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The paper introduces the HD(1), a Markovian process of order one with reversion rates that are faster the farther 
the process is from equilibrium. The aHD(1) approximation is introduced to allow for an estimation-calibration 
procedure based on available ARMA routines. Critical values of unit root tests with aHD(1) alternative are 
tabulated for the signed likelihood-ratio statistic. Revisiting the non-stationarity of interest rates stylized fact, 
the aHD(1) is found to be preferred to ARMA, SETAR and RCA and the resulting tests to reject the unit root 
hypothesis for all rates and yields considered.
1. Introduction

Since Rose (1988), which identifies interest rates as being non-

stationary I(1) processes, Campbell and Shiller (1991) found evidence 
of cointegration among spreads at different maturities, and Hall et al. 
(1992) established that a common non-stationary factor underlies the 
evolution of various (cointegrating) yields to maturity. However, the 
non-stationarity of interest rates, which consolidated into an empiri-

cal stylized fact,1 stands in contrast with the observation that returns 
on other assets (e.g. equities) are stationary. A similar discrepancy 
arises in economic and financial models where interest rates determine 
equilibria jointly with stationary variables (e.g. consumption growth 
rate). Clearly, knowledge of the stationarity of the interest rate, or lack 
thereof, is crucial for the subsequent modeling of its dynamics. This in-

cludes whether a stationary VAR (as in Sarno et al., 2007) or a VECM 
(as in Sarno et al., 2006) is employed and the validity of the ensuing 
findings.

While certain studies have imposed tout court stationarity on in-

terest rates (e.g. Bekaert and Hodrick, 2001 and Shapiro and Watson, 
1998), others have explored alternative tests that discriminate between 
stationarity and non-stationarity based on how quickly processes or 
their variances diverge such as the KPSS test by Kwiatkowski et al. 

E-mail address: alessandro.palandri@unifi.it.
1 Corroborative evidence supporting interest rates non-stationarity is also found in the macroeconomics literature, for example, in MacDonald and Murphy (1989), 

(1992) and the random coefficient tests by Distaso (2008), Nagakura 
(2009) and Horváth and Trapani (2019). Nevertheless, the outcomes 
of these testing procedures do not alter the fact that, when taken to 
the data, existing models do not exhibit mean-reversion. Further efforts 
to reconcile theory and observations have investigated whether mean-

reverting specifications of the alternative, beyond standard ARMA mod-

els, may provide more accurate descriptions of interest rate dynamics 
and, as a result, lead to the rejection of the I(1) hypothesis. In par-

ticular, motivated by considerations such as transaction costs, market 
frictions and liquidity constraints, Balke and Fomby (1997), Enders and 
Granger (1998), and Caner and Hansen (2001) investigate threshold er-

ror correction specifications of the alternative. Anderson (1997) adds 
the smooth error correction model of Granger and Teräsvirta (1993) to 
the analysis while Gray (1996) and Bansal and Zhou (2002) introduce 
regime switching models of the interest rate.

Overall, the prevailing literature aligns in asserting that, if interest 
rates are indeed stationary, identifying an accurate specification of their 
reversion to equilibrium is essential to reconcile the dissonance between 
the theoretical I(0) and the apparent experimental I(1) behavior. Con-

sequently, the pursuit is directed towards reversion mechanisms to the 
long-run equilibrium other than the geometric reversion found in ARMA 
models. A readily available alternative to ARMA is provided by station-
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ary ARFIMA processes,2 which allow for a slower hyperbolic reversion 
and long-memory,3 Hosking (1981). Efforts to extend reversion or error-

correction beyond linear4 have resulted in the threshold autoregressive 
(TAR) and the self-exciting TAR (SETAR) models. While TAR processes 
are globally stationary, they alternate between unit root dynamics and 
reversion to the equilibrium, depending on the value attained by the 
process with respect to the threshold. However, from a financial mod-

eling perspective, it must be acknowledged that TAR models depict a 
scenario where equilibrium forces (profitability, arbitrage, speculative 
behavior, etc.) remain dormant in the central regime but are fully acti-

vated once the system crosses the threshold.

This paper presents the hyperbolic decay HD(1), a Markovian pro-

cess of order one characterized by the geometric decay of autocorre-

lations (no long-memory) and hyperbolic reversion to equilibrium. In 
other words, it exhibits a non-linear error-correction devoid of thresh-

olds and the ensuing abrupt changes in dynamics. More specifically, the 
reversion speed of the HD(1) is negligible near the equilibrium (almost 
indistinguishable from a unit root process), accelerates as the distance 
increases, and reaches its maximum speed (similar to that of a seri-

ally uncorrelated process) at infinity. Notably, an HD(1) at infinity in 
time 𝑡 will take on a finite value in 𝑡 + 1, determined by the sum of 
the deterministic component and the contemporaneous innovation. This 
unique feature distinguishes the HD(1) from the autoregressive compo-

nents of ARMA, ARFIMA, SETAR and random coefficient autoregressive 
(RCA) specifications, where the process, once at infinity, remains at in-

finity. A first-order approximation of the HD(1), denoted as aHD(1), 
is introduced to allow for parameter estimation via any econometric 
and statistical software package. The aHD(1), nesting the AR(1), readily 
accommodates the inclusion of AR and MA terms, thereby encompass-

ing both stationary and non-stationary ARMA processes. This flexibility 
extends to the generalization of Dickey and Fuller (1979, 1981) ADF 
tests, aiming to detect unit roots in an environment where the model 
under the alternative hypothesis is a stationary aHD(1) characterized 
by location-dependent speed of reversion. Critical values for both non-

trending and trending processes are tabulated from 108 Monte Carlo 
simulations.

The empirical study tests for the presence of unit roots in selected 
Treasury Bill rates and long term Government Bond yields under ARMA, 
SETAR, RCA and aHD(1) specifications of the stationary alternative. 
The results show that among the nine rates and yields considered, 
ARMA provides the best data description (as measured by the Bayes In-

formation Criterion) in only one instance (10-year Bond of Germany), 
SETAR is optimal in one instance (10-year Bond of Australia), and 
aHD(1) outperforms in seven instances. Overall, the I(1) hypothesis is 
rejected for six of the nine series considered: by aHD(1) in five cases and 
in SETAR in one case. Furthermore, the aHD(1) modeling of the spreads 
between the apparent I(1) yields and appropriate I(0) benchmark yields, 
allows to reject the unit root hypothesis for the three remaining bonds.

The paper is organized as follows. Section 2 presents the HD(1) pro-

cess along with its properties, accompanied by a simulation study focus-

2 Defining fractional differencing as (1 − 𝐿)𝑑 =
∑∞

𝑖=0
(𝑑
𝑖

)
(−𝐿)𝑖, where 

(𝑑
𝑖

)
is 

the binomial coefficient and 𝐿 the lag-operator, stationarity requires a frac-

tional integration parameter |𝑑| < 0.5, see Granger and Joyeux (1980).
3 Long-memory is defined from the summability of the absolute value of the 

autocorrelations 𝜌𝑗 : lim𝑛→∞
∑𝑛

𝑗=−𝑛 |𝜌𝑗 | →∞. Estimation of the differencing pa-

rameter 𝑑, which captures the long-memory structure, requires long time series 
of observations due to non-negligible autocorrelations even at large lags. For an 
exact maximum-likelihood approach see Sowell (1992) while for some semi-

parametric approaches see Geweke and Porter-Hudak (1983) and Robinson 
(1995), among others. For a survey of long-memory models see Baillie (1996).

4 Examples where larger rates of reversion are associated to larger deviations 
from equilibrium include purchasing power parity (Sercu et al., 1995, Michael 
et al., 1997 and Taylor, 2001), output growth (Pesaran and Potter, 1997), ar-

bitrage (Anderson, 1997), term structure of interest rates (Enders and Granger, 
2

1998) and prices (Lo and Zivot, 2001), among others.
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ing on reversion to equilibrium. Section 3 introduces both no-trend and 
trend versions of the aHD(1), proposes a two-step estimation-calibration 
procedure of model parameters, derives the limiting distributions of the 
signed likelihood-ratio statistics for unit root testing and tabulates the 
corresponding non-standard critical values. The empirical study, inves-

tigating the stationarity of selected Treasury Bill rates and long term 
Government Bond yields, is presented in Section 4. Section 5 concludes.

2. The HD(1) process

The HD(1) is an iterated random process with parameters (𝛼, 𝜅) ∈
(0, +∞), 𝜈 ∈ (0, 1] and additive i.i.d. innovations 𝜀𝑡+1 ∼ (0, 𝜎2

𝜀
):

𝑦𝑡+1 = 𝑔(𝑦𝑡) + 𝜀𝑡+1 (1)

𝑔(𝑦𝑡) = 𝑆𝑡 ⋅
[
𝜅−1∕𝛼 + 𝜈−1∕𝛼 ⋅ |𝑦𝑡|−1∕𝛼]−𝛼

where 𝑆𝑡 = {−1, +1} is the sign of 𝑦𝑡. The following properties are es-

tablished:

1. The HD(1) is ergodic. Isolating the effects of the innovations 𝜀𝑡+1, 
for the resulting recursive deterministic process 𝑦𝑡+1 = 𝑔(𝑦𝑡) it holds 
that |𝑦𝑡+1|−1∕𝛼 = 𝜅−1∕𝛼 + 𝜈−1∕𝛼|𝑦𝑡|−1∕𝛼 . Given that the autoregres-

sive coefficient 𝜈−1∕𝛼 is no less than unity, it follows that |𝑦𝑡+1|−1∕𝛼
is explosive (|𝑦∞|−1∕𝛼 →∞), which implies that |𝑦∞| → 0. Hence, 
zero is the unique fixed point.5 Since 𝑔′(|𝑦𝑡|) < 𝜈 ≤ 1, the domain 
of attraction of 𝑔 covers the entire Euclidean space, thereby meet-

ing the absorbing requirements outlined in assumptions (A1)-(A5) 
of Theorem 3.3.2 of Chan and Tong (2001) for ergodicity and sta-

tionarity.

Furthermore, as sup𝑦≠𝑦′
‖𝑔(𝑦)−𝑔(𝑦′)‖𝑝|𝑦−𝑦′| < 𝜈, it follows that for 𝜈 ∈

(0, 1], the HD(1) meets the criteria outlined in Theorem 2.1 in 
Berkes et al. (2014), which extends Komlós-Major-Tusnády results 
to dependent sequences. The proof is provided in Appendix A.

2. Unlike autoregressive processes, for which 𝑦𝑡 = ±∞ is inevitably 
followed by 𝑦𝑡+1 = ±∞, the HD(1) re-enters the set of finite values 
at 𝑦𝑡+1 = ±𝜅 within a single period. The re-entry values ±𝜅 bear 
a resemblance to the technical analysis concepts of support and re-
sistance. In the context of the stochastic equation (1), the value −𝜅
can be viewed as the support, with a high probability of 𝑦𝑡+1 re-

bounding, while 𝜅 serves as a resistance, with a high probability of 
𝑦𝑡+1 turning downward.6 Notably, as 𝜅 → 0, the HD(1) converges 
towards a white noise process while as 𝜅 →∞ it converges to an 
AR(1) with coefficient 𝜈.

3. The HD(1) exhibits hyperbolic rates of reversion to equilibrium. 
Consider ℎ-iterations of 𝑔:

𝑔ℎ(𝑦𝑡) =

[
𝜈−ℎ∕𝛼 − 1
𝜈−1∕𝛼 − 1

⋅
(|𝑦𝑡|

𝜅

)1∕𝛼
+ 𝜈−ℎ∕𝛼

]−𝛼

𝑦𝑡 (2)

When 𝜈 = 1 and |𝑦𝑡| = 𝜅, equation (2) simplifies to 𝑔ℎ(𝑦𝑡) =
(ℎ+ 1)−𝛼 𝑦𝑡, which characterizes the 𝛼-hyperbolic reversion of the 
process from 𝜅 to zero. For instance, it behaves hyperbolically with 
𝛼 = 1, quadratically hyperbolic with 𝛼 = 2, etc. The presence of 

5 Interestingly, when 𝜈 ∈ (1, +∞), the fixed point 𝑦∗ = 0 becomes repulsive 
and two fixed points emerge: 𝑦∗ = −(1 − 𝜈−1∕𝛼)𝛼 ⋅ 𝜅 and 𝑦∗ = (1 − 𝜈−1∕𝛼)𝛼 ⋅ 𝜅. 
These new fixed points act as attractors within the ranges (−∞, 0) and (0, +∞), 
respectively. Therefore, when the variance of the innovations 𝜀𝑡+1 is non-

negligible compared to 2(1 − 𝜈−1∕𝛼)𝛼𝜅, the process will transition randomly 
between the two regions of attraction, giving rise to 𝑦𝑡+1 trajectories resem-

bling those of a regime switching model. However, this specific feature of the 
HD(1) will not be discussed further in this context.

6 In the case of the HD(1) and AR(1) processes shown in Fig. 1, when 𝑦𝑡
reaches the support −𝜅, the probability ℙ(𝑦𝑡+1 > −𝜅) is nearly indistinguishable 
from unity (1 −8.9 ⋅10−16) for the HD(1) while it stands at 0.5526 for the AR(1). 

The same probabilities apply to ℙ(𝑦𝑡+1 < 𝜅) when 𝑦𝑡 reaches the resistance 𝜅.
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Fig. 1. Time-series trajectory of the HD(1) process with parameter values of 
(𝛼 = 0.25, 𝜅 = 50, 𝜈 = 1) in black, AR(1) with parameter 0.997357 to match the 
lag-1 autocorrelation of the HD(1) in blue and Random Walk in red.

|𝑦𝑡| within the square brackets of (2) results in a faster rate of 
reversion to equilibrium for larger initial values |𝑦𝑡|, in contrast 
to standard autoregressive models. Fig. 2 shows the hyperbolic 
reversion to equilibrium for an HD(1) process with parameters 
(𝛼 = 0.5, 𝜅 = 4, 𝜈 = 1) alongside the geometric reversion of an AR(1) 
with identical initial decay.

