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Abstract  We analyze homothermal acceleration 
waves in complex materials (those with active micro-
structure) in the presence of an internal constraint that 
links the temperature to a manifold-valued phase-field 
describing a generic material microstructure at a cer-
tain spatial scale. Such a constraint leads to hyperbolic 
heat conduction even in the absence of macroscopic 
strain; we show how it influences the way acceleration 
waves propagate. The scheme describes a thermoe-
lastic behavior that is compatible with dependence of 
the free energy on temperature gradient (a dependence 
otherwise forbidden by the second law of thermody-
namics in the traditional non-isothermal description 
of simple bodies). We eventually provide examples in 
which the general treatment that we develop applies.

Keywords  Multi-scale models · Phase fields · 
Microstructures · Acceleration waves · Continuum 
mechanics

1  Introduction

Acceleration waves are moving discontinuities for 
the acceleration. Pertinent analyses are a classical 
topic in the mechanics of bodies described in the tra-
ditional setting of continuum mechanics (see, e.g., 
[9, 10, 58–61, 63]) even accounting for the presence 
of internal constraints [24, 27, 50]. In this last case, 
under certain restrictions, acceleration waves do not 
propagate in a material which has three or more inter-
nal constraints, as shown by Scott in 1975 [50].

Less frequently discussed is the behavior of accel-
eration waves in complex bodies, those with micro-
structure that is active in a way it implies interactions 
not strictly representable in terms of the standard 
stress. We record the analyses in [38] and [43] for the 
general model-building framework of the mechan-
ics of complex materials, [49] in the special case of 
beams described by curves with directors, [48] for 
nematic liquid crystals in non-isothermal setting, [15] 
and [55] for porous media.

In the present paper, we extend the previous 
analyses of acceleration waves in general com-
plex bodies accounting for the presence of internal 
constraints that link microstructural descriptors 
(phase fields) 𝜈̃ , taking values 𝜈 ∶= 𝜈̃(x, t) over a 
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finite-dimensional manifold M , to temperature � , 
namely a relation of the type � = �(�(x, t)) , with � 
a M-valued differentiable function. If direct exter-
nal bulk actions on the material microstructure 
are absent, even when we neglect macroscopic 
strain, the specific internal constraint indicated by 
� implies a hyperbolic type description of heat con-
duction, as shown in [34]: under the conditions just 
listed, the microstructural inner power becomes 
an extra heat flux perturbing the standard Fourier 
description (for the influence of this extra heat flux 
on stability see [54] and [13], while the propagation 
of ordinary heat waves is discussed in [37] and [39] 
at least under specific conditions).

Thinking of acceleration waves, we thus con-
sider a moving discontinuity surface and provide an 
interface condition entering the definition of inter-
nal constraint.

What emerges is that the structure of wave 
amplitude evolution equation does not change due 
to the presence of microstructural interactions and 
the related constraint between � and � , while its fac-
tors strongly depend on those interactions and the 
constraint considered.

2 � Notations and preliminary notions

2.1 � Linear spaces and their dual, duality pairing, 
second and third‑rank tensors

Let X be a m-dimensional real linear space with a 
basis 

{
ei
}
 , i = 1,… ,m , and corresponding dual X∗ 

endowed with a basis 
{
ej
}
 . Every ej is defined to be 

such that ei ⋅ ej = �i
j
 , where �i

j
 is the Kronecker 

delta and the interposed dot indicates from now on 
the duality pairing, namely the value taken by the 
linear form ei over the vector ej (precisely, 
ei ⋅ ej = ei(ej) ∈ ℝ ). The duality relation is such that 
(X∗)∗ = X.

For a ∈ X and b ∈ X∗ , a second-rank tensor from 
X into itself is given by the dyad a⊗ b , defined to 
be such that for every h ∈ X , (a⊗ b)h = (b ⋅ h)a . 
Dyadic products ei ⊗ ej , ei ⊗ ej , ei ⊗ ej , ei ⊗ ej con-
stitute bases of different second-rank tensor spaces. 
Specifically, with � a linear map from X onto itself, 

with respect to a basis 
{
ei
}
 in X, we express � as 

� = �i
j
ei ⊗ ej , where we adopt the usual summation 

over repeated indices, as in the rest of this paper.
For � and � two tensors from X onto itself, we 

indicate by � ⋅ � the scalar given by �i
j
�
j

i
 , and by 

�� the second rank tensor given by 
�� = �i

k
�k

j
ei ⊗ ej . Analogous notations hold for 

linear maps from X onto its dual X∗ and vice versa, 
or from X∗ onto itself, with appropriate lowering or 
raising component indexes by means of pertinent 
metrics.

Let Y be another m-dimensional real linear space. 
Take a linear operator G from X to Y; in short 
G ∈ Hom(X, Y) . Two linear operators are associ-
ated with G: the transpose G� ∈ Hom(Y ,X) and the 
adjoint G∗ ∈ Hom(Y∗,X∗) . If g and g̃ are metrics in X 
and Y respectively, we have G� = g−1G∗g̃.

If G ∈ Hom(X,X) and the metric refers to ortho-
normal frames, G∗ and G� coincide. Also if G has 
components Gij or Gij , transpose and adjoint operators 
coincide. Finally, if G ∈ Hom(X,X) is non-singular, 
meaning detG ≠ 0 , its inverse G−1 exists and belongs 
also to Hom(X,X).

Every second-rank tensor G ∈ Hom(X,X) 
admits the decomposition G = symG + skwG , with 
symG =

1

2
(G + G�) and skewG =

1

2
(G − G�).

For K a third-rank tensor, e.g. K = Ki
hj
ei ⊗ eh ⊗ ej , 

we indicate with 
∗

K the major adjoint involving com-
ponents i and j, a linear operator with components 
K i
jh

 , while with ∗K the minor-left adjoint, a linear 
operator with components K i

h j
 ; eventually K∗ indi-

cates minor-right adjoint, which involves the last two 
components, namely h and j. In analogous way, K� , 
tK , and Kt indicate major, minor-left and minor-right 
transpositions. Left and right minor adjoint or trans-
pose operations hold also for fourth-rank tensors, for 
which they involve the first or the last two compo-
nents of the tensor considered; a superposed asterisk 
refers to second and third components.

Let � be a tensor with rank higher than two. We 
adopt the following notations: �

t
∗ is the adjoint 

between first and last component; �∗ involves sec-
ond and fourth component ( rank > 3 ); �∗̄ second 
and fifth ( rank > 4 ); �∗̌ second and sixth (rank>5); 
�∗̂ third and fourth ( rank > 3 ); �∗́ fourth and seventh 
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( rank > 6) ; �∗̀ fifth and sixth ( rank > 5 ); �∗̆ third and 
fifth; �∗̃ fourth and sixth. The combination of these 
symbols, e.g. �∗̄∗̆∗̃ , should be read by considering 
their action from left to right.

If a ∈ X , we indicate by a♭ the counterpart of a 
into X∗ , namely a♭ = ga , in components a♭

i
= gija

j , 
where g = gije

i ⊗ ej is the metric in X. If c ∈ X∗ , with 
c♯ we indicate the vector with components c♯ i = gijej , 
where gij is the ij-th component of g−1.

2.2 � Piecewise continuous maps, jumps, integral 
identities

Take a simply connected bounded open domain 
Ω ∈ ℝ

n with almost smooth boundary (its closure is 
indicated by Ω̄ ), and consider the space-time tube 
� ∶=

{
(x, t) ∈ Ω × (t1, t2)

}
 . A closed subset Υ of 

�̄ ∶= Ω × (t1, t2) is called a singular surface in � if 
there exist a number of pairwise disjoint regions with 
almost smooth boundary �p ⊂ � , p = 1,… , q , such 
that � ⧵ Υ = ∪

q

p=1
�p and Υ = Υ ∩ (∪

q

p=1
��p) . Let 

B(x, r) ∈ ℝ
n a ball with radius r, centered at x ∈ Υ . 

Such x is called a regular point of Υ if there exists 
r > 0 such that B(x, r) ∩ Υ is a smooth hypersurface, 
so locally (meaning in a neighborhood of x) Υ admits 
an implicit representation as a level set �(x, t) = 0 , 
with � a smooth function. Write Υr for the set of reg-
ular point of Υ ; it needs not to be connected.

