVN falls in the category of feedforward neural net-

works and the training is performed in a supervised manner. The first step

in this procedure is to map the correct combination of desired outputs to

each example belonging to the dataset. All the outputs equaled to 0 are

converted into the complex number (1 + j0) while the outputs equaled to

1 become (1 − j0). These values are used to calculate output errors and

initiate the backpropagation procedure. Given Ds
k,m the desired output of

the kth neuron belonging to layer m obtained by processing the sample s

(s = 1, . . . , Ns), the corresponding error is the difference between Ds
k,m and

the current output Y sk,m. These values are normalized with respect to the

number of neurons of the previous layer

δsk,m =
Ds
k,m − Y sk,m
Nm−1 + 1

(5.11)

These errors, calculated on the output neurons, are backpropagated from

the last layer to the input one through the mathematical rule shown in

Equation 13, as shown in [33].

δsk,m−1 =
1

Nm−1 + 1

nm∑
i=1

δsi,m(W i,m
k )

−1
(5.12)

This standard correction procedure allows the adjustment of the weights

by using Equation 5.13,

∆W k,m
i =

αk,m
(Nm− 1 + 1)|zsk,m|

δsk,mȲ
s
i,m−1 (5.13)

where ∆W k,m
i is the correction for the i− th weight of the k− th neuron

belonging to the layer m, αk,m is the corresponding learning rate, nm − 1

is the number of the inputs equal to the number of outputs of the previous

layer,
∣∣∣zsk,m∣∣∣ is the magnitude of the current weighted sum, δsk,m is the output

error and Ȳ si,m−1 is the conjugate-transposed of the input for the output

layer neurons and inner hidden layer neurons (if any) or a reciprocal input

for the first hidden layer neurons. Equation 5.13 is used individually for

each weight, and it represents the main difference between neural networks

based on Multi-Valued Neurons (MVNs) and those based on real-valued

neurons, because it doesnt contain derivative terms. This guarantees the

low computational cost and very fast training phase of MLMVN compared

to other algorithms. To obtain a further reduction of the training time
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the standard correction rules have been replaced with a batch algorithm

[91]. In this case, the output errors are calculated as shown in Equation

5.11 and backpropagated as shown in Equation 5.12 for each row of the

dataset without adjusting the weights. Once all the examples belonging to

the dataset have been processed and the corresponding errors have been

defined, i.e., at the end of each training epoch, the corrections of the weights

are calculated through a batch algorithm such as the QR decomposition.

Each error is then saved in a specific matrix
δ11,m δ12,m · · · δ1n,m
δ21,m δ22,m · · · δ2n,m

...
...

...
...

δNs1,m δNs2,m · · · δNsn,m

 (5.14)

and a corresponding oversized system can be written as shown in Equa-

tion 5.15, because the number of samples is greater than the number of

corrections representing the unknowns.

Y∆Wk = δk (5.15)

This system must be solved through a Linear Least Square (LLS) method

obtaining the best corrections in order to meet the condition as shown in

Equation 5.16.

∆Wk = argmin||Y∆Wk − δk||2 = Y δk (5.16)

where the superscript k indicates the number of the neuron considered,

Y ∗ = (Y ∗Y )
−1
Y T is the pseudo-inverse of the matrix Y and Y T is its con-

jugate transpose. In this work, QR decomposition is used, and the error

matrix shown in Equation 15 for the hidden layer consists of the backprop-

agated terms. To improve the classification performance of the MLMVN

proposed in this paper, the soft margin rule is adopted [92]. In this case, the

training phase is changed to bring the weighted sums as close as possible to

the bisector of the desired sectors. This technique avoids misclassification

of the z terms that fall close to the edge between two successive sectors.

From the computational point of view, there are no differences compared to

the standard procedure, because the only change is the use of bisectors as

desired outputs Ds
k,m. Therefore, the goal of weight correction is not only

the positioning of the output in the correct sector, but also the minimization

of the distance with respect to the bisector of that sector.
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5.4.2 Convolutional Neural Network

The CNN training procedure requires a dataset containing the electrical volt-

age disturbance in their time-frequency domain. Therefore, the simulated

voltage disturbances were converted to their time-frequency domain via the

STFT as shown in Section II.A. The used CNN architecture has an input

of 500 rows and 5 columns. This means 500 frequency components and 5

cycles. The CNN reduces the input using the max-pooling layers and at the

same time increases the filter size. The training was done, and the precision

and recall were calculated for each class. The precision of the CNN resulted

in 100% in all classes except the normal which had a classification rate of

99.3% with the training data and a 98.9% with the validation data. The re-

sults are shown in Table 5.4. The recall resulted in 100% classification rate

in all except for the sag and swell which resulted in a 99.6% and 99.7% for

the training for the sag and swell respectively and 99.7% and 99.2% for the

validation for the sag and swell respectively. The results are shown in Table

5.5. The CNN has an overall accuracy of 99.89% for the training dataset

and overall accuracy of 99.82% for the validation dataset.

5.5 Results

This section proposes further validation by using real voltage measurements

to highlight the advantages and disadvantages of both techniques. Therefore,

different examples of disturbances were generated by the two experimental

setups described above, and the corresponding voltage waveforms were sam-

pled with a frequency of 8 kHz. Finally, a comparison of a specific sequence

of electrical disturbances is presented.

5.5.1 Complex Neural Network

Training Results

The MLMVN training procedure requires a matrix like dataset shown in

Equation 5.5, containing a large variability of electrical disturbances ex-

pressed in the frequency domain. Therefore, the Discrete Fourier Transform

is applied using a Fast Fourier Transform algorithm to the samples of the

voltage waveforms generated in Matlab. In this paper 256 points are consid-

ered for the DFT, and the corresponding complex values are used as inputs

of the MLMVN.
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Table 5.2 summarizes the results obtained using 50 neurons in the hid-

den layer of the MLMVN. As said before, the output layer contains 5 binary

neurons, one for each electrical disturbance, and the nominal conditions cor-

respond to a combination of five zeros.

Table 5.2 Precision for the MLMVN

Fault Class Training CR% Validation CR%

0-Normal 100 100

1-Sag 100 100

2-Swell 100 100

3-Harmonics 100 100

4-Notch 100 99.19

5-Interruption 100 100

Experimental Results

The first voltage waveform used to validate the performance of the MLMVN

based classifier is shown in Figure 5.4, where the voltage sags and nominal

conditions alternate with different durations. The time window proposed

in Figure 5.4 has a duration of five seconds and, therefore, it contains 250

sinusoidal periods each of which is made up of 8000 samples. One of the

most important aspects in the evaluation of classification results is the time

interval taken into consideration. For example, the signal shown in Figure 5.4

can be processed using five consecutive time intervals of one second duration.

The proposed monitoring method assesses the DFT for each interval and

classifies them. As shown in Figure 5.4, this procedure allows the perfect

classification of the considered voltage waveform.However, there are some

situations in which the MLMVN misclassifies, for example in the case of a

brief perturbation. Figure 5.5 describes this condition: the time interval

taken into consideration is classified as normal, but it presents a voltage sag

of 60 ms. To overcome this limitation, it is possible to reduce the duration

of the time interval used for the classification procedure. In this way, short

disturbances are identified with a high classification accuracy and the exact

moment they start is detected. Figure 5.6 shows a classification example in

which a voltage waveform is processed using 60 ms time intervals. Note that

the excellent classification results shown in Figure 5.6 can also be obtained

by considering the other fault classes.
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Figure 5.4: Voltage Waveform and classification

Figure 5.5: Voltage Waveform and classification
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Figure 5.6: Voltage Waveform and classification

Table 5.3 summarizes the classification performances obtained using dif-

ferent time interval durations.

