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Evaluation of UKF-Based Fusion Strategies
for Autonomous Underwater Vehicles

Multisensor Navigation
Alessandro Bucci , Matteo Franchi , Alessandro Ridolfi , Nicola Secciani , and Benedetto Allotta

Abstract—In the underwater domain, guaranteeing accurate
navigation for an autonomous underwater vehicle (AUV) is a com-
plex but fundamental task to be achieved. As a matter of fact, only
by ensuring a correct AUV localization, it is possible to accomplish
surveillance, monitoring, and inspection missions. Most of the navi-
gation filters for AUVs are based on Bayesian estimators, such as the
Kalman filter, the extended Kalman filter (EKF), or the unscented
Kalman filter (UKF), and employ different instruments, including
the Doppler velocity log to perform the localization task. Recently,
the use of payload sensors, such as cameras or forward-looking
SONARs, in navigation-aiding has arisen as an interesting research
field in the attempt to reduce the localization error drift. Such
sensors, if used simultaneously, can provide multiple observations,
which can be combined in a Kalman filtering framework to increase
navigation robustness against noise sources. Navigation techniques
that employ multiple devices can provide a high improvement
of the estimation quality, but they can also cause an increase in
terms of computational load. Consequently, strategies that can
represent a tradeoff between these two conflicting goals have to be
investigated. In this contribution, two different frameworks have
been implemented and compared: on the one hand, a centralized
iterative UKF-based navigation approach and, on the other hand, a
sensor fusion framework with parallel local UKFs. The sequential
(or iterated) UKF, where the correction step is iteratively performed
for each available measurement, belongs to the first class of filters.
The federated and the consensus-based decentralized UKFs can
be categorized as the second class and they differ in the employed
fusion strategy. Experimental navigation data obtained during sea
trials performed at Vulcano Island, Messina, Italy has been used
for offline validation. The results analysis focuses on both the
navigation quality and the filter robustness against the reduction
of the available measurements.

Index Terms—Autonomous underwater vehicles (AUVs),
Kalman filtering (KF), marine robotics, sensor fusion, underwater
navigation.

I. INTRODUCTION

S INCE the beginning of marine robotics research, the de-
velopment of navigation techniques capable of providing
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accurate underwater localization and navigation for autonomous
underwater vehicles (AUVs) has been a challenge. The prin-
cipal difficulty stems from the unavailability of the traditional
global localization sensors, such as the global positioning system
(GPS), due to the reduced propagation of radio frequency signals
in the underwater domain. To reach a satisfactory navigation ac-
curacy, most of the navigation filters for AUVs exploit Bayesian
estimators, such as the Kalman filter (KF) or its variants applied
to nonlinear systems, as the extended Kalman filter (EKF) [1]
or the unscented Kalman filter (UKF) [2].

As reported in [3], three different categories can be defined to
collect the navigation and localization techniques, as the dead
reckoning (DR) strategies, the transponder-based strategies, or
the geophysical data based strategies. DR-based estimation re-
quires employing accurate and expensive sensors, as the Doppler
velocity log (DVL), to guarantee a precise position estimation.
In acoustic transponders based approaches, the employment of
long baseline and ultrashort baseline, located in a fixed known
position, is required to find the AUV position correctly. Further-
more, period resurfacing operations are commonly performed
to obtain a GPS fix and correct the navigation drift. Geophysical
data based algorithms work on optical, acoustic, and/or magnetic
information extrapolated from the surrounding environment.
Usually, the strategies based on exteroceptive sensors, such as
optical cameras or SONARs, employ simultaneous localization
and mapping (SLAM) or payload-based odometry approaches
to increase the estimation quality.

In industrial and research applications, the most exploited
underwater navigation approaches are based on the use of a DVL
and an attitude heading reference system, which are respectively
employed for the linear and the angular component of the
pose vector estimation. The DVL sensor provides, when the
bottom-lock is possible, highly precise linear velocity estimates.
When exploiting this sensor, the measurement error sources are
related to external noises such as the presence of bubbles or other
reflecting objects. In the case where the DVL is not present or
cannot provide the correct linear speed measurements, sensors
like optical cameras or forward-looking SONARs (FLSs), which
are usually employed for the surrounding environment inspec-
tion, can be used for navigation aiding. In particular, due to
the decreasing cost of optical cameras, visual odometry (VO)
strategies have been widely investigated as a replacement or
support to the DVL in underwater navigation. However, since
the water reduces the camera field of view and complicates
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identifying good reliable image features, a strongly textured
environment is required to apply VO strategies effectively. FLSs,
which have been often discarded for navigation purposes, have
recently emerged as a novel instrument for acoustic-inertial
based solutions for its robustness against the underwater en-
vironment. As a matter of fact, FLSs can penetrate water for
long ranges in almost every scenario, but, on the contrary,
the acquired images are impaired by a superimposed noise,
which heavily reduces the image resolution. Consequently, the
navigation system robustness depends on various factors, such
as the surrounding environment properties or the presence of
noise sources, which strongly influence the decision about the
most suitable navigation strategy.

By following the considerations reported in [4], in the context
of the presented work, the presented sensor fusion strategies
have been combined with an UKF-based navigation framework.
The main advantages of the UKF approach against the EKF
one can be easily summarized. The UKF approach does not
require Jacobians’ calculation and is a derivative-free algorithm,
which can be useful with nondifferentiable AUV models where
a combination of sign functions and jump discontinuities is
employed. The main advantages of the UKF approach against the
EKF one can be easily summarized. The UKF approach does not
require Jacobians’ calculation. Moreover, it is a derivative-free
algorithm, which can be useful with nondifferentiable AUV
models where a combination of sign functions and jump dis-
continuities are employed. Last, concerning AUV localization,
it has been employed in the authors’ previous works [5] and [6],
showing superiority with respect to the EKF. When the DVL,
FLS, and camera are operative, multiple speed measurements are
available as input to the UKF, thanks to DVL-based acquired
data and the FLS and camera-based odometries. A standard
centralized UKF may result in a high computational load when
all the available measurements are passed centrally in one step
to generate an estimate and its covariance matrix. Furthermore,
the lack of robustness when there are spurious data in any sensor
is negatively influenced by a central Kalman filtering strategy.

Possible alternative strategies have been studied to overcome
these disadvantages and their results are compared in the present
work. The proposed solutions follow two different ways to reach
a compromise between combination of the acquired data, time
consumption, and measurement outlier rejection. While on one
side, an iterative filtering approach is performed, where the
correction step is sequentially executed for each speed mea-
surement, on the other, a parallel filtering strategy, composed of
several local filters and one master filter dedicated to the fusion
algorithm, is applied. For the latter, it is necessary to highlight
that, depending on the used fusion criterion and the master algo-
rithm framework design, the available parallel filtering strategies
can be numerous and can drive different results.

Three different approaches will be described in depth in the
present work, and their navigation results will be compared.
One iterative filtering strategy, which, in the following, will be
referred to as sequential UKF, will be compared with two parallel
filtering strategies, the federated UKF and the consensus-based
decentralized UKF, which differ from each other due to the
employed fusion strategy.

The main contributions of the present work concern the devel-
opment and comparison of UKF-based sensor fusion strategies
for AUV navigation to overcome the limitation of the position
estimation filter described in [5] and [7]. As reported in Sec-
tion V, the employed sensor fusion strategies have been largely
studied from a theoretical point of view and their stability and
convergence have been proved. However, their exploitation for
accurate underwater navigation is still a novel field of research.
To the authors’ best knowledge, these strategies have been tested
with simulations and their properties have been outlined focus-
ing on linear systems and linear KF. Instead, in the context of this
work, the proposed solutions have been adapted to be combined
with an UKF framework and the navigation results have been
obtained by testing the algorithms with prerecorded real data.
The offline validation of the developed sensor fusion strategies
has been performed by employing experimental navigation and
payload data recorded in Vulcano Island, Messina, Italy in June
2019 in the context of the European project EUMarineRobots
(EUMR) [8].

