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Abstract

We propose a novel approach to the linear viscoelastic problem of shear-deformable geometrically exact beams. The
eneralized Maxwell model for one-dimensional solids is here efficiently extended to the case of arbitrarily curved beams
ndergoing finite displacement and rotations. High efficiency is achieved by combining a series of distinguishing features,
hat are: (i) the formulation is displacement-based, therefore no additional unknowns, other than incremental displacements
nd rotations, are needed for the internal variables associated with the rate-dependent material; (ii) the governing equations
re discretized in space using the isogeometric collocation method, meaning that elements integration is totally bypassed; (iii)
nite rotations are updated using the incremental rotation vector, leading to two main benefits: minimum number of rotation
nknowns (the three components of the incremental rotation vector) and no singularity problems; (iv) the same SO(3)-consistent
inearization of the governing equations and update procedures as for non-rate-dependent linear elastic material can be used;
v) a standard second-order accurate time integration scheme is made consistent with the underlying geometric structure of the
inematic problem. Moreover, taking full advantage of the isogeometric analysis features, the formulation permits accurately
epresenting beams and beam structures with highly complex initial shape and topology, paving the way for a large number
f potential applications in the field of architectured materials, meta-materials, morphing/programmable objects, topological
ptimizations, etc. Numerical applications are finally presented in order to demonstrate attributes and potentialities of the
roposed formulation.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Viscoelastic beams; Generalized Maxwell model; Isogeometric analysis; Geometrically nonlinear beams; Curved beams; Finite
otations

1. Introduction

The interest in designing materials with predetermined mechanical properties or objects that can change shape
nd function over time in a programmed way is dramatically growing due to the enormous potential that can be
nlocked by emerging additive manufacturing techniques. Hybrid and architectured materials [1,2] are examples of
ew “materials” obtainable by assembling two or more materials, possibly with a specific voids-matter distribution,
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such that they can exhibit attributes not owned by any (continuous distribution) of the individual materials. This
principle is valid and applicable at micro [3–5], meso [6–8], and macro [9–14] length scales. In many cases, the inner
architectures are assemblies of elements that individually can be well represented by one-dimensional deformable
solids [15,16]. Programming this type of structures represents a complex inverse problem since the design space, in
addition to the properties of the single materials, comprises topology (e.g. cell shape and fibers orientation), number
and connectivity of the one-dimensional elements, their (possibly locally varying) initial curvature, composition of
possible multi-layered cross sections, and other parameters [4,17,18].

For such complex systems, since three-dimensional continuum-based theories would lead to prohibitive com-
utational costs, advanced beam theories, deployed through appropriate computational formulations, can have a
remendous impact on the predictive capabilities of the numerical models. There are some essential requirements
hat these theories must meet: the underlying kinematic model must be able to reproduce finite displacements and
otations without any restrictions; any three-dimensional initial geometry, possibly featured by strong and local
ariations of curvatures, must be accurately represented; proper nonlinear material models, including rate and
emperature dependent ones, need to be supported and adapted to the one-dimensional case.

From the kinematics standpoint, starting from the fundamental works by Simo [19,20] and Cardona &
eradin [21], a number of valuable contributions have been given to the development of large deformation space
eams, both to shear-deformable [22–32] and Euler–Bernoulli formulations [33–37]. These works are all restricted to
inear elastic materials. Inelastic material models were initially proposed in [38–40]. More recently, elastoplasticity
as been addressed in [41–43]. General three-dimensional constitutive laws are adapted to geometrically exact
eams in [44–49], and in [50,51] considering also deformable directors. Focusing on viscoelasticity, finite difference
chemes are used in [52–54] with a quaternion-based parametrization of finite rotations and in [55] using the special
uclidean group for the beam kinematics. Finite element formulations with applications to multi-body dynamics
re proposed in [56–58].

Only recently, geometrical and material nonlinearities have been combined to specifically address the problem
f programmable structures. In [59] a fully isogeometric model for geometrically exact space beams with spatially
arying geometric and material properties is proposed. The possibility of modeling composite rods [60] (e.g., with
ilayers [13,61]) enables bending and twisting deformations to morph one-dimensional rods into three-dimensional
hapes. In [62], although a linear elastic material is used, the advantages of a geometrically exact formulation are
xploited to optimize curved beams in the sense of matching target shapes for the beam axis. In [63–65], a discrete
eometrically exact formulation encompassing constitutive models for incompressible viscous fluids and viscoelastic
ne-dimensional solids is proposed and used for simulating active and shape-morphing structures. Linear viscoelastic
aterials in a co-rotational setting are modeled in [66], an elasto-visco-plastic material model is proposed in [67],
hile a two-scale approach for nonlinear hyperelastic beams is introduced in [68]. Functionally graded beams,
hich are also relevant for material programming, are discussed in [59,69].
Given the key role of time- and strain rate-dependency for active materials [66,70–73] and considered the

trong need for more efficient beam formulations meeting the requirements recalled above, in this paper we
ropose a displacement-based isogeometric collocation (IGA-C) scheme for linear viscoelastic geometrically
xact beams. IGA-C [74–76] keeps the attributes of classical isogeometric analysis [77,78] and, being based
n the discretization of the strong form of the governing equations, completely bypasses the issues related to
lements integration. The method ensures high efficiency since it requires only one evaluation point per degree
f freedom, regardless of the approximation degree [79]. IGA-C proved excellent performances for a wide range
f problems [74,75,79–82,82–97], including the geometrically exact beam problem [98–102].

