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Abstract. The pulpit of Giovanni Pisano lies in the church of S. Andrea in Pistoia, Italy, and is
one of the most outstanding marble artifacts of the late middle ages in Italy. It is composed by
seven columns supporting a platform.

The columns have different lengths, since they rest on pedestals located at different heights,
in a way for the column tops to be at the same height and therefore form a support for the
arches, which in turn support the platform above.

All the components are linked to each other by means of thin layers of lead; as a conse-
quence, such connections cannot resist traction and the whole artifact is likely to exhibit rocking
behavior, especially during earthquakes.

This paper describes the development of a ®MatLab code and its utilization to take into
account the rocking response of the pulpit. The model has been identified making use of the dy-
namic recordings performed by a permanent monitoring system composed of 6 accelerometers
mounted at the base of the pulpit itself and on its platform. The first natural frequencies have
been used to determine the compressibility of the lead layers.

Subsequently, some artificial earthquakes were numerically generated to obtain an estima-
tion of the fragility curves of the artifact, and eventually an estimation of its seismic vulnerabil-
ity.
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1 INTRODUCTION

The pulpit in the church of S. Andrea, Pistoia, is one of the most outstanding marble artifacts
of the late middle ages in Italy ([1]). It was sculpted in 1301 by Giovanni Pisano, who built the
entire structure on a hexagonal basis. It is sustained by six red Carrara marble columns located
at each vertex of the hexagon, together with another column in the geometrical center of the
pulpit itself.

The interface between the columns bottom and the ir basement, as well as between the
columns top and the pulpit itself, is filled with lead and therefore cannot undergo any traction.

Little is known about its history, nevertheless it is known that in 1619 it was dismantled and
reassembled in the middle of the nave, where it stands nowadays, as it can be seen in figure 1.
On that occasion, the order of the marble panels which constitute the parapet was inverted.

Figure 1: on the left side, the pulpit as it is nowadays; on the right side, a snapshot of the instruments during the
dynamic tests.

The artifact is subject to several critical issues and it was restored several times. In particular,
the marble supporting columns are not perfectly vertical and this can be perceived even by the
naked eye. As some Authors have already outlined, the causes of instability of the pulpit can be
ascribed to:

• errors made in the reassemblement in the year 1619;

• differences in the characteristics of the ground on the east and the west side;

• subsidence phenomena taking place in the city center;

• sudden, impulsive or transient events such as earthquakes and similar.

It is certainly difficult to ascribe the instability to only one of the above-cited causes; rather,
such instability is likely due to more than one phenomena.
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2 Brief summary of the dynamic tests

The experimental campaign took place in February, 2020; ambient vibration measurements
were carried out and, eventually, also some tests on each column under impulsive loads given
by light blows of an instrumented hammer on the church floor nearby.

Accelerometers were placed on top and at mid-height of the marble columns; during the
ambient vibration tests, the sensors were placed both on top and at mid-height of the columns
according to the pattern shown in figure 2.

Figure 2: on the left, the arrangement of the accelerometers at column mid-height (level 1.00m; on the right, the
position of the accelerometers on each column during the impulsive tests.)

The identified frequencies are listed in the following table; referring to figure 2 the instru-
ments identified by odd numbers were parallel to x− x direction and the instruments with even
numbers in the y − y direction.

modal shape identified frequency
x− x ν1 = 5.11Hz
y − y ν2 = 5.32Hz

torsional ν3 = 6.58Hz

Table 1: Identified frequencies.

3 The physical model

Since the pulpit rests on seven slender columns, it likely undergoes rocking motion (see f.i.
[3]). Therefore, a specific ®MatLab code was developed to investigate its dynamic behavior.
The main assumptions were the following:

1. even if the pulpit is made up by seven different marble plates (as shown in figure 3) and the
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Figure 3: on the left, the seven different plates constituting the pulpit floor, at level 3.30m above the church floor,
are indicated by the red triangles. The shaded area indicates the parapet. On the right, a particular of the pulpit
floor, seen from below, showing the connection between different plates.

panels of the parapet, which can easily break away from each other during a pronounced
motion, it was assumed that the pulpit be monolithic with its parapet;

2. the internal stresses are not significant for the collapse of the pulpit; the collapse can only
occur due to the overturning of the columns;

3. the vertical motion of the pulpit and the columns was neglected in the analysis;

4. the pulpit and the columns are perfectly rigid bodies and deformations can only occur
inside the interface between the columns and the pulpit (above) or the basement (below);

5. such interface cannot undergo traction: therefore, the columns can uplift from their base-
ments and the pulpit can uplift from the supporting columns, thus giving rise to non-linear
behavior;

6. nevertheless, the columns cannot completely break away from neither their basements not
the pulpit above, and the top of the columns always follow the motion of the pulpit;

7. the non-linearity of the structure derives by the behavior of the interfaces between the
columns and the other parts of the structure; displacements are considered sufficiently
small to be considered geometrically linear.