Table 5.3 Precision for the MLMVN

Disturbance Time Interval

0.06s 0.6s 1s 2s

1-Sag 98.5% 90% 80% 66.6%

2-Swell 97% 87.5% 79.5% 66.6%

3-Harmonics 99.25% 90% 84% 75%

4-Notch 97% 90% 80% 68%

5-Interruption 98.5% 90% 80% 70%

These results were obtained considering real voltage measurements of 25

seconds and confirmed the excellent performance when the waveform is pro-

cessed using a short time interval. On the other hand, the classification rate
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decreases as the number of periods processed simultaneously increases. It

should be noted that the classification of the harmonic disturbance is slightly

better than that of the other perturbations when using time intervals of 1 s

and 2 s. The reason for this result is that the presence of a voltage compo-

nent with frequency higher than 50 Hz introduces significant variation in the

Fourier analysis. As shown in Figure 5.7, in the Magnitude representation

several lines are introduced with respect to the normal condition, each of

which corresponds to a frequency component. These contributions are also

present in the case of a short duration harmonic perturbation and therefore

make the classification slightly easier. As for the other voltage disturbances,

they focus on the 50 Hz component, and this makes it difficult to recognize

brief problems.

(a) (b)

Figure 5.7: DFT results: a) magnitude in the case of a voltage waveform with

harmonic disturbance of 0.15 s; b) magnitude of a normal voltage waveform.

In addition, it should be noted that some of the errors in detecting voltage

sags and interruptions using a short time interval (0.006 s) correspond to

class 4 misclassifications. In fact, in the instant in which the voltage drop

begins, features very similar to those of a notch can occur. This means

that the MLMVN can detect the starting point of these disturbances, but

sometimes classifies it as a notch. Without considering these errors the

classification rate would be over 99%.
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Figure 5.8: Voltage Waveform and classification

5.5.2 Convolutional Neural Network

The same voltage waveform described in the previous section was used to

validate the performance of the CNN classifier, where the voltage sags and

nominal conditions alternate with different durations using the voltage dis-

turbance generator. For the validation of the CNN, the signal is converted

to its time frequency domain using the STFT and then classified as a 500

× 5 image. The dimensions of the time frequency matrix represent 250 fre-

quency components of 3 cycles, or 60 ms, with a sliding window of half a

cycle which makes 5 DFT. The validation of the CNN STFT resulted in 4

misclassifications out of 479 classifications which makes it a 99.16% accuracy.

Misclassifications in this experiment occurred in transitions between normal

to sag or sag to normal. This is due to high-frequency components found

at each transition, which led to a harmonic classification. Fig. 5.9 to 5.11

shows the classification results. The top plot shows the voltage signal to be

transformed and classified. All figures show at least one sag that transitions

to a normal or vice versa. As shown in the STFTs the transitions create

high frequency components which often lead to a harmonic classification as

shown in Figure 5.9 to 5.11.
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Table 5.4 Precision for the CNN

Fault Class Training CR% Validation CR%

0-Normal 99.3 98.9

1-Sag 100 100

2-Swell 100 100

3-Harmonics 100 100

4-Notch 100 100

5-Interruption 100 100

Table 5.5 Recall for the CNN

Fault Class Training CR% Validation CR%

0-Normal 100 100

1-Sag 99.6 99.7

2-Swell 99.7 99.2

3-Harmonics 100 100

4-Notch 100 100

5-Interruption 100 100

5.6 Result Comparison

Finally, a comparison between CNN-STFT and MLMVN based classifiers is

presented. For this comparison, a voltage signal containing all 5 categories

of disturbances is generated. The rated voltage value is that of the Italian

distribution network (Vrms = 230V, f = 50Hz). This signal is generated

as shown in section IV and sampled with a frequency of 8kHz. The goal

of the classification is to determine the power quality by studying 60 ms (3

cycles) at a time. Therefore, the sampled signal is divided into groups of

480 samples and each of them is assigned the corresponding classification.

Figure 5.12a shows the overall signal and the correct classification of the

16 groups of the analyzed samples, while Figure 5.12b and Figure 5.12c

present the classification results obtained through the two techniques. The

MLMVN-based classifier misclassifies in the first sample. This is a very

complex situation to recognize because the voltage sag situation occurs in

the last half-period of the three taken into consideration. It can be said that
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Figure 5.9: Experimental signal generated (Top). The STFT of the signal

(Middle) and the classification results (Bottom).
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Figure 5.10: Experimental signal generated (Top). The STFT of the signal

(Middle) and the classification results(Bottom).
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Figure 5.11: Experimental signal generated (Top). The STFT of the signal

(Middle) and the classification results (Bottom).
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by using one FT for each sine cycle, i.e. by analyzing one cycle at a time,

this type of error can be eliminated by ensuring 100% accuracy.

(a)

(b)

(c)

Figure 5.12: DFT results: a) magnitude in the case of a voltage waveform

with harmonic disturbance of 0.15 s; b) magnitude of a normal voltage wave-

form.
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5.7 Conclusion

In conclusion, it can be stated that the two proposed techniques allow the

monitoring of the power quality in a low voltage distribution network with an

excellent level of accuracy. The low training time and the use of a common

techniques, such as the Fourier transform, in the data processing phase make

the two classifiers very versatile and easily adaptable for the recognition of

other electrical disturbances. Compared to other techniques they allow the

analysis and classification of a voltage signal in time and frequency. This

can further enhance the feature extraction capabilities due to the addition of

the frequency dimension. Furthermore, these are well known signal process-

ing techniques applicable for a real-time environment. Future developments

could be focused on improving performance when processing a larger number

of cycles per classification and introducing additional types of disturbances

that are very frequent in industry. Furthermore, the real-time applications

of these two approaches will certainly be studied in the future to develop an

effective monitoring tool for electric grids. In order to adapt the proposed

classifiers to different acquisition devices in many other electrical systems, a

measurement noise treatment will be introduced during the training phase.

Finally, a very interesting future development will be the improvement of

neural algorithms to work under multiple failure hypotheses to classify dis-

turbances consisting of multiple distortions.



Chapter 6

Single Shot Power Quality

Disturbance Detector

This chapter presents an innovative Single Shot Power Qual-

ity Disturbance Detector (SSPQDD). This algorithm presented

in this chapter is an algorithm inspired in object detection al-

gorithms. This algorithm is able to detect a disturbance a its

duration along with a classification. Section 1 presents an in-

troduction. Section 2 shows the mathematical formulation of the

innovative algorithm showing the block diagram and the training

data. Section 3 presents the training dataset and how it is sup-

posed to be augmented. Section 4 presents the formal algorithm

representation and how it should be implemented. It also presents

the base network and how it should be modified in order to com-

ply to the given needs of PQD classification. Section 5 briefly

describes the training procedure and how it is implemented. Fi-

nally, Section 6 presents the conclusion of the chapter. 1

1The development of the algorithm presented in this chapter has been published in

“An Innovative Single Shot Power Quality Disturbance Detector Algorithm” in in IEEE

Transactions on Instrumentation and Measurement, vol. 71, pp. 1-10, 2022, Art no.

2517210, [93]

95
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6.1 Introduction

The proposed SSPQDD is based on a pretrained VGG16 architecture. The

VGG16 is a a deep CNN proposed by K. Simonyan and A. Zisserman from

the University of Oxford in 2014. In the last years, VGG16 has been used

for Image Recognition or Classification and for Image Detection and Local-

ization, while it is not been used for PQD classification. In this work, the

base architecture of the proposed SSPQDD is a VGG16 network because

of its outstanding accuracy in classifying PQDs compared to other archi-

tectures presented in this work. The results of this comparison are shown

in the following section. After the training of the base network, the fully

connected layers are substituted by feature extraction layers. This is done

in order to take advantage of the maxpooling layers typical of the VGG-16

architecture and to classify voltage signals in a grid like structure. The pro-

posed approach classifies 16 samples of the voltage signal per grid. Figure

6.2 shows the block diagram of the proposed method in which the base net-

work is the VGG16 architecture, and the feedforward layers are substituted

by feature extraction layers for the grid like classification. The added stage

uses a maxpooling layer for dimensionality reduction or, in other words, for

classification of a larger number of samples. The final layer has 2 outputs.