4. The rate at which the HD(1) reverts to equilibrium is influenced by 
all model parameters. By examining the sign of the derivatives, as 
detailed in Appendix B, for 𝑔ℎ(𝑦𝑡) in (2) with respect to 𝛼, 𝜅 and 𝜈:

i. 𝜕|𝑔ℎ(𝑦𝑡)|∕𝜕𝛼 < 0 indicates that larger values of 𝛼 correspond 
to smaller values of |𝑦𝑡+ℎ|, which represent positions closer to 
equilibrium, as illustrated in Fig. 2b. Thus, a direct relationship 
exists between the magnitude of 𝛼 and the rate of reversion 
(e.g. quadratic hyperbolic with 𝛼 = 2 reverts faster than hyper-

bolic with 𝛼 = 1).

ii. 𝜕|𝑔ℎ(𝑦𝑡)|∕𝜕𝜅 > 0 implies an indirect relationship between 𝜅
and the rate of reversion, as shown by the comparisons of 
Figs. 2c and 2b. It is noteworthy that lim𝜅→∞ 𝑔(𝑦𝑡) = 𝜈 ⋅𝑦𝑡 repre-

sents the deterministic component of an AR(1) with coefficient 
𝜈, whereas lim𝜅→0 𝑔(𝑦𝑡) = 0 is the deterministic component of 
an i.i.d. process.

iii. 𝜕|𝑔ℎ(𝑦𝑡)|∕𝜕𝜈 > 0 signifies that smaller 𝜈 values lead to faster 
rates of reversion to equilibrium, as conveyed by the compari-

son of Figs. 2c and 2d. Notably when 𝜈 < 1, the rate of reversion 
exceeds that of an 𝛼-hyperbolic process.

5. The derivatives of |𝑔ℎ(𝑦𝑡)| w.r.t. the model parameters, where |𝑔ℎ(𝑦𝑡)| measures the distance of the process from equilibrium, 
allow to establish that for the HD(1) lag-1 autocorrelation 𝜌, the 
following relationships hold: 𝜕𝜌∕𝜕𝛼 < 0, 𝜕𝜌∕𝜕𝜅 > 0 and 𝜕𝜌∕𝜕𝜈 > 0.

6. Scaling (change of variance) of the HD(1) process is achieved by 
the simultaneous scaling of the innovations variance (same as for 
ARMA processes) and the parameter 𝜅. Letting 𝑐 > 0 and 𝑦̃𝑡 = 𝑐 ⋅ 𝑦𝑡
for every 𝑡, equation (1) may be rewritten as:

𝑦̃𝑡+1 = 𝑆𝑡 ⋅
[
(𝑐𝜅)−1∕𝛼 + 𝜈−1∕𝛼 ⋅ |𝑦̃𝑡|−1∕𝛼]−𝛼 + 𝑐 ⋅ 𝜀𝑡+1

7. The impact on HD(1) dynamics of increasing (decreasing) the in-

novation variance 𝜎2𝜀 is analogous to decreasing (increasing) the 
parameter 𝜅 while keeping the variance constant. Without loss 
of generality, assume 𝑐 > 1 and consider the following three pro-

cesses:

𝑦𝑡+1 = 𝑆𝑡 ⋅
[
𝜅−1∕𝛼 + 𝜈−1∕𝛼 ⋅ |𝑦𝑡|−1∕𝛼]−𝛼 + 𝜀𝑡+1 (3)

𝑦𝑡+1 = 𝑆𝑡 ⋅
[
𝜅−1∕𝛼 + 𝜈−1∕𝛼 ⋅ |𝑦𝑡|−1∕𝛼]−𝛼 + 𝑐 ⋅ 𝜀𝑡+1 (4)

𝑦𝑡+1 = 𝑆𝑡 ⋅
[
(𝑐𝜅)−1∕𝛼 + 𝜈−1∕𝛼 ⋅ |𝑦𝑡|−1∕𝛼]−𝛼 + 𝑐 ⋅ 𝜀𝑡+1 (5)

Given that, apart from the variance, (3) and (5) exhibit identical 
dynamic properties, including autocorrelations and relative speeds 
3

of reversion, the distinctions in the characteristics of (3) and (4) are 
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analogous to those between (4) and (5). Since (4) can be viewed 
as a version of (5) with a smaller 𝜅 coefficient, it establishes an 
inverse relationship between 𝜅 and the variance of innovations 𝜎2𝜀
concerning process dynamics.

8. The lag-1 autocorrelation 𝜌 of the HD(1) exhibits an inverse rela-

tionship with the innovation variance 𝜎2
𝜀
. The inverse relationship, 

discussed in 7., between 𝜅 and 𝜎2𝜀 , along with 𝜕𝜌∕𝜕𝜅 > 0, de-

rived in 5., implies that changes in 𝜎2𝜀 affect 𝜌 in the direction 
of 𝜕𝜌∕𝜕𝜎2𝜀 < 0. In Fig. 3, the relationship 𝜕𝜌∕𝜕𝜎2𝜀 < 0 is illustrated 
by the comparison of the left and right panels. In the left panels, 
where 𝜎2𝜀 is smaller, 𝜌 is larger, leading to slower convergence to 
equilibrium for the AR(1) processes with parameter 𝜌.

9. The HD(1) may be interpreted as an AR(1) with location-dependent 
autoregressive coefficient:

𝑦𝑡+1 = 𝜈 ⋅
[
1 +

(
𝜈

𝜅

)1∕𝛼
⋅ |𝑦𝑡|1∕𝛼]−𝛼 ⋅ 𝑦𝑡 + 𝜀𝑡+1

The maximum 𝜈 of the autoregressive coefficient is attained when 
𝑦𝑡 = 0, while the minimum of 0 occurs as 𝑦𝑡 → ±∞. Consequently, 
the correction is negligible, resembling a random walk, when the 
process is near the equilibrium. As the magnitude of the deviation 
increases, the correction steadily intensifies, reaching full correc-

tion, akin to white noise behavior, as the disequilibrium diverges to 
±∞. This property is illustrated in Fig. 1, which compares the time-

series trajectories, driven by the same innovations, of an HD(1) 
with parameters (𝛼 = 0.25, 𝜅 = 50, 𝜈 = 1), an AR(1) with matching 
lag-1 autocorrelation of 0.997357, and a Random Walk. It is evi-

dent that the HD(1) exhibits faster reversion than the AR(1) when 
the processes are far from equilibrium (range of realizations 1250-

1750). Conversely, the reversion of the HD(1) is slower than that 
of the AR(1) when the processes are near the equilibrium (range of 
realizations 1750-2000).

10. The HD(1) has 1-step-ahead forecasts 𝔼𝑡[𝑦𝑡+1] = 𝑆𝑡

[
𝜅−1∕𝛼 +

𝜈−1∕𝛼|𝑦𝑡|−1∕𝛼]−𝛼 with location-dependent speed of reversion to 
equilibrium. When |𝑦𝑡| > (𝜌−1∕𝛼 − 𝜈−1∕𝛼)𝛼𝜅, where 𝜌 is the lag-1 
autocorrelation of the process, the HD(1) exhibits a faster reversion 
compared to an AR(1) with parameter 𝜌. In Fig. 3, as indicated by 
the derived threshold, it is observed that when |𝑦𝑡| is greater (less) 
than 12 when 𝜌 = 0.9992 or 17.5 when 𝜌 = 0.9963, HD(1) forecasts 
revert faster (slower) than those of the AR(1).

11. Calculating ℎ-step ahead forecasts of the HD(1), when ℎ > 1, en-

tails computing ℎ-dimensional integrals, which require knowledge 
of the distribution of the innovations. In the case of non-linear mod-

els like the HD(1), a common approach is to resample the residuals 
{𝜀̂𝜏}𝑡𝜏=0 to generate 𝑆 trajectories {𝑦𝑠

𝑡+𝑗}
ℎ
𝑗=2 for 𝑠 = 1, … , 𝑆 , and 

then estimate 𝔼𝑡[𝑦𝑡+𝑗 ] by averaging 𝑦𝑠
𝑡+𝑗 over 𝑠.

12. To a first-order approximation, the behavior of the ℎ-period fore-

casts is described by 𝑔ℎ(𝑦𝑡). Iterating 𝑦𝑡+ℎ = 𝑔(𝑦𝑡+ℎ−1) + 𝜀𝑡+ℎ back-

ward until time 𝑡, results in the expression 𝑦𝑡+ℎ = 𝜀𝑡+ℎ + 𝑔(𝜀𝑡+ℎ−1 +
𝑔(𝜀𝑡+ℎ−2 + 𝑔(⋯ + 𝑔(𝑦𝑡)) ⋯). A first-order Taylor expansion around 
𝜀𝑡+1 = 0, … , 𝜀𝑡+ℎ−1 = 0 gives:

𝑦𝑡+ℎ ≈ 𝑔ℎ(𝑦𝑡) + 𝜀𝑡+ℎ +
ℎ−1∑
𝑖=1

[
𝑖∏

𝑗=1
𝑔′(𝑔ℎ−𝑗 (𝑦𝑡))

]
⋅ 𝜀𝑡+ℎ−𝑖

and thus, 𝔼𝑡[𝑦𝑡+ℎ] ≈ 𝑔ℎ(𝑦𝑡). Building upon property 3., and observ-

ing that 𝑔ℎ(𝑦𝑡) = 𝑆𝑡 ⋅ 𝑔
ℎ(|𝑦𝑡|), it follows that as ℎ increases, the 

forecasts converge toward equilibrium, albeit at a decreasing rate.

13. The forecasts revert to equilibrium faster as the variance of the 
innovations increases, all else equal. From 4ii., which establishes 
that 𝜕|𝑔ℎ(𝑦𝑡)|∕𝜕𝜅 > 0, and 7., which outlines the inverse relation-

ship between 𝜅 and 𝜎2𝜀 , it follows that larger (smaller) values of 
𝜎2
𝜀

lead to forecasts converging faster (slower) to equilibrium. The 
comparison between the left and right panels of Fig. 3 exemplifies 
this relationship: larger values of 𝜎2𝜀 lead to faster reverting fore-
casts, whereas smaller values of 𝜎2𝜀 lead to slower reversion.
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Fig. 2. Panel 2a: HD(1) with parameters (𝛼 = 0.5, 𝜅 = 4, 𝜈 = 1) in black, and AR(1) with identical initial reversion in blue. Panels 2b-2d depict HD(1) reversions from 
𝑦0 = 2 for the triplet of parameters (𝛼, 𝜅, 𝜈) with 𝛼 = 0.25 in black, 𝛼 = 0.5 in blue, 𝛼 = 1 in red, 𝛼 = 2 in green and 𝛼 = 4 in magenta. Panel 2b: parameters set to 
(𝛼, 𝜅 = 1, 𝜈 = 1). Panel 2c: parameters set to (𝛼, 𝜅 = 4, 𝜈 = 1). Panel 2d: parameters set to (𝛼, 𝜅 = 4, 𝜈 = 0.9).
14. The HD(1) model in equation (1) can be extended to converge to 
the time-varying equilibrium 𝜇𝑡 ∈ ℝ by redefining 𝑆𝑡 = {−1, +1}
as the sign of (𝑦𝑡 − 𝜇𝑡) and specifying dynamics:

𝑦𝑡+1 = 𝜇𝑡+1 +𝑆𝑡 ⋅
[
𝜅−1∕𝛼 + 𝜈−1∕𝛼 ⋅ |𝑦𝑡 − 𝜇𝑡|−1∕𝛼]−𝛼 + 𝜀𝑡+1 (6)

15. Oscillatory reversion, analogous to that of an AR(1) with nega-

tive autoregressive coefficient, can be introduced defining 𝑆𝑡 =
{−1, +1} as the sign of (𝜇𝑡 − 𝑦𝑡).

16. Consistent estimates of the HD(1) parameters, along with standard 
asymptotic inference, can be obtained via quasi maximum likeli-

hood (see Gourieroux et al., 1984, among others) by specifying a 
Gaussian likelihood, regardless of the true distribution of the inno-

vations 𝜀𝑡+1.

17. Empirically, identification issues may arise for the HD(1) param-

eters (𝛼, 𝜅, 𝜈) when the data generating process exhibits simple 
autocorrelation structures. This challenge is substantiated by the 
presence of countless combinations of (𝛼, 𝜅, 𝜈) that result in 𝑦𝑡+1
dynamics differing only at the second-order level, as demonstrated 
in Appendix C. To address this, the econometrician may choose to 
constrain either 𝛼 or 𝜈. In particular, selecting 𝛼 is akin to defining 
a function that links the endogenous variable to its lag. This par-

allels the selection of a link function in the study of binary data, 
a decision made prior to estimation. Alternatively, the econometri-

cian can set 𝜈 = 1 to exclusively examine processes characterized by 
precisely 𝛼-hyperbolic rates of reversion to equilibrium (property 
3). With 𝜈 = 1, it is also possible to derive the aHD(1) approxima-

tion presented in Section 3, enabling parameter estimation using 
readily available ARMA routines.

3. The aHD(1) and unit root testing

The aHD(1) is a power-autoregressive specification that provides 
a first-order approximation to the HD(1) and its varying speed of re-

version to equilibrium. Besides reconnecting the salient features of the 
4

HD(1) to the familiar autoregressive structure, the aHD(1) presents a 
substantial operational advantage as it allows to model and test time-

series properties using ARMA routines that are readily available in every 
econometric and statistical software package.

