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Abstract
One of the most promising applications of quantum computing is the processing of graphical data like images. Here,
we investigate the possibility of realizing a quantum pattern recognition protocol based on swap test, and use the IBMQ
noisy intermediate-scale quantum (NISQ) devices to verify the idea. We find that with a two-qubit protocol, swap test can
efficiently detect the similarity between two patterns with good fidelity, though for three or more qubits, the noise in the
real devices becomes detrimental. To mitigate this noise effect, we resort to destructive swap test, which shows an improved
performance for three-qubit states. Due to limited cloud access to larger IBMQ processors, we take a segment-wise approach
to apply the destructive swap test on higher dimensional images. In this case, we define an average overlap measure which
shows faithfulness to distinguish between two very different or very similar patterns when run on real IBMQ processors. As
test images, we use binary images with simple patterns, grayscale MNIST numbers and fashion MNIST images, as well as
binary images of human blood vessel obtained from magnetic resonance imaging (MRI). We also present an experimental
set up for applying destructive swap test using the nitrogen vacancy (NVs) center in diamond. Our experimental data show
high fidelity for single qubit states. Lastly, we propose a protocol inspired from quantum associative memory, which works
in an analogous way to supervised learning for performing quantum pattern recognition using destructive swap test.

Keywords Quantum computation · Quantum pattern recognition · Quantum image processing · Machine learning ·
Artificial intelligence · Quantum associative memory · NISQ

1 Introduction

In the last few decades, the advancement in quantum
information processing has significantly impacted the fields
of computation and communication technologies. The
superiority of a quantum protocol lies in the fact that it can
accomplish tasks either impossible by a classical protocol
(Bennett et al. 1993; Bennett and Wiesner 1992), or in
some cases, it performs exponentially or polynomially faster
compared to its classical analogue, the most prominent
examples being Shor’s factorization algorithm (Shor 1997)
and Grover’s search algorithm (Grover 1997). These traits
of a quantum system, particularly the computational speed-
up, has been crucial in developing powerful algorithms for
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quantum simulation (Lloyd 1996; Peng et al. 2009; Peng
and Suter 2010; Álvarez and Suter 2010; Peng et al. 2014;
Chen et al. 2016; Li et al. 2017), Boson sampling (Aaronson
and Arkhipov 2011; Broome et al. 2013; Spring et al.
2013; Tillmann et al. 2013; Crespi et al. 2013; Wang et al.
2017), solving systems of linear equations (Harrow et al.
2009; Cai et al. 2013; Pan et al. 2014; Barz et al. 2017;
Zheng et al. 2017) and many other computational problems.
Recently, the possibility to use quantum properties to
facilitate artificial intelligence and machine learning has
been extensively investigated (Manzano et al. 2009; Lloyd
et al. 2013; Rebentrost et al. 2014; Cai et al. 2015; Li
et al. 2015; Ristè et al. 2017; Dunjko et al. 2016; Buffoni
and Caruso 2021). We are living in the era of quantum
supremacy (Arute et al. 2019; Zhong and et al 2020; 2021;
Wu and et al 2021). It has been possible to build quantum
processors (processing units) with several tens of qubits,
some of them being accessible to users from anywhere
in the world through cloud-based sharing (https://www.
ibm.com/quantum-computing/). However, these machines
are still extremely noisy and, for this reason, they are
called Noisy Intermediate-Scale Quantum (NISQ) devices
(Preskill 2018).
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This progress is starting to affect the field of image
processing. Vision is the most fundamental mechanism of
obtaining information about a system. Thus, image pro-
cessing is a necessary task in a broad range of directions
like medical science, space science and automobile tech-
nologies. With the advancement in quantum technologies,
a growing interest has been directed towards implement-
ing quantum systems for improved image processing. Some
quantum image processing protocols have been proposed
and tested, which show polynomial and exponential speed
up; an example is quantum edge detection (Zhang et al.
2015; Yao et al. 2017; Cavalieri and Maio 2020; Xu et al.
2020). Another widely used image processing task is pattern
recognition. The application of the latter ranges from iden-
tifying a string of integers or texts present in an 1D array,
to recognizing 2D patterns such as faces of people, hand-
written digits, geometric shapes and other tasks. In 2002,
Trugenberger introduced the idea of quantum associative
memory, and put forward a quantum pattern recognition
protocol based on that (Trugenberger 2002). Using quan-
tum Fourier transform, Schutzhold in 2003 devised another
protocol for pattern recognition which demonstrated expo-
nential speed-up over its classical analogue (Schützhold
2003). A number of follow-up works attempted to improve
the above protocols or presented similar algorithms inspired
by them (Pham and Park 2014; Prousalis and Konofaos
2019; Banchi et al. 2020). Except these, quantum pattern
recognition protocols based on the framework of classi-
cal Hopfield neural network (Neigovzen et al. 2009), the
hidden shift problem (Montanaro 2015), pixel gradient cal-
culation (Zhang et al. 2015) and Grover’s algorithm (Jiang
et al. 2016; Soni and Rasool 2020; Tezuka et al. 2022)
have been proposed. Some of them adopted a quantum
machine learning approach (Lloyd et al. 2013; Kapoor et al.
2016; Benedetti et al. 2017; Denchev et al. 2012; Schuld
et al. 2016; 2015). However, when tested on real quan-
tum systems, the protocols are inevitably subject to noise,
which degrades their efficiency. Thus, one must learn how
to control noise and counteract its effects.