A singular surface Υ can be oriented by exploiting 
the orientations of all ��p . The orientation has spatial 
and temporal components. Υ is considered to be an 
evolving spatial surface if it is a smooth hypersurface 
with spatial orientation m different from zero. This 
implies that the tangent space is never space-like 
only. Thus, an evolving singular surface on � is a 
closed subset Υ of �̄ which is a singular surface and is 
such that Υr is an evolving spatial surface. Specifi-
cally, we will indicate by Σ the section 
Σ = Σ(t) ∶= {(x, t) ∈ �|�(x, t) = 0} . Σ is oriented by 
the spatial normal m♯ ∶=

∇𝜑(x,t)

|∇𝜑(x,t)| and has intrinsic 
velocity with amplitude U = −

𝜑̇(x,t)

|∇𝜑(x,t)| . The normal 
above is a vector. It can be also viewed as a covector 
when we define it by m ∶=

D�(x,t)

|D�(x,t)| , with D the deriva-
tive with respect to x. Precisely, with g the metric in 
space, we have in terms of components 
(D�)i = gij(∇�)

j . f ∶ � ⟶ ℝ is said to be piecewise 
continuous (piecewise continuously differentiable), 

with singular surface Υ if there are nonempty subsets 
of � , namely �+ and �− , such that Υ ⊂ �+ ∩ �− and f 
admits on �+ and �− continuous (continuously differ-
entiable) extensions; they are not unique but their val-
ues at Υ are uniquely determined by the limits

If f is a piecewise continuously differentiable function, 
in short we write f ∈ PC1(�) . We define the jump of 
f as the difference [f ] ∶= f + − f − and call average of f 
the sum ⟨f ⟩ ∶= 1

2
(f + + f −) . If f1 and f2 are two func-

tions with the properties of f and the same discontinu-
ity surface, we have [f1f2] = ⟨f1⟩[f2] + [f1]⟨f2⟩.

Lemma 1  (J. Hadamard) If f is a real-valued con-
tinuous and piecewise continuously differentiable 
function with evolving discontinuity surface for the 
4-gradient (meaning the one with components ∇f  and 
ḟ  ), with section Σ at t, there exists a continuous real-
valued function C on Σ such that

at every t.

Conversely, if f ∈ PC1 , Σ is connected, and (1) holds 
with some function C on Σ , [f ] = 0 everywhere.

The following identities hold for f ∈ PC1:

What has been discussed above holds also for 
f ∶ � ⟶ � , with � a linear space over the field of 
real numbers, provided necessary adaptations (perti-
nent proofs are available in treatises like, for example, 
[52]).

f ± ∶= lim
�↓0

f (x ± �m, t), f ± ∶= lim
�↓0

f (x, t ∓ �).

(1)[∇f ] = Cm and [ḟ ] = −UC

(2)
d

dt ∫Ω

f dx = ∫Ω

ḟ dx − ∫Ω∩Σ

U[f ] dHn−1(x),

(3)
∫𝜕Ω

f m♯ dHn−1(x) = ∫Ω

∇f dx + ∫Ω∩Σ

[f ]m♯ dHn−1(x).
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3 � Geometry of motions and observers

3.1 � Deformations and phase fields

Write ℝ3 and ℝ̃3 for two isomorphic copies of the three-
dimensional real space, the isomorphism 𝜄 ∶ ℝ

3
⟶ ℝ̃

3 
simply being the identification. We select in ℝ3 a 
bounded regularly open set B with a piecewise smooth 
boundary, oriented by the outward unit normal n to 
within a finite number of corners and edges; we consider 
B as a (macroscopic) reference configuration. One-to-one 
continuous and piecewise continuously differentiable ori-
entation-preserving maps

with x ∈ B and t in a time interval [0, t̄] , select in 
ℝ̃

3 configurations that we consider deformed with 
respect to B . We indicate by a superposed dot the 
velocity ẏ ∶= dỹ(x,t)

dt
 in the so-called Lagrangian rep-

resentation, while F stands for the spatial derivative 
Dỹ(x, t).

The orientation-preserving assumption implies 
detF > 0.

A continuous and piecewise continuously differen-
tiable field

represents at continuous scale essential geometric fea-
tures of the microstructure at a certain spatial scale 
� . The nature of � depends on specific circumstances. 
A general model-building setting, which encompass 
known cases and is flexible as to offer new modeling 
perspectives, is to consider � as an element of a differ-
entiable manifold M with finite dimension (see [2, 3, 
30, 32, 33, 40, 51]). Here, we avoid the case in which 
M coincides with an interval of the real line; reasons 
will be explained below.

A superposed dot indicates also for � its time rate 
of � , namely 𝜈̇ ∶=

d𝜈̃(x,t)

dt
∈ T𝜈M , where T�M is the 

tangent space to M at � . Notice that 𝜈̇ can be defined 
intrinsically, meaning independently of the choice of 
a specific coordinate atlas over M . In addition, we 
indicate by N the spatial derivative D𝜈̃(x, t).

With Σ a moving surface within B , we will con-
sider ỹ and 𝜈̃ to be continuous across Σ , while those 
other maps taken to be discontinuous at Σ will be 
taken as endowed with bounded discontinuities; the 
specific circumstances will be clearly stated below.

(4)(x, t) ⟼ y ∶= ỹ(x, t) ∈ ℝ̃
3,

(5)(x, t) ⟼ 𝜈 ∶= 𝜈̃(x, t)

3.2 � Observers in the physical space and the way 
their changes influence the perception of 
microstructures

Observers are frames of reference in all spaces that 
are chosen to describe the morphology of a body and 
its motion. To what we refer to here the list of perti-
nent spaces includes ℝ3 , ℝ̃3 , the manifold M , and the 
time scale, say the interval [0, t̄] or the entire real line 
ℝ.

We consider changes of observers that leave invar-
iant the reference space ℝ3 and the time scale, while 
they are determined by a rigid-body motion into the 
physical space ℝ̃3 . Specifically, if O and O′ are two 
different observers in ℝ̃3 , we consider that a point 
y ∈ B̃ = ỹ(B, t) ∈ ℝ̃

3 as recorded by O is viewed by 
O

′ to be y� ∶= �(t) + Q(t)(y − y0) , where � and Q 
depend smoothly on time t only and take values into 
ℝ̃

3 and SO(3), respectively. When ẏ is for O the veloc-
ity pertaining to the material element mapped onto 
y by a deformation, the other observer, namely O′ , 
reads a velocity ẏ� = �̇ + Q̇(y − y0) + Qẏ . To allow 
a comparison between the two velocities, we pull-
back ẏ′ into the frame defining O by means of Q⊤ , the 
translation being irrelevant because we consider here 
ẏ as a free vector. By defining ẏ⋄ ∶= Q⊤ẏ� , we get the 
standard formula

where � and � are translational and rotational relative 
velocities between the two observers, respectively; 
precisely, � = Q⊤ẇ and � is the characteristic vector 
of the skew-symmetric second-rank tensor Q⊤Q̇.

Rotation and translation of frames in the physi-
cal space ℝ̃3 may alter, in principle, the perception of 
microstructures whose features—at least those con-
sidered to be essential in the specific modeling—are 
represented by � . To take into account the circum-
stance, according to [32] (see also refinements in 
[35]), we presume the existence of a (possibly empty) 
family of differentiable homeomorphisms

where Diff(M,M) is the group of diffeomor-
phisms mapping M onto itself; � takes values 
�(Q�) ∈ Diff(M,M) , with � ∈ ℝ and Q0 = identity . 
Specifically, � transfers over M a possible discrep-
ancy on the observation of microstructure between 

(6)ẏ⋄ ∶= �(t) + � × (y − y0) + ẏ,

{� ∶ SO(3) ×ℝ ⟶ Diff(M,M)}
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two observers rotating relatively one another. Thus, 
the counterpart of ẏ⋄ for 𝜈̇ is

where, when the set {�} is not empty, with ��(Q) the 
value of � after the action of �(Q) ∈ Diff(M,M) , the 
linear operator A(𝜈) ∈ Hom

(
ℝ̃

k, T𝜈M
)
 is given by

after identification of � with t. Of course, the explicit 
expression of ��(Q�) depends on the tensor nature of � 
and �

(
Q�

)
 ; also, the choice of � characterizes the 

specific change of observer considered and depends 
on the microstructure. When {�} is empty, � is 
declared to be not observable, so per se an internal 
variable associated only with the production of 
entropy, not with true balanced interactions – we 
exclude such a circumstance here.

In writing (8) we take into account that every 
Q ∈ SO(3) is such that Q = exp(��) = exp(�×) , with 
� the third-rank Ricci’s indicator. Specific expressions 
of A can be found in [32, 33, 35], together with fur-
ther details of foundational character.

The map (x, t) ⟼ A(𝜈̃(x, t)) is taken to be contin-
uous across Σ.

4 � Balance of standard and microstructural 
actions in the presence of evolving interfaces

Balance equations are independent of constitu-
tive structures. Also, they may or not be considered 
as first principles because they can be derived from 
invariance requirements imposed to entities through 
which the interactions between body parts and the 
external environment are defined.