Considering HD(1) processes in equation (6) with 𝛼-hyperbolic (𝜈 =
1) rates of reversion, we observe that as 𝜅−1∕𝛼 → 0, the HD(1) simplifies 
to a random-walk. A first-order Taylor expansion around the unit-root 
case 𝜅−1∕𝛼 = 0 results in:(
𝑦𝑡+1 − 𝜇𝑡+1

)
=
(
𝑦𝑡 − 𝜇𝑡

)
+ 𝜋

(
𝑦𝑡 − 𝜇𝑡

) |𝑦𝑡 − 𝜇𝑡|1∕𝛼 + 𝜀𝑡+1 (7)

where 𝜋 = −𝛼𝜅−1∕𝛼 < 0. In contrast to the error-correction represen-

tation of an AR(1), which is linear in (𝑦𝑡 − 𝜇𝑡), the aHD(1) exhibits 
a reversion which is faster (slower) when the process is distant from 
(close to) equilibrium. Specifically, the percentage offset of the dise-

quilibrium (Δ𝑦𝑡+1 − Δ𝜇𝑡+1)∕(𝑦𝑡 − 𝜇𝑡) is determined by 𝜋 ||𝑦𝑡 − 𝜇𝑡
||1∕𝛼 . 

At equilibrium, no correction occurs, akin to a random walk. How-

ever, as the deviation’s magnitude increases, the correction intensifies, 
eventually achieving complete offset resembling white noise behavior 
when ||𝑦𝑡 − 𝜇𝑡

||1∕𝛼 = −𝜋−1. Notably, unlike the HD(1) model, the aHD(1) 
can overshoot the correction to equilibrium when ||𝑦𝑡 − 𝜇𝑡

||1∕𝛼 > −𝜋−1. 
Conditions ensuring the stationarity of the aHD(1) in the event of over-

shoots and resulting oscillatory behavior are detailed in Appendix D.

3.1. Non-trending aHD(1)

The augmented aHD(1) that nests a non-trending unit root process 
is obtained by setting 𝜇𝑡+1 = 𝛿 for every 𝑡 in equation (7) and by adding 
stationary ARMA(p,q) components:

Δ𝑦𝑡+1 = 𝜋
(
𝑦𝑡 − 𝛿

) |𝑦𝑡 − 𝛿|1∕𝛼 + 𝑝∑
𝑖=1

𝜙𝑖Δ𝑦𝑡+1−𝑖 +
𝑞∑

𝑗=1
𝜃𝑗𝜀𝑡+1−𝑗 + 𝜀𝑡+1 (8)

which reduces to the usual augmented unit root specification for 𝜋 =
0. Furthermore, for 𝛼 → +∞ equation (8) converges to a standard 
ARMA(p,q) specification of the process under the alternative hypoth-
esis.
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Fig. 3. In black: time-series trajectories of the ℎ-period forecasts generated by the HD(1) model with parameter values (𝛼 = 0.25, 𝜅 = 50, 𝜈 = 1) and two different 
levels 𝜎2

𝜀
: 0.1 (left panels) and 1.0 (right panels). In blue: forecast trajectories of the AR(1) models with matching lag-1 autocorrelation coefficients 𝜌: 0.9992 (left 
5

panels) and 0.9963 (right panels). The forecasts, arranged from top to bottom, are conditioned on the initial 𝑦0 values of 40, 20, 10 and 5.
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3.2. Trending aHD(1)

The augmented aHD(1) that nests a trending unit root process is 
obtained by introducing a deterministic trend (𝛿+𝛾𝑡) in the equilibrium 
and by adding stationary ARMA(p,q) components:

Δ𝑦𝑡+1 = 𝛾 + 𝜋
(
𝑦𝑡 − 𝛿 − 𝛾𝑡

) |𝑦𝑡 − 𝛿 − 𝛾𝑡|1∕𝛼
+

𝑝∑
𝑖=1

𝜙𝑖Δ𝑦𝑡+1−𝑖 +
𝑞∑

𝑗=1
𝜃𝑗𝜀𝑡+1−𝑗 + 𝜀𝑡+1 (9)

which reduces to a unit root process with drift for 𝜋 = 0 and converges 
to a standard trend-stationary ARMA(p,q) for 𝛼 → +∞.

3.3. Estimation

In the aHD(1)models defined in of equations (8) and (9), unit root 
testing strictly follows the standard procedure of detecting positive unit 
roots only, owing to the prevalent positive autocorrelations observed 
in the time-series of interest. Given that the parameters in (8) and (9)

cannot be estimated jointly by readily available ARMA routines due to 
residual non-linearities, the estimation process will adopt a two-step 
procedure akin to the Engle and Granger (1987) approach to cointe-

gration. The long-run equilibrium is estimated in the first step and the 
resulting residuals are used in the second step to estimate the error-

correction specification. Some calibration of the 𝛼 parameter completes 
the proposed approach.

3.3.1. First-step

The first-step estimates the parameters of the long-run equilibrium 
(whether without or with trend) and generates the residuals 𝑢̂𝑡:

NO TREND ∶ 𝑦𝑡 = 𝛿 + 𝑢𝑡 → 𝑢̂𝑡 = 𝑦𝑡 − 𝛿 (10)

TREND ∶ 𝑦𝑡 = 𝛿 + 𝛾𝑡+ 𝑢𝑡 → 𝑢̂𝑡 = 𝑦𝑡 − 𝛿 − 𝛾̂ 𝑡 (11)

3.3.2. Second-step (conditional on 𝛼)

Conditional on some 𝛼 value, construct 𝑥𝑡(𝛼) ≡ 𝑢̂𝑡|𝑢̂𝑡|1∕𝛼 and esti-

mate the reversion parameter 𝜋 and the coefficients 𝜙𝑖 and 𝜃𝑗 using 
standard ARMA routines with exogenous regressors 𝑥𝑡(𝛼):

NO TREND ∶ Δ𝑦𝑡+1 = 𝜋𝑥𝑡(𝛼) +
∑𝑝

𝑖=1 𝜙𝑖Δ𝑦𝑡+1−𝑖 +
∑𝑞

𝑗=1 𝜃𝑗𝜀𝑡+!−𝑗
+ 𝜀𝑡+1

TREND ∶ (Δ𝑦𝑡+1 − 𝛾̂) = 𝜋𝑥𝑡(𝛼) +
∑𝑝

𝑖=1 𝜙𝑖Δ𝑦𝑡+1−𝑖 +
∑𝑞

𝑗=1 𝜃𝑗𝜀𝑡+1−𝑗
+ 𝜀𝑡+1

3.3.3. Poor man’s 𝛼 calibration

The two-step estimation procedure allows to estimate all aHD(1) 
model parameters, conditional on 𝛼. While the joint estimation of 𝛼 in 
the second step is also possible, it is not feasible using readily avail-

able ARMA routines. Therefore, the proposed poor man’s procedure 
focuses on a predetermined set of 𝛼 values including hyperbolic (𝛼 = 1), 
quadratic-hyperbolic (𝛼 = 2), quartic-hyperbolic (𝛼 = 4) and their recip-

rocals (𝛼 = 0.25 and 𝛼 = 0.5). The two-step estimation procedure is then 
carried out for each 𝛼 = {0.25, 0.5, 1, 2, 4} followed by the selection of 
the 𝛼 that maximizes the value of the log-likelihood.

Obviously, a calibrated 𝛼 will result in larger sums of squared 
residuals and lower log-likelihood values compared to those attainable 
through the estimation of the 𝛼 parameter. Therefore, in unit root test-

ing, rejecting the null hypothesis in favor of the alternative when 𝛼 is 
calibrated, implies rejecting the alternative with estimated 𝛼. On the 
other hand, failure to reject the null when 𝛼 is calibrated does not im-

ply it won’t be rejected if using the estimated 𝛼. In conclusion, adopting 
the poor man’s approach to the 𝛼 parameter leads to unit root tests with 
6

lower statistical power than those based on estimated 𝛼.
Journal of Banking and Finance 161 (2024) 107113

3.4. Asymptotics of I(1) testing

3.4.1. No-trend

Under the null, the data generating process is Δ𝑦𝑡+1 = 𝜀𝑡+1, with 
𝜀𝑡+1 ∼ 𝑁(0, 𝜎2𝜀 ). In the first step, the parameter 𝛿 of equation (10)

is estimated by 𝛿 = 𝑇 −1∑𝑇
𝑡=1 𝑦𝑡 for which 𝑇 −1∕2𝛿 → 𝜎𝜀 ∫ 1

0 𝑊 (𝑠)𝑑𝑠, 
where 𝑊 (𝑠) is a standard Brownian motion defined on 𝑠 ∈ [0,1]. 
For the resulting residuals 𝑢̂𝑡 = 𝑦𝑡 − 𝛿𝑡, it follows that 𝑇 −1∕2𝑢̂𝑡 →

𝜎𝜀

[
𝑊 (𝑟) − ∫ 1

0 𝑊 (𝑠)𝑑𝑠
]
. Restricting the attention to the specification 

without ARMA components and conditioning on 𝛼, the least-squares es-

timator 𝜋̂ of the reversion parameter 𝜋 is:

𝜋̂ = 𝜋 +
∑𝑇−1

𝑡=1 𝑢̂𝑡|𝑢̂𝑡|1∕𝛼Δ𝑦𝑡+1∑𝑇−1
𝑡=1 𝑢̂

2+2∕𝛼
𝑡

Under the alternative (𝜋 < 0) the process is stationary and 𝜋̂ ex-

hibits a standard rate of convergence 𝑇 1∕2 to 𝜋 and 𝑇 1∕2 (𝜋̂ − 𝜋)
converges in distribution to a Gaussian random variable. On the 
other hand, under the null (𝜋 = 0) the process is non-stationary with 
𝑇 −1−1∕2𝛼∑𝑇−1

𝑡=1 𝑢̂𝑡|𝑢̂𝑡|1∕𝛼Δ𝑦𝑡+1 → 𝜎
2+1∕𝛼
𝜀 𝑍1 and 𝑇 −2−1∕𝛼∑𝑇−1

𝑡=1 𝑢̂
2+2∕𝛼
𝑡 →

𝜎
2+2∕𝛼
𝜀 𝑍2, where:

𝑍1 =

1

∫
0

⎛⎜⎜⎝𝑊 (𝑟) −

1

∫
0

𝑊 (𝑠)𝑑𝑠
⎞⎟⎟⎠ ⋅
|||||||𝑊 (𝑟) −

1

∫
0

𝑊 (𝑠)𝑑𝑠
|||||||
1∕𝛼

𝑑𝑊 (𝑟)

𝑍2 =

1

∫
0

⎛⎜⎜⎝𝑊 (𝑟) −

1

∫
0

𝑊 (𝑠)𝑑𝑠
⎞⎟⎟⎠
2+2∕𝛼

𝑑𝑟

Since 𝑇 −1−1∕2𝛼𝜋̂ → 𝜎
−1∕𝛼
𝜀 𝑍1𝑍

−1
2 , it follows that 𝜋̂ converges to zero at 

the rate 𝑇 1+1∕2𝛼 , which is faster than the rate 𝑇 of the error-correction 
in ARMA and SETAR models. The t-statistic 𝑡𝜋=0 of the unit root 
test converges to the non-standard distribution 𝑍1𝑍

−1∕2
2 . The signed 

likelihood-ratio test, henceforth 𝐿𝑅, which compares the unconstrained

Gaussian log-likelihood 𝑙𝑢 of the aHD(1) of equation (8) to the con-

strained log-likelihood 𝑙𝑐 of the I(1) processes resulting from 𝜋 = 0 has 
the same asymptotic distribution:

𝐿𝑅𝜋=0 ≡ sign(𝜋̂) ⋅
√

2
(
𝑙𝑢 − 𝑙𝑐

)
→𝑍1𝑍

−1∕2
2

3.4.2. Trend

The data generating process under the null, Δ𝑦𝑡+1 = 𝛿 + 𝜀𝑡+1 with 
𝜀𝑡+1 ∼𝑁(0, 𝜎2

𝜀
), may be rewritten as 𝑦𝑡 = 𝑦0+𝛿𝑡 +𝜂𝑡, where 𝜂𝑡 =

∑𝑡
𝑖=1 𝜀𝑡. 

In the first step, the parameters 𝛿 and 𝛾 of 𝑦𝑡 = 𝛿 + 𝛾𝑡 + 𝑢𝑡, in equation 
(10), are jointly estimated:[
𝛿 − 𝑦0
𝛾̂ − 𝛿

]
=
[

𝑇
∑𝑇

𝑡=1 𝑡∑𝑇
𝑡=1 𝑡

∑𝑇
𝑡=1 𝑡

2

]−1 [ ∑𝑇
𝑡=1 𝜂𝑡∑𝑇

𝑡=1 𝑡 ⋅ 𝜂𝑡

]
It follows that 𝑇 −1∕2(𝛿 − 𝑦0) → 4𝜎𝜀𝑍3 − 6𝜎𝜀𝑍4 and 𝑇 1∕2(𝛾̂ − 𝛿) →
−6𝜎𝜀𝑍3 + 12𝜎𝜀𝑍4, with 𝑍3 = ∫ 1

0 𝑊 (𝑠)𝑑𝑠 and 𝑍4 = ∫ 1
0 𝑠𝑊 (𝑠)𝑑𝑠. The 

regression residuals may be rewritten as 𝑢̂𝑡 = 𝜂𝑡 − (𝛿 − 𝑦0) − (𝛾̂ − 𝛿)𝑡, 
from which it follows that 𝑇 −1∕2𝑢̂𝑡 → 𝜎𝜀𝜓(𝑟), where 𝜓(𝑟) = 𝑊 (𝑟) −
4𝑍3 +6𝑍4 +𝑟(6𝑍3 −12𝑍4). Restricting the attention to the specification 
without ARMA components and conditioning on 𝛼, the least-squares es-

timator 𝜋̂ is given by:

𝜋̂ = 𝜋 +
∑𝑇−1

𝑡=1 𝑢̂𝑡|𝑢̂𝑡|1∕𝛼Δ𝑢̂𝑡+1∑𝑇−1
𝑡=1 𝑢̂

2+2∕𝛼
𝑡

where Δ𝑢̂𝑡+1 = Δ𝑦𝑡+1 − 𝛾̂ . Under the alternative (𝜋 < 0) the process is 
trend-stationary and 𝜋̂ exhibits a standard rate of convergence 𝑇 1∕2

to 𝜋 and 𝑇 1∕2 (𝜋̂ − 𝜋) converges in distribution to a Gaussian ran-
dom variable. On the other hand, under the null 𝜋 = 0 the process 
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Table 1

NO TREND critical values of the signed likelihood-ratio test in 3.4.1 with null 𝐻0 ∶ 𝜋 = 0 in Δ𝑦𝑡+1 = 𝜋𝑥𝑡(𝛼) +
∑𝑝

𝑖=1 𝜙𝑖Δ𝑦𝑡+1−𝑖 +
∑𝑞

𝑗=1 𝜃𝑗𝜀𝑡+1−𝑗 + 𝜀𝑡+1, where 𝑥𝑡(𝛼) ≡
𝑢̂𝑡|𝑢̂𝑡|1∕𝛼 is calculated from the first-step regression residuals 𝑢̂𝑡 = 𝑦𝑡 − 𝛿. RAW column reports critical values estimated over 108 Monte Carlo simulations. FITTED

column reports fitted values 𝑐 from the regression function 𝑐 = 𝑎 + 𝑏𝑇 −1 where 𝑐 are the RAW critical values and 𝑇 are the sample sizes. Asymptotic values (𝑇 =∞) 
are estimated by 𝑎̂.