The rest of this article is organized as follows. The state of the
art in multisensor underwater navigation and Kalman filtering
sensor fusion techniques are detailed in Section II-B, whereas
Section III is dedicated to the employed strategies for speed
measurement acquisition and computation in the context of this
work. Section IV outlines the navigation filter properties. Sec-
tion V treats the proposed navigation strategies, whereas offline
validation and results comparison are reported in Section VII.
Finally, Section VIII concludes this article.

II. MAIN CONTRIBUTION AND RELATED WORKS

A. Main Contributions

This article investigates the employment of different sensor
fusion strategies for speed measurement fusion in the AUV
navigation context. In particular, in the marine robotics realm,
handling redundant observations (e.g., speed information from
different sources) still represents an open problem for AUV
navigation applications. Concerning the above-mentioned field,
to the authors’ best knowledge, conclusive studies are not present
yet. Indeed, for the majority of the Bayesian estimators em-
ployed (e.g., EKF or UKF), a measurement vector containing all
the available data provided by the on-board sensors might not
be the better strategy. In fact, increasing the measurement vector
dimension causes the rise of the computational time requested
for each filter iteration due to its effect on the filter matrices’
size to be inverted and multiplied between each other [9], [10].
In this context, centralized and decentralized fusion strategies
have been developed and analyzed (both in terms of localization
accuracy and computational burden). In particular, by means
of offline validation with real data acquired with an AUV,
sequential (or iterated), federated, and consensus-based decen-
tralized techniques have been subject of investigation and have
been compared with more traditional strategies, as a centralized
standard UKF and the UKF proposed in [5] and [7], which will
be referred in the following as reduced UKF. In the context of the
presented work, the proposed sensor fusion strategies have been
combined with an UKF-based navigation framework. Standard
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UKF for AUVs navigation has been already accounted in the
authors’ previous works [5] and [6]. In conclusion, the main
contributions of this article are as follows:

1) the simultaneous employment of different sensing devices
for AUV speed measurement, namely a DVL, an optical
camera, and an FLS;

2) to the authors’ best knowledge, a first comparative study
among different data fusion techniques (both centralized
and decentralized) for AUV navigation in the presence of
redundant speed observations;

3) an offline validation of the hereby presented techniques
by means of navigation data acquired during autonomous
missions performed with an AUV.

B. Related Works

AUV localization is a challenging task due to all the dif-
ficulties introduced by the underwater environment, such as
the lack of GPS and the reduced visibility. Consequently, the
development of sensor fusion strategies, capable of exploiting
all the measurement information acquired by the AUV during
its mission, has been an active and interesting research field.
Focusing on underwater navigation applications, visual inertial
odometry (VIO) strategies have been appropriately investigated
as a combination of inertial and optical data to overcome both
sensors’ limitations. This choice can be highly fruitful, thanks to
the complementarity of the employed sensor properties. While
cameras suffer highly rapid movements and textureless envi-
ronments, inertial sensors, such as the inertial measurement
units (IMUs), are independent of the observed scene and can
be a useful support to the image-based navigation data. VIO
strategies for underwater navigation have been addressed in [11]
and [12].

Following the approaches introduced in the VIO field, acous-
tic inertial odometry has been explored in the last few years
but still is in a more embryonic stage; some promising results
can be found in [13]–[15], whereas structure from motion and
SLAM have been tackled in [16] and [17], respectively. Finally, a
SONAR visual inertial SLAM strategy has been proposed in [18]
and [19].

To the authors’ best knowledge, in the AUV navigation con-
text, fusion strategy for redundant information as in the presence
of acoustic, optical, and inertial sensors is still a niche and open
problem; preliminary works (outside the SLAM realm) can be
found in [20]. Broadly speaking, in the presence of redundant in-
formation, a first categorization can be made between centralized
and decentralized methods. Historically, the former solutions
represent the standard approach, and they advocate the usage of
a single central filter devoted to estimation. A thorough review
goes beyond the goal of this work, but a detailed discussion can
be found [21]. As far as this work is concerned, the sequential
(iterated) [22] and both the standard and the reduced UKFs have
been subject of investigation. When compared with centralized
solutions, decentralized methods significantly reduce the com-
putational effort and increase the fault-tolerant capability of the
overall navigation system [23]–[26]. Within the decentralized
filtering realm, the federated filters introduced by Carlson [23]

and [24] represent one of the most famous solutions. Besides,
information Kalman filters are fused in a central processor
unit in [27] and [28]. Moreover, consensus-based works [29]
and [30], which typically involve a sensor network constituting
several AUV platforms [31], [32], are considered here in a single
vehicle context.

III. NAVIGATION STRATEGIES FOR AUVS

A. DVL-Based Dead Reckoning

Standard DR strategies usually estimate the AUV position by
integrating the linear velocity measured through highly accurate
instruments, such as DVLs. Assuming a discrete-time system,
the mathematical equation that can be extracted from the previ-
ously introduced statement is reported in the following:

η1,k = η1,k−1 +Rn
b (η2)ν1,k−1ΔT (1)

where η1,k and η1,k−1 are, respectively, the current and pre-
vious position estimation output of the DR navigation system
expressed in the North-East-down (NED) reference system,
Rn

b (η2) represents the rotation matrix between the NED and
the body-fixed frames, ν1,k−1 contains the body-fixed frame
linear velocities, and ΔT is the fixed sampling time.

B. Visual Odometry

VO is a navigation technique that employs one or more
cameras rigidly attached to a vehicle for its motion estimation.
Briefly, a VO algorithm updates the estimated vehicle position
by analyzing the induced motion on the images acquired from
the cameras. For its nature, a VO strategy works well only if
particular conditions are verified, such as a scene uniformly
illuminated and with a high number of features. As input for
the UKF algorithms, it has been used the linear speed computed
through the mono (i.e., single camera employed) VO strategy
proposed in [33], where complete information can be found. For
the sake of this study, the algorithm returns the transformation
matrix reconstructed from the displacements of their features,
which can be employed, supposing the absolute image acquisi-
tion times are known, to compute the body speed estimation.

C. Acoustic Odometry

FLS-based DR strategies have been carefully investigated.
These strategies, also called acoustic odometry (AO), can be
defined as a navigation technique that employs an FLS rigidly
attached to a vehicle for motion estimation. The authors’ previ-
ous work is thoroughly detailed in [14], [15], and [34]. For the
sake of this study, the algorithm is able to compute the FLS-based
body speed estimation.

IV. NAVIGATION FILTER FRAMEWORK

The complete pose estimation filter works by following two
parallel structures, where the first part, employed for attitude
estimation, is employed as input in the second part, which
is dedicated to position estimation. In particular, the attitude
estimation filter is based on a compass, IMU, and fibre optic
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gyroscope (FOG) data, and it estimates the roll, pitch, and yaw
angles and their derivatives to send the orientation values to
the filter in charge of estimating the vehicle position. Diving
deep into the details is beyond the purpose of this article;
further information about the attitude estimation filter can be
found in [35] and [36]. A UKF-based estimator with a mixed
kinematic-dynamic vehicle model is employed as core of the po-
sition estimation filter. In particular, by taking into account only
the longitudinal dynamics, the processing unit’s computational
cost is strongly reduced. An exhaustive analysis of the position
estimation filter is detailed in [5] and [7]. Before describing
the proposed sensor fusion strategies, it is necessary to briefly
define the employed AUV state–space model and the sensor
model equations.

A. AUV State–Space Model

The kinematic-dynamic model formulation is based on the
standard notation from the Society of Naval Architects and
Marine Engineering [37], where the state of the AUV, which
is considered as a rigid body, is represented using two reference
systems:

1) a local Earth-fixed reference frame, with axes pointing to
North, East, and down (NED frame);

2) a body reference frame with axes’ origin located on the
vehicle center of gravity (body frame).

The AUV pose can be reported with the vector
η = [ nη�

1 η�
2 ]�, where nη1 is the AUV position with respect

to the NED frame and η2 is its orientation expressed in terms of
roll, pitch, and yaw Euler angles. The vector ν = [ bν�

1
bν�

2 ]�

contains the linear and angular velocities of the AUV expressed
in the body-fixed reference frame. The AUV kinematic law is
reported in the following equation:

η̇ = J(η)ν (2)

with

J(η) =

[
Rn

b (η2) 03×3

03×3 T b
n(η2)

]
(3)

where Rn
b (η2) is the rotation matrix between the body and the

NED frame and T b
n(η2) is the Euler matrix.