Here we summarize an approach followed in [30] 
and [32] (with refinements in [35]), and adapt the 
derivation of inertial terms to the presence of a mov-
ing unstructured surface, as an acceleration wave 
is. The approach rests on a requirement of exter-
nal power invariance under changes of observers 
described by the rules (6) and (7). At a conceptual 
level, we presume that every mechanism determining 

(7)𝜈̇⋄ = 𝜈̇ +A(𝜈)�,

(8)A(�) =
d��(Q�)

dQ�

dQ�

dq�

||�=0 ,

(in principle) independent changes of body morphol-
ogy has its own interactions defined by the power per-
formed to allow such changes. We postulate only the 
external power to a generic part � ⊆ B (a subset of B 
taken to be regularly open, with non-vanishing vol-
ume, and a piecewise smooth boundary oriented by 
n, as is for B).

We do not postulate the inner power as it is nec-
essary when one starts writing down the princi-
ple of virtual power as a basic source. Resorting 
to it as a primary origin of the balance equations 
means postulating a priori the weak form of the 
balance equations themselves, which implies that 
the representation of macroscopic and microstruc-
tural actions is assumed, not derived, and so is for 
the microstructural self-action, which, at variance, 
emerges naturally from the procedure we follow, 
together with the representation of contact actions. 
So, aiming at an approach reducing assumptions 
with respect to postulating them in strong or weak 
form, we will not follow the path based on the vir-
tual power principle stating the equality between 
external and internal power; the latter will emerge 
as a consequence, rather than a postulate.

At every t we will select � to be across Σ , namely 
to be such that �� ∩ Σ is a piecewise smooth curve.

We consider bulk and contact actions of first-
neighbor type for both standard and microstructural 
classes. Thus, we define the external power Pext

�
 

over a generic part � of B as a functional depending 
on ẏ and 𝜈̇ with values

In the previous expression b‡ represents standard bulk 
forces and is the sum b‡ = bin + b of inertial ( bin ) and 
non-inertial (b) contributions (the latter is objective 
while the former is not so); �� is the standard traction, 
which depends on x, t, and the boundary �� of � , a 
circumstance indicated by the subscript � . Analogous 
meaning have �‡ and �� , the latter a microstructural 
contact interaction (at x and t both actions are ele-
ments of T∗

𝜈̃(x,t)
M , the cotangent space of M at � , 

namely a dual space to the tangent space of M at � ); 

(9)

P
ext
�
(ẏ, 𝜈̇) ∶= ∫�

(b‡ ⋅ ẏ + 𝛽‡ ⋅ 𝜈̇) dx + ∫𝜕�

(�𝜕 ⋅ ẏ + 𝜏𝜕 ⋅ 𝜈̇) dH
2(x)

+ ∫�∩Σ

(bin
Σ
⋅ ⟨ẏ⟩ + 𝛽 in

Σ
⋅ ⟨𝜈̇⟩) dH2(x).
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also, even �‡ is taken to be the sum � in + � into iner-
tial ( � in ) and non-inertial ( � ) components, the former 
associated with a possible (relative) inertia with 
respect to the macroscopic motion, the latter a possi-
ble non-inertial external bulk action directly over the 
microstructure (example is the consequence of an 
electric field on a polarizable material). Finally, bin

Σ
 

and � in
Σ

 are surface inertial actions pertaining to Σ . 
The laws (6) and (7) allows us to test the same actions 
over two different sets of time rates. So, the invoked 
invariance request reduces to impose that

for any choice of � , � , and the part � considered. The 
axiom implies that the integral balances

and

hold for any choice of �.
Equation (11) is the standard integral balance of 

forces while (12) is a non-standard balance of cou-
ples. The last equation does not imply by the way that 
the microstructural actions �‡ and �� are couples: they 
are not necessarily so per se, rather their projections 
through A∗ over the physical space are couples.

Standard assumptions apply to Eq. (11): bounded-
ness of |b‡| implies that in the regions where ��(⋅, t) 
is continuous, that is outside Σ , and for every t, we 
find a map �̃ such that �𝜕(x, t) = �̃(x, t, n) = −�̃(x, t,−n) , 
where n is the outward unit normal to �� (consid-
ered as a covector), and also �̃ is linear with respect 
to n, meaning there is a second-rank tensor field P 
such that �̃(x, t, n) = P(x, t)n , with P the standard first 
Piola-Kirchhoff stress.

Since B is bounded, we can choose y0 is a way 
such that the boundedness of |b‡| assures the one of 
|(y − y0) × b‡| and |(y − y0) × ��| (in the analysis of Eq. 
(11) the boundedness of |b‡| grants the one of |��| ). 
Also, if |A∗�| is also bounded, in the regions where 

(10)P
ext
�
(ẏ, 𝜈̇) = P

ext
�
(ẏ⋄, 𝜈̇⋄)

(11)∫�

b‡ dx + ∫��

�� dH
2(x) + ∫�∩Σ

bin
Σ
dH2(x) = 0

(12)

∫�

((y − y0) × b‡ +A
∗�‡) dx + ∫��

((y − y0) × �� +A
∗��) dH

2(x)

+ ∫�∩Σ

((y − y0) × bin
Σ
+A

∗� in
Σ
) dH2(x) = 0

��(⋅, t) is continuous, that is outside Σ , and for every t, 
we find a map 𝜏 such that 𝜏𝜕(x, t) = 𝜏(x, t, n) and

also 𝜏 is linear with respect to n, namely there exists 
a second-rank tensor mapping n into the cotangent 
space of M at � , namely 𝜏(x, t, n) = S(x, t)n ∈ T∗

𝜈
M . 

We call S a microstress (for further details see [32, 
35]; notice also that to prove the existence of S we do 
not need to embed M into a linear space, as required 
in [7]; the embedding is always available because M 
is with finite dimension but is not unique; to grant an 
intrinsic theory we need to avoid the embedding, as 
we do here in accord with [32, 35]).

When P(⋅, t) is a PC1 map while b‡ and bin
Σ

 are con-
tinuous over their domains, use of the Gauss theorem 
(3) and the arbitrariness of � imply from Eq. (11)

pointwise in the bulk and

over Σ . Also, when S(⋅, t) is a PC1 map while �‡ and 
� in
Σ

 are continuous over their domains, by exploiting 
the local Eqs. (13) and (14), the arbitrariness of � , and 
using Gauss theorem, from Eq. (12) we get that there 
is an element z of T∗

�
M , defined to within an arbitrary 

element of kerA∗ , such that

and

in the bulk, while over Σ

which means that there is 𝜁 ∶= 𝜁(x, t) ∈ T∗
𝜈̃(x,t)

M such 
that

(compare analyses in [8, 19, 30, 32]).
The validity of pointwise balances implies the 

identity

A
∗𝜏(x, t, n) = −A∗𝜏(x, t,−n);

(13)b‡ + DivP = 0

(14)[P]m + bin
Σ
= 0

(15)�‡ − z + DivS = 0

(16)skew(PF∗) =
1

2
�(A∗z + (DA∗)tS),

A
∗([S]m + � in

Σ
) = 0,

(17)[S]m + � in
Σ
= � with A

∗� = 0,
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The right-hand-side integrals is what we call internal 
power and indicate in short with the symbol Pint

�
(ẏ, 𝜈̇).

The inertial components of b‡ , namely bin , and the 
surface inertial action require to be characterized. A 
reasonable and rather standard way we can follow is 
to adapt a prescription that the power developed by 
inertial terms over a generic body part plus the perti-
nent kinetic energy vanishes for every part of B.

A suggestion by Capriz [3] is to consider the 
kinetic energy density of a complex body described in 
the multi-field setting sketched above as the sum

where � it the referential mass density, taken here to 
be constant, � an element of T∗

�
M , and � a twice dif-

ferentiable non-negative function over the cotangent 
bundle of M , namely the disjoint union 
T∗M ∶=

⨆
�∈M T∗

�
M , such that 𝜕2�

𝜕𝜇𝜕𝜇
⋅ 𝜈̇♭ ⊗ 𝜈̇♭ > 0 

and �(�, 0) = 0 . Then, the relation between kinetic 
energy and the set of inertial actions is attributed to 
the identity

which is presumed to hold for any choice of the 
velocity fields involved. The assumptions on � allow 
us to consider a function � ∶ TM ⟼ ℝ , with val-
ues 𝜒(𝜈, 𝜈̇) , where TM it the tangent bundle of M , 
namely the disjoint union TM ∶=

⨆
�∈M T�M , that 

is convex with respect to 𝜈̇ and such that

with

(18)

P
ext
�
(ẏ, 𝜈̇) =∫�

(P ⋅ Ḟ + z ⋅ 𝜈̇ + S ⋅ Ṅ) dx

+ ∫�∩Σ

(⟨P⟩m ⋅ [ẏ] + ⟨S⟩m ⋅ [𝜈̇] + 𝜁 ⋅ ⟨𝜈̇⟩) dH2(x).