It is also important to mention that the relevance of geometrically nonlinear viscoelastic beams is not limited to
etamaterials and architectured devices. Several applications can be found in the civil and industrial engineering

ectors too (e.g., cable structures, synthetic mooring lines in offshore engineering, flexible mechanical components,
tc.).

In the present work, the generalized Maxwell model for one-dimensional solids is efficiently extended to the case
f arbitrarily curved beams undergoing finite displacement and rotations. High efficiency is sought by combining a
eries of desirable and distinguishing features, in addition to the intrinsic properties of the collocation method itself.
hey are: (i) The formulation is displacement-based: we demonstrate that no additional unknowns with respect to

he linear elastic case are needed due to the internal variables associated with the rate-dependent material. Namely,

ncremental displacements and rotations are the only needed unknowns; (ii) Finite rotations are updated using the
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incremental rotation vector, leading to two main benefits: minimum number of rotation unknowns (i.e., the three
components of the incremental rotation vector only) and no singularity problems as opposed to the case of total
rotation vector; (iii) The same SO(3)-consistent linearization of the governing equations and update procedures as
for linear elastic materials (see [98,100–102]) can be directly used, meaning that no additional complexity in the
construction the tangent matrix is introduced by the viscoelastic material; (iv) A standard second-order accurate
time integrator is made consistent with the underlying geometric structure of the kinematic problem.

In this work we also extend to the nonlinear and rate-depended case the capabilities recently developed in [103]
n order to address beams and beam structures with highly complex initial curvature.

The outline of the paper is as follows. In Section 2 we review the governing equations for the quasi-static problem
nd the rate-dependent material model. In Section 3 we introduce the three main steps to derive the formulation:
ime discretization, SO(3)-consistent linearization, and space discretization. In Section 4 we show through several
umerical applications with increasing complexity the capabilities of the proposed formulation. Finally, in Section 5,
e summarize and draw the main conclusions of our work.

. Governing equations

In this section, we first introduce the strong form of the governing equations and then formulate the linear
iscoelastic beam problem in a displacement-based form.

.1. Strong form of the balance equations

Let s ↦→ c(s) ∈ IR3 be a space curve representing the axis of a beam, where s ∈ [0, L] ⊂ IR is the arc length
parameterization.

The governing equations in the strong form are given in the spatial setting as follows [19]

n,s + n̄ = 0 , (1)

m,s + c,s × n + m̄ = 0 , (2)

alid for any s ∈ (0, L) and time instant t ∈ [0, T ] ⊂ IR. L and T are the upper bounds of the space and time
omains, respectively. In the above equations, n and m denote the internal forces and couples per-unit length,
espectively, whereas n̄ and m̄ are the external distributed forces and couples. Boundary conditions in the spatial
etting write as follows

η = η̄c or n = n̄c with s = {0, L} , t ∈ [0, T ] , (3)

ϑ = ϑ̄c or m = m̄c with s = {0, L} , t ∈ [0, T ] , (4)

here η̄c and ϑ̄c are the spatial displacements and rotations imposed to any of the beam ends, n̄c and m̄c are the
xternal concentrated forces and moments applied to any of the beam ends.

Eqs. (1) and (2) can be pulled-back in the material form as follows

K̃ N + N,s +RTn̄ = 0 , (5)

K̃ M + M,s +

(
RTc,s

)
× N + RTm̄ = 0 , (6)

here s ↦→ R(s) ∈ SO(3) is the rotation operator mapping the (rigid) rotation of the beam cross section at
from the material to the current configuration. Note that to obtain the above material form of the balance

quations, we exploited the orthogonality of R and the (material) beam curvature, a skew-symmetric tensor defined
s s ↦→ K̃ (s) := RTR,s ∈ so(3).1 Moreover, N = RTn and M = RTm are the internal forces and couples per-unit
ength in the material form, respectively. Similar transformations apply to the boundary conditions.

1 With the symbol ∼ we mark elements of so(3), that is the set of 3 × 3 skew-symmetric matrices. In this context, they are used to
represent curvature matrices and infinitesimal incremental rotations. Furthermore, we recall that for any skew-symmetric matrix ã ∈ so(3),
a = axial(̃a) indicates the axial vector of ã such that ãh = a × h, for any h ∈ IR3, where × is the cross product.
3
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2.2. The generalized Maxwell model for one-dimensional problems

To reproduce the viscoelastic material behavior, here we employ the generalized Maxwell model [104] directly
o the one-dimensional strain measures. We first recall the material form of the strain measures [19,105,106]

Γ N = Γ − Γ 0 = RTc,s −R0
Tc0,s and K M = axial(K̃ − K̃ 0) = K − K 0 , (7)

here Γ = RTc,s −[1, 0, 0]T and Γ 0 = R0
Tc0,s − [1, 0, 0]T. Γ N ∈ IR3 describes the axial and shear strains,

hereas K M ∈ IR3 describes the bending and torsional strains; K̃ 0 = R0
TR0,s ∈ so(3) is the beam initial curvature

skew-symmetric tensor) in the material form; c0 represents the beam axis in the initial configuration; R0 ∈ SO(3)
s the rotation operator that expresses the rotation of the beam cross section in the initial configuration.

