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ABSTRACT
In laboratory medicine, due to the lack of sample availability and resources, measurements of many quantities of interest are
commonly collected over a few samples, making statistical inference particularly challenging. In this context, several hypotheses
can be tested, and studies are not often powered accordingly. We present a semiparametric Bayesian approach to effectively test
multiple hypotheses applied to an experiment that aims to identify cytokines involved in Crohn’s disease (CD) infection that may
be ongoing in multiple tissues. We assume that the positive correlation commonly observed between cytokines is caused by latent
groups of effects, which in turn result from a common cause. These clusters are effectively modeled through a Dirichlet Process
(DP) that is one of the most popular choices as nonparametric prior in Bayesian statistics and has been proven to be a powerful
tool for model-based clustering. We use a spike–slab distribution as the base measure of the DP. The nonparametric part has
been included in an additive model whose parametric component is a Bayesian hierarchical model. We include simulations that
empirically demonstrate the effectiveness of the proposed testing procedure in settings that mimic our application’s sample size
and data structure. Our CD data analysis shows strong evidence of a cytokine gradient in the external intestinal tissue.

1 Introduction

Cytokines are small proteins released by different cells, especially
immune cells, essential for coordinating immune responses and
cell-to-cell communication. The study of cytokines in the etiology
of a range of diseases, particularly in the case of inflammatory
bowel diseases (IBD), has gained more attention in recent years
due to their role in immune response, inflammation, and tissue
morphogenesis (see Monastero and Pentyala 2017; Andoh et al.

2008; Guan and Zhan 2017; Friedrich, Pohin, and Powrie 2019).
It is common for studies aimed to understand the role of
cytokines in intestinal inflammations to measure the level of
several cytokines (e.g., Russo et al. 2021, 2022, Niccolai et al.
2021). However, small sample sizes are not rare in this field of
research; consequently, standard approaches based on testing of
multiple hypotheses are not powerful enough to produce reliable
and useful findings. Due to the experimental design, these limits,
combined with issues specific to the technology used to measure
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cytokine levels, such as censorship or high individual variability,
hinder standard statistical methods to produce useful results.
Multiple testing procedures, standard in this research field, have
a high type-I error risk that can hardly be reduced via p-value
correction methods due to the weak signal-to-noise ratio that
makes them low in power.

Here, we propose an approach to test hypotheses in these
contexts effectively. We devise a semiparametric Bayesian model
that shares information among homogeneous cytokines. In par-
ticular, our proposal combines the information from different
measurements to reduce inferential errors. Hence, the model
yields a reliable indication for future research thanks to a strong
regularization based on clustering. The Bayesian approach offers
advantages in this context; for instance, posterior estimates are
regularized via information sharing across different groups of
cytokines. Previous works, for example, Chekouo et al. (2020),
highlighted that modeling approaches based on clustering can
lead to robust estimation and reliable statistical inference, even
for studies with very small sample sizes. Clustering the effects
improves the information shared by the model’s components,
increasing the sample size that (may) contributes to the param-
eters’ marginal distributions and reducing the posterior distri-
bution variance, applying an even stronger regularization with
respect to hierarchical structures. Extremely small sample sizes
require prespecifying the latent group’s behaviors, identifying in
the a priori model patterns of interest relevant for the researcher
(e.g., a positive vs. an adverse reaction to a treatment or a v-shaped
trajectory vs. a flat progression). In this work, we define the two
patterns of interest a priori, namely, the null versus nonnull effect,
and employ a nonparametric model to detect shared patterns
across cytokines. The nonparametric effects allow the model to
learn the latent structures of interest and its regularization level
from the empirical evidence, that is, from the data. In a Bayesian
context, this is possible by assuming a Dirichlet Process (DP,
Ferguson 1973) as a samplingmodel for the nonparametric effects.
A realization of the DP is an almost surely discrete random
probabilitymeasure; consequently, the proposed approach allows
the model to identify ties between the parameters that quantify
the effects of interest and to return latent clusters of homogeneous
effects. Clustering regularization suits the analysis of cytokines
well. Cytokines can be redundant in their activity, as they can
play similar functions; their production can be related, and one
cytokine can stimulate its target cells to increase other cytokines’
production (Zhang and An 2007). These considerations indicate
that similar (or equal) reaction patterns in two different cytokines
can realistically increase the statistical credibility of posterior
inference and justify using DP as a nonparametric prior on the
effects of interest. The latter approach is common in biomedical
applications, particularly in genomics, for tasks such as inferring
differential gene expression and variable selection (e.g., Do,
Müller, and Tang 2005; Guindani et al. 2014; Dahl, Kim, and
Vannucci 2009; Barcella et al. 2016). In these applications, the
DP is often used jointly with a spike–slab distribution to test
sharp null hypotheses (Canale et al. 2017, 2023). We point out
that our approach is not only useful for investigating the data’s
latent clustering structure, but additionally, since it organizes
data in homogeneous clusters with effects of similar magnitude
and direction, it returns regularized estimates, a relevant feature
in settings with a high-dimensional parameter space and low
simple size (see, for instance, MacLehose et al. 2007). Note that

more flexible variations of DPs models exist in the literature
(e.g., Teh et al. 2004), however, in this paper dealing with small
sample sizes, we focus on simpler models as learning complex
structures (as the one induced by a hierarchical DP prior) may
not be feasible. Finally, the nonparametric model is combined
with a fully parametric Bayesian model to adapt to the structure
of the experiment, maximizing the information shared through a
hierarchical structure for the parameters.

The proposed method outperforms competing methods in sim-
ulation studies, and our analysis of the Crohn’s disease (CD)
data identifies a large set of cytokines that show increased
activity in both layers of the inflamed human CDmucosa tissues;
commonly employed statistical approaches could not identify
any deferentially expressed cytokines. Section 2 describes the
experiment and data structure. The proposed probabilistic model
is presented in Section 3, and the companionMarkov chainMonte
Carlo (MCMC) algorithm is introduced in Section 4. In Section 5,
we conduct a simulation with sample sizes and data structures
similar to our data. Our approach is compared with theWilcoxon
rank test, commonly used in practice, and other model-based
approaches. In Section 6, we analyze the data, while in Section 7,
the analysis results are summarized, and criticisms are discussed.

