
EURO Journal on Computational Optimization 10 (2022) 100043
Contents lists available at ScienceDirect

EURO Journal on Computational
Optimization

www.elsevier.com/locate/ejco

Trust-region algorithms: Probabilistic complexity

and intrinsic noise with applications to subsampling

techniques

S. Bellavia a,∗,1, G. Gurioli b,1, B. Morini a,1, Ph.L. Toint c

a Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Italy
b Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”,
ISTI-CNR, Pisa, Italy
c Namur Center for Complex Systems (naXys), University of Namur, 61, rue de
Bruxelles, B-5000 Namur, Belgium

a r t i c l e i n f o a b s t r a c t

Keywords:
Evaluation complexity
Trust-region methods
Inexact functions and derivatives
Probabilistic analysis
Finite-sum optimization
Subsampling methods

A trust-region algorithm is presented for finding approximate
minimizers of smooth unconstrained functions whose values
and derivatives are subject to random noise. It is shown
that, under suitable probabilistic assumptions, the new
method finds (in expectation) an ε-approximate minimizer
of arbitrary order q ≥ 1 in at most O(ε−(q+1)) inexact
evaluations of the function and its derivatives, providing the
first such result for general optimality orders. The impact
of intrinsic noise limiting the validity of the assumptions is
also discussed and it is shown that difficulties are unlikely to
occur in the first-order version of the algorithm for sufficiently
large gradients. Conversely, should these assumptions fail for
specific realizations, then “degraded” optimality guarantees
are shown to hold when failure occurs. These conclusions are
then discussed and illustrated in the context of subsampling
methods for finite-sum optimization.

* Corresponding author.
E-mail addresses: stefania.bellavia@unifi.it (S. Bellavia), gianmarco.gurioli@isti.cnr.it (G. Gurioli),

benedetta.morini@unifi.it (B. Morini), philippe.toint@unamur.be (Ph.L. Toint).
1 Member of the INdAM Research Group GNCS.
https://doi.org/10.1016/j.ejco.2022.100043
2192-4406/© 2022 The Author(s). Published by Elsevier Ltd on behalf of Association of European
Operational Research Societies (EURO). This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ejco.2022.100043
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ejco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejco.2022.100043&domain=pdf
mailto:stefania.bellavia@unifi.it
mailto:gianmarco.gurioli@isti.cnr.it
mailto:benedetta.morini@unifi.it
mailto:philippe.toint@unamur.be
https://doi.org/10.1016/j.ejco.2022.100043
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
© 2022 The Author(s). Published by Elsevier Ltd on behalf
of Association of European Operational Research Societies

(EURO). This is an open access article under the CC
BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

This paper is concerned with trust-region methods for solving the unconstrained op-
timization problem

min
x∈Rn

f(x), f : Rn → R, (1.1)

where we assume that the values of the objective function f and its derivatives are com-
puted subject to random noise. Our objective is twofold. Firstly, we introduce a version
of the deterministic method proposed in [10] which is able to handle the random context
and provide, under reasonable probabilistic assumptions, a sharp evaluation complexity
bound (in expectation) for arbitrary optimality order. Secondly, we investigate the effect
of intrinsic noise (that is noise whose level cannot be assumed to vanish) on a first-order
version of our algorithm and prove “degraded” optimality, should this noise limit the
validity of our assumptions. The new results are then detailed and illustrated in the
framework of finite-sum minimization using subsampling.

Minimization algorithms using adaptive steplength and allowing for random noise in
the objective function or derivatives’ evaluations have already generated a significant lit-
erature (e.g. [1–3,6,7,13,16]). We focus here on trust-region methods, which are methods
in which a trial step is computed by approximately minimizing a model of the objective
function in a “trust region” where this model is deemed sufficiently accurate. The trial
step is then accepted or rejected depending on whether a sufficient improvement in objec-
tive function value predicted by the model is obtained or not, the radius of trust-region
being then reduced in the latter case. We refer the reader to [15] for an in-depth coverage
of this class of algorithms and to [17] for a more recent survey. Trust-region methods
involving stochastic errors in function/derivatives values were considered in particular in
[1,12] and [7,13], the latter being the only methods (to the author’s knowledge) handling
random perturbations in both the objective function and its derivatives. The complex-
ity analysis of the STORM (STochastic Optimization with Random Models) algorithm
described in [7,13] is based on supermartingales and makes probabilistic assumptions
on the accuracy of these evaluations which become tighter when the trust-region radius
becomes small. It also hinges on the definition of a monotonically decreasing “merit
function” associated with the stochastic process corresponding to the algorithm. The
method proposed in this paper can be viewed as an alternative in the same context,
but differs from the STORM approach in several aspects. The first is that the method
discussed here uses a model whose degree is chosen adaptively at each iteration, requir-

http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 3
ing the (noisy) evaluation of higher derivatives only when necessary. The second is that
its scope is not limited to searching for first- and second-order approximate minimizers,
but is capable of computing them to arbitrary optimality order. The third is that the
probabilistic accuracy conditions on the derivatives’ estimations no longer depend on the
trust-region radius, but rather on the predicted reduction in objective function values,
which may be less sensitive to problem conditioning. Finally, its evaluation complexity
analysis makes no use of a merit function of the type used in [7].

In [4], the impact of intrinsic random noise on the evaluation complexity of a deter-
ministic “noise-aware” trust-region algorithm for unconstrained nonlinear optimization
was investigated and contrasted with that of an inexact version where noise is fully con-
trollable. While such results cover some practical occurrences, including noise due to
floating point computation, the current paper considers the question in the more general
probabilistic framework.

Even if the analysis presented below does not depend in any way on the choice of
the optimality order q, the authors are well aware that, while requests for optimality of
orders q ∈ {1, 2} lead to practical, implementable algorithms, this may no longer be the
case for q > 2. For high orders, the methods discussed in the paper therefore constitute
an “idealized” setting (in which complicated subproblems can be approximately solved
without affecting the evaluation complexity) and thus indicate the limits of achievable
results.

The paper is organized as follows. After introducing the new stochastic trust-region
algorithm in Section 2, its evaluation complexity is provided in the main Theorem 3.7 on
page 22. Section 4 is then devoted to an in-depth discussion of the impact of noise on the
first-order instantiation of the algorithm, with a particular emphasis on the case where
noise is generated by subsampling in finite-sum minimization context. Conclusions and
perspectives are finally proposed in Section 5. Because our contribution borrows ideas
from [3], themselves being partly inspired by [12], repeating some material from these
sources is necessary to keep our argument understandable. We have however done our
best to limit this repetition as much as possible.

Basic notations. Unless otherwise specified, ‖ · ‖ denotes the standard Euclidean norm
for vectors and matrices. For a general symmetric tensor S of order p, we define

‖S‖[p]
def= max

‖v‖=1
|S[v]p| = max

‖v1‖=···=‖vp‖=1
|S[v1, . . . , vp]|

the induced Euclidean norm. We also denote by ∇j
xf(x) the j-th order derivative tensor

of f evaluated at x and note that such a tensor is always symmetric for any j ≥ 2. ∇0
xf(x)

is a synonym for f(x). �α� denotes the smallest integer not smaller than α. Moreover,
given a set B, |B| denotes its cardinality, 1B refers to its indicator function and Bc

indicates its complement. All stochastic quantities live in a probability space denoted by
(Ω, A, P r) with the probability measure P r and the σ-algebra A containing subsets of Ω.

4 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
We never explicitly define Ω, but specify it through random variables. P r[event] finally
denotes the probability of an event and E[X] the expectation of a random variable X.

2. A trust-region minimization method for problems with randomly perturbed
function values and derivatives

We make the following assumptions on the optimization problem (1.1).

AS.1 The function f is q-times continuously differentiable in Rn, for some q ≥ 1. More-
over, its j-th order derivative tensor is Lipschitz continuous for j ∈ {1, . . . , q}
in the sense that, for each j ∈ {1, . . . , q}, there exists a constant ϑf,j ≥ 0 such
that, for all x, y ∈ Rn,

‖∇j
xf(x) −∇j

xf(y)‖ ≤ ϑf,j‖x− y‖. (2.1)

AS.2 f is bounded below in Rn, that is there exists a constant flow such that f(x) ≥
flow for all x ∈ Rn.

AS.2 ensures that the minimization problem (1.1) is well-posed. AS.1 is a standard
assumption in evaluation complexity analysis.2 It is important because we consider algo-
rithms that are able to exploit all available derivatives of f and, as in many minimization
methods, our approach is based on using the Taylor expansions (now of degree j for
j ∈ {1, . . . , q}) given by

tf,j(x, s)
def= f(x) +

j∑
�=1

1
�!∇

�
xf(x)[s]�. (2.2)

AS.1 then has the following crucial consequence on the quantity f(x + s) − tf,j(x, s).

Lemma 2.1. Suppose that AS.1 holds. Then for all x, s ∈ Rn,

|f(x + s) − tf,j(x, s)| ≤
ϑf,j

(j + 1)! ‖s‖
j+1. (2.3)

Proof. See [9, Lemma 2.1] with β = 1. �
2 It is well-known that requesting (2.1) to hold for all x, y ∈ Rn is strong. The weakest form of AS.1 which

we could use in what follows is to require (2.1) to hold for all x = xk (the iterates of the minimization
algorithm we are about to describe) and all y = xk + ξsk (where sk is the associated step and ξ is arbitrary
in [0,1]). However, ensuring this condition a priori, although maybe possible for specific applications, is
hard in general, especially for a non-monotone algorithm with a random element.

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 5
At a given iterate xk of our algorithm, we will be interested in finding a step s ∈ Rn

which makes the Taylor decrements

Δtf,j(xk, s)
def= f(xk) − tf,j(xk, s) = tf,j(xk, 0) − tf,j(xk, s) (2.4)

large (note that Δtf,j(x, s) is independent of f(x)). When this is possible, we anticipate
from the approximating properties of the Taylor expansion that some significant decrease
is also possible in f . Conversely, if Δtf,j(x, s) cannot be made large in a neighborhood
of x, we must be close to an approximate minimizer. More formally, we define, for some
θ ∈ (0, 1] and some optimality radius δ ∈ (0, θ], the measure

φδ
f,j(x) = max

‖d‖≤δ
Δtf,j(x, d), (2.5)

that is the maximal decrease in tf,j(x, d) achievable in a ball of radius δ centered at
x. (The practical purpose of introducing θ is to avoid unnecessary computations, as
discussed below.) We then define x to be a q-th order (ε, δ)-approximate minimizer (for
some accuracy requests ε ∈ (0, 1]q) if and only if

φδ
f,j(x) ≤ εj

δj

j! for j ∈ {1, . . . , q}, (2.6)

(a vector d solving the optimization problem defining φδ
f,j(x) in (2.5) is called an opti-

mality displacement) [8,10]. This notion is coherent with standard optimality measures
for low orders3 and has the advantage of being well-defined and continuous in x for every
order. Note that φδ

f,j(x) is always non-negative. A more complete motivation for using
φδ
f,j(x) is given in Section 12.1.3 of [11].
This paper is concerned with the case where the values of the objective function f and

of its derivatives ∇j
xf are subject to random noise and can only be computed inexactly

(our assumptions on random noise will be detailed below). Our notational convention

will be to denote inexact quantities with an overbar, so f(x, ξ) and ∇j
xf(x, ξ) denote

inexact values of f(x) and ∇j
xf(x), where ξ is a random variable causing inexactness.

