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Abstract

This work proposes a unified theory of regularity in one hypercomplex variable: the
theory of T-regular functions. In the special case of quaternion-valued functions of one
quaternionic variable, this unified theory comprises Fueter-regular functions, slice-regular
functions and a recently-discovered function class. In the special case of Clifford-valued
functions of one paravector variable, it encompasses monogenic functions, slice-monogenic
functions, generalized partial-slice monogenic functions, and a variety of function classes not
yet considered in literature. For T-regular functions over an associative x-algebra, this work
provides integral formulas, series expansions, an Identity Principle, a Maximum Modulus
Principle and a Representation Formula. It also proves some foundational results about 7-
regular functions over an alternative but nonassociative x-algebra, such as the real algebra
of octonions.
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1 Introduction

For several centuries now, complex analysis has been an attractive field of research. Its richness,
already in one variable, has pushed scholars to seek analogs in higher-dimensional settings.
Besides complex functions of several variables, functions of one variable over real algebras have
been extensively studied: this gave rise to a new area of research, known as hypercomplex
analysis. Some examples are: Fueter’s theory of quaternionic regular functions [9, [10, 29]; the
celebrated theory of monogenic functions over Clifford algebras [T}, 2 22]; Gentili and Struppa’s
theory of quaternionic slice-regular functions [I1} 12}, [13]; and Colombo, Sabadini and Struppa’s
theory of slice-monogenic functions over Clifford algebras [Bl, [6]. Hypercomplex analysis is not
limited to the associative setting: for instance, octonionic function theories have been introduced
in [7, 14] and studied in subsequent works. It is also not limited to one variable, but well-
developed also in several variables, see [l [I8 27] and references therein. While each of the
aforementioned theories has been successfully developed and usefully applied in other areas of
mathematics and physics, hypercomplex analysis ended up fragmenting while it grew in scope
and importance. Even theories based on the same differential operator, such as Fueter’s theory
and monogenic function theory, traditionally required separate, algebra-specific, presentations.

The purpose of this work is to reduce the fragmentation of hypercomplex analysis, offering a
unified approach at two different levels. At a first level, we unify the treatment of function classes
defined as kernels of Cauchy-Riemann operators, such as Fueter’s theory and monogenic function
theory. At a second, deeper, level, we develop a unified theory of regularity in one hypercomplex
variable encompassing Fueter-regularity, slice-regularity, monogenicity, slice-monogenicity and
even examples not yet considered in literature. Surprisingly, an example of this kind is already
available in an associative lower-dimensional algebra such as the real algebra of quaternions: it is
presented and studied in some detail in [20]. The same article announced the general definitions
of the concepts of monogenic function on a hypercomplex subspace and of T-regular function,
upon which the present work is based. Independently, the work [32] (see also [34]) developed
the notion of generalized partial-slice monogenic function, which is a sub-case of the notion
of Clifford-valued T-regular function on the paravector subspace. For generalized partial-slice
monogenic functions, the same authors proved a version of the Fueter-Sce Theorem in [33].

We provide here, for T-regular functions over a general associative x-algebra A, integral and
series representations, an Identity Principle and a Representation Formula valid under specific
hypotheses on the domains. An important tool to prove these results are the properties that
monogenic functions on a hypercomplex subspace of A share with classical Clifford monogenic
functions. However, the proofs of the properties of T-regular functions require original ideas that
do not follow the lines of any previously-known function theory. As a final addition, we provide



foundations for a theory of T-regular functions in the alternative but nonassociative setting. The
paper is organized as follows.

Section[2is devoted to preliminaries. Alternative real x-algebras are covered in Subsection 2]
Subsection covers the concept of hypercomplex subspace, defined in [26]. The notions of
Cauchy-Riemann operator on a hypercomplex subspace (from [26]) and of monogenic function
on a hypercomplex subspace (from [20]) are recalled in Subsection

Section [3] studies monogenic functions on hypercomplex subspaces, in the associative case.
Subsection Bl presents a family of polynomial examples, which turn out to generate all poly-
nomial monogenic functions. Integral representations and a reproducing kernel are provided in
Subsection Subsection studies the reproducing kernel and establishes that monogenic
functions on hypercomplex subspaces are harmonic functions. Subsection B4 provides series
expansions. These results resonate with classical Clifford monogenic function theory and their
proofs are postponed to the final Appendix.

Section Ml concerns T-regular functions. For each list of steps T', Subsection F.1] recalls the
concepts of T-fan, mirror and T-torus given in [20]. The definition of T-regular function, as
well as the concepts of T-slice domain and 7T-symmetric set, are recalled in Subsection In
the associative case, Subsection provides integral representations of T-regular functions: a
Cauchy Formula and a Mean Value Formula.

Section [ is entirely devoted to T-regular functions over an associative algebra. For each
k € N, a finite set .%; of polynomial T-regular functions is constructed in Subsection Bl The
elements of .7}, are related to the polynomial functions constructed in Subsection Blin a highly
nontrivial fashion. After the construction of adapted partial derivatives in Subsection B2l .7 is
proven to generate all k-homogenous polynomial T-regular functions in_Subsection In the
same subsection, .#; is used to determine for which other lists of steps T' the class of T-regular
functions coincides with the class of T-regular functions.

Section [0l concerns possible symmetries in T-regular functions. The concept of T-stem func-
tion defined in [20] is recalled in Subsection The definitions of T-function and strongly
T-regular function are recalled and studied, in the associative case, in Subsection Proofs of
most results therein are postponed to Section [Bl Subsection defines and studies, still in the
associative case, the concept of mirror T-stem function, which is a technical preparation for the
subsequent section.

Section[fstudies T-regular functions over an associative algebra more in depth. Subsection[7T]
provides series expansions for any 7T-regular function on an open ball centered at a point of the
mirror. As a consequence, an Identity Principle for T-regular functions on T-slice domains
is established and used, in turn, to prove a Maximum Modulus Principle. In Subsection [7.2]
T-regular functions on a T-symmetric T-slice domain are proven to be automatically strongly
T-regular, with the so-called Representation Formula.

Section [§studies the notions of T-function and of strongly T-regular function in full generality,
without assuming the algebra considered to be associative.

The final Appendix comprises the proofs of all properties of monogenic functions on hyper-
complex subspaces stated in Section

2 Hypercomplex subspaces and monogenic functions

Complex and hypercomplex analysis traditionally study classes of monogenic functions from C, H
or O to itself, or functions from the space of paravectors R™*! to the Clifford algebra C/(0,m).
These setups have mostly been treated separately in literature because of the different natures
of the algebras considered. In this section, we present an approach that allows treat all these



cases, and further cases, at once.

2.1 Alternative real x-algebras

Assumption 2.1. We assume (A, +,-,°) be an alternative real x-algebra of finite dimension.
Additionally, we endow A (whence all its real vector subspaces) with the natural topology and
differential structure as a real vector space.

We recall that a real s-algebra of finite dimension is a finite-dimensional R-vector space
endowed with an R-bilinear multiplicative operation and with an involutive R-linear antiau-
tomorphism = +— 2¢ (called *-involution). We recall that A is alternative if, and only if,
x(xy) = 2%y, (vy)y = xy? for all x,y € A. This is automatically true if A is associative.
More details about nonassociative algebras can be found in [28§].

Function theory over A has been extensively studied, especially in the following special cases.

Examples 2.2 (Division algebras). The x-algebras of complex numbers C, quaternions H and
octonions Q can be built from the real field R by means of the so-called Cayley-Dickson construc-
tion:

e C=R+iR, (a«+if8)(y+1id) =ay—p5+i(ad+ p7), (a+if)=a—if Va,B,7,0 €R.
o H=C+,C, (a+jB)(v+jd) = ay—08°+j(a’d+ypB), (a+jB)° =a°—jB Va,B,7,6 €C.
e O=H+/MH, (a+£8)(y+L0) = ay—08°+L(ad+~p), (a+L8)¢ =a“—L8 Va,B,7v,6 € H.

Set N* := N\ {0}. For any m € N*, let &?(m) denote the power set of {1,...,m}. Further-
more: for all K € #(m), let |K| denote the cardinality of K.

Examples 2.3 (Clifford algebras). The Clifford algebra Cl(p,q) is the associative x-algebra
constructed by taking the real vector space R2" with m = p+q and with the following conventions:

¢ (ex)rxew(n) denotes the standard basis of R2"; if K = {k1,... .k} with1 <k < ... <
ks < m, then the element ek is also denoted as ey, .. k., ;

e ¢y is defined to be the neutral element and also denoted as 1;
e ci:=1foralke{l,....p} and e} :=—1 for allk € {p+1,...,m};
o 1<k <...<ks<m, then the product ey, - --ex, is defined to be ek,  k.;
o cper = —egey for all distinet hk € {1,...,m};
o ¢f :=ex if | K| =0,3 mod 4 and e := —ek if | K| =1,2 mod 4.
The x-involution x — x¢ is called Clifford conjugation.

For more details on these two examples and their history, we refer the reader to [8] 22].
Another example follows.

Example 2.4 (Dual quaternions). The associative x-algebra DH of dual quaternions can be
defined as H + eH, where (o + €f)(y + €0) = ay + e(ad + ) and (o + €5)° = a© + €8¢ for all
a, B € H. In particular, € commutes with every element of DH and €2 = 0.



On our alternative x-algebra A, we will use the notations ¢t(z) := x + 2¢ and n(x) := za* for
all x € A and call the elements of

Sa:={xeA:t(x)=0,n(z) =1}
the imaginary units of A.
Assumption 2.5. We assume Sa # 0.

Before proceeding to set up the domains of the A-valued functions we are going to study, it
is useful to understand conjugation, ¢ and n a bit more in detail.

Definition 2.6. A fitted basis of A is an ordered basis (wg, w1, . .., wq) of A such that wé = +w,
for all s € {0,...,d}.

Remark 2.7. Every element ws of a fitted basis is an eigenvector for t, with eigenvalue 2 or 0.
Moreover, n(ws) = Fw?.

For v,p € N, let I, denote the real v x v identity matrix and 0,, denote the real v x p zero
matrix.

Lemma 2.8. Fixm > 1. If v1,...,v,, € Sa are linearly independent, then (1,v1,...,0,,) can
be completed to a fitted basis of A.

Proof. Since 1¢ = 1, the element 1 € A is an eigenvector with eigenvalue 1 for the *-involution
A — A ar a° For s € {1,...,m}, the hypothesis vy € Sy implies 0 = t(vs) = vs + V5,
whence v{ = —v,: in other words, v, is an eigenvector with eigenvalue —1. Let C' denote the
real matrix associated to the s-involution A — A a — a° with respect to a fixed basis of A.
Since (a®)¢ = a for all a € A, the equality C? = I,y holds true and the complex spectrum of
C? is {1}. Thus, the complex spectrum of C is {£1}. The generalized eigenspace relative to
+1 is the eigenspace relative to 41, i.e., Ker(C F I441), because the equality C? = I, implies
(C FIg11)? = C?> F2C + Iyy1 = F2(C F I441). By Jordan’s Theorem, there exist p,v € N

with p > 1,v > mand p+ v = d+ 1, as well as a basis B := (wp,ws,...,wq) of A with
wo = 1,wp = V1, ..., Wptm—1 = U, such that

Iy Opy

Ovp —1,
is the matrix associated to the s-involution A — A, a — a® with respect to B. O

We will need to endow A with a Hilbert space structure, as follows.

Definition 2.9. Fiz an ordered real vector basis B = (v, v1,...,vq4) of A with vg = 1. We
denote by the symbols (-,-) = (-, Yg and || - || = || - || the standard Euclidean scalar product and
norm. associated to B'.

In other words, we consider the real space isomorphism

d d
Lg R 5 4, Lp(xo,...,24) = g T Vg = E Vs Tg
s=0 s=0

and endow A with the Hilbert space structure that makes L a Hilbert space isomorphism. For
future reference, we make the following remark.



Remark 2.10. There exists a (real linear) isomorphism CON : R4t — R+ such that
(Lg ©CON o L)) (z) = a*

for all x € A. For every a € A, there exist unique (real linear) endomorphisms Lo, Rq : RITL —
R4 such that
(LB/ oLyo0 Lg/l) (z) = ax, (LB/ oRy 0 Lg,l) (z) = za

for all x € A. Moreover: L, is an isomorphism if, and only if, a is not a left zero divisor in A;
Ra is an isomorphism if, and only if, a is not a right zero divisor in A.

Example 2.11 (Division algebras). Let us assume A = O (or H, or C). The standard basis
B = {1,i,4,k,£,0i, 05,0k} (or B' = {1,i,4,k}, or B' = {1,i}) of O (or H, or C, respectively)
is fitted. For every nonzero element a € A, the isomorphism L is a conformal transformation:
namely, a rotation about the origin composed with a dilation whose scaling factor is ||al|. The
same is true for R,.

Example 2.12 (CY(0,3)). The standard basis B’ = (eg, e1, €2, €3, €12, €13, €23, €123) of the Clifford
algebra C(0,3) is fitted. If we set a := (1 + e123),b := $(1 — e123) in CL(0,3), then a*> = a
and ab = 0. The endomorphism L, : R® — R® has rank 4 and the direct sum decomposition
R® = L,(R®) @ Ker(L,) corresponds to the decomposition C£(0,3) = a C¢(0,2) + bC¥(0,2).

Example 2.13 (Dual quaternions). In DH = H + ¢H, by direct inspection, the standard basis
B' = (1,i,j,k, e ¢€i,ej,ek) is fitted. The endomorphism L. : R® — R® has rank 4. Both the image
L:(R®) and the kernel Ker(L.) correspond to the 4-subspace eH of DH.

We would like the Hilbert space structure we defined on A to be as adapted to the x-algebra
structure as possible.

Definition 2.14. Fiz an ordered real vector basis B = (vg,v1,...,v4) of A withvy = 1. Consider
the symmetric real bilinear form [a,b] = [a,b]p = 3(t(ab®),1)p . If the matriz associated to
[-,-] with respect to B’ takes the form

Ip Op# Op,C
Ovp —1, Ouc
O¢cp Ocw Oc¢e

for some p,v,( € N, then B’ is called an adapted basis of A. We call (p,v,() the signature of
B'. An adapted basis B’ with signature (d+1,0,0) is called a distinguished basis of A.

Remark 2.15. Assume B’ = (vo,v1,...,v4) to be an adapted basis of A with signature (p,v, ().
Ifa = Zgzo asvs, b= Zgzo bsvs € A, then

p—1 p+r—1 p—1 p+v—1
[a,b] = Zasbs - Z asbs, (n(a),1) = [a,a] = Za? - Z a? < a?.
s=0 s=p s=0 S=p
In particular, [a,z] = (a,z) and [z,2] = ||z||* for all x € Span(vo,...,v,—1). The following are

equivalent:
1. B’ is a distinguished basis of A;
2. [, -] is positive definite;
3. [a,b] = {(a,b) for all a,b € A;



4. (n(a),1) = [a,a] = ||al|? for all a € A.

Examples 2.16 (Division algebras). Let A € {C,H,0Q}. By direct inspection, the standard
basis B' is a fitted distinguished basis of A. The functions t,n : A — A take values in R. We
have (a,1) = [a,1] = 3t(a), (a,b) = [a,b] = 1t(ab®) and ||a||* = [a,a] = n(a) for all elements
a,b e A.

Examples 2.17 (Clifford algebras). The standard basis B' = (ex ) ke o (m) of CL(0,m) is a fitted
distinguished basis of CL(0,m), by direct inspection.

For m <2, we find the two division algebras C¢(0,1) ~ C and C¥(0,2) ~ H and the consid-
erations made in the previous examples apply.

If, instead, m > 3, for the element a = 1+ eja3 we have a® = a,a® = 2a, whence t(a) = 2a =
2(@, 1> + 2e103 = 2[[a, 1]] + 2eq93, n(a) =2a = Ha||2 + 2e103 = [[a, a]] + 2e1903.

We now provide an example of an adapted basis that is not distinguished.

Example 2.18 (Dual quaternions). Within the x-algebra DH = H + eH of dual quaternions, we
already remarked that the standard basis B' = (1,14, 4, k, €, €i, ¢j, €k) is fitted. Let us prove that it
is also adapted, but not distinguished.

For a1 = p1 + €q1,a2 = p2 + €qa (with p1,p2,q1,q2 € H) we have t(a1) = t(p1) + €t(q1) and

t(a1(az)) = t(p1(p2)° + e(p1(g2)® + q1(p2))) = 2(p1, p2) + 2€({p1, @2) + (q1.p2)),
n(ar) = ara§ = n(p1) + et(prgf) = [p1ll* + 2¢(p1, q1) -

Thus,
lar, a2] = (pr.p2),  (n(ar),1) = [Ipa]f* < [laa]f

It follows at once that the matriz associated to [-,-] with respect to B’ is

Iy 044
044 044

and that B' is an adapted basis with signature (4,0,4).
An adapted basis always exists, as shown in the next proposition.
Proposition 2.19. [t is always possible to complete 1 to an adapted basis B’ of A.