𝛼 = 0.25 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.2316 −2.9348 −2.6905 −3.2187 −2.9243 −2.6821
100 −3.2870 −3.0027 −2.7667 −3.3154 −3.0260 −2.7854
250 −3.3710 −3.0859 −2.8469 −3.3735 −3.0870 −2.8474
500 −3.4108 −3.1213 −2.8789 −3.3928 −3.1074 −2.8681
∞ −3.4122 −3.1277 −2.8887 −3.4122 −3.1277 −2.8887

𝛼 = 0.50 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.3360 −3.0498 −2.8129 −3.3325 −3.0477 −2.8115
100 −3.3915 −3.1059 −2.8661 −3.3995 −3.1106 −2.8692
250 −3.4403 −3.1487 −2.9040 −3.4396 −3.1483 −2.9038
500 −3.4568 −3.1632 −2.9169 −3.4530 −3.1609 −2.9153
∞ −3.4664 −3.1735 −2.9269 −3.4664 −3.1735 −2.9269

𝛼 = 1.00 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.4214 −3.1300 −2.8854 −3.4210 −3.1299 −2.8854
100 −3.4504 −3.1562 −2.9084 −3.4514 −3.1564 −2.9085
250 −3.4698 −3.1726 −2.9225 −3.4697 −3.1724 −2.9224
500 −3.4762 −3.1776 −2.9269 −3.4758 −3.1777 −2.9270
∞ −3.4818 −3.1830 −2.9316 −3.4818 −3.1830 −2.9316

𝛼 = 2.00 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.4563 −3.1564 −2.9044 −3.4563 −3.1566 −2.9045
100 −3.4651 −3.1643 −2.9102 −3.4651 −3.1638 −2.9100
250 −3.4703 −3.1682 −2.9133 −3.4703 −3.1682 −2.9133
500 −3.4721 −3.1693 −2.9143 −3.4721 −3.1696 −2.9144
∞ −3.4738 −3.1710 −2.9155 −3.4738 −3.1710 −2.9155

𝛼 = 4.00 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.4612 −3.1563 −2.8998 −3.4612 −3.1566 −2.8999
100 −3.4600 −3.1553 −2.8978 −3.4599 −3.1546 −2.8976
250 −3.4589 −3.1539 −2.8962 −3.4591 −3.1535 −2.8962
500 −3.4589 −3.1534 −2.8957 −3.4588 −3.1531 −2.8958
∞ −3.4585 −3.1527 −2.8953 −3.4585 −3.1527 −2.8953
is non-stationary with 𝑇 −1−1∕2𝛼∑𝑇−1
𝑡=1 𝑢̂𝑡|𝑢̂𝑡|1∕𝛼Δ𝑢̂𝑡+1 → 𝜎

2+1∕𝛼
𝜀 𝑍5 and 

𝑇 −2−1∕𝛼∑𝑇−1
𝑡=1 𝑢̂

2+2∕𝛼
𝑡 → 𝜎

2+2∕𝛼
𝜀 𝑍6, where:

𝑍5 =

1

∫
0

𝜓(𝑟)|𝜓(𝑟)|1∕𝛼𝑑𝜓(𝑟)

𝑍6 =

1

∫
0

𝜓(𝑟)2+2∕𝛼𝑑𝑟

Since 𝑇 −1−1∕2𝛼𝜋̂ → 𝜎
−1∕𝛼
𝜀 𝑍5𝑍

−1
6 , 𝜋̂ converges to zero at the rate 

𝑇 1+1∕2𝛼 , which is faster than the rate 𝑇 of the error-correction in ARMA 
and SETAR models. The t-statistic 𝑡𝜋=0 of the unit root test converges 
to the non-standard distribution 𝑍5𝑍

−1∕2
6 . The signed 𝐿𝑅 test, which 

compares the unconstrained Gaussian log-likelihood 𝑙𝑢 of the aHD(1) of 
equation (9) to the constrained log-likelihood 𝑙𝑐 of the I(1) processes 
resulting from 𝜋 = 0 has the same asymptotic distribution:

𝐿𝑅𝜋=0 ≡ sign(𝜋̂) ⋅
√

2
(
𝑙𝑢 − 𝑙𝑐

)
→𝑍5𝑍

−1∕2
6

3.4.3. Critical values

Critical values of the non-standard distributions are calculated via 
7

Monte Carlo simulations for the NO TREND and TREND cases and re-
ported in Tables 1 and 2, respectively. The data generating process 
in the NO TREND case is Δ𝑦𝑡+1 = 𝜀𝑡+1 while in the TREND case is 
Δ𝑦𝑡+1 = 𝛾 + 𝜀𝑡+1. The aHD(1) with NO TREND and TREND are esti-

mated following the two-step estimation procedure of Section 3.3 for 
𝛼 = {0.25, 0.5, 1, 2, 4}. Critical values of 𝐿𝑅 (RAW) are estimated from 
108 simulations for sample sizes of 𝑇 = {50, 100, 250, 500}. Following 
standard procedure, the estimated critical values 𝑐 are regressed on 
𝑎 + 𝑏𝑇 −1 to produce fitted values (FITTED) and to estimate asymptotic 
(𝑇 =∞) critical values 𝑎̂. For a detailed discussion and analysis of the 
powers of 𝑇 −1 see MacKinnon (2010).

4. Empirical study

Using data from FRED, of the Federal Reserve Bank of St. Louis, 
the empirical analysis studies the time-series properties of interest 
rates in various countries. Short term rates (as in Rose, 1988) are the 
United State’s 3-month and 1-year Treasury Bills from 1954:01:08 to 
2020:01:31 (3448 weekly obs.) and from 1959:07:17 to 2001:08:03 
(2195 weekly obs.), respectively. Long term yields (as in Rapach and 
Weber, 2004) are the 10-year Government Bonds of the United States 
from 1960:01 to 2019:12 (720 monthly obs.), Australia from 1969:07 
to 2019:12 (606 monthly obs.), Canada from 1960:01 to 2019:12 (720 
monthly obs.), Germany from 1960:01 to 2019:12 (720 monthly obs.), 

France from 1960:01 to 2019:12 (720 monthly obs.), Great Britain from 
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Table 2

TREND critical values of the signed likelihood-ratio test in 3.4.2 with null 𝐻0 ∶ 𝜋 = 0 in Δ𝑦𝑡+1 − 𝛾̂ = 𝜋𝑥𝑡(𝛼) +
∑𝑝

𝑖=1 𝜙𝑖Δ𝑦𝑡+1−𝑖 +
∑𝑞

𝑗=1 𝜃𝑗𝜀𝑡+1−𝑗 + 𝜀𝑡+1, where 𝑥𝑡(𝛼) ≡
𝑢̂𝑡|𝑢̂𝑡|1∕𝛼 is calculated from the first-step regression residuals 𝑢̂𝑡 = 𝑦𝑡 − 𝛿 − 𝛾̂ 𝑡. RAW column reports critical values estimated over 108 Monte Carlo simulations. FITTED

column reports fitted values 𝑐 from the regression function 𝑐 = 𝑎 + 𝑏𝑇 −1 where 𝑐 are the RAW critical values and 𝑇 are the sample sizes. Asymptotic values (𝑇 =∞) 
are estimated by 𝑎̂.

𝛼 = 0.25 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.6751 −3.3895 −3.1486 −3.6629 −3.3783 −3.1385
100 −3.8061 −3.5203 −3.2794 −3.8324 −3.5446 −3.3015
250 −3.9297 −3.6413 −3.3970 −3.9342 −3.6444 −3.3993
500 −3.9867 −3.6940 −3.4463 −3.9681 −3.6777 −3.4319
∞ −4.0020 −3.7110 −3.4645 −4.0020 −3.7110 −3.4645

𝛼 = 0.50 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.7780 −3.5155 −3.2950 −3.7771 −3.5163 −3.2968
100 −3.9604 −3.6882 −3.4573 −3.9632 −3.6868 −3.4536
250 −4.0774 −3.7912 −3.5493 −4.0748 −3.7892 −3.5476
500 −4.1113 −3.8207 −3.5754 −4.1121 −3.8233 −3.5790
∞ −4.1493 −3.8574 −3.6103 −4.1493 −3.8574 −3.6103

𝛼 = 1.00 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.8243 −3.5752 −3.3660 −3.8301 −3.5824 −3.3734
100 −4.0356 −3.7676 −3.5387 −4.0235 −3.7522 −3.5227
250 −4.1439 −3.8573 −3.6146 −4.1396 −3.8541 −3.6123
500 −4.1677 −3.8767 −3.6313 −4.1783 −3.8881 −3.6422
∞ −4.2169 −3.9220 −3.6721 −4.2169 −3.9220 −3.6721

𝛼 = 2.00 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.8237 −3.5778 −3.3734 −3.8319 −3.5876 −3.3830
100 −4.0478 −3.7813 −3.5522 −4.0308 −3.7602 −3.5313
250 −4.1553 −3.8672 −3.6229 −4.1501 −3.8638 −3.6203
500 −4.1758 −3.8835 −3.6360 −4.1899 −3.8983 −3.6499
∞ −4.2297 −3.9328 −3.6796 −4.2297 −3.9328 −3.6797

𝛼 = 4.00 RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −3.8083 −3.5638 −3.3620 −3.8175 −3.5656 −3.3726
100 −4.0393 −3.7729 −3.5438 −4.0199 −3.7655 −3.5206
250 −4.1470 −3.8575 −3.6119 −4.1414 −3.8854 −3.6094
500 −4.1661 −3.8725 −3.6238 −4.1438 −3.9254 −3.6390
∞ −4.2223 −3.9654 −3.6686 −4.2223 −3.9654 −3.6686
1960:01 to 2019:12 (720 monthly obs.) and Japan from 1989:01 to 
2019:12 (372 monthly obs.). The time span of all rates and yields is 
that provided by FRED with the sole exception of the 1-year Treasury 
Bill whose series has been trimmed to 2001:08:03, the last date prior to 
the US Treasury discontinuing issue until recently. Time-series of T-Bill 
rates and Bond yields are plotted in Fig. 4.

While, in principle, ARFIMA models should be added to the set 
of competing specifications and possibly used for testing,7 interest 
rates’ stylized facts include the rejection of fractional integration (long-

memory) in favor of unit roots. Although here no formal testing is 
carried out for ARFIMA parameterizations, no autocorrelogram dis-

plays the hyperbolic telltale sign of stationary ARFIMA processes and 
long-memory. Instead, correlograms in Fig. 5 display the characteris-

tic geometric decay of persistent processes. Geweke and Porter-Hudak 
(1983) estimates of the fractional integration parameter range from 
0.8689 to 1.1080, well above the stationary threshold value of 0.5. Es-

timates performed on first-differences, in Table 3, produce fractional 
integration parameters that are not statistically different from zero for 

7 For unit root testing with fractional integration alternative see Robinson 
(1994), Phillips (1999), Tanaka (1999), Dolado et al. (2002, 2008), Lobato and 
8

Velasco (2007), Cho et al. (2015) and Chang and Perron (2017), among others.
each of the 10-year Bonds (at 5%) and US Treasury Bills (at 1% but not 
at 2.5%), suggesting the presence of a unit root in the levels.

The benchmark SETAR specification closely follows that of Bec et 
al. (2004) with two regimes instead of three. In fact, the time series 
trajectories of the interest rates in Fig. 4 and preliminary estimates do 
not support a third regime. Hence, the SETAR dynamics are given by:

Δ𝑦𝑡+1 =

⎧⎪⎪⎨⎪⎪⎩

∑𝑟
𝑖=1 𝜙1,𝑖Δ𝑦𝑡+1−𝑖 +

∑𝑠
𝑗=1 𝜃1,𝑖Δ𝜀𝑡+1−𝑖+ 𝜀𝑡+1

if 𝑦𝑡 ∈𝐴

𝛿 + 𝜋𝑦𝑡+
∑𝑞

𝑖=1 𝜙2,𝑖Δ𝑦𝑡+1−𝑖 +
∑𝑣

𝑗=1 𝜃2,𝑖Δ𝜀𝑡+1−𝑖+ 𝜀𝑡+1
otherwise

(12)

where the set 𝐴 is defined by the threshold parameter 𝑐 either as 
𝐴 = {𝑦|𝑦 ≤ 𝑐} or 𝐴 = {𝑦|𝑦 ≥ 𝑐}, depending on the data features. Since 
threshold parameters are not identified under the null, following the 
work of Tong (1990) and Hansen (1996), unit root testing is performed 
using the infimum, over possible values of the thresholding parameter 
𝑐, of the signed likelihood-ratio test:√ (

(𝑖)
)

𝐿𝑅 = inf
𝑖∈Γ

sign(𝜋̂) ⋅ 2 𝑙𝑢 − 𝑙𝑐 (13)
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Fig. 4. Time-series of T-Bill rates and Bond yields.
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Fig. 5. Empirical Autocorrelations. All estimates are statistically significant at 1% (confidence interval not plotted).
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Table 3

Geweke and Porter-Hudak (1983) estimates of the fractional differencing parameter and associated test of significance for the level of rates and yields (𝑑) and the 
first-difference of rates and yields (𝑑 − 1). Estimation lag-orders are 120 for Treasury Bills and 50 for Government Bonds. 𝑎, 𝑏 , and 𝑐 indicate significance at 1%, 
2.5% and 5%, respectively.