Thus (2.2) and (2.4) are unavailable, and we have to consider

tf,j(xk, s, ξ)
def= f(xk, ξ) +

j∑
�=1

1
�!∇

�
xf(xk, ξ)[s]�

and the associated decrement

Δtf,j(x, sk, ξ)
def= tf,j(xk, 0, ξ) − tf,j(xk, sk, ξ) = −

j∑
�=1

1
�!∇

�
xf(xk, ξ)[s]� (2.7)

3 It is easy to verify that, irrespective of δ,(2.6) holds for j = 1 if and only if ‖∇1
xf(x)‖ ≤ ε1 and that, if

‖∇1
xf(x)‖ = 0, λmin[∇2

xf(x)] ≥ −ε2 if and only if φδ
f,2(x) ≤ 1

2
ε2δ

2.

6 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
instead. For simplicity, we will often omit to mention the dependence of inexact values
on the random variable ξ in what follows, so (2.7) is rewritten as

Δtf,j(x, sk)
def= tf,j(xk, 0) − tf,j(xk, sk) = −

j∑
�=1

1
�!∇

�
xf(xk)[s]�. (2.8)

This in turn would require that we measure optimality using

φ
δ

f,j(x) def= max
‖d‖≤δ

Δtf,j(x, d) (2.9)

instead of (2.5). However, computing this exact global maximizer may be costly, so we
choose to replace the computation of (2.9) by an approximation, that is with the com-
putation of an optimality displacement d with ‖d‖ ≤ δ such that ςφδ

f,j(x) ≤ Δtf,j(x, d)
for some constant ς ∈ (0, 1].

We can now present the Trust-Region with Noisy Evaluations (TRqNE) algorithm,
see on the next page. The worst-case complexity result is given in Theorem 3.7 on
page 22 and shows that, under suitable probabilistic assumptions, the TRqNE algorithm
finds (in expectation) an (ε, δ)-approximate minimizer of arbitrary order q ≥ 1 in at
most O(ε−(q+1)) inexact evaluations of the function and its derivatives. In addition to
the standard requirements AS.1–AS.2, the proof of such a complexity result also needs a
third assumption (AS.3 in the next section), assuming that inaccurate models or function
evaluations do not occur too frequently and that, on successful iterations, the inexactness
on function values still allows, on average, the decrease of the objective function. The
trust region radius at iteration k is denoted by rk instead of the standard notation Δk.

A feature of the TRqNE algorithm is that it uses an adaptive strategy (in Step 1)
to choose the model’s degree in view of the desired accuracy and optimality order.
Indeed, the model of the objective function used to compute the step is tf,jk(xk, s),
whose degree jk can vary from an iteration to the other, depending on the “order of
(inexact) optimality” achieved at xk (as determined by Step 1). Also observe that, if
the trust-region radius is small (that is rk ≤ θ), the optimality displacement dk,jk is an
approximate global minimizer of the model within the trust region, which justifies the
choice sk = dk,jk in this case. If rk > θ, the step computation is allowed to be fairly
approximate as the only requirement for a step in the trust region is (2.13). This can be
interpreted as a generalization of the familiar notions of “Cauchy” and “eigen” points (see
[15, Chapter 6]). In addition, note that, while nothing guarantees that f(xk) ≥ f(xk+1),
the mechanism of the algorithm ensures that f(xk) ≥ f(xk+1).

The TRqNE algorithm generates a random process. Randomness occurs because of the
random noise present in the Taylor decreases and objective function values, the former
resulting itself from the randomly perturbed derivatives values and, as the algorithm
proceeds, from the random realizations of the iterates xk and steps sk. In the following
analysis, uppercase letters denote random quantities, while lowercase ones denote real-
izations of these random quantities. Thus, given ω ∈ Ω, xk = Xk(ω), gk = Gk(ω), etc.

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 7
Algorithm 2.1. The TRqNE algorithm.

Step 0: Initialization. A criticality order q, a starting point x0 and accuracy levels ε ∈ (0, 1)q are given.
For a given constant η ∈ (0, 1), define

εmin
def= min

j∈{1,..,q}
εj and ν

def= min
[

1
2
η, 1

4
(1 − η)

]
. (2.10)

The constants θ ∈ [εmin, 1], ς ∈ (0, 1], γ > 1, rmax ≥ 1 and an initial trust-region radius
r0 ∈ (εmin, rmax] are also given. Set k = 0.

Step 1: Derivatives estimation. Set δk = min[rk, θ].
For j = 1, . . . , q,
1. Compute derivatives’ estimates ∇j

xf(xk) and find an optimality displacement dk,j with
‖dk,j‖ ≤ δk such that

ςφ
δk

f,j(xk) ≤ Δtf,j(xk, dk,j). (2.11)

2. If

Δtf,j(xk, dk,j) >

(
ςεj

1 + ν

)
δjk
j!

, (2.12)

go to Step 2 with jk = j.
Set jk = q.

Step 2: Step computation. If rk = δk, set sk = dk,jk
and Δtf,j(xk, sk) = Δtf,j(xk, dk,jk

). Otherwise,
compute a step sk such that ‖sk‖ ≤ rk and

Δtf,j(xk, sk) ≥ Δtf,j(xk, dk,jk
). (2.13)

Step 3: Function decrease estimation. Compute the estimate f(xk) − f(xk + sk) of f(xk) − f(xk + sk).
Step 4: Test of acceptance. Compute

ρk =
f(xk) − f(xk + sk)

Δtf,j(xk, sk)
. (2.14)

If ρk ≥ η (successful iteration), then set xk+1 = xk + sk; otherwise (unsuccessful iteration) set
xk+1 = xk.

Step 5: Trust-region radius update. Set

rk+1 =
{ 1

γ rk, if ρk < η,

min[rmax, γrk], if ρk ≥ η,

Increment k by one and go to Step 1.

In particular, we distinguish

• Δtf,j(x, s), the value at a (deterministic) x, s of the exact Taylor decrement, that is
of the Taylor decrement using the exact values of its derivatives at x;

• Δtf,j(x, s) = Δtf,j(x, s, ξ), the value at a (deterministic) x, s of an inexact Taylor
decrement, that is of a Taylor decrement using the inexact values of its derivatives
(at x) resulting from the realization of random noise;

8 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
• Δtf,j(X, S), the random variable corresponding to the exact Taylor decrement taken
at the random variables X, S;

• ΔTf,j(X, S), the random variable giving the value of the Taylor decrement using
randomly perturbed derivatives, taken at the random variables X, S.

Analogously, F 0
k

def= F (Xk) and F s
k

def= F (Xk+Sk) denote the random variables associated
with the estimates of f(Xk) and f(Xk+Sk), with their realizations f0

k = f̄(xk) = f̄(xk, ξ)
and fs

k = f̄(xk+sk) = f̄(xk+sk, ξ). Similarly, the iterates Xk, as well as the trust-region
radiuses Rk, the indices Jk, the optimality radiuses Δk, displacements Dk,j and the steps
Sk are random variables while xk, rk, jk, δk, dk,j , and sk denote their realizations. Hence,
the TRqNE algorithm generates the random process

{Xk, Rk,Mk, Jk,Δk, {Dk,j}Jk
j=1, Sk, Fk} (2.15)

in which X0 = x0 (the initial guess) and R0 = r0 (the initial trust-region radius) are
deterministic quantities, and where

Mk = {∇1
xf(Xk), . . . ,∇jk

x f(Xk)} and Fk = {F (Xk), F (Xk + Sk)}.

2.1. The probabilistic setting

We now state our probabilistic assumptions on the TRqNE algorithm. For k ≥ 0, our
assumption on the past is formalized by considering Ak−1 the σ-algebra induced by the
random variables M0, M1,..., Mk−1 and F 0

0 , F s
0 , F 0

1 , F s
1 , ..., F 0

k−1, F s
k−1 and let Ak−1/2

be that induced by M0, M1,..., Mk and F 0
0 , F s

0 , ..., F 0
k−1, F s

k−1, with A−1 = σ(x0).
We first define an event ensuring that the model is accurate enough at iteration k. At

the end of Step 2 of this iteration and given Jk ∈ {1, . . . , q}, we now define,

M(1)
k,j =

{
φΔk

f,j (Xk) ≤
(

1 + ν

ς

)
ΔTf,j(Xk, Dk,j)

}
(j ∈ {1, . . . , Jk}),

M(2)
k = {(1 − ν)ΔTf,Jk

(Xk, Sk) ≤ Δtf,Jk
(Xk, Sk) ≤ (1 + ν)ΔTf,Jk

(Xk, Sk)} ,

Mk =

⎛⎝ ⋂
j∈{1,...,Jk}

M(1)
k,j

⎞⎠ ∩M(2)
k . (2.16)

The event M(1)
k,j occurs when the j-th order optimality measure (j ≤ jk) at iteration

k is meaningful, while M(2)
k occurs when this is the case for the model decrease. At

first sight, these events may seem only vaguely related to the accuracy of the function’s
derivatives but a closer examination gives the following sufficient condition for Mk to
happen.

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 9

Lemma 2.2. At iteration k of any realization, the inequalities defining the event Mk are
satisfied if, for j ∈ {1, . . . , jk} and � ∈ {1, . . . , jk}∣∣∣(∇�

xf(xk) −∇�
xf(xk)

)
[sk]�

∣∣∣ ≤ ν

2Δtf,jk(xk, sk) (2.17)

and ∣∣∣(∇�
xf(xk) −∇�

xf(xk)
)

[d̂k,j]�
∣∣∣ ≤ ν

2Δtf,j(xk, d̂k,j), (2.18)

where

d̂k,j = arg max
‖d‖≤δk

Δtf,j(xk, d). (2.19)

Proof. If (2.18) holds, we have that, for every j ∈ {1, . . . , jk} and vk ∈ {d̂k,1, . . . , d̂k,j},
with d̂k,�, � = 1, . . . , j, given in (2.19),

|Δtf,j(xk, vk) − Δtf,j(xk, vk)| ≤
j∑

�=1

1
�!

∣∣∣(∇�
xf(xk) −∇�

xf(xk)
)

[vk]�
∣∣∣

≤ 1
2νΔtf,j(xk, vk)

j∑
�=1

1
�!

< ν Δtf,j(xk, vk)

(2.20)

where we have used the bound
j∑

�=1

1
�! < e − 1 < 2. Now note that the definition of

φ
δk
f,j(xk) in (2.9), (2.20) for vk = d̂k,j and (2.11) imply that, for any j ∈ {1, . . . , jk},

φδk
f,j(xk) = Δtf,j(xk, d̂k,j) ≤ Δtf,j(xk, d̂k,j) + |Δtf,j(xk, d̂k,j) − Δtf,j(xk, d̂k,j)|

≤
(
1 + ν

)
Δtf,j(xk, d̂k,j)

≤
(
1 + ν

)
max‖d‖≤δk Δtf,j(xk, d)

=
(
1 + ν

)
φ
δk
f,j(xk)

≤
(

1 + ν
ς

)
Δtf,j(xk, dk,j).

Hence the inequality in the definition of M(1)
k,j holds for j ∈ {1, . . . , jk}. The proof of the

inequalities defining M(2)
k is analog to that of (2.20). We have from (2.17) that

10 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
|Δtf,jk(xk, sk) − Δtf,jk(xk, sk)| ≤
jk∑
�=1

1
�!