2 Motivating CD Study

This work is motivated by a CD study conducted by the
Department of Experimental and Clinical Medicine, University
of Florence, and the IBD Unit, Careggi University Hospital
in Florence. This joint research effort aims to determine the
role of cytokines in CD. Crohn’s disease is a type of IBD
that mainly affects the gastrointestinal tract with extraintestinal
manifestations. The exact cause of CD remains unknown. Diet
and stress were thought to be among the main drivers of the
disease’s etiology, but now researchers know that these factors
may aggravate but not cause CD (Tomasello et al. 2016; Adolph
et al. 2022). According to modern hypotheses, CD may be caused
by our immune response triggered by cytokines themselves.

Our experiment explores the relationship between cytokines and
CD, focusing on identifying cytokines involved in the infection
and which intestinal tissue layer the infection manifests the
most. For this purpose, intestinal samples of both healthy and
inflamed tissuewere obtained during the surgery for each subject,
and each of these tissues was divided into layers where the
measurements were collected for each cytokine. In detail, 12 CD
patients were recruited. All tissue samples were divided into
mucosa, submucosa, and serosa, and the profile of a prespecified
set of cytokines was analyzed so that for each patient, six sets
of cytokines expressions were recorded. For eight CD subjects,
27 cytokines levels were measured, while for the remaining four
CD patients, only a subset of six cytokines were measured; this
is due to the cost of the kits used to measure cytokine levels.
Cytokine concentrations are expressed in 𝜌 g /mL for all subjects.
Venous blood samples were collected in vacutainers for serum
separation and centrifuged at 2000 rpm for 10 min at room
temperature. Serum was immediately collected and stored at
−20◦ C until the analysis, without being thawed and refrozen.
We used specifically assembled MixMatch Human kits with a
LuminexMAGPIX detection system (Affymetrix, Thermo Fisher,
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Vienna, Austria) and followed the manufacturer’s instructions.
The Lower and Upper Limits of Quantification (LLOQ and
ULOQ) for the cytokines and chemokines are reported in the
Supporting Information Section C.

Standard statistical approaches for analyzing this data set would
consist of evaluating 27 ⋅ 3 different hypotheses based on a
maximum of 12 paired data points; moreover, the analysis should
account for censored observations. Consequently, the standard
approach cannot satisfactorily answer the scientific questions of
interest due to the limited information for each cytokine. These
considerations motivated the development of a new statistical
method for the joint analysis of all cytokines.

3 Bayesian Semiparametric Model

We introduce a Bayesian semiparametric model that can identify
cytokines associated with the inflammatory status. The proposed
model takes into account the experimental design and effec-
tively borrows strength across cytokines when suggested by the
observed data.

Let 𝑦𝑗𝑙𝑠𝑖 be the natural logarithm of the expression level of
cytokine 𝑗 = {1, … , 𝐽 = 27} in tissue type 𝑙 = {1, … , 𝐿 = 3}, that is,
mucosa, submucosa, or serosa, for subject 𝑖 ∈ {1, … , 𝑛𝑗}, where
𝑛𝑗 is the number of subjects for which the level of the cytokine
𝑗 was measured (i.e., 𝑛𝑗 = 8 ∀𝑗 ∈ {1, … , 21} and 𝑛𝑗 = 12 ∀𝑗 ∈

{22, … , 27}). The index 𝑠 takes the value 1 for healthy tissues and
2 for inflamed tissues. We assume the following model:

𝑦𝑗𝑙𝑠𝑖 = 𝜇𝑗𝑙 + 𝛿𝑖 + 𝜃𝑗𝑙 ⋅ 𝕀(𝑠 = 2) + 𝜀𝑗𝑙𝑠𝑖 with 𝜀𝑗𝑙𝑠𝑖 ∣ 𝜎2𝑗 ∼ 
(
0, 𝜎2𝑗

)
(1)

with parameters 𝜇𝑗𝑙 representing the expected level for each
cytokine in a specific tissue type, 𝛿𝑖 being a subject-specific
random intercept, and 𝜃𝑗𝑙 being the main focus of our infer-
ence, that is, the tissue-specific expected change in expression
between healthy and inflamed tissues. The function 𝕀(𝑠 = 2) =
1 if 𝑠 = 2 and 0 otherwise. Note that the log transformation is
commonly used to obtain almost symmetrical distributions since
cytokines have a high concentration of low values and a few very
high values.

This study aims to identify deferentially expressed cytokines;
since all cytokines in all tissues could potentially be involved
in the infection, as the cytokines are proxies of the body’s
response to the infection, an increase in the levels measured in
the inflamed tissues is expected. Given the small sample size
typical of this type of experiment, we want to share information
across cytokines with similar reaction patterns, that is, across
cytokines that exhibit differences in the average expression level
in each of the three tissue types between inflamed and healthy
tissues. Mathematically, we want to identify cytokines that share
the same value of 𝜽𝑗 = (𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3)

⊤. This goal is achieved via a
Bayesian nonparametric approach. In particular, we assume a DP
process as a generative model for the 𝜽𝑗 ’s and use the induced
clustering to identify groups of cytokines behaving similarly in
terms of change in expression between healthy and inflamed

tissues. So that the resulting clustering hasmedical relevance and
sensible interpretation.

In the following sections, we first present the prior distributions
for the parametric part of the model, that is, parameters 𝜇𝑗𝑙, 𝛿𝑖, 𝜎2𝑗
along with the associated hyperparameters, and then for the non-
parametric part, that is, parameters 𝜃𝑗𝑙 along with the associated
hyperparameters. A directed acyclic graph (DAG) representation
of the model structure is available in Section A of the online
Supporting Information.