Under such hypotheses, the pulpit behaves like a rigid block resting on seven slender rigid
blocks and its motion can therefore be described by only three degrees of freedom (DoFs): the
displacement in two horizontal directions and the rotation around the vertical axis.

Some comments are in order about the hypotheses listed above; in particular, the first two
hypotheses can be released by the definition of a critical threshold for the displacement of the
top of each column; in other words, following a common strategy in the probabilistic analysis
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of structural safety, the failure probability due to the internal stresses or the breaking away of
the floor plates can be evaluated defining a threshold on the displacement and analyzing the
first-passage time of such threshold.

The third hypothesis is the most difficult to justify, and in fact is almost never verified, as
the vertical motion of a rocking structure can deeply affect the horizontal response and the
overturning probability. This is the first model which was developed, and the hypothesis of
negligible vertical motions will be released in further versions of the numerical code.

The fourth hypothesis is not so significant: the bending of the columns due to eccentricity
of axial force has little - if any - influence on the pulpit motion; it can eventually lead to the
collapse of one or more columns, but this event can be also taken into consideration by the
definition of a proper threshold on the pulpit displacement.

The fifth hypothesis is the motivation of the present study, while the sixth is, in a way, a
direct consequence of the irrelevance of the vertical motions of the various elements (third
hypothesis).

The seventh hypothesis steams from the slenderness of the columns.

3.1 Model of the kinetic energy

Hypotheses (6) and (7) enable to easily describe the motion of each column in terms of
the DoFs of the pulpit above; with regard to figure 4, if ḋ1, ḋ2 and ḋ3 respectively denote
the velocities in the x and y directions and the angular velocity around the vertical axis of the
geometric center of the pulpit floor (namely, the derivatives of the DoFs), then the displacements
and velocities in the x and y directions of the top of the h-th column are given by the law of the
rigid body motion:

{
sxh = d1 − d3 yph
syh = d2 + d3 xph

;
{
vxh = ḋ1 − ḋ3 yph
vyh = ḋ2 + ḋ3 xph

(1)

Owing to the slenderness of the columns, their diagonal can be approximated with their
length and therefore the velocity of the center of mass of each column is half as much the
velocity of its top, the components being vxh/2 and vyh/2. The angular velocity of the column

is, eventually, ωh = vh/Hh, where vh =
√
v2xh + v2yh is the modulus of the velocity of the top

of the column, and Hh its length.
Considering equations 1, the kinetic energy of the h-th column can be expressed as

Ech =
1

2
mph v

2
h +

1

2
Iph ω

2
h =

mph

8

(
ḋ21 + ḋ22 − 2 ḋ1 ḋ3 yph + 2 ḋ2 ḋ3 xph + ḋ23 [x

2
ph + y2ph]

)
(2)

which, in turn, leads to the definition of the mass matrix of the generic h-th column as

Mph =
mph

4

 1 0 −yph
0 1 xph
−yph xph x2ph + y2ph

 (3)

where mph is obviously the mass of the column.
The center of mass of the pulpit is not vertically aligned with the geometric center of its floor

(where the origin of the reference system lies) owing to the presence of a statue of an eagle
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Figure 4: the relation between the DoFs of the pulpit and the velocity of the top of the h-th column.

(visible in figure 1) and to the absence of one panel of the parapet. The x and y coordinates of
the center of mass of the pulpit will be denoted by xpg and ypg, respectively; this leads to the
definition of the mass matrix of the pulpit as

Mp = mp

 1 0 −ypg
0 1 xpg
−ypg xpg i2op + x2pg + y2pg

 (4)

where mp is the mass of the pulpit and i2op = Iop/mp its radius of gyration, Iop being the
moment of inertia of the pulpit around the principal vertical axis. Since equations 3 and 4 are
both referred to the same degrees of freedom, denoting by Np the number of columns, the total
mass matrix can be simply assembled as

M = Mp +

Np∑
h=1

Mph (5)

3.2 Restoring forces and moments

The interface between the columns and the pulpit (above) or their base (below) is modeled
by a Winkler deformable layer with a given stiffness cp which is assumed constant for all the 14
interfaces (2 interfaces, above and below, for each one of the 7 columns). No interface can react
to traction, therefore uplift of columns from their base and of pulpit from the bearing columns
is permitted, leading to strong non-linear behavior.