According to [37], the AUV complete dynamic model is

M ν̇ + C(ν)ν +D(ν)ν + g(η) = τ (ν,u) (4)

whereM is the mass matrix,C(ν) is the Coriolis and centrifugal
matrix, D(ν) is the damping matrix, the vector g(η) contains
the buoyancy and gravity effects, and τ (ν,u) takes into account
the thrust action on the AUV, which is dependent on the velocity
ν and the rotational speed of each motor u ∈ Rm, where m is
the number of motors. According to the assumptions exploited
in [5], the dynamic model presented in (4) can be strongly
simplified, leading to the following equation for the dynamics
along the surge axis:

mν̇1x = τ1x(ν,u) +Dx(ν) (5)

where τ1x(ν,u) is the component of τ (ν,u) along the surge-
axis of the vehicle, m is the AUV dry mass, and Dx(ν) is the

damping term along the surge-axis. In particular, Dx(ν) can be
represented as follows:

Dx(ν) = −CDν21xsgn(ν1x) (6)

where CD is the surge-axis drag coefficient that depends on the
parameters involved in the longitudinal drag.

By following the previously introduced notation, the
kinematic-dynamic model is described with the following state
variables:

x =
[
nη�

1
bν�

1

]�
(7)

with x ∈ R6. Considering the discrete state evolution, a mixed
kinematic-dynamic model is employed to describe the AUV
behavior and it can be represented as reported in the following:[

nη1
bν1

]
k

=

[
nη1
bν1

]
k−1

+ΔT

⎡
⎢⎢⎣

Rn
b ((η2)k−1)(

bν1)k−1
τ1x(νk−1,uk−1)

m − CDν2
1xsgn(ν1x)
m

0
0

⎤
⎥⎥⎦+wk

(8)

where k is the current iteration step, ΔT is the fixed sampling
time of the filter, and wk is the additive process noise (assumed
zero-mean Gaussian white noise).

B. Sensor Modeling

The position filter can use GPS fixes (available before the
vehicle dives or during resurfacings) depth measurements from
a depth sensor, as well as linear speed estimations which can be
provided from multiple sensors, as the DVL, the FLS through AO
strategies and the camera trough VO approaches. Considering
that this work’s focus is on the redundant velocity measurements,
only the noise sources that affect the sensors involved in linear
speed measurements will be described in the follows.

1) A DVL measurement can be modeled as in the following
equation:

bvDVL = bν1 + bDVL + εDVL (9)

where the measured velocity bvDVL is the sum of the true
body-fixed velocity of the sensor bias bDVL and of the
measurement noise εDVL.

2) A 2-D FLS can provide a series of azimuth θ and range
R measurements with a scalar value that represents the
intensity of the returned echo. Considering a scene point
[X Y Z ]�, the imaging projection model for an FLS
(Fig. 1), the following equation can be obtained:[

mR
mθ

]
=

[
R
θ

]
+ b̃FLS + ε̃FLS

=

[√
X2 + Y 2 + Z2

tan−1( YX )

]
+ b̃FLS + ε̃FLS (10)

where mR is the measured range andR is its real value, mθ
is the measured azimuth and θ is its real value, and b̃FLS

and ε̃FLS are, respectively, the additional bias term and
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Fig. 1. FLS imaging model.

Fig. 2. Camera projection model.

the measurement noise for both the range and the azimuth
angle. Considering that the FLS is used to obtain linear
speed estimations and that it is not easy to predict the final
noise statistics, a model with a measured value that is the
sum of a true one, a bias term, and a noise can be adopted

bvFLS = bν1 + bFLS + εFLS (11)

where the measured velocity bvFLS is assumed to be the
sum of the true value bν1 of the bias bFLS and of the
measurement noise εFLS.

3) A monocular camera can provide a 2-D image, where,
to each pixel located in [x y ]� on the image plane, it
is possible to associate a scalar value that represents the
lighting value. Considering a scene point [X Y Z ]�, the
pinhole camera projection model (Fig. 2) with focal length
f , the following equation can be retrieved:[

mx
my

]
=

[
x
y

]
+ b̃CAM + ε̃CAM

=
f

Z

[
X
Y

]
+ b̃CAM + ε̃CAM (12)

where [mx my ]� is the measured pixel position and
[x y ]� is its real value, and b̃CAM and ε̃CAM are, respec-
tively, the additional bias term and the measurement noise
for the x and y positions. Considering that the camera
is used to obtain linear speed estimations and that it is
convenient to standardize the noise modeling, a model

Fig. 3. Framework of the existing navigation filter employed by the AUVs
developed by the Department of Industrial Engineering of the University of
Florence [5], [7].

with a measured value that is the sum of a true one, a bias
term, and a noise can be employed

bvCAM = bν1 + bCAM + εCAM (13)

where the measured velocity bvCAM is assumed to be the
sum of the true value bν1, of the bias bCAM, and of the
measurement noise εCAM.

At the kth instant, the measurement vector yk ∈ R5 is

yk =
[
(nPGPS)

� dnDS (bvDVL)
� ∨ (bvFLS)

� ∨ (bvCAM)�
]�
k

(14)
where nPGPS is the position in the NED frame obtained with the
GPS and dnDS is the measured depth. As explained in Section III,
acoustic and visual (camera is configured as bottom-looking)
odometry provides a 2-D speed estimation vector, which be-
longs to the xy-plane of the body reference frame. To guarantee
uniformity, only the body-fixed frame surge and sway velocities
provided by the DVL are taken into account for the sensor fusion
approaches. For the sake of completeness, it is necessary to
highlight that the depth may be independently estimated using
the DVL itself or a distinct depth sensor. In the context of this
work, since the current navigation system exploits a depth sensor
to estimate the depth, the proposed algorithms take into account
just the AUV motion along the xy-plane. In conclusion, the
measurement equation can be expressed as follows:

yk = Hkxk + lk (15)

where matrix Hk is time-variant and it contains only 1 or 0
elements according to the presence of the corresponding mea-
surement at the current iteration time and

lk =
[
(εGPS)

� εDS (εDVL)
� ∨ (εFLS)

� ∨ (εCAM)�
]�
k

(16)

where εGPS is the error introduced by the GPS accuracy and
εDS is the depth sensor noise. Several speed measurements can
be discarded by following this framework due to their redun-
dancy at each filter iteration. As shown in (14), only one speed
measurement is employed in the vector yk and, if multiple
ones are available, only one of them is chosen by following
the chronological acquisition order (Fig. 3). As a matter of
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Fig. 4. Framework of the navigation filter, where the modification introduced
by the proposed sequential UKF can be noticed in the position estimation filter.

fact, measurement redundancy is not handled and every new
speed measurement, regardless of the sensor that bought it, is
overwritten on the previous one. This approach can cause the
loss of helpful information and, consequently, a growth of the
uncertainty on the AUV state knowledge, which results in an
increase of the covariance matrix.

V. FILTERING STRATEGIES

The presented work’s main contribution is the evaluation and
comparison of the possible strategies for speed measurements
fusion in an UKF-based navigation system. Handling several
available measurements can be done by following multiple ways,
but, necessarily, some of them are not compliant for robotics
application, due to the limitations imposed by the required
computational cost that compromise the real-time action. As
a matter of fact, a standard UKF filter with a measurement
vector containing all the available data provided by the on-board
sensors is not the better strategy to be followed. Increasing the
measurement vector dimension causes the rise of the computa-
tional time requested for each filter iteration due to its effect on
the filter matrices’ size to be inverted and multiplied between
each other [9].

The first proposed solution to overcome this issue is an itera-
tive filtering strategy. While the prediction step is not modified
by the iterative approach, the correction step is performed one
or more times depending on the available measurements. This
approach is desirable when a tradeoff between the computational
load and the reduction of discarded measurements is required.
This approach will be accurately described in Section V-A,
where the sequential UKF strategy is presented (Fig. 4).