3.1 Prior Distributions: Parametric Model

The hierarchical structure of the parametric component of the
model is specified as follows:

𝜇𝑗𝑙 ∣ 𝜉𝑗, 𝜏𝑗 ∼  (𝜉𝑗, 𝜏
2
𝑗 ) 𝛿𝑖 ∣ 𝜆 ∼  (0, 𝜆2)

𝜎2𝑗 ∣ 𝜎0 ∼ 

(
𝑘𝜎
2
,
𝑘𝜎𝜎

2
0

2

)
𝜉𝑗 ∼  (𝑚𝑗, 𝑠

2
𝑗 ) 𝜏𝑗 ∼  (0, 𝑡𝑚𝑎𝑥

𝑗 )

𝜆 ∼  (0, 𝑙𝑚𝑎𝑥) 𝜎0 ∼  (0, 𝑠𝑚𝑎𝑥). (2)

Cytokines measured in the experiment exhibit observed values
of different scale, for example, the sample means in our data
range from 3.25 ⋅ 104𝜌 g / mL for ICAM-1 to 2.33 𝜌 g / mL for
TNF-𝛼. To model this variability, we assume, for a given 𝑗, a
hierarchical model for the tissue-specific parameters 𝜇𝑗𝑙 where 𝜉𝑗
is the cytokines overall mean and 𝜏2𝑗 the variance for the random
effects so that information on the same cytokine can be shared
across tissues. On the other hand, subject-specific random effects
𝛿𝑖 ∼  (0, 𝜆2) allow the model to capture the correlation across
measurements taken from the same subject.

For the standard deviation of the random effects, 𝜆 and 𝜏𝑗 , in the
absence of strong a priori information, following Gelman (2006),
we assume a uniform prior. We complete the parametric part of
the model with a hierarchical structure for residual variances,
assuming 𝜎2𝑗 ∣ 𝜎0 ∼ 

(
𝑘𝜎

2
,
𝑘𝜎𝜎

2
0

2

)
. Different variance parameters

account for heteroskedasticity across cytokines. This hierarchical
structure shrinks the variance parameters around a common
parameter 𝜎20 that represents the prior expected variance of a new
cytokine (e.g., not detected by experimental design). The strength
of regularization is controlled by the hyperparameter 𝑘𝜎, whereas,
similarly to the other standard deviation parameters, we assume
𝜎0 ∼  (0, 𝑠𝑚𝑎𝑥).

3.2 Prior Distributions: Nonparametric Model

One of the primary focuses of this work lies in the nonparametric
component, which strives to establish a versatile framework to
model the main parameters of interest, namely, 𝜽𝑗 . The proposed
approach seeks to diminish posterior variability by organizing
these parameters into clusters of homogeneous cytokines effects.
The DP prior is arguably the most used Bayesian nonparametric
statistical tool. One of the reasons for its popularity is its use
in model-based clustering. Indeed, a DP realization is an almost
sure discrete random probability measure 𝐺. So if 𝜽1, … , 𝜽𝐽
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is a random sample from 𝐺, that is, 𝜽1, … , 𝜽𝐽 ∣ 𝐺
𝑖𝑖𝑑
∼ 𝐺, then,

with positive probability, ties are observed among the 𝜽𝑗 ’s. So
a clustering can be defined on the cytokines indexes {1, … , 𝐽}

by assuming that 𝑗 and 𝑗′ belong to the same cluster if 𝜽𝑗 =
𝜽𝑗′ . On the other hand, when investigating sparsity phenomena,
Bayesian variable selection is often achieved by assuming a two-
component mixture prior for the parameter of interest. Such
mixtures are referred to as spike and slab priors. In this paper, we
combine the two previously mentioned Bayesian tools to cluster
and simultaneously test the relationship between cytokines and
inflamed tissues. Indeed,we assume that the generativemodel for
the three-dimensional vector 𝜽𝑗 = (𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3)

⊤, for 𝑗 = 1, … , 𝐽,
is a DP whose base measure is a product of three spike and slab
priors featuring an atom at zero.

Our approach builds uponBayesian testing procedures based on a
DP whose base measure is a two-component mixture (Guindani,
Müller, and Zhang 2009; Do, Müller, and Tang 2005) and it
recalls the approach of Dahl, Kim, and Vannucci (2009). Among
other works combining Bayesian nonparametric approaches and
variable selection in the biostatistics framework, we refer to
Dunson, Herring, and Engel (2008), Yang (2012), and Barcella
et al. (2016). A quite interesting methodological study on the con-
sequences of assuming spike and slab prior as centeringmeasures
in the Bayesian nonparametric approach is offered by Canale
et al. (2017); (2023). The latter works show that this modeling
approach increases flexibility and reduces the influence of the
prior distributions on the probability of being included in the
spike. We argue that it also allows for sharing information among
all observed measures (i.e., levels of cytokines) without doing
within-model variable selection as the atoms values are cluster-
specific. Discrete mass-spikes have many attractive properties,
both for inference interpretability and from a theoretical per-
spective (Barbieri and Berger 2004). However, collecting samples
from the posterior distribution may become computationally
infeasible as the number of repeatedmeasurements (i.e., analyzed
cytokine) increases. A viable alternative, among others, as a base
measure in similar contexts could be represented by a continuous
spike, with a nonlocal prior (Johnson and Rossell 2010, 2012) as
slab distribution.

Summarizing, our prior setting for the 𝜽𝑗 = (𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3)
⊤ param-

eters, that is, for the expected change in expression between
healthy and inflamed tissues, is assigned as follows:

𝜽𝒋 ∣ 𝐺
𝑖𝑖𝑑
∼ 𝐺, 𝑗 = 1, … , 𝐽

𝐺 ∣ 𝝅, 𝝎, 𝜼,𝑀 ∼ (𝑀𝐺0) with 𝐺0 =
3⨂
𝑙=1

[
𝜋𝑙 𝛿0(𝜃𝑗𝑙) + (1 − 𝜋𝑙) 𝑁(𝜃𝑗𝑙 ∣ 𝜂𝑙, 𝜔

2
𝑙
)
]

𝜋𝑙 ∼ 𝑒𝑡𝑎(𝑎𝜋𝑙 , 𝑏𝜋𝑙 ) 𝑀 ∼ 𝑎(𝑎𝑀, 𝑏𝑀),

(3)

where⊗ is used to indicate themeasures product, 𝛿0(𝜃) is a Dirac
delta function assigning probability one to zero (spike), and𝑁(𝜃 ∣
𝜂, 𝜔2) is the Gaussian density withmean 𝜂 and variance𝜔2 (slab).