Referring to figure 5, it can be shown that the resultant force and moment of the pressure
distribution in the interface depend on the rotation θ of the column and can be expressed (when
uplift occurs) as

{
R =

∫ x0

−r
rp(x) dx

M = −
∫ x0

−r
x rp(x) dx

(6)

264



Gianni Bartoli, Michele Betti, Luca Facchini and Silvia Monchetti

where rp(x) dx is the resultant force acting on an infinitesimal strip of interface, of width dx.
Therefore, it can be inferred that rp(x) = 2 a(x) p(x) where a(x) =

√
r2 − x2 is half the length

of the infinitesimal strip at abscissa x and p(x) = cp θ (x0− x) is the upward pressure acting on
such strip, r being the radius of the column base.

Figure 5: pressure distributions in the interface of the columns.

On the other hand, if uplift does not occur, the entire interface reacts and the resultant force
and moment of the pressure distribution can be expressed as

{
R =

∫ r

−r
rp(x) dx = cpwoA

M = −
∫ r

−r
x rp(x) dx = −cp θ Jy

(7)

where A and Jy are the area and moment of inertia of the column base, respectively, and wo is
the deflection of the interface in the center of the base. From these last equations, it follows that
uplift occurs if |wo| < |θ| r/2.

Following and developing a previous study by Blasi and Spinelli [2], along the vertical di-
rection the columns are subject to their own weight Wch, to the part of the pulpit weight that
each one bears Wph and to the vertical reaction of their top and bottom sections Rsh and Rih,
respectively; for negligible vertical motion of the column center of mass, the base reaction sim-
ply balances the column weight and the part of the pulpit weight. Therefore, it is imposed that,
for the h-th column,

{
Rsh = Wph on top of the column
Rih = Wch +Rsh at column base

(8)

The situation is described in figure 6. As a result, once Wch and Wph are known, the pressure
distribution in the interfaces only depends on the rotation θ of each column; this leads to the
calculation of the restoring moments (Mih and Msh) by means of equations 6.

The dependence of the moments of the pressure distribution (with respect to the geometrical
centers of the top and bottom sections) acting on the top and the bottom of the column, as well
as the forcing and restoring moments acting on the single column are represented in figure 6.

265



Gianni Bartoli, Michele Betti, Luca Facchini and Silvia Monchetti

Figure 6: the forces and moments acting on the generic column.

In this framework, the system is elastic, even though non-linear. In order to determine the
restoring forces on the pulpit, a static situation is considered, where the generic h-th column is
rotated owing to the displacement of its top section. Considering the restoring moments acting
on each column, the moment of the force Fsh at the top of the column must balance the moment
of the column weight Wch and the part of the pulpit weight Wph supported by the column itself,
so that

Fsh =
Mih +Msh −Rsh sh −Wsh sh/2

Hh

(9)

The restoring moments on each column act on the pulpit as a system of restoring forces and
moments which can be reduced to the DoFs of the pulpit itself, in order to construct a nonlinear
stiffness matrix which depends on such DoFs, K(d). With respect to figure 8, the force Fsh

applied by a column to the pulpit is opposite to the displacement of the top section of the
column, sh, and its modulus is given by (9); if we denote by wh the versor of the displacement
sh, namely wh = sh/ ‖sh‖ = sh/sh, we obtain that

Fsh = −Fshwh = −Fsh

sh
sh =

1

Hh

(
Rsh +

Wsh

2
− Mih +Msh

sh

)
sh (10)

Recalling equations (1), the displacement of the column top may be expressed by means of
a topological matrix T(h) defined as

Th =

[
1 0 −yph
0 1 xph

]
⇒ sh = Th d (11)

Analogously, the action of the h-th column on the pulpit can be reduced to the DoFs of the
pulpit as
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Figure 7: on the left side, the resultant moments of the pressure distribution acting on the top and bottom sections
of the generic column is reported as function of the displacement of the column top (respect to its base); on the
right side, the dependence of the restoring and forcing moments acting on the generic column.


f1h = Fshx

f2h = Fshy

f3h = −yph Fshx + xph Fshy

⇒ fh = Tt
h Fsh =

Rsh +
Wsh

2
− Mih+Msh

sh

Hh

Tt
hTh d (12)

Figure 8: the restoring force caused by the generic column on the pulpit.