In this work, we consider a quantum pattern recognition
algorithm based on swap test. The swap test is used to
calculate the closeness between two quantum states. In
quantum image processing, the classical images are encoded
in quantum states; hence, the swap test emerges as a very
plausible approach to find similarity between two quantum
images. This has been previously mentioned and briefly
discussed in Yao et al. (2017) and Cavalieri and Maio
(2020). The question remains as what will be the efficiency
of this protocol in real quantum systems. This is motivation
of our work, where the real systems are the IBMQ
devices (https://www.ibm.com/quantum-computing/) and
NV centers in our experimental setting. We aim to identify a
pattern in the target image by comparing it with the patterns

present in a large set of reference images, and finding an
exact match. We find that, for systems as small as three
qubits, and corresponding states which can be prepared
using a few Hadamard and controlled NOT gates, the
performance of swap test is low due to the strong presence
of noise. To curb the effect of noise, we try an alternate
but equivalent circuit, often called as ‘destructive swap
test’ in the past literature (Garcia-Escartin and Chamorro-
Posada 2013), in which the number of necessary gates
is reduced. By using this novel approach, we observe an
improved performance of the pattern recognition protocol
for three-qubit states in real IBMQ devices (see Section 4
for more details). We then go on to try the destructive swap
test in these systems for higher dimensional binary and
grayscale images, including small-dimensional biomedical
images obtained in the lab with MRI. We also present an
experimental setup and the resulting data where destructive
swap test is performed using diamond nitrogen vacancy
(NVs) centers. Our results suggest that destructive swap test
can be a potential alternative to achieve the goal of swap test,
at a reduced level of noise. Lastly, we propose a quantum
protocol inspired from the quantum associative memory,
by which one can recognize a pattern from a large set of
reference patterns.

The paper is organized as follows. In Section 2, we
describe the encoding of a classical image in a quantum
state. In Section 3, we discuss swap test and its performance
in real quantum computers. This leads the way to destructive
swap test and its improvements over swap test. In Section 4,
we demonstrate the performance of destructive swap test in
real quantum systems, when identifying similar geometric
patterns encoded in binary images, as well as binary
images obtained from MRI of human blood vessel. We
also present a short analysis of how the success probability
of the protocol changes with varying noise in the real
quantum processors. In Section 5, we present similar
results for grayscale images. In Section 6, we show the
experimental result of destructive swap test in diamond
NVs. In Section 7, we propose a quantum algorithm
analogous to supervised learning, for using destructive swap
test in pattern recognition. Lastly, Section 8 contains the
concluding remarks.

2 Encoding an image in a quantum state

The first task in quantum image processing is to encode the
pixel positions and corresponding pixel values of a classical
image in a quantum state. A number of encoding processes
have been proposed to date, e.g. Flexible Representation
of Quantum Images (FRQI) (Le et al. 2011) and Novel
Enhanced Quantum Representation (NEQR) (Zhang et al.
2013). In this work, we will use a different encoding method
first used by the authors in Yao et al. (2017), which is
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often referred to as Quantum Probability Image Encoding
(QPIE).

We work with a 2D grayscale image of N = P × Q

pixels, which is classically encoded in a P ×Q dimensional
matrix M , the matrix element M(i, j) denoting the pixel
value at position (i, j). To encode this image in a quantum
state, we can use any m-qubit system, such that 2m ≥ N .
The Hilbert space H2 of each qubit is spanned by the
computational basis {|0〉, |1〉}. From the m-qubit register, we
choose n qubits such that 2n = N . We initialize them in the
state |f 〉 = ∑

i ci |i〉 where the basis vectors |i〉 span the
2n dimensional Hilbert space H⊗n

2 , encoding the positions
of the pixels. The coefficients ci encode the corresponding
pixel values. The first P elements of |f 〉 encode the first
column of M , the next P elements encode the second
column and so on. Thus, each pixel position corresponds
to a particular basis state |i〉 of H⊗n

2 , and its pixel value
corresponds to the coefficient ci in |f 〉. Lastly, the state |f 〉
must be normalized.

Most generally, the images can have a color format, e.g.
RGB or sRGB, where the pixel values can vary over a
range. The images can also be grayscale, where the varying
pixel values denote different shades of gray. However,
depending on which type of information we want to acquire
from the images, converting them to binary images can
be operationally advantageous for further image processing
tasks, e.g. edge detection. In a binary image, all the pixel
values are 0 or 1. The conversion from a grayscale to
a binary image can be achieved by choosing a suitable
threshold pixel value p in between the minimum and
maximum pixel values of the greyscale image. The pixel
values equal or higher than the threshold are converted to 1,
those below the threshold are converted to 0. Depending on
the choice of p, the resulting images differ.

Now that we are able to encode the images, we proceed
to apply a quantum pattern recognition protocol in the next
section. In classical image processing, a brute-force method
is to measure the pixel values of all the N pixels. However,
once encoded as an n-qubit quantum state, the number of
measurements necessary to obtain certain information about
an image is drastically reduced compared to the classical
case. To define our pattern recognition protocol, we assume
that we have a target image with an unknown pattern to be
detected, and a large set of reference images with different
patterns which are known to us. The target pattern can be
detected if it is compared with each reference image and an
exact match is found. In case an exact match does not exist
in the reference set, one can still look for the closest match.
Translated into the language of quantum physics, one needs
to calculate the closeness or distance between the quantum
states representing the images. A schematic diagram of the
protocol is presented in Fig. 1. The distance is determined
by swap test, as we discuss in the next section.

Target image

Set of reference images

Classical-to-quantum 
encoding

Quantum circuit for 
calculating distance

Reference image with 
minimum distance

, , ,

, , ,

Classical post-processing

Fig. 1 A schematic diagram of our pattern recognition protocol. In the
target image, one aims to detect the handwritten number ‘9’. There
is a set of reference images with handwritten digits from 0 to 9. The
target image and an arbitrary chosen reference image, in this case ‘2’
for demonstration purpose, is encoded as quantum states, and passed
as the inputs of a quantum protocol to calculate the distance between
them. The measurement result undergoes a classical post-processing.
The protocol is repeated for all the reference images. At the end, the
reference image with minimum distance to the target image is assigned
as the pattern to be detected

3 Swap test

Swap test is a widely used protocol for calculating the
overlap between two quantum states (Buhrman et al.
2001; Gottesman and Chuang 2001; Kang et al. 2019).
Specifically, if |ψ〉 and |φ〉 are two pure states, swap test
can be used to calculate |〈ψ |φ〉|2, which is also a valid
distance measure between the two states, known as quantum
Fidelity (Jozsa 1994; Schumacher 1995). The circuit of
swap test for single qubit states is shown in Fig. 2a. It can
be generalized to n-qubit states by repeating the controlled-
swap gate for all qubit pairs, as shown in Fig. 2b. Each of
the states |ψ〉 and |φ〉 is encoded using three qubit quantum
registers Q1 and Q2 respectively. There is an auxiliary qubit
Qa which is initialized in the computational basis state
|0〉. After initializing all the qubits, a Hadamard gate H is
applied on Qa , which transforms |0〉 to |+〉 = 1√

2
(|0〉+|1〉).