1

2
𝜌|ẏ|2 + �(𝜈,𝜇),

(19)

d

dt ∫B

(
1

2
𝜌�ẏ�2 + �(𝜈,𝜇)) dx = −∫

B

(bin ⋅ ẏ + 𝛽‡ ⋅ 𝜈̇) dx

− ∫
B∩Σ

(bin
Σ
⋅ ⟨ẏ⟩ + 𝛽 in

Σ
⋅ ⟨ẏ⟩) dH2(x),

(20)�(𝜈,𝜇) =
𝜕𝜒(𝜈, 𝜈̇)

𝜕𝜈̇
⋅ 𝜈̇ − 𝜒(𝜈, 𝜈̇),

𝜇 ∶=
𝜕𝜒(𝜈, 𝜈̇)

𝜕𝜈̇
∈ T∗

𝜈
M,

so that when � is quadratic with respect to its second 
entry, � coincides with 𝜈̇♭ . In other words, � is the 
Legendre transform of � with respect to 𝜈̇.

By taking into account the relation (20), arbitrari-
ness of the time rates involved in the balance (19) and 
use of the transport theorem (2) imply that (19) is 
compatible with the identifications

to within powerless terms. The possibility of power-
less terms allows one to define inertial frames of ref-
erence with respect to the gross motion as those for 
which powerless terms vanish in the expression of bin 
and bin

Σ
.

This analysis is open to discussion: when � 
is quadratic and we compute the overall kinetic 
energy over a rigid-body motion characterized by 
ẏ = � × (y − y0) and 𝜈̇ = A� , what results is that the 
previous choice for the kinetic energy density would 
imply an augmented inertial tensor due to a micro-
structure. When the field 𝜈̃ is used to represent at 
a low-dimensional setting the features of a physi-
cal body filling a non-vanishing volume in higher 
dimensional space, as it occurs in the case of one-
dimensional curves with directors modeling rods 
[11], the augmented inertia tensor accounts for the 
three-dimensional physical body. Otherwise, when 𝜈̃ 
describes internal degrees of freedom, as for exam-
ple in the case of polarization, we could presumably 
consider a kinetic effect that is only relative to the 
macroscopic rigid-body motion, in order to obtain 
the inertial tensor of the real body. We do not enter 
further the issue. Rather, here we neglect micro-
structural inertia for the sake of simplicity.

4.1 � A spin‑free version of the bulk inner power 
density

Define L ∶= ḞF−1 . It is an element of Hom(ℝ̃3, ℝ̃3) . 
As such it decomposes as L = � − � , where 
� ∶= symL and � ∶= −skewL is the spin tensor. 
Associated with � is the spin vector

(21)
bin = − �ÿ♭, � in =

��
��

− d
dt

��
��̇

, binΣ = �U[ẏ♭],

� inΣ = U
[

��
��̇

]

,

� ∶=
1

2
�� =

1

2
Curlẏ.
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We thus define 𝜈̊ ∶= 𝜈̇ −A�.
Write in short w for the inner power bulk density, 

namely w ∶= P ⋅ Ḟ + z ⋅ 𝜈̇ + S ⋅ D𝜈̇ . By exploiting 
the local balance of couples (16), we thus have

5 � Energies and entropy

5.1 � Internal energy and the first law of 
thermodynamics

We write e for the internal energy density, a piece-
wise differentiable function of space and time with 
discontinuity set Σ at every instant. It satisfies the first 
law of thermodynamics, namely the energy balance, 
given by

or, thanks to the identity (18), as

where q ∶= q̃(x, t) is the heat flux across the bound-
ary �� oriented almost everywhere by the normal n, 
a piecewise differentiable function of space and time 
with discontinuity set still coinciding with Σ at every 
instant; r is a heat source, a continuous function of 
space and time. By using the transport Eq. (2), the 
arbitrariness of � implies the local energy balance

in the bulk and

w = PF∗
⋅ ḞF−1 + z ⋅ 𝜈̇ + S ⋅ Ṅ

= sym(PF∗) ⋅ � − skew(PF∗) ⋅ �� + z ⋅ 𝜈̇ + S ⋅ Ṅ

= sym(PF∗) ⋅ � − (A∗z + (DA∗)tS) ⋅ � + z ⋅ 𝜈̇ + S ⋅ Ṅ

= sym(PF∗) ⋅ � + z ⋅ 𝜈̊ + S ⋅ D𝜈̊ −A
∗S ⋅ D�.

(22)

d

dt ∫�

e dx − P
ext
�
(ẏ, 𝜈̇) − ∫�

r dx + ∫𝜕�

q̃(x, t) ⋅ n dHk−1(x) = 0,

(23)

d

dt ∫�

e dx − P
int
�
(ẏ, 𝜈̇) − ∫�

r dx + ∫𝜕�

q ⋅ n dHk−1(x) = 0,

(24)ė = P ⋅ Ḟ + z ⋅ 𝜈̇ + S ⋅ Ṅ − Divq + r

(25)

U[e] = ⟨P⟩m ⋅ [ẏ] + ⟨S⟩m ⋅ [𝜈̇] + 𝜁 ⋅ ⟨𝜈̇⟩ + [q] ⋅ m

= U⟨P⟩ ⋅ [F] + U⟨S⟩ ⋅ [N] − 𝜁 ⋅ ⟨𝜈̇⟩ + [q] ⋅ m

across Σ , where the last identity follows from Had-
amard’s lemma.

5.2 � Entropy inequality

With � the entropy density, a piecewise differenti-
able function of space and time with discontinuity set 
coinciding with Σ at every instant, as usual we write 
the second law of thermodynamics as

where s is the entropy source that depends on space 
and time, while h is the entropy flux, a piecewise dif-
ferentiable function with discontinuity set Σ at every 
instant. We assume standard relations given by

Relation (27)1 can be extended to h =
q

�
+� , with 

� an extra entropy flux (such a relation has been 
introduced first in [41]; here, a natural attribution 
of � is to microstructural events, namely to fluctua-
tions; however, for the sake of simplicity, we restrict 
ourselves to the classical relation (27)1 ). Thus, by 
exploiting arbitrariness of � and the identity (2), we 
get

pointwise in the bulk and

over Σ . By expanding the right-hand side term and 
using the surface balance (25), we can rewrite the 
inequality (29) as

(26)
d

dt ��

� dx ≥ −���

h ⋅ n dHk−1(x) + ��

s dx,

(27)h =
q

�
, s =

r

�
.

(28)𝜂̇ ≥ −Div
q

𝜃
+

r

𝜃

(29)−U[�] ≥ [q
�

]
⋅ m

(30)
− U⟨�⟩[�] ≥ −U([e] − ⟨P⟩ ⋅ [F] − ⟨S⟩ ⋅ [N])

− � ⋅ ⟨�̇⟩ + [�]
⟨ q
�

⟩

⋅ m.
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5.3 � Free energy and the Clausius–Duhem inequality

Helmoltz’s free energy density � is usually defined as 
� ∶= e − �� . By combining Eq. (24) with (28) in the 
common way, we obtain an appropriate local version 
of the Clausius-Duhem inequality:

while from the surface inequality (30) we get

6 � Internal constraints in the multi‑field 
description of complex media

A generic material element is said to be internally 
constrained when it may assume only states in a 
defined strict subset of the state space. A body is 
said to undergo an internal constraint when some or 
all its elements are constrained. Examples of internal 
constraints are incompressibility and inextensibil-
ity along a prescribed direction. A systematic treat-
ment of kinematic internal constraints in simple bod-
ies is in the 1964 treatise by Truesdell and Noll [58, 
Sect. 30]; the principle of determinism is modified by 
the prescription that purely kinematic internal con-
straints foresee workless reactive stress. The analysis 
of the non-isothermal case dates back the 1970 work 
by Green, Naghdi, and Trapp [22]. A general view on 
internal constraints was proposed in 1973 by Gurtin 
and Podio-Guidugli [23]. Further analyses dealt with 
theoretical refinements and applications, above all to 
the deduction of beam, plate, and shell theories from 
three-dimensional standard elasticity of simple bodies 
(see, e.g., [27–29, 42, 46, 62]). Within the available 
literature, pertinent to the analysis developed here is 
the way Capriz and Podio-Guidugli discussed internal 
constraints in the multi-field setting concerning the 
continuum mechanics of complex bodies [6] (see also 
[2] and, for applications, [16] and [21]), an approach 
also developed by Giovine considering partially 

(31)𝜓̇ + 𝜂𝜃̇ − P ⋅ Ḟ − z ⋅ 𝜈̇ − S ⋅ Ṅ −
1

𝜃
q ⋅ D𝜃 ≤ 0,

(32)
U([�] − [�]⟨�⟩) ≥ U(⟨P⟩ ⋅ [F] + ⟨S⟩ ⋅ [N])

− � ⋅ ⟨�̇⟩ + [�]
⟨ q
�

⟩

⋅ m.

constrained microstructures [14, 17–20] and Capriz 
and Giovine in the case of sparse phases [5].