The base measure 𝐺0 is the product of three spikes and slab dis-
tribution modeling the tissue-specific cytokine expression level.
The latter (i.e., 𝜃𝑗𝑙 𝑙 = 1, 2, 3), thanks to the spike component,
is allowed to be unchanged between inflamed and healthy tissue
(𝜃𝑗𝑙 = 0). The base measure is fully specified via tree parameters
𝝎, 𝜼, 𝝅 , each of which is a three-dimensional vector. For each
tissue 𝑙 = 1, 2, 3, the component 𝜋𝑙 of 𝝅 , represents the prior
probability for the effect 𝜃𝑗𝑙 of being 0; the components 𝜂𝑙 and 𝜔2

𝑙

of𝝎 and 𝜼 are the prior expected value and variance for a nonzero
effect, respectively. Note that the slab components of our base
measure are independent normals to avoid overparameterization
of themodels.However,we remark that even if this choice implies
conditional independence within clusters, the 𝖣𝖯𝖬 model can
capture the dependence structure of the parameter (𝜃𝑗1, 𝜃𝑗2, 𝜃𝑗3)⊤.
In fact, by increasing the number of clusters, ourmodel allows for
correlation across the same cytokine effect in various tissue types.
To increase the exchange of information between the cytokines
expression in the same tissue, an additional level of hierarchy is
included in the model assuming each 𝜋𝑙 ∼ 𝑒𝑡𝑎(𝑎𝜋𝑙 , 𝑏𝜋𝑙 ). Each
pair (𝜂𝑙; 𝜔2

𝑙
) is fixed via an empirical Bayes strategy discussed in

Section 3.3. In summary, the nonparametric approach induces
a clustering among cytokines. Each cluster comprises cytokines
with the same expression patterns 𝜽𝑗 across tissues. It is well-
known that the estimated clustering is sensible to the choice of
the precision parameter𝑀. To robustify posterior inference, then,
we assume𝑀 ∼ 𝑎(𝑎𝑀, 𝑏𝑀).

3.3 Empirical Bayes

Since our nonparametric model is both latent and instrumental,
eliciting honest hyperparameter values for prior distribution
parameters 𝜔𝑙 and 𝜂𝑙 can be challenging. A common practice
consists of setting these parameters to summaries of the data.
The prior is then data-dependent, and the approach falls under
the umbrella of empirical Bayes methods. Even if formally not
fully Bayesian, this empirical Bayesian approach is commonly
used in the literature, especially in applied works (Efron 2012;
van Houwelingen 2014). The theoretical implications, in terms of
frequentist properties, of the Empirical Bayesian approach in the
context of DP mixture modeling have recently been investigated
by Petrone, Rousseau, and Scricciolo (2014) and Donnet et al.
(2018). In this framework, Arbel, Corradin, and Nipoti (2021)
have proposed an interesting empirical procedure. We follow this

latter work to set the hyperparameter 𝜂𝑙 and 𝜔𝑙, 𝑙 = 1, 2, 3 that
characterize the slab component of the DPs base measure in
our model. From now on, we introduce the notation 𝜂𝑙, �̂�

2
𝑙
to
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emphasize that these parameters were set via empirical Bayes.
More in detail, for each 𝑙 = 1, 2, 3, we set

𝜂𝑙 =
1

𝐽

𝐽∑
𝑗=1

1

𝑛𝑗

[
𝑛𝑗∑
𝑖=1

𝑦𝑗𝑙2𝑖 − 𝑦𝑗𝑙1𝑖

]

�̂�2
𝑙
= 1

𝐽 − 1

(
𝐽∑

𝑗=1

1

𝑛𝑗

[
𝑛𝑗∑
𝑖=1

𝑦𝑗𝑙2𝑖 − 𝑦𝑗𝑙1𝑖

]
− 𝜂𝑙

)2

⋅ 0.25. (4)

From a practical point of view, our Empirical Bayesian approach
relies on the idea that every parameter 𝜃𝑗𝑙 is interpreted as the
expected difference between inflamed and healthy tissue. Then,
to assign them a prior, we computed the sample mean and
variances of these observed differences. The same weight was
used for each cytokine. Moreover, the variance hyperparameters
𝜔2
𝑗 were penalized by 0.25 (equivalent to half the standard

deviation) to induce a larger difference a priori between the spike
and the slab distribution.

4 Posterior Inference

The posterior distribution of the parameters of interest is not
available in closed form, and we rely on an MCMC algorithm. To
sample the parameters 𝜽𝒋, we use the infinite mixture represen-
tation of the DP process. We have to introduce new notations to
provide a brief description of the algorithm. We denote with 𝐻

the number of observed clusters among the cytokines at any given
iteration of the chain, and with 𝜽∗

ℎ
the value of the 𝜽𝑗 parameter

of each cytokine belonging to cluster ℎ = 1, … ,𝐻. Moreover, the
algorithm relies on cluster membership indicator 𝜌𝑗 , with 𝜌𝑗 = ℎ

implying that cytokine 𝑗 belongs to cluster ℎ. The base measure
𝐺0 is conjugate to the Gaussian/Normal sampling model defined
in Equation (1), so we can exploit algorithm 2 by Neal (2000) to
design the MCMC sampling scheme for 𝜽∗

ℎ
and 𝜌𝑗 parameters.

On the other hand, to update 𝑀, we use the popular auxiliary
sampler by Escobar and West (1995). The full conditionals for
random effects variances result in a right-truncated inverse-
gamma distribution; similarly, 𝜎20 full conditional results in a
right-truncated gamma. The sampling scheme uses the auxiliary
variables sampler proposed byDamien andWalker (2001) for both
steps.We summarize the steps of ourMCMCalgorithmhereafter.

∙ Sequentially updates all the clustering membership variables
𝜌𝑗 (Neal 2000).

∙ Update all unique values 𝜽∗
ℎ
sampling from their full condi-

tional (Neal 2000).

∙ Update𝑀 following Escobar and West (1995).

∙ Update 𝜆2 and each 𝜏2𝑗 following Damien and Walker (2001).

∙ Update each 𝛿𝑖 and each 𝜇𝑗𝑙 sampling from resulting normal
distributions.

∙ Update 𝜎20 again following Damien and Walker (2001).

Note that closed-form expressions are available for all full con-
ditionals, aiding the implementation and convergence of the
MCMC sampler; the mathematical steps necessary for the calcu-
lation of the full-conditional distributions and the pseudocode are
available in Online Supporting Information A.