This qubit is then used as the control qubit to apply the
controlled swap operation between all consecutive qubit
pairs of Q1 and Q2. In the controlled swap operation, if
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Fig. 2 The circuit diagram of swap test for (a) single qubit states and (b) three-qubit states. (c) The swap test circuit after transpilation in
ibmq manila, for two single qubit states, both being |0〉

the control qubit is in state |1〉, the states of the two target
qubits are interchanged. If the control qubit is in state |0〉,
nothing changes. This is followed by another Hadamard
operation on Qa . Lastly, there is a classical register ‘cr’
which registers the measurement outcome on the auxiliary
qubit. The outcome can be ‘0’ or ‘1’, associated with
the measurement basis states |0〉 and |1〉 respectively. The
measurement is taken on a large number of identically
executed circuits. If |ψ〉 = |φ〉, the measurements will
return ‘0’ with probability P(0) = 1. If they are orthogonal,
P(0) = P(1) = 1

2 . For all other cases, P(0) varies between
1
2 and 1. The fidelity between two states is then

F = |〈φ|ψ〉|2 = 2P(0) − 1, (1)

and the overlap I is

I = |√F |. (2)

A higher value of I implies higher degree of similarity
between two states. Both F and I can be equivalently used
to measure the degree of similarity between two quantum
states. In this work, for most parts (except the diamond
NVs), we stick to I since it is more sensitive to small
changes in P(0).

We assume that for our pattern recognition protocol, both
the target and reference images have same dimension. The
target image is encoded in a quantum state, and passed as
one of the inputs in the swap test circuit. On the other hand,
each of the reference images is encoded in a quantum state,
and then passed as the other input. If two patterns match
exactly, one gets ‘0’ with probability 1 in the measurement
of the auxiliary qubit. Otherwise, one can detect the closest

pattern of the target image as the one with which it has
highest overlap.

In real quantum processors, the performance is unavoid-
ably affected by noise. The latter can appear due to deco-
herence, interaction among qubits, gate fidelity, state prepa-
ration and measurements. The adverse effect of noise on
any protocol increases with increasing number of qubits
and gates. The IBMQ real quantum processors provide a
number of virtual qubits to the user for constructing the
circuit, whereas the real quantum processor realizes this cir-
cuit using same number of physical qubits which follow a
certain connectivity or coupling map between them. Each
processor also has a set of ‘basis gates’ consisting of some
particular single qubit and two-qubit gates. When a circuit is
run in these processors, it typically needs to be ‘transpiled’.
Transpilation automatically analyses the gates used in the
circuit, and according to the required connectivity between
virtual qubits, maps them to a set of physical qubits. Next,
the action of all the complex gates is obtained by using the
basis gates. The depth of the resulting transpiled circuit can
be different for devices with different coupling maps. Both
of the above steps are executed in a way to minimize the
noise in the output, and the efficiency depends on the opti-
mization level chosen by the user while executing the run
on real devices. Thus, in the actual circuit realized using
physical qubits, the number of gates is higher compared to
what we add to the virtual circuit. This has been shown in
Fig. 2c for single qubit states. For higher dimensional states,
performance of swap test invariably degrades. We demon-
strate this in Fig. 3 where we perform swap test for two
states encoded using one qubit, two qubits and three qubits
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Fig. 3 The mean overlap Imean between two identical states encoded
using n qubits and the corresponding standard deviation σ for swap
test. The data are obtained by performing 100 runs of the circuit in the
real IBMQ processors ibm lagos

respectively. For all three cases, we take the two states to
be same and calculate the overlap between them. The states
corresponding to these three cases are |ψ1〉 = 1√

2

(|0〉+|1〉),

|ψ2〉 = 1√
2

(|00〉 + |11〉) and |ψ3〉 = 1√
2

(|000〉 + |111〉).

These states are typical exemplary states, and we prepare
them by directly adding Hadamard and controlled NOT
(CNOT) gates to the circuit. The CNOT gate has a control
qubit and a target qubit, the state of the latter undergoes a
bit-flip operation (gate corresponding to pauli-x matrix σx)
if the control qubit is in state |1〉, otherwise nothing changes.
The overlap is calculated for 100 realizations of the identi-
cal circuit, and then the mean overlap Imean and the standard
deviation σ is calculated. For this, we have used the 7-qubit
real quantum processor ibm lagos, which is compatible for
encoding two 3-qubit states, and had minimum gate noise
and readout error compared to all the 7-qubit real devices
at the time of generating the data. To create each one of the
subsequent plots, we used the real quantum device which
has the lowest noise indicator at the time of execution. From
Fig. 3, we see that for the single qubit case, in spite of the
presence of noise, the performance of swap test is quite
good. For two qubits, the noise becomes significant, and
for the three-qubit case, the value of the overlap worsens.
Due to the cloud inaccessibility to higher dimensional sys-
tems, we could not check the swap test for four qubit states.
However, the results are sufficient to suggest that the swap
test quickly loses its relevance for states having dimension
higher than 3, and this poses a primary challenge to utilize
it for pattern recognition in even fairly small images. Even
in the NV setup, the experimental results deviate because of
imperfect realization of the pulse sequences, as will be dis-
cussed in Section 6. However, the quantum simulators are

ideal and do not suffer this problem. One can check that for
two same images, the mean inner product and standard devi-
ation will always return values 1 and 0 respectively. This is
because the IBMQ simulators are classical computers that
simulates the results of an ideal quantum evolution. Hence,
they can still be used to check the performance of swap test
irrespective of the dimension, while being within their size
limit, which is 32 qubits for the qasm simulator.