The second proposed solution is a parallel filtering strategy.
The position estimation filter is divided into two separate struc-
tures: The first one is a group of local filters, where each of
them is dedicated to each single speed measurement sources,
and the second one is a master filter, which deals with the fusion
of the estimates and covariances provided by the local filters
to compute as output a global optimal estimate and covariance.
This approach guarantees, on the one hand, that all the acquired
or computed speed measurements are employed and, on the

Fig. 5. Framework of the navigation filter, where the modification introduced
by the proposed federated UKF can be noticed in the position estimation filter.

Fig. 6. Framework of the navigation filter, where the modification introduced
by the proposed consensus-based decentralized UKF can be noticed in the
position estimation filter.

other hand, that the local estimates and covariances can be fused
into a global estimate and covariance according to a chosen
criterion imposed by the master filter. To guarantee the local
filter parallelism and to avoid that one of them diverges due to
the lack of measures, a reset function is always applied at the end
of each master filter iteration. The reset procedure guarantees
that the local filters’ a priori estimates and covariances are
accorded to the master filter a posteriori estimate and covariance,
and it is necessary for the filter convergence. This approach
will be deeply analyzed in the following sections, where the
federated and the decentralized UKF strategies are explained.
Even the global behavior of these strategies is similar; the in-
ternal functioning is markedly different. While, in the federated
UKF approach (Section V-B), the state estimations are fused
and weighted through the state covariances, in the decentralized
UKF (Section V-C), the state estimations and covariances are
iteratively forced to converge to a common value depending on
the accordance between each other (Figs. 5 and 6).

For the sake of completeness, even the correction step in the
sequential UKF is iteratively performed N times, where N is
equal to the available velocity measurements, and all the data
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TABLE I
SUMMARY OF THE MAIN PROPERTIES OF THE FILTERS, WHICH WILL BE ANALYZED AND COMPARED

The letter C stands for centralized strategy, and the letter D stands for decentralized strategy.

coming from the sensors are provided as input directly into a
single filter. This approach is usually referred to as centralized
Kalman filtering. On the contrary, the federated UKF, as the
decentralized UKF, is a decentralized KF, where the global
filtering job is divided among a bank of subfilters, each of which
is operating on a separate subset of the complete measurement
suite. In both the federated and the decentralized UKFs, the
following four fundamental assumptions are taken into account
for the filter framework development.

1) The state vector x is the same for all local filters and the
master filter.

2) There is no information sharing among the local filters.
3) The errors in each measurement vector are mutually uncor-

related, and, thus, the global matrix R is block diagonal.
4) None of the measurement vectors are fed to the master

filter directly.
It is necessary to note that there are no constraints on the

dimensionality of each measurement vector passed to the local
filters. This missing constraint is very helpful in a filter for
underwater navigation. The measurement’s availability is not
guaranteed at each iteration due to unpredictable external con-
ditions, such as bubbles, an untextured environment, or acoustic
noise. The main properties of the analyzed filters, which will
be described in the following subsections, are summarized in
Table I.

A. Sequential UKF

The sequential (or iterated) UKF approach aims to minimize
the dimension of the innovation covariance matrix. This can

be an important advantage for applications where the compu-
tational load is limited by the available hardware, such as in
mobile underwater robotics, since such matrix is inverted during
every correction step. By considering the measurement (15) and
supposing that all the measurements (provided by GPS, depth
sensor, DVL, FLS, and camera) are available, the measurement
vectoryk can be expressed as a vector belonging to the R9 space.
Suppose that instead of employing the entire measurement
vector yk ∈ R9, Nm measurement vectors y(i)

k ∈ {R1,R2} are
passed to the filter, whereNm is the number of the available mea-
surements, i = 1, 2, . . ., Nm and k is the current iteration step.
The measurement vectors that are compared are the following:

yk=
[
(nPGPS)

� dnDS (
bvDVL)

� (bvFLS)
� (bvCAM)�

]�
k

∈ R9

(17)

y
(i)
k =

[
(nPGPS)

�∨ dnDS∨(bvDVL)
� ∨(bvFLS)

� ∨(bvCAM)�
]�
k
.

(18)

The employed symbols have been defined in the previous sec-
tions. Instead of processing all the measurements at time k as a
greater dimension single vector, a KF that can elaborate smaller
dimension multiple vectors has been implemented.

Turning to the filter framework, it is necessary to underline
that the sequential UKF prediction step is performed as in
the standard UKF. The main changes can be observed in the
correction stage, where the on-board sensors’ measurements are
employed. As for the measurement vector y(i)

k , further in this

section, the notation reported here will be employed: x̂(i)
k|k is

the optimal state estimate after the ith measurement has been
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Fig. 7. Flowchart of the proposed sequential UKF.

processed at time k and P
(i)
k|k is the correspondent covariance

matrix. From these definitions, it is possible to retrieve that
the following equalities can be employed for correction step
initialization:

x̂
(0)
k|k−1 = x̂k|k−1

P
(0)
k|k−1 = Pk|k−1 (19)

where x̂(0)
k|k−1 is the estimate after zero measurements have been

processed and P
(0)
k|k−1 is its covariance matrix. The estimate x̂(i)

k|k
and the covariance P

(i)
k|k are computed by using the traditional

UKF correction equations, which are repeated Nm times. The
updated estimate and covariance after each iteration are em-
ployed as initialization for the subsequent one. After all Nm

measurement vectors are processed, the corrected estimate and
covariance can be retrieved as follows:

x̂k|k = x̂
(Nm)
k|k

Pk|k = P
(Nm)
k|k . (20)

The sequential UKF filter is summarized in Algorithm 1 and
Fig. 7.

B. Federated UKF

The federated UKF scheme employs the principle of informa-
tion sharing among the local filters handled by the master filter.
As introduced before, the federated UKF approach is based on
a double-step data processing architecture, in which a master
filter subsequently combines the outputs of the sensor-related
local filters. In the federated UKF approach, the ith local filter is
assumed to implement the full-order state vector and, at step k,
is assumed to have the availability of its respective prior estimate
x̂i,k|k−1 and its associated error covariance Pi,k|k−1. The input
measurement vector provided to the ith filter at time k is yi,k,
and, as explained in (21), the measurement equation of the local

filter is

yi,k = Hi,kxk + li,k (21)

where li,k is a zero-mean random variable with covariance
Ri,k. By assuming that the local filters do not have access
to each others’ measurements, they form their respective cor-
rected estimates and covariances according to the traditional
UKF equations. It is important to note that the local estimates
are optimal for the local provided measurements, but not with
respect to all the available measurements, due to the local filter
independence hypothesis.

Turning the attention to the master filter, which is an UKF
dedicated to the computation of an optimal global estimate of
the state vector x, the following notation is employed: x̂m,k|k−1

is the optimal estimate of x conditioned on all the measurement
vectors provided to the local filters up to but not including yi,k,
and Pm,k|k−1 is the associated covariance matrix. The optimal
global estimate and the corresponding error covariance, which
are reported in the information form of the KF, can be retrieved
as follows:

P−1
m,k|k = P−1

m,k|k−1 +

N∑
i=1

(
H�

i,kRi,kHi,k

)
(22)

x̂m,k|k = Pm,k|k

(
P−1
m,k|k−1x̂m,k|k−1 +

N∑
i=1

(
H�

i,kRi,kyi,k

))

(23)

where the incorrelation of the measurement vectors’ hypothesis
is employed. However, (22) and (23) have to be modified in
light of one of the master filter properties, which implies that
the master filter does not have direct access to the measurement
vectorsyi,k. As a consequence, (22) and (23) have to be rewritten
in terms of the local filter estimates and covariances. It results
that

P−1
m,k|k = P−1

m,k|k−1 +
N∑
i=1

(
P−1
i,k|k − P−1

i,k|k−1

)
(24)

x̂m,k|k = Pm,k|k

(
P−1
m,k|k−1x̂m,k|k−1

+

N∑
i=1

(
P−1
i,k|kx̂i,k|k − P−1

i,k|k−1x̂i,k|k−1

))
.

(25)

The federated UKF filter is summarized in Algorithm 2 and
Fig. 8, where the correction step is performed by following the
information Kalman filtering approach, which is based on the
definition of the information matrix Ωm,k|k = P−1

m,k|k and the

vector φ̂m,k|k = P−1
m,k|kx̂m,k|k.