Assuming a rheological model made of m spring-dashpot elements, the material form of the total internal forces
nd couples can be written as

N = N∞ +

m∑
α=1

Nα and M = M∞ +

m∑
α=1

Mα , (8)

here N∞ and M∞ are the long-term elastic internal forces and couples, whereas Nα and Mα are the viscous
ontributions related to the αth Maxwell element. Assuming the existence of a one-dimensional dissipative potential,
dditively made of a contribution related to axial and shear strains and a contribution related to torsional and bending
trains (see also [53,67]), the dissipative internal stresses are given by

Nα = Hv
NαΓ̇ Nα and Mα = Hv

Mα K̇ Mα , (9)

here Γ̇ Nα and K̇ Mα are the viscous strain rate vectors and Hv
Nα and Hv

Mα are diagonal viscosity matrices associated
ith the αth Maxwell element. Introducing the relaxation times, τα with α = 1, . . . , m, that without loss of
enerality are assumed to be the same for all the strain measures, the rates of viscous strains for the αth Maxwell
lement can be expressed through the evolutionary equations as follows

Γ̇ Nα =
1
τα

(Γ N − Γ Nα) and K̇ Mα =
1
τα

(K M − K Mα) . (10)

Finally, assuming that the elastic response is linear, the total material internal forces and couples become

N = CN∞Γ N +

m∑
α=1

Cv
Nα(Γ N − Γ Nα) , (11)

M = CM∞ K M +

m∑
α=1

Cv
Mα(K M − K Mα) , (12)

with

CN∞ = diag(E∞ A, G∞ A2, G∞ A3) and CM∞ = diag(G∞ Jt , E∞ J2, E∞ J3) ,

Cv
Nα = Hv

Nα/τα = diag(Eα A, Gα A2, Gα A3) and Cv
Mα = Hv

Mα/τα = diag(Gα Jt , Eα J2, Eα J3) ,

here E∞ and G∞ = E∞/2(1 + ν) are the long term Young and shear moduli, whereas Eα and Gα = Eα/2(1 + ν)
re the Young and shear moduli associated with the αth Maxwell element. We assume a constant Poisson ratio for
he material.

.3. Displacement-based strong form of the governing equations

By substituting Eqs. (11) and (12) into (5) and (6), we obtain the governing equations expressed in terms of
inematic quantities only, i.e. total and viscous strain measures, as follows

K̃CN0Γ N − K̃
m∑

Cv
NαΓ Nα + CN0Γ N ,s −

m∑
Cv

NαΓ Nα,s + RTn̄ = 0 , (13)

α=1 α=1

4
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K̃CM0 K M − K̃
m∑

α=1

Cv
Mα K Mα + CM0 K M,s −

m∑
α=1

Cv
Mα K Mα,s + RTc,s ×CN0Γ N +

−RTc,s ×

m∑
α=1

Cv
NαΓ Nα + RTm̄ = 0 . (14)

Similarly, the Neumann boundary conditions become

CN0Γ N −

m∑
α=1

Cv
NαΓ Nα = RTn̄c , (15)

CM0 K M −

m∑
α=1

Cv
Mα K Mα = RTm̄c , (16)

here CN0 = CN∞ +
∑m

α=1 Cv
Nα and CM0 = CM∞ +

∑m
α=1 Cv

Mα are the instantaneous elasticity tensors.

. Discretization and consistent linearization of the governing equations

In this section, after introducing the time discretization, we present the consistent linearization and space
iscretization of the governing equations.

.1. Time discretization and integration scheme

By using the standard trapezoidal rule for the time integration, at time tn
= (n − 1)dt , where dt is the time step

pan and n = 1, . . . is the time step counter, the time discretized viscous strain measures Γ n
Nα and K n

Nα associated
ith the αth Maxwell element can be expressed as

Γ n
Nα =

dt
(2τα + dt)

Γ n
N + βn−1

Γα , (17)

K n
Nα =

dt
(2τα + dt)

K n
M + βn−1

Kα , (18)

here the terms βn−1
Γα and βn−1

Kα are defined as follows

βn−1
Γα =

dt
(2τα + dt)

Γ n−1
N +

2τα − dt
(2τα + dt)

Γ n−1
Nα , (19)

βn−1
Kα =

dt
(2τα + dt)

K n−1
M +

2τα − dt
(2τα + dt)

K n−1
Mα . (20)

Importantly, we remark that the above terms are computed using only quantities known form the previous time
step, therefore they do not need to be iteratively updated during the Newton–Raphson algorithm.