3.1 Destructive swap test

In Garcia-Escartin and Chamorro-Posada (2013), the
authors showed that an equivalent circuit for swap test can
be built without using the auxiliary qubit, at the cost of
measuring all the qubits used to encode the states. The
controlled swap gate used in the previous section is a
three-qubit gate which can be realized by two CNOTs and
one CCNOT (controlled controlled NOT) gate. In the new
circuit, all the controlled swap gates are replaced by same
number of two-qubit CNOT gates. Also, only one Hadamard
gate is required. Thus, compared to the original swap test,
in this case, the number of gates in the transpiled circuit
decreases significantly, hence reducing the noise in the
output. This protocol is referred to as ‘destructive swap
test’, because any superposition in the output is destroyed
on measuring all the qubits. Later in Cincio et al. (2018),
the authors used machine learning approach to find the
optimized circuit for calculating the overlap between two
states, and they rediscovered the destructive swap test as
the optimum algorithm. Their results, obtained using 5-
qubit IBMQ and 19 qubit Rigetti’s quantum computer,
show a huge improvement of destructive swap test over
the auxiliary-qubit-assisted swap test in terms of reducing
the noise in the output. The circuit for destructive swap
test for single qubit states is shown in Fig. 4a. For n-qubit
states, the gate sequence of (CNOT+Hadamard) is applied
to the n pairs of qubits belonging to the two states, as
shown in Fig. 4b. The circuit of Fig. 4a after transpilation
is shown in Fig. 4c, which clearly uses a lot less number of
gates compared to Fig. 2c. For each shot of the circuit run,
the classical bit string corresponding to the measurement
outcomes from the qubits of |ψ〉 is denoted by Oψ , and that
for |φ〉 is denoted by Oφ . Each of Oψ and Oφ can have
2n different possibilities. The joint string OψOφ constitutes
the measurement outcomes of the total system, which has
22n possibilities. Each element O

ψ/φ
i (i = 1, 2, ..., n) is

a bit, taking values either ‘0’ or ‘1’. Suppose O
ψ
i and

O
φ
i are the ith bits of the two strings respectively. As

shown in Garcia-Escartin and Chamorro-Posada (2013), an
equivalent situation of obtaining ‘1’ in the auxiliary qubit
measurement in the standard swap test occurs when Oψ and
Oφ are such that

∑
i AND(O

ψ
i , O

φ
i ) has odd parity. For all
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Fig. 4 The circuit diagram of
destructive swap test for (a)
single qubit states and (b)
three-qubit states. (c) The
destructive swap test circuit after
transpilation in ibmq manila, for
two single qubit states, both
being |0〉. Here ‘cr2’ stands for
two bit classical registers +
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such sequences Oφ and Oψ , we take summation over the
probabilities P(OψOφ) of the joint outcomes OψOφ . A
nonzero value of this sum implies that |ψ〉 and |φ〉 are not
same. For this reason, we call this sum as the ‘probability
of failure’. By subtracting it from unity, we get the ‘success
probability’ which we denote by P(0). A higher value of
P(0) implies higher overlap between two states. When |ψ〉
and |φ〉 are same, the success probability is 1. The fidelity
and the overlap can again be calculated using Eqs. 1 and 2.
For instance, for two-qubit states the probability of failure is
obtained by summing over the probabilities of the outcomes
0101, 0111, 1010, 1011, 1101 and 1110. For each of them,
the first two-qubit correspond to the measurement outcomes
of qubits from one state, and the last two bits from the other
state. In ideal systems, the swap test and destructive swap
test will give same success/failure probability to distinguish
between two images. However, it is not the case for noisy
systems.

4 Destructive swap test for pattern
recognition

In this section, we present a comparative study between
the swap test and destructive swap test in real quantum
processors as well as in the ideal qasm simulator provided
by IBMQ. We use binary images where the black pixels
compose a ‘pattern’ against the background of white pixels.
Our goal is to identify this pattern in a certain image. We
start with small images with 2×2 and 2×4 pixels, as shown
in Fig. 5a and 5b. The black and white pixels correspond
to pixel values ‘1’ and ‘0’ respectively. The images are
encoded using 2 and 3 qubits respectively. As shown in the
previous section, the swap test in these systems is highly
noisy. We want to check whether destructive swap test can
reduce the effects of noise. For 100 runs of the same circuit

in the real quantum processor ibm lagos, we calculate the
mean overlap Imean and the standard deviation σ . For
comparison, we also show in Fig. 5a and 5b the theoretical
value of the overlap, and that obtained from qasm simulator.
For the two-qubit images, the result shows 7% error to
distinguish between same images, which is a significant
improvement over Fig. 3. For the three-qubit images, this
error is around 31%, which is still an improvement over the
swap test. Also the relative behaviour of Imean for different
reference images is consistent with the actual overlap,
and hence the destructive swap test can be faithfully used
for pattern recognition. This also demonstrates that, even
though the number of measurements increases, the noise in
the output is much less compared to swap test. However,
the destructive swap test needs a more complicated classical
post-processing of the measurement outcomes. Thus, there
is a trade-off between swap test and destructive swap
test in terms of classical post-processing, and number of
quantum gates used in the circuit. The reader may note
that the overlap between two same images obtained from
a real quantum device can vary little bit depending on the
particular quantum image states being considered. This is
because the number of gates used to prepare different initial
states can be different; hence, the effect of noise can vary.

To perform destructive swap test for larger images, we
need access to higher dimensional real quantum processors.
The largest systems we have access to are the 7 qubit IBMQ
processors. A way out is to divide the original image into
smaller segments each of which can be encoded using the
available few-qubit systems. Then one can apply destructive
swap test on the pair of segments belonging to the same
coordinates from the target and the reference image. In case
of binary images, there can exist segments on which all
the pixels have pixel values 0. Using our encoding method,
we cannot encode these white blocks as valid quantum
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Fig. 5 Destructive swap test for
pattern recognition in (a)
two-qubit and (b) three-qubit
images. In each vertical panel,
the image on the left is the target
image, and the one in the right is
the reference image. The y-axis
in the left denotes the overlap
and the one in the right denotes
the standard deviation
corresponding to real quantum
processors. The legendbox in (b)
applies to both the figures. The
mean and standard deviation are
calculated over 100 runs of the
circuit in the real quantum
processor ibm lagos

(a)

(b)

states because ci = 0, ∀i. Hence, we run the circuit only
when both the blocks corresponding to target and reference
image have at least one pixel with non-zero pixel value.
For each such pair of blocks, we calculate the overlap. One
drawback of this segment-wise approach is that it does not
calculate anymore the distance between the full quantum
states encoding the images. Also by taking this approach,
we exclude those cases when one among the pair of blocks is
white and another has black pixels. This exclusion induces
error in the results.