A reset procedure is applied to guarantee the information
transfer from the master filter to the local filters. At the end
of each iteration, the local filter estimates and covariances are
updated with the global estimate and covariance. This last step
is performed by using the following equations:

x̂i,k|k = x̂m,k|k (26)
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Fig. 8. Flowchart of the proposed federated UKF.

Pi,k|k = γiPm,k|k (27)

for i = 1, 2, . . ., N and with γi such that
∑N

i=1 γ
−1
i = 1. As no

information to weigh the local filters are available, the γi factors
have been set equal for all the local filters [38]. As the local filters
can do their own local projections and repeat the cycle at step

k + 1, the master filter projects the global estimate and covari-
ance to obtain the a priori information for the following iter-
ation. Thus, the multiple filters’ architecture permits complete
autonomy of local filters and it yields to local optimal estimates
with respect to the available local measurements. Furthermore,
the master filter achieves optimality in the global estimate. This
solution permits to maintain the independence of the local filters
between each other and, at the same time, to achieve the global
optimal solution.

C. Consensus-Based Decentralized UKF

Distributed Kalman filtering algorithms are generally em-
ployed for sensor networks, where each node can share the infor-
mation flow only with its neighbors on the network. Distributed
Kalman filtering strategies for fully connected sensor network,
or consensus-based decentralized Kalman filtering strategies,
involve state estimation using a set of local KFs that communi-
cate with all other nodes. The distributed and decentralized KFs
generally use a static or dynamic consensus algorithm, which
permits the fusion of estimate and covariance data obtained
by each node. The distributed filtering theory, which has been
largely employed for multiagent system applications, has been
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adapted here to work with a sensor network composed of the
sensors devoted to speed measurement.

Within the consensus-based decentralized KF approach, the
information form of a single central filter for a sensor network
observing a process (i.e., the AUV localization process) boils
down to a proper number of local filters that collectively cal-
culate the same state estimate. The sensor network dedicated
to the speed measurement can be represented as a simple fully
connected triangular graphG(N , E), whereN = {DVL,CAM,
FLS} is the node set composed of the DVL, the camera, and
the FLS and E = {{DVL,CAM}, {DVL,FLS}, {CAM,FLS}}
is the edge set. In the rest of this subsection, the generic edge
that connects the ith and the jth sensor, chosen from the set
composed of the DVL, the FLS, and the camera, will be referred
as {i, j}, where {i, j} ∈ E , i ∈ N and j ∈ N . The employed
consensus algorithm is reported in the information form and is
based on the following discrete-time iterative equation:

φ̂
(t)

i,k|k = φ̂
(t−1)

i,k|k − ε
∑
j �=i

aij

(
φ̂

(t−1)

i,k|k − φ̂
(t−1)

j,k|k
)

(28)

Ω
(t)
i,k|k = Ω

(t−1)
i,k|k − ε

∑
j �=i

aij

(
Ω

(t−1)
i,k|k − Ω

(t−1)
j,k|k

)
(29)

where ε is the discretization step, which has to, necessarily, be
sufficiently reduced to guarantee the algorithm convergence, aij
is the consensus coefficient between each sensor couple {i, j},

and φ̂
(t)

i,k|k = P−1
i,k|kx̂i,k|k and Ωi,k|k = P−1

i,k|k are, respectively,
the information vector and the information matrix after the
correction step of the ith filter and after the tth iteration of the

consensus algorithm. Equations (28) and (29) can be manipu-
lated to obtain an equivalent structure, where the autonomous
and the consensus parts of the algorithm are highlighted:

φ̂
(t)

i,k|k =

⎛
⎝1−

∑
j �=i

εaij

⎞
⎠ φ̂

(t−1)

i,k|k +
∑
j �=i

εaijφ̂
(t−1)

j,k|k (30)

Ω
(t)
i,k|k =

⎛
⎝1−

∑
j �=i

εaij

⎞
⎠Ω

(t−1)
i,k|k +

∑
j �=i

εaijΩ
(t−1)
j,k|k . (31)

The discrete-time collective dynamics of the network driven by
(30) and (31) can be written as follows:

φ̂
(t)

k|k = Pφ̂
(t−1)

k|k (32)

Ω
(t)
k|k = PΩ

(t−1)
k|k (33)

with P = I − εL Perron matrix of a graph G with parameter ε,
whose component can be retrieved with

Pij =

{
1− ε

∑
j �=i aij , if i = j

εaij , if i �= j.
(34)

The matrix L is the weighted Laplacian matrix. The consensus
coefficient aij is a weight coefficient that is updated after each
consensus iteration, which has been designed to consider not
only the covariance matrix but also the accordance between each
local state estimation for the global one computation. Practically,
each aij coefficient is defined through the following equation:

aij =
1

1 + nij
(35)



BUCCI et al.: EVALUATION OF UKF-BASED FUSION STRATEGIES FOR AUVs MULTISENSOR NAVIGATION 11

with

nij = ‖x̂i − x̂j‖. (36)

It is immediate to note that the more the estimates x̂i and x̂j

are similar, more the coefficient aij is near to one, which is the
upper limit for the weight factor. The value of the coefficient
aij influences the estimate convergence to a common value, by
weighting more estimates with a reduced covariance and a high
consensus coefficient.

In the consensus-based decentralized UKF approach, as in the
federated UKF, the ith local filter state vector is full-order and,
at step k, is assumed to have the availability of its respective
corrected estimate x̂i,k|k and its associated error covariance
Pi,k|k, which are employed in the master filter. The input mea-
surement vector provided to the ith filter at time k is yi,k and the
measurement equation of the local filter is, as in the federated
UKF

yi,k = Hi,kxk + li,k (37)

where li,k is a zero mean random variable with covariance Ri,k.
Two stop criteria have been chosen for the consensus-based
decentralized UKF. The algorithm could work until:

1) it reaches a fixed maximum number of iterations Niter;
2) the mean distance between the state vector estimates pro-

vided by each node of the graph is lower than a fixed
threshold γ.

In the first case, while the global covariance matrix is retrieved
by computing the inverse matrix of the sum of all the local
information matrices, the global state estimate is retrieved by
computing a covariance-based weighted mean. Equations (38)
and (39) summarize the previous sentence

Pm,k|k =

(
N∑
i=1

P−1
i,k|k

)−1

(38)

x̂m,k|k = Pk|k

(
N∑
i=1

P−1
i,k|kx̂i,k|k

)
. (39)

In the second stop condition, which is the most frequent due
to the convergence speed of the consensus algorithm, the global
state estimate and its covariance matrix can be set equal to one of
the correspondent values taken from one local filter. The chosen
local filter employed during this step is not important because all
the local estimates and covariances converged to the same values
under a threshold, whose value has been a priori set with the
aim of guaranteeing at least a fifth-order convergence. The reset
procedure is not necessary for the consensus-based UKF. The
consensus algorithm guarantees the convergence of all the local
estimates and covariances, which are employed as initialization
data for the following step. The consensus-based decentralized
UKF filter is summarized in Algorithm 3 and Fig. 9.

An example of the consensus step application is provided,
with the aim of proving the convergence of the designed algo-
rithm, and its convergence step is shown. Fig. 10 shows the state
convergence for a network with three 2-D states.

Fig. 9. Flowchart of the proposed consensus-based decentralized UKF.

Fig. 10. Consensus-based convergence example for three 2-D state vec-
tors. x1 = [10 20]� and P1 = diag{10, 10}, x2 = [20 − 40]� and P2 =

diag{2, 2}, and x3 = [60 − 60]� and P3 = diag{4, 4} are the employed val-
ues for the state vectors and their covariance matrices.