Proof. Lemma guarantees that A has a fitted basis (1, w1, ..., w4). In particular, the hyper-
plane H := Span(ws, ..., wq) of A is preserved by conjugation and A decomposes into the direct
sum R @ H. We can now define the real linear map Re : A — R to act as the identity on R
and to vanish identically in H. Moreover, a € H implies a® € H, whence t(a) = a + a® € H
and Re(t(a)) = 0. We can define a symmetric bilinear form % : A x A — R by means of the
formula %(a,b) := % Re(t(ab®)) and let (p,v,() denote the signature of 2. We remark that
A(1,1) = 3 Re(t(1)) = 1 and that B(a,1) := 3 Re(t(a)) = 0 for all a € H. By Sylvester’s theo-
rem, we can complete vg = 1 to a basis B’ = (vg,v1,...,vq) of A, with vq,...,vq € H, so that,
for all distinet s,u € {0,1,...,d}: B(vs,v,) = 0; Blvg,vs) =11 0< s <p—1; B(vs,vs) =—1
ifp<s<p+v-—1 Bvs,vs) =0if p+rv < s <d. Clearly, p > 1. We now endow A with
the standard Euclidean scalar product (-,-) = (-,-}p and norm || - | = || - ||z associated to B'.
The very definition of (-,-) implies that (1,1) = 1 = Re(1) and that (vs, 1) = 0 = Re(vy) for all
s € {1,...,d}, whence (a,1) = Re(a) for all a € A. Recalling the definition [a,b] := % (¢(ab®),1),
we conclude that [-,-] = #(-,-). Thus, B’ is an adapted basis with signature (p,v,(), as de-
sired. (|



Although all standard bases in our examples are both fitted and adapted, we do not know an

a priori reason why a general x-algebra should possess a basis that is both fitted and adapted.
The work [I6] defined the quadratic cone of A as

Qa:=RU{zc A\R:t(x) € R,n(z) € R, 4n(x) > t(z)?}

and proved the property
Qi= | Cy,

JeSa

where C; := R+JR for all J € S4. Since each Cj is x-isomorphic to C, we can make the following
remarks for every x = a+ 5J € Q4 (with a, 8 € R, J € S4): the conjugate 2 = oo — 3J belongs
to C; C Qa; t(z) = 2a € R; n(z) = n(z¢) = a® + B2 is a positive real number; provided
x # 0, the element x has a multiplicative inverse, namely r=! = n(z)~ta¢ = 2°n(z)~!, which
still belongs to Q4. In particular, z € Q4 \ {0} is neither a left nor a right zero divisor and
the endomorphisms £,, R, defined in Remark are isomorphisms. Our previous assumption
Sa # () guarantees that R € Q 4.

The next remark is a simple application of [I9] Proposition 1.11]. We recall that the associa-
tive nucleus of A is the real vector subspace of all elements a € A such that a(zy) = (ax)y for

all z,y € A. The associative nucleus of A includes the real axis R.

Remark 2.20. Assume the trace function t : A — A to take values in the associative nucleus
of A, a fact which is always true if A is associative. Take any a,x € A. If n(x) belongs
to the commutative center of A, then n(ax) = n(a)n(z) = n(z)n(a). If n(x) belongs to the
commutative center of A, then n((za)®) = n(aa®) = n(a®)n(x®) = n(x)n(a®). In particular: if
x € Qa (which implies n(x) = n(z°) € R), then

Examples 2.21 (Division algebras). The complex field C, the skew field H of real quaternions
and the real algebra QO of octonions are alternative real x-algebras of dimensions 2,4, 8, respec-
tively. The equalities Qc = C,Qu = H, Qo = O hold true. The sets Sc,Sg,So are, respectively,
the 0,2, 6-dimensional unit spheres in the respective subspaces t(x) = 0, each called the sphere of
imaginary units. For all elements x,y, we have n(x®) = n(x) and, since t,n take values in R,

n(xzy) = n(z)n(y) = n(y)n(z) = n(yz).

Examples 2.22 (Clifford algebras). For any m € N*, consider the Clifford algebra C£(0,m).
The sets Scyo,m) and Qcro,m) are nested proper real algebraic subsets of C€(0,m). While Re-
mark [2Z20 holds true, if m > 4 then n(ab) does not equal n(a) n(b) for general a,b € CL(0,m).
For instance: the elements a := %(1 + e123),b = %(1 + e1234) are preserved by conjugation and
have n(a) = a® = a and n(b) = b*> = b, while n(ab) = ab (ab)¢ = an(b)a = aba # ab = n(a) n(b)
because

dab = (1 + e123)(1 + e1234) = 1 + €4 + €123 + 1234,

daba = = (1 + eq + e123 + €1234) (1 + €123)

1
2
1
5(1 +eq+erosteio3at+ero3 —eiaza+1—eq) =1+ eq03.

Example 2.23 (Dual quaternions). Within the associative x-algebra DH of dual quaternions,
t(p+eq) = t(p) + et(q) and n(p+ eq) = n(p) + et(pq®) for all p,q € H. The set Spy = {p+€q :



p € Sy,q € Im(H), (p,q) = 0} is a 4-dimensional algebraic subset of DH, while Qpy is a 6-
dimensional semialgebraic subset of DH. By direct inspection, n(a) = n(a®) for all a € DH.

Since t and n take values in the commutative center R + eR of DH, we conclude that n(ab) =
n(a)n(b) = n(b)n(a) = n(ba) for all a,b € DH.

2.2 Hypercomplex subspaces

From now on, we will focus on specific subsets of the quadratic cone @ 4, constructed in [26, §3]
(cf. [I7, Lemma 1.4]).

Definition 2.24. Let M be a real vector subspace of our x-algebra A. An ordered real vector
basis (vo,v1,...,0m) of M is called a hypercomplex basis of M if: m > 1; vog = 1; vs € Sy
and vsvy = —vgvg for all distinet s,t € {1,...,m}. The subspace M is called a hypercomplex
subspace of A if RC M C Q4.

Equivalently, a basis (1, v1,. .., v) is a hypercomplex basis if, and only if, ¢(vs) = 0,n(vs) = 1
and t(vsvy) = 0 for all distinct s,t € {1,...,m}. We remark that, for any ¢ € {1,...,m}, the
shortened ordered set (vg,vy,...,v) is a hypercomplex basis of its span. In the special case
m = 1 the hypercomplex subspace M is always a x-subalgebra of A, isomorphic to the complex
field. When m > 2, the hypercomplex subspace M is not, in general, a x-subalgebra of A. The
next theorem was proven partly in [26] §3], partly in [20].

Theorem 2.25. Let M be a real vector subspace of A. Then M is a hypercomplex subspace of
A if, and only if, M admits a hypercomplex basis B = (vo,v1,...,0m). If this is the case, if we

complete B to a real vector basis B’ = (vg, 01, ..., Vm, Um+1,---,0d) of A and if we endow A with
() =C(p and ||| = - ||, then
t(zy©) = t(yz) = 2(z,y), (1)
n(z) = n(z®) = [lz]?, (2)

for all x,y € M.
We can draw from Theorem [2.25] a useful consequence.

Corollary 2.26. Under the hypotheses of Theorem [2.24, the intersection Sa N M is a compact
set: namely, the unit (m — 1)-sphere centered at the origin in Span(vy, ..., Uy ), with respect to
the norm || - ||.

Later in this work work, we will need to control the norms of products of a specific form. We
study this matter in the next remark and in the subsequent proposition.

Remark 2.27. Let us define w = wp pr = MaXyepmvea,|u|=1=|v|| [|[uv]|. By construction, w >
I1]] = 1. Moreover, for allx € M and a € A,

[zall < w |z} {|all -

Proposition 2.28. Assume the trace functiont : A — A to take values in the associative nucleus
of A, which is always true if A is associative. Under the hypotheses of Theorem[2.28, choose any
x,y € M and any a,b € A. Then

n(az) = n(a)l|z]* = lI*n(a), n((za)®) = n(a®)l|lz|* = |l]*n(a®)

and
n(zy) = =2yl = yl*[lz]* = n((zy)°).



If B’ is a distinguished basis of A, it follows that ||ax| = ||al|||z|| = |z|||lall, [[(xa)¢|| = ||a||||z| =
lzllllacll and [[zy| = |zl [yl = llyll |=] = [[(zy)°|-

If B’ is fitted, then ||a|| = ||a®||. If B' is fitted and adapted, then [a,z] = (a,z) and [z,z] =
llz||?. Finally: if B' is a fitted distinguished basis of A, then

laz| = llall =] = [lz|| [la]l = |zal , (3)
whence wp,p = 1.

Proof. The first two equalities are applications of Remark Z20, where we take into account
Theorem 228 If, moreover, B’ is a distinguished basis of A, then Remark T8 guarantees that
ozl = (n(az), 1), flal> = {n(a), 1), lwa)°l? = (n((@a)®), 1), a2 = (n(a),1), Jayll® =
(n(zy), 1), and || (zy)°[* = (n((zy)°), 1).

If B’ is fitted, then the *-involution p — p© preserves the norm || - || = || - ||z because it maps
every element of B’ either into itself or into its opposite. Now assume B’, which includes as its
first m + 1 elements the elements of the hypercomplex basis B, to be fitted and adapted. Taking
into account that = € Span(B), Remark 215 guarantees that [a,z] = (a,z) and [z,z] = ||z|]°.
Finally: if a distinguished B’ is also fitted, then we can substitute ||za|| for ||(za)¢|| and ||a|| for
el

Example 2.29 (Paravectors). The space of paravectors R™Tt is a hypercomplex subspace of
the Clifford algebra C¢(0,m), with hypercomplex basis B = (eg,e1,...,em). We complete B
to the standard basis B' = (ex)kem(m) of CL0,m), which is fitted and distinguished. Thus,
Theorem and Proposition yield that equalities (), @) and @) hold true for all a €
Cl(0,m),z,y € R™*L. In particular, wgp = 1.

On the other hand, for m > 3, the norm || - || is not multiplicative over general elements
of CL(0,m). For instance: the elements a = 1+ eja3 and b = 1 — ej23 have ab = 0, whence
labll =0 £ 2 = [l o]

For every m > 2, an example of basis B" of C¢(0,m) that is fitted but not adapted can be
obtained from B' by substituting peis for eja (for some p such that 0 < p < 1). Indeed, in
this case n(peis) = p? & {1,0,—1}. Moreover, in this case we have wgpr > p~* > 1 because

lexezllsr = llexzllsr = n="|perzllsr = p=".

Examples 2.30 ([I9, Example 1.15]). For every h € {1,...,m} with h = 1 mod4, the set

Vi =< zo + E Ty ke €y ke - X0y Ty ky, € R
1<k <...<kp<m

is a hypercomplex subspace of CL(0,m). It has hypercomplex basis B = (€ky.. k), )1<ki<...<kp<ms

whence dimVj, = (') +1 > (%)h + 1. If we set h(m) =4[22 ] + 1 (whence % — 2 < h(m) <
T +2), then dim V() grows exponentially with m. Again, we can complete B to the fitted
distinguished basis B' = (ex) ke m) of CL(0,m). Equalities (@), @) and @) hold true for all

a€ Cl0,m),z,y € Vi. Thus, wpp = 1.

Further examples of hypercomplex subspaces can be constructed by means of the next lemma,
also proven in [20].

Lemma 2.31. Let M be a real vector subspace of A with a hypercomplex basis B = (vg,v1, ..., Um)
and set U := vy---Vy,. The ordered set B := (vg,v1,...,0m,0) is a hypercomplex basis of

M = Span(vg, v, ...,vm,0) if, and only if, m = 2mod4. If this is the case, then not only

Py

M but also M is a hypercomplex subspace of A.
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Several applications of Lemma 2.37] follow.

Example 2.32. A further example of hypercomplex subspace of C(0,m) is the space W), =
Span(eg, €1, €a,...,en,€12..1), for any h < m with h = 2mod4. Once more, we can com-
plete the hypercomplexr basis B = (eg,e1,ea,...,en, e12..1) to the fitted distinguished basis B’ =
(ex)kezm) of CL(0,m). Equalities M), @) and @) hold true for all a € CL(0,m),z,y € W)
and wp p = 1.

We single out the case h = m = 2, as follows.

Example 2.33 (Quaternions). Within the real algebra of quaternions H = C¢(0,2), the sub-
space of paravectors R**1 is a hypercomplex subspace, with hypercomplex basis (eg,e1,e2). The
whole algebra H is also a hypercomplex subspace of H, with hypercomplex basis (eg,e1,e2,€12) =
(1,4,7,k). In all examples and statements concerning H, unless otherwise stated, we shall assume
B =8B = (1,i,7,k) and endow H with its standard scalar product and norm. For all x,y € H,
we have t(zy©) = t(ya®) = 2(z,y), n(z) = n(z®) = |z[*, and [lzy| = =] ly] = Iyl =]l = lly=]l.
Moreover, wpp = 1.

Example 2.34 (Dual quaternions). Within the x-algebra DH = H+ eH of dual quaternions, two
elements v1 = p1 + €q1,v2 = pa + €q2 belong to Spy if, and only if, p1,p2 € Su,q1, g2 € Im(H)
and (p1,q1) = 0 = (pa,q2). If this is the case, then A := (1,v1,v2) is a hypercomplex basis of
the 3-space Span(1l, vy, v2) if, and only if, t(v1vS) = 0. This happens if, and only if, (p1,p2) =0
and {q1,p2) = —{(q2,p1). If this is the case, Lemma[Z31] guarantees that A= (1,v1,v2,v102) i
a hypercomplex basis of the 4-space Span(1, vy, va, v1v2). Both A and A can be completed to the
basis A" = (1,v1, v2, 1V, €, €V1, €V2, €V1V2) of DH.
For instance, if for some o, 8 € R we set v1 =i + e(aj + Bk),v2 = j + e(—ai + Bk) and

v :=v1v2 = iJ + €(i(—ai + Bk) + (aj + Bk)j) = k — Be(i + ),

then Span(1,v1,ve,v3) is a hypercomplex subspace of DH, which can be completed to the basis
(1,01, v2,v3, €, €i, €, €k) of DH.

Choosing o = 0 = 3, we find that H = H + €0 is a hypercomplex subspace of DH, whose hy-
percomplex basis B = (1,1,7,k) can be completed to the standard basis B' = (1,1, 7, k, €, €i, €], k).
While this basis is adapted but not distinguished, we still find that wpp = 1. Indeed, for
x=x+€0,a =p+eq (with x,p,q € H) and for || - || = || - |5, we find that xa = xp + exq has
llza||? = [|zp||? + ||zql|?> = ||=||*||a|>. On the other hand, if X is such that |lab|| < X||al|||b]| for all

a,b € DH, then A > % > 1. Indeed, the element a = \/quei\/g has ||al| = 1 but a® = %Jrei%

has fla?]| = /4 + & = Z = Za|2

Examples of hypercomplex subspaces are available in nonassociative settings, too.

Example 2.35 (Octonions). C,H,Q are examples of hypercomplex subspaces of Q. In any
example concerning Q, we shall assume B = B' = (1,4,4,k,1,1i,1j,lk) and endow QO with its
standard scalar product and norm. Not only B’ is a fitted distinguished basis of Q: we also have
t(xy®) = t(yz©) = 2{x,y) and n(z) = n(x¢) = ||z||? for all z,y € Q. Moreover, ||zy|| = ||z| ||ly| =
Iyl =l = lyzll for all x,y € O and wpp = 1.

2.3 Monogenic functions on hypercomplex subspaces

For the present subsection, M is a fixed hypercomplex subspace of the alternative x-algebra A,
with a fixed hypercomplex basis B = (vo,v1, ..., 0y,). Moreover, B is completed to a real vector
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basis B’ = (v0,01, -+, Vm,Umt1,---,v4) of A. We also fix a domain G in the hypercomplex
subspace M, i.e., a nonempty connected open subset G of M. We let the symbol G denote the
closure of G in M. Clearly, the real vector space € (G, A) of ¢! functions G — A is both a left A-
module and a right A-module. The same is true for the real vector space (G, A), comprising
restrictions to G of ¢! functions from some open neighborhood of G' to A. Following [26]
Definition 2], we give the next definition. In addition to the previously defined Lg : R¥T! — A,
we will use

m m
1
Lg:R™ = M, Lg(zo,...,om) :szvs :szxs.
s=0 s=0

Definition 2.36. Let ¢,1) € €1(G, A). For s € {0,...,m}, we define G := LY (G) and

0 _ _
Os¢p = Lp: o <8ms (LB/l ogo (LB)|€;~)> ) (LBl)‘G c¢°(G,A).
Moreover, we define O and Op by means of the equalities
Ipd =) v:0:0, O =) vi0:0=00d — Y 0. 050,
s=0 s=0 s=1
¢56 = Z(asw)vs s ¢5B = Z(asw)vs = 601/] - Z(aslﬂ)vs .
s=0 s=0 s=1

The right A-submodule of those ¢ € €1 (G, A) such that Opp = 0 is called the left kernel of
O0p. Its elements are called left-monogenic with respect to B. The left A-submodule of those
Y € €1(G, A) such that 1dp = 0 is called the right kernel of 9. Its elements are called right-
monogenic with respect to B.

If G is bounded and has a €' boundary G and if ¢, € €1(G,A), we similarly define
0pd, 0pd, Vs, Vs € €°(G,A) and call ¢ left-monogenic with respect to B if dgp = 0, ¢
right-monogenic with respect to B if 105 = 0.

The operator Ap : €%(G, A) — €°(G, A) is defined by the formula

Apd = 0.(0:0).
s=0

The elements of the kernel of Ag are termed harmonic with respect to B.

Remark 2.37. For any s € {0,...,m}, we have

Osp(x) = _lim 71 (¢(x + evs) — ¢(2))
R3e—0
at all x € G. In particular, the operator Os does not depend on the whole basis B' of A chosen
but only on the choice of vs. As a consequence, the operators 0p, 0, A do not depend on the
whole basis B' of A chosen, but only on the basis B of M chosen.