We come back here to internal constraints in the 
mechanics of complex bodies, but before entering 
details, a few remarks deserve to be mentioned in 
order to clarify the stage. First is the awareness that 
internal constraints generically are ideal conditions 
not strictly realized in nature, at least within what 
falls under the realm of continuum mechanics in 
classical space-time. Physical appearance seems to 
encompass weakened forms of internal constraints 
(for example, incompressibility is not under any 
load in imagination but it appears ideal under certain 
classes of loads). As regards this aspect, in 1978 Ros-
tamian showed that in the elastostatics of nonlinear 
and linear hyperelastic materials, at least for the cases 
considered, including incompressibility, “slight relax-
ation of the internal constraint does not greatly affect 
the solutions of the boundary value problems" [47, 
p. 638]. Also, we notice that the view just described 
on internal constraints is local. There is at least one 
non-local approach [1] to internal constraints but here 
we maintain the local view. We continue to adopt the 
principle of determinism:

Axiom 1. Principle of determinism

1.	 Every state functional F  (free energy, entropy, 
stress, etc.) admits additive decomposition into 
active 

a

F  and reactive 
r

F  components.
2.	 Only the active components are connected by 

suitable constitutive rules to the independent 
thermokinetic variables.

3.	 Although restricted by the constraint explicit 
specification and a requirement of objectivity, the 
reactive terms maintain undetermined aspects. 
They depend on the specific process under analy-
sis; they are fields in the orthogonal complement 
of the respective active functionals, orthogonality 
defined in some suitable way.

Definition 1  Internal constraints are said to be per-
fect when the pertinent reactive entities satisfy identi-
cally the identity
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in the bulk and for every process, and

over Σ for every process allowed by the constraint.

The bulk condition can be substituted by

when we consider the inner power density involving 
𝜈̊.

Imperfect internal constraints could be defined 
in some way, their treatment requiring to be at least 
defined. We do not enter this possible topic and main-
tain focus on constraints satisfying the definition 
above.

7 � Temperature dependent internal constraint

Among several possible choices of internal con-
straints, here we consider � as a function of the 
temperature, namely we presume the validity of a 
constraint

where � is M-valued, continuous and piecewise con-
tinuously differentiable. We also set

and consider |�′| ≠ 0.
As already recalled, for macroscopically rigid 

bodies endowed with microstructure not undergo-
ing external bulk actions, even in the acceptance of 
Fourier’s law, such an internal constraint implies 
finite speed propagation of temperature disturbances 

(33)
ṙ
𝜓 +

r
𝜂𝜃̇ −

r

P ⋅ Ḟ −
r
z ⋅ 𝜈̇ −

r

S ⋅ D𝜈̇ −
1

𝜃

r
q ⋅ D𝜃 = 0

(34)

U([
r
𝜓] − [𝜃]

� r
𝜂
�
) = −

�
r

P

�
m ⋅ [ẏ]

−
�� r

S

�
m +

r

𝜁
�
⋅ ⟨𝜈̇⟩ + [𝜃]

� r
q

𝜃

�
⋅ m

ṙ
𝜓 +

r
𝜂𝜃̇ − sym(

r

PF
∗) ⋅ � −

r
z ⋅ 𝜈̊ −

r

S ⋅ D𝜈̊

+ (A∗
r

S) ⋅ D� −
1

𝜃

r
q ⋅ D𝜃 = 0,

(35)� = �(�),

(36)�� ∶=
d�(�)

d�

[34] (see also [38, 39]). This is the reason justifying 
our attention over it.

When we consider the constraint (35), so that 
𝜈̇ = 𝜈�𝜃̇ , Eq. (33) becomes

The arbitrariness of the fields involved implies

We assume that 
a
� , 

a
� , 

a

P , a
z , and 

a

S , all depend on 
(F, �,N, �) , a list of variables defining the state at a 
point.

The internal constraint (35) implies that the 
state representation reduces essentially to the list 
(F, �,D�) ; so, e.g.,

The Clausius-Duhem inequality thus reads

Once again, arbitrariness of the rate fields involved, 
namely Ḟ, 𝜃̇,D𝜃̇ , implies

(37)

ṙ
𝜓 +

r
𝜂𝜃̇ −

r

P ⋅ Ḟ −
r
z ⋅ 𝜈�𝜃̇ −

(
r

S∗𝜈�
)
⋅ D𝜃̇ −

(
r

S ⋅ D𝜈
�

)
𝜃̇ −

1

𝜃

r
q ⋅ D𝜃 = 0.

(38)
r

P = 0,

(39)−
r
� +

r
z ⋅ �� +

r

S ⋅ D�
� = 0,

(40)
r

S∗�� = 0,

(41)ṙ
𝜓 = 0,

(42)
r
q = 0,

a
𝜓 = 𝜓̃(F, 𝜈,N, 𝜃) = 𝜓̄(F, 𝜃,D𝜃).

(43)

𝜕
a
𝜓

𝜕F
⋅ Ḟ +

𝜕
a
𝜓

𝜕𝜃
𝜃̇ +

𝜕
a
𝜓

𝜕D𝜃
⋅ D𝜃̇ +

a
𝜂𝜃̇ −

a

P ⋅ Ḟ −
a
z ⋅ 𝜈�𝜃̇

−(
a

S∗𝜈�) ⋅ D𝜃̇ − (
a

S ⋅ D𝜈
�)𝜃̇ −

1

𝜃

a
q ⋅ D𝜃 ≤ 0.

(44)−
�

a
�

�F
+

a

P = 0,

(45)−
�

a
�

��
−

a
� +

a
z ⋅ �� +

a

S ⋅ D�
� = 0,
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The last inequality is compatible with Fourier’s law

which implies

across Σ.
By summing up active and reactive components, we 

get

 From the identity (51) and taking into account (41) 
we get

where 𝜈′♭ is the covector associated with �′ , namely 
𝜈�♭ = gM𝜈� with gM the metric over M . Thus, by 
exploiting the relations (52) and (53), and taking into 
account that we do not consider here microstructural 
inertia, so �‡ = � , from the local balance (15) we get

(46)−
�

a
�

�D�
+

a

S∗�� = 0,

(47)
1

�

a
q ⋅ D� ≥ 0.

(48)q = −�∇�,

(49)[q̇] =
1

U
𝜅[𝜃̈]m♯

(50)P =
�

a
�

�F

(51)S∗�� =
�

a
�

�D�
,

(52)� = −
�

a
�

��
+ Div

( �
a
�

�D�

)
+ �� ⋅ �.

(53)S =
𝜈�♭

|𝜈�|2
⊗

𝜕𝜓

𝜕D𝜃
,

(54)

z =

(
Div

(
𝜕𝜓

𝜕D𝜃

)
+ 𝜈� ⋅ 𝛽 +

(
𝜈�♭

|𝜈�|2
⊗

𝜕𝜓

𝜕D𝜃

)
⋅ D𝜈�

)
𝜈�♭

|𝜈�|2
.

8 � Examples of complex bodies to which the special 
internal constraint considered may apply

8.1 � Two families of grains

Consider a mixture of two densely packed families of 
grains and take one of them to be highly temperature 
sensitive with respect to the other. At every x we attrib-
ute properties of a (statistically) representative volume 

Fig. 1   Representative volume element of a mixture made of 
two families of grains. The gray ones are those highly tempera-
ture sensitive with respect to the others

Fig. 2   Strontium titanate structure in an electrically neutral 
state
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element (RVE) characterized by a scale � . Figure  1 
describes such an RVE.

The (macroscopic) deformation gradient F is here an 
average over the RVE. Then, we may consider � as a 
perturbation to F given by a (micro)deformation gradi-
ent � , due to the influence of temperature variations on 
thermally sensitive grains; so, � = � should depend on 
� . The resulting scheme is the one of a micromorphic 
continuum (see, e.g., [12]) with an internal constraint. 
In [19] P. Giovine discussed details of a similar case 
in which the two families of grains are replaced by a 
spongy body with voids filled by a gas. In both cases, 
specific constitutive choices depend on the type of RVE 
considered (about problems concerning the choice of 
an RVE, see [26] and [57]).