The first output, the confidence output, is a binary classification that clas-

sifies the signal as disturbance or no disturbance. The confidence output is

used to mask the second output which is a multiclass classification.

St has 188 grids which are 16 samples per grid. This is fundamental to

ensure that the algorithm will be able to find and classify Transient distur-

bances of few nanoseconds as well as Temporary disturbances lasting over 1

min. The confidence output is characterized by 2 outputs per grid, while the

classification one has 6 output per grid due to the 6 types of disturbances

taken into consideration. These include Sag, Swell, Harmonic, Transient,

Notch, and Interruption. A confidence of class 0 means Normal.

6.2 Mathematical Formulation

The dataset used to train and validate the proposed network involves volt-

age signals containing Sag, Swell, Harmonics, Transient, Notch, and Inter-

ruption. All the PQDs have been generated randomly within the signal to

ensure different time durations of the disturbances and to cover different loca-
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tions in a window frame. The dataset was generated using Matlab Simulink

considering a sampling frequency of 8 kHz for a total duration of 3.75 s. The

target includes the confidence matrices and the classification matrices. The

classification matrices are multiplied by a mask matrix for training stability

purposes. The matrices are 2 x 188 for the confidence matrices and 6 x 188

for the classification matrices. The output is then confronted with the con-

fidence and classification matrices. Figure 6.2 (a) shows an extract of the

voltage signal used to train the algorithm including a swell disturbance in-

stantaneously followed by a sag disturbance. Below the voltage signal there

are the training matrices shown in Figure 6.2 (b) representing the classifi-

cation matrices and the confidence matrices. Pretraining of the VGG16 is

done classifying the disturbance as a multiclass classification problem using

the softmax function. The fully connected layers are then removed, and the

feature extraction layers and the output layers are then added to the base

network. Training of the SSPQDD network is done with voltage signals and

comparing the outputs with the target matrices shown in Figure 6.2 (b) The

softmax function is used in a binary manner on each grid in order to deter-

mine if a PQD exists in that given grid. Thus, the probability to classify

the jth class given a sample vector x and a weighting vector w is given by

Equation 6.1.

P (ŷ = j|x) =
ex
Twj∑K

1 exTwk
(6.1)

The multiclass softmax function is used in the classification output. The

classification output, after the sofmax, is then multiplied by a mask matrix

for training stability purposes and class imbalances. The Loss function is

then calculated using the crossentropy loss. The crossentropy loss and the

binary crossentropy loss are shown in Equation 6.2 and 6.3 respectively.

CEclass =

N∑
t=1

yclasst log
[
Stclass(x)t

]
(6.2)

CEconf =

N∑
t=1

[
yconft log

[
Stconf (x)t + (1− yconft)log

[
1−Stconf (x)t

]]
(6.3)

The loss of the confidence and of the classifications are then added and

the weigths of the proposed network are updated using the Adaptive moment
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optimization algorithm. The complete algorithm of the proposed SSPQDD

is shown in Algoritm 1. After the algorithm is tested, the confidence matrices

are then multiplied to the classification matrices in order to find the distur-

bance in the signal frame. Equation 6.4 to Equation 6.8 shows the formal

mathematical representation of the procedure. Equation 6.4 and Equation

6.5 represent the output for the classification and the confidence respectively

where they are convolution operations.

Class : l2(ZT )→ l2(ZNG)

(x, θ) 7→Class{(x, θ)} , x ∗ θ = F
(6.4)

Conf : l2(ZT )→ l2(ZNG)

(x,w) 7→Conf{(x,w)} , x ∗ w = Y
(6.5)

Where N is the number of filters, G is the number of grids and, θ and w

are the kernels convolved with the input x.

The softmax function is applied to the output in order to obtain a proba-

bility distribution on each grid for the class. The softmax function is defined

in Equation 6.6 for the Class output and in Equation 6.7 for the confidence

output.

H : l2(ZN × ZG)→ l2(ZN × ZG)

Class(n, g) 7→ H{Class(n, g)} = h
(6.6)

Where h[n, g] =
{
h[n, g] ∈ R;n ∈ ZN ; g ∈ ZG : h[n, g] = eFn∑K

i=1 e
Fi
∀g
}

.

H : l2(ZN × ZG)→ l2(ZN × ZG)

Conf(n, g) 7→ H{Conf(n, g)} = Stηconf
(6.7)

Where Stηconf [n, g] =
{
Stηconf [n, g] ∈ R;n ∈ Z2; g ∈ ZG : Stηconf [n, g] =

eYn∑2
i=1 e

Yi
∀g
}

.

For the use of this algorithm, it is required to multiply the each element

of the 1st row of the confidence output with the each column of the class
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output. To do this a Hadamart product is defined in Equation 6.8 resulting

in Equation 6.9.

◦ : l2(ZN × ZG)× l2(Z1 × ZG)→ l2(ZN × ZG)

(h, Stηconf ) 7→ ◦{(h, Stηconf )} , h ◦ Stηconf = Stηclass
(6.8)

where Stηclass =

 h[1, 1] ∗ Stηconf [1, 1] . . . h[1, G] ∗ Stηconf [1, G]
...

. . .
...

h[N, 1] ∗ Stηconf [1, 1] . . . h[N,G] ∗ Stηconf [1, G]



Stηclass : ZN × ZG → ZNG
(n, g) 7→ Stηclass(n, g)

(6.9)

An example of PQD classification performed using the proposed SSPQDD

architecture is illustrated in Figure 6.2, where the output of the network in

case of a transient disturbance is illustrated. The top subplot shows how, us-

ing the proposed architecture, even a small sliding window is able to identify

the transient.

(a)

Figure 6.1: SSPQDD Block Diagram
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(a)

(b)

Figure 6.2: SSPQDD Block Diagram
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6.3 Training Dataset

The section describes the generation of the dataset using the simulink model

shown in Section 3.2. The disturbances generated are then augmented in

order to obtain a generalized dataset to obtain the best possible model.

6.3.1 Dataset Generation

The dataset is obtained as shown in Section 3.2. The dataset with all

disturbances is generated with the localization of the disturbance inside a

3000 sample time frame. With the localization of the disturbances of the

voltage time frame, the confidence training set and the class training set

are generated. The confidence training set is a 2 × G matrix where the

matrix is
[
0 1

]
T and where the position of the disturbance on the volt-

age signal is
[
1 0

]
T . For the class training set matrices the dimensions

are N × G. Where the classification, if there is any in that given grid, is[
1 0 0 0 0 0

]
T . The position of the 1 is the classification result for

that given grid. In the 1st position classifies as a sag, 2nd position classifies

as a swell, 3rd position classifies as a harmonics, 4th position classifies as a

transient, 5th position classifies as a notch and 6th position classifies as an

interruption.

6.3.2 Data Augmentation

The dataset generated was shifted in order to move the disturbances in

different positions in the time frame. The 2 and 3 disturbances were also

added and mixed in order to generalize the dataset and train the SSPQDD

to be able to detect multiple disturbances in one time frame.

6.4 Algorithm

In this section, the SSPQDD algorithm is descried. Algorithm 1 shows the

formal description of the SSPQDD algorithm. Since the algorithm uses the

Adaptive moment optimization (Adam) algorithm, the parameters α, β1
and β2 are set to 0.00005, 0.5, and 0.999 respectively. N equals the number

of classes which in our case it’s 6 which include: sag, swell, harmonics,

transient, notch and interruption. G represents the number of grids that the
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time signal is divided into which in this case, a voltage signal sampled at 8

kHz with 3000 samples, makes 188 grids or 16 samples per grid.

The SSPQDD algorithm requires an input signal x of 3000 samples, the

batch size m for training which in this case was 256, the number of classes N

and the number of grids G already mentioned and finally the Adam hyper-

parameters α, β1 and β2. Finally, a training mask MSt is required in order

to stabilize training. The training mask is the the confidence dataset that

filters the the classification output of the SSPQDD. This is required only for

training purposes.