VI. SIMULATION RESULTS

To highlight the properties of the proposed filters, some ex-
periments in a simulated environment have been performed. The
main goal of these simulations is to evaluate the consistency of
the analyzed strategies and how they propagate the estimated
covariances. The position filter was fed with GPS position
measurements during the simulations, when the vehicle was
higher than a fixed depth, depth measurements, and multiple
speed measurements. To increase adherence to the real dataset,
the speed measurements have been published at a different fixed
rate for each sensor (i.e., DVL, VO, and AO). Following the
frequency values reported in Table V, which will define an
approximate availability rate for the speed data in the real-world
experiments, the DVL measurements have been published with
a 5-Hz rate, the camera-based and FLS-based speed estimation,
respectively, at 2 and 1 Hz. To focus the attention only on the
filter capabilities, instead of applying the VO and AO algo-
rithms to estimate the camera and FLS-based velocities, all the
speed measurements have been generated as random variables
defined as

bvDVL = bν1 +N (0, δ)

bvCAM = bν1 +N (0, δ)

bvFLS = bν1 +N (0, δ) (40)
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where bν1 is the speed true value and N (0, δ) is the uncertainty
defined as a normal distribution with zero-mean and covariance
δ = [0.1 0.05 ]�. The surge speed has been set equal to 0.5 m/s,
and the covariance values have been chosen as a consequence.
The proposed strategies have been tested on a vehicle whose
dynamic behavior has been simulated by using the equations

defined in [37] and that has traveled a rectangular path at a
fixed depth of 2 m. For each filter, a Monte Carlo simulation
with 100 iterations has been performed. The position errors and
the estimated 3σ bounds along the East and North directions
are reported in Figs. 11–15. It can be noted that all the filters,
except the consensus-based distributed UKF (e.g., reduced UKF,
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Fig. 11. On the left, East and North position estimation errors versus their 3σ bounds obtained from 100 simulation analysis with the reduced UKF. The σ
values are computed as the square-root of the corresponding diagonal element of the estimated covariance matrix. On the top right image, the estimated resurfacing
positions versus the theoretical GPS fix position. On the bottom right image, an histogram containing the estimated resurfacing position errors.

Fig. 12. On the left, East and North position estimation errors versus their 3σ bounds obtained from 100 simulation analysis with the standard UKF. The σ
values are computed as the square-root of the corresponding diagonal element of the estimated covariance matrix. On the top right image, the estimated resurfacing
positions versus the theoretical GPS fix position. On the bottom right image, an histogram containing the estimated resurfacing position errors.
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Fig. 13. On the left, East and North position estimation errors versus their 3σ bounds obtained from 100 simulation analysis with the consensus-based distributed
UKF. The σ values are computed as the square-root of the corresponding diagonal element of the estimated covariance matrix. On the top right image, the estimated
resurfacing positions versus the theoretical GPS fix position. On the bottom right image, a histogram containing the estimated resurfacing position errors.

Fig. 14. On the left, East and North position estimation errors versus their 3σ bounds obtained from 100 simulation analysis with the sequential UKF. The σ
values are computed as the square-root of the corresponding diagonal element of the estimated covariance matrix. On the top right image, the estimated resurfacing
positions versus the theoretical GPS fix position. On the bottom right image, a histogram containing the estimated resurfacing position errors.
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Fig. 15. On the left, East and North position estimation errors versus their 3σ bounds obtained from 100 simulation analyses with the federated UKF. The σ
values are computed as the square-root of the corresponding diagonal element of the estimated covariance matrix. On the top right image, the estimated resurfacing
positions versus the theoretical GPS fix position. On the bottom right image, a histogram containing the estimated resurfacing position errors.

standard UKF, sequential UKF, and federated UKF), have a
similar 3σ bound propagation. The consensus-based distributed
UKF 3σ bounds have the same behavior as the other filters, but
its divergence is reduced. This can be related to the particular
fusion strategy employed in the filter, which is dependent on the
accordance between each local estimation. All the 3σ bounds
continuously diverge when the vehicle is under the sea surface
and no position measurements are available. It correctly repre-
sents the behavior of the AUV, which has no access to any new
absolute position information until it resurfaces.

Furthermore, the estimated resurfacing position has been
compared with the theoretical first GPS fix and its 3σ bound.
It is necessary to note that the resurfacing positions estimated
in all the Monte Carlo simulations fall inside the 3σ bound,
guaranteeing acceptable estimations. Furthermore, it is possible
to compare the 3σ bound estimation obtained from the filters
and the 3σ bound estimation obtained from the simulated data.
The latter has been evaluated by computing the best normal
distribution approximating the estimated resurfacing positions
with respect to the theoretical ones. All the filters are consistent
with their estimations, but the best results from this point of
view can be obtained with the consensus-based decentralized
UKF. Indeed, this filter provides data-based and filter-based 3σ
bounds similar estimations. Besides that, it is necessary to note
that, in all cases, the filter-based 3σ bounds estimations are larger
than the data-based ones, and, consequently, all the filters have
a conservative behavior.

Turning to the speed errors and the related 3σ bounds, it can be
noted from Figs. 16 and 17 that the estimation errors remain, for
all the time, within the bounds. It is necessary to highlight that
only the output of one iteration of the Monte Carlo simulation
has been reported for the speed estimations.

TABLE II
FEELHIPPO AUV MAIN FEATURES

VII. EXPERIMENTAL RESULTS

A. FeelHippo AUV Main Features

FeelHippo AUV [39], shown in Fig. 18, is a light-weight,
compact, and high-functional vehicle developed and built by
the Department of Industrial Engineering of the University
of Florence. The vehicle, whose approximate dimensions are
600× 640× 500 mm, can perform up to 30-m depth. Its dry
mass is 35 kg and the maximum permissible longitudinal speed
is 1 m/s. The hardware and electronics are contained inside the
vehicle’s central core, which is a Plexiglass cylinder with 5-mm
thickness. The principal electronic devices and sensors directly
employed for the navigation tasks are as follows:

1) U-blox 7P precision GPS;
2) Orientus advanced navigation attitude heading reference

system;
3) KVH DSP 1760 single-axis high-precision fiber optic

gyroscope;
4) Nortek DVL1000 DVL, measuring linear velocity and

acting as depth sensor;
5) Teledyne BlueView M900 2-D FLS;
6) two Microsoft Lifecam Cinema forward- and bottom-

looking cameras;
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Fig. 16. Surge speed estimation errors versus their 3σ bounds obtained from a simulation analysis. The σ values are computed as the square-root of the
corresponding diagonal element of the estimated covariance matrix.

7) Intel i-7-based LP-175-Commel motherboard (used for
on-board processing).

Furthermore, FeelHippo AUV is equipped with devices ded-
icated to communication with the sea-surface through Wi-Fi
or radio. The main properties of FeelHippo AUV are listed in
Table II.

B. Navigation Filter Design Choice

Before describing the results obtained through the application
of the presented UKF-based sensor fusion strategies, it is

necessary to summarize here the main properties of the filter
and the fulfilled choices. In the state transfer function, the
nonlinear mixed kinematic-dynamic model proposed in (8) is
employed. The focus of the presented work is the optimal fusion
of the data coming from the on-board sensors. The measurement
equation needs to be investigated more in detail. As introduced in
Section IV, since the navigation filter works at a fixed sampling
time of ΔT = 0.1 s or, in other words, at an operative frequency
of 10 Hz, due to the various sampling rates of the available
sensors and due to the various working frequencies of the
odometry strategies, the structure of the measurement matrixHk
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Fig. 17. Sway speed estimation errors versus their 3σ bounds obtained from a simulation analysis. The σ values are computed as the square-root of the
corresponding diagonal element of the estimated covariance matrix.

might change during each iteration and might be different for the
parallel local filters. This issue has been solved in both the itera-
tive and the parallel filtering approaches. In the sequential UKF,
the number of performed correction steps is fixed by the available
measurements, e.g., speed, depth, and position measurements.
Accordingly, the Hk structure is set for each filter iteration and
its shape is determined by the presence of GPS and depth sensor
measures and at least one speed vector. In the decentralized and
federated UKFs, the measurement matrix Hk can be different
in each local filter due to the associated speed measurement

availability. This condition, which can easily occur, does not
influence the position filter behavior because the local filters do
not exchange information between each other and because the
information transfer from all the local filters to the master filter
is achieved through the state estimates and their covariances
that have the same fixed size in both the local and master filters.