Our notation Ag is consistent with [26, §3], while our 05,05 are twice the operators with
the same symbols constructed in [26] §3]. In accordance to [26, Proposition 5 (b)], we make the
next remark.

Remark 2.38. The equalities Agp = O0rd = 0gdpd = ¢ Ol = ¢ 0rdp hold true for all
¢ € €%(G,A). In particular, every €? function that is left- or right-monogenic with respect to
B is automatically harmonic with respect to B, whence real analytic.

12



For future use, we give the next definition.

Definition 2.39. For any u € N and h = (hy,...,hy,) € N%, we adopt the notations |h| :=
Su ohs and h! := [[4_, hs!l. Now, for any h = (ho, ..., hy) € N™1 we define the operator

Vi ¢h(G,A) — €°(G, A) by setting

VB0 = 05° (01" (... (O 9) ...)
for all ¢ € €'PI(G, A).

3 Properties of monogenic functions on hypercomplex sub-
spaces

This section studies left-monogenic functions on hypercomplex subspaces. To keep our presenta-
tion simple, we will work under the additional hypothesis that A be an associative algebra. This
assumption will be mentioned explicitly in all definitions and results, because later in the paper
we will drop it and go back to general alternative x-algebras. Within A, we fix a hypercomplex

subspace M, with a fixed hypercomplex basis B = (vg, v1, ..., vy). Moreover, B is completed to
a real vector basis B’ = (v, v1, ..., Vm, Um+1,--.,04) of A and A is endowed with the standard
Euclidean scalar product (-,-) and norm || - || associated to B'.

The reader with experience in Clifford monogenic function theory will be easily convinced
that the properties stated in this section hold true. Therefore, all proofs of these properties are
postponed to the final Appendix.

3.1 Monogenic polynomial maps on a hypercomplex subspace

This subsection is devoted to polynomial left-monogenic functions. The basic examples of poly-
nomial left-monogenic functions are the hypercomplex analogs of Fueter variables and Fueter
polynomial functions. We perform the same construction on any hypercomplex subspace. In
particular, we overcome the traditional distinction between quaternionic and Clifford Fueter
polynomials.

Definition 3.1. Assume A to be associative. For s € {1,...,m}, we define the s-th hypercom-
plex Fueter variable as

Cs = Cf = Ts — ToUs -
Let us consider the elements e; = (1,0,...,0),e2 = (0,1,...,0),...,€y, = (0,0,...,1) of N™. For
allk = (k1,...,kn) € Z™, we define the hypercomplex Fueter polynomial function PE M= A
so that the following formulas hold true for x € M :

PE.=0 if k ¢ N™

PE.=1 if k=(0,...,0)

K| PE(x) = > kP (2)¢E if ke N™\ {(0,...,0)}
s=1
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Example 3.2. We have:

7D(L(g),o,o...,o) =1
7D(Li,o,o,...,o) = (1, 7)(l?u,o,,,,,o) = (2, 7)([f),(),1,...,0) = (3.
B 1 B 1 B 1
Pii0,...0) = §(C2C1 +¢¢2), Pioa,..0) = §(C3C1 +GG)s - Poa,.0) = §(§3§2 +(2C3), -

73([1171,___,0) = %(ﬁs@@ + C2G3¢1 + (3162 + C1¢3C2 + (2C1G3 + (1¢2G3), - -

Before we even prove that the Pp’s are left-monogenic with respect to B, we wish to establish
the following properties, which will be crucial later in the paper. We point out that

m m
. +1 _ _
Ly :R™ — M, LB(xO,...,xm)—ZxSvs —szxs
s=0 s=0

is a Hilbert (sub)space isomorphism.

Proposition 3.3. Assume A to be associative. For k = (ki,...,kn) € Z™, the following
properties hold true.

1. There exists a map px = (P, pi, - .., p}) : R — R™FL sych that PP = Lo py o Lgl
for any hypercomplex basis B of a hypercomplex subspace M of A.

2. The equality (ky + 1) py = ks pi (., .. holds true for all distinct s,u € {1,...,m}.
3. Forallz € M,

> kevsPE . (2) = ki Pr_. (x)vs, (4)

s=1 s=1

K| P (x) =Y ke BPE_ () (5)
s=1

4. The equality OsPE = ks ’PE?ES holds true for all s € {1,...,m}.
Remark 3.4. Let k, k' € Z™. As a consequence of property 1, PE(M) C M and
IPE(xovo + 2101 + - . . + Zmm) || = IPx(Z0s T1s - - -y T )|[Rm41

for all (wo,x1,...,2m) € R™TL By property 2, if k = kges, then PE(M) C R+ Ro,. As a
consequence of property 4, we obtain: VgJ’k)PE =kl if kI, > ky, for some u € {1,...,m}, then
(0.K’ _

VIPE = 0.

In the classical context of Clifford algebras, where M = R™%! is the paravector space within
A = C0(0,m), the property PE(M) C M for all k € Z™ was proven in [24].

In analogy with [22, Proposition 9.21], we find that the Pg’s generate all polynomial left-
monogenic functions.

Definition 3.5. Within the right A-module of functions M — A that are left-monogenic with
respect to B, for any k € N, we define UP to be the right A-submodule of those P : M — A
such that P(xg + 2101 + ... + TV s a k-homogeneous polynomial map in the real variables
Loy L1yewoyLym-
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Proposition 3.6. Assume A to be associative and fix k € N. Then {Pk
for Uk . Namely, for all P € UE, the equality

}Ikl . 18 a right A-basis

=Y Pl v<0 X P(0) (6)

[k|=F

holds true at all x € M.

3.2 Integral representation of functions on a hypercomplex subspace

Let us fix a domain G in the hypercomplex subspace M of A. Our next aim is establishing integral
representations for functions G — A. We will work with respect to the coordinates xg, ..., Zm,
i.e., using the previously-defined Hilbert subspace isomorphism Lg : R™*1 — M C A. We will
also use Hilbert space isomorphism Lp : R¥T! — A. Differential forms were set up in 22, §A.1]
over a general associative algebra and not specifically over Clifford algebras. Recalling that we
are assuming A to be associative, we adopt the same setup. In particular, we set

do=do, =dxg Ndxy A... Ndxy,,

dat = (=1)°dzo A ... ANdxs—1 Ndxsy1 Ao ANday,,

m
* *
dz™ = E vs dxy .
s=0

Volume integration was set up in [22] Definition A.2.1] specifically over Clifford algebras. We
now define and study it over our associative x-algebra A. We use, for all integrable functions
0, - .., ¢q : G — R the notation

/G(¢07---7¢d) do := (/Gqﬁoda,...,/gqbddo) e R4,

Definition 3.7. Assume A to be associative and fix a domain G in the hypercomplexr subspace
M of A. For ¢ : G — A, we set

/G¢d0 = Lg (/GLB,loqﬁdo) :

In other words, if we have a decomposition ¢ = Zgzo Ps Vs = Zdzo vs ¢s, where ¢, ..., 04 :

S
G — R are real-valued integrable functions, we call ¢ integrable and define its integral as

/qudg::évs/ngg(/G¢sd0)vs.

The integral in Definition 37 has the properties described in the next proposition, which
subsumes [22] Proposition A.2.2].

Proposition 3.8. Assume A to be associative and fix a domain G in the hypercomplex subspace
M of A. The following properties hold true for all integrable ¢, : G — A, all a,b € A and all
disjoint domains G1,G2 in M :

1. G=G1UGy= [ ¢do = [, ddo+ [, ¢do.

2. fG(a¢+b1/))do = afG¢dU+bfG1/)do.
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3. [o(da+b)do = ([, odo)a+ ([, do)b.
4o (Jg#do) = [ 6" do.

5. | g ddol < fy 0] do.

Assume G to be bounded and to have a €' boundary 0G. For any choice of A-valued ¢!
functions ¢, on an open neighborhood of 9G, the work [22 §A.2.1.3] defines and studies the
integral [, ¢ (x)dx*¢(x). For fixed p € M, R > 0, let us adopt the notations B™*!(p, R) :=

{r €M :|jz—p| <R} and §m+1(p,R) ={z € M :|z—p| <R}. Werecall from [22, Example
A.2.17):

Remark 3.9. Assume G = B"(p,R). For 0 <r < R,w € 90B™*1(0,1) and v = p+rw € G,
we have do = r™dr|do,| in G, where |do,| denotes the surface element of the unit sphere
dB™T(0,1). Similarly, for x = p+ Rw € G, we have dz* = R™ w |do,| on 0G.

The integral faBmH(o 1 d(w) |doy| is defined in [22] §A.2.1.3], too. For future use, we establish
the following inequality.

Lemma 3.10. | ,0110,1) () [doul|| < fyprniao.1) 0wl [dow]-
The next result subsumes [22] Theorem A.2.21 and Theorem A.2.22].

Theorem 3.11 (Gauss). Assume A to be associative and fix a bounded domain G in the hyper-
complex subspace M of A, with a €' boundary OG. Then

/ b = / (435) ¢ + ¥ (Fs9)) do
G G

for any ¢, € €*(G, A).

We will soon plug into the Gauss theorem, in the role of ¥, the function described in the next
definition and lemma (which generalizes [22, Proposition 7.7]).

Definition 3.12. The Cauchy kernel of M is the function E,, : M \ {0} — A defined by the
formula
1 rmi(l)

E,, = m = 2———== .
@) = et o= 2R,

In the last definition, the letter I' denotes the gamma function and the number o, is the
(surface) volume of the unit m-sphere in R™*1.

Lemma 3.13. If we fix x € M, then the function
M\{z} = A, y— En(y—x)
is both left- and right-monogenic with respect to B.

We are now ready for the announced integral representation, which subsumes [22] Theorem
7.8 and Theorem 7.9].

Theorem 3.14 (Borel-Pompeiu). Assume A to be associative and fix a bounded domain G in
the hypercomplex subspace M of A, with a €1 boundary 0G. If ¢ € €1 (G, A), then

i} — | #(x) frxed .
| Bnly—2)dy ¢(y)—/GEm(y—$)56¢(y)d0y—{ 0 ifxeM\G.
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In the special case when ¢ is left-monogenic with respect to B, Theorem [B.14] takes the special
form described in the next corollary (see [22 Theorem 7.12 and Theorem 7.13] for the Clifford
and complex cases).

Corollary 3.15 (Cauchy Formula). Assume A to be associative and fix a bounded domain G in
the hypercomplex subspace M of A, with a €* boundary 0G. If ¢ € €1(G, A) is left-monogenic
with respect to B, then

. | ¢(z) ifxed
/é)GEm(yx)dy d)(y){ 0 o e M\ G,

We conclude this subsection with the following property, which subsumes [22], Corollary 7.31].

Proposition 3.16 (Mean value property). Assume A to be associative and fix an open ball
B™tt = B™+l(z, R) in the hypercomplex subspace M of A. If ¢ € €1 (B m+1, A) is left-
monogenic with respect to B, then

1
M@:——/ oz + Ruw)|dow)
Om JoBm+1(0,1)

After some preliminary work in the next subsection, Corollary B.I8 will be the key ingredient
to endow every function ¢ that is is left-monogenic with respect to B with a series expansion in
the forthcoming Subsection [3.4]

3.3 Properties of the reproducing kernel and harmonicity

This subsection studies the reproducing kernel E,,(y — x), whose role was fundamental in Theo-
rem[3 T4 and in CorollaryB.15] and uses it to establish that left-monogenic functions are harmonic
and real analytic.

Our first aim is expanding FE,,(y — x) into series. We begin by recalling some standard
terminology.

Definition 3.17. Let &, & be finite-dimensional Euclidean spaces and let A be an open subset of
&', For any {fr}ren C €°(A, &), we say that the function series >, o fr is normally convergent
in A if, for any compact subset C' of A, the number series ), . maxc || fx|s converges. If this is
the case, we call the function f: A — & with f(x) = ), o fr(x) the sum of the series » ;o fx-

The chosen ordering of N plays no role in assessing the convergence of ), - maxc || fxlle
because each term is nonnegative. The theory of Banach spaces also guarantees that the result
of the sum >, . fr(2) does not depend on the chosen ordering of N and that f € €°(A,&).
Our summands fi will mostly take the form fi, = >, . gk, for given {gi}xenm C A, &).

— € .
L W into a normally convergent
m

We now expand the reproducing kernel E,,(y — ) =
series in the next theorem.

Theorem 3.18. There exists a family {qk}keNm’ where, for |k| =k, qx : M\ {0} = M is a
(k + 1)-homogeneous polynomial function such that

Em(y — ) = Z > P H |m+2)k+1

™ keN |k|=k

for all (z,y) € A = {(z,y) € M x M : ||z|| < |ly||}. Here, the series converges normally in A

because o) N
+m e
| 5 Pt < va (1) el

|k|=k

17



In particular, E,, (y—2) is a real analytic function in the real variables xo, 1 ..., Tomy Yo, Y1 - - - » Y-

We now wish to construct an analog of Corollary[B.I5 for derivatives, subsuming [22 Corollary
7.28]. The resulting integral formula for derivatives will allow us to prove that every function
that is left-monogenic with respect to B is harmonic with respect to B and real analytic. We
recall that w = wp pr > 1 is a constant such that ||za| < w||z| [ja]| for all z € M,a € A (see
Remark 227]). Moreover, by Proposition 228 if A is associative and B’ is a fitted distinguished
basis of A, then w = 1.

Theorem 3.19 (Integral formula for VB¢). Assume A to be associative. Fiz a domain G in the
hypercomplex subspace M of A and a function ¢ : G — A that is left-monogenic with respect to BB.
Then ¢ is harmonic with respect to B and real analytic. For every h € N™ L the function ngﬁ 18
still left-monogenic with respect to B and real analytic; given any open ball B™+t! = B™*1(p R)

whose closure B™ " is contained in G,
Viola) = ()M [ (VhE) (=) d” ()
oBm+1
for all x € B™L; and, at the center p of the ball B™*1,
C
h —m . 2 h
VB < £ max o, Cn=ome® | max (VBB

The various properties stated in Theorem [3.19] have interesting consequences. The last in-
equality immediately yields the next corollary (see [22, Proposition 7.33] for the Clifford case).

Corollary 3.20 (Liouville). Assume A to be associative. Let ¢ : M — A be left-monogenic with
respect to B. If there exist n € N and ¢ > 0 such that

lp(@)l| < ellz|"

for all x € M, then ¢ is a polynomial function and deg(¢) < n. In particular: if ¢ is bounded,
then ¢ is constant.

Moreover, harmonicity allows to prove the next result, which subsumes [22, Theorem 7.32].

Theorem 3.21 (Maximum Modulus Principle). Assume A to be associative. Fiz a domain G
in the hypercomplex subspace M of A and a function ¢ : G — A, left-monogenic with respect to
B. If the function ||¢]| : G — R has a global mazimum point in G, then ¢ is constant in G.

Finally, real analyticity will be the key ingredient to construct series representations of mono-
genic functions in the next subsection.

3.4 Series expansions of monogenic functions on a hypercomplex sub-
space
This subsection is devoted to series representations of functions that are left-monogenic with

respect to the hypercomplex basis B. The main result follows (see [22, Theorem 9.14 and Theorem
9.24] for the complex and Clifford cases).

Theorem 3.22 (Series expansion). Assume A to be associative. Fiz a domain G in the hyper-
complex subspace M of A and a function ¢ : G — A that is left-monogenic with respect to B. In
every open ball B™ 1 (p, R) contained in G, the following series expansion is valid:

o) =3 . P o, ax=VE¥ o).

keN k|=k
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Here, the series converges normally in B™ ! (p, R) because

MZ_kPE@pmngw?ﬁC“jnm) (7’_1)’“ e 00|

T2 ly—pl=r2

max
lz—pl|l<r:

whenever 0 < r; <re < R.
Theorem [3.22 has an extremely relevant consequence, which subsumes [22, Theorem 9.27].

Theorem 3.23 (Identity Principle). Assume A to be associative. Fix a domain G in the hy-
percomplex subspace M of A and functions ¢, : G — A that are left-monogenic with respect
to B. If G contains a set of Hausdorff dimension n > m where ¢ and 1 coincide, then ¢ = 1
throughout G.

For future reference, we give the next definition and provide in the subsequent remark an
equivalent restatement of Theorem [3.27] .

Definition 3.24. Assume A to be associative and fix tg € N. Let M be a hypercomplex subspace
of A, having a hypercomplex basis B = (v, v1,...,0y) with m > to. Let G be a domain in M
and let ¢ : G — A be a left-monogenic function with respect to B. For any h € N™*!  define
5B chl(G, A) = €°(G, A) as

06 = (o vy o) T VB

m
ho oh he h hom
= 60081 Lo 615010 (—Ut0+18t0+1) totl | (—’l}mam) o.

Remark 3.25. Assume A to be associative and fix to € N. Let M be a hypercomplexr subspace
of A, having a hypercomplex basis B = (vg,v1,...,0m) with m > tg. Let G be a domain in
M and let ¢ : G — A be a left-monogenic function with respect to B. For every open ball
B+l = Bmt(p R) contained in G, the following series expansion is valid for x € B™T1:

Ko — k 1 1 0,k
o(x) = ZHZ P —p)olr v - vy 08 6(0)
€N |k|=k

Here, the series converges normally in B™+! because

max
lz—pl|<r1

kE+m r k
< 2( )(—) max  [o()]
m T2 [ly—pll=r2

whenever 0 < ry < ro < R.

K ko1 1 o0k
> Pl = pol v ot 1508 o)

4 Regularity in hypercomplex subspaces

We henceforth make the following assumption.