In other words, a particular pattern can have same
number of pixels in common with two or more different
patterns, e.g. in Fig. 6, the triangle has the same pixels
overlapping with the square, the circle and with itself.
Hence, all those reference patterns will correspond to
exactly the same number of blocks contributing to the
overlap with the triangle. Thus, to detect the closest pattern,
one should also take into account the white blocks which are
not common between the target and reference pattern. For
this, we take summation of all segment-wise overlaps, and
divide it by max{N1, N2}, where N1 and N2 are the number
of blocks having non-zero pixel values corresponding to
the patterns in the target and reference image respectively.

We call this ‘average overlap’ Iavg, and use this to capture
the closeness between two patterns. We show the results
in Fig. 6, where we divide the original 32 × 32 pixels
images containing simple geometric patterns into 2 × 2
pixels segments, and apply destructive swap test on the
16 × 16 pairs of segments with same coordinates from
the target and reference image. The data corresponding
to real quantum processors have been produced using
ibmq manila. We also have presented the actual value of the
overlap between the full quantum image states and those
obtained from the qasm simulator. Clearly, the average
overlap is highest when the patterns from both the images
match exactly. In this case, there is around 20% error in
the overlap corresponding to real quantum backends. In the
worst case, there is around 40% error in case of square-
cross overlap. However, despite the noise, the comparative
behaviour of Iavg is consistent with that of the actual
overlap between the patterns. This segmenting process
indeed needs significantly higher number of measurements
and computational time. However, as the computational
power of quantum computers improves more and more over
the years, we will be able to select bigger segments from
original images, eventually being able to encode the whole
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Fig. 6 The destructive swap test applied to compare the overlap
between different geometric patterns in binary images. Each image is
32 × 32 pixels. The two images placed next to each other in a vertical
column are compared. In each column, the green circle denotes the ideal
overlap, the black plus denotes the overlap obtained from the IBMQ
qasm simulator and the red star is the average overlap obtained from
the real quantum processor ibmq manila by dividing the original image
into 2 × 2 segments. The vertical axis is used to plot both the overlap
for full images (I), and the average overlap over the segments (Iavg)

images using the available qubits. To check the validity
of this segmenting process for bigger than 2 × 2 blocks,
we increase the block size step by step, and compare Iavg

between the same pair of patterns as in Fig. 6. Due to
the size limitation of accessible real quantum processors,
we use qasm simulator to simulate the circuits, and the
results are presented in Fig. 7. For every block size, the
comparative behaviour between different pairs of patterns
remains consistent with the ideal situation. There exist small
anomalies, e.g. for the Iavg of square-circle pair when the
blocks are 8 × 8 pixels. In this figure, the errors arise
not because of gate noises, but because Iavg is not entirely
equivalent to the overlap I between full quantum images.
For example, comparing Iavg from Fig. 6 to Iavg in Fig. 7
for square-circle overlap, the error can vary between 3%
minimum to 20% maximum depending on block size. For
two same images, there is no error due to averaging process.
However, the comparative behaviour again indicates that the
destructive swap test is faithful for pattern recognition, and
Iavg can be used for large dimensional images with simple
binary patterns.

4.1 Noise robustness

Due to the impossibility of completely removing the
presence of noise, the real IBMQ processors are subject
to gate errors, state preparation and measurement errors,

Fig. 7 The variation of the average overlap Iavg with varying
dimension of the blocks used to divide the original 32×32 images. The
results are obtained by using qasm simulator. Different markers and
colors correspond to comparison between different pairs of geometric
shapes as indicated in the legend

and readout errors. The former two are due to imperfect
implementation of gates, and the latter two are due to
imperfect measurements. As all the IBMQ processors are
calibrated on certain time intervals, the values of these
errors fluctuate. To understand the robustness of our results
against these fluctuating errors, it is important to check
how the success probability of destructive swap test changes
with changing noise (Martina et al. 2022). Since we cannot
manually change the errors in IBMQ processors, we resort
to the simulation using the “NoiseModel” class’ provided
by IBMQ simulators. The IBMQ Aer simulator copies
the error values as well as other system parameters like
topology, coupling and basis gates from a user-specified
real quantum processor, so that the simulation results mimic
what is obtained from that real device. It is also possible
to customize the noise for all the basis gates, and then use
the qasm simulator to simulate the results. For example, one
can choose among depolarizing noise, Pauli noise etc., vary
the noise strength and select gates to which the noise is to be
applied. With this approach, we study three cases, i.e. (i) the
single qubit gates are significantly noisy, (ii) the two-qubit
gates are significantly noisy and (iii) all the gates are equally
noisy. In all three cases, we consider a depolarizing noise.
A quantum state ρ subject to depolarizing noise evolves
to a mixture of itself and the maximally mixed state, i.e.
ρ → (1 − p)ρ + p I

4 . Here p is the noise strength which

satisfies the bound 0 ≤ p ≤ 1 + 1
d2−1

, d being the
dimension of ρ, and I is the identity operator. Depolarizing
error is the most general error in a qubit, which models
the decoherence process. It takes into account the effects
of all the three Pauli noise channels, i.e. bit-flip, phase-flip
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and bit-phase flip. Since the Pauli operators span SU(2),
an error-correcting code for depolarizing error can correct
any other SU(2) error. This is one of the reasons we choose
depolarizing noise for studying noise robustness. We vary
p from 0.05 to 1.05 and calculate the overlap between two
identical 2 × 2 image by destructive swap test. Our results
are shown in Fig. 8. For this study, we keep the readout
error at the constant value of 0.01, which is of the same
order of magnitude as the typical readout errors in real
quantum processors. As we can see from the figure, the
depolarizing noise in single qubit gates is more detrimental
than the depolarizing noise in two-qubit gates for destructive
swap test. When all the gates are noisy, then the circuit
performance worsen, as expected.