∣∣∣(∇�
xf(xk) −∇�

xf(xk)
)

[sk]�
∣∣∣

≤ 1
2νΔtf,jk(xk, sk)

jk∑
�=1

1
�!

< ν Δtf,jk(xk, sk)

(2.21)

where we have again used the bound
jk∑
�=1

1
�! < 2. �

This result immediately suggests a few comments.

• The conditions (2.17)-(2.18) are merely sufficient, not necessary. In particular, they
ignore any possible cancellation of errors between terms of the Taylor expansion of
different degree.

• We note that (2.17)-(2.18) require the �-th derivative to be relatively accurate along
a finite and limited set of directions, independent of problem dimension.

• Since ‖dk,j‖ and ‖d̂k,j‖ are bounded by δk ≤ θ ≤ 1, we also note that the accuracy
required by these conditions decreases when the degree � increases. Moreover, for a
fixed degree, the request is weaker for small displacements (a typical situation when
a solution is approached) than for large ones.

• Requiring

‖∇�
xf(xk) −∇�

xf(xk)‖ ≤ ν

2‖d̂k,j‖�
Δtf,j(xk, d̂k,j), (2.22)

instead of (2.18) is of course again sufficient to ensure the desired conclusions. These
conditions are reminiscent of the conditions required in [7] for the STORM algorithm
with p = 2, namely that, for some constant κ� and all y in the trust-region {y ∈ Rn |
‖y − xk‖ ≤ rk},

‖∇�
xf(y) −∇�

xf(y)‖ ≤ κ� r3−�
k (� ∈ {0, 1, 2}).

This latter condition is however stronger than (2.17)–(2.18) because it insists on a
uniform accuracy guarantee in the full-dimensional trust region.

Having considered the accuracy of the model, we now turn to that on the objective
function’s values. At the end of Step 3 of the k-th iteration, we define the event

Fk = {|Δf(Xk, Sk) − ΔF (Xk, Sk)| ≤ 2νΔTf,jk(Xk, Sk)} (2.23)

where Δf(Xk, Sk)
def= f(Xk) − f(Xk + Sk) and ΔF (Xk, Sk)

def= F (Xk) − F (Xk + Sk).
This occurs when the difference in function values used in the course of iteration k is

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 11
reasonably accurate relative to the model decrease obtained in that iteration. Note that,
because of the triangular inequality,

|Δf(Xk, Sk) − ΔF (Xk, Sk)| = |(f(Xk) − f(Xk + Sk)) − (F (Xk) − F (Xk + Sk))|
≤ |f(Xk) − F (Xk)| + |f(Xk + Sk) − F (Xk + Sk)|

so that Fk must occur if both terms on the right-hand side are bounded above by
νΔTf,jk(Xk, Sk). Combining accuracy requests on model and function values, we define

Ek def= Fk ∩Mk (2.24)

and say that iteration k is accurate if 1Ek
= 1Fk

1Mk
= 1 and the iteration k is inaccurate

if 1Ek
= 0. Moreover, we say that the iteration k has accurate model if 1Mk

= 1 and
that iteration k has accurate function estimates if 1Fk

= 1. Finally we let

pMk

def= P r
[
Mk | Ak−1

]
, pFk

def= P r
[
Fk | Ak−1

]
.

We will verify in what follows that the TRqNE algorithm does progress towards an
approximate minimizer satisfying (2.6) as long as the following holds.

AS.3 There exists α∗, γ∗ ∈ (1
2 , 1] such that p∗ = α∗γ∗ > 1

2 ,

pMk
≥ α∗, pFk

≥ γ∗ and E
[
1Sk

(1 − 1Fk
)Δf(Xk, Sk) | Ak−1

]
≥ 0, (2.25)

where Sk is the event Sk
def= {iteration k is successful}.

We notice that due to the tower property for conditional expectations

P r
[
Fk | Ak−1

]
= E

[
1Fk

| Ak−1

]
= E

[
E
[
1Fk

| Ak− 1
2

]
| Ak−1

]
,

and hence that assuming, as in [16] and [7],

P r
[
Fk | Ak− 1

2

]
> γ∗

is stronger than assuming pFk
≥ γ∗. Similarly,

E
[
1Sk

(1−1Fk
)Δf(Xk, Sk) | Ak− 1

2

]
≥ 0 implies E

[
1Sk

(1−1Fk
)Δf(Xk, Sk) | Ak−1

]
≥ 0.

(2.26)
Assuming AS.3 is not unreasonable as it merely requires that an accurate model and

accurate functions “happen more often than not”, and that the discrepancy between true
and inexact function values at successful iterations does not, on average, prevent decrease

12 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
of the objective function. If either of these condition fails, it is easy to imagine that
the TRqNE algorithm could be completely hampered by noise and/or diverge completely.
Because the last condition in (2.25) is less intuitive, we now show that it can be realistic
in the specific context where reasonable assumptions are made on the (possibly extended)
cumulative distribution of the error on the function decreases (conditioned to Ak− 1

2
).

Theorem 2.3. Let Gk : R+ → [0, 1] be a differentiable monotone increasing random
function which is measurable for Ak−1 and such that

Gk(0) = 0 and lim
τ→∞

Gk(τ) = 1, (2.27)

lim
τ→∞

τ (1 −Gk(τ)) = 0, (2.28)
∞∫
0

(1 −Gk(τ)) dτ < ∞, (2.29)

and

P r
[
ΔF (Xk, Sk) − Δf(Xk, Sk) > τ | Ak− 1

2

]
≤ 1 −Gk(τ) (2.30)

for τ > 0. Then,

E
[
1Sk

(1 − 1Fk
)(f(Xk) − f(Xk+1)) | Ak−1

]
≥ 0 (2.31)

for each k such that

ΔTf,jk(Xk, Sk) ≥
1
η

∞∫
0

(1 −Gk(τ)) dτ.

Proof. Consider ω ∈ Ω, an arbitrary realization of the stochastic process defined by the
TRqNE algorithm. Suppose first that E

[
1Sk

(1 −1Fk
) | Ak− 1

2

]
(ω) = 0. We then deduce that

E
[
1Sk

(1 − 1Fk
)(f(Xk) − f(Xk+1)) | Ak− 1

2

]
(ω) = 0. (2.32)

Assume therefore that

E
[
1Sk

(1 − 1Fk
) | Ak− 1

2

]
(ω) = p̄k (2.33)

for some p̄k > 0. To further simplify notations, set

ΔTk
def= ΔTf,jk(Xk, Sk) and Ek = ΔF (Xk, Sk) − Δf(Xk, Sk). (2.34)

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 13
If we define I def= {Ek(ω) > 0}, the definition of successful iterations, (2.14) and the
triangular inequality then imply that, if 1Sk(ω) = 1 then

Δf(Xk, Sk)(ω) = ΔF (Xk, Sk)(ω) − Ek(ω) ≥ ηΔTk(ω) − 1IEk(ω). (2.35)

This in turn ensures that

E
[
1Sk

(1 − 1Fk
)Δf(Xk, Sk) | Ak− 1

2

]
(ω) ≥ ηΔTk(ω)E

[
1Sk

(1 − 1Fk
) | Ak− 1

2

]
(ω)

− E
[
1Sk

(1 − 1Fk
)1IEk | Ak− 1

2

]
(ω). (2.36)

Moreover, we have that

E
[
1Sk

(1 − 1Fk
)1IEk | Ak− 1

2

]
(ω)

= E
[
1Sk

(1 − 1Fk
)1IEk | Ak− 1

2
,Sk ∩ Fc

k

]
(ω) · P r[Sk ∩ Fc

k | Ak− 1
2
](ω)

+ E
[
1Sk

(1 − 1Fk
)1IEk | Ak− 1

2
, (Sk ∩ Fc

k)c
]
(ω) · P r[(Sk ∩ Fc

k)c | Ak− 1
2
](ω)

= p̄k E
[
1IEk | Ak− 1

2
,Sk ∩ Fc

k

]
(ω)

≤ p̄k E
[
1IEk | Ak− 1

2

]
(ω),

where we used the fact that [1Sk
(1 − 1Fk

)](ω) = 0 whenever (Sc
k ∪ Fk)(ω) happens,

(2.33) to derive the second equality, and the bound 1IEk(ω) ≥ 0 to obtain the final
inequality. Now, (2.30) implies that, for τ > 0

P r
[
1IEk > τ | Ak− 1

2

]
(ω) = P r

[
Ek > τ | Ak− 1

2

]
(ω) ≤ 1 − gk(τ)

where gk(τ) def= Gk(ω)(τ), and thus

P r
[
1Sk

(1 − 1Fk
)1IEk > τ | Ak− 1

2

]
(ω) ≤ (1 − gk(τ)) p̄k = p̄k

∞∫
τ

g′k(t)dt.

Then, employing (2.27)–(2.30), and integrating by parts

E
[
1Sk

(1 − 1Fk
)1IEk | Ak− 1

2

]
(ω) ≤ p̄k

∞∫
0

t g′k(t)dt = p̄k

∞∫
0

(1 − gk(t))dt < ∞.

Finally, using (2.36),

E
[
1Sk

(1 − 1Fk
)Δf(Xk, Sk) | Ak− 1

2

]
(ω) ≥ p̄k

⎡⎣ηΔTk(ω) −
∞∫

(1 − gk(t)) dt

⎤⎦

0

14 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
and thus

E
[
1Sk

(1 − 1Fk
)(f(Xk) − f(Xk+1)) | Ak− 1

2

]
(ω) ≥ 0 (2.37)

holds when

ΔTk(ω) ≥ 1
η

∞∫
0

(1 − gk(t)) dt.

Combining (2.32) and (2.37) and taking into account that ω is arbitrary give that

E
[
1Sk

(1 − 1Fk
)(f(Xk) − f(Xk+1)) | Ak− 1

2

]
≥ 0.

Thus, (2.26) yields (2.31). �
Note that the assumptions of the theorem are for instance satisfied for the exponential

case where Gk(τ) = e−Tτ for T > 0 and measurable for Ak−1. We will return to this result
in Section 4 and discuss there the condition that ΔTf,jk(Xk, Sk) should be sufficiently
large.

3. Worst-case evaluation complexity

We now turn to the evaluation complexity analysis for the TRqNE algorithm, whose
aim is to derive a bound on the expected number of iterations for which optimality fails.
This number is given by

Nε
def= inf

{
k ≥ 0 | φ

Δk,j

f,j (Xk) ≤ εj
Δj

k,j

j! for j ∈ {1, . . . , q}
}
. (3.1)

We first state a crucial lower bound on the model decrease, in the spirit of [10,
Lemma 3.4].

Lemma 3.1. Consider any realization of the algorithm and assume that Mk occurs.
Assume that (2.6) fails at iteration k. Then, there exists a jk ∈ {1, . . . , q} such that
Δtf,jk(xk, dk,jk) > ςεjkδ

jk
k /(jk!(1 + ν)) at Step 1 of the iteration. Moreover,

Δtf,jk(xk, sk) ≥ φ̂f,k
δjkk
jk!