The SSPQDD samples m signals x from the dataset with its correspond-

ing training sets yclass and yconf . The training mask is then defined as

MSt = yconf [1, G]. While the SSPQDD weights has not converged, do a for-

ward pass and obtain both outputs, class and conf . The softmax function

is used on both outputs and the output of the class is then multiplied by

the training mask finally obtaining Stclass and Stconf . The loss function L

as shown in Algorithm 1 is calculated and then the weights for the SSPQDD

architecture are the updated.

Algorithm 1 SSPQDD, α =0.00005, β1 =0.5, β2 =0.999, N = 6, G = 188

Require: Input x , target class yclass, target confidence yconf , the training

mask MSt, the batch size m, the number of classes N , the number of

grids G, Adam hyperparameters α, β1, β2.

1: while θ has not converged do

2: Sample data batch {x(1), · · · , x(m)} from dataset x ∼ Pdata
3: Sample data batch {y(1)class, · · · , y

(m)
class} from yclass ∼ Pclass

4: Sample data batch {y(1)conf , · · · , y
(m)
conf} from yconf ∼ Pconf

5: for i = 1, · · · ,m do

6: Stclass(x
(i))← softmax(class(x(i))) ◦Mst

7: Stconf (x(i))← softmax(conf(x(i)))

8: L(i) = −
G∑
g=1

[ N∑
t=1

y
(i)
class(t,g)

log
[
Stclass(x

(i))(t,g)
]]

+[
y
(i)
confg

log
[
Stconfg (x(i))

]
+ (1− y(i)confg )log

[
1− Stconfg (x(i))

]
9: end for

10: θ ← Adam(5θ 1
m

m∑
i=1

L(i), θ, α, β1, β2)

11: end while
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6.4.1 Architecture

The architecture used is a combination of the VGG16 architecture and fea-

ture extraction layers added with an 2 outputs as previously said in Section

6.2. The VGG16 deep learning architecture is shown in Figure 6.3. This

architecture was modified in order to input a time signal. The kernel size

for the convolutional layers are modified to
[
1 3

]
and the max pooling lay-

ers to
[
1 2

]
. The Classification block as shown in Figure 6.3 is eliminated

and the feature extraction layers are then added. The Feature extraction

layers involve one more block that consist of a convolutional layer with 1024

filters a ReLu layer and then another convolutional layer with 1024 filters.

The Output layers, confidence and class outputs, are added to the feature

extraction. The confidence output is a convolutional layer with 2 filters and

the class output is a convolutional layer with 6 outputs.

6.5 Training

The training was done in Matlab 2022a using Matlab’s deep learning toolbox.

Training took 36 hours with a dataset of 70000 signals. The loss after 36

hours was more or less 15. The SSPQDD first started correctly detecting

the disturbances in the window frame and then started correctly classifying

the disturbances.

6.6 Conclusion

An innovative Single Shot Power Quality Disturbance Detection algorithm

was developed, trained, validated and tested. This new type of algorithm

is based on object detection algorithms for detection and classification of

objects in an image. The algorithm is mostly based on the YOLO and

the SSD algorithms which uses the VGG16 algorithm as a base network

and it is modified in order to comply to the use. The algorithm uses the

VGG16 algorithm as a base network modified for time series signal. Feature

extraction layers are added with 2 outputs, one for the confidence and the

other for the class.

A dataset was generated with the simulink model shown in Section 3.2.

This dataset contains 6 disturbances including the sag, swell, harmonics,

transient, notch, and interruption. This dataset was augmented in order to
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Figure 6.3: VGG-16 Architecture
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obtain a generalized dataset. The data augmentation was done by shifting

the disturbances in the window frame. different disturbances were added in

the signal frame in order to train the algorithm to detect and classify more

than one disturbance in a window frame.

Training took 36 hours in order to obtain good results. The results are

shown in 7 and compared to state of the art deep learning architectures.
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Chapter 7

Results and Discussion

In this chapter, the results and discussion of the performance of

the SSPQDD is presented. The performance of the SSPQDD is

measured by comparing it with state of the art algorithms. Sec-

tion 1 gives an introduction of the state of the art algorithms

used in this experiment and why were this algorithms were cho-

sen. Section 2 compares these algorithms with the SSPQDD cal-

culating the precision, recall, F1-score, and the Area under the

curve (AUC). A visual comparison is also made comparing the

computational effort of this algorithm and its accuracy. Another

comparison was made with the sliding window method and the

SSPQDD. Finally, Section 6 presents the conclusion of this chap-

ter. 1

7.1 Introduction

In this section the proposed SSPQDD was compared to well-known deep

learning architectures that show good results in image classification tasks.

In order to compare these architectures, an experiment was made training

all architectures and comparing their performances. Due to the nature of

classification of the grid-like structured in early stages, the SSPQDD can

1The results presented in this chapter has been published in “An Innovative Single

Shot Power Quality Disturbance Detector Algorithm” in in IEEE Transactions on In-

strumentation and Measurement, vol. 71, pp. 1-10, 2022, Art no. 2517210, [93]
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detect disturbances in voltage signals that have duration from few nanosec-

onds up to over 1 min. The dataset used for training the different deep

learning architecture was the same used for the SSPQDD, as described in

the previous section. The architectures used to compare the performances

of the proposed SSPQDD are the following:

� DarkNet , which is a fast and simple deep learning-based object detec-

tion framework [94].

� AlexNet , which is a milestone in deep CNN and it is based on 8 layers

(five convolutional layers and three fully-connected layers) [95].

� ResNet which is a significantly deep network implemented using layer

skips [96].

� The basic VGG16 network [97].

7.2 Comparison Results

The results of the comparison are shown in 7.2(a) and 7.2(b). More in detail,

the first comparison has been carried out measuring the accuracy, the number

of layers and the computational resources required for each architecture, as

shown in 7.2(a). Similarly, 7.2(b) compares the accuracy of each architecture,

taking into account also the number of networks parameters. Figure 7.3

shows the 3D visualization of the comparison. The highest accuracy was

obtained using the basic VGG16. However, the latter network requires a lot

of computational effort due the considerably great number of parameters, as

it is possible to see analyzing Figure 7.2 (b). Quite the contrary, the proposed

SSPQDD architecture does not require that much of memory space, and it

is capable to achieve remarkably high accuracy despite a substantially lower

number of parameters. Investigating more in detail the results obtained for

every PQD under analysis, the different architectures show good results for

each disturbance except for the transient and the normal condition. The

VGG16 represents the exception since it is capable to found most of the

transients even better than the proposed network. This is the reason why it

has been chosen for the base network of the SSPQDD. The problem with the

VGG16 is that it fails to identify where the disturbances are in the window

frame.
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Table 7.1 Comparison of different state of the art architectures

Normal Sag Swell Harm Trans Notch Interrupt

Darknet

Precision 0 95.9 96.3 100 41.9 92.9 98.3

Recall 0 98.3 97.7 56.7 90.3 100 97.7

F1-Score 0 97.08 96.99 72.37 57.24 96.32 97.99

AUC 0.5 1 0.9821 0.9412 0.941 0.9977 0.9985

Alexnet

Precision 0 99.9 100 100 49.8 100 100

Recall 100 100 100 100 100 100 100

F1-Score 0 99.95 100 100 66.48 100 100

AUC 0.5 0.999 0.9993 1 0.9149 1 0.9995

Resnet

Precision 0 100 99 79.5 100 100 87.6

Recall 0 100 100 100 42.7 100 100

F1-Score 0 100 99.49 88.57 59.85 100 93.5

AUC 0.5 1 0.995 0.8977 0.8866 1 0.9389

VGG-16

Precision 94.5 99.5 97.8 99.7 96.7 93.6 97.9

Recall 99.8 97.6 98.9 99.1 85.8 98.1 100

F1-Score 97.08 98.54 98.35 99.4 90.92 95.8 98.94

AUC 0.994 0.9847 0.9938 1 0.9286 0.9836 0.998

SSPQDD

Precision 100 100 100 100 75.7 100 100

Recall 80.6 100 100 100 100 100 100

F1-Score 89.26 100 100 100 86.17 100 100

AUC 1 0.9997 0.9996 0.9874 0.8678 0.9907 1

Table 7.1 shows the precision, recall, F1-score and the Area Under the

ROC (Receiver operating characteristic) curve (also known as AUC) of the

different architectures for each class of disturbance under consideration. For

the normal class or no disturbance DarkNet and ResNet gave a 0% result

due to their limited capabilities differentiating the normal from the tran-

sient. Similarly, also the AlexNet resulted in 0% Precision and 100% recall

for the normal class. On the other hand, the VGG16 and the SSPQDD re-

sulted in high precision, recall, F1-score (i.e., the harmonic mean between

precision and recall) and AUC for the normal class. Other than the nor-

mal class, each architecture gave good results, even if the VGG16 and the

proposed SSPQDD network provide the highest accuracy and the better re-

sults for each analyzed class. Overall, the VGG16 provide a total accuracy

of 97.04% while the proposed network reaches the 96.55%. Results using

training data also highlight how the proposed SSPQDD represent the only

available approach able to detect multiple disturbances with different dura-

tions and different locations in a single window frame. A visual summary of

this results are shown in Figure 7.1.
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(a)