Two other important noise models for a qubit are
amplitude damping and phase damping channel. For
completeness, we also present the behaviour of the
overlap between two identical states with varying amplitude
damping and phase damping noise strength in single-
qubit gates. The overlap seems to be most robust against
phase damping noise. The standard noise models in IBMQ
does not provide amplitude damping and phase damping
channels for two qubit gates, and we do not consider
these cases to avoid constructing the complicated Kraus
operators. The fluctuation in the overlap value reduces for
higher values of noise strength, but in that regime, the value
of I is also small. However, for the IBMQ systems that
we used, the single-qubit gate errors are always well below
0.01, and the two-qubits gate errors are below 0.1, which
implies that I > 0.55 for two-qubit states in this noise
range. Since we do not know the exact nature of the complex
noise present in the IBMQ real devices, the actual results
obtained from them are not exactly the same as shown in
Fig. 8. However, the noise simulation gives an idea about
the overall behaviour of the protocol with changing noise at
different gates.

We also study the success probability by varying the
readout error r . The readout error is the fraction indicating
the number of times a ‘0’ or ‘1’ in the output is measured
erroneously as ‘1’ or ‘0’. The result is presented in Fig. 9.
The gate errors corresponding to all the gates have been
kept at 10−3 which is of the same order of magnitude as the
lowest gate errors in real processors. Typically the readout
error in these processors is of the order of 10−2.

4.2 Feature recognition in MRI images

To consider a more practical application, e.g. in
biomedicine, we repeat the destructive swap test to detect
a particular feature in an image of human blood vessel
obtained from MRI in our lab. The original images are
colored images. We choose a threshold value to binarize
the image so as to reveal all the details of the vessel against

Fig. 8 The behaviour of the overlap I between two identical two-
qubit image states, with varying strength of depolarizing, amplitude
damping and phase damping noise in the circuit gates. The blue curve
corresponds to the case when the depolarizing noise in the two CNOT
gates is varied, keeping all the single qubit gates at very low noise.
The green one is for the case when the CNOT gate depolarizing noise
is low, but all the single-qubit gate depolarizing noise varies. The
red curve is when the depolarizing noise of all the gates are varied
together. For the amplitude damping and phase damping noise, the
curves corresponds to only the single qubit gate noises, while the
CNOT gate noise is kept at a very low depolarizing noise

the background of Formaldehyde. In this particular case,
we want, for instance, to identify a cavity present in the
tissue of the smaller vessel in the left of the image (see
Fig. 10a). To do so, we compare different sections of that
blood vessel with a sample image of a cavity. The later is
extracted from another MRI image of human blood vessel.
In Fig. 10a, we have highlighted a few of the sections of
the blood vessel which are compared with the reference
cavity in Fig. 10b. We select 2 × 2 blocks from each image,

Fig. 9 The behaviour of the overlap I between two identical two-qubit
states with varying readout error strength, obtained using destructive
swap test
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(a) (b) (c)

Fig. 10 Destructive swap test performed in real quantum processors
to detect a cavity in the MRI image of human blood vessel. (a)
(In the left) The full image after conversion from colored to binary.
(In the right) A zoomed-in segment of the smaller vessel contain-
ing the cavity to be identified. The five rectangular areas with red

outline are compared with the reference cavity. (b) The reference cav-
ity, obtained from another similar MRI image. (c) The theoretical over-
lap I , the overlap from qasm simulator and the average overlap Iavg
obtained from ibm lagos when comparing (b) with the six segments
in (a)

belonging to the same coordinates, and calculate Iavg using
ibm lagos. In Fig. 10c, we present the comparison of Iavg

with the theoretical overlap and that obtained from ideal
qasm simulator. In this case as well, Iavg has highest value
when the target and reference cavities match very closely,
proving again the utility of destructive swap test, as well as
the average overlap measure defined by us. This also opens
up the possibility of pattern recognition in medical images
using destructive swap test.

5 Pattern recognition in grayscale images

While binary images are the simplest image prototypes, in
practice, the images acquired for quantum image processing
tasks are mostly grayscale or with an RGB color profile.
Hence, it is important to investigate whether the destructive
swap test can efficiently identify patterns in grayscale/RGB
images. Irrespective of the pixel values, we can encode
these images in a quantum state using QPIE method, and
then apply the destructive swap test to measure the overlap
between them. First, we use MNIST images as the prototype
for grayscale images. MNIST images are a large set of
images, frequently used in machine learning and pattern
recognition algorithms (Deng 2012). Each image is 28 × 28
pixels, containing a handwritten digit between 0 and 9.
The dimension of these images is not an integer power
of 2; hence, they cannot be encoded using QPIE method.
To tackle this, we add rows and columns all having black
pixels to the original images, to increase the dimension to
32 × 32 pixels, which can be encoded using 10 qubits.
As our target image, we pick a particular image containing

‘0’ as the pattern, and compare it with a set of other
images with different numbers. We simulate the circuit
in ideal qasm simulator to obtain the overlap I between
full quantum images. Then we divide them into 2 × 2
segments to calculate Iavg using the real quantum processor
ibmq manila. The results are presented in Fig. 11a, which
shows that the behaviour of Iavg for different reference
images is consistent with the theoretical overlap and the
simulated one. It suggests that the destructive swap test can
identify images with similar grayscale patterns by picking
the images with highest I or Iavg. For example, the overlap
of the target image with the reference image containing ‘6’
is close to the overlap with reference images containing ‘0’.
This is expected because the images are handwritten and
in some cases ‘6’ can resemble the circular nature of ‘0’.
Of course, if the reference images are enough noisy, the
destructive swap test results can indicate a wrong digit for
the target image.

We also run the same circuit for fashion MNIST images
using the same real quantum processor. The result is
presented in Fig. 11b. In this case, Iavg is not as efficient
as for MNIST numbers. Though the reference images with
comparatively higher Iavg matches well with those having
highest overlap, choosing one particular closest pattern
based on Iavg may not exactly match with the actual closest
pattern. This is also due to the higher complexity of the
images, as it is clear from the pictures that the pixels in these
images encode more shades of gray compared to MNIST
numbers. However, the Iavg in this case can still be used
to distinguish between widely different categories of the
fashion images, e.g. shirts and dresses.