(3.2)

where

φ̂f,k
def= jk! Δtf,jk(xk, dk,jk)

δjkk
>

ςεmin

1 + ν
. (3.3)

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 15

Proof. We proceed by contradiction and assume that

Δtf,j(xk, dk,j) ≤
ςεj

1 + ν

δjk
j! , (3.4)

for all j ∈ {1, . . . , q}. Since Mk occurs, we have that, for all j ∈ {1, . . . , q},

φδk
f,j(xk) ≤

(
1 + ν

ς

)
Δtf,j(xk, dk,j) ≤ εj

δjk
j! , j ∈ {1, ..., q},

which contradicts the assumption that (2.6) does not hold for xk and δk. The bound
(3.2) directly results from

Δtf,jk(xk, sk) ≥ Δtf,jk(xk, dk,jk) = φ̂f,k
δjkk
jk!

,

where we have used (2.13) to derive the first inequality and the definition (3.3) to obtain
the equality. The rightmost inequality in (3.3) trivially follows from the negation of (3.4)
and (2.10). �

We now show that, for any accurate iteration k there exists r̄ > 0 such that the itera-
tion is successful whenever rk ≤ r̄. For simplicity of notation, given ϑf,j, j ∈ {1, . . . , q},
as in (2.1), we define

ϑf
def= max[1, max

j∈{1,...,q}
ϑf,j]. (3.5)

Lemma 3.2. Suppose that AS.1 holds. Consider any realization of the algorithm and
suppose that (2.6) does not hold for xk and δk and that Ek occurs. If

rk ≤ r
def= min

{
θ,

ς(1 − η)
4(1 + ν)ϑf

εmin

}
= ς(1 − η)

4(1 + ν)ϑf
εmin

def= κrεmin, (3.6)

κr ∈ (0, 1), holds, then iteration k is successful.

Proof. First, note that the minimum in (3.6) is attained at κrεmin since θ ≥ εmin and
κr ∈ (0, 1). Suppose now that (3.6) holds, which implies that δk = min[θ, rk] = rk. Let
jk be as in Lemma 3.1, and denote Δf(xk, sk) = f(xk) − f(xk + sk), Δf(xk, sk) =
f(xk) − f(xk + sk).

Using (2.14), the triangle inequality and 1Ek
= 1Mk

1Fk
= 1, we obtain

|ρk − 1| =

∣∣∣∣∣Δf(xk, sk) − Δtf,jk(xk, sk)
Δt (x , s)

∣∣∣∣∣
f,jk k k

16 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
≤ |Δf(xk, sk) − Δtf,jk(xk, sk)|
Δtf,jk(xk, sk)

+
∣∣Δtf,jk(xk, sk) − Δtf,jk(xk, sk)

∣∣
Δtf,jk(xk, sk)

+
∣∣Δf(xk, sk) − Δf(xk, sk)

∣∣
Δtf,jk(xk, sk)

≤|f(xk + sk) − tf,jk(xk, sk)|
Δtf,jk(xk, sk)

+ 3νΔtf,jk(xk, sk)
Δtf,jk(xk, sk)

.

Invoking (2.3), the bound ‖sk‖ ≤ rk = δk, (3.5), (3.2) and ν ≤ 1
4 (1 − η) we get

|ρk − 1| < ϑfrk

φ̂f,k

+ 3
4(1 − η).

Using (3.3) and (3.6) we deduce that

|ρk − 1| ≤ (1 + ν)ϑfrk
ςεmin

+ 3
4(1 − η) ≤ 1 − η. (3.7)

Thus, ρk ≥ η and the iteration k is successful. �
We now provide a crucial lower bound, depending on a suitable power of εmin, for

realizations of ΔTf,jk(Xk, Sk) at any accurate iteration k such that rk > r̄.

Lemma 3.3. Suppose that AS.1 holds. Consider any realization of the algorithm and
suppose that (2.6) does not hold for xk and δk, Ek occurs, and that rk ≥ r̄ with r̄k
defined in (3.6). Then

Δtf,jk(xk, sk) = tf,jk(xk, 0) − tf,jk(xk, sk)>
ς

q! (κδεmin)q+1
, (3.8)

where κδ ∈ (0, 1) is defined by

κδ
def= κr

1 + ν
(3.9)

with κr defined in (3.6).

Proof. Let jk be as in Lemma 3.1. By (3.2), (3.3) we obtain

Δtf,jk(xk, sk)>
ςεmin

1 + ν

δqk
q! .

If rk > θ then δk = θ and the bound θ ≥ εmin implies

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 17
Δtf,j(xk, sk)>
ςεq+1

min
q!(1 + ν) .

Thus (3.8) holds by definition of κδ and the fact that κr ∈ (0, 1). If r̄ < rk ≤ θ,
then δk = rk. The proof is completed by noting that the form of r̄ in (3.6) gives that
rk > κrεmin. �
3.1. Bounding the expected number of steps with Rk ≤ r

We now return to the general stochastic process generated by the TRqNE algorithm and
bound the expected number of steps in Nε from above. For this purpose, let us define,
for all 0 ≤ k ≤ Nε − 1, the events

Λk
def= {Rk > r}, Λc

k
def= {Rk ≤ r},

where r is given by (3.6), and let

NΛ
def=

Nε−1∑
k=0

1Λk
, NΛc

def=
Nε−1∑
k=0

1Λc
k
, (3.10)

be the number of steps, in the stochastic process induced by the TRqNE algorithm and
before Nε, such that Rk > r or Rk ≤ r, respectively. In what follows we suppose that
AS.1–AS.2 hold.

An upper bound on E
[
NΛc

]
can be derived as follows.

(i) We apply [12, Lemma 2.2] to deduce that, for any � ∈ {0, . . . , Nε − 1} and for all
realizations of Algorithm 2.1, one has that

�∑
k=0

1Λc
k
1Sk

≤ � + 1
2 . (3.11)

(ii) Both σ(1Λk
) and σ(1Λc

k
) belong to Ak−1, because the random variable Λk is fully

determined by the first k−1 iterations of the TRqNE algorithm. Setting � = Nε−1 we
can rely on [12, Lemma 2.1] (with Wk = 1Λc

k
), whose proof is detailed in Appendix A,

to deduce that

E

[
Nε−1∑
k=0

1Λc
k
1Ek

]
≥ p∗ E

[
Nε−1∑
k=0

1Λc
k

]
. (3.12)

(iii) As a consequence, given that Lemma 3.2 ensures that each iteration k where Ek
occurs and rk ≤ r is successful, we have that

18 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
Nε−1∑
k=0

1Λc
k
1Ek

≤
Nε−1∑
k=0

1Λc
k
1Sk

≤ Nε

2 ,

in which the last inequality follows from (3.11), with � = Nε−1. Taking expectation
in the above inequality, using (3.12) and recalling the rightmost definition in (3.10),
we obtain, as in [12, Lemma 2.3], that

E[NΛc] ≤ 1
2p∗

E[Nε]. (3.13)

3.2. Bounding the expected number of steps with Rk > r

For analyzing E[NΛ], where NΛ is defined in (3.10), we now introduce the following
variables.

Definition 1. Consider the random process (2.15) generated by the TRqNE algorithm and
define:

• Λk = {iteration k is such that Rk ≥ r};

• NI =
Nε−1∑
k=0

1Λk
1Ec

k
: the number of inaccurate iterations with Rk ≥ r;

• NA =
Nε−1∑
k=0

1Λk
1Ek

: the number of accurate iterations with Rk ≥ r;

• NAS =
Nε−1∑
k=0

1Λk
1Ek

1Sk
: the number of accurate successful iterations with Rk ≥ r;

• NAU =
Nε−1∑
k=0

1Λk
1Ek

1Sc
k
: the number of accurate unsuccessful iterations with Rk > r;

• NIS =
Nε−1∑
k=0

1Λk
1Ec

k
1Sk

: the number of inaccurate successful iterations with Rk ≥ r;

• NS =
Nε−1∑
k=0

1Λk
1Sk

: the number of successful iterations with Rk ≥ r;

• NU =
Nε−1∑
k=0

1Λk
1Sc

k
: the number of unsuccessful iterations with Rk > r.

(3.14)

Observe that Λk is the “closure” of Λk in that the inequality in its definition is no
longer strict. We immediately notice that an upper bound on E[NΛ] is available, once
an upper bound on E[NI] + E[NA] is known, since

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 19

E[NΛ] ≤ E

[
Nε−1∑
k=0

1Λk

]
= E

[
Nε−1∑
k=0

1Λk
1Ec

k
+

Nε−1∑
k=0

1Λk
1Ek

]
= E[NI] + E[NA]. (3.15)

Using again [12, Lemma 2.1] (with Wk = 1Λk
) to give an upper bound on E[NI], we

obtain the following result, whose proof is detailed in Appendix A. This is the first result
of a series of lemmas needed within this section to prove the final complexity result stated
in Theorem 3.7.

Lemma 3.4 ([12, Lemma 2.6]). Suppose that AS.1-AS.3 hold and let NI , NA be defined
as in Definition 1 in the context of the stochastic process (2.15) generated by the TRqNE

algorithm. Then,

E[NI] ≤
1 − p∗
p∗

E[NA]. (3.16)

Turning to the upper bound for E[NA], we observe that

E[NA] = E[NAS] + E[NAU] ≤ E[NAS] + E[NU]. (3.17)

Hence, bounding E[NA] can be achieved by providing upper bounds on E[NAS] and
E[NU]. Regarding the latter, we first note that the process induced by the TRqNE algo-
rithm ensures that Rk is increased by a factor γ on successful steps and decreased by the
same factor on unsuccessful ones. Consequently, based on [12, Lemma 2.5], we obtain
the following upper bound on the number of unsuccessful iterations with Rk > r.

Lemma 3.5. For any � ∈ {0, ..., Nε−1} and for all realizations of Algorithm 2.1, we have
that

�∑
k=0

1Λk
1Sc

k
≤

�∑
k=0

1Λk
1Sk

+
⌈∣∣∣ logγ−1

(
r

r0

) ∣∣∣⌉ =
�∑

k=0

1Λk
1Sk

+
⌈
logγ

(r0
r

)⌉
.

From the inequality stated in the previous lemma with � = Nε− 1, recalling Definition 1
and taking expectations, we therefore obtain that

E[NU] ≤ E[NS] +
⌈
logγ

(r0
r

)⌉
= E[NAS] + E[NIS] +

⌈
logγ

(r0
r

)⌉
. (3.18)

An upper bound on E[NAS], in terms of a suitable power of εmin, is given by the following
lemma.

20 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
Lemma 3.6. Suppose that AS.1, AS.2 and AS.3 hold. Then we have that

E[NAS] ≤ 2q!(f0 − flow)
ςη (κδεmin)q+1 + 1, (3.19)

where κδ is defined in (3.9).