8.2 � Strontium titanate and other ceramics

Strontium titanate ceramics, formally the class 
Ba1−xSrxTiO3 , experience polarization as a conse-
quence of heating. A primary effect is simply due to 
temperature variations at constant volume; another 
effect (the secondary one) depends on temperature-
induced strain; the tertiary effect is determined by 
non-uniform heating [25]. Figure  2 schematically 
depicts the Strontium titanate structure in an electri-
cally neutral state.

Also, piezoelectric materials such as quartz, lead 
titanate ( PbTiO3 ), Barium titanate ( BaTiO3 ), lead zir-
conate titanate experience such an effect and are used in 
cooling devices and energy harvesters [44]. In a reverse 
way, the application of an external electric field deter-
mines a change of temperature through the induced 
polarization; this effect is evident in ferroelectric per-
ovskite ceramics, for example based on Barium titanate 
[53].

Thus, to represent the situation, we choose � to be 
the polarization p , so that M is a ball Bpmax in ℝ3 with 
radius the maximum polarization intensity pmax that 
the material may sustain.

To consider even the electrocaloric reverse effect, 
we account also for the presence of an electric field 
� filling ℝ̃3 , where we detect the deformed configu-
rations; so � depends on y and t and satisfies Max-
well’s equations in the vacuum, that is the space free 
of other bodies. We do not look at the space outside B 

while focus attention on B and its interaction with the 
environment.

To account explicitly for effects due to � , we con-
sider the commonly adopted additive decomposition 
of the interactions occurring into the external power 
(inertia apart) into (electro)mechanical and electri-
cal components indicated by superscripts m and e, 
respectively. So, we have

We thus identify the electric components by equa-
tion the negative of their power to the time rate of the 
electric energy in the matter, here indicated by D(B) . 
We thus write

where, by definition,

and the Eq. (56) is presumed to hold for every choice 
of compactly supported time rates involved. A result 
by H. F. Tiersten [56], here rewritten in Lagrangian 
representation, reads

where Dy indicates the derivative with respect to y 
and pn ∶= p ⋅ n . The arbitrariness of the rate fields 
involved implies the identifications

The last identity implies that, with f a continu-
ous distribution of forces over a part of the body 
boundary or over a sub-body boundary, we have 
Pn = f −

1

2
(detF)p2

n
F−∗n at all points of the boundary 

considered where the normal n is well-defined.
With these premises, the internal constraint can be 

written as

(55)
b‡ = b‡m + be, � = �m + �e, �� = �m

�
+ �e

�
, �� = �m

�
+ �e

�
.

(56)

dD(B)

dt
= −∫

B

(be ⋅ ẏ + 𝛽e ⋅ ṗ) dx − ∫𝜕B

(�e
𝜕
⋅ ẏ + 𝜏e

𝜕
⋅ ṗ) dH2(x),

(57)D(B) = −
1

2 ∫�

𝜌� ⋅ ṗ dx,

(58)

dD(B)

dt
= −∫�

(𝜌(Dy�)p ⋅ ẏ + 𝜌� ⋅ ṗ) dx

− ∫𝜕B

1

2
(detF)p2

n
F−∗n ⋅ ẏ dH2(x),

(59)
be = �(Dy�)p, �e = ��, �e

�
= 0, �e

�
=

1

2
(detF)p2

n
F−∗n.
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where f is a differentiable function and � a unit vec-
tor, which allows one to describe polarization switch-
ing. Accoording to previous assumptions, we take 
f �(�) ≠ 0 . When p reduces to the total remnant polar-
ization, an appropriate expression for f (�) seems to 
be the polynomial �1 + �2� + �3�

2 (values of the fac-
tors �i , i = 1, 2, 3 , are determined by experiments on a 
piezoelectric described in [45]).

In the presence of the special internal constraint 
(60), we have to consider active and reactive compo-
nents of free energy, entropy, and mechanical actions. 
By following the previous procedure, we thus get

where the last relation indicates that the reactive com-
ponent of the self-action z is undetermined and pro-
portional to �.

9 � Homothermal acceleration waves when � = �(�)

At first we assume absence of non inertial bulk forces: 
b‡ = bin . Also, we presume [�] = 0.

We also set � = 0 as a constitutive choice.
We consider homothermal acceleration waves. They 

are defined by the following conditions:

From Eqs. (13) and (21)1 , we have

With the assumed constitutive structures, by taking 
into account the assumed homothermal state, namely 
[𝜃̇] = 0 , the interfacial balance (14) becomes

it includes two unknowns, namely [ÿ] and [𝜃̈] ; so, we 
need an additional condition for one of them; it is pro-
vided by the microstructural balance.

(60)p = f (�)�,

(61)

r

P
m

= 0,
r
q = 0,

r

S
m

= 0,
r
� = f �

r
z ⋅ �,

r
z ∥ �,

[y] = 0, [ẏ] = 0, [�] = 0, [�̇] = 0,

[D�] = 0, [�] = 0, [�̇] = 0.

(62)−U[Ṗ]⊗ m = 𝜌U2[ÿ♭].

(63)

( ∗

𝜕P

𝜕F
(m⊗ m)

)
[ÿ] +

𝜕P

𝜕D𝜃
(m⊗ m)[𝜃̈] = 𝜌U2[ÿ♭];

We presume that the self-action z is continuous 
across the wavefront, so that the interfacial balance (17) 
reads

Multiplying by �′ , we get

Substitution into Eq. (63) implies

after considering that [ÿ♭]i = (
∧

�)i j [ÿ]
j , where 

∧

� is a 
spatial metric (in orthonormal frames it is the identity 
tensor).

Also, from the pointwise balance of forces (13), we 
also get [DivṖ] = 𝜌[y⃛♭] , so, since in the case treated 
here P = P̄(F, 𝜃,D𝜃) , we compute

By using Hadamard’s lemma, since [𝜃̇] = 0 , we thus 
obtain

(64)
( ∗

𝜕S

𝜕F
(m⊗ m)

)
[ÿ♭] +

𝜕S

𝜕D𝜃
(m⊗ m)[𝜃̈] = 0.

(65)

[𝜃̈] = −

(
𝜈� ⋅

( 𝜕S

𝜕D𝜃
(m⊗ m)

))−1

((
𝜈�

∗

𝜕S

𝜕F
(m⊗ m

))
⋅ [ÿ♭]),

(66)

((
𝜕P

𝜕D𝜃
(m⊗ m)

)(
𝜈� ⋅

𝜕S

𝜕D𝜃
(m⊗ m)

)−1

(
𝜈�

∗

𝜕S

𝜕F
(m⊗ m) + 𝜌

∧

�U
2 −

∗

𝜕P

𝜕F
(m⊗ m)

)
[ÿ] = 0,

(67)

�[y⃛♭] = �P
�F

[DḞ∗] +
[

Div
(

∗
(

�P
�F

)

∗
)]

(Ḟ∗)+ −
[

Div
(

∗
(

�P
�F

)

∗
)]

[Ḟ∗]

+
(

Div
(

∗
(

�P
�F

)

∗
)

)+ [Ḟ∗] + �P
��

[D�̇]

+
[

Div
(

�P
��

)]

�̇ + �P
�D�

[D(D�̇)]

+
[

Div
(

�P
�D�

)∗]

(D�̇)+

−
[

Div
(

�P
�D�

)∗]

[D�̇] +
(

Div ( �P
�D�

)∗)+

[D�̇]
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The jump [𝜃] enters a list of unknowns. So, for [𝜃̈] we 
exploit Eq. (67), while for [𝜃] we refer to the entropy 
inequality and obtain

We define 𝜂̄ ∶= −
𝜕

a
𝜓

𝜕𝜃
 and � ∶= �

a
�

�D�
 . Then, we compute

By rearranging terms and dividing by � , we get

(68)

(

�
∧

� − 1
U2

∗
(

�P
�F

)

(m⊗ m)
)

[y⃛] −
(

1
U2

�P
�D�

(m⊗ m)
)

[�⃛]

= −
(

Div
(

∗
(

�P
�F

)

∗
))+

(m
U

⊗ [ÿ]
)

− �P
�F

D
(m
U

⊗ [ÿ]
)

− �P
�F

(m
U

⊗ D[ÿ]
)

−
(

Div
(

�P
�D�

)∗)
(m
U

[�̈]
)

− �P
�D�

D
(m
U

[�̈]
)

− �P
�D�

(m
U

⊗ D[�̈]
)

+ 1
U2

{(

�2P
�F�F

)∗̄∗̆∗̃

((Ḟ∗)+ ⊗ m⊗ m)

+

∗
(

�2P
���F

)

(�̇m⊗ m) +
(

�2P
�D��F

)∗∗̆

((D�̇+)⊗ m⊗ m)}[ÿ]

+ 1
U2

{

− U �P
��

m +
(

�2P
�D��D�

)∗
∧
∗

((D�̇+)⊗ m⊗ m)
}

[�̈]

+ 1
U3

∗
(

�2P
�F�F

)

∗

(m⊗ m⊗ m⊗ [ÿ]⊗ [ÿ])

+ 1
U3

(

�P
�D��F

)∗

(m⊗ m⊗ m⊗ [ÿ][�̈]
)

+ 1
U3

(

�P
�D��D�

)

(m⊗ m⊗ m[�̈]2).