Assumption 4.1. V is a hypercomplex subspace of the alternative real x-algebra A, having a

hypercomplex basis B = (vg,v1,...,v,) for some n € N*. After completing B to a real vector
basis B = (vo, 01, ..., Vn,Unt1,.-.,0q) of A, we endow A with the standard Euclidean scalar
product (-,-) = (-, )p and norm || - || = || - ||z associated to B'.
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There is a good reason to change notations with respect to Section 2] which proved properties
valid for an (m + 1)-dimensional hypercomplex subspace M of A, for domains G C M and for
functions ¢ : G — A. Indeed, we will apply those properties not only when m =n and M =V,
but also when m < n and M is a specific (m + 1)-dimensional hypercomplex subspace of A
contained in V. The precise construction of these subspaces is the subject of the next subsection.

4.1 T-fans

Within our hypercomplex subspace V', we now construct some useful fans.

Definition 4.2. For 0 < ¢ < m < n, we consider the (m — { + 1)-dimensional subspace
Ry, = Span(ve, ..., Um) .
Its unit (m — £)-sphere is denoted by Sg,m,.

For instance: Rg, =V and Sy, = {1,z € A: > a7 =1} =SaNV. In general,
Se,m is a subset of S4 NV if, and only if, £ > 1. We recall that, by Corollary 2.26] S4 NV is a
compact set.

Definition 4.3. For any number of steps 7 € {0,...,n} and any list of steps T' = (to,...,t;) €
Nt with 0 < tg <t; <...<t, =n, we define the T-fan as
R07t0 C Ro,tl g P g RO,tT - V .

=

The first subspace, Ro y,, is called the mirror. We define the T-torus as
T:= St0+1,t1 X ... X St,,1+1,t,

when 7> 1 and as T := ) when 7 = 0.

We assume henceforth 7 € {0,...,n} and T = (to,...,t;) € NTT1 (with 0 <tg <t; < ... <
t; = n) are fixed. Necessarily, n > to + 7. The mirror Rg ¢, of the T-fan is either the real axis
R or a hypercomplex subspace of A, while all other elements of the T-fan are hypercomplex
subspaces of A. Moreover, if 7 > 1 then, for every h € {1,...,7}, the sphere S, 414, is a
(tp, — tp—1 — 1)-dimensional subset of Sy NV and the T-torus T is a (n — ¢ty — 7)-dimensional
compact set contained in (Sa)".

Example 4.4 (Paravectors). If V is the space R" ™! of paravectors in Cl(0,n) (see Ezam-
ple[Z29), then the T-fan is

Rt0+1 g Rt1+1 g o g Rt,--‘,—l _ Rn-‘,—l )

Example 4.5 (Quaternions). If V = H within H (see Example[Z.33): the 3-fan is H; the (2, 3)-
fan is R + iR 4+ jR C H; the (1,3)-fan is C C H; the (0,3)-fan is R C H; the (1,2,3)-fan is
C C R+ iR+ jR C H; the (0,2,3)-fan is R C R+ iR+ jR C H; the (0,1, 3)-fan is R C C C H;
and the (0,1,2,3)-fan is R C C C R+ iR+ jR C H.

The work [20] includes the next remark and lemma, which are useful tools to define and study
the concept of J-monogenic function for any J € T.
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Remark 4.6. Fvery x = Z?:O veze € V can be decomposed as x = 20 + ' + ... 4+ 27, where

ol = Zzit}hﬁl xevg € Ry, 414, (with t_y := —1). The decomposition is orthogonal, whence
unique. When 7 > 1, there exist 8 = (f1,...,8:) € R™ and J = (J1,...,J:) € T such that
r=2"+ B Ji+... + B (7)

Equality (@) holds true exactly when, for each h € {1,...,7}: either " # 0,8, = £||2"|| and
Jp = %; orz = 0,8, =0 and Jy, is any element of St 141t -

Lemma 4.7. If 7 > 1, fir J = (J1,...,J;) € T and set
R?"‘T"_l :=Span(By), By :i= (v0,v1,.-,Vt5,J1,---,J7)-

If 7 =0 (whence to =n > 1), set J := 0, By := (vo,v1,...,0t,) = B,R%"""l := Span(By) =V. In
either case, By is a hypercomplezx basis of R?}"“T"_l, which is therefore a hypercomplex subspace
of A contained in V.. Moreover, if J' € T, then the equality Rf}”‘T‘H = Rf,”,*'TH is equivalent to
Je{xh} x...x{£J:}.

For future use, we remark that if J = (J1,...,J--1,J;) € Tand if J' = (J1,...,Jr-1,JL)
for some J. € Sy, 110, \ {£J-}, then RPTTH ARST™H is a (¢ + 7)-dimensional space, which
we may identify with the (Jp,..., J-—1)-slice RE‘}TT Ty
of A'if 7> 1 and with the mirror Rg, if 7 = 1. We also make the following remark.

Remark 4.8. For all J € T, the hypercomplex basis By := (v, V1, ..., Vg, J1, .-, Jr) ofRf]“JrTH
can always be completed to a basis (By) of A that is orthonormal with respect to (-,-)p/, so that

(5B = (s and || -,y = - 5

) of the hypercomplex subspace R ¢, ,

4.2 T-regularity

This subsection is devoted to defining a new notion of regularity for functions f : Q — A, where
Q) is a domain in V.

Definition 4.9. If 7 > 1, fix J = (J1,...,J-) € T. If 7 =0, set J := (). Over any do-
main G in R%*71 the J-Cauchy-Riemann operator 0y : €1 (G, A) — €°(G, A) is defined as
dy = 0p, and the operators 0; : €1 (G, A) — €°(G,A) and Ay : €*(G,A) — €°(G, A) are
defined as 0y := 0, and Ay := Ap,, according to Definition [Z.30. Explicitly, referring to the
decomposition () of the variable x, we have

5'] = 810 + ’Ulaxl + ...+ ’Utoaxto + Jlagl + ...+ JTagT s

a] = 810 — ’Ulaxl — ... ’Utoaxto - Jlagl —ei.— JTagT ,

_ a2 2 2 2 2
Ay =0z +0;, +...+8% +05 +...+05. .

The left kernel of ; is denoted by Mon (G, A) and its elements are called J-monogenic func-

tions. The elements of the kernel of Ay are called J-harmonic functions.

In the special case when 7 = 0, whence tg = n, our last definition sets 5@ =0 = Opy 010z, +
o FUn0y,, as well as Oy := OB = Opy — 0102, —. .. — 00y, and Ng := A =92 +02 +...+03 .

For all J € T, the class Mon (G, A) is a real vector space (a right A-module if A is associa-
tive). Moreover, J-monogenicity is preserved under composition with translations by elements
of R?"’TH. Using the formal definition 9 := 05, is necessary to guarantee, for .J,.J’ € T,

0y =0y <= RYFTH =R (8)

Similar considerations apply to 9y, A . Remark 2.38] and Theorem B.19] allow the next remark.
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Remark 4.10. Fiz any domain G in R?}"“T"_l. The equalities 0705 = 0707 = Ay hold true on
€*(G, A). Moreover, J-monogenic functions are real analytic and J-harmonic.

The work [20] also defined the new concept of T-regular function. Its special case with
A =Cl0,n),V =R"! and 7 = 1 was independently constructed in [32] (see also [34]) under
the name of generalized partial-slice monogenic function.

Definition 4.11. For J € T (orJ =10, in caseT =0) and forY CV, f : Y — A, the intersection
Y;:=YnN RZOJFTH is called the J-slice of Y. Consider the restriction f; := f\y,- Let Q be a
domain in V. A function f: Q — A is termed T-regular if, the restriction fj : Q; — A is J-
monogenic for every J € T, if 7 > 1 (for J =0, if 7 = 0). If, moreover, f(Rf,”"‘T""l) C R?"‘T"_l
for all J € T, then f is called T-slice preserving. The class of T-regular functions @ — A is
denoted by Reg (2, A).

In the last definition, of course we consider the condition “f; : Q; — A is J-monogenic”
automatically fulfilled when Q; = (). For future use, we make the next remark.

Remark 4.12. Given a domain Q in V, the class Regp(Q, A) is a real vector space (a right
A-module if A is associative). Moreover, if f € Regp(Q, A) and p € Roy,, then setting g(z) =
flx+p) defines a g € Regp(Q —p, A). This function g is T-slice preserving if, and only if, [ is.

As remarked in [20], T-regularity subsumes some of the best-known function theories over
Ce(0,n).

Example 4.13 (Paravectors). Fiz a domain Q within the paravector subspace R™™1 of C£(0,n)
(see Example[Z29). For any function f:Q — CL(0,n):

o f is n-regular if, and only if, it is in the kernel of the operator Oy, + €104, + ... + €n0y, ;
this is the definition of monogenic function (see, e.g., [1,[2, [22]);

o fis (0,n)-regular if, and only if, for any Ji1 € S1,, = Scpo,n) N R 1 the restriction fy,
to the planar domain Q;, C Cy, is a holomorphic map (Q;,,J1) — (CU0,n), J1); this is
the same as being slice-monogenic, [3]] (or slice-hyperholomorphic, [6]).

The work [20] also contains a complete classification of T-regularity over the hypercomplex
subspace H of H. Not only T-regularity subsumes the best-known quaternionic function theories.
It also includes an entirely new function theory, called (1, 3)-regularity and studied in some detail

in [20].

Example 4.14 (Quaternions). Let Q be a domain in H and consider a function f : Q — H.
Then:

o fis 3-reqular < f belongs to the kernel of the left Cauchy-Riemann-Fueter operator Oy, +
10y, + JOuy + kOyy & [ is a left Fueter-regular function (see [9, [10, [29));

o fis (2,3)-reqular < (Oy, + 10z, + jOz, + J105,)f(x0 + i1 + jro + f1J1) = 0 for all
J1 € S35 = {xk} & f is left Fueter-reqular (because of (8));

o fis(1,3)-reqular <
ngf(.To +ir1 + ﬁljl) = (GZO + i@ml + Jla,@l)f(l'o +1r1 + BIJI) =0

for all Jy in the (1,3)-torus Sz 3, which is simply the circle S' := Sy N (R + kR);
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f s (0,3)-regular < for any Ji € Si13 = Su, the restriction fj, to the planar domain
Oy, € Cy, is a holomorphic map (Qy,,J1) — (H, J1) & f is a slice-regular function, [11)]
(or Cullen-regular in the original articles [12, [13)]);

fis (1,2, 3)-regular < (0 + 0z, + J10g, + J20p,) f(xo +ix1 + B1J1 + f2J2) = 0 for all
(J1,J2) € Sa2 x S35 ={£j} x {x£k} < [ is left Fueter-reqular (because of [{));

fis (0,1,3)-reqular < (0y, + J108, + J208,) f(xo + f1J1 + P2J2) = 0 for all (Jy,J2) €
S11 % Sa3 = {&i} x St & f is (1,3)-reqular (because of [{));

fis (0,2,3)-reqular < (0y, + J108, + J208,) f(xo + f1J1 + P2J2) = 0 for all (Jy,J2) €
S12 X Ss3 = (SpN (iR + jR)) x {xk}; if @ : H — H denotes the unique real vector space
isomorphism mapping the standard basis (1,4,7,k) into (1,k,—j,i), then g+~ ®"Logo ®
is a bijection Regg o 3) (%, H) = Regg 1,3 (271 (Q),H);

o fis (0,1,2,3)-reqular < (Ozy + J103, + J208, + J305,) f (2o + B1J1 + BaJ2 + BsJ3) = 0
for all (J1,J2,J3) € S11 X Se2 X Sz 3 = {£i} x {£j} x {£k} & [ is left Fueter-regular
(because of (8)).

Additionally, within H, the nonstandard choice of the 2-fan R+jR+kR with B = (1, -k, j), B’ =
(1,—k,j,1), recovers as 2-regular functions the theory of [25], for the reasons explained in [26]
page 30]. Our general construction allows to treat all these cases at once. This is in contrast with
most literature: even in the simple case of quaternions, Fueter-regular functions cannot be stud-
ied simultaneously with monogenic functions because the space of paravectors in C¢(0,2) = H is
property included in H.

For the hypercomplex subspace O of O:

Example 4.15 (Octonions). Fiz a domain Q in O and a function f:Q — Q. Then:

o fis T-reqular < f belongs to the kernel of the octonionic Cauchy-Riemann operator O, +
10y + JO0y + kOpy + 10y, + (1i)0p, + (1)0z + (1k)0x, < [ is an octonionic monogenic
function (see [7] and the recent [23]);

o fis (0,7)-reqular < for any octonionic imaginary unit Jy, the restriction fj, to the planar
domain Qy, C Cy, is a holomorphic map (Qy,,J1) = (0, J1) < [ is a slice-regular function

(see [1])]).

T-regularity yields f-regularity with respect to a list of steps T shorter than T, in the sense
specified by the next lemma.

Lemma 4.16. Fiz 7 > 2, a list T = (to,t1,...,t;) of T steps, a domain  in'V, and a function
f € Regp(Q,A). Fix o with 1 < o <71 and consider the list T := (to + 0,tg41,...,t7) of T— 0

~

steps. For any J = (J1,...,J5) € Stg41.4y X --- XS4, 141,41, , the ordered set

~

B = (v07"'7vt07<]15'"71]0'7’Utg+17"'5vtq—)

is a hypercomplex basis of V= Span(l?), which is therefore a hypercomplex subspace of A. With
respect to B, the restriction of f to Q7 :=Q NV is a T-regular function.

Proof. The function f_ is f—regular if, and only if, for any (Joq1,...,Jr) € St 41,05, X -+ X
J
St, 141,¢, and for By ., .5y := (vo,. .., v, J1, s Joy Jog1,. .., J7), the restriction of fi,_ to
J
the set

ﬁjﬂ SPaH(E(JU+1,...,J,)) =Qy, J:=des vty Jr),
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which is simply f;, is left-monogenic with respect to the basis E( Joi1,J); €quivalently,
(GZO + ...+ utoa% + Jlagl + ...+ Jgaﬂd + Jg+1656+1 + ...+ JTé?BT)fJ =0,
i.e., fy is J-monogenic. But the last property is true under our hypothesis f € Reg,(Q,4). O

In general, a T-regular function f needs not be continuous, even though all restrictions f;
are real analytic and J-harmonic by Remark [4.10]

Example 4.17. Assume T = 1, whence T = (tg,t1) = (to,n) and the T-torus T is the (n—to—1)-
sphere Sy, 41.n. Pick I € Syyy1,5. Since R’}‘H_Q ﬁR?}’"ﬂ = Ro,, for all J € Sy41.0 \{E£I}, we may
define a T-regular f : V \Roy, — A by setting fr :==1=: f_ in R’}"” \Ro, = R’:"}” \ Ro,4,
and fy =0 in RYT>\ Ry, for all J € S0 \ {1}

To get better-behaved T-regular functions f : 2 — A, we need to carefully choose the domain
Q.

Definition 4.18. A domain 2 C V is called a T-slice domain if it intersects the mirror Ro,
and if, for any J € T, the J-slice 2y is connected (whence a domain in R?JFTH).

Over T-slice domains within an associative x-algebra, we will prove an Identity Principle and
a Maximum Modulus Principle in the forthcoming Section [7

Another relevant property for the domain € of a T-regular function is symmetry, defined
according to the following construction.

Definition 4.19. For all 8 = (81,...,0;) € R",J = (J1,...,J;) € T, we set the notation
BJ=06Ji+...+ 8, €V.

If 7 =0, for B € R® = {0} and J = 0 we define BJ to be the zero element of V. For any
he{l,...,7}, we define the reflection

RT%RT; 6:(615"'56T)'_>Bh = (ﬁla"'aﬁh—l;_ﬁhaﬁh+la"'aﬁT)'

For future use, we also define, for all H € P (1), the reflection R™ — R”, 8 — BH as follows:
8 — Bw is the identity map, while for H = {hy,...,hy} (with1 < hy < ... < h, < 7) the map
08— BH 1s the composition of the p reflections 5 — Bhl, e B Bh’).

We point out that gJ is not a product, but just a shorthand for the second part of the

decomposition (7)) of the variable x.

Definition 4.20. For any D C Ry, x R7, we set
Qp ={a+pJ:(a,8) €D, JecT}

if > 1 (and Qp :={a € V : (a,0) € D} if 7 = 0). A subset of V is termed T-symmetric
if it equals Qp for some D C Ry, x R7. The T-symmetric completion Y of a set’Y CV is
the smallest T'-symmetric subset of V' containing Y. For each point x € V, we denote by T, the
T-symmetric completion of the singleton {x}.

Let Q be a T-symmetric T-slice domain and assume A to be associative: we will prove
in the forthcoming Subsection that every T-regular function f : €2 — A has a specific
symmetry property. This result, called Representation Formula, is well-known in the special
cases of quaternionic slice-regular functions (see [3, Theorem 3.1]) and Clifford slice-monogenic
functions (see [6, Theorem 2.2.18] and references therein). As a consequence of the Representation
Formula, we will find that every T-regular function f: ) — A is real analytic.
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4.3 Integral representation

When A is associative, a Cauchy-type representation of T-regular functions is readily obtained,
using that of J-monogenic functions. We recall Assumption [£I] and Remark

Proposition 4.21 (Cauchy Formula). Assume A to be associative. Let Q be a domain in V
and f € Regy (R, A). Fiz J € T and a bounded domain G in R?JFTJA , with a €' boundary 0G,
such that G C Q. Then

1 (y —x)° . f flx) ifzed
Ttotr /ac ly — affot7+1 W f1(y) = { 0 if z e ROTTHIN G

Proof. The thesis follows immediately by applying Corollary 315 to the J-monogenic function
fre G, A). O

The same is true for the mean value property. Here, and throughout the paper, for any
p € V,R > 0, we adopt the notations B(p,R) :={z € V : ||z —p| < R} and B(p,R) :={x €V :
[z —pll < R}.