𝑑 𝑠.𝑒. 𝑧 𝑑 − 1 𝑠.𝑒. 𝑧

US: 3-month T-Bill 0.8774 0.0562 15.6115𝑎 −0.1279 0.0558 −2.2898𝑏
US: 1-year T-Bill 0.8689 0.0555 15.6457𝑎 −0.1229 0.0534 −2.3013𝑏
US: 10-year Bond 1.1016 0.1074 10.2535𝑎 0.1361 0.1012 1.3459

Australia: 10-year Bond 1.1055 0.1141 9.6869𝑎 −0.1072 0.1037 −1.0338
Canada: 10-year Bond 1.0197 0.0912 11.1756𝑎 0.0651 0.0844 0.7715
Germany: 10-year Bond 0.9872 0.0797 12.3796𝑎 0.0244 0.0938 0.2601

France: 10-year Bond 1.0712 0.0987 10.8569𝑎 0.1433 0.0965 1.4850
GB: 10-year Bond 0.9232 0.1129 8.1781𝑎 −0.0826 0.1261 −0.6548
Japan: 10-year Bond 1.1080 0.0916 12.0982𝑎 −0.0663 0.0896 −0.7405
Table 4

Critical values of the inf signed likelihood-ratio test in equation (13) with null 
𝐻0 ∶ 𝜋 = 0 in the two-regime SETAR parameterization of equations (12). RAW

column reports critical values estimated over 108 Monte Carlo simulations. FIT-

TED column reports fitted values 𝑐 from the regression function 𝑐 = 𝑎 + 𝑏𝑇 −1

where 𝑐 are the RAW critical values and 𝑇 are the sample sizes. Asymptotic 
values (𝑇 =∞) are estimated by 𝑎̂.

RAW FITTED

T 1.0% 2.5% 5.0% 1.0% 2.5% 5.0%

50 −4.13 −3.86 −3.64 −4.12 −3.85 −3.63
100 −4.19 −3.92 −3.70 −4.21 −3.94 −3.72
250 −4.27 −4.00 −3.78 −4.26 −3.99 −3.77
500 −4.29 −4.02 −3.80 −4.28 −4.01 −3.79
∞ −4.30 −4.03 −3.81 −4.30 −4.03 −3.81

where 𝑙𝑐 is the log-likelihood of the I(1) process under the null and 𝑙(𝑖)𝑢 is 
the log-likelihood value, of the estimated SETAR, obtained from the 𝑖-th 
point of the threshold parameter grid set Γ. Corresponding critical val-

ues, reported in Table 4, are estimated via 106 Monte Carlo simulations 
for sample sizes 𝑇 = {50, 100, 250, 500, ∞}.

An additional class worth considering is that of Random Coefficient 
Autoregressive (RCA) models, which encompasses the Stochastic Unit 
Root (STUR) processes studied, among others, by Granger and Swanson 
(1997), Leybourne et al. (1996), and McCabe and Tremayne (1995):

Δ𝑦𝑡+1 = 𝛿 + 𝜋𝑡+1𝑦𝑡 + 𝜎𝜖𝜖𝑡+1

ln(1 + 𝜋𝑡+1) = 𝛼 + 𝜙1 ln(1 + 𝜋𝑡) + 𝜎𝜂𝜂𝑡+1

with 𝜖𝑡+1 ∼ (0, 1) independent of 𝜂𝑡+1 ∼𝑁(0, 1). In contrast to the pro-

posed aHD(1) model, the error-correction of the RCA is linear in 𝑦𝑡 and 
its random coefficient 𝜋𝑡+1 induces time-varying speeds of adjustment 
that are independent of the distance from equilibrium. While several 
tests have been developed to assess the random walk hypothesis against 
the STUR alternative (see Nagakura, 2009, Distaso, 2008, Leybourne et 
al., 1996, and McCabe and Tremayne, 1995), and others test for sta-

tionarity based on the rate of divergence of the process trajectory (see 
Busetti and Harvey, 2010, and Trapani, 2021), there is a void when it 
comes to testing the STUR null hypothesis against the stationary RCA 
alternative. To circumvent this testing challenge, a Bayesian inferen-

tial approach (see Lubrano, 1995 and Hoek et al., 1995 among others) 
based on 106 Markov chain Monte Carlo (MCMC) iterations8 is adopted 
by constructing the posterior from uninformative uniform priors and 
assuming that 𝜖𝑡+1 ∼ 𝑁(0, 1). The main advantage of working in the 

8 While several techniques are available for updating 𝜋𝑡+1 in (𝑡 + 1) based 
on the prediction made in 𝑡, in this context, estimation was carried out using 
the Kalman filter. Despite the non-linear nature of RCA models, closed-form 
solutions can be derived for all predictions and updates in the filter, except for 
the updated (a posteriori) estimate covariance. Nevertheless, due to the Gaussian 
11

nature of the innovations 𝜂𝑡+1, this update can be effectively approximated by 
Bayesian framework is that it readily delivers credible intervals from the 
sampling of the unknown parameters. This, in turn, enables reporting 
of the p-values for the RCA non-stationarity in mean (𝑀𝑠) and variance 
(𝑉 𝑠) in Tables 5–10. Specifically, 𝑀𝑠 and 𝑉 𝑠 display the average values 
of 𝛿+0.5𝜎2

𝜂
∕(1 −𝜙1) and 𝛿+𝜎2

𝜂
∕(1 −𝜙1), respectively, along with their 

significance: ℙ(𝛿+0.5𝜎2𝜂∕(1 −𝜙1) ≥ 0) and ℙ(𝛿+𝜎2𝜂∕(1 −𝜙1) ≥ 0) falling 
below the established significance levels. Similarly, 𝜋 is the average 
value of 𝛿 + 0.5𝜎2

𝜂
∕(1 + 𝜙1), determining the unconditional expectation 

of 𝜋𝑡+1, with its significance calculated from ℙ(𝛿 + 0.5𝜎2𝜂∕(1 + 𝜙1) ≥ 0)
also falling below the significance level. Notice that, as shown in Ap-

pendix E, 𝔼(𝜋𝑡+1) < 1 implies neither mean- nor variance-stationarity.

Since initial data analysis ruled out stochastic trends in the time 
series considered (compatibly with the trajectories plotted in Fig. 4, 
only NO TREND parameterizations of the alternatives and null are pre-

sented and discussed. The Bayes Information Criterion (BIC) is adopted 
to perform specific-to-general model selection and attain the best pa-

rameterization9 for each of the unconstrained ARMA, SETAR, RCA10

and aHD(1) specifications. Estimation and unit-root testing output for 
every yield and specification considered is presented in Tables 5–7.

To begin, consider ARMA, SETAR, RCA and aHD(1) testing results 
as if each one of them is the sole parameterization of the alternative. 
Within the framework of ARMA and RCA modeling, non-stationarity 
cannot be rejected for any of the nine yields. Furthermore, BIC favors 
ARMA over RCA in every instance. SETAR modeling of the alternative 
would allow to reject a unit-root in the US 3-month Treasury Bill and 
the 10-year bonds of Australia and Great Britain. However, since BIC

selects ARMA over SETAR for the yield of Great Britain, ARMA and SE-

TAR modeling reject the unit-root hypothesis only for the US 3-month 
Treasury Bill and Australian 10-year Bond. Instead, focusing on the 
aHD(1) specification of the alternative, allows to reject the presence 
of a unit-root for the US 3-month and 1-year Treasury Bills and the 10-

year bonds of the US, Canada and Great Britain. Finally, considering all 
four parameterizations and following the consolidated good practice of 
performing unit root tests on the unconstrained specification that best 
fits the data, Tables 5–7 show that ARMA is the best specification for 
the German yield (Table 6), SETAR for the Australian yield (Table 6) 
while the aHD(1) provides the best data description for the remain-

ing seven series. Correspondingly, the unit-root hypothesis is rejected 

interpolating the boundary values of zero and the predicted (a priori) estimate 
covariance with the parameter 𝜙1 .

9 The best parameterization is the one that strikes the best balance, as mea-

sured by the BIC, between goodness of fit and parameters’ parsimony. Alterna-

tive criteria defining what is meant by best specification are the elimination of 
insignificant coefficients (general-to-specific) and Box-Jenkins (minimal param-

eterization yielding serially uncorrelated residuals).
10 In the case of RCA, estimated by MCMC, LIK represents the maximum value 
of the log-likelihood attained across the 106 iterations. Importantly, the LIK

values of RCA consistently align with the corresponding, albeit not reported,
LIK values AR(1) models with constant 𝜋.
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Table 5

Bond yields: estimation and unit-root testing results of NO TREND specifications. Every sub-panel reports the estimation output under the unconstrained alternatives:

ARMA, two-regimes SETAR, RCA and aHD(1). Autoregressive coefficients are 𝜙𝑖 , moving average coefficients are 𝜃𝑗 , and the variance of the innovations to the

RCA latent process is 𝜎2
𝜂
. The lowest BIC of the four competing parameterizations is reported in bold, LIK is the log-likelihood, and CLIK the constrained log-likelihood 

(𝛿 = 0, 𝜋 = 0). 𝐿𝑅 is the value of the signed likelihood-ratio statistic for unit root testing in ARMA, SETAR and aHD(1), while 𝑀𝑠 and 𝑉 𝑠 are the values of the 
mean- and variance-stationarity statistics for unit root testing in RCA. Significance levels are marked by 𝑎 , 𝑏, and 𝑐 , indicating 1%, 2.5% and 5% significance, 
respectively.

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0098 −0.0022 0.2638 −2135.577 1080.007 1077.368 −2.297

(0.0052) (0.0010) (0.0164)

SETAR(< 7.19) 0.1653

(0.0292)

SETAR(> 7.19) 0.1240 −0.0140 0.3133 −2150.408 1095.568 1085.467 −4.495𝑎

(0.0318) (0.0032) (0.0198)

RCA 0.0106 −0.0106𝑎 −0.0287 0.2744 0.0532 −2127.912 1080.246 0.008 0.044

(0.0061) (0.0062) (0.0214) (0.0181) (0.0427)

aHD(1) 4.3271 −1.6⋅10−6 0.25 0.2835 −2187.259 1105.848 1077.368 −7.547𝑎

(0.0527) (2.4⋅10−7) (0.0167)

US: 3-month T-Bill from 1954:08 to 2020:01 (3448 weekly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0201 −0.0033 0.3347 −1694.509 858.795 856.153 −2.299

(0.0095) (0.0014) (0.0201)

SETAR(< 7.93) 0.2947

(0.0321)

SETAR(> 7.93) 0.1454 −0.0150 0.3638 −1688.972 863.721 857.318 −3.579

(0.0443) (0.0043) (0.0258)

RCA 0.0309 −0.0099𝑎 −0.0150 0.3682 0.0231 −1682.092 856.433 0.003 0.020

(0.0143) (0.0058) (0.0145) (0.0425) (0.0287)

aHD(1) 6.1343 −4.0⋅10−6 0.25 0.3197 0.0634 −1709.492 870.134 855.843 −5.346𝑎

(0.0515) (7.5⋅10−7) (0.0212) (0.0213)

US: 1-year T-Bill from 1959:07 to 2001:08 (2195 weekly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0278 −0.0053 0.3889 −0.0997 109.153 −41.418 −42.220 −1.266

(0.0312) (0.0033) (0.0244) (0.0254)

SETAR(< 8.70) 0.3125 −0.1613

(0.0511) (0.0510)

SETAR(> 8.70) 0.2956 −0.0279 0.4212 −0.2415 131.101 −42.523 −44.858 −2.161

(0.1490) (0.0133) (0.0522) (0.0528)

RCA 0.0392 −0.0312𝑎 −0.0737 0.3202 0.1369 146.456 −60.072 0.027 0.127

(0.0334) (0.0199) (0.0562) (0.0038) (0.1123)

aHD(1) 6.0491 −8.1⋅10−6 0.25 0.4437 96.420 −38.341 −45.818 −3.867𝑎

(0.1072) (9.0⋅10−7) (0.0220)

US: 10-year Bond from 1960:01 to 2019:12 (720 monthly obs.)
for the US 3-month and 1-year Treasury Bills and the 10-year bonds 
of the US, Canada and Great Britain (all with aHD(1) being the best 
specification under the alternative) and the 10-year Australian bond 
(with SETAR being the best specification under the alternative). From 
the aHD(1) modeling perspective, the selective rejection of the null hy-

pothesis across different cases dismisses the notion that the aHD(1) is 
merely capturing the common tent shape observed in Fig. 4.