The non-linear stiffness matrix expressing the restoring forces on the pulpit can therefore be
assembled summing all the contributions of each column:

K(d) =

Np∑
h=1

Rsh +
Wsh

2
− Mih+Msh

sh

Hh

Tt
hTh (13)

The dependence of K on the DoFs d is caused by the dependence of Mih and Msh on d, and
is omitted for clarity.
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4 Equation of motion and parameter identification

The motion of the pulpit caused by the ground motion can be described by vector d(t) and
therefore be modeled by the vector equation

Md̈+Cḋ+K(d)d = −Mag(t) (14)

where ag(t) is the ground horizontal acceleration; the components of the ground acceleration
are taken according the Italian NTC 2018, namely ±100% of the acceleration in one direction
(x or y) and ±30% in the other one, thus leading to 8 integrations for each couple agx and agy.

For small values of the degrees of freedom d, the interfaces are completely reacting and the
stiffness matrix K is constant; this allows the calculation of the modal shapes and associated
frequencies of the structure.

Such frequencies obviously depend on the stiffness cp of the interface, which is considered
constant for each column; the best match between the calculated and the identified frequencies
was obtained for cp = 2.0115× 1010N/m3, as shown in figure 9.

Figure 9: the percentage error obtained on the first two frequencies for various values of the interface stiffness.

The frequencies resulting for such value of the interface stiffness are listed in table 2 follow-
ing, along with the frequencies identified during the dynamic tests.

modal shape identified frequency calculated frequency
x− x ν1 = 5.11Hz ν1 = 5.21Hz
y − y ν2 = 5.32Hz ν2 = 5.23Hz

torsional ν3 = 6.58Hz ν3 = 9.91Hz

Table 2: Identified and computed frequencies.
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The error on the identified frequencies that was used to determine the stiffness of the interface
was computed only on the first two frequencies, leading to a large error on the third one (the
torsional one). The error can also be computed on all the three identified frequencies, but this
leads to a larger error on the first two.

Damping is mainly due to different factors; one is certainly the intrinsic damping of the
materials of the structure, and another one is due to impacts between the columns and their
interfaces resulting from uplift. So far, damping is modeled by means of a linearly viscous
model, with a modal damping matrix given by a constant modal damping ξ = 0.05.

5 Response statistics

A total of 100 spectrum compatible ground motions were simulated for the site of S. Andrea
church in Pistoia, for different return periods Tr varying from 30 to 2475 years. In this way, for
each return period, 50 couples of accelerograms were available, allowing 50 integrations of the
equation of motion for each possible direction.

As an example of the obtained results, the time histories of the three degrees of freedom of
the pulpit are shown in figure 10.

Figure 10: on the left side, the time histories of the degrees of freedom of the pulpit obtained for an earthquake
with Tr = 2475 years; on the right, the trajectory of the top section of column no. 6, which is subject to the highest
displacement.

Even though the values of the degrees of freedom might not appear too pronounced, the
situation changes when the displacement of each column is evaluated by means of equations 1;
for column no. 6 a maximum top displacement of about 54mm is calculated. This, in turn,
causes very high pressures in the interface of the column, as it can be seen from figure 11.

6 CONCLUSIONS

A ®MatLab code to investigate the dynamic behavior of the marble pulpit by Giovanni
Pisano in the church of S. Andrea, Pistoia (Italy) has been presented; several hypotheses were
introduced to simplify the procedure, some of which will be released in future versions.

The pulpit is likely to exhibit rocking response under earthquakes of moderate intensity, but
it seems that its overturning is difficult to occur even under severe earthquakes. This condition
is nevertheless to be verified in further versions of the code, as the vertical accelerations might
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Figure 11: on the left, the time histories of the maximum pressures for each column is shown; on the right, the
histogram of all the maximum pressures calculated in the interfaces of every column.

have great influence on the pulpit response.
Nevertheless, high pressure distributions are evaluated at the interfaces between the columns

and their bases or the pulpit above, showing that a structural collapse due to material resistance
is more likely to occur than the overturning condition.
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