Proposition 4.22 (Mean value property). Assume A to be associative. Let Q2 be a domain in
V and f € Regp(Q, A). Fix J €T, a pointp € Qy and a radius R > 0 such that B(p, R); C .
Then

f(p):U— - d(p + Rw) [doy|

where B := B(0,1).

Proof. The thesis follows immediately by applying Proposition[3.16 to the J-monogenic function
f1€ € (B(p,R)s, A). O

Providing series representations of T-regular functions will require a much stronger effort,
starting with the construction of appropriate polynomial functions in Section [f] and ending in
Section [7}

5 Polynomial regular functions

With our Assumption E] standing, in this section we also assume A to be associative. We
construct examples of T-regular polynomial functions and study the general properties of such
functions. In particular, we construct a basis for the A-module described in the next definition.

Definition 5.1. For all k € N, let Uy, denote the right A-submodule of Regp(V, A) consisting of
those elements f € Regp(V, A) such that f(xzovg + ...+ xpvy,) is a k-homogeneous polynomial
map in the n + 1 real variables xq, ..., Tyn.

In Subsection Bl we construct for every k € N a finite set of k-homogeneous polynomial
functions #i. In Subsection we construct adapted partial derivatives, useful to study not
only Uy also Regp (€2, A) for any domain €2 in V. Using these adapted derivatives, we prove in
Subsection 5.3l that %, is a basis of Uy, for any k € N.

25



5.1 The polynomial functions 7y

Our construction of basic polynomial functions will subsume the following well-established cases,
treating them all at once. We recall that Subsection Bl defined and studied the Fueter variables
§SB and polynomials PE , which are left-monogenic with respect to a hypercomplex basis B.
Moreover, Subsection E] associated to each J in the T-torus T (or to J = 0, if 7 = 0) a
hypercomplex basis B .

Example 5.2 ([29]). Let A =H, V = H and B = (1,i,j,k). 3-regular functions are Fueter-
reqular functions. In this case, the Fueter variables ClBV’, QBV’, f”’ form a basis of Uy. In general,
Fueter polynomials {’Pf”’}‘k‘:k form a basis of Uy,.

Example 5.3 ([I1]). Let A=H, V =H and B = (1,4,j,k). (0,3)-reqular functions are slice-
regular functions. In this case, the full variable x = xg + ix1 + jaxo + kxs is a basis of Uy and,
in general, its kth power is a basis of U.

When we restrict the full variable x to the Jy-slice Cj, = {xo+1J1 : xo, B1 € R} for J; € Sp 2,
we find xg + f1J1 = (B1 — xoJ1)J1, which equals the Fueter variable Qf‘]l = 1 — xoJ1 only up
to the multiplicative constant Jy. The restriction to Cy, of the kth power gives (zo + f1J1)* =

( le)kJ{C = P(i‘;l (w0 + B1J1)JE. On the other hand, it is not possible for odd |k| to construct

a single function Py : H — H by setting (Px)j, := 735]1 for all Jy € Sp2: indeed, for J, # Ji,
(Pw) g, (w0 + B1J1) = (B1 — 0 J1) ¥ and (Pr)g; (xo+ B1J7) = (B — z0J1) % would not agree along
Cyn (CJ{ =R.

Example 5.4 (22]). Let A= Ct(0,n), V. =R""! and B = (eg,e1,...,e,). As we already men-
tioned, n-regular functions are the classical Clifford monogenic functions. The Fueter variables
Gl B form a basis of Ur. In general, Fueter polynomials {PE” }Iklzk form a basis of Uy.

Example 5.5 ([6]). Let A = C¢(0,n), V = R"™ and B = (eg,e1,...,e,). (0,n)-reqular
functions are slice-monogenic functions. In this case, the full variable v = xo+e1x1+-- -+ e,y
is a basis of Uy and, in general, its kth power is a basis of Uy,.

Again: for any Ji € So,,, the restriction to Cy, of the kth power gives 77(616;1 JE.

These instructive examples motivate us to construct some polynomial functions 7, as follows.
While the definition is rather technical, will soon prove that (7x); = P57 A A J;t““ th““
for all J = (J1,...,J;) € T. Recall that, for & = xg + v1z1 + ... + Va2, we have set

0
T =20+ 01T+ ... Vg Tty

1
T = Vtg+1Ttp+1 + ...+ UVt Tty

2
T =V 1Tt 41+ - oo+ Vi Tty
T
T =V 41T g1t U Ty

where t; = n by construction.

Definition 5.6. Assume A to be associative. We set Ty := 0 if k € ZoT7 \ N+ gnd Ty := 1
ifk=1(0,...,0). For k € No+t7\ {(0,...,0)}, we define recursively

to to+T1
K| Ti(@) = Y kTie. (@) (25 = (= 1)z0vs) + Y (=1)"kTie—c, (@) (20 + (=1)*2°7")
s=1 s=to+1
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where a = 220;2-1-1 ku,as := a — ks and by = Zzo;r;_l ky. For dall k € N, we define F), =
{7} k)=

We notice that as + bs = > ku + 2bs, whence (—1)%+0s = (=1)% ¢ =37, _, . Fu

u= t0+1

Example 5.7. % = {T(,...0)} = {1}. F1 consists of the functions

.....

Te. () = x5 — 2005 1<s<tg,

s =

7;t0+u($):x0+xu 1<u<r.

We call the functions Te,, ..., Te,, the T-Fueter variables and the functions Te, .-, Te,, .. the
T-Cullen variables. %5 consists of the functions

Toe, (2) = (T5 — T0V;)? 1<s<t,
7§€t0+u(z):(xo+x“)2 1<u<r,

1
Teote, () = 5((:% — zoUy ) (Ts — ToVs) + (x5 — Tos)(Ty — Tovy)) 1< s <u<t,
1
Teateryin (z) = 5((z0 + %) (xs + zous) + (s — 2ovs)(z0 + 2)) 1<s<tg,1<u<rT,
1 5 S u
Tergsotergn(T) = 5(—(900 + ") (xo — 2°) + (zo + 2°)(zo — %)) 1<s<u<r.

Within Reg,,(V, A), corresponding to the choice 7 = 1, the set .%#; consists only of Fueter
variables. Within Reg ,)(V, A), corresponding to the choice to = 0 and 7 = 1, the set .#;
consists only of a single Cullen variable, which is the full variable x = xg + ' = xg+ 2101 +. ..+
T,v,. These facts are consistent with the examples we gave at the beginning of this subsection.

In the special case with A = C¢(0,n),V = R*"™ and 7 = 1, the work [32] (see also [34])
constructed a different basis (zo,...,2,) of the right A-module U; and used it to construct a
basis of Uy, for each k € N. When translated into our current notations, zs := x4+ 1.J1vs. There
is no obvious extension of this construction to the case 7 > 2, which is of interest here.

Our next aim is proving that the set % is a basis for Uy. We begin with the next lemma,
which expresses each restriction of 7y to a J-slice R?+T+1 in terms of the polynomial function
735 7 R?}’*‘T‘H — A constructed in Subsection Bl

Lemma 5.8. Assume A to be associative. Fizk € Z7 J = (J1,...,J;) € T. The restriction
(Tx)s of Tx to the slice R’f}"”"‘l is the J-monogenic polynomial function

B; Tkt k¢ kt
(Tw)s =P’ JrotT <]210+2 Jy o

Proof. Our proof is by induction. When k € Zf+7 \ N®o*7 the thesis follows from the equalities
Te = 0 and 7)5" = 0. When k = (0,...,0), the thesis follows from the equalities Tx = 1,
JRotr L itz Rt — g ang PP’ = 1. Let us prove that the thesis holds for k € Nto+7 \
{(0,...,0)}, assuming it to hold for k — ¢, for all s € {1,...,to+7}. The definition of PP’ with
the notation (s = ¢B7, yields

to+T1
By rkto+r ktg+2 kt0+1 By kt0+7 ktg+2 7htg+1
k|PEs ot gk = N R PEI, G I gyt gt

s=1

Now, for s € {1,...,to}, we have (; = x5 — xovs, whence (sJ, = J, (¢ for all w € {1,...,7}.
Let us set the notations C?™(z) := z and C?*™*!(z) := 2¢ for all m € N and use again the
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notations a := ZZO;;ZH ky,as :=a — ks and b, := ZZ“:JZH ky. We compute the sum of the first

to summands as

0
k k k
EksP e SR gyt et

to
= Y R P T Ry T ()

s=1

= Z ks (n—es)Jca(Cs) )

s=1

where the last equality follows from our induction hypothesis. Now let us compute the sum of
the last 7 summands. For distinct u,w € {1,...,7} and for s = tg + u (whence u = s — ty), we
find that ¢; = B, — xoJy has the following properties: (sJy, = 2o + Budu = Juls; (sJw = Jw(s;
and (CsJy)Jw = JuwC((sJy). We are now ready to compute

to+T1
kt0+7 ktg+2 7htg+1
Y kPP S A
s=to+1
to+7
By ktg+r ks+t1 bs kig+1
E : kstpkfes T "'Js—t0+1 s— tOC (§s) s5— to 1
s=to+1
to+7
_ E B k10+7' s+1 ks—1 by ks 1 Ktg+1
- (_ ) Pk €s "'Js t0+1Js toc (gs s— to) s—to—1" Jl
s=to+1
to+7
_ kf[)+7' s+1 ks—1 7hks—1 kto+1 ~as
- § : (= ) “ks 7Dk €s "'Js to+17s 1o Js to—1"""J1 C* (Csds—t0)
s=to+1
to+T1
bs s
= E (*1) ks (71(765)']0’1 (gsjs—tg)v

s=to+1

where we used the fact that Js_;,C% (¢s) = (1) C% (¢ Js_t,). Overall, we have

to to+T1
koptr kigto +kioi1 o a
KPR T Ty T = ke (Tieee ) s C*(C) + D (= 1)k (T, ) 5 C (CoTato)
s=1 s=to+1
to to+T1
= Z ksTk—e. () (x5 — (—1)2ovs) + Z (*”bsks (Tk—e) g (@o + (1) Bs—to Js—t5)
s=1 s=to+1
= [k[(Tx)s
where the last equality follows from the definition of 7y, taking into account that Bs_¢, Js—¢, 1S
the restriction to the J-slice RS“JFTH of the function x*~to. O

After some preparation in the next subsection, we will go back to the polynomials 7y in the
forthcoming Subsection [5.3] and finally prove that .% is a basis for Uy.

5.2 Adapted partial derivatives

This subsection is devoted to constructing some new differential operators. These operators will
play an important role to prove that .7 is a basis of Uy, but also later in the paper. We begin
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with the next remark, which uses Definition with our current choice of ¢ty (which we fixed
in Subsection {1l as a part of the list of steps T = (to,t1,...,t7)).

Remark 5.9. Assume A to be associative. Fir h € Nt ™1 J ¢ T (J:=( if 1 = 0) and
a domain G in R?JFTH. Let us consider the operator 6% := 62} cENGA) — €°G,A). If
7 =0, then ‘

of = VB = ohoalt . ol

To T YTty
If, instead, 7 > 1 and J = (J1,...,J;), then

h _  7hig+r hig+1\—1h
67 =Sz Jy )TV,

— ghoght 62:8 (—Jlaﬁl)hto+1 o (_JTaﬂT)hto+T )

o X1

The notations in the last remark refer to the decomposition () of the variable z. We are
now ready for the announced construction.

Definition 5.10. Assume A to be associative. Fizh € N+t and o domain Q in V. If 7 =0,
then we set 6P := 65‘ = ng = Vlé. If 7 > 1, then for any f € Regp(Q, A) we define the function
P F . Q — A to fulfill the equalities
(6" )y = 885y = (J77 - 1) TV £
in Qy, for all J € T.
Definition will only be fully justified after the next theorem will be proven.

Theorem 5.11. Assume A to be associative. Fix T > 1, a list T = (to,t1,...,t;) of T steps,
a domain Q in V, and a function f € Regy(Q, A). For all h € Not™+L gnd all J,J' € T, the
functions 6?}]{; and 69/fJ/ coincide in ;N Q.

To prove Theorem [E.T1] we will use the next lemma.

Lemma 5.12. Assume A to be associative and 7 = 1 (whence T = (to,t1) = (to,n)). Fiz
J=.J1 €T =Si+1,n and a domain G C R?H. If € Mon; (G, A), then

g B g phophy oo (02, + 02, + ...+ 2, )",
ho,..., hin,2m—+1 | hy m
5o Yo = oo (05 02 A+ 07, ) (Oag + 010y + -+ 0D, ) D

for all ho,..., hy,,m € N,

Proof. Since the function ¢ : G — A is J-monogenic, we have
0=0,6¢= (0py + V102, + ... + V4,0, + J193,)0

(whence 0 = Ay = (92 + 02 +...+ 8210 + aél)qﬁ). These equalities will allow us to prove the
thesis, by induction on m.

For h = (ho, .. ., hty, 0), the equality 62¢ = (9209%1 ... 941°)¢ is the very definition of &5.

Now assume the thesis true for h = (ho, ..., h,,2m) and notice that 65¢ = (=1)"Vj ¢ is
still a J-monogenic function. For h/ = (hg,...,ht,,2m + 1) and h” = (ho, ..., ke, 2m + 2), we
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compute

= (@00 ... 00 (= 1195, )0
= (=/10p,) 5J¢
= (Ono + V100, + . + V1,02, )05,
o6 = (Dhools .. O (= 195,) )
= —8[315 o)
= (05, + 05, +...+0;, )50,
whence the desired conclusion follows. (|

Proof of Theorem[5Z11l. We will prove the thesis by induction on 7.

For 7 = 1, we apply Lemma to the function f; € Mony(Qy, A) and to the function
f1r € Mony(Qy,A). Tt follows immediately that 55‘]‘} and 55‘, f+ coincide in the intersection
Q ;N Qy of their domains.

We now take the induction step from 7—1to 7 > 2. Let us apply Lemma T8 with o = 1: for
every J = J1 € Sty41,1, the restriction f_ isa T- regular function, where T .= (to+1,t2,...,t;)

is a list of 7—1 steps. For any (Ja,...,J: ) (Jhy ooy JL) € Sty41,es X+ XSt 41,4, our induction
hypothesis yields that the further restrictions f(j, 1, ...7.): f(s1,75,....02) of f|, are such that, for
J

all h € Nfot7+1 the functions

h h

5(J2, JT)f(J11J27 o 8288211 e 8x:§a t0+1( J28ﬁ2)ht0+2 o (7‘]7'8&—)ht0+7f(J17J27~~~,JT) )
h h

5<J;,...,J4>f<J1,J;-..,J;) = 0005t . Oy 051" (= J50,) 02 (= J208,)" 0 fy g s

coincide in Qy, 5,....7,) N Qg ay,..00). Forany J = (J1,J2,...,J7),JJ = (J1,J3,...,J;) €T

let us prove that 5th and 51}, f. coincide in Q; N Q2 by induction on Ay, 4.

.....

e [fh= (hO; e ,hto,o,ht0+2, ceey htq—)a then
5'1}'}(:] B 8288211 o azto( JQaﬁ )ht0+2 ctt (*Jfaﬁq—)htOJrTva
R

5};/‘](:]/ = 8;1008211 . 8zt0 (*Jzaﬁé)ht‘w& . (7J,I/_aﬁg_)ht0+"f:]/ N

coincide in €y N Q. This is obvious when J{ = 4J;, which yields the equalities f; =
f(-]la-]é7~~~w],'-) and Q;NQy = Q(J1,J2,---,J7—) N Q(Jl,Jé,...,J;)' It is also true when J| # +Ji,
which yields the proper inclusion Q; N Qy; C Qg g, ) N Qg gy, 52y and the chain of

equalities
Iy
(ool .. ollio (150 w0+ . (=0 )Mo £ -

Jgn

(aj;gag; O (= 5Dy )0 (=T D )Mo+ fg gy >)

’ ’ layna,,

= (Ohoomr . Ol (— Fa) o L (=705, )0 )

layna,,
e Now assume the thesis proven for all h of the form h = (ho, ..., ke, 2m, hegr2, ..., he ).
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We set h' := (ho, ..., hey, 2m+ 1, hyg42,. .., he.) and compute
0% fr = (=0105,) 65f1 = —J1 65 05, f1
= —J1 0% J1 (Oag + 0100, + ... 4 01y On,, + J20p, + ...+ J:08.) [4
= (=18 iy (1) (w0 g8y L)
F (=)0 e (—1)ar et
for appropriate natural numbers ag, a1, ..., a, and for

hO = (h0+ 1;h15'"7ht052maht0+27"'7h't7—)a
h1 = (ho,hl + 1,...,ht0,2m,ht0+2,...,htT),

hto = (ho,hl, . -ahto —|— 1,2m, ht0+2, .. -7ht7-)a
ht0+2 = (ho,hl, ooy hto,2m,ht0+2 + 1, .. .,hm,) 5

hto-i-‘r = (ho, hl, ey htoa 27’77,7 ht0+2, ey htq’ + 1) .
Similar computations prove that
/ h
5‘1}/ f.]/ = (71)(105‘1}?‘]{]/ + (71)(11 ('Ul(;?}f]l 4+ ...+ ’UtU(SJ/tO f.]/)
h

as she ar sheg+r
+ (=1)*26 " f 4+ (1),

For any s € {0,...,t0,t0 + 2,...,t,}, since the (o + 1)-component of hy equals 2m, our
induction hypothesis guarantees that the functions 695 f7and 55‘? [y coincide in ;N Q.
We immediately conclude that 55“ f7 and 55‘: fyr coincide in ;N Q. To complete the
current induction step, we set h” := (ho, ..., hey, 2m + 2, hyy42, ..., he ) and compute

N fy =03 05 f,=8%(-0%) fs
:59(a§0+a§1+...+a§t0+a§2+...+857)fJ
ke kig+2 Kig+r
=R O O =8 =6, fy,
where

kO = (h'O +27h’15- "5ht0ﬂ2m5 ht0+25- '-5ht,-)7
k1 = (ho,hl +2, .,ht0,2m, ht0+2,. "5ht7-)7

kto = (ho,hl, .. -ahto + 2,2m,ht0+2, .. ',htq')’
kt0+2 = (ho,hl, .. .,ht0,2m,ht0+2 + 2, .. ',htr)’

kt0+7- = (ho, h,l, ey htm 2m, ht0+2, ey ht, + 2) .