(b)

Figure 7.1: (a) Precision comparison of deep learning architectures (b) Recall

comparison of deep learning architectures
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(a)

(b)

Figure 7.2: (a) Accuracy vs No. Layers (b) Accuracy vs No. of parameters
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Figure 7.3: 3D bubblechart of the deep learning architectures comparison

Figure 7.4 to 7.13 illustrates the results obtained using the simulated

dataset in case of two or more disturbances of different kinds and different

durations in the same window frame. The random signal illustrated in Figure

7.4 includes an small notch. The SSPQDD is the only one able to detect and

classify the disturbance, while DarkNet, resNet and VGG-16 can detect only

classify the window frame. The Darknet and the Resnet missclassified in this

example. In Figure 7.5 there is a small harmonic distortion followed by a

small interruption and a swell. The SSPQDD detected all three disturbances

and correctly classified them while the other deep learning architectures all

detected the swell except for the darknet that detected the harmonic distor-

tion. In Figure 7.6 the signal contains a small notch folled by a harmonic

distortion of 750 miliseconds. Once again the SSPQDD was successful at

detecting both disturbances while the other four architectures only detected

the harmonic distortion. In Figure 7.7 the SSPQDD made two missclassifi-

cations by classifying a sag and a swell while in the time frame there is only

a notch. All the other architecture correctly classified the notch. Figure 7.8

shows the SSPQDD detecting the small notch at the beginning of the time

frame followed by the successful detection and classification of the interrup-

tion while the Darknet only detected the notch and the VGG16 detected the

interruption. The other two architectures classified a transient. The next
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example shown in Figure 7.9, the disturbances on example shown in Figure

7.8 are switch. The SSPQDD detected and classified both while the other

architectures classified only the interruption. Figure 7.10 shows a time fram

with a harmonic distortion followed by a transient. The SSPQDD missclassi-

fied the harmonics and classified a notch and a sag but successfully detected

the transient while the only architecture to classified the harmonics was the

darknet while the others classified a swell. Figure 7.11 7.12 and 7.13 had

one disturbance in each time frame being a swell, harmonic and interruption

respectively. The SSPQDD detected and correctly classified all three. While

the other architectures were not always successful. The proposed SSPQDD

algorithm is the only one able to detect all the disturbance in a single win-

dow. The DarkNet identifies only the harmonics, while AlexNet, ResNet and

VGG-16 identify only the swell. This means that all the state-of-the-art net-

works used for comparison completely miss to identify a long interruption

of over 200 ms, which is not acceptable in almost every application. The

analysis in 7.2(a) 7.2(a) and 7.3 summarizes entirely the major contribu-

tions brought by the proposed algorithm and the research gap filled by the

SSPQDD. These figures highlight perfectly the most critical, powerful and

important feature of the approach, ensuring also levels of accuracy on the

single disturbance comparable with the most outstanding works available.



114 Results and Discussion

Figure 7.4: Result 1

Figure 7.5: Result 2
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Figure 7.6: Result 3

Figure 7.7: Result 4
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Figure 7.8: Result 5

Figure 7.9: Result 6
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Figure 7.10: Result 7

Figure 7.11: Result 8
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Figure 7.12: Result 9

Figure 7.13: Result 10
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Figure 7.14: Experimental Setup

Figure 7.15: Experimental Setup
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7.3 Conclusion

A simulated dataset of voltage signals containing different voltage distur-

bances has been generated using MATLAB Simulink as shown in Chapter 3

to train the proposed SSPQDD deep learning architecture. The simulated

dataset are generated using 8kHz with 30000 samples per window frame.

The dataset was augmented as explained in Chapter 6. The training of

the SSPQDD has been carried out following the guidelines presented in the

proposed Algorithm 1. To test the effectiveness and the contributions of

the proposed approach, the results obtained using the SSPQDD have been

compared with classical deep learning architectures which includes Dark-

Net, AlexNet, ResNet, and VGG16. The proposed SSPQDD has proven to

be superior to the other approaches in almost all aspects (including accuracy,

number of layers, computational complexity, and number of parameters). In

fact, other than being superior in performances, the SSPQDD has proven

to be efficient in terms of use of computational resources. This is due to

the lack of feed forward network that usually requires most of the compu-

tational effort. With that been said, the SSPQDD can be an outstanding

candidate for use in embedded electronics, where the amount of computa-

tional resources plays a significant role in the selection process of the DL

architecture. Experimental results prove that the SSPQDD can effectively

and efficiently detect and classify multiple voltage disturbances in a single

window frame. These disturbances varied in duration and intensity, and the

SSPQDD detected and classified each one of theme effectively. Quite the

contrary, the other methods available in literature fail to classy more than

one disturbance in a single window, missing to consider even long and major

disturbances.



Chapter 8

Experimental Setup and

Measurements

This chapter explains an implementation of the SSPQDD. The

experimental setup and measurements are presented. The main

goal of this chapter is to quantify the performance of an induc-

tive passive PQ filter. The experiment is done using an AC

programmable power source were PQDs are generated. The ex-

periments are done using linear loads, linear inductive loads,

and non linear loads. The data acquisition is done using the

Dewesoft. Section 1 presents an brief introduction. Section 2

presents the system identification procedure followed by Section 3

which clearly shows the experimental setup for these tests. Sec-

tion 4 shows the results with linear loads, inductive loads and

non linear loads where the SSPQDD algorithm detects and clas-

sifies the disturbances and calculates its PQ parameters susch

as Vrms,Irms, THDv, THDi, Real Power, Reactive Power, and

Apparent Power. Finally, Section 5 presents the conclusion.

8.1 Introduction

The purpose of this chapter is to show that the developed algorithm can

be used as a tool to automatically detect and classify power quality distur-

bances. In this work, this algorithm is used to characterize a Power Quality

Inductive Passive Filter (PQIPF). The goal is to measure the input and out-
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put of the filter in order to understand its behavior. The filter is connected

to an AC programmable voltage disturbance generator that is programmed

to generate different types of disturbances. The output is connected to lin-

ear and non linear loads. The goal of the algorithm is to detect and classify

the disturbances in the input and in the output to determine the filtering

capacity of the filter and evaluate it’s performance.

In order to perform this experiment and to quantify it’s performance,

an experimental test bench must be created. First, the test bench must

include an AC programmable voltage disturbance generator that is directly

connected to the PQIPF which is then connected to the load. The voltage

and currents are then measured in the input and at the output. The al-

gorithm then detects and classify each disturbance and calculates the PQ

parameters in each disturbance.