QuantumMachine Intelligence            (2023) 5:16 Page 11 of 17   16 

Fig. 11 Comparison between
the actual overlap I between
two quantum images, the
overlap obtained from a
qasm simulator and the average
overlap Iavg obtained from real
IBMQ processors. The plots are
for (a) MNIST numbers and (b)
fashion MNIST images. Two
images along a vertical column
are compared. As real quantum
processor, we use ibmq manila

(a)

(b)

6 Experimental demonstration of
destructive swap test in diamond NVs

The IBMQ processors are based on superconducting qubit
technology. To test the efficiency of destructive swap test
in a different quantum system, we use two qubits in
diamond NVs (Wrachtrup and Jelezko 2006; Suter and
Jelezko 2017) to demonstrate the performance of destructive
swap test. The experiment scheme is shown in Fig. 12.
The demonstration starts with the pure state |00〉, which is
prepared by the schemes proposed in the previous works
(Zhang et al. 2019; 2020; Hegde et al. 2020; Zhang et al.
2023). In Fig. 12a, we show the structure of the NV center
with a coupled 13C spin. Here we choose the electron spin in
states with mS = 0 and mS = −1 as qubit 1, and 13C spin as
qubit 2, where mS denotes quantum number for the electron
spin. Figure 12b shows the quantum circuit to demonstrate
the destructive swap test.

We choose |φ〉 = 1√
2
(|0〉 + |1〉), generated by applying a

Hadamard gate H to state |0〉. We use the destructive swap

test to measure the fidelity between state |φ〉 and various
states |ψ〉, which is generated by applying an operation
θβ = e∓iθIy to state |0〉, where β = π/2 or β = 3π/2,
respectively, and Iy denotes y component of the spin 1/2
operator. The fidelity F is the population of the electron spin
in state |0〉. The theoretical F is calculated as

Fth = 1

2
(1 ± sin θ) (3)

with maximums at θopt = π/2 or 3π/2, for β = π/2 or
β = 3π/2, respectively. In Fig. 12c, we show the microwave
(MW) pulse sequence for implementing the circuit in (b).
The first pulse is for the operation θβ , and the other three
MW pulses are for the two Hadamard gates sandwiched by
the CNOT gate. The laser pulse detects the observable F .

The experiment results are shown in Fig. 13, where
subfigures (a) and (b) correspond to β = π/2 and 3π/2,
respectively. The experiment data F can be fitted by the
theory Fth as

F = a + bFth (4)
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Fig. 12 Experiment scheme to demonstrate the destructive swap test
in NVs. (a) Structure of the NV center with a coupled 13C spin. (b)
Quantum circuit with the steps of the state preparation and destruc-
tive swap test, indicated by the green dotted boxes. The operation θβ

denotes an operation as θβ = e∓iθIy , corresponding β = π/2 and
β = 3π/2, respectively. The observable F = |〈φ|ψ〉|2 is the popula-
tion of the electron state |0〉. (c) The microwave (MW) pulse sequence

for implementing the circuit in (b). The dashed lines indicate the corre-
spondence between the operations in the circuit (b) and pulse sequence
(c), where the first MW pulse is for θβ , and the other three MW pulses
are for the two Hadamard gates sandwiched by the CNOT gate, and
the laser pulse detects F . The Rabi frequency of the MW pulses is 2
MHz. The pulse durations are t1 = 0.206, t2 = 0.122, t3 = 0.182 μs,
the pulse phases are φ1 = 317◦, φ2 = 273◦, φ3 = 90◦, and delays
τ0 = 4.336, τ1 = 3.478, τ2 = 2.368, τ3 = 4.988 μs

where parameters a and b are obtained in fit as a = 0.04,
b = 0.89 in Fig. 13a, and a = 0.10, b = 0.83 in
Fig. 13b. The deviation between experiment and theory can
be mainly attributed to the theoretical imperfection of the
pulse sequence with theory fidelity 0.9 in the optimization
of the pulse parameters, dephasing effects of the electron
spin since the total pulse duration is up to 16.3 μs and is
comparable to T ∗

2 ≈ 35 μs, and the statistics of the photon
detection.

7 Supervised learning with destructive swap
test

In classical computers, information is stored in a particular
memory address of the RAM. These computers recognize
a given input by knowing its exact location in the memory.
The term associative memory is used to describe instances
when an object is recognized not by accessing its location
in the memory, but by associating the partial knowledge

Fig. 13 Experiment results for
F vs θβ to demonstrate the swap
test in NVs, where the flip angles
and the phases in operation θβ

are indicated as the horizontal
axis and in the panels. The
vertical dashed lines indicate the
angles corresponding the
maximums fidelity in fit

ℱ
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about it with the already stored information in the memory.
This is similar to the functioning of human brain, e.g. while
solving a crossword puzzle. A computational application
of associative memory is artificial neural networks (Müller
et al. 1995). Associative memory is advantageous over
RAM while solving complex problems, but on the other
hand requires huge capacity to store information for
an efficient performance. In Trugenberger (2002), the
author introduced the idea of quantum associative memory
to be used for quantum pattern recognition. Besides
exploiting the quantum speed-up, the protocols based on
quantum associative memory can overcome the limitation
of short storage capacity in classical systems. Inspired by
Trugenberger (2002), a number of previous works have
proposed quantum pattern recognition protocols which
work in a similar way to classical supervised learning.
In Lloyd et al. (2013), the authors proposed a machine
learning protocol for assigning a particular class to a
vector by optimizing the mean distance between the target
and reference vectors. In Pham and Park (2014), the
authors propose a similar protocol for pattern recognition
by taking the k-nearest neighbours approach to optimize
the distance between target and reference states. In this
section, we devise a quantum machine learning protocol
for pattern recognition which uses destructive swap test.
The corresponding circuit for a three-qubit state is shown
in Fig. 14. The target state |ψ〉 has been encoded using
three quantum registers, which are represented by the black
horizontal lines in the figure. Let us assume that there are
d reference states φi (i = 1, 2, ..., d), each having the
same dimension as |ψ〉, from which we have to detect the
closest pattern to |ψ〉. The three quantum registers which
can be used to encode these states are denoted by the blue
horizontal lines in the figure. We take a d dimensional
quantum system (qudit), the basis vectors of which can be
associated with the d reference states. In Fig. 14, the qudit is
represented as the red horizontal line. Now we prepare the
following superposition,

|
〉 = 1

N ′
∑

i

|φi〉|qi〉, (5)

where qi (i = 0, 1, ..., d − 1) is the ith basis vector in the
Hilbert space Hd of the qudit, and N ′ is the normalization
constant. The blue and the red quantum registers are
initialized in the joint state |
〉. There is an auxiliary qubit
which is initialized in the state |0〉, represented by the green
horizontal line in Fig. 14. Thus, the initial state of the total
system is,

|�0〉 = 1

N ′ |ψ〉 ⊗
∑

i

|φi〉|qi〉 ⊗ |0〉. (6)

Now we apply the gates in accordance to the destructive
swap test, i.e. CNOT gates on each pair of qubits from target

Fig. 14 The quantum circuit of supervised learning algorithm based
on destructive swap test, to detect the closest pattern to a given pattern

and reference states, followed by Hadamard gates on the
qubits of the target state. After this the total state is,

|�1〉 = 1

N ′
∑

i

(Ci
1|000000〉 + Ci

2|000001〉 + ...