Similar computations prove that

k

" k k r
5‘1}/ fr = 51;9f]/ + 5};,1‘]{]/ +...+ 5J,t° fr— 5J,t°+2f.]/ — .= (gJ,to+ fr

31



Again: for any s € {0,...,to,to + 2,...,t; }, our induction hypothesis guarantees that the
functions 5.1;5 f7 and 5};,3 fy coincide in ;N Q. It follows that 59 f7 and 5_1}/ £y coincide
in Q5N Qy, as desired. This completes the induction step from 7 — 1 to 7 > 2.

The thesis is now proven for all 7 € N, as desired. O
We can use Lemma [5.12 once more, to establish the next result.

Proposition 5.13. Assume A to be associative. If T =1 and f € Regp(Q, A), then
§lhoheo 2m) £ — ool 90

5(h0 ..... hto,2m+1)f _ 8h08h1 ahm

zo Yz, 0 Yzt

(@2, + 2+ )"
(02, +02 +...+ agm)m(axo + 0102, 4 - + VO, ) f

for all ho,...,hyy,m € N. As a consequence: for any h € N2 the function 5hf‘mmo,t0 18
completely determined by f|m&0 L
st0

Proof. The first statement follows by applying Lemma [BE12] to the function f; € Mon; (2, A),

if we take into account that 6P f is defined so that (6" f); = 6% f; and that 9,, f; = (0. f), for

all s € {0,...,%0}. The first statement and the equalities (9z, f)|gre, , = Oz, (flons, , ) (valid for
sto "0

all s € {0,...,t0}) yield the second statement. O

This proposition is consistent with [32], which dealt with the special case with A = C¢(0,n),V =
R™*1 and 7 = 1: in that special case, [32, Theorem 3.27] showed that f € Reg,(B(0, R), A) is
uniquely determined by its restriction to B(0, R) N Rg 4.

None of the phenomena described in Proposition B.13] generalizes to the case 7 > 2, which is
of interest here. Our forthcoming Example .15, where A = C¢(0,4),V = R% and 7 = 2, shows
that the operator 6" cannot, in general, be expressed in terms of iterates of Oy, 0x,,. - . ; Ox,,

only. Additionally, it shows that, for f € Reg,(f2, A), the function §® fkm0 . is not uniquely
2to
determined by flmwo .
2to

5.3 Properties of polynomial functions 7y
We are now ready to prove that .% is a basis of Uy for any k € N.

Theorem 5.14. Assume A to be associative. For every k € N, the family Fy. is a basis for Uy.
Namely, for every P € Uy,
1
Pla)= Y T(@) e ac= 5609 P(0) ()
[k|=k

for all x € V. In particular, 6O¥) T (0) = 1 and 6% T (0) = 0 when k # K.

Proof. Fix k € N. We take several steps to prove our thesis.

Let us first prove the inclusion %#; C Uy. By construction, each function Ty is a |k|-
homogenous polynomial. By Lemma 5.8 for all J € T, the restriction (7x); is a J-monogenic
polynomial function. Thus, Tx € Reg(V, A). The desired inclusion follows.

We now aim at proving that the elements of .7, are linearly independent. For {ck}x—r C 4,
assume P(z) := 7, Tk(2) ek to vanish identically in V. By Lemma B8 for any J € T, the
restriction

Py = Z (ﬁ()JCk _ Z ,PIZ(S’J th0+ﬂ- L J2kt0+2 th0+1 Cx
[k|=Fk [k|=F
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vanishes identically in R%?*""'. By Proposition 3.6 FACEI J;t"” th"“ cx = 0 for all k €
N+ with |k| = k. Since J, has inverse —J; for all s € {1,...,7}, we conclude that cx = 0 for
all k € N7 as desired.

Let us now prove that formula (@) is true for all P € Uy, whence the family .%;, spans Uy.
It suffices to prove that the polynomial function P := Z‘k‘:k Tx %6(071‘)P(0) coincides with P.
This is true, because Lemma [5.8 Definition and Proposition yield

~ 1 0,k Kipt+r k P 1 0.k
Pr= 37 (Tyqgdy™ PO) = 30 Pt oy i 207 P(0)
Ik|=F |k|=F
1
= > PGV, Pa0) = Py
|k|=k '
forall J €T. O

We are now in a position to give an example where two T-regular functions coincide on the
mirror but have distinct adapted partial derivatives.

Example 5.15. Let A = C¢(0,4), V =R, B = (eg,e1,e2,e3,e4), T = (0,2,4) (whence T =2).
Within Reg g 2.4)(R®, C£(0,4)), let us consider 7y = {Tc,,Tc,}, where e1 = (1,0) and ez = (0,1)
and T.,,Te, are the (0,2,4)-Cullen variables Te,(x) = zo + x' = x¢ + 2161 + T262, Tep(x) =
zo + 22 = xo + 1363 4+ T404. While 600 T =1 = 60007 Theorem [5.17] guarantees that
O =14£0=060)T,
s =0#£1=050T,

despite the fact that T, (x) = xo = Tey () for all x in the mirror Ro .

Before concluding this section, we use the family .%#; to understand which T,T produce
RegT (Qa A) = Reg’f(ﬂa A)

Example 5.16. We saw in Example that, for functions H — H, T-reqularity is Fueter-
reqularity exactly when T € {(3),(2,3),(1,2,3),(0,1,2,3)}, while T-regularity is slice-reqularity
if, and only if, T = (0,3). We also saw that T = (1,3) yields the same class as T = (0,1, 3).

The phenomenon appearing in the previous example is consistent with the following fact. If
T = (to,tl, .. .,tT) and if we set T = (to,tl, . ,t.,’:) = (to — 1,t0,t1, .. .,tT) (Whence T = T+ 1),
then:

e the T-Fueter variables, excluding the last one, are exactly the T-Fueter variables;

e the last T-Fueter variable, namely 7T, (v) = x4, — Tov, = (To + 4,1, ) (=04, ), coincides,
up to the multiplicative constant —wv;,, with the first T-Cullen variable, i.e., ’7;{0“ (x) =
To + gy 1 V541 = To T Tig Vo

e the T-Cullen variables are the exactly the T-Cullen variables, first one excluded.

We are going to prove that this mechanism, along with its iterations, is the only way to produce
from T a longer T such that Reg, (€2, A) = Regs(£2, A). This will be a corollary to the next
theorem.
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Theorem 5.17. Assume A to be associative. Let 7,7 € {0,...,n} and let T = (to,...,t,) and
T = (to, ..., tz) be two lists of steps for V.

For 1 < s <o, the T-Fueter variable Te.(x) = x5 — zous 18 f—r@gular if, and only if, either
s<tgorty,_1+1=s=t, for someu > 1.

For 1 < s <7, consider the T-Cullen variable T, . (x) =m0 +2° = 20 + V4, 41T1,_,+1 +
oot vz, Then 7;t0+5 18 f—r@gular if, and only if, either ts_1 +1 =ty < ?0 or there exists
u e {1,...,7} such that (te_1,ts) = (fu_1,tu).

Proof. Take any J in the T-torus T and consider the operator 0; = Oyy + 0105, +...+ vz, 8% +
J10g, + ... + J70p. associated to T. B

We first deal, for 1 < s < tg, with the T-Fueter variable T¢_ (z) = x5 — 2ovs. If s < tg, then
for any J € T we have

(Te)g(xo +viw + ...+ vp g, + S+t J=07) = x5 — xous

whence

07(Te) g = (Ony + 050, ) (s — Tovs) = Vs —vs = 0.

s

If, instead, s > tg, then there exists u such that Zu,l +1<s< Zu. We separate two cases.

o Ift,_1+1=t,, then Sz, = {+wv,} and, for any J € T, we have J,, = +v, and

71+17t~u
(Te.)s(xo +vizy + ... +ogzg, + b1+ ...+ J=87) = £Bu — wovs

whence _
07(Te,) s = (0 + Ju0p, ) (£Pu — wovs) = £Jy —vs =0.

o Ift, 1 +1<t,, then Sz, is a sphere of dimension at least 1. Picking J € T with

Ju L vs, we obtain

141t

(7;5)J(.T0 + vy +...+ LA + 11+ ...+ J,T-ﬁ;) = —ZVs,

whence

aJ(ﬁs)J = awo(_xovs) = —Us 7& 0.
The first statement is now proven.

We now deal with the T-Cullen variable T, | (z) = zo+2° = zo+vi, 4171, 41+ .+, Ty,
for 1 < s < 7. We separate three cases.

o If t, < ty, then for any J € T we have
(Tergr)a(@o+vim + .. +vg o + 1B+ .+ J=67) = 2o+ v, 4108, 41+ .+ 0T,
whence
5‘](7;t0+8)JE 1+Ut2571+1+...+vt25 =1—(ts —ts—1) =ts—1+1—ts.

Thus, 7;t0+s is T-regular with ¢, < to if, and only if, ts_1 + 1 = ts.
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o Ift,_1 + 1<ty <tg, then for any J € T we have

(7;t0+3)‘](.’1;0 +oiwy +.. toprg P+t J:B7) =xo 4+ v, 41Tt,_ 41+ ..+ vz, T,
+U?U+1<U?U+1,J1ﬂ1 +...+ J;—ﬁ;) +... —i—vtS(UtS,Jlﬂl + ...+ J;ﬁ;) ,

whence

(T ) =140 g+ 02 + T (v (g s 1)+ 0 (v, 1))
+...+ J5 (v;0+1<v;0+1, J.,-> + . vy <vt5, J;->)

=ty 14+1—to+ i proijﬁlh (Ji)+ ...+ J7 proijﬁlh (J7)
=ty 14+1—to+J proje, . (J1) +...+ Juproje,  (Ju),
where u is the maximal element of {1,...,7} such that ¢, > tu1+1 (whence tg > ty_q1+1>
ty—o+2>...>1ty+u). Let us choose J € T such that J; = Uz 10 Ju = Vg 4,0 then
forall s € {1,...,u} we have J; € Ry ., , , whence J; projg_ s (Js) = Js Js = —1. With
sbls 0 sls

this choice,

5.](7;t0+5).]:ts—1+1_2'0+vg +o4vE =t g4+ 1—th—u<-u<0.

o+l T T Vitu
Therefore, 7;t0+s is never Tv—regular when t,_1 +1< %VO < ts.
o If t~0 < ts_1, then for any J € T we have

(7;t0+S)J($O +vier+...+ Vg, T, + 11+ ...+ J;ﬁ:,:)
=20+ v 4141, 1B+ TEBE) o (o, B+ TEBE)

whence

01(Tepyr)s =141 (v 41 (Ve 41, J1) + -+ vg, (vr,, 1))
4+ ...+ JF (Uts,1+1<vts,1+1; J;> + ..ot vy <Uts , J;))
=14 Jiprojg, .. (Ji)+ ...+ Jz PrOjR, .. (Jz).

We separate three sub-cases.

— IRy, 410, =Ry 7 forsomewue{l,...,7}, then

95(Terys.)s =1+ Juprojg, Ju)=1+J2=0.

—1t+1.ts (

Therefore, T, ., is T-regular when (t5_1,ts) = (fu_1, 1) for some u € {1,...,7}.

— IRy, 416, SRy

C Ry, 4,7, forsomew € {1,...,7}, then

05 (Tergs)s =1+ Juproje, ., (Ju)

equals 1 if we choose J, € S 7 with J, L Ry ,414,. Therefore, 7;50“ is
not, T—regular when there exists v € {1,...,7} such that tur1 < ts_1 < ts < ty or

tuet <te_1 < ts < ty.
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— Assume now that, for all u € {1,...,7}, the subspace Ry, ,41,, is not contained in
R ,417,- As a consequence, vt, ,+1 € Ry ;7 and v, € Ry .7 for some
u,w € {1,...,7} with u < w and

05(Tery,)s =1+ Jy projg, J)+Je e+ Ji T proje, ., (Ju)-

1+1ts (

Let us choose J € T with J, = v, 41, Jw = ve.: then

GJ(ﬁtﬁs)JE1+vt2571+1+J§+1+...+J371+Ui:1—(w—u+1):u—w<0.

Therefore, 7¢, .. is not T-regular when there exist u,w € {1,...,7} with u < w such
that fy_1 < te_1 < ty and ty_1 < ts < ty.
The second statement is now proven, and the proof is complete. [l
We are now ready for the announced classification.
Corollary 5.18. Assume A to be associative. Let 7,7 € {0,...,n} and let T = (to,...,t;) and
T = (to, ..., tz) be two lists of steps for V. The inclusion Regy(Q, A) C Reg#(Q2, A) is equivalent
to the equality Reg (2, A) = Regs(2, A) and to the following property: one among the lists T, T
comprises the other, possibly preceded by some steps of the form (m,m+1).

Proof. Let us assume Regp (€2, A) C Regs(£2, A) and apply Theorem 517

e Assume fy < to. Since the last to — to T-Fueter variables 7T;

s yse s Tey, are T-regular,
~ o+1 0
Theorem 517 yields, for the first tg — g + 1 elements of T

(%VO;%VI;%VQ; B ’%;0—?0—2’%;0—;0—1’%;0—;0) = (%VOa%VO + 1,?0 + 2) B atO - 2; to — 1; tO) .
Since the T-Cullen variables T¢, ,,,.-

that 7" includes the whole list (to,t1,...,t;). Taking into account that ty < t; < ... < tz =
n and that ¢, = n, it follows immediately that 7 = 7 + ¢ty — ¢o and that

s Teyy s, ave T—regular, the second statement yields

T = (to, t1,ta, oty 5 _os by 510 by —7yr brg—Tos1s - > bty —Tyir)
= (fo,to + L,t0 +2,...,t0 — 2,t0 — L, to, t1, ..., tr) -

In other words: the list T comprises some steps of the form (m,m + 1), followed by the
whole list T'. In such a case,

T = {vg 1} x {050} % -+ x {Fvgg—1} x {£vg,} x T.
Taking into account (), we conclude that Reg; (2, A) = Regs(£, A).

e Assume ty < fo. Since the last ¢, — ty T-Cullen variables ’7;{0“, o Te,, are f—regular,

Theorem .17 yields that T includes the whole list (t~0,t~1, . ,t}). Since the preceding
T-Cullen variables Te, ..., Te; (if any) are T-regular, Theorem 517 also yields, for the
first tg — to + 1 elements of T

(to,t1 o, -ty oty —tg1otry—ts) = (o to + L to+2,...,t0 — 2,0 — 1,%0) .

36



Taking into account that ty < t; < ... < t; = n and that t= = n, it follows immediately
that 7 = 7 + tg — tp and that

T= (t07 tl’ t2’ T 7t’t‘07t072’ t?g*tg*l’ t’t‘o*tg’ t?07t0+17 e t?g*thr?)
= (to,to + L,ito+2,...,t0 — 2,t0 — L, t0, t1, ..., t7) .

In other words: the list 7' comprises some steps of the form (m,m + 1), followed by the
whole list T". In such a case,

T = {£vs41} X {£vg42} X -+ x {£vz _;} x {£op } x T.
Taking into account (), we conclude that Reg; (€2, A) = Regs(, A).
The proof is now complete. [l

In addition to the set-wise classification provided in Corollary [FI8 we plan to perform in a
forthcoming paper a classification of {Reg, (2, A) : T list of steps} up to bijections. For instance,
we constructed in Example .14l an explicit bijection Regq o 3)(H, H) — Regq 1 3)(H, H), based
on the orthonormal change of basis from (1,4, 7, k) to (1, k, —j,1).

6 T-functions and strongly 7T-regular functions

This section defines and studies, on a T-symmetric set {2, classes of functions Q2p — A having
some special symmetries. Throughout the section, in addition to Assumption I, we assume

D to be a subset of Ry, x R7, invariant under the reflection (a, 8) (o, B7) for every h €
{1,...,7}. We recall that we have defined: in Definition LT the symbols 8 .J and Eh for all
BeR™,JeT,he{l,... 1} in Definition 20, the symbol Qp = {a+ 8 : (o, 8) € D}, as
well as the notion of T-symmetric set.

6.1 7T-stem functions

As a preparation to work with functions Qp — A, we deal in this subsection with functions
D— A®R?.

Remark 6.1. The tensor product A ® R?" is a bilateral A-module. Indeed, let (Ex)kez(r)

denote the canonical real vector basis of R® : if a € A and if C = ZKegz(r) ExCg € AR,
we set aC =} e () Ex(aCk) and Ca =3 ¢ »(,) Ex(Cra).