8.2 System Identification

The PQIPF is an inductive filter connected in a certain way that claims

to reduce the Total Harmonic Distortions (THD) and a the same time the

reactive power which corrects the power factor (pf). The experiment is

divided in two parts. First, the Programmable AC disturbance generator

will be connected to the filter which is then connected to a linear load. The

scope of this experiment is to study the effects of the PQIPF on simple

linear loads where it receives disturbances from the power source. The main

purpose of this is to use the algorithm to detect and classify disturbances in

voltages. The second part of the experiment is to connect motors and non

linear loads to the filter. The scope of this experiment is to study the effects

of the PQIPF on dynamic and non linear loads. Also to study the effects of

the PQIPF when the disturbances are produced from the loads. In this part,

the algorithm is used on voltages in order to detect and classify disturbances

and to calculate the PQ parameters on the disturbances in order to study

the effects of the filter. The experimental block diagram is shown in Figure

8.1.
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Figure 8.1: Experimental setup schematic

8.3 Experimental Setup

The experimental setup consist of the Amtek AC programmable power source

by California Instruments as the Programmable AC disturbance generator.

This is connected to the E-Wall from Energia Europa which is the Power

Quality filter. And finally to the loads. The linear loads are three heaters

which are basically resistive components. The non linear loads are composed

of AC pumps that simulate a water reserve. The Input and Output mea-

surements for each phase is measured using the Dewesoft measuring device.

The system schematics is shown in Figure 8.2.
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Figure 8.2: Experimental setup schematic

8.3.1 Disturbance Generator

The disturbance generator shown in Figure 8.3 is the Amtek AC programmable

source by California Instruments as said in the previous section. This is a

6kW up to 400 V and 8A for each phase. The Ametek AC programmable

power source can be programmed to generate disturbances using the soft-

ware shown in Figure 8.4 and Figure 8.5. Figure 8.4 shows the dashboard to

induce harmonic components into the signal and Figure 8.5 shows how the

disturbances are generated in sequence. The programmable AC source is able

to establish different disturbances with different time intervals. With this

equipment the Sag, Swell, Harmonics, Transients, Notchs and Interruptions

are programmed varying their amplituds and durations. For the harmonic

distortions, different harmonic components are determined. All disturbances

are programmed following the IEEE 1159 recommended practices standard.
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Figure 8.3: Ametek AC Programmable Source.

Figure 8.4: Ametek AC Programmable Source Software.

Figure 8.5: Ametek AC Programmable Source Software.
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8.3.2 Data Acquisition

The data acquisition instrument used in this experiment is the Dewesoft. The

Dewesfot Sirius XHS shown in Figure 8.6 is a multiple purpose measuring

instrument capable of a sampling frequency up to 15Mhz. The Dewesoft is

capable of measuring 4 voltages and 4 currents simultaneously. That means

that this device is capable of measuring phase 1,2,3 and neutral. At the same

time this device can measure currents of phase 1,2 and 3 using the Dewesoft

FluxGate transducers as shown in Figure 8.7. The Dewesoft is stacked with

a second one in order to measure the Input and Output simultaneously.

Figure 8.6: Dewesfot Sirius XHS
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Figure 8.7: Dewesfot FLuxGate

Transducers

Figure 8.8: FLuxGate Transducers

Setup

The voltages are measured from line to neutral at the input and out-

put of the PQIPF. The currents are measured using the Dewesoft FluxGate

Transducers as shown in Figure 8.8. The measurements recorder using the

Dewesoft Sirius XHS are shown in Figure 8.9. The first column of the mea-

surements are the inputs of voltage 1, current 1, voltage 2, current 2, voltage

3 and current 3 from top to bottom respectively. The second column of the

measurements are the outputs of voltage 1, current 1, voltage 2, current 2,

voltage 3 and current 3 from top to bottom respectively. On the panel on

the right, PQ parameters are calculated and shown. These include, voltage

and current RMS, THD and TDD. The Real Power, Reactive Power, and

Apparent Power are calculated but not shown on the Dewesoft measurment

panel.
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Figure 8.9: Dewesfot Sirius XHS

8.3.3 Power Quality Passive Filter

The object under study is the Power Quality Filter that claims to filter

disturbances and reduce cost caused by power quality disturbances by 4 %.

This filtering device is an inductive passive filter connected in series with

the loads. In theory,since it is connected in series with the loads, the input

and output voltages must remain the same. On the other hand, the filter

should reduce harmonic components of the input currents. The input and

output currents are to be passed through the algorithm in order to evaluate

the filtering capabilities of the inductive passive filter. The inductive passive

filter is shown in Figure 8.10.
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Figure 8.10: E-Wall

8.3.4 Loads

The Loads for the first part of the experiments are heating devices that

are resistive loads. This is done to analyze the voltage and currents of the

input and output of the inductive passive filter. The second part of the

experiment is to use the resistive loads with the induction motors and some

switching devices. For this part of the experiment, only the 3 phase voltages

are analyzed because the current becomes to distorted and the algorithm

was trained with a purely sinusoidal input. The Loads to be used are shown

in Figure 8.11.
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Figure 8.11: Linear Loads and Water

Pumps

Figure 8.12: Non Linear Lighting

Loads

Figure 8.13 shows the experimental setup. This figure shows the AC

programmable power source, the data acquisition device and the inductive

passive filter to characterize. The output is connected to the different loads

presented in Figures 8.11 and Figure 8.12 which is controlled by switches

installed on the panels.

Figure 8.14 shows the AC Programmable Power Source which is con-

nected to the input of the PQIPF which is connected to a three phase

switches for security reasons. The output which is also connected to switches

for security reasons is connected to the linear and non linear loads via the

blue cable shown. The loads are also controlled connected to switches to

control the loads used in the experiments. The input and output currents

are measured using the Dewesoft FluxGate transducers shown in Section

8.3.2
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Figure 8.13: Experimental Setup

Figure 8.14: FluxGate Sensor

Figure 8.15: Experimental Setup
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8.4 Experimental results

The experimental results were obtained by measuring the input and the

output of the of the passive inductive filter. With the programmable AC

power supply, disturbances were generated. These disturbances include the

sag, swell and harmonic disturbances. The algorithm was implemented in

the measurements obtained in order to detect and classify disturbances and

extract the PQ parameters in those regions. The experiment was conducted

using a linear loads and with inductive loads.

8.4.1 Results with Linear Load

In this test, sag disturbances were generated onto resistive linear loads in

order to observe the effectiveness of the inductive passive filter on sag dis-

turbances. The experiment was carried out by programming the AC pro-

grammable power source to generate sags disturbances with different du-

ration’s and amplitudes. The disturbances were Long disturbances with

1 second duration, medium disturbances with 300 milisecond, short distur-

bances with 150 milisecond, and micro disturbances with 10 milisecond. The

durations were combined with different amplitude with 5 %, 40 %, and 90

% amplitude from its nominal value.

In Figure 8.16, the input and output voltages where measured. The

SSPQDD was able to detect all disturbances according to the IEEE-1159

standard. Given the detected disturbances, the PQ parameters were calcu-

lated in order to calculate the loss given by each disturbance. As shown

in Figure 8.17, the results show that the Inductive passive filter drops the

Vrms by 5V in each instance. On the other hand, the current has a drop

of 2mA-5mA. The voltage THD remains almost constant on all instances

while a reduction in the current’s THD can be observed.

Figure 8.18, it is observed that the real power remains constant while a

substantial reduction in reactive power is observed. Given that, a reduction

in apparent power can also be appreciated.

In this test, swell disturbances were generated onto resistive linear loads

in order to observe the effectiveness of the inductive passive filter on swell

disturbances. Like the sag experiment, the experiment was carried out by

programming the AC programmable power source to generate swells dis-

turbances with different duration’s and amplitudes. The disturbances were

Long disturbances with 1 second duration, medium disturbances with 300
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Figure 8.16: Linear Load Detection of Sag and Interruption.

Figure 8.17: PQ Analysis, Vrms, Irms, THDv and THDi.
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Figure 8.18: PQ Analysis power measurments.

milisecond, short disturbances with 150 milisecond, and micro disturbances

with 10 milisecond. The durations were combined with different amplitude

with 110 %, 120 %, and 130 % amplitude from its nominal value.