Proof. Consider any realization of the TRqNE algorithm.

i) If iteration k is successful and the functions are accurate (i.e., 1Sk
1Fk

= 1) then
(2.14), (2.10) and (2.23) imply that

f(xk) − f(xk+1) ≥ [f(xk) − f(xk+1)] − 2νΔtf,jk(xk, sk)

≥ ηΔtf,jk(xk, sk) − 2νΔtf,jk(xk, sk)

= (η − 2ν)Δtf,jk(xk, sk)

≥ 1
2ηΔtf,jk(xk, sk)≥ 0. (3.20)

Thus

1Sk
1Fk

= 1Sk
1Fk

1{ΔFk,+≥0}, (3.21)

where ΔFk,+ = f(Xk) − f(Xk+1). Moreover, if Mk also occurs with rk ≥ r̄ (i.e., if
1Sk

1Ek
1Λk

= 1) and (2.6) fails for xk and δk, we may then use (3.8) to deduce from
(3.20) that

f(xk) − f(xk+1) ≥
ςη

2q! (κδεmin)q+1
> 0, (3.22)

which implies that, as long as (2.6) fails,

1Sk
1Ek

1Λk
= 1Sk

1Ek
1Λk

1{ΔFk,+>0}. (3.23)

ii) If iteration k is unsuccessful, the mechanism of the TRqNE algorithm guarantees that
xk = xk+1 and, hence, that f(xk+1) = f(xk), giving that (1 − 1Sk

)ΔFk,+ = 0.

Setting f0
def= f(X0) and using this last relation and AS.2, we have that, for any � ∈

{0, ..., Nε − 1},

f0 − flow ≥ f0 − f(X�+1) =
�∑

ΔFk,+ =
�∑

1Sk
ΔFk,+. (3.24)
k=0 k=0

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 21
Remembering that X0 and thus f0 are deterministic and taking the total expectation on
both sides of (3.24) then gives that

f0 − flow = E[f0 − flow] ≥
�∑

k=0

E
[
1Sk

ΔFk,+

]
=

�∑
k=0

E
[
E
[
1Sk

ΔFk,+ | Ak−1

]]
. (3.25)

Now, for k ∈ {0, . . . , �},

1Sk
ΔFk,+ = 1Sk

1Fk
ΔFk,+ + 1Sk

(1 − 1Fk
)ΔFk,+

and so, using the second part of (2.25),

E
[
1Sk

ΔFk,+ | Ak−1

]
= E

[
1Sk

1Fk
ΔFk,+ | Ak−1

]
+ E

[
1Sk

(1 − 1Fk
)ΔFk,+ | Ak−1

]
≥ E

[
1Sk

1Fk
ΔFk,+ | Ak−1

]
. (3.26)

Thus, again using the law of total expectations, (3.25) yields that

f0 − flow ≥
�∑

k=0

E
[
E
[
1Sk

1Fk
ΔFk,+ | Ak−1

]]
=

�∑
k=0

E
[
1Sk

1Fk
ΔFk,+

]
. (3.27)

Moreover, successively using (3.21), (2.24), (3.23) and (3.22),

1Sk
1Fk

ΔFk,+ = 1Sk
1Fk

1{ΔFk,+>0}ΔFk,+

= 1Sk
1Fk

1Mk
1{ΔFk,+>0}ΔFk,+ + 1Sk

1Fk
(1 − 1Mk

)1{ΔFk,+>0}ΔFk,+

≥ 1Sk
1Ek

1{ΔFk,+>0}ΔFk,+

≥ 1Sk
1Ek

1Λk
1{ΔFk,+>0}ΔFk,+

≥ ςη

2q! (κδεmin)q+1
(
1Sk

1Ek
1Λk

)
. (3.28)

Substituting this bound in (3.27) then gives that, as long as (2.6) fails for iterations
{1, . . . , �},

f0 − flow ≥ ςη

2q! (κδεmin)q+1
�∑

k=0

E
[
1Sk

1Ek
1Λk

]
. (3.29)

We now notice that, by Definition 1,

NAS − 1 ≤
Nε−2∑
k=0

1Sk
1Ek

1Λk
,

and therefore

E[NAS − 1] ≤
Nε−2∑

E
[
1Sk

1Ek
1Λk

]
. (3.30)
k=0

22 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
Hence, letting � = Nε − 2, substituting (3.30) in (3.29), we deduce that

E[NAS − 1] ςη2q! (κδεmin)q+1 ≤ f0 − flow

and (3.19) follows. �
While inequalities (3.18) and (3.19) provide upper bounds on E[NAS] and E[NU], as
desired, the first still depends on E[NIS], which has to be bounded from above as well.
This can be done by following [12] once more: Definition 1, (3.16) and (3.17) directly
imply that

E[NIS] ≤ E[NI] ≤
1 − p∗
p∗

E[NA] ≤ 1 − p∗
p∗

(E[NAS] + E[NU]) (3.31)

and hence

E[NIS] ≤ 1 − p∗
2p∗ − 1

(
2E[NAS] +

⌈
logγ

(r0
r

)⌉)
(3.32)

follows from (3.18) (remember that 1
2 < p∗ ≤ 1). Thus, the right-hand side in (3.16) is

in turn bounded above because of (3.17), (3.18), (3.32) and (3.19), giving

E[NA] ≤ E[NAS] + E[NU] ≤ 2E[NAS] + E[NIS] +
⌈
logγ

(r0
r

)⌉
≤
(

1 − p∗
2p∗ − 1 + 1

)(
2E[NAS] +

⌈
logγ

(r0
r

)⌉)
≤ p∗

2p∗ − 1

[
4q!(f0 − flow)
ςη (κδεmin)q+1 +

⌈
logγ

(r0
r

)⌉
+ 2

]
. (3.33)

This inequality, together with (3.15) and (3.16), finally gives the desired bound

E[NΛ] ≤ 1
p∗

E[NA] ≤ 1
2p∗ − 1

[
4q!(f0 − flow)
ςη (κδεmin)q+1 +

⌈
logγ

(r0
r

)⌉
+ 2

]
. (3.34)

We can now express our final complexity result in full.

Theorem 3.7. Suppose that AS.1–AS.3 hold, then

E[Nε] ≤
2p∗

(2p∗ − 1)2

[
4q!(f0 − flow)
ςη (κδεmin)q+1 +

⌈
logγ

(r0
r

)⌉
+ 2

]
, (3.35)

with Nε, r and κδ defined as in (3.1), (3.6) and (3.9), respectively.

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 23
Proof. Recalling the definitions (3.10) and the bound (3.13), we obtain that

E[Nε] = E[N c
Λ] + E[NΛ] ≤ E[Nε]

2p∗
+ E[NΛ],

which implies, using (3.34), that

2p∗ − 1
2p∗

E[Nε] ≤
1

2p∗ − 1

[
4q!(f0 − flow)
ςη (κδεmin)q+1 +

⌈
logγ

(r0
r

)⌉
+ 2

]
.

This bound and the inequality 1
2 < p∗ ≤ 1 yield the desired result. �

We note that the O
(
ε
−(q+1)
min

)
evaluation bound given by (3.35) is known to be sharp in

order of εmin for trust-region methods using exact evaluations of functions and derivatives
(see [11, Theorem 12.2.6]), which implies that Theorem 3.7 is also sharp in order.

We conclude this section by noting that alternatives to the second part of (2.25) do
exist. For instance, we could assume that

E
[
1Sk

ΔFk,+ | Ak−1

]
≥ μE

[
1Sk

1Fk
ΔFk,+ | Ak−1

]
for some μ > 0. This condition can be used to replace the second part of (2.25) to ensure
(3.26) in the proof of Lemma 3.6 and all subsequent arguments.

4. The impact of noise for first-order minimization

While the above theory covers inexact evaluations of the objective function and its
derivatives, it does rely on AS.3. Thus, as long as the inexactness/noise on these values
remains small enough for this assumption to hold, the TRqNE algorithm iterates ultimately
produce an approximate local minimizer. There are however practical applications, such
as minimization of finite sum using sampling strategies (discussed in more detail below),
where AS.3 may be unrealistic because of noise intrinsic to the application. We already
saw that, under the assumptions of Theorem 2.3, a large enough value of ΔTf,jk(Xk, Sk)
is sufficient for ensuring the third condition in AS.3, but we also know from (2.23),(2.34),
(2.35) and the definition of ν that, at successful iterations,

Δf(Xk, Sk) ≥ ηΔTf,jk(Xk, Sk) − Ek ≥ (η − 2ν)ΔTf,jk ≥ 1
2ηΔTf,jk

whenever Fk holds. Thus a large ΔTf,jk(Xk, Sk) is only possible if either Δf(Xk, Sk) is
large or Fk fails. But a large Δf(Xk, Sk) is impossible close to a (global) minimizer, and
thus either Fk (and AS.3) fails, or the guarantee that the third condition of AS.3 holds
vanishes when approaching a minimum.

Clearly, the above theory does not say anything about what happens for the algorithm
once AS.3 fails due to intrinsic noise. Of course, this does not mean it will not proceed

24 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
meaningfully, but we can’t guarantee it. In order to improve our understanding of what
can happen, we need to consider particular realizations of the iterative process where
AS.3 fails. This is the objective of this section where we focus on the instantiation TR1NE of
TRqNE for first-order optimality. Fortunately, limiting one’s ambition to first order results
in substantial simplifications in the TRqNE algorithm. We first note that the mechanism
of Step 1 of TRqNE (whose purpose is to determine jk) is no longer necessary since jk
must be equal to one if only (approximate) gradients are available, so we can implicitly
set

Dk,1 = ∇1
xf(Xk)

‖∇1
xf(Xk)‖

Δk and ΔTf,1(Xk, Dk,1) = −∇1
xf(Xk)TDk,1 = ‖∇1

xf(Xk)‖Δk

and immediately branch to the step computation. This in turn simplifies to

Sk = ∇1
xf(Xk)

‖∇1
xf(Xk)‖

Rk and ΔTf,1(Xk, Sk) = ‖∇1
xf(Xk)‖Rk

irrespective of the value of θ, and (2.13) automatically holds. We thus observe that the

simplified algorithm no longer needs δk,j (since neither φδk
f,j(xk) or Δtf,j(xk, dk,j) needs

to be effectively calculated), that the computed step sk is the global minimizer within
the trust-region and that the constant θ (used in Step 1 and the start of Step 2 of the
TRqNE algorithm) is no longer necessary. The resulting streamlined TR1NE algorithm is
stated as Algorithm 4.1.

Algorithm 4.1. The TR1NE algorithm.

Step 0: Initialization. A starting point x0, a constant γ > 1, a maximum radius rmax > 0 and an
accuracy level ε ∈ (0, 1) are given. The initial trust-region radius r0 ∈ (ε, rmax] is also given. For
a given constant η ∈ (0, 1), define ν def= min

[
1
2
η, 1

4
(1 − η)

]
. Set k = 0.

Step 1: Derivatives estimation. Compute the derivative estimate ∇xf(xk).

Step 2: Step computation. Set sk = −
∇1

xf(xk)
‖∇1

xf(xk)‖
rk.

Step 3: Function decrease estimation. Compute the estimate f(xk) − f(xk + sk) of f(xk) − f(xk + sk).

Step 4: Test of acceptance. Compute ρk = f(xk) − f(xk + sk)
‖∇1

xf(xk)‖rk
.

If ρk ≥ η (successful iteration), then set xk+1 = xk + sk; otherwise (unsuccessful iteration) set
xk+1 = xk.

Step 5: Trust-region radius update. Set

rk+1 =
{ 1

γ rk, if ρk < η

min[rmax, γrk], if ρk ≥ η.

Increment k by one and go to Step 1.