(69)
�U2

̇[

Div
(

�
a
�

�D�

)]

− �U2
̇[

�
a
�
��

]

+ �U2[(�′′ �̇) ⋅ �]

+ �U2[�′ ⋅ �̇] = −U[q̇] ⋅ m.

(70)

[�̇] = [ ̇̄�] + [ ̇Div �] =
[

��̄
�F

⋅ Ḟ∗ +
��̄
��

�̇ +
��̄
�D�

⋅ Ḋ�
]

+
[(

�2�
�F�F

Ḟ∗ +
�2�
�F��

�̇ +
�2�

�F�D�
D�̇

)

⋅ (∗(DF))
]

+
[

��
�F

⋅ (∗(DF))
]

+
[(

�2�
���F

Ḟ∗ +
�2�
����

�̇

+
�2�

���D�
D�̇

)

⋅ D�
]

+
[

��
��

⋅ D�̇
]

+
[(

�2 �
�D��F

Ḟ∗ +
�2�

�D���
�̇ +

�2�
�D��D�

D�̇
)

⋅ D(D�)
]

+
[

��
�D�

⋅ D(D�̇)
]

.

In Eq. (68), terms multiplying [y⃛] and [𝜃⃜] are those 
that in Eq. (63) multiply [ÿ] and [𝜃̈] . Also, as regards 
Eq. (71), from Eq. (51) we get S∗�� = �

a
�

�D�
 , so that 

� = ��S and

and

So, Eq. (64) can be rewritten as

Terms multiplying [ÿ] and 𝜃̈ in Eq. (73) are the same 
that in Eq. (71) multiply [y⃛] and [𝜃].

Define M and R as follows:

(71)

(∗( ��
�F

)

(m⊗ m)
)

⋅ [y⃛] +
(

��
�D�

⋅ (m⊗ m)
)

[�⃛] = U2 ��
�F

⋅ D
(m
U

⊗ [ÿ]
)

+ U2 ��
�F

⋅
(m
U

⊗ D[ÿ]
)

+ U2 ��
�D�

⋅ D
(m
U
[�̈]

)

+ U2 ��
�D�

⋅
(m
U

⊗ D[�̈]
)

+ U
{

��̄
�F

m +∗
(

�2�
�F�F

)

((Ḟ∗)+ ⊗ m⊗ m)

− 1
U

∗( �2�
�F�F

)

((∗(DF))+ ⊗ m) − 1
U

∗( �2�
�F��

)

(�̇m⊗ m)

− 1
U

∗( �2�
�F�D�

)

(D�̇+ ⊗ m⊗ m) +∗
(

�2�
���F

)

(D� ⊗ m)

+
(∗( �2�

�D��F

))∗

((D(D�))+ ⊗ m)} ⋅ [ÿ]

+ U{
��̄
�D�

⋅ m +

∗
(

�2�
�F�D�

)

t
∗

⋅ ((∗(DF))+ ⊗ m) +
(

�2�
���D�

)∗

⋅ (D� ⊗ m) +
��
��

⋅ m − 1
U

�2�
�D��F

⋅ ((Ḟ∗)+ ⊗ m⊗ m) − 1
U

�2�
�D���

⋅ (�̇m⊗ m) − 1
U

�2�
�D��D�

⋅ ((D�̇)+ ⊗ m⊗ m) +
(

�2�
�D��D�

)

t
∗

⋅ ((D(D�))+ ⊗ m) + K
�U

(m ⋅ m)}[�̈] − 1
U

∗( �2�
�F�F

)∗

⋅ (m⊗ m⊗ m⊗ [ÿ]⊗ [ÿ]) −
(∗( �2�

�F�D�

))

⋅ (m⊗ m⊗ m⊗ [ÿ][�̈]) − 1
U

∗( �2�
�D��F

)

⋅ (m⊗ m⊗ m⊗ [ÿ][�̈]) − 1
U

(

�2�
�D��D�

)

⋅ (m⊗ m⊗ m[�̈]2).

(∗(
��

�F

))
=

(∗(
�

�F
(��S)

)
= ��

∗

�S

�F
,

��

�D�
=

�

�D�
(��S) = ��

�S

�D�
.

(72)
(∗(

𝜕�

𝜕F

)
(m⊗ m)

)
[ÿ] +

𝜕�

𝜕D𝜃
(m⊗ m)[𝜃̈] = 0



Meccanica	

1 3
Vol.: (0123456789)

From Eqs. (68) and (71), we get

and

The right-hand side term of Eq. (75) is the same in 
(66). Thus, we set

where � is the jump amplitude and r the correspond-
ing eigenvector. We multiply Eq. (68) by the left 
eigenvector rL and substitute [ÿ] with � rR , where rR is 
the right eigenvector of the same matrix in Eq. (66).

Also, by decomposing R and M into

where the explicit expressions of the above addenda 
are in “Appendix”, we then get

where

By substituting [𝜃̈] with its expression given by Eq. 
(65) and considering once again [ÿ] = 𝜎 r in the 
expressions of R1 and M1, we obtain a standard equa-
tion of Bernoulli’s form, namely

M =

(
𝜌

∧

� −
1

U2

∗(
𝜕P

𝜕F

)
(m⊗ m)

)
[y⃛] −

1

U2

𝜕P

𝜕D𝜃
(m⊗ m)[𝜃],

R =

(∗(
𝜕�

𝜕F

)
(m⊗ m)

)
⋅ [y⃛] +

𝜕�

𝜕D𝜃
⋅ (m⊗ m)[𝜃].

(73)
[�⃛] =

(

��
�D�

⋅ (m⊗ m)
)−1

R −
(

��
�D�

⋅ (m⊗ m)
)−1

(∗( ��
�F

)

(m⊗ m)
)

⋅ [y⃛]

(74)

−
(

��
�D�

⋅ (m⊗ m)
)−1

R +M =
(

�
∧

� − 1
U2

∗
(

�P
�F

)

(m⊗ m)

+
(

1
U2

�P
�D�

(m⊗ m)
)(

��
�D�

⋅ (m⊗ m)
)−1

(∗

(
��
�F

)(m⊗ m)
)

[y⃛])

[ÿ] = 𝜎 r,

(75)
R = R1 + R2 + R3 and M = M1 +M2 +M3,

�−1 D(rL ⋅ �m� rR �2) =
(

1
U2

�P
�D�

(m⊗ m)
)

(

��
�D�

⋅ (m⊗ m)
)−1

R1 +M1,

� =

∗
(

�P̄
�F

)

(m⊗ m) −
(

�P
�D�

(m⊗ m)
)

(

��
�D�

⋅ (m⊗ m)
)−1((∗

(
��
�F

)(m⊗ m)
))

.

with coefficients

and

far from being those obtained in the standard analysis 
of acceleration waves in simple thermoelastic media.

When the wavefront shape is constant so is J  . In 
this case we find a decaying-type solution given by 
the classical form

10 � Acceleration waves in a special composite

Consider a composite constituted by wire-type inclu-
sions of a Strontium titanate ceramic into a conducting 
matrix. Figure  3 depicts the circumstance in a sche-
matic way.

In this case � = p = f (�)� = f (�)e1 , where e1 is 
the direction along which the inclusions are aligned, 
so that D𝜈 = Dp = f �(𝜃)e1 ⊗ D𝜃 , with f �(�) ≠ 0 by 
assumption.

In the case of uniform temperature distribution by 
the formula above we have D� = 0 because D� = 0 . 
By allowing large strain we thus consider a free energy 
𝜓 = 𝜓̃(F, 𝜈, 𝜃) = 𝜓̃(F, 𝜃) given explicitly by

where G = e1 ⊗ e1 , � and � are positive constants, and 
∨ indicates selects the maximum between − log(detF) 
and 0; the last terms avoids the well-known physical 
incompatibility between convexity of � with respect 
to F and objectivity of the energy itself (see [52, Ch. 
11] for further expressions of polyconvex energies).