We aim to identify changes in expected expression of inflamed
versus healthy tissues, evaluated as 𝔼[𝕀(𝜃𝑗𝑙 = 0) ∣ 𝒚] = Pr(𝜃𝑗𝑙 =
0 ∣ 𝒚) and estimated as the corresponding empirical frequency in
the MCMC samples for each pair (𝑗, 𝑙). Moreover, our inference
will focus on the latent partitions (clusters) of cytokines that will
be based on the a posteriori similarity matrix; an entrance of
the similarity matrix is the posterior probability that cytokines
𝑗 and 𝑗′ are in the same cluster, that is, 𝔼[𝕀(𝜽𝑗 = 𝜽𝑗′ ∣ 𝒚)] =
Pr(𝜽𝑗 = 𝜽𝑗′ ∣ 𝒚). These posterior probabilities can be estimated by
the proportion of MCMC samples in which the two cytokines
are allocated to the same cluster. Following the procedures
introduced by Wade and Ghahramani (2018), point estimates
for latent partition can be obtained by identifying the partition
that minimizes the posterior expectation of a given loss function.
Usually, the Binder Loss (BL) or the Variation Information Loss
(VI) are adopted. Both loss functions are implemented in the 𝖱
package 𝗆𝖼𝖼𝗅𝗎𝗌𝗍.𝖾𝗑𝗍 (Wade 2015) that only require an estimate
of the similarity matrix as input. Note that the event 𝜃𝑗𝑙 =
𝜃𝑗′𝑙 = 0 has positive probability for some 𝑙 even while the other
component of 𝜽𝒋 and 𝜽𝑗′ are different. However, this event still
implies the presence of two clusters. Therefore, the magnitude
of not null effects differs between the two clusters. Since the
defined approach is designed for small sample sizes, we suggest
avoiding using a deterministic criterion for statistical inference,
and we argue that inference is better if carried out by inspecting
the posterior inclusion probabilities and clustering results jointly.
However, objective inferential procedures based on deterministic
criteria are necessary in many applications. To this purpose, we
suggest the criteria proposed in Newton et al. (2004), which
define an intuitive procedure based on posterior probability to
obtain a list of significantly differently expressed quantities while
bounding the rate of false detections.

5 Simulation Studies

We designed simulation studies to investigate the proposed
approach’s finite sample properties and compare them to alter-
native methods. These studies are based on simulated data that
mimic the characteristics of the data described in Section 2.

5.1 Data Simulation Scenarios

We simulate data for 𝐽 = 30 cytokines and 𝑛𝑗 = 10 subjects
∀𝑗 = 1, … , 𝐽. Data were generated with the following scheme:
we set the expected value of 𝔼[𝜇𝑗𝑙] = �̃�𝑗 using fixed values (see
Online Supporting Information Section B) and sampled 𝜇𝑗𝑙 from
an  (�̃�𝑗 − 1, �̃�𝑗 + 1). Similarly, each 𝛿𝑖 was sampled from an
 (−0.5, 0.5) distribution. The other model’s parameters, 𝜽𝑗 , 𝜀𝑗𝑙𝑠𝑖 ,
and𝜎2𝑗 have a scenario-specific setting.We focus on four scenarios
(detailed below) and, for each of them, test three settings for the
standard deviation; specifically, the parameters 𝜎𝑗 are sampled
from a uniform distribution with increasing support that implies
scenarios of increasing inferential challenge (low,mid, and high).
Given these parameters’ values, we generate synthetic data from
Equation (1). Note that scenarios differ with respect to the
distribution of the residuals. Scenarios are summarized in Table 1.
For each of the 4 ⋅ 3 = 12 variance-scenario pairs, we generated
100 data sets.

5 of 13

 15214036, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.70000 by C
ochraneItalia, W

iley O
nline L

ibrary on [30/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fbimj.70000&mode=


TABLE 1 The first four boxes show the effects used to define the four scenarios. The other two boxes concern the distributions used to sample the
residual errors and the models compared in these simulation studies.

Scenario I Scenario II Scenario III

𝜽1, … , 𝜽10 = (1, 1, 0)
⊤

𝜽11, … , 𝜽20 = (0.5, 0.5, 0)
⊤

𝜽21, … , 𝜽30 = (0, 0, 0)
⊤

𝜀𝑗𝑙𝑠𝑖 ∼  (0, 𝜎2𝑗 )

𝜽1, … , 𝜽20 =
(
𝑢𝑗1, 𝑢𝑗2, 0

)⊤
𝜽21, … , 𝜽30 = (0, 0, 0)

⊤

with 𝑢𝑗𝑙 ∼  (0.1, 1.0)

𝜀𝑗𝑙𝑠𝑖 ∼  (0, 𝜎2𝑗 )

𝜽1, … , 𝜽20 =
(
𝑢𝑗1, 𝑢𝑗2, 0

)⊤
𝜽21, … , 𝜽30 = (0, 0, 0)

⊤

with 𝑢𝑗𝑙 ∼  (0.1, 1.0)

𝜀𝑗𝑙𝑠𝑖 ∼  (0, 𝜎2𝑗 , 0.99)

Scenario IV Standard deviations Competing methods

𝜽1, … , 𝜽30 = (0, 0, 0)
⊤

𝜀𝑗𝑙𝑠𝑖 ∼  (0, 𝜎2𝑗 )

Low 𝜎𝑗 ∼  (0.25, 0.75)

Mid 𝜎𝑗 ∼  (0.75, 1.50)

High 𝜎𝑗 ∼  (1.50, 3.00)

Semiparametric(𝖴𝗇𝗂𝖿 .)&(𝖥𝖣𝖱)

Hierarchical(𝖴𝗇𝗂𝖿 .)&(𝖥𝖣𝖱)

Limma

Wilcoxon rank test

within the scenarios.

The four scenarios of interest are summarized as follows:

∙ Scenario I mimics the case where there are true clusters
of size 10 for the effects of interest. The first two clusters
have a positive effect in two out of three tissues, that is,
the third cluster does not react to the infection. Given the
presence of groups, Scenario I allows us to control the
behavior of latent groups, how the latter affects inference,
and evaluate models in terms of cluster performance using
the simulation truth. As this is the only scenario where real
clusters are present, additional simulationswere carried out to
gain insights into the sensitivity of the clustering with respect
to the prior specifications. These additional simulations are
available online as Supporting Information Section B.

∙ Scenarios II and III consider the cases in which a subset of
biomarkers react similarly but not identically, that is, there are
not true clusters of cytokines, to the infection in two tissues.
Here, clustering is useful to reconstruct the distribution of
the effects more than organize them in separate groups (see
Beraha et al. 2022, for a thorough discussion). In these two
scenarios, we set the main effects of interest for the first
20 cytokines to 𝜽𝑗 =

(
𝑢𝑗1, 𝑢𝑗2, 0

)⊤
with 𝑢𝑗1, 𝑢𝑗2 ∼  (0.1, 1).