The definition of the event Mk in (2.16) ensures that M(2)
k implies M(1)

k when first-
order models are considered, and thus, using also (2.23), that Mk and Fk then reduce
to

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 25
Mk = {|‖∇1
xf(Xk)‖ − ‖∇1

xf(Xk)‖| ≤ ν‖∇1
xf(Xk)‖}

and

Fk = {|ΔF (Xk, Sk) − Δf(Xk, Sk)| ≤ 2ν‖∇1
xf(Xk)‖Rk},

respectively. Observe now that, because of the triangle inequality, Mk is true whenever
the event

M̃k
def= {‖∇1

xf(Xk) −∇1
xf(Xk)‖ ≤ ν‖∇1

xf(Xk)‖} (4.1)

holds, and, since ν‖∇1
xf(Xk)‖ min{1, Rk} ≤ ν‖∇1

xf(Xk)‖, it also follows that Fk is true
whenever the event

F̃k
def= {|ΔF (Xk, Sk) − Δf(Xk, Sk)| ≤ 2ν‖∇1

xf(Xk)‖min{1, Rk}} (4.2)

holds. As a consequence,

P r
[
Mk | Ak−1

]
≥ P r

[
M̃k | Ak−1

]
and P r

[
Fk | Ak−1

]
≥ P r

[
F̃k | Ak−1

]
. (4.3)

Our analysis of the impact of noise on the TR1NE algorithm starts by considering a rel-
atively general form for error distributions (as we did in Theorem 2.3) and we then
specialize our arguments to the particular case of finite sum minimization with subsam-
pling.

4.1. Failure of AS.3 for general error distributions

At a generic iteration k, suppose that H0,k and H1,k, are continuous and increas-
ing random functions from R+ to [0, 1] which are measurable for Ak−1 and such that
H0,k(0) = H1,k(0) = 0, limτ→+∞ H0,k(τ) = limτ→+∞ H1,k(τ) = 1 and,

P r
[
|ΔF (Xk, Sk) − Δf(Xk, Sk)| < τ |Ak−1

]
≥ H0,k(τ)

P r
[
‖∇1

xf(Xk) −∇1
xf(Xk)‖ < τ |Ak−1

]
≥ H1,k(τ) (4.4)

For sake of simplicity, assume α∗ = γ∗ ≥ √
1
2 in AS.3 and let B0 and B1 such that

H0,k(B0) =
√
α∗ and H1,k(B1) =

√
α∗, and B = max[B0, B1]. Then,

P r
[
|ΔF (Xk, Sk) − Δf(Xk, Sk)| < τ | Ak−1, τ ≥ B

]
≥ √

α∗, (4.5)

P r
[
‖∇1

xf(Xk) −∇1
xf(Xk)‖ < τ | Ak−1, τ ≥ B

]
≥ √

α∗. (4.6)

Define

26 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
B̄ = B

ν min{1, Rk}
≥ B

ν
> B, (4.7)

and note that B̄ is measurable for Ak−1. Then (4.5) and (4.6) ensure that

P r
[
|ΔF (Xk, Sk) − Δf(Xk, Sk)| ≤ B̄ | Ak−1

]
≥ √

α∗ (4.8)

P r
[
‖∇1

xf(Xk) −∇1
xf(Xk)‖ ≤ B̄ | Ak−1

]
≥ √

α∗. (4.9)

Finally, define the events

Gk
def= {‖∇1

xf(Xk)‖ ≥ 2B̄}, (4.10)

Ḡk
def= {‖∇1

xf(Xk)‖ ≥ B̄}, (4.11)

Vk
def= {‖∇1

xf(Xk) −∇1
xf(Xk)‖ <

B

ν
}, (4.12)

and observe that (4.6) implies that

P r
[
Vk | Ak−1

]
≥ √

α∗. (4.13)

The next theorem provides a lower bound on the probability of Ḡk to occur, conditioned
to the trace σ-algebra {Ak−1, Gk}.

Theorem 4.1. Let B̄ as in (4.7). Then, for each iteration k of the TR1NE algorithm,

P r
[
Ḡk | Ak−1,Gk

]
≥ √

α∗. (4.14)

Proof. For any realization of the TR1NE algorithm we have that

‖∇1
xf(xk)‖ ≥

∣∣∣‖∇1
xf(xk)‖ − ‖∇1

xf(xk) −∇1
xf(xk)‖

∣∣∣ .
Therefore, ‖∇1

xf(xk)‖ ≥ 2β̄ (where β̄ is the realization of B̄) and ‖∇1
xf(xk) −∇1

xf(xk)‖ ≤
β/ν < β̄ ensure that ‖∇1

xf(xk)‖ ≥ β̄. Then, Gk ∩Vk implies Ḡk, where the events Gk, Vk

and Ḡk are defined in (4.10)-(4.12), and P r
[
Ḡk | Ak−1, Gk, Vk

]
= 1. We therefore have

that

E
[
1Ḡk

| Ak−1,Gk

]
≥ E

[
1Ḡk

| Ak−1,Gk,Vk

]
P r
[
Vk | Ak−1,Gk

]
≥ 1 · √α∗,

where we have used (4.13) and the fact that

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 27
E
[
1Vk

| Ak−1,Gk

]
= E

[
E
[
1Vk

| Ak−1
]
| Ak−1,Gk

]
to derive the last inequality. The conclusion (4.14) then follows. �
We are now in the position to show that the first requirement of (2.25) in AS.3 holds
provided that the norm of the gradient is sufficiently large. Moreover, we prove that if
the first requirement of (2.25) does not hold for a specific realization ω, then the norm
of the gradient at xk is smaller than 2B̄(ω).

Theorem 4.2. Let B̄ be defined by (4.7). Then, for each iteration k of the TR1NE algorithm,

P r
[
Mk | Ak−1,

{
‖∇1

xf(Xk)‖ ≥ 2B̄
}]

≥ α∗. (4.15)

Moreover, if ω is a realization for which P r
[
Mk | Ak−1

]
(ω) < α∗, then

‖∇1
xf(xk)‖ < 2B̄(ω). (4.16)

Proof. We obtain from (4.3) and (4.14) that

P r
[
Mk | Ak−1,Gk

]
≥ P r

[
M̃k | Ak−1,Gk

]
= E

[
1M̃k

| Ak−1,Gk

]
≥ E

[
1M̃k

| Ak−1,Gk, Ḡk

]
P r
[
Ḡk | Ak−1,Gk

]
≥ √

α∗ E
[
1M̃k

| Ak−1,Gk, Ḡk

]
. (4.17)

If Ḡk is true, then it follows from (4.7) and (4.11) that ν‖∇1
xf(Xk)‖ ≥ B. Then, (4.1)

and (4.6) yield

E
[
1M̃k

| Ak−1, Ḡk

]
≥ √

α∗. (4.18)

Because the trace σ-algebra {Ak−1, Ḡk} contains the trace σ- algebra {Ak−1, Gk, Ḡk}, the
tower property and (4.18) then imply that

E
[
1M̃k

| Ak−1,Gk, Ḡk

]
= E

[
E
[
1M̃k

| Ak−1, Ḡk

]
| Ak−1,Gk, Ḡk

]
≥ E

[√
α∗ | Ak−1,Gk, Ḡk

]
= √

α∗

which, together with (4.17) gives (4.15). Since Gk is measurable for Ak−1 we have

P r
[
Mk | Ak−1

]
≥ P r

[
Mk | Ak−1,Gk

]
E
[
1Gk

| Ak−1

]
= P r

[
Mk | Ak−1,Gk

]
1Gk

.

28 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
If we now consider a realization ω such that P r
[
Mk | Ak−1

]
(ω) < α∗, we therefore

obtain, using (4.15) taken for the realization ω, that

α∗ > P r
[
Mk | Ak−1,Gk

]
(ω) 1Gk(ω) ≥ α∗ 1Gk(ω),

which implies that 1Gk(ω) = 0, and thus that (4.16) holds. �
Similarly, but with reference to the second requirement in (2.25), the following theorem

can be proved.

Theorem 4.3. Let B̄ be defined by (4.7). Then, for each iteration k of the TR1NE algorithm,

P r
[
Fk | Ak−1,

{
‖∇1

xf(Xk)‖ ≥ 2B̄
}]

≥ α∗. (4.19)

Moreover, if ω is a realization for which P r
[
Fk | Ak−1

]
(ω) < α∗, then

‖∇1
xf(xk)‖ < 2B̄(ω). (4.20)

Proof. The proof is similar to that of Theorem 4.2, and is given in Appendix A for
completeness. �

Theorems 4.2 and 4.3 indicate that the assumptions made in AS.3 about Mk and
Fk are likely to be satisfied as long as the gradients remain sufficiently large, allowing
the TR1NE algorithm to iterate meaningfully. Conversely, they show that, should these
assumptions fail for a particular realization of the algorithm because of a high level of
intrinsic noise, “degraded” versions of first-order optimality conditions given by (4.16)
and (4.20) nevertheless hold when this failure occurs.

4.2. A subsampling example

We finally illustrate how intrinsic noise might affect our probabilistic framework on
an example. Suppose that

f(x) = 1
m

m∑
i=1

fi(x), (4.21)

where the fi are functions from R to R having Lipschitz continuous gradients and where
m is so large that computing the complete value of f(x) or its derivatives is impractical.
Such a situation occurs for instance in algorithms for deep-learning, an application of

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 29
growing importance. A well-known strategy to obtain approximations of the desired
values at an iterate xk is to sample the fi(xk) and compute the sample averages, that is

f(xk) = 1
|b0(xk)|

∑
i∈b0(xk)

fi(xk), ∇1
xf(xk) = 1

|b1(xk)|
∑

i∈b1(xk)

∇1
xfi(xk), (4.22)

where b0(x) and b1(x) are realizations of random “batches”, that is randomly selected4

subsets of {1, . . . , m}. Observe that Step 3 of the TR1NE algorithm computes the estimate
f(xk) − f(xk + sk), which we assume, in the context of (4.21), to be

f(xk) − f(xk + sk) = 1
|b0(xk)|

∑
i∈b0(x)

(fi(xk) − fi(xk + sk)), (4.23)

(using a single batch for both the function estimates). Observe that our choice to make
b0 and b1 dependent on xk implies that their random counterparts B0(Xk) and B1(Xk)
are measurable for Ak−1 (clearly we could have chosen a more complicated dependence
on the past of the random process). The mean-value theorem then yields that, for some
{yi}i∈b0(xk) in the segment [xk, xk + sk],

|f(xk) − f(xk + sk)| ≤

⎛⎝ 1
|b0(xk)|

∑
i∈b0(xk)

∇1
xfi(yi)

⎞⎠ ‖sk‖ ≤ rk max
y∈[xk,xk+sk]

i∈b0(xk)

‖∇1
xfi(y)‖

Note that one expects the right-hand side of this inequality to be quite small when the
trust-region radius is small or when convergence to a local minimizer occurs. To simplify
our illustration, we assume, for the rest of this section, that there exists a constant κf

such that for any y ∈ Rn, for every realization b0(xk),

rk max
i∈{1,...,n}

‖∇1
xfi(y)‖ ≤ κf .