+Ci
64|111111〉) ⊗ |qi〉 ⊗ |0〉, (7)

where Ci
j (j = 1, 1, ..., 64) are the coefficients of the vector

in the joint Hilbert space H6 of target and reference states
associated with |qi〉. We remind that the basis vectors in
this space for which the pairwise AND of the bits have odd
parity, contributes to the failure probability. To differentiate
between these basis vectors and the rest, we apply CCNOT
gates such that each pair of the target and reference state
qubit acts as the control qubits, and the auxiliary qubit flips
its state when both of the former are in state |1〉. Thus, the
additional qubit keeps a count of the parity. If the basis
vector has odd parity, the auxiliary qubit has final state |1〉.
In case of even parity, the qubit state remains |0〉. The total
state after applying the CCNOT gate can be written as,

|�2〉 = 1

N ′
∑

i

[(
Ci

1|000000〉+Ci
1|000001〉+..

)⊗ |qi〉⊗|0〉

+(
Ci

16|001111〉+Ci
19|010010〉+ ...

) ⊗ |qi〉⊗|1〉]

(8)

Thus, the qudit keeps the memory of the reference
images, whereas the auxiliary qubits keeps record of
the basis vectors contributing to success and failure
probabilities. Now, repeated joint measurement on the qudit
and the auxiliary qubit can reveal the success and failure
probabilities corresponding to each reference image. The
one having the largest success probability is closest to
the target image. In Fig. 15, we show the measurement
outcomes as a histogram when a two-qubit target image
is identified by comparing it with four reference images.
For this task, we use the same images as in the first four
columns of Fig. 5. We denote the target image as |S1〉,
and the set of reference patters as {|S1〉, |S2〉, |S3〉, |S4〉}.
To label the reference states, we use the basis states
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Fig. 15 The supervised learning protocol based on destructive swap
test performed to detect the closest pattern of a two-qubit target
image from a set of four reference images shown also in Fig. 5.
The horizontal axis shows the classical bits corresponding to the
measurement outcomes from the joint system composed of the qudit
(in this case four dimensional) and the auxiliary qubit. The vertical
axis denotes the corresponding probabilities. The success probability
corresponding to the basis |110〉 is the highest, which corresponds to
the case of equal target and reference images

{|00〉, |01〉, |10〉, |11〉} of a two-qubit system and prepare the
following superposition,

|
〉 = 1

N ′
(|S1〉|11〉 + |S2〉|01〉 + |S3〉|10〉 + |S4〉|00〉) (9)

Since the target image is |S1〉, we expect that at the end of
the protocol described above, the joint measurement on the
two-qubit system and the auxiliary qubit will give highest
probability corresponding to the state |110〉. Here the first
two bits correspond to the two-qubit system, whereas the
last bit corresponds to the auxiliary qubit. The height of
the bar plots in Fig. 15 is consistent with the expectation.
The circuit in this case has been run using a 7 qubit IBMQ
qasm simulator.

8 Conclusion

Image processing is indispensable in a plethora of everyday
applications. Some quantum image processing algorithms
have been studied in theory, which show polynomial and
exponential speed-up over their classical analogues. There
exists a number of quantum image encoding methods, one
of which (QPIE) encodes the pixel positions and pixel
values as the basis vectors and corresponding amplitudes
of a quantum state. This naturally implies that swap test,
which calculates the closeness between two quantum states,

is a plausible tool to identify similar patterns in quantum
images. In this paper, we investigated the efficiency of
swap test for this task in real quantum processors. Our
results showed that for the typical values of the gate errors
present in IBMQ quantum machines, the output of swap test
becomes completely noisy corresponding to three or more
qubits. For lower dimensional states, it can still faithfully
identify the pattern closest to a given one. To mitigate
the effect of noise, we propose to exploit the destructive
swap test, which showed considerable improvement for the
three-qubit states. With access to larger quantum processors,
it will be interesting to see whether the destructive swap
test still remains successful against the noise for higher
dimensional states. Considering the fact that a simple circuit
such as swap test becomes completely noisy for three
qubits, it is questionable how much practically useful the
larger IBMQ processors will be for moderately complex
algorithms. A scaling analysis with respect to dimension
of the image states can be performed to investigate this
question. To apply destructive swap test to larger images, we
divided them into smaller segments which can be encoded
using the 5 or 7 qubit quantum devices. The segment-wise
overlaps were aggregated by defining an average overlap,
which though not being equivalent to the actual distance
between full quantum image states, remained consistent
while distinguishing between two very similar or very
different ones. The above findings remain true for both
binary and grayscale images. We tested the destructive
swap test for identifying a cavity in the binary image
of human blood-vessel obtained by MRI, which again
showed consistency, thus implying possible applications of
this protocol in biomedical fields. As observed from the
results involving simple and complex binary patterns, and
grayscale MNIST images, the efficiency of average overlap
may diminish with increasing range of pixel values and
the complexity of the pattern. However, if it is possible
to encode the full quantum states using the real IBMQ
processors with suitably controlled noise, the destructive
swap test is without any doubt a potentially useful tool for
pattern recognition, as clear from our results in this work.
Besides IBMQ devices, we also used the nitrogen vacancy
center in diamond to exhibit the destructive swap test
for single qubit states, which shows good agreement with
theoretical results. A future aim will be to find a suitable
function of the segment-wise overlaps, which is equivalent
to the distance between the full images. Also an important
objective will be to find whether the machine learning tools
can be used to counteract the noise in the outputs. We
believe that the destructive swap test based protocol can be
used for pattern recognition in all the relevant fields and for
quantum machine learning algorithms.
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