These scenarios are more likely to mimic the data-generating
process of the observed data. Scenarios II and III differ in
the distribution of the residuals. In Scenarios I, II, and IV,
residuals were generated from (0, 𝜎2𝑗 ), whereas Scenario III
residuals follow a skew-normal distribution (Azzalini 1985).
The asymmetry of this distribution is closely related to the
parameter 𝛿 = 𝛼∕

√
1 + 𝛼2. We fixed this parameter equal to

0.99 to obtain a highly positive-skewed distribution (Azzalini
2013), andwe reparameterized the distribution to have 0mean
and variance 𝜎2𝑗 .

∙ Scenario IV represents the null scenario, that is, 𝜽1, … , 𝜽30 =
(0, 0, 0)⊤, and is used to control the false positive rate under a
no-effects scenario.

5.2 Competing Methods and Hyperparameter
Setting

We compare the performances of our semiparametric model with
a few alternative approaches. A first competitor is a commonly
used approach based on the Wilcoxon rank test. We performed
a test for each cytokine-location pair to compare cytokine levels
in healthy and inflamed tissues. We also compare our method to
limma (Ritchie et al. 2015), a model-based approach very popular
in genomics. Section B of the Online Supporting Information
provides a detailed description of the implementation of these
methods. Finally, we compare the proposed semiparametric
approach with its equivalent fully parametric version, which
corresponds to the limit case of𝑀 → ∞. This latter corresponds
to the parametricmodel where the 𝜽𝑗 s are assumed i.i.d. from the

basemeasure of the DP, that is, 𝜽𝑗 ∣ 𝝅, �̂�, �̂�
𝑖𝑖𝑑
∼ 𝐺0; the specification

of 𝐺0 is given in Equation (3).

For the proposed Bayesian semiparametric approach and its fully
parametric version, we selected values of the hyperparameters
that lead to weakly informative prior distributions. In partic-
ular, we specify the priors on the 𝜉𝑗 ’s as 𝜉𝑗 ∼  (𝑚𝑗 = �̃�𝑗 , 𝑠

2
𝑗 =

4), where �̃�𝑗 are the same values used as parameters for the
uniform that generated the data. The upper limit of the uniform
prior on the standard deviation parameters 𝜏𝑗, 𝜆, 𝜎0 are set to
𝑡𝑚𝑎𝑥
1 = ⋯ = 𝑡𝑚𝑎𝑥

𝐽 = 𝑠𝑚𝑎𝑥
0 = 𝑙𝑚𝑎𝑥 = 5, such that the corresponding

variances cannot exceed 25. Finally, we set 𝑀 ∼ 𝑎(5, 2) as
the prior distribution for the precision parameter of the DP. A
weekly informative prior for 𝜎𝑗 is achieved by fixing 𝑘𝜎 to 5.
We explore two prior strategies for the binary indicator on the
inflammation status 𝜋𝑙 . The first prior strategy, named 𝖴𝗇𝗂𝖿 .,
uses a uniform prior distribution, that implies 𝔼[𝜃𝑗𝑙 = 0] = 0.5;
the second strategy, named FDR (false discovery rate), uses 𝜋𝑙 ∼

𝑒𝑡𝑎(1.8, 0.2), that implies 𝔼[𝜃𝑗𝑙 = 0] = 0.9. Compared to the
first one, the second is more conservative in terms of detection
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FIGURE 1 AUC values over 100 replicates for each simulation scenario. The x-axis indicates the models and y-axis indicates the AUC value. Low,
mid, and high labels refer to the support of the standard deviation distribution used to simulate the data.

of differentially expressed cytokines as it reduces a priori the
probability of nonzero effects and thus the FDR. The remaining
prior parameters are fixed via the Empirical Bayes (EB) procedure
described in Section 3.3. For the proposed Bayesian model and
its parametric version, we draw 2500 values from the posterior
distribution, using a thinning interval of 25 observations after a
burn-in period of 100 iterations. The 𝖱 code used to sample from
the posteriors for all models is available on Github.1

5.3 Simulation Results and Discussion

Results of the simulations are summarized in Figures 1 and 2.
The main metric on which the models are compared is the AUC
calculated using Pr(𝜃𝑗𝑙 = 0 ∣ 𝒚) for the Bayesian models and on
the 𝑝-𝑣𝑎𝑙𝑢𝑒𝑠 for the Wilcoxon rank tests test and limma. Given
the absence of true positives in Scenario IV, it is impossible

1 https://github.com/GiovanniPoli/NPB_Cytokines.

to calculate AUC, and the models are compared using the
FDR, calculated using several thresholds. To evaluate clustering
performances in Scenario I, we obtain point estimates for the data
partition, minimizing the Variation of Information criteria and
the BL using the approach described in Section 4.

In all scenarios, the Bayesian models perform better than their
frequentist counterparts. In particular, semiparametric models
always perform slightly better than fully parametric models. For
most scenarios, the FDR strategy on the inclusion probabilities
has better results than the 𝖴𝗇𝗂𝖿 . strategy. In Scenario III, the
results using the two prior strategies are closer. In Scenario
IV, regardless of the variances settings, Bayesian models with
a conservative prior strategy perform better than the other
competing approaches, with the semiparametric approach per-
forming similarly to the parametric one. The evidence favoring
theBayesian approaches is not surprising, given that thesemodels
can flexibly capture the dependence structures present in the data
and can effectively borrow strength across related cytokines. The
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FIGURE 2 Scenario IV: false-positive rate for the five considered thresholds (10 − 50%). The x-axis indicates the considered thresholds, y-axis
indicates the false-discovery rate (i.e., the number of posterior probabilities above the threshold divided by the total). Low, mid, and high labels refer to
the support of the standard deviation distribution used to simulate the data.

main difference between the two Bayesian models lies in the
method used to share information and regularize the estimates:
in the parametric model, it is driven by the common prior on
the parameters 𝜽1, … , 𝜽𝐽 , whereas in the semiparametric model,
information is shared through the cluster structure. Clustering
results are summarized in Table 2. The semiparametric model
does not always succeed in perfectly reconstructing groups.
In all scenarios, for larger values of the error variance, the
expected posterior number of clusters (first column) increases;
this trend is not necessarily observed if the number of clusters
is inferred using point estimation methods such as BL and VI
(second and third columns, respectively). This result testifies
that perfect reconstruction of the clusters is unnecessary for
the semiparametric model to perform well. Furthermore, the
difference between the two Bayesian models is more evident in
Scenarios II and III than in Scenario I. This may be surprising,
considering that the first scenario is the only one with groups of
effects. This lack of difference may be due to the larger signal-

to-noise ratio of Scenario I with respect to Scenarios II and III.
Consequently, the most notable differences are observed in cases
with higher error variance. Therefore, the semiparametric model
rewards the most whenmodel-based clustering is greatly needed,
even when the hierarchical model closely resembles the data-
generating mechanism. We conclude that the semiparametric
approach is more likely to provide robust inference.