Our choice of the notation (Ek)xes(r) is to avoid possible confusion with the basis of A in
the special case when A = C¢(0,n). Let us recall from [20] the notion of T-stem function, which
subsumes the notion of stem function of [I6], Definition 4] and follows the lines of its multivariate
generalization [I8, Definition 2.2].

Definition 6.2. Let F : D — A Q@ R2 be a map F = ZKegz(r) FEx Fr with components
Frx:D — A. The map F is called a T-stem function if

[ Fx(a,B) ifhgK
Fic(e, 3 ){ —I}K(a,ﬁ) if he K

for all K € Z(7), for all (o, B) € D, and for all h € {1,...,7}. For such a function F: we say
that F belongs to €>°(D, A @ R?") if Fx € €°(D, A) for all K € 2(1); we say that F is real
analytic if Fi is real analytic for every K € (7).
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Clearly, the set of T-stem functions is a right A-module. Moreover, given a T-stem function
F on D and a point p € Rgy,, setting G(a, ) := F(a + p, 3) defines a T-stem function G on
D — (p,0). We add the following remarks. We point out that D is also invariant under the
composition of reflections S — BH constructed in Definition [4.19
Remark 6.3. If F is a T-stem function on D, then FK(OA,BH) = (=) Kl Fye(a, B) for all
H,K € Z(1) and (o, B) € D.

Let us set, for 3 = (B1,...,5,) € R7, the additional notation 82 := (3%,...,32) € R".

Remark 6.4. Let F' = ZKeg’(T) ExFyx : D — A®R? be a T-stem function of class € (or
real analytic). Set D' := {(a, 8?) : (o, 8) € D}. By Whitney’s Theorem [31, page 160], there
exist an open neighborhood W of D' in Rg 1, xR™, with D' = {(a,y) € W : y1,...,7r > 0}, and a
finite sequence {Gk } ke o (r) in € (W, A) (or consisting of real analytic functions Gx : W — A,
respectively) such that, for all (o, 8) € D, the following equalities hold true: Fy(o, ) = Gg(a, B?)
and

FK(aaB) :ﬁ]h "'ka GK(aaﬁ2)
if K = {k,... k) with1 <k <...<k,<rt.

6.2 T-functions and strongly 7T-regular functions

This subsection is devoted to the announced construction of classes of functions Q2p — A having
some special symmetries: they are called T'-functions. Here, and in the rest of the current section,
we assume A to be associative.

Definition 6.5. Assume A to be associative. Let J € T, K € Z(r). If K = 0, we set
Jyg == 1. For K # 0, say K = {k1,...,kp} with 1 < ki < ... < k, < 7, we define
Jic = Jes s i Ty

For J € T and K € Z(7) fixed, the map a — Jxka is a right A-module isomorphism with
inverse a — J gla. Here, J I_(l denotes the multiplicative inverse of the element Jx of A. We
are now ready to restate, in the associative case, the definition given in [20] of T-function. This
notion subsumes the notion of slice function, [16], Definition 5], in its associative sub-case. The
definition follows the lines of [I8 Definition 2.5], in its associative sub-case.

Definition 6.6. Assume A to be associative. Let F' = EK@@(T) ExFxg :D — A®R? bea
T-stem function. The induced function f =Z(F):Qp — A, is defined at v = o+ 3.J € Qp by
the formula

Ke2(r)

A function induced by a T-stem function is called a T-function. We denote the class of T-
functions Qp — A by the symbol S(QAp, A). If Qp is a domain in V, then the elements of the
intersection SR(p, A) :== S(2p, A) NRegr(Qp, A) are called strongly T-regular functions.

The notions of T-function and strongly T-regular function are interesting when 7 > 1. In
the special case 7 = 0, every subset of V' is T-symmetric, every domain 2 in V' is a T-symmetric
domain and every function f : Q@ — A is a T-function, induced by a T-stem function F' = Fy,
which coincides with f up to identifying A ® R® with A.

About the map Z introduced in Definition [6.6] we prove the following proposition.
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Proposition 6.7. Assume A to be associative. The map I from the class of T-stem functions
on D to S(p, A) is well-defined. Moreover, the set S(Q2p, A) is a right A-module and T is a
right A-module isomorphism. Finally, SR(Qp, A) is a right A-module.

Proof. In the forthcoming Lemma B4l and Theorem B0 under weaker hypotheses, we will prove
that Z is a well-defined real space isomorphism. Additionally, it is clear from Definition [6.6] that,
for any T-stem function F : D — A®@R?" and any a € A, Z(Fa) = Z(F)a. It follows at once that
S(Qp, A) is a right A-module and that Z is a right A-module isomorphism. Finally, Remark FLT2]
guarantees that Regp(Qp, A) is a right A-module, whence SR(Q2p, A) = S(2p, A)NRegr(2p, A)
is a right A-module, too. O

The properties of T-stem functions on D, along with Remark 12 allow us to make the
following observation.

Remark 6.8. Fizp € Roy,. If f € S(Up, A) (or f € SR(p, A)), then setting g(z) := f(x+Dp)
defines a g € S(Qp —p, A) (a g € SR(Qp —p, A), respectively).

For a T-function f = Z(F), we now prove a Representation Formula along tori of the form
Tovpr = Qap)y = a+ BT with a € Ry, 3 € R™, I € T (see Definition E20). In connection
to this formula, we also recover from f the inducing T-stem function F'.

Theorem 6.9 (Representation Formula for T-functions, associative case). Assume A to be
associative. If f € S(Qp, A), then [ = IZ(F) where F = zKegﬂ(r) ExFi is a T-stem function
whose K -component is

Fie(o,) =271 Y (~)IEHl p(a 4+ 57 1)

HeP(T)

As a consequence: for all (o, 8) € D and all I,J € T,

27 N ()EM g L fa+ B D) (10)
K,HeZ(T)

= Y uflat+BD),

He2(T)

fla+pB1T)

where
v =27 Y ()R T
KeZ(1)

Theorem [6.9is a special case of the forthcoming Theorem [R.6, whose hypotheses are weaker.
In particular: if we fix I € T, then every f € S(Qp, A) is completely determined by its restriction
fr.

We now draw two useful consequences. The first one concerns the norm | f|| of a continuous
T-function f. We recall that w = wp g > 1 is a constant such that |za| < w|z||||a| for all
x € V,a € A (see Remark 2:27)). Moreover, by Proposition 228 if A is associative and B’ is a
fitted distinguished basis of A, then w = 1, whence (1 + w?)™ = 27.

Proposition 6.10. Assume A to be associative. Fiz f € S(Qp,A) and I € T. For every
nonempty subset D' of D and for Q' := Qp C Qp,

sup || f| < (1+w?)" sup || f].
o o,
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A second useful consequence of the Representation Formula for T-functions is, that strongly
T-regular functions are real analytic.

Proposition 6.11. Assume A to be associative. If f is strongly T-regular, then f is real analytic.

Our current associativity assumption does not really play a role in Proposition and
Proposition We will therefore restate and prove these results as the forthcoming Propo-
sition and Proposition B9 after defining T-functions and T-regular functions over general
alternative x-algebras.

6.3 Mirror 7T-stem functions

This subsection is devoted to some technical material, which will be useful in the forthcoming
Proposition [TT] to prove that the polynomial functions 7T (defined in Subsection 1)) are T-
functions, whence strongly T-regular. The proof of this property will be based on the induction
hypothesis that, if [k’| = |k| — 1, then 7w = Z(F¥') where F¥' is a T-stem function of a special
kind, studied in the current subsection.

We recall that A ® R?" is a bilateral A-module and give the next definition.

Definition 6.12. Assume A to be associative and let A’ denote the real subalgebra of A generated
by the mirror Roy,. A T-stem function F': D — A® R?" is called a mirror T-stem function if
it takes values in A’ @ R?" .

We endow the real subalgebra A’ of A with a convenient system of generators.

Remark 6.13. Assume A to be associative. We define (vi)geo (1) C A', as follows: vy :=1
if H=0 and vy := vy, ---vp, if H = {h1,... hp} with 1 < hy < ... < hy, < tg. Since the
real vector space Ro 4, is the span of the anti-commuting imaginary units vo,v; ..., vy, the finite
sequence (’UH)Hegz(tU) is a system of generators for the real vector space A’. Moreover, there
exists a subset 2 C P (tg) such that (vy)meo is a real vector basis of A’.

Example 6.14. Let A= C{(0,3) and tg = 3. If vy = e1,v2 = ez and v3 = e3, then (Vi )me o (3)
is the standard basis of A" = A. If, instead, vi = e1,ve = ex and vz = e12, then (VH)Hew(s) is a
system of 8 generators for the 4-dimensional subspace A’ = C¢(0,2). In the latter case, a basis

of A" is (vi)Heo with 2 = P(2) C P(3).

It will be convenient to consider, for each mirror 7T-stem function, not only its components
with respect to the basis (vy)geo of A but also its (non unique) components with respect to
the system (vg) e (1y) of generators for A’.

Lemma 6.15. Given (GH)pe(1y), where Gy = ZKeg’(T) ExGurx:D — A®R? is a T-stem
function with real-valued Ey -components Gu ik : D — R, the function F := ZHegﬂ(to) Gpgug is
a mirror T-stem function. Conversely, every mirror T-stem function F on D can be expressed
in the form F = ZHGQ,(%) Grvg, where Gg = ZKeg,(T) ExGy i are T-stem functions D —
R®R? .

Proof. Let us prove the first implication: under the assumptions made, the function F :=
ZHG@(to) Gpgvg is a mirror T-stem function on D. This fact follows from the equality F =
Ykerq ExFx : D — A ® R?", where Fg := ZHey(to)GHvK’UH : D — A’ and from the
following argument: for (o, 3) € D,

FK(Q;Bh)Z Z GH,K(CYth)UH

HEeP(to)
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equals —Fk (c, 8) when h € K; it equals Fi(«, 8) when h € {1,...,7}\ K.

Conversely, consider any mirror T-stem function F = EKegz(r) ExFg:D — A @R?. Of
course, with respect to the basis (vyg)peo of A’, the K-component Fy : D — A’ decomposes
as F'x = Y pco Gu xvy for some unique functions Gy x : D — R. Take any (o, 3) € D: for
h € K, the equality

0=Fx(o,B) + Fi(a,) = Y (Gux( ") + G (o f) vn
He2

yields that GH,K(a,Eh) = —Gu k(o p) forall H € 2; for h € {1,...,7}\ K, the equality

0=Fi(o,B") = Fic(e, 8) = > (Grxc(e, B') = G (0, 8)) v
He2

yields that GH7K(a,Bh) = Gui(a,B) for all H € 2. Therefore, for every H € 2, setting
Gy = ZKEQ(T) ExGurx: D —=R® R?" defines a T-stem function. Additionally: for every
H € P(ty) \ 2, we define a T-stem function Gy : D — R®R?" as Gy := 0. By construction,
F=3% 1eoGuvn = Y e o(1y) Grvn. The proof is now complete. O

It is useful to make the next remark, where we adopt the notation X AY = (X \Y) U
(Y'\ X) for the symmetric difference of two sets X and Y, as well as the notation Jgx set up in
Definition

Remark 6.16. For all H € P (ty) and all h € {1,...,t0},
(71)0’(H,h)

VHUL =

VHa A{h} >

where we set o(H,h) to be 0 or 1 depending on whether there is an even or odd number of
elements of H larger than, or equal to, h. Additionally, for a fized h, the map H — H A{h} is
an involutive bijection of P(to) onto itself.

Now fir J=(J1,...,J;) €T andu e {l,...,7}. For all K € P (1), we similarly have that

JKJ = (*1)U(K’U)JK A{u} -

and that the map K — K A{u} is an involutive bijection from P (1) onto itself. Moreover, for
all H € P(ty),
’UHJu = (—1)|H|JU’UH

because J,, anti-commutes with vy, for all h € {1,... to}.
Thanks to the previous remark, we make the following observations.

Remark 6.17. Assume A to be associative. The set M of mirror T-stem functions on D is a
real vector space. We have Moy, = M for all h € {1,...,t0} and M$ = M for all functions
¢: D — Roy, with ¢(a, B) constant in B.

To prove the forthcoming Proposition [Z.I] we will also need the following technical lemma.
We recall that Z denotes the map constructed in Definition and proven a right A-module
isomorphism in Proposition [6.7

Lemma 6.18. Assume A to be associative. Let F' be a mirror T-stem function on D. For any
u€ {l,...,7}, there exists a mirror T-stem function “F on D such that: for all (o, ) € D, J €
T

J

Z(F) o+ BJ)Budu =LZ("F)(a+BJ).
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Proof. According to Lemma [6.I5] F can be expressed as F' = ZHE@(to) Gyvg, where Gy =
ZKegz(r) ExGp ik are T-stem functions D - R ® R2". In particular, the K-component of F
is Fx = ZHegz(tg) Gu xvm. For all K € &(7), let us set Fre = ZHG@(tO)(_l)‘H‘GH,K’UH’ SO
that F J, = Ju Fx by Remark G168 Thus,

L(F)a+B8)Budu= Y, JxFx(a,B)Butu= > JJubuFx(a,p)

Ke2(T) KeZ(1)

- Z (71)0'(1(,’&) JK A{u} /B’u. Fg (Oé, /3)
Ke2(r)

= > Tk (1) 7B B B p gy (@, B).
K'e?(T)

For the third and fourth equalities, we used Remark [6.16] again. Let us define “F : D — A®@R?"
by setting
YR = Z EK (—1)G(K Afu}u) ﬁu ﬁK A{u} -
Keo(r)
If we prove that “F is a mirror T-stem function, then the desired equality Z(F)(a+ 8 J) By Ju =
Z(“F)(o + B.J) will follow immediately. Since Fi p(u} = e o) (— DG i pguyvm, we
have “F = ZHeg(tO) “Gyuy, where

"Gui= Y Ex"Gpr:D—>RaR”,
Ke2(r)

uGHﬁK = (71)|H|+U(K Atul.u) ﬂu GH,K Au} * D—R.

Thanks to Lemma [6.15] we are left with proving that each “Gy is a T-stem function. In other
words, it suffices to verify the following symmetries:

w —hy | "Gor(a,p) ifhe{l,...,7}\ K
G (e f ){ —“g‘g,;((a,ﬁ) if he K '

We first assume h ¢ K, whence h € K A{h} and h ¢ K A{u} for u # h: then

(Bu G i A{"})ha,zh) = —Bu (—Gu,x puy (@, 8) = Bu Gk pAfuy (v, B) ifu=h,
(Bu Gu i A{u})|(a,ﬁh) = Bu G,k Auy (v, B) if w#h,
as desired. Assume, instead, h € K, whence h ¢ K A{h} and h € K A{u} for u # h: then
(BuGr,x A{“})haﬁm = —Bu G,k pfuy (@, B) if u=nh,
(Bu Grxc A{u})|(mh) = Bu (=Gr,x ptuy (@, 8)) = =Bu G i pfur (o B) if uh,
as desired. The proof is now complete. [l

7 Series expansion and representation formula

The aim of this section is studying T-regular functions more in depth, under suitable hypotheses
about their domains. Throughout this section, we assume A to be associative.
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Subsection [Tl provides T-regular functions with a series expansion on each ball centered at
a point of the mirror. An Identity Principle and a Maximum Modulus Principle valid on T-slice
domains follow. Subsection proves that T-regular functions on T-symmetric 7T-slice domains
are automatically strongly T-regular, whence real analytic.

7.1 Series expansion

In this subsection, we will expand T-regular functions into series, using the polynomial functions
Tk constructed in Section[Bl As a preparation for these series expansions, we prove that the Ty’s
are strongly T-regular.

Proposition 7.1. Assume A to be associative. For any k € ZV7T, the function Ty : V — A is
strongly T-regular. Moreover, Ty is induced by a mirror T-stem function.

Proof. We already established that the Ty’s are T-regular. To prove that they are strongly T-
regular, we need to prove that they are T-functions, i.e., that for all k € N¥7 there exists a
T-stem function F¥ = ZKegz(r) ExFX Ry xR™ = A® R?" such that T = Z(F%). We are
actually going to prove this fact for a mirror T-stem function FX.