Substituting Eqs. (17) and (18) into the time discretized form of Eqs. (13) and (14), the nonlinear governing
equations can be expressed in terms of total strains (and other quantities known from the previous time step) as
follows

K̃ n[CN0 −

m∑
α=1

Cv
Nα

dt
(2τα + dt)

]Γ n
N − K̃ n

m∑
α=1

Cv
Nαβn−1

Γα +

+[CN0 −

m∑
α=1

Cv
Nα

dt
(2τα + dt)

]Γ n
N ,s −

m∑
α=1

Cv
Nαβn−1

Γα,s + RTn
n̄n

= 0 , (21)

K̃ n[CM0 −

m∑
α=1

Cv
Mα

dt
(2τα + dt)

]K n
M + [CM0 −

m∑
α=1

Cv
Mα

dt
(2τα + dt)

]K n
M,s+

−K̃ n
m∑

α=1

Cv
Mαβn−1

Kα −

m∑
α=1

Cv
Mαβn−1

Kα,s + RTn cn,s ×[CN0 −

m∑
α=1

Cv
Nα

dt
(2τα + dt)

]Γ n
N +

−RTn cn,s ×

m∑
Cv

Nαβn−1
Γα + RTn m̄n

= 0 . (22)

α=1

5
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The same can be done for the Neumann boundary conditions

[CN0 −

m∑
α=1

Cv
Nα

dt
(2τα + dt)

]Γ n
N =

m∑
α=1

Cv
Nαβn−1

Γα + RTn
n̄n

c , (23)

[CM0 −

m∑
α=1

Cv
Mα

dt
(2τα + dt)

]K n
M =

m∑
α=1

Cv
Mαβn−1

Kα + RTn m̄n
c . (24)

3.2. SO(3)-consistent linearization of the displacement-based governing equations

A remarkable feature of the present formulation is that the same SO(3)-consistent linearization rules derived
for static or dynamic formulations with non rate-dependent material, see, e.g., [102], can be directly used. This is
possible since, as noticed above, the viscous components can be expressed by terms depending on the total strains
(likewise the non-rate-dependent case) and terms (βn−1

Γα and βn−1
Kα ) which are known from the previous time step

nd therefore do not substantially affect the construction of the tangent operator.
To preserve SO(3)-consistency, we only recall some fundamental geometrical aspects. Given a curve in the

onfiguration manifold ε ↦→ γ (ε) = (cε, Rε), with ε ∈ IR, defined by cε = c + εδη (standard translation on IR3)
nd Rε = R exp(εδΘ̃) (left translation on SO(3) ), the linearization is based on the construction of the (material)
angent space at (c, R) obtained by (dγ /dε)ε=0 such that γ (0) = (c, R). From the kinematic point of view, δη ∈ IR3

epresents an incremental displacement superimposed to the current configuration of the centroid line c; whereas
Θ̃ ∈ so(3) represents an incremental rotation superimposed to the rotation R. Note that in the construction of the
urve γ we used the exponential map exp : so(3) → SO(3) which maps the line εΘ̃ at so(3) onto the one parameter
ubgroup exp(εΘ̃) ∈ SO(3) [107]. Note that for SO(3) the exponential map is expressed by an exact (Rodrigues)
ormula.

By using the linearization rules given in [102], the linearized version of Eqs. (21)–(24) is

[C̄N
˜(R̂Tn ĉn

,s) −
˜(C̄N Γ̂

n
N ) +

m∑
α=1

˜(Cv
Nαβn−1

Γα )]δΘ,n
s +

+[ ˆ̃K nC̄N
˜(R̂Tn ĉn

,s) −
˜(C̄N Γ̂

n
N ) ˆ̃K n

+
ˆ̃K n

m∑
α=1

˜(Cv
Nαβn−1

Γα ) −

˜
( ˆ̃K n

m∑
α=1

Cv
Nαβn−1

Γα )+

+C̄N
˜(R̂Tn ĉn

,ss) − C̄N
˜(K̃ nR̂Tn ĉn

,s) +
˜(R̂Tn n̄n)]δΘn

+ C̄N R̂Tnδηn
,ss+

+[K̃ nC̄N R̂Tn
− C̄N K̃ nR̂Tn]δηn

,s + F̂n
= 0 , (25)

C̄MδΘ,n
ss +[C̄M

ˆ̃K n
+

ˆ̃K nC̄M −
˜(C̄M K̂

n
M ) +

m∑
α=1

˜(Cv
Mαβn−1

Kα )]δΘ,n
s +

+[ ˆ̃K nC̄M
ˆ̃K n

−
˜(C̄M K̂

n
M ) ˆ̃K n

+
ˆ̃K n

m∑
α=1

˜(Cv
Mαβn−1

Kα ) −

˜
( ˆ̃K n

m∑
α=1

Cv
Mαβn−1

Kα )+

+C̄M
ˆ̃K n
,s + [ ˜(R̂Tn ĉn

,s)C̄N −
˜(C̄N Γ̂

n
N ) +

m∑
α=1

˜(Cv
Nαβn−1

Γα )] ˜(R̂Tn ĉn
,s) +

˜(R̂Tn m̄n)]δΘn
+

+[ ˜(R̂Tn ĉ,n
s )C̄N −

˜(C̄N Γ̂
n
N ) +

m∑
α=1

˜(Cv
Nαβn−1

Γα )]R̂Tnδηn
,s + T̂n

= 0 , (26)

where we have defined

F̂n
=

ˆ̃K nC̄N Γ̂
n
N −

ˆ̃K n
m∑

Cv
Nαβn−1

Γα + C̄N Γ̂
n
N ,s −

m∑
Cv

Nαβn−1
Γα,s + R̂Tn n̄n , (27)
α=1 α=1

6



G. Ferri, D. Ignesti and E. Marino Computer Methods in Applied Mechanics and Engineering 417 (2023) 116413

a

T̂n
=

ˆ̃K nC̄M K̂
n
M −

ˆ̃K n
m∑

α=1

Cv
Mαβn−1

Kα + C̄M K̂
n
M,s −

m∑
α=1

Cv
Mαβn−1

Kα,s+

+R̂Tn ĉn
,s ×[C̄N Γ̂

n
N −

m∑
α=1

Cv
Nαβn−1

Γα ] + R̂Tn m̄n , (28)