In Figure 8.19, the input and output voltages where measured. The

SSPQDD was able to detect all disturbances according to the IEEE-1159

standard. In this experiment the algorithm made 4 missclassifications in

the first disturbance. The following disturbances, it successfully detected all

disturbances and classified a notch along the swell due to the rapid change

in voltage amplitude. Given the detected disturbances, the PQ parameters

were calculated in order to calculate the loss given by each disturbance. As

shown in Figure 8.20, the results show that the Inductive passive filter drops

the Vrms by 5V in each instance. On the other hand, the current has a drop

of 2mA-5mA. The voltage THD remains almost constant on all instances

while a substantial reduction in the current’s THD can be observed.

Figure 8.21, it is observed that the real power remains constant while a

substantial reduction in reactive power is observed. Given that, a reduction

in apparent power can also be appreciated.
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Figure 8.19: Linear Load Detection of Swell.

Figure 8.20: PQ Analysis, Vrms, Irms, THDv and THDi.
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Figure 8.21: PQ Analysis power measurments.

In this test, harmonic disturbances were generated into resistive linear

loads in order to observe the effectiveness of the inductive passive filter

on harmonic disturbances. Like the sag and swell experiment, the exper-

iment was carried out by programming the AC programmable power source

to generate harmonic disturbances with different duration’s and harmonic

components. The disturbances were Long disturbances with 1 second dura-

tion, medium disturbances with 300 milisecond, short disturbances with 150

milisecond, and micro disturbances with 10 milisecond. The durations were

combined with different harmonic components being:

� Harm 1 : 2nd → 50%

� Harm 2 : 10nd → 40%

� Harm 3 : 25nd → 30%

� Harm 4 : 30nd → 20%

� Harm 5 : 35nd → 2%
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� Harm 6 : 40nd → 2%

� Harm 7 : 45nd → 2%

� Harm 8 : 50nd → 2%

In Figure 8.22, the input and output voltages where measured. The

SSPQDD was able to detect all disturbances according to the IEEE-1159

standard. In this experiment the algorithm made some unexpected classifi-

cations. In the first harmonic distortion, the algorithm detected disturbances

that lasts milliseconds as shown in Figure 8.25. It successfully detected all

disturbances and classified swell, notch and transient along with the har-

monic due to the increase in voltage and the high frequency components

with short duration. Given the detected disturbances, the PQ parameters

were calculated in order to calculate the loss given by each disturbance. As

shown in Figure 8.23, the results show that the Inductive passive filter also

drops the Vrms by 5V in each instance as the sag and the swell. On the

other hand, the current has a drop of 1mA. The voltage THD remains

almost constant on all instances as well for the currents THD.

Figure 8.24, it is observed that the real power remains constant while a

substantial reduction in reactive power is observed. Given that, a reduction

in apparent power can also be appreciated.

8.4.2 Results with Inductive Loads

In this test, sag disturbances were generated onto resistive linear loads in

order to observe the effectiveness of the inductive passive filter on sag dis-

turbances. The experiment was carried out by programming the AC pro-

grammable power source to generate sags disturbances with different du-

ration’s and amplitudes. The disturbances were Long disturbances with

1 second duration, medium disturbances with 300 milisecond, short distur-

bances with 150 milisecond, and micro disturbances with 10 milisecond. The

durations were combined with different amplitude with 5 %, 40 %, and 90

% amplitude from its nominal value.

In Figure 8.26, the input and output voltages where measured. The

SSPQDD was able to detect all disturbances according to the IEEE-1159

standard. Given the detected disturbances, the PQ parameters were calcu-

lated in order to calculate the loss given by each disturbance. As shown

in Figure 8.27, the results show that the Inductive passive filter drops the
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Figure 8.22: Linear Load Detection of Harmonics and Transients.

Figure 8.23: PQ Analysis, Vrms, Irms, THDv and THDi.
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Figure 8.24: PQ Analysis power measurments.

Vrms by 5V in each instance. On the other hand, the current has a drop

of 2mA-5mA. The voltage THD remains almost constant on all instances

while a reduction in the current’s THD can be observed.

Figure 8.28, it is observed that the real power remains constant while a

substantial reduction in reactive power is observed. Given that, a reduction

in apparent power can also be appreciated.

In this test, swell disturbances were generated onto resistive linear loads

in order to observe the effectiveness of the inductive passive filter on swell

disturbances. Like the sag experiment, the experiment was carried out by

programming the AC programmable power source to generate swells dis-

turbances with different duration’s and amplitudes. The disturbances were

Long disturbances with 1 second duration, medium disturbances with 300

milisecond, short disturbances with 150 milisecond, and micro disturbances

with 10 milisecond. The durations were combined with different amplitude

with 110 %, 120 %, and 130 % amplitude from its nominal value.

In Figure 8.29, the input and output voltages where measured. The

SSPQDD was able to detect all disturbances according to the IEEE-1159
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Figure 8.25: Transient distortion zoom

Figure 8.26: Inductive Load Detection of Sag and Interruption.
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Figure 8.27: PQ Analysis, Vrms, Irms, THDv and THDi.

Figure 8.28: PQ Analysis power measurments.
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Figure 8.29: Inductive Load Detection of Swell.

standard. In this experiment the algorithm made 6 missclassifications in the

first and fourth disturbance where it classified a sag. The following distur-

bances, it successfully detected all disturbances and classified a notch and a

harmonic along with the swell due to the rapid change in voltage amplitude.

Given the detected disturbances, the PQ parameters were calculated in order

to calculate the loss given by each disturbance. As shown in Figure 8.30,

the results show that the Inductive passive filter drops the Vrms by 5V in

each instance. On the other hand, the current has a drop of 2mA-5mA. The

voltage THD remains almost constant on all instances while a substantial

reduction in the current’s THD can be observed.

Figure 8.31, it is observed that the real power remains constant while a

substantial reduction in reactive power is observed. Given that, a reduction

in apparent power can also be appreciated.

In this test, swell disturbances were generated onto the inductive loads in

order to observe the effectiveness of the inductive passive filter on harmonic

disturbances. Like the sag and swell experiment, the experiment was car-

ried out by programming the AC programmable power source to generate
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Figure 8.30: PQ Analysis, Vrms, Irms, THDv and THDi.

Figure 8.31: PQ Analysis power measurments.
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harmonic disturbances with different duration’s and harmonic components.

The disturbances were Long disturbances with 1 second duration, medium

disturbances with 300 milisecond, short disturbances with 150 milisecond,

and micro disturbances with 10 milisecond. The durations were combined

with different harmonic components being:

� Harm 1 : 2nd → 50%

� Harm 2 : 10nd → 40%

� Harm 3 : 25nd → 30%

� Harm 4 : 30nd → 20%

� Harm 5 : 35nd → 2%

� Harm 6 : 40nd → 2%

� Harm 7 : 45nd → 2%

� Harm 8 : 50nd → 2%

In Figure 8.32, the input and output voltages where measured. The

SSPQDD was able to detect all disturbances according to the IEEE-1159

standard. In this experiment the algorithm made some unexpected clas-

sifications. In the first harmonic distortion, the algorithm detected micro

interruptions as shown in Figure. It successfully detected all disturbances

and classified swell, notch and transient along with the harmonic due to the

increase in voltage and the high frequency components with short duration.

Given the detected disturbances, the PQ parameters were calculated in order

to calculate the loss given by each disturbance. As shown in Figure 8.33, the

results show that the Inductive passive filter also drops the Vrms by 5V in

each instance as the sag and the swell. On the other hand, the current has

a drop of 1mA. The voltage THD remains almost constant on all instances

as well for the currents THD.

Figure 8.34, it is observed that the real power remains constant while a

substantial reduction in reactive power is observed. Given that, a reduction

in apparent power can also be appreciated.
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Figure 8.32: Inductive Load Detection of Harmonics and Transients.

Figure 8.33: PQ Analysis, Vrms, Irms, THDv and THDi.
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Figure 8.34: PQ Analysis power measurments.