The discrete-time system and measurement equations are
given as follows:

xk = fk−1(xk−1) +wk−1
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Fig. 18. FeelHippo AUV during a sea trial in Vulcano Island, Messina, Italy.

yk = Hkxk + lk

wk ∼ (0, Qk)

lk ∼ (0, Rk) (41)

where it is necessary to again underline that while the state
transition equation is nonlinear, the measurement one is linear
with a Hk matrix, composed of only zeros and ones, that maps
the state vector into the measurement vector. The matrix Rk

depends on the actual dimension and composition of the mea-
surement vector. This property is necessarily determined by the
measurement data availability during the in-progress iteration.
Considering the presence of all the measurements that can be
provided by the onboard sensors, the matrix Rk can be defined
as follows:

Rk = diag
[
RGPS RDS RDVL ∨RCAM ∨RCAM

]

=

⎡
⎣RGPS 01×1 02×2

02×2 RDS 02×2

02×2 01×1 RDVL ∨RFLS ∨RCAM

⎤
⎦ (42)

where RGPS, RDS, RDVL, RCAM, and RFLS are, respectively, the
measurement covariances related to GPS, depth sensor, DVL,
camera, and FLS. Regarding the speed sources, it is finally
necessary to highlight that the measurements are provided ac-
cording to the sensor acquisition and elaboration rate and, for
the odometry strategies, to the local environment properties.
Due to these constraints, visual and acoustic odometries can,
respectively, acquire images with a 10- and 2-Hz rate, but speed
measurements are computed with a lower rate. In particular,
while the AO can work with almost all the available acoustic
images, the VO algorithm’s maximum work frequency is ap-
proximately 4 Hz. Finally, the DVL measurements have been
guaranteed with a 5-Hz rate.

C. Offline Validation

The presented navigation strategies have been tested and
validated offline by employing experimental data recorded in
Vulcano Island, Messina, Italy, in June 2019, during two au-
tonomous underwater missions performed in the framework of
the European project EUMarineRobots. The underwater mission
was performed at a constant advance speed of 0.5 m/s with
a fixed depth of 2.5 m and an altitude from the sea bottom

TABLE III
NAVIGATION PERFORMANCE FOR THE MISSION #1: RESURFACING ERROR [m]

TABLE IV
NAVIGATION PERFORMANCE FOR THE MISSION #2: RESURFACING ERROR [m]

between 2 and 4 m. In both missions, all the payloads reported
in Section VII-A were switched on and the vehicle, during its
autonomous navigation along a preprogrammed path, acquired
both acoustic and optical images. GPS readings were collected
before FeelHippo AUV dove, and after it resurfaced, they have
been employed as ground truth to compute the resurfacing
error and to compare the proposed strategies. As reference path
(RP), the UKF-based estimation, presented in [5] and [7], is
employed. Of course, considering that some measurements are
discarded, this RP cannot be employed as ground truth, but it
can represent a reference whose navigation performance has
to be overcome by the proposed novel approaches. The resur-
facing error value, representing an estimation of the navigation
drift, has been analyzed to assess the possible improvements
of the presented strategies. Along the path, only the waypoints
employed to plan the autonomous underwater mission can be
used as a reference to evaluate the goodness of the navigation
strategies.

Furthermore, to provide a RP estimation, a UKF that
centrally employs all the available measurements has been
tested. Considering that a centralized filter that uses, at the
same time, all the available measurements provides the op-
timal estimate, the obtained trajectory can be considered as
ground-truth.

The first autonomous mission lasted around 260 s covering
approximately 100 m. From Fig. 24 and Table III, it is easily
noticeable that all the proposed strategies increase the navigation
estimation quality, analyzing the results from the GPS resurfac-
ing error and the planned path error point of view. The path
employed for the second autonomous mission is approximately
150-m long and it has been covered in about 390 s. As for the
other mission, the proposed strategies led to an improvement of
the navigation performance, which can be retrieved from Fig. 25
and Table IV.
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Fig. 19. On the left and in the center, the position estimation for mission #1 with its 3σ bound obtained with the reduced UKF algorithm, respectively, along the
East and North directions. On the right, the bound of the last position under the sea surface and the first GPS fix measurement with its accuracy bound.

Fig. 20. On the left and in the center, the position estimation for mission #1 with its 3σ bound obtained with the consensus-based distributed UKF algorithm,
respectively, along the East and North directions. On the right, the bound of the last position under the sea surface and the first GPS fix measurement with its
accuracy bound.

Fig. 21. On the left and in the center, the position estimation for mission #1 with its 3σ bound obtained with the federated UKF algorithm, respectively, along
the East and North directions. On the right, the bound of the last position under the sea surface and the first GPS fix measurement with its accuracy bound.

To evaluate the agreement between estimation errors and
estimated uncertainty, the 3σ bounds of the estimated trajectories
are presented. Both the analyzed missions present the same
structure. In the beginning, the vehicle is on the surface and
GPS fixes bound the position terms of the state covariance.
Subsequently, due to the absence of position measurements, the
position terms of the state covariance increase until the vehicle
resurfaces. When above the surface, GPS fixes are available

again and the covariance gets smaller due to GPS corrections.
This is summarized in Figs. 19–23, where, concerning the first
autonomous mission, the 3σ bounds for the filter and the GPS
are presented. In all the analyzed cases, the position provided
by the filter (with its confidence bounds) appears to guarantee
a reasonable prediction of the vehicle’s true position when it
resurfaces. As stated by the vendor [40], the employed GPS
has an expected accuracy on the order of meters and the 2-D
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Fig. 22. On the left and in the center, the position estimation for mission #1 with its 3σ bound obtained with the sequential UKF algorithm, respectively, along
the East and North directions. On the right, the bound of the last position under the sea surface and the first GPS fix measurement with its accuracy bound.

Fig. 23. On the left and in the center, the position estimation for mission #1 with its 3σ bound obtained with the standard UKF algorithm, respectively, along the
East and North directions. On the right, the bound of the last position under the sea surface and the first GPS fix measurement with its accuracy bound.

Fig. 24. Comparison of the navigation results during mission #1. While the
first underwater point is labeled with START, the GPS position acquired by
the AUV after its resurfacing is identified with GPS fix. Each waypoint of the
planned autonomous mission is referred with WP.

error can be represented as a 2-D Gaussian distribution whose
components are independently distributed.

Finally, it is essential to evaluate the robustness of the pro-
posed strategies against reducing the available measurements.
In the previously presented results, reported in Figs. 24 and

Fig. 25. Comparison of the navigation results during mission #2. While the
first underwater point is labeled with START, the GPS position acquired by
the AUV after its resurfacing is identified with GPS fix. Each waypoint of the
planned autonomous mission is referred with WP.

25, all the available speed measurements have been passed to
the navigation filters. A large amount of inertial, acoustic, and
optical data necessarily determines the good performance of
the employed navigation strategy, reducing the importance of
the particular technique used to merge the measurements. To
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Fig. 26. Examples of the acquired optical and acoustic images during both the missions performed in Vulcano Island, Messina, Italy. The greater information
content, which characterized the images acquired during mission #2 with respect to the ones acquired during mission #1, is noteworthy. (a) Optical image taken
during mission #1. (b) Acoustic image taken during mission #1. (c) Optical image taken during mission #2. (d) Acoustic image taken during mission #2.

highlight the importance of a fusion-based filter as a compromise
between reduced computational load and navigation robustness,
the proposed UKF-based algorithms have been applied to two
different subsets of the data acquired during the first mission;
one reduced by 50% and the other one reduced by 75%. The
selection of the measurements passed to the filters has been
performed by applying a statistical selection function to each
provided speed measurement. The choice has been based on the
Bernoulli distribution test, whose probability mass function is
reported in the following equation:

P (b|q) =
{
q, if b = 1
1− q, if b = 0

(43)

where q represents the probability to get b = 1 or, equivalently,
a true and 1− q represents the probability to get b = 0 or, equiv-
alently, a false in a double-choice experiment. In the following
results, the coefficient q of the Bernoulli distribution has been set
to three different values, namely q = 1, which provides the RP
for the algorithm robustness analysis and whose results have
been reported in Fig. 24, and q = 0.5 and q = 0.25, which
impose the employment of a half and a quarter of the avail-
able measurements (Fig. 27). To give a quantitative evaluation
of the robustness of the proposed algorithms, the navigation
performance of the strategies applied to the reduced dataset has
been compared to the one obtained with the full dataset. The
employed metrics is defined in the following equations:

ei = ‖ηRP
1,i − ηTS

1,i‖ (44)

ek =

∑i=k
i=1 ei
k

(45)

where ei ∈ R+ represents, at the instant i ∈ N, the navigation
error, ηRP

1,i and ηTS
1,i denote, with respect to the NED reference

system, the vehicle position according to the RP and to the
current tested solution (TS), respectively. As introduced before,
while the RP is represented by the estimated trajectory retrieved
by applying one of the proposed strategies with a selection test
with q = 1, the tested path is obtained by estimating the vehicle
position with the same strategy of the RP but with a selection
coefficient reduced to q = 0.5 or q = 0.25. In addition to this,
ek ∈ R+ denotes the mean of ei for i = 1, . . ., k.