For the cases in which the unit root could not be rejected, it is worth 
considering the possibility that yields are stationary but the aHD(1) pa-

rameterization of the alternative, despite being BIC preferred to ARMA 
and SETAR, might still not adequately describe the data. While a possi-

ble course of action would involve higher order HD parameterizations, 
generalizing the HD(1) is not straightforward. Unlike the AR(1), which 
has a unique generalization to AR(p), there are multiple candidate pa-

rameterizations HD(p) that reduce to the proposed HD(1) for p=1. In-

stead, consider decomposing the yield 𝑏𝑦 into a benchmark yield 𝑏𝑥 plus 
the spread 𝑠𝑦,𝑥 =

(
𝑏𝑦 − 𝑏𝑥

)
so that 𝑏𝑦 = 𝑏𝑥 + 𝑠𝑦,𝑥. Consequently, if the 

benchmark 𝑏𝑥, is stationary, the yield 𝑏𝑦 must also be stationary if the 
spread 𝑠𝑦,𝑥 is stationary. The rationale behind such decoupling is that 
the resulting 𝑏𝑦 would be the sum of two (possibly correlated) station-

ary HD(1) processes. In essence, the sum of HD(1) processes extends the 
12

HD(1) much like the sum of two uncorrelated AR(1) processes, which 
yields an ARMA(2,1), captures a moving-average component without 
requiring an explicit specification of what an MA component entails.

Spreads of the 10-year bonds, calculated with respect to that of the 
United States, are plotted in Fig. 6 and depict the disappearance of the 
tent shape pattern in the yields. The results in Tables 8 and 9 show that 
ARMA modeling is BIC preferred to RCA in every instance. Moreover, 
while RCA rejects non-stationarity of the mean, but not the variance, 
only for Australia-US (at 1%), ARMA rejects unit-roots only for Canada-

US (at 5%) and GB-US (at 2.5%). Since the Canadian, GB and US yields 
test I(1) when the alternative is ARMA (Tables 5–7), the fact that the 
resulting spreads are found to be I(0) may only be interpreted as ev-

idence of cointegration. Similarly, SETAR modeling of the alternative 
does not allow to reject a unit-root in the spreads except for Canada-

US (at 1%) and France-US (at 2.5%). Given that the individual yields 
test I(1)) when the alternative is SETAR (Tables 5–7), the interpretation 
of I(0) spreads is, once more, cointegration. On the other hand, with 
aHD(1) alternative, presence of a unit-root is rejected for all spreads 
with the exception of Australia-US and France-US. Considering that the 
US yield tests I(0) when the alternative is aHD(1) (Table 5), it follows 
that all the yields, whose spread with the US yield is I(0), must also be 
I(0). Furthermore, when the benchmark yield 𝑏𝑥 for the 10-year Bonds 

of Australia and France is replaced with the more financially and eco-
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Table 6

Bond yields: estimation and unit-root testing results of NO TREND specifications. Every sub-panel reports the estimation output under the unconstrained alternatives:

ARMA, two-regimes SETAR, RCA and aHD(1). Autoregressive coefficients are 𝜙𝑖 , moving average coefficients are 𝜃𝑗 , and the variance of the innovations to the

RCA latent process is 𝜎2
𝜂
. The lowest BIC of the four competing parameterizations is reported in bold, LIK is the log-likelihood, and CLIK the constrained log-likelihood 

(𝛿 = 0, 𝜋 = 0). 𝐿𝑅 is the value of the signed likelihood-ratio statistic for unit root testing in ARMA, SETAR and aHD(1), while 𝑀𝑠 and 𝑉 𝑠 are the values of the 
mean- and variance-stationarity statistics for unit root testing in RCA. Significance levels are marked by 𝑎 , 𝑏, and 𝑐 , indicating 1%, 2.5% and 5% significance, 
respectively.

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0101 −0.0021 0.1685 297.269 −139.024 −139.346 −0.802

(0.0293) (0.0034) (0.0403)

SETAR(< 12.30) 0.1936

(0.0528)

SETAR(> 12.30) 2.3343 −0.1704 0.2009 284.521 −126.244 −139.075 −5.066𝑎

(0.4608) (0.0335) (0.0606)

RCA 0.0095 −0.0162 −0.0834 0.1790 0.1628 303.514 −138.947 0.015 0.113

(0.0350) (0.0138) (0.0724) (0.0560) (0.1445)

aHD(1) 7.8416 −5.6⋅10−6 0.25 0.1796 290.933 −135.856 −139.346 −2.642

(0.1501) (2.2⋅10−6) (0.0402)

Australia: 10-year Bond from 1969:07 to 2019:12 (606 monthly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜃1∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0228 −0.0042 0.3940 84.916 −32.589 −33.233 −1.135

(0.0363) (0.0034) (0.0210)

SETAR(< 6.49) 0.1438 −0.0959

(0.0859) (0.0835)

SETAR(> 6.49) 0.1114 −0.0123 0.4082 −0.1531 106.293 −30.119 −32.104 −1.992

(0.0607) (0.0063) (0.0409) (0.0414)

RCA 0.0268 −0.0249𝑎 −0.0585 0.3290 0.1098 109.066 −41.377 0.023 0.104

(0.312) (0.0161) (0.0430) (0.0380) (0.0858)

aHD(1) 6.6507 −5.4⋅10−6 0.25 0.4091 68.435 −24.348 −33.233 −4.215𝑎

(0.1222) (4.9⋅10−7) (0.0221)

Canada: 10-year Bond from 1960:01 to 2019:12 (720 monthly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜃1∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA −0.0044 −0.0009 0.4105 −440.286 230.012 229.447 −1.063

(0.0256) (0.0036) (0.0259)

SETAR(< 7.15) 0.3207

(0.0509)

SETAR(> 7.15) 0.3723 −0.0451 0.4203 −425.524 229.210 223.281 −3.444

(0.1119) (0.0133) (0.0473)

RCA −0.0052 −0.0175𝑐 −0.0387 0.3779 0.0757 −420.643 223.477 0.022 0.082

(0.0207) (0.0148) (0.0341) (0.0374) (0.0680)

HD(1) 5.6924 −2.9⋅10−6 0.25 0.4119 −439.420 229.579 229.447 −0.514

(0.0989) (7.1⋅10−6) (0.0259)

Germany: 10-year Bond from 1960:01 to 2019:12 (720 monthly obs.)
nomically proximate GB (Fig. 7), the results in Table 10 show that the 
Australia-GB and France-GB spreads are I(0) when the alternative is ei-

ther ARMA or aHD(1), but they become I(1) when the alternative is 
either RCA or SETAR. Nevertheless, the conclusions that may be drawn 
for ARMA and aHD(1) are substantially different. On the one hand, 
ARMA modeling implies that the yields of Australia and France cointe-

grate with that of GB. On the other, aHD(1) modeling implies that the 
yields of Australia and France are stationary, in line with the suggested 
extension via the sum of two HD(1) components. Notably, with BIC

consistently selecting the aHD(1) as the best specification, the unit-root 
hypothesis is rejected for every bond yield considered.

In a forecasting framework, the in-sample estimation of model pa-

rameters involves a trade-off between larger samples, which reduce 
estimation errors, and smaller samples (comprising more recent obser-

vations), which better capture structural breaks in the parameters. On 
the other hand, distinguishing between unit root and persistent station-

ary processes involves studying their long-run behavior, such as mean 
reversion or lack thereof. This, in turn, requires working with large 
samples of data to draw accurate conclusions. Nevertheless, to provide 
additional validation to the in-sample findings, one-step ahead fore-

casts are generated from each model for the yields and spreads that 
13

tested stationary. The out-of-sample rates are the US 3-month and 1-
year11 Treasury Bills from 2020:02:07 to 2023:07:14 (180 obs.) and 
from 2019:11:29 to 2023:07:14 (189 obs.), respectively. Additionally, 
the 10-year Government Bonds of the US, Canada and GB along with 
the spreads of Australia-GB, Germany-US, France-GB and Japan-US are 
considered from 2020:01:01 to 2023:05:01 (41 obs.). Table 11, which 
presents the forecast mean-square-errors (FMSE), demonstrates that the 
aHD(1) provides the most accurate forecasts in six instances, ARMA 
in two and SETAR in one. Diebold-Mariano tests of superior forecasting 
ability against competing alternatives are insignificant and are therefore 
not reported. Nevertheless, the null that the aHD(1) doesn’t outperform 
other specifications out-of-sample is rejected at the 1% significance 
level (5% when excluding RCA from the comparison).

11 Although the 1-year Treasury Bill data resumes in 2008:05:30, it covers a 
period during which the US economy was in recession until 2010, followed 
by five years with the yield consistently close to zero. As a result, to avoid 
abnormal behaviors for which none of the models was trained in-sample, the 

out-of-sample period has been set to match that of the 3-month yield.
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Table 7

Bond yields: estimation and unit-root testing results of NO TREND specifications. Every sub-panel reports the estimation output under the unconstrained alternatives:

ARMA, two-regimes SETAR, RCA and aHD(1). Autoregressive coefficients are 𝜙𝑖 , moving average coefficients are 𝜃𝑗 , and the variance of the innovations to the

RCA latent process is 𝜎2
𝜂
. The lowest BIC of the four competing parameterizations is reported in bold, LIK is the log-likelihood, and CLIK the constrained log-likelihood 

(𝛿 = 0, 𝜋 = 0). 𝐿𝑅 is the value of the signed likelihood-ratio statistic for unit root testing in ARMA, SETAR and aHD(1), while 𝑀𝑠 and 𝑉 𝑠 are the values of the 
mean- and variance-stationarity statistics for unit root testing in RCA. Significance levels are marked by 𝑎 , 𝑏, and 𝑐 , indicating 1%, 2.5% and 5% significance, 
respectively.

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA −0.0020 −0.0006 0.2359 −94.273 57.005 56.701 −0.780

(0.0173) (0.0022) (0.0364)

SETAR(< 10.71) 0.3048

(0.0469)

SETAR(> 10.71) 0.4554 −0.0052 0.1384 −87.274 60.085 59.352 −1.211

(0.1448) (0.0108) (0.0571)

RCA −0.0053 −0.0120 −0.0477 0.2332 0.0944 −87.142 56.727 0.014 0.075

(0.0211) (0.0114) (0.0451) (0.0375) (0.0903)

aHD(1) 6.8565 −9.6⋅10−7 0.25 0.2408 −96.770 58.254 56.701 −1.762

(0.1425) (5.4⋅10−7) (0.0363)

France: 10-year Bond from 1960:01 to 2019:12 (720 monthly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜃1∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0250 −0.0042 0.3705 346.401 −163.332 −163.940 −1.103

(0.0508) (0.0044) (0.0260)

SETAR(< 11.74) 0.3473 −0.1024

(0.0523) (0.0500)

SETAR(> 11.74) 1.3666 −0.1041 0.4369 −0.1963 346.648 −150.297 −159.138 −4.205𝑏

(0.3432) (0.0255) (0.0509) (0.0546)

RCA 0.0301 −0.0255𝑎 −0.0573 0.3377 0.1073 368.870 −171.279 0.024 0.104

(0.0361) (0.0167) (0.0424) (0.0371) (0.0843)

aHD(1) 7.3498 −8.3⋅10−6 0.25 0.3806 332.113 −156.188 −163.940 −3.94𝑎

(0.1402) (1.2⋅10−6) (0.0274)

GB: 10-year Bond from 1960:01 to 2019:12 (720 monthly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜃1∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0030 −0.0077 0.3939 −315.991 166.874 165.353 −1.744

(0.0215) (0.0050) (0.0417)

SETAR(< 3.55) 0.2128 −0.1130

(0.0721) (0.0717)

SETAR(> 3.55) 0.0637 −0.0159 0.5909 −0.2652 −308.241 174.837 173.671 −1.527

(0.0990) (0.0180) (0.0709) (0.0728)

RCA 0.0030 −0.0432𝑠 −0.0931 0.3614 0.1737 −303.421 163.543 0.041 0.175

(0.0154) (0.0312) (0.0807) (0.0543) (0.1612)

aHD(1) 2.0521 −3.5⋅10−5 0.25 0.3977 −318.244 168.000 165.353 −2.301

(0.0978) (8.2⋅10−6) (0.0415)

Japan: 10-year Bond from 1989:01 to 2019:12 (372 monthly obs.)
5. Conclusions

The paper presents the HD(1) process of order one, incorporat-

ing hyperbolic reversion to equilibrium while explicitly excluding long 
memory. Other properties include ergodicity, stationarity, and the nest-

ing of the AR(1). Importantly, the reversion speed is inversely related to 
the proximity of the process to equilibrium, exhibiting accelerated re-

versions as the process moves farther from equilibrium and negligible 
rates in its immediate vicinity.

The augmented aHD(1), introduced for straightforward estimation 
and testing, results in an ARMA with power error-correction, provid-

ing a good approximation to the HD(1) speed of reversion. Through a 
two-step estimation-calibration procedure based on ARMA routines, all 
model parameters, with the exception of the calibrated 𝛼, can be esti-

mated using a standard econometric and statistical software package. 
Testing for unit roots is also straightforward, employing the signed 𝐿𝑅
statistic of Dickey and Fuller (1981) and the critical values tabulated 
for the stationary aHD(1) alternative.

The empirical study, involving Treasury Bill rates and Government 
Bond yields, shows that the aHD(1) provides a better description of the 
data (measured by the BIC) than competing ARMA, SETAR and RCA 
14

specifications. Testing, performed on the best specification, results in 
the rejection of the unit root hypothesis by SETAR, in one instance, and 
the aHD(1), in five instances. Testing the spreads of the apparent non-

stationary yields against a stationary reference bond, further allows to 
reject the presence of a unit root in the 10-year bond of Germany (vs. 
US), Japan (vs. US), Australia (vs. GB) and France (vs. GB). In contrast, 
when considering only ARMA, SETAR and RCA as parameterizations 
of the alternative, the I(1) hypothesis can only be rejected for the US 
3-month T-Bill and the Australian 10-year Bond. Therefore, by introduc-

ing error-corrections that are weak near equilibrium but grow stronger 
as the system deviates from it, the aHD(1) appears capable of reconcil-

ing empirical evidence with theoretical expectations.