8.5 Conclusion

This chapter discusses the use of the SSPQDD as a tool for system identifi-

cation. This algorithm is used to detect and classify PQDs at the input and

at the output of an inductive passive filter used to filter PQD. The goal is to

quantify the performance of the PQD filter and measure the efficiency. For

this, an experiment was designed as shown in Section 8.3. An experimental

testbench was created in which the a programmable AC power source which

is able to create PQD is connected to the inductive passive filter connected

to linear, inductive linear and non linear loads. The input and the output

was measured with a sampling rate of 8kHz.

Results shown a reduction in reactive power which should correct the

power fact in each experiment made. Also, it proved to have significant

improvement on the THD in the current. This is due to the fact that the

inductive passive filter is connected in series with the loads. So the im-

provement should be appreciated in the current output. On average, the

improvement in THD for the current is of 3% which is significant for the
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lifespan of electrical and electronic components. It can also be noted that

the voltage signal does not show improvements other than a voltage drop of

5 V. Finally, the difference between the input and output of the apparent

power is caused by the reduction of reactive power.
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Chapter 9

Conclusion

9.1 Summary of contribution

This work, studies machine learning and deep learning algorithms for de-

tection and classification of Power Quality Disturbances. Different architec-

tures were tested including the LSTM, CNN and CNN-LSTM. All of this

algorithms have shown to be effective and efficient at detecting and classify-

ing PQD. Feature extraction techniques were also implemented to enhance

the classification capabilities of the CNN.

Since the hallmark of the CNN is image classification, the STFT was

implemented to convert the time series signal to a time-frequency 2D matrix.

This has shown a small improvement to the output results. Due to the fact

that the CNN uses convolutions in each layer that extract the frequency and

magnitude components of the input signals, it is used as the base of the

SSPQDD algorithm.

The SSPQDD was developed for the detection and classification of PQD.

The SSPQDD uses a VGG16 CNN architecture for the feature extraction

part and layers were then added for the detection and classification of PQD.

This PQD detection and classification algorithm was developed, trained and

tested using object detection algorithms like the SSD and YOLO as inspira-

tion. This algorithm was compared with high performance algorithms as the

VGG16, Alexnet, Darknet and Resnet. This algorithm outperforms these

top tear algorithms in this application due to the fact of the nature of the

architectures. The SSPQDD algorithm uses filters that extract 16 samples

and is able to detect and classify transient disturbances. A visual compar-
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ison was made with these algorithms in which these top tear architectures

fail to detect and classify multiple disturbance in a single time window.

This algorithm was used as a tool to detect and classify PQD in order

to quantify the performance of an inductive passive filter. The purpose of

this experiment is to use this algorithm to detect the disturbance at the

input and output of the filter and calculate its PQ parameters on each of

the disturbances detected in order to calculate the difference of the input

and output of the PQ parameters. The algorithm was able to detect and

classify most of the disturbances generated by the AC programmabe power

source. Some were misclassifications and some were not able to detect. The

overall results were that the algorithm was able to detect and classify the

disturbances and the PQ paramenters were calculated in the time windows

detected by the algorithm.

9.2 Directions for future work

For future work, the algorithm is to be trained with a more wide spectrum

of disturbances in order to increase the precision and recall of the SSPQDD.

This algorithm will be implemented in a cloud based real time PQ meter in

which it will be deployed continuously in a real time IoT device. It will be

monitored continuously and studied in order to prevent miss classifications

due to data drifting.
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Appendix

This appendix is related to the Single Shot Power Quality Disturbance De-

tector, previously presented in Chapter 6.

A.1 Detection and Classification of Power Qual-

ity Disturbances

This Section contains the validation of the training procedure for the SSPQDD.

The data used was simulated using the simulations presented in Chapter 3.

The validation was made using the disturbances studied containing different

durations and in different positions in the window frame.

Figure A.1: Transient Disturbance

151
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Figure A.2: Harmonic Disturbance

Figure A.3: Notch Disturbance

Figure A.4: Interruption Disturbance
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Figure A.5: Notch Disturbance

Figure A.6: Transient Disturbance

Figure A.7: Swell Disturbance
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Figure A.8: Notch Disturbance

Figure A.9: Interruption Disturbance

Figure A.10: Swell Disturbance
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Figure A.11: Sag Disturbance

Figure A.12: Interruption Disturbance

A.2 Multiple Disturbance in Window Frame

This Section contains the validation of the SSPQDD with multiple distur-

bances in a window frame. The signals were generated randomly inserting

different disturbances used in the training phase.
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Figure A.13: Swell and Har-

monic Disturbance
Figure A.14: Swell Distur-

bance

Figure A.15: Interruption and

Harmonics Disturbance

Figure A.16: Transient and

Harmonics Disturbance
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Figure A.17: Swell, Sag and

Interruption Disturbance Figure A.18: Sagl Disturbance

Figure A.19: Harmonics and

Swell Disturbance

Figure A.20: Interruption and

Swell Disturbance
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Figure A.21: Sag and Notch

Disturbance

Figure A.22: Swell and Sag

Disturbance

Figure A.23: Sag and Harmon-

ics Disturbance
Figure A.24: Transient and

Swell Disturbance
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Publications

This research activity has led to several publications in international journals

and conferences. These are summarized below.

International Journals

1. C. Iturrino-Garćıa et al., ”An Innovative Single Shot Power Quality Distur-

bance Detector Algorithm,” in IEEE Transactions on Instrumentation and

Measurement, vol. 71, pp. 1-10, 2022, Art no. 2517210.

2. Talluri, G.; Lozito, G.M.; Grasso, F.; Iturrino Garćıa, C.; Luchetta, A. Op-

timal Battery Energy Storage System Scheduling within Renewable Energy

Communities. Energies 2021, 14, 8480. https://doi.org/10.3390/en14248480

3. Garćıa, C.I.; Grasso, F.; Luchetta, A.; Piccirilli, M.C.; Paolucci, L.; Talluri,

G. A Comparison of Power Quality Disturbance Detection and Classification

Methods Using CNN, LSTM and CNN-LSTM. Appl. Sci. 2020, 10, 6755.

Submitted

1. C. Iturrino-Garćıa et al., Power Quality Analysis Based on Machine Learning

Methods for Low Voltage Electrical Distribution Lines, SSRN Electron. J.,

2022. “Hopefully the paper with this title will be accepted”

International Conferences and Workshops

1. M. Bindi et al., “Classification of Power Quality disturbances using Multi-

Valued Neural Networks and Convolutional Neural Networks,” 2022 Inter-

national Joint Conference on Neural Networks (IJCNN), 2022, pp. 01-08,

doi: 10.1109/IJCNN55064.2022.9892536.
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2. F. Grasso, C. I. Garcia, G. M. Lozito and G. Talluri, “Artificial Load Pro-

files and PV Generation in Renewable Energy Communities Using Gener-

ative Adversarial Networks,” 2022 IEEE 21st Mediterranean Electrotech-

nical Conference (MELECON), 2022, pp. 709-714, doi: 10.1109/MELE-

CON53508.2022.9843062.

3. G. Patrizi et al., “Reliability Prediction of an innovative Power Quality Me-

ter,” 2022 IEEE International Workshop on Metrology for Industry 4.0 and

IoT (MetroInd4.0 and IoT), 2022, pp. 195-200, doi: 10.1109/MetroInd4.

0IoT54413.2022.9831774.

4. M. Bindi et al., ”Comparison Between PI and Neural Network Controller

for Dual Active Bridge Converter,” 2021 IEEE 15th International Confer-

ence on Compatibility, Power Electronics and Power Engineering (CPE-

POWERENG), 2021, pp. 1-6.

5. C. Iturrino, F. X. Arias, H. Sierra and E. Arzuaga, “Single-Shot Multispec-

tral Image Acquisition for Low-Altitude Remote Sensing using Light Diffrac-

tion Techniques,” 2019 10th Workshop on Hyperspectral Imaging and Signal

Processing: Evolution in Remote Sensing (WHISPERS), 2019, pp. 1-5, doi:

10.1109/WHISPERS.2019.8920879.
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