Returning to the random process and using the Bernstein concentration inequality, it
results from [5, Relation (7.8)] that, for any k and deterministic τ > 0,

P r
[
ΔF (Xk, Sk) − Δf(Xk, Sk) > τ

]
≤ e−W0(τ) where W0(τ) = τ2|B0(Xk)|

4κf (2κf + 1
3τ) . (4.24)

Similarly,

P r
[
‖∇1

xF (Xk, Sk) −∇1
xf(Xk, Sk)‖ > τ

]
≤ min

[
1, (n + 1)e−W1(τ)

]
,

W1(τ) = τ2|B1(Xk)|
4κg(2κg + 1

3τ) ,
(4.25)

4 With uniform distribution.

30 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
for some constant κg > 0. One also checks that, since B0(Xk) and B1(Xk) are measurable
for Ak−1, so are W0 and W1. One then easily verifies that W0(τ) is an increasing function
of τ , and hence e−W0(τ) is decreasing. Letting Gk(τ) = 1 − e−W0(τ), we immediately
obtain that conditions (2.27) and (2.28) hold. Let us now analyze condition (2.29) and

consider any realization ω, where w0(τ) def= W0(ω)(τ). Note that w0(τ) ≥ |b0(xk)|
1
2 τ

when

τ ≥ τ∗
def=

8κ2
f

|b0(xk)|
1
2 − 4

3κf

(4.26)

and |b0(xk)|
1
2

κf
is large enough so that

|b0(xk)|
1
2

κf
>

4
3 . (4.27)

Hence e−w0(τ) ≤ e−|b0(xk)|
1
2 τ for all τ ≥ τ∗ and

∞∫
0

e−w0(τ) dτ ≤
τ∗∫
0

e−w0(τ) dτ +
∞∫

τ∗

e−|b0(xk)|
1
2 τ dτ.

In addition, since e−w0(τ) is decreasing and non-negative, we have that

τ∗∫
0

e−w0(τ) dτ ≤ τ∗e
−w0(0) = τ∗.

This bound and (4.26) then imply that

∞∫
0

(1 − gk(τ)) dτ =
∞∫
0

e−w0(τ) dτ ≤ τ∗ + e−|b0(xk)|
1
2 τ∗

|b0(xk)|
1
2

< +∞, (4.28)

proving that (2.29) also holds for the arbitrary realization ω. We may therefore apply
Theorem 2.3 provided B0(Xk) is sufficiently large5 to ensure (4.27) and (4.26), and
conclude that, under these conditions, (2.31) holds whenever

Δtf,1(xk, sk) ≥
1
η

∞∫
0

(1 − gk(τ)) dτ.

5 While the bound given by (4.28) is adequate for our proof, this inequality can be pessimistic. For
instance, if we set κf = 1 and |b0(Xk)| = 2056, the numerically computed value of the left-hand side is
0.0556 while that of the right-hand side is 0.1818.

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 31
We can also apply the analysis in Section 4.1 with

H0,k(τ) = 1 − e−W0(τ) and H1,k(τ) = max
[
0, 1 − (n + 1)e−W1(τ)

]
.

A short calculation shows that B0 = O(κf |B0|−
1
2 |) and B1 = O(κg|B1|−

1
2 |), where

B0 and B1 are defined below (4.4). Then, Theorems 4.2 and 4.3 hold with B̄ =

O
(max{κf |B0|−

1
2 |,κg|B1|−

1
2 |}

ν max{1,Rk}
)
.

We finally illustrate the impact of intrinsic noise on the (admittedly ad-hoc) problem
of minimizing

f(x) = 1
2m

∑
i∈Z

[
1
2x

2 + 1
2α sgn(i) e−x2

]
def= 1

2m
∑
i∈Z

fi(x), (4.29)

where α > 0 is a noise level and where Z = {−m, . . . , m} \ {0} for some large integer
m. Suppose furthermore that the {fi(x)}i∈Z and {∇1

xfi(x)}i∈Z are computed by black-
box routines, therefore hiding their relationships. Consider an iterate xk at the start of
iteration k of an arbitrary realization of the TR1NE algorithm6 applied to this problem.
We verify that, for i ∈ Z,

∇1
xfi(xk) = xk

(
1 − α sgn(i) e−x2

k

)
and thus ∇1

xf(xk) = xk and, in view of (2.5),

φδk
f,1(xk) = |xk| δk (4.30)

for all xk. As a consequence, x = 0 is the unique global minimizer of f(x). Suppose, for
the rest of this section, that B0,k

def= B0(xk) = B0(xk + sk), B1,k
def= B1(xk), and that

nB
0,k and nB

1,k, the cardinalities of these two sets are known parameters. We deduce from
(4.22) that

∇1
xf(xk) = xk

(
1 − αΨ(B1,k)e−x2

k

)
where Ψ(B) def= 1

|B|
∑
i∈B

sgn(i). (4.31)

Thus Ψ(B) is a zero-mean random variable with values in [−1, 1], depending on the
randomly chosen batch B ⊆ Z of size |B|. Using the hypergeometric distribution, it is
possible to show that |Ψ(B)| is (in probability) a decreasing function of |B|.

Moreover, the use of standard tail bounds [14] reveals that, for any t ∈ (0, 1),

P r
[
|Ψ(B1,k)| ≤ t

]
= P r

[
Ψ(B1,k) ≤ t

]2
=
(
1 − P r

[
Ψ(B1,k) > t

])2
≥ (1 − e−

1
2 t

2nB
1,k)2,
(4.32)

6 With given ν and ς = 1.

32 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
in turn indicating that P r
[
|Ψ(B1,k)| ≤ t

]
> 1

2 whenever

nB
1,k ≥ 2

t2

∣∣∣∣log
(

1 − 1√
2

)∣∣∣∣ ≈ 2.4559
t2

.

Occurrence of M(1)
k and M(2)

k . Let us now examine at what conditions the events M(1)
k

and M(2)
k do occur for a specific realization b1,k of B1,k, and consider the occurrence of

M(1)
k first. Because the minimum of first-order models in a ball of radius δk must occur

on the boundary, we choose dk,1 = −sgn(∇1
xf(xk))δk so that

Δtf,1(xk, dk,1) = |∇1
xf(xk)| δk.

Using (4.31), we then have that

Δtf,1(xk, dk,1) = |xk| δk
∣∣∣1 − αΨ(b1,k) e−x2

k

∣∣∣ . (4.33)

Thus the quantity 1 −αΨ(b1,k) e−x2
k may be interpreted as the local noise relative to the

model decrease.
Taking (4.30) and (4.33) into account, M(1)

k occurs, in any realization, whenever

∣∣∣1 − αΨ(b1,k) e−x2
k

∣∣∣ ≥ 1
1 + ν

, (4.34)

that is

Ψ(b1,k) ≤
ex

2
k

α

(
1 − 1

1 + ν

)
or Ψ(b1,k) ≥

ex
2
k

α

(
1 + 1

1 + ν

)
.

This condition may be quite weak, as shown in left picture in Fig. 4.1, where the shape
of the left-hand side of (4.34) is shown for increasing values7 of the local noise level
α exp(−x2) as a function of Ψ(b1,k), and where the lower bound 1/(1 + ν) is shown as
a red horizontal dashed line. The corresponding ranges of acceptable values of Ψ(b1,k)
are shown below the horizontal axis (in matching colors). The one-sided nature of the
inequality defining M(1)

k is apparent in the picture, where restrictions on the acceptable
values of Ψ(b1,k) only occur for positive values. This reflects the fact that the model may
be quite inaccurate and yet produce a decrease which is large enough for the condition
to hold.

The constraints on Ψ(b1,k), and thus on nB
1,k, become more stringent when considering

the occurrence of M(2)
k . Since, for any realization, sk = −sgn

(
∇1

xf(xk)
)
rk, we deduce

from (4.31) that

7 Magenta for 0.5, blue for 4/3 and cyan for 4.

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 33
Fig. 4.1. An illustration of conditions (4.34) (left) and (4.36) (right) as a function of Ψ(b1,k), for ν = 1
4

and
local relative noise levels αe−x2

k = 1
2

(magenta), 4
3

(blue) and 4 (cyan). Acceptable ranges for Ψ(b1,k) are
shown below the horizontal axis in matching colors.

Δtf,1(xk, sk) = −xksk = −xk

[
−sgn(xk) sgn

(
1 − αΨ(b1,k) e−x2

k

)
rk

]
= |xk| rk sgn

(
1 − αΨ(b1,k) e−x2

k

)
and

Δtf,1(xk, sk) = |xk| rk
∣∣∣1 − αΨ(b1,k) e−x2

k

∣∣∣ . (4.35)

One then verifies that M(2)
k occurs whenever

1
1 + ν

≤ 1 − αΨ(b1,k) e−x2
k ≤ 1

1 − ν
. (4.36)

The acceptable values for Ψ(b1,k) are illustrated in the right picture of Fig. 4.1, which
shows the shape of the central term in (4.36) using the same conventions than for the
left picture except that now the acceptable part of the curves lies between the lower and
upper bounds resulting from (4.36) (again shown as dashed red lines). A short calculation
reveals that (4.36) is equivalent to requiring

ex
2
k

α

(
1 − 1

1 − ν

)
≤ Ψ(b1,k) ≤

ex
2
k

α

(
1 − 1

1 + ν

)
.

This therefore defines intervals around the origin, whose widths clearly decrease with
the local relative noise level. Because |Ψ(B1,k)| is (in probability) a decreasing function
of nB

1,k, this indicates that nB
1,k must increase with αe−x2

k , that is when the local relative
noise is large.

34 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
Occurrence of Fk. A similar reasoning holds when considering the event Fk. Given
(4.23), we have that

|Δf(xk, sk) − Δf(xk, sk)| = 1
2α |Ψ(b0,k)|

∣∣∣e−x2
k − e−(xk+sk)2

∣∣∣ (4.37)

and, in view of (4.35), Fk thus occurs whenever

1
2α |Ψ(b0,k)| e−x2

k

∣∣∣1 − e−(2xksk+s2k)
∣∣∣ ≤ 2ν|xk| rk

∣∣∣1 − αΨ(b1,k) e−x2
k

∣∣∣ . (4.38)

Thus, if |xk| is small (e.g., if the optimum is close) then satisfying (4.38) requires the
left-hand side of this inequality to be small, putting a high request on nB

0,k, while the
inequality is more easily satisfied if |xk| is large, irrespective of the batch sizes. Note that,
in the first case (i.e., when |xk| is small), the request on nB

0,k is stronger for smaller nB
1,k.

Occurrence of (2.31). Given (4.32) and (4.35), we see from Theorem 2.3 that (2.31) holds
whenever

Δtf,1(xk, sk) = |xk| rk
∣∣∣1 − αΨ(b1,k) e−x2

k

∣∣∣ ≥ 1
η

∞∫
0

(1 − gk(τ)) dτ = 1
η

√
π

2nB
1,k

where we have used the definition of the erf function to derive the last equality. Thus,
as |Ψ(b1,k)| ≤ 1, guaranteeing (2.31) requires a larger nB

1,k for small value of xk, that is
when the optimum is approached.

5. Conclusions and perspectives

We have considered a trust-region method for unconstrained minimization inspired
by [10] which is adapted to handle randomly perturbed function and derivatives values
and is capable of finding approximate minimizers of arbitrary order. Exploiting ideas
of [12,7], we have shown that its evaluation complexity is (in expectation) of the same
order in the requested accuracy as that known for related deterministic methods [7,10].