6 Analysis of the Crohn’s Data Set

In this section, we analyze the cytokines data presented in
Section 2 using the proposed semiparametric Bayesian model;
we use the identical prior setups defined in the simulation
studies, with the only exception of the prior on 𝜉𝑖 , for which the
hyperparameters are set based on the upper and lower limits of
the cytokines’ detection kit used in the experiments; see Online
Supporting Information C for more details. As suggested by the
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TABLE 2 Average number of clusters estimated using: (i) the posterior expected number of unique latent parameters (H)—columns 1–3; (ii)
minimizing the Binder Loss (BL)—columns 4–6; or the Variation Information criterion (VI)—columns 7–9. Low,mid, and high labels refer to the support
of the standard deviation distribution used to simulate the data.

𝔼[𝑯 ∣ 𝒚] Clusters via BL Clusters via VI

Low Mid High Low Mid High Low Mid High

Scenario I
Semiparametric (𝖴𝗇𝗂𝖿 .) 3.91 4.04 5.19 4.22 6.99 7.09 2.87 1.64 1.00
Semiparametric (FDR) 3.83 3.97 4.66 4.34 6.97 7.13 2.88 1.75 1.00

Scenario II
Semiparametric (𝖴𝗇𝗂𝖿 .) 4.23 4.65 5.88 5.59 7.39 7.72 2.45 1.17 1.00
Semiparametric (FDR) 4.13 4.61 4.41 5.48 7.70 5.27 2.39 1.18 1.02

Scenario III
Semiparametric (𝖴𝗇𝗂𝖿 .) 4.10 4.69 5.89 5.27 7.54 7.86 2.39 1.21 1.00
Semiparametric (FDR) 4.02 4.67 4.45 5.22 7.82 5.66 2.39 1.24 1.00

Scenario IV
Semiparametric (𝖴𝗇𝗂𝖿 .) 6.57 6.74 6.71 8.00 8.00 8.00 1.00 1.00 1.00
Semiparametric (FDR) 3.20 3.37 3.29 1.20 1.26 1.21 1.00 1.00 1.00

results of the simulation studies, we analyze our data with a
semiparametric model using a𝑒𝑡𝑎(1.8, 0.2) as prior distribution
for the inclusion probabilities 𝜋𝑙, that is, we use the FDR prior.
Four MCMC chains are used to sample from the posterior. Each
chain comprises 2500 values sampled after a burn-in period of
500 and a thinning interval of 50. Two different strategies (each
twice-repeated) are used to initialize the latent partitions; the
first is based on hierarchical clustering, and the second is based
on considering each effect as singletons, that is, we start from
cytokine-specific effects.

6.1 Semiparametric Model Inference

Table 3 shows the model inference’s main results. Due to high
residual variability, themodel identifies only one cluster, inwhich
all the cytokines are includedwith a frequency of around 80% (see
top panel of Figure 3). The model captures increasing expression
levels of the cytokines in themucosa and submucosa tissues, with
slightly greater confidence in the latter. Parameters related to the
serosa tissues, on the contrary, assume a zero value with high
probability. In other words, our results remark on an important
clinical point, suggesting the inflammation process is essentially
localized in the superficial ileal mucosa layers (mucosa and
submucosa). This is the key finding of our analysis because, for
the first time, we have documented a cytokines gradient in both
layers of human CD mucosa tissues.

6.2 Sensitivity Analysis

We studied the sensitivity of our inference to the specification
of the hyperparameters. Specifically, we run the model with
different values of the hyperparameters in the prior for𝑀 and 𝜋𝑙 ,
of 𝑘𝜎 and with different penalty strategies for the EB variance. In

particular, we studied the effect of this hyperparameter choice on

Pr(𝜃𝑗𝑙 = 0 ∣ 𝒚),

that is, on the posterior probability of the cytokine effect to be
null. No significant changes are observed, and all models showed
a general behavior similar to the one described in Section 6.1. We
mention that some differences in the values of these posterior
probabilities are obtained under the parametric hierarchical
model, which can be seen as a special case of the nonparametric
one when 𝑀 goes to +∞. However, in this extreme case, the
statistical interpretation of the results does not change.

It is well-known that usually, the effect on the posterior estima-
tion of the hyperparameters of the DP parameter 𝑀 (West 1992;
Escobar andWest 1995) and the prior on the inclusion probabilities
𝜋𝑙 (Ishwaran and Rao 2005; Malsiner-Walli and Wagner 2018)
can be quite strong. We speculate that this is not the case in
our study because the estimated residual variances 𝜎2𝑗 are quite
high with respect to the estimated effects 𝜃𝑗𝑙 (low signal-to-noise
ratio). Consequently, the clustering induced by the DP process
collapses in a single cluster for any hyperparameter choice. This
behavior can be framed into the usual trade-off between density
estimation and clustering when setting a DP mixture model. See
Beraha et al. (2022), Ghilotti, Beraha, and Guglielmi (2023), and
Chandra, Canale, and Dunson (2024) for detailed discussions.
To further investigate this behavior, in the next section, we will
show how including strong a priori information on the residual
variance allows identifying clusters quite interpretable in terms
of cytokine effects.

6.3 Exploratory Analysis on Subgroups

Our analysis of the Crohn’s data set has identified a single
large group of cytokines. A close look at the similarity matrix
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TABLE 3 Posterior probability for the null effects of the infection (i.e., 𝔼[𝕀(𝜃𝑗𝑙 = 0) ∣ 𝒚] = Pr(𝜃𝑗𝑙 = 0 ∣ 𝒚) for each cytokine-tissue pair. Posterior
probabilities are estimated by the proportion of MCMC with zero values.