With these premises, S = 0 and also A = 0 , so that 
� = 0 . In other words, a uniform heating does not allow 
propagation of acceleration waves in the composite spe-
cific material considered in Fig. 3.

(76)( J �2)� = A J �2 − B J �3,

(77)
A ∶= rL{(

1

U2

𝜕P

𝜕D𝜃
(m⊗ m))(

𝜕�

𝜕D𝜃
⋅ (m⊗ m))−1R2 +M2}

(78)
B ∶= −rL{(

1

U2

𝜕P

𝜕D𝜃
(m⊗ m))(

𝜕�

𝜕D𝜃
⋅ (m⊗ m))−1R3 +M3}

(79)�(t) =
A

(
A

�0
− B) e

−
A

2
t
+ B

.

� =
1

2
�|F|2 + G ⋅ F� +

1

2
��2 + (− log(detF) ∨ 0),
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At variance, in the case of non-uniform heating, 
since D� ≠ 0 , we may choose an expression of the free 
energy 𝜓 = 𝜓̃(F, 𝜈,D𝜈, 𝜃) = 𝜓̃(F, 𝜃,D𝜃) given by

where � is a positive constant. Thus, along the path 
followed in the previous section we may check that 
generically A ≠ 0 , so that the propagation of accel-
eration waves is admissible.

11 � Additional remarks

Remark 1  A constraint of the type 𝜈 ∶= 𝜈̂(F, 𝜃) , 
with F the deformation gradient, implies second-
grade thermoelasticity (see [2] for the isothermal 
case). Thus, proving existence of a microstress which 
develop internal work on D� implies the one of a 
hyperstress developing internal work on DF. Analyz-
ing acceleration waves in this case is not a straight-
forward replica of what has been shown in the previ-
ous section. Indeed, reproducing the path followed so 
far, we would meet the occurrence of [y⃛] , beyond [𝜃̈] 
already met here, as an additional unknown. To man-
age it we could exploit the first law of thermodynam-
ics. The detailed analysis is not tackled here.

Remark 2  When � is a scalar or a pseudo-scalar 
taking values in an interval (0,  k), k > 0 , let us say, 
the procedure based on the external power invariance, 

� = 1
2
�|F|2 + G ⋅ F� + 1

2
��2

+ �f ′2(�)|F|2|D�|2 + (− log(detF) ∨ 0),

as adopted above to derive balance equations, does 
not work because A vanishes, since a rigidly rotat-
ing observer does change the perception of scalar or 
pseudo-scalar entities. To avoid the difficulty we need 
a request of covariance (meaning structure-invariance 
under diffeomorphism based changes of observers) 
for the second law of thermodynamics, written in 
terms of Clausius-Duhem inequality. This covariance 
principle has been introduced in [31] and analyzed 
in [36]. Such an approach, also, would eliminate the 
indeterminacy of z, which is at variance defined by 
the external power invariance to within an arbitrary 
element of kerA . 

Remark 3  A parametric analysis reveals how A, B, 
and the initial value �0 in (80) influence the decay of 
� (see also [43]). In summary, if A < 0 , B > 0 , and 
𝜎0 >

A

B
 , or, vice versa, both A and B are negative and 

𝜎0 >
A

B
 , the amplitude �0 exponentially decays to 0; 

see Fig.  4. If A > 0 and B𝜎0 > 0 , � reaches asymp-
totically the value A

B
 (Fig. 5). Finally, � blows up in a 

finite time tb if one of the following conditions occurs: 

1.	 A > 0 and B𝜎0 < 0;
2.	 A < 0 , B > 0 , and 𝜎0 <

A

B
;

3.	 A < 0 , B < 0 , and 𝜎0 >
A

B
.

For tb we have (see also [43])

(see Fig. 6).

tb ∶=
2

A
ln
(
1 −

A

�0B

)Fig. 3   Composite with Strontium titanate inclusions into a 
conducting matrix; the distance between neighboring inclu-
sions is magnified

Fig. 4   With A > −1 , B = 1 , and 𝜎
0
>

A

B
 , � decays asymptoti-

cally in time towards 0
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Appendix: Explicit expression of the addenda 
in (76)

R1 ∶=U2 𝜕�

𝜕F
⋅ D

(m
U

⊗ [ÿ]
)
+ U2 𝜕�

𝜕F
⋅

(m
U

⊗ D[ÿ]
)

+ U2 𝜕�

𝜕D𝜃
⋅ D

(m
U
[𝜃̈]

)
+ U2 𝜕�

𝜕D𝜃
⋅

(m
U

⊗ D[𝜃̈]
)
,

R2: =U
{

��̄
�F

m +
(∗( �2�

�F�F

))

(Ḟ∗)+ ⊗ m⊗ m

− 1
U

∗( �2�
�F�F

)

∗(DF))+ ⊗ m) − 1
U

∗( �2�
�F��

)

(�̇m⊗ m)

− 1
U

∗( �2�
�F�D�

)

(D�̇+ ⊗ m⊗ m) +
(∗( �2�

���F

))

(D� ⊗ m)

+
(∗( �2�

�D��F

)∗)

((D(D�))+ ⊗ m)
}

⋅ [ÿ]

+ U
{

��̄
�D�

⋅ m +

∗
(

�2�
�F�D�

)

t
∗

⋅ ((∗(DF))+ ⊗ m)

+
(

�2�
���D�

)∗

⋅ (D� ⊗ m) +
��
��

⋅ m

− 1
U

�2�
�D��F

⋅ ((Ḟ∗)+ ⊗ m⊗ m)

− 1
U

�2�
�D���

⋅ (�̇m⊗ m) − 1
U

�2�
�D��D�

⋅ ((D�̇)+ ⊗ m⊗ m)

+
(

�2�
�D��D�

)

t
∗

⋅ ((D(D�))+ ⊗ m)

+ �
�U

(m ⋅ m)}[�̈],

R3 ∶= −
1

U

∗
(

𝜕2�

𝜕F𝜕F

)∗

⋅ (m⊗ m⊗ m⊗ [ÿ]⊗ [ÿ])

−
1

U

∗
(

𝜕2�

𝜕F𝜕D𝜃

)
⋅ (m⊗ m⊗ m⊗ [ÿ][𝜃̈])

−
1

U

∗
(

𝜕2�

𝜕D𝜃𝜕F

)
⋅ (m⊗ m⊗ m⊗ [ÿ][𝜃̈])

−
1

U

(
𝜕2�

𝜕D𝜃𝜕D𝜃

)
⋅ (m⊗ m⊗ m[𝜃̈]2),

Fig. 5   If A > 0 and B𝜎
0
> 0 , � reaches asymptotically the 

value A
B

Fig. 6   Blow up behavior under different values of �
0
 ; the blow 

up instant corresponds to spikes

http://creativecommons.org/licenses/by/4.0/


	 Meccanica

1 3
Vol:. (1234567890)

References

	 1.	 Antman SS, Marlow RS (1991) Material constraints, 
Lagrange multipliers, and compatibility. Applica-
tions to rod and shell theories. Arch Ration Mech Anal 
116:257–299

	 2.	 Capriz G (1985) Continua with latent microstructure. 
Arch Ration Mech Anal 90:43–56

	 3.	 Capriz G (1989) Continua with microstructure. Springer 
Verlag, Berlin

	 4.	 Capriz G, Giovine P (2016) Hypocontinua. In: Albers B, 
Kuczma M (eds) Continuum media with microstructure 2. 
Springer Verlag, Berlin, pp 23–43

	 5.	 Capriz G, Giovine P (2017) Classes of ephemeral con-
tinua. Math Meth Appl Sci 43:1175–1196

	 6.	 Capriz G, Podio-Guidugli P (1984) Internal constraints, 
Appendix 3A, of Truesdell CA, Rational Thermodynam-
ics, 2nd edn. Springer-Verlag, New York, pp 159–170

	 7.	 Capriz G, Virga EG (1990) Interactions in general con-
tinua with microstructure. Arch Ration Mech Anal 
109:323–342

	 8.	 Capriz G, Virga EG (1994) On singular surfaces in the 
dynamics of continua with microstructure. Quart Appl 
Math 52:509–517

	 9.	 Chadwick P, Currie PK (1972) The propagation and 
growth of acceleration waves in heat-conducting elastic 
materials. Arch Ration Mech Anal 49:137–158

M1 ∶= −

(
Div

( ∗(
𝜕P

𝜕F

)∗)
)+
(m
U

⊗ [ÿ]
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