nd we have set C̄N = [CN0 −
∑m

α=1 Cv
Nα

dt
(2τα+dt) ] and C̄M = [CM0 −

∑m
α=1 Cv

Mα
dt

(2τα+dt) ].
Similarly, for the boundary conditions we have

[C̄N
˜(R̂Tn ĉn

,s ) −
˜(R̂Tn n̄n

c )]δΘn
+ C̄N R̂Tnδηn

,s =

m∑
α=1

Cv
Nαβn−1

Γα − C̄N Γ̂
n
N + R̂Tn n̄n

c , (29)

and

C̄MδΘ,n
s +[C̄M

ˆ̃K n
−

˜(R̂Tn m̄n
c )]δΘn

=

m∑
α=1

Cv
Mαβn−1

Kα − C̄M K̂
n
M + R̂Tn m̄n

c . (30)

In the above linearized equations, with the symbol ˆ(·) we denote any quantity evaluated at the time tn around
which the linearization takes place. Note that the linearized equations has just more terms, but do not add any
significant complexity to the standard linear elastic rate-independent IGA-C formulations [98,100–102].

3.3. Space discretization

The linearized governing equations, written in terms of the unknown fields δΘn and δηn at time tn , are spatially
discretized by using NURBS basis functions R j,p with j = 1, . . . , n of degree p. In the isoparametric formulation,
we use the same basis functions to represent the beam centroid curve. Thus, we have

δΘn(u) =

n∑
j=1

R j,p(u)δΘ̌
n
j with u ∈ [0, 1] , (31)

δηn(u) =

n∑
j=1

R j,p(u)δη̌n
j with u ∈ [0, 1] , (32)

cn(u) =

n∑
j=1

R j,p(u) p̌n
j with u ∈ [0, 1] , (33)

where δΘ̌
n
j and δη̌

n
j are the primal (2×3×n) unknowns, namely the j th incremental control rotation and translation,

respectively; p̌n
j is the j th control point defining the beam centroid curve. Eqs. (31) and (32) are substituted into

(25) and (26) and in the boundary conditions (29) and (30), where the differentiations must be properly done
considering the Jacobian relating the parametric u and arc length s coordinate systems. A square system is finally
built by collocating the field equations at the internal n−2 collocation points and the Dirichlet or Neumann boundary
conditions at the boundaries u = 0 and u = 1. Standard Greville abscissae [74] are chosen as collocation points.
At a given Newton–Raphson iteration, once solved the linear system for the primal variables, we follow the same
updating procedure discussed in [102] and make use Eqs. (17)–(20) to update the viscous terms which are only
evaluated at the collocation points.

4. Numerical results

In this section we report a series of numerical applications aimed at testing all the attributes of the proposed
model. We start with the roll-up of a straight cantilever beam under a concentrated couple at the free-end. For the
same beam, we also present the results under a concentrated tip force with a complex variation in time. Then, a
circular arch with an out-of plane tip load is considered. In this case, in order to check the rates of convergence in
space, we keep the problem linear to use the exact solution as a reference. For all the above mentioned tests, the
material properties are intentionally set to emphasize the viscoelastic behavior and to check the robustness of the

proposed method. Subsequently, the capability to model curved beam problems in the nonlinear regime is tested

7
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Table 1
Material mechanical properties for the roll-up case.

Eα [N/m2] τα(t ≈ 0 s) [s] τα(t ≈ t∞) [s]

α = ∞ 40 – –
α = 1 530 5000 0.05

starting from a circular arch and then addressing the Spivak [103] and the Lissajous [96] beams, both featuring
very challenging curvatures. Finally, the full potentialities of the proposed formulation are shown by simulating the
complex deformations of planar and cylindrical nets with cells made of curved beam elements.

4.1. Roll-up of a cantilever beam

The beam is placed along the x1-axis of a fixed Cartesian reference system and is subjected to a concentrated
ouple at the free end with axis x2. The length of the beam is 1 m. The cross section is a square of side 0.1 m.
ne Maxwell element is employed, i.e., m = 1. The Young modulus E1 and relaxation time τ1 are reported in
able 1. The shear modulus is set as G1 = E1/2(1 + ν), where, for this specific test, ν = 0. The relaxation time

is τ1 = 5000 s to study the convergence of the instantaneous response (t ≈ 0 s), whereas τ1 = 0.05 s to study the
convergence of the long term (t ≈ t∞) response. In the former case the time step is 1 × 10−4 s, in the latter 5 s.

We apply a couple of magnitudes M0 = 2π (E∞ + E1)J2/L and M∞ = 2π E∞ J2/L , such that the beam deforms
nto a full closed circle of radius L/2π at both times t ≈ 0 s and t ≈ t∞. We assess the quality of the convergence
ates by comparing the computed position of the beam tip, errti p = ∥ ph

n∥L2 , with the exact value, namely the
lamped end located at the origin of the reference system. Moreover, to have also a global measure of the error,
n addition to errti p, we compare also the radius of the closed circle computed numerically, rh , with the analytical
ne. rh is obtained selecting three points uniformly spaced on the deformed beam axis. The relative error is then
omputed as errradius = 2π |rh

− L/2π |/L . These two errors are plotted vs. the number of collocation points and
or different degrees for both instantaneous (Fig. 1) and long term (Fig. 2) responses.