Generalizations to HD(p), VAR models with hyperbolic rates of re-

version, and other extensions for modeling the term structure of interest 
rates are left to future research.
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Table 8

Bond spreads: estimation and unit-root testing results of NO TREND specifications. Every sub-panel reports the estimation output under the unconstrained alternatives:

ARMA, two-regimes SETAR, RCA and aHD(1). Autoregressive coefficients are 𝜙𝑖 , moving average coefficients are 𝜃𝑗 , and the variance of the innovations to the

RCA latent process is 𝜎2
𝜂
. The lowest BIC of the four competing parameterizations is reported in bold, LIK is the log-likelihood, and CLIK the constrained log-likelihood 

(𝛿 = 0, 𝜋 = 0). 𝐿𝑅 is the value of the signed likelihood-ratio statistic for unit root testing in ARMA, SETAR and aHD(1), while 𝑀𝑠 and 𝑉 𝑠 are the values of the 
mean- and variance-stationarity statistics for unit root testing in RCA. Significance levels are marked by 𝑎 , 𝑏, and 𝑐 , indicating 1%, 2.5% and 5% significance, 
respectively.

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜃1∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0395 −0.0252 0.1112 −0.1286 418.043 −196.208 −200.078 −2.782

(0.0194) (0.0091) (0.0403) (0.0404)

SETAR(> 0.19) −0.0853

(0.0430)

SETAR(< 0.19) −0.0577 −0.2088 −0.3819 421.052 −194.509 −198.814 −2.934

(0.0475) (0.0744) (0.1103)

RCA 0.0409 −0.0283𝑎 −0.0526 0.0559 0.0533 422.269 −204.729 −0.025𝑎 0.003

(0.0201) (0.0103) (0.0228) (0.1187) (0.0399)

aHD(1) 1.5098 −0.0088 1.00 0.1128 −0.1275 416.847 −195.610 −200.078 −2.989𝑐

(0.0624) (0.0029) (0.0403) (0.0404)

Australia−US: 10-year Bond spread from 1969:07 to 2019:12 (606 monthly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜃1∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0135 −0.0255 0.1660 −0.1204 −570.943 298.630 294.008 −3.040𝑐

(0.0078) (0.0084) (0.0370) (0.0372)

SETAR(< 0.44) 0.0502

(0.0739)

SETAR(> 0.44) 0.1007 −0.0990 0.2013 −570.477 301.687 288.720 −5.093𝑎

(0.0231) (0.0198) (0.0423)

RCA 0.0167 −0.0785𝑎 −0.2463 0.1986 0.4331 −567.001 296.656 0.024 0.295

(0.0086) (0.0236) (0.0889) (0.0432) (0.1755)

aHD(1) 0.6016 −0.0363 0.50 0.2097 −576.572 298.155 290.726 −3.855𝑎

(0.0269) (0.0097) (0.0310)

Canada−US: 10-year Bond spread from 1960:01 to 2019:12 (720 monthly obs.)

𝛿 𝜋 𝛼 𝜙1∕𝜃1 𝜙2/𝜃2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA −0.0089 −0.0097 0.2698 −0.1758 −49.897 38.107 36.150 −1.978

(0.0110) (0.0043) (0.0214) (0.0261)

SETAR(>−1.23) 0.2222 −0.2027

(0.0542) (0.0540)

SETAR(<−1.23) −0.1369 −0.0532 0.2621 −0.2027 −26.454 36.255 31.208 −3.177

(0.0466) (0.0168) (0.0491) (0.0497)

RCA −0.0087 −0.0340𝑎 −0.0944 0.2270 0.1657 −5.231 15.771 0. 013 0.119

(0.0106) (0.0118) (0.0406) (0.0434) (0.0802)

aHD(1) −0.3568 −1.1⋅10−4 0.25 0.2909 −0.1589 −60.785 43.551 36.150 −3.847𝑎

(0.0687) (1.9⋅10−5) (0.0234) (0.0290)

Germany−US: 10-year Bond spread from 1960:01 to 2019:12 (720 monthly obs.)
Data availability

Data will be made available on request.

Appendix A. Wiener approximation of the HD(1)

Berkes et al. (2014) extend the KMT approximation of Komlós et al. 
(1975, 1976) to the class of dependent sequences 𝑦𝑡+1 = 𝐺(… , 𝜀𝑡, 𝜀𝑡+1,
𝜀𝑡+2, …), where 𝜀𝑡+1 are i.i.d. random variables and 𝐺 ∶ ℝℤ → ℝ is a 
measurable function, by studying the rate at which the dependence 
condition Θ𝑡+1,𝑝 goes to zero as (𝑡 + 1) diverges. In addition, they 
demonstrate the fulfillment of the general conditions in Theorem 2.1 
for iterated random processes of the type 𝑦𝑡+1 = 𝐺(𝑦𝑡, 𝜀𝑡+1) where 𝜀𝑡+1
are i.i.d. and 𝐺 is a measurable function, provided that:

sup
𝑦≠𝑦′

‖𝑔(𝑦) − 𝑔(𝑦′)‖𝑝|𝑦− 𝑦′| < 1 (14)

Consider the HD(1) representation with additive innovations 𝑦𝑡+1 =
𝑔(𝑦𝑡) + 𝜀𝑡+1 with 𝜈 ∈ (0, 1], and let  = {𝑦, 𝑦′ s.t. |𝑦| > 𝜆 and |𝑦′| > 𝜆}
for some 𝜆 > 0 s.t. ℙ() > 0. The derivative 𝜕𝑔(𝑦)∕𝜕𝑦 =[ ]
15

𝜈−1∕𝛼 𝜅−1∕𝛼|𝑦|1∕𝛼 + 𝜈−1∕𝛼
−𝛼−1

is such that sup𝑦∈𝑐 𝑔′(𝑦) ≤ 1 and 
sup𝑦∈ 𝑔′(𝑦) = 𝜃 for some 𝜃 < 1. Consequently, as 𝑔(𝑦) is Lipschitz with ||𝑔(𝑦) − 𝑔(𝑦′)||𝑝 ≤ (
𝜃𝑝1 + 1𝑐

)
⋅ |𝑦 − 𝑦′|𝑝, it follows that ‖𝑦 − 𝑦′‖𝑝𝑝 ≤

(𝜃𝑝ℙ() +ℙ(𝑐)) |𝑦 − 𝑦′|𝑝, which can be rearranged to obtain condi-

tion (14).

Appendix B. Reversion: the role of 𝜶, 𝜿 and 𝝂

B.1. The 𝛼 parameter

Consider the absolute value of the deterministic component of the 
HD(1) in equation (1) and define 𝑥 = −𝛼−1 and 𝐵𝑡+ℎ−1 = max{𝜅, 𝜈|
𝑦𝑡+ℎ−1|}. Notice that 𝐵𝑡+ℎ−1 is independent of 𝛼 for all ℎ ≥ 1. Specif-

ically, for ℎ = 1, 𝐵𝑡 = max{𝜅, 𝜈|𝑦𝑡|}, where |𝑦𝑡| is a given value. As for 
ℎ > 1, since |𝑦𝑡+ℎ−1| < 𝜅 for every ℎ > 1, it follows that 𝐵𝑡+ℎ−1 = 𝜅. Sub-

sequently, |𝑦𝑡+ℎ| can be expressed as |𝑦𝑡+ℎ| = 𝐵𝑡+ℎ−1

(
1 + 𝜃𝑥

𝑡+ℎ−1

)𝑥−1

, 
with 𝜃𝑡+ℎ−1 ∈ (0, 1) for all ℎ ≥ 1. In particular, for ℎ > 1, 𝜃𝑡+ℎ−1 =
𝜈|𝑦𝑡+ℎ−1|∕𝜅, while for ℎ = 1, 𝜃𝑡+ℎ−1 = min{𝜈|𝑦𝑡+ℎ−1|∕𝜅, 𝜅∕𝜈|𝑦𝑡+ℎ−1|}. 
Taking logs and differentiating w.r.t. 𝑥 yields:

𝜕 𝜕
𝜕𝑥
ln |𝑦𝑡+ℎ| = 𝜂𝑡+ℎ−1 + 𝛽𝑡+ℎ−1 𝜕𝑥

ln𝜃𝑡+ℎ−1



Journal of Banking and Finance 161 (2024) 107113A. Palandri

Table 9

Bond spreads: estimation and unit-root testing results of NO TREND specifications. Every sub-panel reports the estimation output under the unconstrained alternatives:

ARMA, two-regimes SETAR, RCA and aHD(1). Autoregressive coefficients are 𝜙𝑖 , moving average coefficients are 𝜃𝑗 , and the variance of the innovations to the

RCA latent process is 𝜎2
𝜂
. The lowest BIC of the four competing parameterizations is reported in bold, LIK is the log-likelihood, and CLIK the constrained log-likelihood 

(𝛿 = 0, 𝜋 = 0). 𝐿𝑅 is the value of the signed likelihood-ratio statistic for unit root testing in ARMA, SETAR and aHD(1), while 𝑀𝑠 and 𝑉 𝑠 are the values of the 
mean- and variance-stationarity statistics for unit root testing in RCA. Significance levels are marked by 𝑎 , 𝑏, and 𝑐 , indicating 1%, 2.5% and 5% significance, 
respectively.

𝛿 𝜋 𝛼 𝜙1∕𝜃1 𝜙2∕𝜃2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0106 −0.0181 0.1916 −0.1412 181.336 −77.509 −80.368 −2.391

(0.0187) (0.0099) (0.0244) (0.0270)

SETAR(< 1.86) 0.1363 −0.2083

(0.0505) (0.0505)

SETAR(> 1.86) −0.0238 −0.0258 0.2966 −0.1755 181.591 −67.768 −76.485 −4.175𝑏

(0.0848) (0.0304) (0.0528) (0.0537)

RCA 0.0135 −0.0385𝑎 −0.0944 0.1922 0.1474 207.406 −90.547 −0.005 0.085

(0.0133) (0.0129) (0.0494) (0.0507) (0.0955)

aHD(1) 0.8074 −0.0031 0.50 0.1940 −0.1372 179.749 −76.716 −80.368 −2.703

(0.0526) (0.0013) (0.0246) (0.0276)

France−US: 10-year Bond spread from 1960:01 to 2019:12 (720 monthly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙2∕𝜃1∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0.0375 −0.0305 0.3595 434.880 −207.571 −212.869 −3.255𝑏

(0.0263) (0.0067) (0.0266)

SETAR(< 2.72) 0.3038 −0.1799

(0.0527) (0. 0492)

SETAR(> 2.72) 0.2249 −0.0611 0.4295 −0.2356 438.957 −196.451 −201.600 −3.209

(0.0981) (0.0212) (0.0501) (0. 0547)

RCA 0.0223 −0.0741𝑎 −0.1362 0.3284 0.2229 469.174 −221.431 0.029 0.194

(0.0183) (0.0218) (0.0564) (0.0430) (0.1107)

aHD(1) 1.3006 −4.3⋅10−5 0.25 0.3665 424.767 −202.515 −212.869 −4.551𝑎

(0.0653) (4.4⋅10−6) (0.0279)

GB−US: 10-year Bond spread from 1960:01 to 2019:12 (720 monthly obs.)

𝛿 𝜋 𝛼 𝜙1∕𝜃1 𝜃2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA −0.0809 −0.0338 0.1937 −0.1393 −85.380 54.528 50.876 −2.703

(0.0378) (0.0133) (0.0529) (0.0503)

SETAR(>-3.32) 0.1849

(0.0594)

SETAR(<-3.32) −0.7179 −0.1923 0.1141 −75.128 49.402 44.956 −2.982

(0.2780) (0.0711) (0.1011)

RCA −0.1031 −0.0639𝑎 −0.1571 0.1753 0.2418 −74.949 49.307 −0.010 0.137

(0.0412) (0.0252) (0.0969) (0.0774) (0.1912)

aHD(1) −2.5859 −0.0380 1.00 0.2454 −88.295 53.026 46.876 −3.507𝑎

(0.0474) (0.0109) (0.0529)

Japan−US: 10-year Bond spread from 1989:01 to 2019:12 (372 monthly obs.)
where 𝛽𝑡+ℎ−1 = 𝜃𝑥
𝑡+ℎ−1∕(1 + 𝜃𝑥

𝑡+ℎ−1) ∈ (0, 1) and 𝜂𝑡+ℎ−1 =

𝑥−2
[
𝛽𝑡+ℎ−1 ln𝜃𝑥𝑡+ℎ−1 − ln(1 + 𝜃𝑥

𝑡+ℎ−1)
]
< 0. Since, for ℎ = 1, the deriva-

tive 𝜕 ln𝜃𝑡∕𝜕𝑥 equals zero, it follows that 𝜕 ln |𝑦𝑡+1|∕𝜕𝑥 = 𝜂𝑡. For all 
other ℎ > 1, however, 𝜕 ln |𝑦𝑡+ℎ|∕𝜕𝑥 = 𝜂𝑡+ℎ−1 + 𝛽𝑡+ℎ−1𝜕 ln |𝑦𝑡+ℎ−1|∕𝜕𝑥. 
Consequently, it can be concluded that 𝜕 ln |𝑦𝑡+ℎ|∕𝜕𝑥 < 0, and thus, 
𝜕|𝑦𝑡+ℎ|∕𝜕𝛼 < 0 for all ℎ ≥ 1.