𝐏𝐫(𝜽𝒋𝒍 = 𝟎 ∣ 𝒚)

Mucosa Submucosa Serosa Mucosa Submucosa Serosa

GM-CSF 0.0371 0.0187 0.9361 IL-21 0.0468 0.0312 0.9341
sP-Selectin 0.0934 0.1085 0.9251 IL-22 0.0366 0.0179 0.9355
ICAM-1 0.1032 0.0538 0.9297 IL-23 0.0384 0.0175 0.9337
sE-Selectin 0.0069 0.0032 0.9332 IL-27 0.0497 0.0320 0.9337
IFN-𝛼 0.0444 0.0235 0.9342 IL-4 0.0208 0.0065 0.9344
IFN-𝛾 0.0468 0.0312 0.9317 IL-5 0.0527 0.0249 0.9355
IL-1𝛼 0.0097 0.0046 0.9331 IL-6 0.0207 0.0153 0.9324
IL-1𝛽 0.0094 0.0059 0.9320 IL-8 0.0185 0.0127 0.9317
IL-10 0.0469 0.0238 0.9330 IL-9 0.0409 0.0267 0.9335
IL-12p70 0.0364 0.0151 0.9329 IP-10 0.0286 0.0070 0.9295
IL-13 0.0399 0.0197 0.9347 MCP-1 0.0276 0.0190 0.9308
IL-17A 0.0358 0.0247 0.9336 MIP-1𝛼 0.0206 0.0091 0.9319
IL-18 0.0512 0.0183 0.9342 TNF-𝛼 0.0515 0.0221 0.9315
IL-2 0.0520 0.0304 0.9365

in Figure 3 (upper panel) suggests that more than one group
of smaller effects may be possible. We decided to investigate
the nature of this single large group by restricting the residual
variance since the regularization encouraged by themodel makes
it challenging to infer smaller effects. This type of analysis
helps identify different patterns that may emerge and then the
existence of subgroups. This exploratory analysis is conducted
by slightly modifying the semiparametric model by progressively
restricting the residual variances; specifically, we replace the
hierarchical level for the variances with an informative marginal
uniformprior distribution. This approachmimics overconfidence
in observed values. In detail, we modify the model such that the
𝜎𝑗 ∼  (0, 𝑠𝑚𝑎𝑥), with 𝑠2𝑚𝑎𝑥 = {0.5, 0.1}, are set to be independent
a priori. Additional technical details are presented in Online
Supporting Information B.

Results confirm the intuition extrapolated from the analysis of the
similarity matrix of the reference model. In Figure 3 (bottom),
we note that the single large group identified in the analysis
presented in Section 6.1 is split into two subgroups. The first group
comprises themajority of cytokines,while the second one ismuch
smaller. Specifically, the second group includes sE-selectin, MIP-
1𝛼,MCP-1, IP-10, IL-6, IL-8, IL-1𝛼, and IL-1𝛽 that are the cytokines
with stronger effects in terms of magnitude and a positive
increase also in the serosa layer. The first, larger group behaves
similarly to the pattern highlighted by the analysis presented in
Section 6.1, with zero coefficients in the serosa layer. sE-selectin
is the cytokine of the second group with a pattern closer to the
first, larger group. The first group comprises the cytokines that
could be the main drivers of the overall inflammatory status
of the patients. These results suggest that the second group,
comprised of the more proinflammatory cytokines, could drive
the inflammation process that extends to the internal ileal layer
(serosa). Note, however, that ICAM-1 and sP-selectin are a little

further apart from both groups and are the only cytokines that
record nonpositive observed sample mean in the mucosa and the
ssubmucosa tissues.

7 Conclusions

In this work, we propose a semiparametric Bayesian approach
that improves multiple hypothesis testing by modeling the
correlation between cytokines via clustering of the effects of inter-
est. The proposed method leverages two established Bayesian
methodologies. On one side, it incorporates a DP prior to induce
data clustering. On the other front, it employs a spike and
slab prior to assessing the impact of cytokines on inflamed
tissues. Beyond the analysis of cytokine data, the proposed
approach can be used to test multiple hypotheses in any setting
with a positive correlation between repeated measurements. The
simulation studies show that for our data structure and sample
size, the proposed approach outperforms standard methods used
in these contexts, and it is an excellent alternative to other
analysis methods.

Our approach offers a framework to get an indication of general
patterns of effects by regularizing estimates.While this makes the
overall inference reliable in high-dimensional and low-sample-
size settings, it may fail to perfectly reconstruct the latent clusters
of cytokines when the residual variance is relatively high, as
observed in the Crohn’s study. We argue that the model applies
a strong regularization via larger clusters in contexts where
variability does not allow inference on every single effect. In
contrast, if specific patterns were evident (minor variance), the
clusters would be less populated, and the parameters would be
more likely to be interpreted as individual effects. As far as the
data analysis is concerned, we found strong evidence in favor
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FIGURE 3 Posterior similaritymatrix, representedwith heatmaps. Top panel: posterior similaritymatrix from the analysis described in Section 6.1.
Bottom-left and bottom-right panels: posterior similarity matrix for models with variances restricted using 𝜎𝑗 ∼  (0,

√
0.5) and 𝜎𝑗 ∼  (0,

√
0.1),

respectively.

of a general increase in the two outer layers and an indication
of a subgroup of cytokines that might represent the core of the
immune response toCD that could have amorewidespread effect.
We also observed that strong a priori information on the residual
variances is necessary to obtain meaningful clustering in terms
of cytokines effects. This information is needed to contrast the
trade-off between density estimation and clustering in Bayesian
nonparametric mixture modeling. An alternative solution can be
using the repulsive priors mixture model introduced in Beraha
et al. (2022) to better distinguish between cytokine effects.
Another direction for possible extension is to improve the model
regularization over tissues using recent hierarchical extensions
of the DPs, such as common atoms models (Denti et al. 2023;
Chandra et al. 2023). The approach presented by Chandra et al.
(2023) in particular may be pertinent to our case of study because
it does not aim to cluster distributions but to cluster similar
covariate values across different data sets, sharing information as
a consequence. This is part of the current stream of research.
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