It is observed that the two error measures exhibit very good spatial convergence rates for all the degrees
onsidered both at instantaneous and infinity times. It is noted that the accuracy cannot be smaller than 1 × 10−10

ue to the tolerance set in the Newton–Raphson algorithm. Odd degrees are not considered in this study since, as
t is well known, in collocation they do not normally improve the rates compared to the smaller even degree.

.2. Cantilever beam subjected to a tip force

The same cantilever beam analyzed in the previous section is here loaded with a tip force in the x3 direction with
he complex pattern shown in Fig. 3(a). The relaxation time is 0.1 s. A time step of 1 × 10−3 s is used for a total
imulation time of 4 s. The time history of the displacements in the x1 and x2 directions are shown in Figs. 3(b)
nd 3(c), respectively, where a comparison with Abaqus [108] is included. Our IGA-C solution is obtained with
= 20 collocation points and basis functions with degree p = 6. The same Maxwell material model adopted

ere (see Table 1) is assigned to Abaqus by entering the normalized values of the shear and bulk moduli for each
axwell element and for the long term response. In order to verify our results, an Abaqus overkill solution with
31 shear-deformable beam elements has been used. As it can be noticed from Fig. 3(c), the beam undergoes large
eflections. The viscous deformations are rather significant since, under repeated force steps, the deflection keeps
ncreasing. For example, under a constant force of 4 × 10−4 N, from 2.25 s to 3.25 s, the vertical tip displacement
ncreases from 0.1255 m to 0.2525 m. An excellent agreement with Abaqus is observed.

.3. Circular arch subjected to an out-of plane tip force

The 90◦ circular arch here considered has a radius R = 1 m and a square cross section of side 0.1 m. The beam
ies in the (x1, x2) plane, it is clamped at one end and subjected to a constant force along the x3-direction applied
t its free end. The beam centroid is exactly reconstructed using 3 control points and NURBS basis functions of

egree 2. k-refinement is then applied. The same material properties for the long term response of the above roll-up

8
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Fig. 1. Instantaneous roll-up of a viscoelastic cantilever beam: errors convergence.

Fig. 2. Long term roll-up of a viscoelastic cantilever beam: errors convergence.

ase are here employed; the time step is 0.1 s. Under the hypothesis of small displacements, the instantaneous and
ong term analytical solutions [85], given in terms of tip deflections v0 and v∞, respectively, are given by

v0 =
π F3 R

+
F3 R3

(
3
π − 2) +

π F3 R3

, (34)

2G0 A3 G0 Jt 4 4E0 J2

9
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Fig. 3. Cantilever beam subjected to tip load: loads and tip displacements over time.

v∞ =
π F3 R

2G∞ A3
+

F3 R3

G∞ Jt
(
3
4
π − 2) +

π F3 R3

4E∞ J2
, (35)

here G0 = G∞ +G1, E0 = E∞ + E1, A3 is the beam cross section multiplied by the shear correction factor (equal
o 5/6), whereas Jt and J2 are the torsional and the bending moment of inertia, respectively. The out-of-plane force
s F3 = 1 × 10−8 N.

The relative errors at the beam tip for the instantaneous and the long term responses are shown in Figs. 4(a) and
(b), respectively. Very good convergence rates are observed, although in the long term case apparently the error
eaches about 1 × 10−9, whereas for the instantaneous case it reaches 1 × 10−10 that is the tolerance limit in the
ewton–Raphson algorithm.

.4. Circular arch under complex tip load patterns

The same circular arch of the previous section is here subjected to a complex tip load pattern. As shown in
ig. 5, the tip forces and couples are applied along the x2 and x3 axes with time-varying intensities shown in Fig. 6.
he load time histories are chosen to emphasize the viscoelastic behavior of the beam.

The total simulation time is 4 s with a time step dt = 1 × 10−3 s. For the space discretization we used basis
functions with p = 6 and n = 50. A material very similar to the one used in [109], characterized by 9 Maxwell
elements and ν = 0.4, is employed (see Table 2).

The tip displacements in the three Cartesian directions are shown in Fig. 7. A comparison with an overkill
solution obtained with Abaus (B31 elements) is also included and a very good agreement is observed. Note that the
sharp variation of the displacements u1 and u2 at t = 2 s (see Figs. 7(a) and 7(b)) is associated with the complete
unloading of the beam for that time instant. Such a variation is not noticeable in the x3 direction (see Fig. 7(c))
since from t = 1.999 s to t = 2.001 s u3 changes sign.

.5. Spivak beam under tip loads

Moving to more complex geometrically nonlinear cases, we analyze here the Spivak beam [103]. It is a rather
hallenging three-dimensional geometry which permits also assessing the capability of the proposed model to
econstruct complex initial geometries featuring points with vanishing curvature. The initial beam axis is given
10
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Fig. 4. 90◦ circular arch subjected to an out-of plane tip force: errors convergence.

Fig. 5. 90◦ circular arch clamped at on end and subjected to tip forces and couples along x2-axis (blue) and x3-axis (orange).

by the following piecewise-defined curve⎧⎪⎪⎨⎪⎪⎩
c(s) = [s, 0, e−1/s2

]T , s ∈ [−2, 0) ,

c(s) = [0, 0, 0]T , s = 0 ,

c(s) = [s, e−1/s2
, 0]T , s ∈ (0, 3].