Regarding the computational burden, the CPU burden and the
execution time of the filters have been the subject of the analysis.
It is worth highlighting that the simulations have been performed
on laptop PC i7-9750H CPU@4.5 GHz with 16-GB RAM.
Concerning the CPU burden, the output of the command top,
which is a task manager program available in many Unix-like
operating systems, has been recorded to store the data. Regarding
the execution time, the sum of the requested time to perform
both the prediction and the correction steps has been taken into
account. The results can be found in Fig. 30 for what concerns
the CPU burden and in Fig. 31 for the execution time.

D. Analysis of the Results

When compared to the reduced UKF, i.e., the filter currently
on board FeelHippo AUV, the obtained results, due to the em-
ployment of a more significant number of speed measurements,
shows an advantage in terms of navigation estimation quality
(see Figs. 24 and 25 and Tables III and IV). Moreover, the
obtained results from the proposed filters are comparable with
the standard UKF, which centrally employs all the measurements
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Fig. 27. Comparison of the estimated trajectories during mission #1 with q = {1, 0.5, 0.25}.

TABLE V
SPEED MEASUREMENTS AVAILABILITY FOR MISSIONS #1 AND #2

simultaneously. As a matter of fact, the iterative and parallel
fusion strategies guarantee a solid tradeoff between localization
accuracy and computational cost. More in detail, the sequential
UKF strategy provides the minor resurfacing error and the best
adherence to both missions’ reference trajectories. Furthermore,
this strategy guarantees the best adherence to the standard UKF
estimated trajectory, which can be considered as the benchmark
path. Concerning the federated and the consensus-based decen-
tralized UKF, these strategies guarantee a performance increase
with respect to the reduced UKF strategy, thanks to their better
exploitation of the available measurements in a framework based
on parallel local filtering.

As far as a comparison of the dataset analysis is concerned, the
reduction of the navigation drift in the second mission with re-
spect to the first one, despite the greater length of the route, can be
related to the surrounding environment properties (see Figs. 26

and 28 and Table V). As a matter of fact, the presence of a more
varied and textured environment is a significant advantage for
VO/AO. Regarding robustness against the lack of measurements,
trivially, the reduction of measurements leads to an increase
in navigation error. However, the proposed strategies guarantee
better robustness against these issues providing results compa-
rable with the standard UKF. By observing Fig. 29, which are in
the presence of 50% and 75% measurement reduction, it can be
noted that both the decentralized and the centralized strategies
are similarly insensitive to measurement reduction. Only the
reduced UKF, due to its strategy based on the last acquired speed
measurement in chronological order, is significantly negatively
affected by the measurement reduction (see Table VI).

Concerning the computational burden, it can be noted that
the sequential UKF has a CPU burden and an execution time
similar to the reduced UKF. Still, it can provide a lower
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TABLE VI
MEAN ERROR DURING MISSION #1: VALUE AT THE LAST WP [M]

Fig. 28. DVL, camera, and FLS speed availability during mission #1 (top) and
mission #2 (bottom).

resurfacing error, which is comparable with the standard UKF.
It is, therefore, possible to assert that the sequential UKF can
represent a solid tradeoff between computational complexity
and estimation performance. The proposed consensus-based
decentralized UKF has the highest CPU burden and execution
time due to the particular adopted fusion strategy. Finally, it is
necessary to highlight that the federated UKF, despite it being
a decentralized strategy, has a mean execution time slightly
higher than the standard UKF. This last statement highlights the
non-negligible burden requested by a centralized strategy that,
at the same time, processes all the available measurements.

Finally, it is necessary to summarize the pros and cons of each
filtering strategy proposed to overcome the limitations of the
reduced UKF. The reduced UKF, despite it requiring the lowest

Fig. 29. Comparison of the mean errors of the proposed strategies during
mission #1 with q = 0.5 (top) and with q = 0.25 (bottom). The error value is
computed with (45).

CPU burden and execution time, provides estimated trajectories
whose estimation errors tend to diverge faster than the other
filters. Furthermore, this strategy is susceptible to the lack of
measurements, which can be limited when they are obtained
from payload sensors that acquire data from the surrounding
environment. Consequently, the obtained results can be summa-
rized in the following sentences.

1) The standard UKF centrally fuses, at the same time, all the
available measurements and it provides in both missions
the lowest resurfacing error. It requests a computational
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Fig. 30. CPU burden analysis. In red and green are, respectively, reported the mean and the median.

Fig. 31. Execution time of the filter, calculated at each iteration as sum of the requested time for the prediction and the correction steps. In red and green are,
respectively, reported the mean and the median.

burden higher than the other centralized filters, i.e., se-
quential UKF and reduced UKF, but similar or lower than
the decentralized strategies.

2) The sequential UKF can be the best solution to guar-
antee a solid tradeoff between an increase of estima-
tion properties and a reduction of computational load,
which can be one of the major limitations in mobile
robotics. Reducing the available measurements, the se-
quential UKF remains much better than the reduced UKF,
but it provides the worst results if compared with the other
filters.

3) The consensus-based decentralized UKF provides the
lowest divergence of the estimated covariance when the
vehicle is under the sea surface and no position measure-
ments are available. As illustrated by the Monte Carlo sim-
ulations, it is possible to highlight that the filter provides
the best results from the consistency point of view and
that the position 3σ bound contains the position estima-
tion errors. On the contrary, the employed fusion strategy
requires a non-negligible execution time and CPU burden,
which could limit its applications when the hardware is not
adapted.

4) The federated UKF is a decentralized strategy with a
requested execution time comparable with the standard
UKF. From the results obtained by reducing the measure-
ment availability, the federated UKF is the most insensitive
strategy to the lack of measurements.

VIII. CONCLUSION

This article shows and compares a set of novel UKF-based
sensor fusion strategies for autonomous underwater navigation.
Increasing the navigation performance is a complex but essential
target to be achieved, because it guarantees that the AUV can
correctly perform its mission and accomplish its tasks. The
proposed strategies have been adapted to be inserted in an
UKF-based framework and tested on a real dataset acquired at
field during an autonomous underwater mission performed in
Vulcano Island, Messina, Italy. To the authors’ best knowledge,
the fusion of inertial, acoustic, and optical data in an UKF
algorithm and the application of the presented sensor fusion
strategies to AUV navigation is novel. To increase the reliability
of the proposed techniques, they have been tested on two dif-
ferent sets of data, leading to common results and conclusions.
The centralized strategy, as the sequential UKF, guarantees the
best improvements in terms of estimation quality, which can be
retrieved by analyzing the resurfacing error and the adherence to
the reference input trajectory. Decentralized strategies provide
an increase of robustness against measurement reduction. Both
consensus-based decentralized and federated UKFs, thanks to a
parallel local filtering approach, are less affected by the lack of
measurements than the centralized algorithms.

The obtained results are promising for mobile robotics ap-
plications, where providing robust and accurate navigation but
guaranteeing a reduced computational cost is fundamental due
to the limitations concerning dimensions, weight, and embedded
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computational power. Consequently, the proposed strategies can
represent a noteworthy tradeoff toward the improvement of both
navigation accuracy and robustness, while taking into account
the low-computational load requirement.

Nonetheless, further progress still needs to be made. The
proposed strategies need to be implemented and tested on-board
the vehicle during an underwater mission. This will be an impor-
tant test to practically evaluate the reductions of computational
cost. Moreover, the integration of the visual and acoustic mea-
surements within the attitude estimator could represent another
subject to be investigated.
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