B.2. The 𝜅 and 𝜈 parameters

Expressing the deterministic component of the HD(1) in (1) in the 
autoregressive form |𝑦𝑡+ℎ|−1∕𝛼 = 𝜅−1∕𝛼 + 𝜈−1∕𝛼|𝑦𝑡+ℎ−1|−1∕𝛼 and differ-

entiating w.r.t. 𝜅 yields:

𝜕

𝜕𝜅
|𝑦𝑡+ℎ|−1∕𝛼 = −1

𝛼
𝜅−1−1∕𝛼 + 𝜈−1∕𝛼

𝜕

𝜕𝜅
|𝑦𝑡+ℎ−1|−1∕𝛼

Since, for ℎ = 1, 𝜕|𝑦𝑡|−1∕𝛼∕𝜕𝜅 equals zero, it follows that 𝜕|𝑦𝑡+1|−1∕𝛼∕
𝜕𝜅 < 0. Consequently, iterating for all other ℎ > 1, gives 𝜕|𝑦𝑡+ℎ|−1∕𝛼∕
𝜕𝜅 < 0. Therefore, 𝜕|𝑦𝑡+ℎ|∕𝜕𝜅 > 0 for all ℎ ≥ 1. By following analogous 
steps, with appropriate adjustments made where necessary, it can be 
16

shown that also 𝜕|𝑦𝑡+ℎ|∕𝜕𝜈 > 0 for all ℎ ≥ 1.
Appendix C. First-order equivalence

To streamline the notation for HD(1), consider the following sim-

plifications: 𝑦 = |𝑦𝑡+1|, 𝑥 = |𝑦𝑡|, 𝑏 = 𝜅−1∕𝛼 , 𝑐 = 𝜈−1∕𝛼 > 1. Next rewrite 
the deterministic component 𝑔(𝑦𝑡) of the process as 𝑦 = (𝑏 + 𝑐𝑥−1∕𝛼)−𝛼 . 
Define 𝑑 = 1[𝑥 ≤ 1]. When 𝑑 = 1, the first-order Taylor expansion of 𝑦
around 𝑥 = 1 is 𝑦 = (𝑏 + 𝑐)−𝛼 + (𝑏 + 𝑐)−𝛼−1𝑐(𝑥 − 1) +[(𝑥 − 1)2]. On the 
other hand, when 𝑑 = 0, the first-order expansion around 𝑥−1 = 1 is: 
𝑦 = (𝑏 + 𝑐)−𝛼 − (𝑏 + 𝑐)−𝛼−1𝑐(𝑥−1 − 1) + [(𝑥−1 − 1)2], whereas when 
𝑑 = 0 the first-order expansion around 𝑥−1 = 1. Combining the two 
cases gives:

𝑦 = (𝑏+ 𝑐)−𝛼 + (𝑏+ 𝑐)−𝛼−1𝑐
(
𝑥𝑑 − 𝑥𝑑−1

)
+ [(𝑥𝑑 − 𝑥𝑑−1

)2]
Consider now the process 𝑦̃ with parameters 𝛼̃ ≠ 𝛼, 𝑏̃ and 𝑐. For the dif-

ference 𝑦̃ − 𝑦 to be of order  
[(
𝑥𝑑 − 𝑥𝑑−1

)2]
, it is necessary that the 

constants and the coefficients of 𝑥 and 𝑥−1 cancel each other in pairs. 
Specifically, (𝑏̃+ 𝑐)−𝛼̃ = (𝑏 + 𝑐)−𝛼 and (𝑏̃+ 𝑐)−𝛼̃−1𝑐 = (𝑏 + 𝑐)−𝛼−1𝑐. Solv-

ing for 𝑏̃ and 𝑐 yields 𝑏̃ = (𝑏 + 𝑐)𝛼∕𝛼̃−1𝑏 and 𝑐 = (𝑏 + 𝑐)𝛼∕𝛼̃−1𝑐. Therefore, 
there are infinitely many combinations of parameters (𝛼, 𝜅, 𝜈) that result 

in processes being first-order equivalent. Recall that, due to the station-
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Table 10

Bond spreads: estimation and unit-root testing results of NO TREND specifications. Every sub-panel reports the estimation output under the unconstrained alternatives:

ARMA, two-regimes SETAR, RCA and aHD(1). Autoregressive coefficients are 𝜙𝑖 , moving average coefficients are 𝜃𝑗 , and the variance of the innovations to the

RCA latent process is 𝜎2
𝜂
. The lowest BIC of the four competing parameterizations is reported in bold, LIK is the log-likelihood, and CLIK the constrained log-likelihood 

(𝛿 = 0, 𝜋 = 0). 𝐿𝑅 is the value of the signed likelihood-ratio statistic for unit root testing in ARMA, SETAR and aHD(1), while 𝑀𝑠 and 𝑉 𝑠 are the values of the 
mean- and variance-stationarity statistics for unit root testing in RCA. Significance levels are marked by 𝑎 , 𝑏, and 𝑐 , indicating 1%, 2.5% and 5% significance, 
respectively.

𝛿 𝜋 𝛼 𝜙1∕𝜃1 𝜙2/𝜃2∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA 0. 0150 −0.0296 0.2275 613.851 −297.315 −302.201 −3.126𝑏

(0.0202) (0.0065) (0.0288)

SETAR(>-2.00) 0.0629 −0.1226

(0.0496) (0.0480)

SETAR(<-2.00) −0.5022 −0.1549 0.4439 −0.1960 606.274 −280.713 −287.720 −3.744

(0.1588) (0.0434) (0.0663) (0.0744)

RCA 0.0183 −0.0530 −0.1291 0.2186 0.2071 625.769 −300.074 0.001 0.131

(0.0189) (0.0214) (0.0871) (0.0590) (0.1701)

aHD(1) 0.3119 −5.8⋅10−5 0.25 0.1802 −0.1056 604.503 −289.438 −298.034 −4.146𝑎

(0.0847) (8.9⋅10−6) (0.0310) (0.0329)

Australia−GB: 10-year Bond spread from 1969:07 to 2019:12 (606 monthly obs.)

𝛿 𝜋 𝛼 𝜙1 𝜙1∕𝜃1∕𝜎2
𝜂

BIC LIK CLIK∕𝑀𝑠 𝐿𝑅∕𝑉 𝑠

ARMA −0.0293 −0.0557 0.3538 327.644 −153.953 −164.044 −4.492𝑎

(0.0158) (0.0073) (0.0260)

SETAR(>-1.28) 0.1988 −0.1521

(0.0455) (0.0454)

SETAR(<-1.28) −0.1752 −0.1057 0.4797 −0.2210 339.095 −146.520 −153.452 −3.723

(0.0785) (0.0336) (0.0600) (0.0625)

RCA −0.0279 −0.0899𝑎 −0.1349 0.3150 0.1829 361.669 −167.679 −0.003 0.128

(0.0145) (0.0210) (0.0495) (0.0535) (0.0929)

aHD(1) −0.4932 −0.0189 1.00 0.3514 324.840 −152.551 −164.044 −4.794𝑎

(0.0456) (0.0040) (0.0375)

France−GB: 10-year Bond spread from 1960:01 to 2019:12 (720 monthly obs.)

Table 11

Forecast mean-squared-errors (FMSE) of the ARMA, SETAR, RCA and aHD(1) specifications. The lowest FMSE of the four competing parameterizations is reported 
in bold.

T ARMA SETAR RCA aHD(1) T ARMA SETAR RCA aHD(1)

US3M: 180 0.007219 0.007871 0.007766 0.007096 AU10-GB10: 41 0.042648 0.045977 0.042598 0.042565

US01: 189 0.011166 0.011150 0.011840 0.011431 DE10-US10: 41 0.019454 0.020656 0.020546 0.018932

US10: 41 0.045032 0.046273 0.047417 0.043775 FR10-GB10: 41 0.023062 0.023528 0.023248 0.023728

CA10: 41 0.041578 0.044548 0.042901 0.041076 JP10-US10: 41 0.054547 0.055247 0.054510 0.053015

GB10: 41 0.075002 0.076693 0.079778 0.075575
arity of the process, the difference  
[(
𝑥𝑑 − 𝑥𝑑−1

)2]
between 𝑦̃𝑡+1 and 

𝑦𝑡+1 diminishes in magnitude from period 𝑡 + 2 onward.

Appendix D. Stationarity of the oscillatory aHD(1)

Although the aHD(1) process has a root strictly less than unity for 
any negative 𝜋, a necessary condition for its stationarity is that the 
root is strictly greater than minus one. Since the aHD(1) is a power-

autoregression, a necessary condition for stationarity is that innovations 
are bounded, as outlined in Chan and Tong (2001). Without loss of 
generality, consider the process in equation (7) with 𝜇𝑡 = 0 for all 𝑡 and 
bounded support for the innovations 𝜀𝑡+1 ∈ (−𝑎, 𝑎) for every 𝑡:

𝑦𝑡+1 = 𝑦𝑡 + 𝜋𝑦𝑡|𝑦𝑡|1∕𝛼 + 𝜀𝑡+1

The necessary and sufficient condition for the stationarity of 𝑦𝑡+1 is the 
existence of a global attractor |𝜕𝑦𝑡+1∕𝜕𝑦𝑡| < 1, corresponding to −1 <
1 + 𝜋(𝛼+1)

𝛼
|𝑦𝑡|1∕𝛼 < 1. Given 𝜋 < 0, the right-hand-side of the inequal-

ity is always satisfied. As for the left-hand-side, it implies that |𝑦𝑡| <[
−2𝛼∕𝜋(𝛼 + 1)

]𝛼
. Thus, the lower and upper bounds of the process are, 

respectively, 𝑦𝐿 = − 
[
−2𝛼∕𝜋(𝛼 + 1)

]𝛼
and 𝑦𝐻 =

[
−2𝛼∕𝜋(𝛼 + 1)

]𝛼
. Since 

the upper bound is attained at 𝑦𝐻 =
(
1 − 𝛼𝜃|𝑦𝐿|1∕𝛼)𝑦𝐿 + 𝑎 and since 

𝑦𝐿 = −𝑦𝐻 , it follows that 𝑎 = 2𝑦𝐻 + 𝜋𝑦
1+1∕𝛼
𝐻

. Finally, substituting the 
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expression for 𝑦𝐻 in that of 𝑎 gives the bound on the innovations:
𝑎 = 2
𝛼 + 1

( 2𝛼
𝛼 + 1

)𝛼 |𝜋|−𝛼
Therefore, when 𝜋 has a small modulus, the magnitude of the innova-

tions bound 𝑎 - proportional to |𝜋|−𝛼 - is large. Consequently, both the 
lower an upper bounds of the process exhibit ample magnitudes.

Appendix E. Stationarity of RCA

The infinite moving average representation of the RCA model is:

𝑦𝑡+1 = 𝛿

[
1 +

∞∑
𝑗=0

𝑆𝑗

]
+ 𝜎𝜖

[
𝜖𝑡+1 +

∞∑
𝑗=0

𝑆𝑗𝜖𝑡−𝑗

]
+ lim

𝜅→∞
𝑆𝜅𝑦𝑡−𝜅

where ln𝑆𝑗 ≡∑𝑗

𝑛=0 ln(1 +𝜋𝑡+1−𝑛) with 𝔼[ln𝑆𝑗 ] = (𝑗 +1)𝛼(1 −𝜙1)−1 and 
𝕍 [ln𝑆𝑗 ] = 𝜎2

𝜂
(𝑗 + 1)(1 + 𝜙1)(1 − 𝜙1)−1(1 − 𝜙2

1)
−1 − 2𝜎2

𝜂
𝜙1(1 − 𝜙

𝑗+1
1 )(1 −

𝜙1)−2(1 − 𝜙2
1)

−1. The term 𝑆𝜅𝑦𝑡−𝜅 becomes negligible as 𝜅 →∞, pro-

vided that lim𝜅→∞ 𝜅−1∑𝜅
𝑛=0 ln(1 + 𝜋𝑡+1−𝑛) < 0 holds, or equivalently, 

when the expectation 𝔼 
[
ln(1 + 𝜋𝑡+1)

]
is negative. Consequently, under 

the constraint 𝛼 < 0, the RCA representation simplifies to:

𝑦 = 𝛿

[
1 +

∞∑
𝑆

]
+ 𝜎

[
𝜖 +

∞∑
𝑆 𝜖

]

𝑡+1

𝑗=0
𝑗 𝜖 𝑡+1

𝑗=0
𝑗 𝑡−𝑗



Journal of Banking and Finance 161 (2024) 107113A. Palandri

Fig. 6. Time-series of Bond spreads (US 10-year Bond benchmark).

Fig. 7. Time-series of selected Bond spreads (GB 10-year Bond benchmark).
Mean stationarity implies that 𝔼 
[
𝑦𝑡+1

]
= 𝛿

[
1 +

∑∞
𝑗=0 𝔼(𝑆𝑗 )

]
should 

be finite, a criterion met when the series is absolutely convergent: 
lim𝑗→∞ 𝔼(𝑆𝑗 )∕𝔼(𝑆𝑗−1) < 1. Under of the assumption of Gaussian inno-

vations 𝜂𝑡+1, the condition becomes:

lim
𝑗→∞

exp
{
𝔼[ln𝑆𝑗 ] +

1
2
𝕍 [ln𝑆𝑗 ] − 𝔼[ln𝑆𝑗−1] −

1
2
𝕍 [ln𝑆𝑗−1]

}
< 1

lim
𝑗→∞

𝛼

1 −𝜙1
+

𝜎2𝜂

2(1 −𝜙2
1)

⋅

[
1 + 𝜙1
1 − 𝜙1

−
2𝜙𝑗+1

1
1 − 𝜙1

]
< 0

𝜎2𝜂
18

𝛼 +
2(1 − 𝜙1)

< 0
Exploiting the fact that the 𝜖𝑡+1 are serially uncorrelated, the re-

quirement for variance stationarity is that 
∑∞

𝑗=0 𝔼(𝑆
2
𝑗
) remains finite. 

Recognizing the relationship 𝔼(𝑆2
𝑗
) = 𝔼(exp(2 ln𝑆𝑗 )), the series is abso-

lutely convergent if:

lim
𝑗→∞

exp
{
2𝔼[ln𝑆𝑗 ] + 2𝕍 [ln𝑆𝑗 ] − 2𝔼[ln𝑆𝑗−1] − 2𝕍 [ln𝑆𝑗−1]

}
< 1

lim
𝑗→∞

2𝛼
1 − 𝜙1

+
2𝜎2𝜂

1 − 𝜙2
1

⋅

[
1 + 𝜙1
1 − 𝜙1

−
2𝜙𝑗+1

1
1 − 𝜙1

]
< 0

𝜎2𝜂

𝛼 +

1 − 𝜙1
< 0
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