(36)

The beam has a total length of 5.50 m, with a square cross section of side 0.2 m (see Fig. 8). The material is the
same used in the previous case whose parameters are reported in Table 2. The beam is loaded with two tip forces
11
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Fig. 6. 90◦ circular arch: tip loads time histories. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. 90◦ circular arch subjected to tip forces and couples.

Table 2
90◦ circular arch: mechanical properties selected from [109].

Eα [N/m2] τα [s]

α = ∞ 1.419 × 109 –
α = 1 2.977 × 108 0.092
α = 2 6.363 × 107 0.981
α = 3 1.583 × 108 9.527
α = 4 1.811 × 108 94.318
α = 5 2.388 × 108 920.660
α = 6 2.780 × 108 8.998 × 103

α = 7 3.277 × 108 8.685 × 104

α = 8 3.228 × 108 8.514 × 105

α = 9 4.047 × 108 7.740 × 106
12
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Fig. 8. Spivak beam.

Fig. 9. Spivak beam results comparison.

along the x2 and the x3 axes, respectively (see Fig. 8(a)). The time history of the loads is shown in Fig. 8(b). Basis
unctions with p = 8 and n = 100 are used.

Also in this case, for the sake of verification only, the results are compared with Abaqus (B31 elements). Fig. 9
hows the comparison of the tip displacements. The viscous response is very well captured during the time intervals
hen the loads remain constant. The deformed configuration at t = 3 s is shown in Fig. 10.

.6. Lissajous beam

The Lissajous beam is another geometrically challenging case useful to test the capabilities to model vis-
oelastic beams with repeated strong curvatures variations. The initial beam axis is defined by the curve c(s) =
13
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Fig. 10. Spivak beam clamped at one end and subjected to tip forces along x2-axis and x3-axis: undeformed configuration (shaded gray)
deformed configuration after 3 s (solid gray).

Fig. 11. Lissajous beam.

[cos(3s), sin(2s), sin(7s)]T with s ∈ [−π/3, π/3] (see Fig. 11). The beam has a circular cross section of diameter
0.12 m. The viscoelastic material is represented by one Maxwell element with parameters shown in Table 3. A
constant Poisson ratio ν = 0.4 is assumed. These material properties are selected from those of the Polylactic acid
(PLA) studied in [18].
14
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Fig. 12. Selected snapshots of the complex deformation of the Lissajous beam.

Table 3
Mechanical properties of PLA modeled with a single
Maxwell element [18].

Eα [N/m2] τα [s]

α = ∞ 2.80 × 105 –
α = 1 3.61 × 107 0.2

The beam is clamped at one end and is loaded at its tip with a negative couple in the x3 direction and a positive
force in the x1 direction (see Figs. 11(b) and 11(c)).

The test is carried with n = 100 and p = 8. The total simulation time is 4 s with a time step dt = 1 × 10−3 s.
15
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Fig. 13. Twisting of a planar net made of curved cell elements.

Results are reported in Fig. 12 (left column: perspective views, right column: top views). Figs. 12(a) and 12(b)
show the deformed beam configuration at the end of the ramp of the concentrated moment M3 (t = 1.33 s). The beam
ends to twist around x3-axis with respect to its clamped end. Figs. 12(c) and 12(d) show the beam configuration
t t = 2.67 s, where it is noticeable the joint effect of F1 and M3 in straightening the beam. Moreover, it can also
e noticed the progressive twisting of the beam around x3-axis with respect to Figs. 12(a) and 12(b). The final
onfiguration is reported in Figs. 12(e) and 12(f). From t = 2.67 s to t = 4 s, both F1 and M3 are kept constant (see
igs. 11(b) and 11(c)), therefore the additional displacements, observable by comparing Fig. 12(e) with Fig. 12(c),
re completely ascribed to viscous effects.
16
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Fig. 14. Tubular net subjected to concentrated radial forces.

4.7. Planar and tubolar nets with curved cell elements

In the last numerical tests, we address the cases of complex multi-patch structures whose cells are made of curved
beam elements. We first consider the case of a planar net and then a cylindrical one (see Figs. 13 and 14). For both
cases, the same material of the Lissajous beam is employed with a circular cross section of radius 0.65 mm.

The planar net (Fig. 13) is composed by 36 patches forming a network of 13 closed curved cells (see bottom left
f Fig. 13(a)). The centroid line of each patch is a curve described by c(s) = [1.5s, −1k sin(s−π/2)+2(k−1), 0]T,
ith s ∈ [( j − 1)π, jπ ], where k = 1, 2, . . . , n1 represents the number of subdivisions in the x1-direction and

j = 1, 2, . . . , n2 the subdivisions in the x2-direction. Each patch is discretized with basis functions with p = 8
nd n = 35. The structure is clamped at one end it is loaded with concentrated couples along the x1-axis along the
pposite side. These couples collectively increase linearly from 0 s to 6 s, then they remain constant until 8 s (see
ig. 13(c)).