In [4], the authors have considered the effect of intrinsic noise on complexity of a de-
terministic, noise tolerant variant of the trust-region algorithm. This important question
is handled here by considering specific realizations of the algorithm under reasonable
assumptions on the cumulative distribution of errors in the evaluations of the objec-
tive function and its derivatives. We have shown that, for such realizations, a first-order
version of our trust-region algorithms still provides “degraded” optimality guarantees,
should intrinsic noise cause the assumptions used for the complexity analysis to fail. We
have specialized and illustrated those results in the case of sampling-based finite-sum
minimization, a context of particular interest in deep-learning applications.

We have so far developed and analyzed “noise-aware” deterministic and stochastic
algorithms for unconstrained optimization. Several research perspectives are natural ex-
tensions of the type of analysis presented here. Firstly, a challenging investigation is

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 35
to design adaptive regularization algorithms for smooth unconstrained functions whose
values and derivatives are subject to random noise. Such a study would improve upon
[3] where derivatives are subject to random noise while the objective function values are
subject to a deterministically controlled error. While results are available in this refer-
ence for the first-order version of adaptive regularization algorithms since it is basically
the same scheme as Algorithm TR1NE on page 24, deriving results for an arbitrary order
q remains an open problem. Secondly, it is relevant to extend the study conducted in
Section 4 and analyze the trust-region procedure under non-vanishing noise and with an
arbitrary values of q. Finally, the constrained case deserves study.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Appendix A. Additional proofs

Proof of (3.12). Since σ(1Λc
k
) belong to Ak−1, because the random variable Λk is fully

determined, assuming Pr(1Λc
k
) > 0, the tower property yields:

E
[
1Ek

| 1Λc
k

]
= E

[
E [1Ek

| Ak−1] | 1Λc
k

]
≥ E

[
p∗ | 1Λc

k

]
= p∗.

Then, by the total expectation law we have

E
[
1Ek

1Λc
k

]
= E

[
1Λc

k
E
[
1Ek

| 1Λc
k

]]
≥ p∗E

[
1Λc

k

]
.

Similarly,

E
[
1{k<Nε}1Ek

1Λc
k

]
≥ p∗E

[
1{k<Nε}1Λc

k

]
,

as 1{k<Nε} is also determined by Ak−1. In case Pr(1Λc
k
) = 0, the above inequality holds

trivially. Then

E

[
Nε−1∑
k=0

1Λc
k
1Ek

]
= E

[∞∑
k=0

1{k<Nε}1Λc
k
1Ek

]
≥ pME

[∞∑
k=0

1{k<Nε}1Λc
k

]

= p∗ E

[
Nε−1∑
k=0

1Λc
k

]
,

and (3.12) follows. �
Proof of Lemma 3.4. Proceeding as in the proof of (3.12) with 1Λk

in place of 1Λc
k
, we

obtain:

36 S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043
E

[
Nε−1∑
k=0

1Λk
1Ek

]
≥ p∗ E

[
Nε−1∑
k=0

1Λk

]
.

Moreover, proceeding again as in the proof of (3.12) and substituting 1Ek
with 1Ec

k
we

obtain

E

[
Nε−1∑
k=0

1Λc
k
1Ec

k

]
≤ (1 − p∗)E

[
Nε−1∑
k=0

1Λk

]
.

Using the above inequalities we obtain (3.16). �
Proof of Theorem 4.3. Because of (4.3) and (4.14), we have that

P r
[
Fk | Ak−1,Gk

]
≥ P r

[
F̃k | Ak−1,Gk

]
= E

[
1F̃k

| Ak−1,Gk

]
≥ E

[
1F̃k

| Ak−1,Gk, Ḡk

]
P r
[
Ḡk | Ak−1,Gk

]
≥ √

α∗ E
[
1F̃k

|Ak−1,Gk, Ḡk

]
. (A.1)

If Ḡk is true then by (4.7) it follows

2ν‖∇1
xf(Xk)‖min{1, Rk} ≥ B̄ν min{1, Rk} > B.

Then, (4.2) and (4.5) yield

E
[
1F̃k

| Ak− 1
2
, Ḡk

]
≥ √

α∗. (A.2)

Because the trace σ-algebra {Ak−1, Ḡk} contains the trace σ- algebra {Ak−1, Gk, Ḡk}, the
tower property and (A.2) then imply that

E
[
1F̃k

| Ak−1,Gk, Ḡk

]
= E

[
E
[
1F̃k

| Ak−1, Ḡk

]
| Ak−1,Gk, Ḡk

]
≥ E

[√
α∗ | Ak−1,Gk, Ḡk

]
=

√
α∗

which, together with (A.1), implies (4.19). Since Gk is measurable for Ak−1 we have that

P r
[
Fk | Ak−1

]
≥ P r

[
Fk | Ak−1,Gk

]
E
[
1Gk

| Ak−1

]
= P r

[
Fk | Ak−1,Gk

]
1Gk

.

Considering now a realization ω such that P r
[
Fk | Ak−1

]
(ω) < α∗, we therefore obtain,

using (4.19) taken for this realization, that

α∗ > P r
[
Fk | Ak−1,Gk

]
(ω) 1Gk(ω) ≥ α∗ 1Gk(ω),

which implies that 1Gk(ω) = 0, in turn yielding (4.20). �

S. Bellavia et al. / EURO Journal on Computational Optimization 10 (2022) 100043 37
References

[1] A.S. Bandeira, K. Scheinberg, L.N. Vicente, Convergence of trust-region methods based on proba-
bilistic models, SIAM J. Optim. 24 (3) (2014) 1238–1264.

[2] S. Bellavia, G. Gurioli, Complexity analysis of a stochastic cubic regularisation method under in-
exact gradient evaluations and dynamic Hessian accuracy, Optimization 71 (2022) 227–261.

[3] S. Bellavia, G. Gurioli, B. Morini, Ph.L. Toint, Adaptive regularization for nonconvex optimization
using inexact function values and randomly perturbed derivatives, J. Complex. 68 (2022) 101591.

[4] S. Bellavia, G. Gurioli, B. Morini, Ph.L. Toint, The impact of noise on evaluation complexity: the
deterministic trust-region case, arXiv :2104 .02519, 2021.

[5] S. Bellavia, G. Gurioli, B. Morini, Ph.L. Toint, Adaptive regularization algorithms with inexact
evaluations for nonconvex optimization, SIAM J. Optim. 29 (2019) 2881–2915.

[6] A. Berahas, L. Cao, K. Scheinberg, Global convergence rate analysis of a generic line search algo-
rithm with noise, SIAM J. Optim. 31 (2) (2021) 1489–1518.

[7] J. Blanchet, C. Cartis, M. Menickelly, K. Scheinberg, Convergence rate analysis of a stochastic trust
region method via supermartingales, INFORMS J. Optim. 1 (2) (2019) 92–119.

[8] C. Cartis, N.I.M. Gould, Ph.L. Toint, Second-order optimality and beyond: characterization and
evaluation complexity in convexly constrained nonlinear optimization, Found. Comput. Math. 18
(2020) 1073–1107.

[9] C. Cartis, N.I.M. Gould, Ph.L. Toint, Sharp worst-case evaluation complexity bounds for arbitrary-
order nonconvex optimization with inexpensive constraints, SIAM J. Optim. 30 (1) (2020) 513–541.

[10] C. Cartis, N.I.M. Gould, Ph.L. Toint, Strong evaluation complexity of an inexact trust-region algo-
rithm for arbitrary-order unconstrained nonconvex optimization, arXiv :2011 .00854, 2020.

[11] C. Cartis, N.I.M. Gould, Ph.L. Toint, Evaluation Complexity of Algorithms for Nonconvex Opti-
mization, MOS-SIAM Series on Optimization, vol. 30, SIAM, Philadelphia, USA, 2022.

[12] C. Cartis, K. Scheinberg, Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models, Math. Program., Ser. A 159 (2) (2018) 337–375.

[13] R. Chen, M. Menickelly, K. Scheinberg, Stochastic optimization using a trust-region method and
random models, Math. Program., Ser. A 169 (2) (2018) 447–487.

[14] V. Chvátal, The tail of the hypergeometric distribution, Discrete Math. 25 (1979) 285–287.
[15] A.R. Conn, N.I.M. Gould, Ph.L. Toint, Trust-Region Methods, MOS-SIAM Series on Optimization

1, SIAM, Philadelphia, USA, 2000.
[16] C. Paquette, K. Scheinberg, A stochastic line search method with convergence rate analysis, SIAM

J. Optim. 30 (1) (2020) 349–376.
[17] Y. Yuan, Recent advances in trust region algorithms, Math. Program., Ser. A 151 (1) (2015) 249–281.

http://refhub.elsevier.com/S2192-4406(22)00019-3/bibBAF7F507F1A7C9FF71F7E4520F8475F2s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibBAF7F507F1A7C9FF71F7E4520F8475F2s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib7621FA4319805880B00843A80ECF1E73s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib7621FA4319805880B00843A80ECF1E73s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib1E81CF479D5776D4CC9C3B13D36047B9s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib1E81CF479D5776D4CC9C3B13D36047B9s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibB573C2490127564815D9AFF09C8E89BFs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibB573C2490127564815D9AFF09C8E89BFs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib148850285EA32A01F94BDD215110E4E9s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib148850285EA32A01F94BDD215110E4E9s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibF2753BDCA3BE5981E5A76915FEF550CDs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibF2753BDCA3BE5981E5A76915FEF550CDs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibCAC7A0C9F18080A18C7ED4A270B5D08Cs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibCAC7A0C9F18080A18C7ED4A270B5D08Cs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibA0DAE4881BE0B3D9A641722D32824AB6s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibA0DAE4881BE0B3D9A641722D32824AB6s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibA0DAE4881BE0B3D9A641722D32824AB6s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib7B7D71760C5CE70D5678EFE1EFAFBD3Cs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib7B7D71760C5CE70D5678EFE1EFAFBD3Cs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib116933E5C0775701C5E344E457920147s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib116933E5C0775701C5E344E457920147s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib051888202A8662A31262FC9E3B8EFAE6s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib051888202A8662A31262FC9E3B8EFAE6s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib85ACF89AA579381606B3DA734D9F4ACFs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib85ACF89AA579381606B3DA734D9F4ACFs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibF0615FF15E9070F8DBF211AE7B3764B0s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibF0615FF15E9070F8DBF211AE7B3764B0s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bibABC4AFCDB6C25EE2A75BA2A7B6B51651s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib84F6CA282729250C4035B77183BB4FCBs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib84F6CA282729250C4035B77183BB4FCBs1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib6EBA14CBC3FE8CEE8EE8A7562598BBE2s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib6EBA14CBC3FE8CEE8EE8A7562598BBE2s1
http://refhub.elsevier.com/S2192-4406(22)00019-3/bib4FA72FECDE22A7A5176154FD24B90E55s1

	Trust-region algorithms: Probabilistic complexity and intrinsic noise with applications to subsampling techniques
	1 Introduction
	2 A trust-region minimization method for problems with randomly perturbed function values and derivatives
	2.1 The probabilistic setting

	3 Worst-case evaluation complexity
	3.1 Bounding the expected number of steps with Rk≤r
	3.2 Bounding the expected number of steps with Rk>r

	4 The impact of noise for first-order minimization
	4.1 Failure of AS.3 for general error distributions
	4.2 A subsampling example

	5 Conclusions and perspectives
	Declaration of competing interest
	Appendix A Additional proofs
	References