The second structure is a tubular net (see Fig. 14) consisting in 48 patches connected together to form 12 helical
ires. Each patch is described, in a polar coordinate system with ϑ ∈ [0, π], by the following curve

c(s) = [(R + r cos(ϑnw)) cos(ϑ), (R + r cos(ϑnw)) sin(ϑ), Rϑ tan(π/6)]T , (37)

here nw = 4 denotes the number of patch per wire, while R = 4 × 10−2 m and r = 6.5 × 10−4 m are the outer
adius of the tube and the radius of the wires, respectively. Each patch is discretized with basis functions with p = 8
nd n = 20. The beams system is clamped at both ends and loaded by concentrated radial forces at the nodes of
he central section (see Fig. 14). The loads are applied with a linear ramp for 1.15 s, and then kept constant at 1 N
ntil the end of the simulation. The simulation time is 6 s, with dt = 5 × 10−2 s.

Results for the planar net are reported in Figs. 15 and 16 for t = 2 s, 4 s, 6 s, and 8 s. Significant viscous
eformations are noticeable from t = 6 s to t = 8 s, that lead to the complete twist of the net with rotations larger

han π (see Figs. 16(c) and 16(d)).

17
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Fig. 15. Planar net: 3D views of the deformed shape at different time instants.

Fig. 17 shows snapshots of the deformation of the tubular net for t = 1.15 s, 3.00 s, and 6.00 s. Different lateral
views are shown in Figs. 17(a)–17(f), whereas top views are shown in Figs. 17(g)–17(i). The net is locally expanded
due to the radial forces and increases its radius of about the 40%.

5. Conclusions

Motivated by the growing demand for fast and accurate simulation tools for materials and objects with

architectured inner structures, in this paper we proposed an efficient high-order formulation for geometrically

18
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Fig. 16. Planar net: plane views of the deformed shape at different time instants.

exact viscoelastic beams. Linear viscoelasticity is modeled employing the generalized Maxwell model for one-
dimensional solids. Very high efficiency is achieved by combining a number of key features. Firstly, the formulation

is displacement-based, meaning that the minimal number of equations and unknowns are required. Secondly, for
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Fig. 17. Tubular net: views of the deformed shape at different time instants.

the spatial discretization we adopted the isogeometric collocation method, which allows to bypass integration over
the elements and requires only one point evaluation per unknown. Thirdly, finite rotations are updated using the
incremental rotation vector, leading to two main benefits: minimum number of rotation unknowns (namely the three
components of the incremental rotation vector) and no singularity problems. Moreover, the formulation has two
remarkable advantages: the same SO(3)-consistent linearization of the governing equations and update procedures
as for static or dynamic with linear elastic rate-independent materials can be directly used, and the standard second-
order accurate trapezoidal rule for time integration turned out to be consistent with the underlying geometric
structure of the kinematic problem. High-order space accuracy is obtained exploiting the IGA attributes, especially
the tunable smoothness of the basis functions, the ability to accurately reconstruct complex initial geometries,
and the k-refinement. Through a number of numerical applications, we demonstrated all the expected features,
in particular the high-order accuracy and the robustness in managing arbitrarily complex three-dimensional beam or
beams system. In our opinion, the present work opens interesting perspectives towards more efficient simulations of
programmable objects, with applications for example to patient-tailored biomedical devices such as cardiovascular
stents. Next developments may include, among others, the extension of the formulation to other material models
based on internal variables, modeling thermo-responsive materials and, from the kinematic point of view, removing

the assumption of rigid beam cross sections.
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[27] G. Jelenić, M. Crisfield, Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and

dynamics, Comput. Methods Appl. Mech. Engrg. 171 (1–2) (1999) 141–171.
[28] I. Romero, F. Armero, An objective finite element approximation of the kinematics of geometrically exact rods and its use in the

formulation of an energy-momentum conserving scheme in dynamics, Internat. J. Numer. Methods Engrg. 54 (12) (2002) 1683–1716.
[29] I. Romero, The interpolation of rotations and its application to finite element models of geometrically exact rods, Comput. Mech. 34

(2) (2004) 121–133.
[30] M. Ritto-Correa, D. Camotim, On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization

of Reissner-Simo beam theory, Internat. J. Numer. Methods Engrg. 55 (9) (2002) 1005–1032.
[31] P. Betsch, P. Steinmann, Frame-indifferent beam finite elements based upon the geometrically exact beam theory, Internat. J. Numer.

Methods Engrg. 54 (12) (2002) 1775–1788.
[32] D. Magisano, L. Leonetti, A. Madeo, G. Garcea, A large rotation finite element analysis of 3D beams by incremental rotation vector

and exact strain measure with all the desirable features, Comput. Methods Appl. Mech. Engrg. 361 (2020) 112811.
[33] D. Magisano, L. Leonetti, G. Garcea, Isogeometric analysis of 3D beams for arbitrarily large rotations: Locking-free and

path-independent solution without displacement DOFs inside the patch, Comput. Methods Appl. Mech. Engrg. 373 (2021) 113437.
[34] D. Vo, P. Nanakorn, T.Q. Bui, Geometrically nonlinear multi-patch isogeometric analysis of spatial Euler–Bernoulli beam structures,

Comput. Methods Appl. Mech. Engrg. 380 (2021) 113808.
[35] L. Greco, M. Cuomo, D. Castello, A. Scrofani, An updated Lagrangian Bézier finite element formulation for the analysis of slender

beams, Math. Mech. Solids 27 (10) (2022) 2110–2138.
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