For k € Z+7\ Nto+7 it suffices to set X := 0. For k = (0,0,...,0), we set F'* := Ej. Now
let us prove the thesis for k € N®¥7 assuming it true for k — ¢, for all s € {1,...,to+7}. Using
the induction hypothesis and Remark [6.17 we make the following computation (where we omit

the variable z = o + 3 J for the sake of readability). For a := ZS:;OH kw,as := a — ks and
to+T7

bs =D p—aq1 Fw (Whence as +bs =37, _ - kw + 2bs), we have

to to+71
K Tie= > ks Toee, - (o — (<) o) + 32 (<1 ey Te, = (0 + (=1)% BusoTo—s0)
s=1 s=top+1
to to+7
=S RI(FE) (g — (<) mon) 4> (<)% k TF<) < (w0 4+ (—1)% Bt Jamty)
s=1 s=top+1
to to+T to+T
_ ZI(Fk—eS ¢S) + Z I(Fk_es"/)s) + Z (71)(15"'175 ks I(Fk—es)ﬂsﬂso Jo_t,
s=1 s=to+1 s=to+1
to to+T7 T
-7 (Z Fk_65¢s + Z Fk—esws> + Z(_l)dukto-‘ru I(Fk—etOJru)BuJu ;
s=1 s=to+1 u=1
where
¢s(a75) = ks (:Es - (_1)a xovs) 5 ws(avﬁ) = (_1)b5 ks Zo, du = Z kw .

to<w<to+u

Now, Lemma defines, for I = FX~¢o+u and for every u € {1,...,7}, a mirror T-stem
function “F such that Z(F)B,J, = Z(*F). We define F¥ by means of the equality

to to+T1 T
[ Fi€= D Fg, 4+ D 0 P Y (1) kg POt
s=1 s=to+1 u=1
Using Remark G.17), we see that FX is a mirror T-stem function. Moreover, Ty, = Z(FX). O
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We are finally ready for the announced series expansion. We recall that w = wgp > 1 is
a constant such that ||za| < w]|z| ||a]| for all z € V,a € A (see Remark 2.27). Moreover, by
Proposition if A is associative and B’ is a fitted distinguished basis of A, then w = 1,
whence (14 w?)™ =27,

Theorem 7.2 (Series expansion). Assume A to be associative. Let  be a domain in V and
f € Regp (2, A). If Q contains an open ball B = B(p, R) of radius R > 0 centered at a point p
in the mirror Ro 4, , then the following series expansion is valid for x € B:

=> > Tlz-p 6<0“>f< ).
kEN |k|=k

Here, the series converges normally in B because

|3 s sanere s () () g o

m r OB (p,r
=k 2 1(p,72)

_max
B(p,r1)

whenever 0 < ry <ro < R and I € T.

Proof. Set cx = 6% f(p) for all k € NYo*7. For any J = (J1,...,J;) € T, we have p €
Ry, C R?JFTH and By is an open ball centered at p in RZOJFTH, contained in Q;. According
to Definition BEI0, cx = %550’k)f_](p) = %5;0;1()]"](1)) for all k € N%™7, By Remark and
Lemma 5.8,

=X > A P J{%Hkl 0, 1) =Y~ Y (Te)alw —p) e

keN |k|=k keN k|=k

where the series converges normally in B;. Therefore, the thesis will be proven if we can prove
normal convergence of the series Yy .y >y, Tk(z — p) cx in B.

Let us fix r; with 0 < 7; < R, set C := B(p,r1) as well as py(z) := > ikj=k Tk(z — p) ek, and
prove that the number series ), -y maxc ||[px|| converges. As a first step, we prove that each
pr belongs to the set SR(V, A) of strongly T-regular functions on V. Indeed: Proposition [1]
guarantees that T, € SR(V, A) for all k € Not7; Remark guarantees, since p € Ry,
and V —p =V, that SR(V, A) is invariant under composition with the translation z +— x —
p; and Proposition guarantees that SR(V, A) is a right A-module. We are now ready to
estimate maxc |[pgl|. For I € T fixed, Proposition yields the inequality maxc ||pg] <
(1+w?)™ maxc, ||px||. By applying Remark B.25 to the I-monogenic function ¢ = f; and taking
into account again Lemma [5.8 we find that

k
k+m 1
< (14w?)7 <(1 w? —
g ol < (1) mc el < 1402702 VE (C77) () 17
for any 7y such that 71 < 72 < R. The root test shows that number series ), . maxc ||px||
converges, as desired. The proof is now complete. O

Besides its independent interest, Theorem allows to prove an Identity Principle over T-
slice domains (see Definition E.Ig)).

Theorem 7.3 (Identity Principle). Assume A to be associative. Let Q CV be a T-slice domain
and f,g € Regp(Q, A). If there exists J € T such that the J-slice Q; (whose dimension is
to + 7+ 1) contains a set of Hausdorff dimension s > to + 7 where f; and g; coincide, then
f = g throughout Q.
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Proof. We remark that ; is a domain in R?}’*‘T‘H because (2 is a T-slice domain. Since the
difference f;— g, vanishes in a subset of Q; having Hausdorff dimension s > tg+7, Theorem B3.23]
guarantees that f; — g; = 0 throughout ;. The T-slice domain €2 certainly includes a point
p € Ro,, whence an open ball B = B(p, R) with R > 0. By Definition 510,

5O (1 — g)(p) = 87 (f5 — 91)(p) = 0

for all k € N**7. Let us apply Theorem [ to f — g in B: since 6% (f — g)(p) = 0 for all
k € NYo+7_it follows that f —¢g = 0 in B. For every J’' € T, we conclude that f; — gy = 0 in
B/, which is an open subset of the domain ;. Theorem guarantees that f;, — gy =0
throughout Q. Thus, f — ¢ =0 in €2, as desired. (|

We are now in a position to establish the following property of T-regular functions on a
T-slice domain.

Proposition 7.4 (Maximum Modulus Principle). Assume A to be associative. Let 2 be a T-
slice domain in'V and f € Regp(Q, A). If the function || f]| : G — R has a global maxzimum point
in Q, then f is constant in €.

Proof. Let p be the global maximum point of ||f|| : G — R and let J € T be such that p € Q.
In particular, p is a global maximum point for || f;|| : 2; — R. By applying Theorem B2T] to the
J-monogenic function f;, we conclude that f; = f;(p) = f(p) in ;. The Identity Principle [[3]
now yields that f = f(p) throughout Q. O

7.2 Representation formula on 7T-symmetric 7-slice domains

This subsection proves that T-regular functions on 7T-symmetric 7T-slice domains are automat-
ically strongly T-regular (see Definition [6.6), whence real analytic. This property subsumes
a renowned property of quaternionic slice-regular functions, proven in [3 Theorem 3.1] (see
also [I5]). Tt also subsumes the analogous property of Clifford slice-monogenic functions (see [0}
Theorem 2.2.18] and references therein).

We recall that, in Definition [£20] we have defined T-symmetric sets as sets of the form Qp :=
{a+8J:(a,p) € D} for some D C Rg 4, x R™. Throughout the present subsection, we assume

D to be a nonempty open subset of Rg;, x R”, invariant under the reflection (o, 8) — (Q,Bh)
for every h € {1,...,7}. We point out that the T-symmetric open set Qp is a T-slice domain
if, and only if, D is connected and intersects Rg ¢, x {0}. If this is the case, we are going to
prove that Reg,(Q2p, A) = SR(2p, A). As a preparation for the proof of this equality, we make
a remark and establish a technical lemma.

Remark 7.5. Fiz H K € 2(1). Then

(—1)I0 AfuhnH| _ (—D)IENHE ity e {1, ., T} \ H
—(=D)IEHL if e H

This is because: if u € H, then (K A{u})NH = KNH; ifue H\ K, then |(K A{u}) N H| =
|[IKNH|+1; and ifue HNK, then (K A{u}) N H|=|KNH|—1.

—H
Our technical lemma concerns the coefficient of f(aw+ 8 I) in the Representation For-

mula (I0).

45



Lemma 7.6. Assume A to be associative. Fix H € P(7),I,J € T,s € {1,...,t0} and u €
{1,...,7}. If we set

VEH = 2—7’ Z (71)‘KHH| JK I[;l,
Ke2(T)

then vsyg = v vs and

J _Joyple  ifuefl,. T\ H
uVH Ay, ifueH

Proof. For K € (1), the element vy anti-commutes with J; and with I for all k € K, whence
v Jie It = (~)E T v I = T Tt o

It follows at once that vs vy = vy vs.
Proving the formula relating J, vy to vg I, requires several steps. For K € (1), we remark
that
Ju i = (1)) Tie p gy
where o(u, K) is 0 or 1 according to whether the number of elements in K less than, or equal to,

u is even or odd. For all K’ € 2(r), we remark that (—1)7 X Aub) — —(—1)7(K") and that

I Ly = = (L I ) ™ = = ()75 T pguy) ™H = ()7 A

We are now ready to begin the computation of J, vg, as follows:
Juyr =277 Y (=)EML g, T I
Ke22(T)

— 97 Z (_1)|K|’7H\ (_1)U(U,K) JKA{u} 1;(1
Ke22(T)

— 97 Z (—DIE Atupod ] (_pyo(w. K Alud) g, I;(’lA{u}
K'ez(T)

— 97 Z (71)\(K’A{u})ﬁH\ s ];(/1 1,.
K'e?(T)
By Remark [[H if u ¢ H, then
Juyn =27 > (-)EH e 1 T, =y 1,
K'eP(r)
as stated. By the same remark, if u € H, then
Juyn =-2"7 Y (=) g L L =~y L,
K'eP(r)
as desired. The proof is now complete. O

We are now ready to prove that every T-regular function f on a T-symmetric 7-slice domain
Qp is automatically strongly T-regular.

Theorem 7.7 (Representation Formula). Assume A to be associative and the T-symmetric set
Qp to be a T-slice domain. If f € Regr(Qp, A), then [ is strongly T-regular and formula (I0)
holds true for all (a, f) € D and all I,J € T. As a consequence, [ is real analytic.
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Proof. Let us fix I € T and define

Fr(a,8) =271 Y (~1)/%0 f1(a+ 3" 1)
HeZ(T)
for every K € () and for (o, 8) € D, as well as F' 1=} e 5, ExFg : D — A QR . We

claim that F'is a T-stem function and that f := Z(F) is strongly T-regular. We now prove that
fr = f1. Indeed, for all (o, 8) € D,

_ . —H
frla+BI) = Y IxFx(a,f)=2 > ()EM e+ D)
Ke2(r) K,HeZ(T)
ror —0

=2 2 f](Oé+ﬂ I)Zf](()é‘i’ﬂ])
because [I8, Lemma 2.11] implies that
S (o 27 =0

0 ifH#0

Ke2(T)

Since ff = f1, the Identity Principle [[33] implies that ]7: f throughout the T-slice domain Qp.
The first part of the statement immediately follows. The last part of the statement now follows
from Proposition [6.11]

We are left with proving our claim that F'is a T-stem function inducing a strongly T-regular
function f. For all h € {1,...,7}, we compute

Fr(a,B) =215 S (—1)E0 i+ B0 )
He2 (1)

_ , —H'
=277 It Z (—1)/ENEARDL £ (0 + BT 1)
H'e2(T)

By Remark [C5 if h ¢ K, then

Fr(a,B) =27 15" Y (~)F (0 + " 1) = Fr(a,B);

H'eP(T)
if h € K, then
—h o ’ —H'
Fr(o,B)=-27"I > (=) f(a+ B I) = —Fk(a,B).
H' e (1)

This completes the proof of the fact that F' is a T-stem function.
Let us now prove that f = Z(F) is T-regular (whence strongly T-regular) by fixing J € T
and showing that 0 f; = 0. By Definition and by Remark 237

to

3.] = 33,1 == sz Dvs + Z Ju D.]u 5
s=0 u=1
where for each v in the basis B; we use the temporary notation D, : €1(Q;, A) — €°(Q,, A)
with
D,¢(x) := lim e ! (¢(x +ev) — @(z)) .

R3e—0
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We want to apply d; operator to f_]. Let (a, 8) € D: by formula (0],

Fla+s= Y wfe+3" n= 3 ufila+B ).

HeP(r) He (1)

By Lemma [.6], B
(s Do, f) @+ BT) = > 4w (e Do f)a+ B 1)

He2(T)

for all s € {0,...,to}. Now let w € {1,...,7} and let us compute (J, D, f;)(a+3.J). We begin
by defining, for ¢ € R, the element 3, € R™ by means of the equality 8, J = 8 J +¢J,. Thus,

(Ju Dy Jo)la+ BI) = Ju_lim ™ (Frla+ Bued) = Fala+B7)

B . . —H —H
= E JuvH Rélsnios (fl(onrﬂu,6 I)— fila+ 8 I)) )
He2 (1)

For H % u, using Lemma [[.0] we find that
Juyg lim et (fI(Oé + B 1)~ frla+B" I))
R3e—0
7 , . —H B —H
=i Ly lim 7 (fila+B" I1+2L) = fia+B" D)
—H
=y L. (Dr, fr)(a+ 8" 1).
For H > u, Lemma [7.0] yields
) . TH —H
Jurm Jm 7 (frla+ Bl D = fila+B" 1)
=Ly lim et (fila+B" T—2L) - fila+B" D)
R3e—0

— —vu L (=Dr, fr)(@+B" I) = vu L (D1, f)(a + B I).

This proves that

(JuDs )@+ B0y = S ulu(Di fr)a+B" 1)
HeZ (1)

Using the equality 9; = ZZO:O vs Dy, + 3.1 _, I, Dy, we conclude that

@if@+80) = Y A @fr)a+B I).

He2(T)
Since f is T-regular, f; is I-monogenic, i.e., d;f; = 0. Overall, we conclude that 3va_] =0, as
desired. This completes the proof of our claim and the proof of the theorem. [l
8 Foundations for the nonassociative theory

Let us go back to the general case when our x-algebra A is alternative, but not necessarily
associative. We are going to construct and study 7T-functions and strongly T-regular functions
under this weaker hypothesis. Some preliminaries are in order.
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Definition 8.1. For J € T,a € A, K € P(1), we define [J,a]lx and |J,a[x as follows. We
define [J,alp = a =:]J,aly. For K #0, say K = {ki,...,kp} with1 <k < ... <k, <7, we
define

[J, a]K = Jkl (Jk2(. .. (Jkpfl(Jkp a)) .. ))
[alk = J (Tt (o (T (Ut a) )

Remark 8.2. For J € T and K € (1) fized, the map a — [J,alkx is a real vector space
isomorphism from A to itself, whose inverse is a —)J,a[x thanks to Artin’s Theorem, see [28,

Theorem 3.1].

Throughout the section, in addition to Assumption ] we assume D to be a subset of
Ro.+, x RT, invariant under the reflection («, 5) — (o, Bh) for every h € {1,...,7}. Werecall that
we have defined: in Definition 19] the symbols 5 J and Bh forall e R™, J €T, he{l,...,7};
in Definition B20) the symbol Qp := {a+ GJ : (o, B) € D} for all D C Ry, x R7. Using the
notion of T-stem function from Subsection [6.I] we now generalize Definition to the current
nonassociative setting. This generalized definition, which subsumes the notion of slice function
of [16, Definition 5] and follows the lines of its multivariate generalization [I8, Definition 2.5],
has been announced in [20].

Definition 8.3. Let I' = EK@@(T) ExFyx : D — A®R? be a T-stem function. The induced
function f =T(F): Qp — A, is defined at t = o+ §.J € Qp by the formula

f(:L') = Z [JaFK(avﬂ)]K :

Ke2(r)

A function induced by a T-stem function is called a T-function. We denote the class of T-
functions Qp — A by the symbol S(QAp, A). If Qp is a domain in V, then the elements of the
intersection SR(p, A) :== S(2p, A) NRegr(Qp, A) are called strongly T-regular functions.

When A is associative, Definition is consistent with Definition because in such a case
the equality [J, a|x = Jxa holds true for all K € #(7) and all a € A.

Once again, the notions of T-function and strongly T-regular function are interesting when
7 > 1. In the special case 7 = 0, every subset of V' is T-symmetric, every domain  in V is
a T-symmetric domain and every function f : @ — A is a T-function, induced by a T-stem
function F' = Fj, which coincides with f up to identifying A ® R? with A.

We now provide a first study of the map Z introduced in Definition

Lemma 8.4. The map T from the class of T-stem functions on D to S(Qp, A) is well-defined
and surjective. Moreover, the set S(Qp, A) is a real vector space and T is real linear map.
Finally, SR(Qp, A) is a real vector space.

Proof. Let us show that Z(F) is well-defined for each T-stem function F : D — A ® R?". We
begin by proving two properties valid for any (o, 3) € D, J € T, K € (7).

1. Assume Sy = 0 for some k € {1,...,7}. If k € K, the symmetry Fx (o, ) = —Fk(a, )
implies F(a, 8) = 0, whence [J, Fk(«, 8)]x = 0. If k ¢ K, the expression [J, Fx(a, 8)]k
still does not depend on the choice of J.

2. Let us apply the reflection (a, 8) +— (a,ﬁh) and the reflection J = (Jy,...,Jh, ..., J;) —
J=(J1,. oy =Jny...,Jr). f h e K, then

17, Fic(, Bk = —[J, = Fie (o, )] = [J, Fie (v, B)] i -
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If h € K, then -
17, Fic(a, Bk = [J, Fie (e, )] -

Suppose that, for some («, ), (o, 8') € D, J, J' € T, the equality a+3J = a+'J’ holds: thanks
to Remark it is possible to prove, by finitely many applications of property 1 and property
2, that [J, Fx (o, B)]x = [J', Fr (o, )]k for all K € 2(7). It follows that Z is well-defined.

The map Z is surjective map by the very definition of S(Qp, A).

Additionally, Definition and Remark immediately imply that, for all A\, x € R and all
T-stem functions F,G : D — A®@R?", the equality Z(\F + uG) = M\Z(F) 4+ pZ(G) holds true. Tt
follows at once that S(2p, A) is a real vector space and that Z is a real linear map.

Finally, Remark[ T2 guarantees that Reg(Qp, A) is a real vector space, whence SR(Qp, A) =
S(Q2p, A) NRegr(Q2p, A) is a real vector space, too. O

As in the associative case, the following property can be established using the properties of
T-stem functions on D, along with Remark [4.12]

Remark 8.5. Fizp € Roy,. If f € S(p, A) (or f € SR(p, A)), then setting g(z) := f(x+Dp)
defines a g € S(Ap —p, A) (a g € SR(QAp — p, A), respectively).

We now state and prove the generalization to the present nonassociative setting of Theo-
rem In particular, for each T-function we recover a unique inducing 7T-stem function, thus
proving that the real linear map 7 is an isomorphism.

Theorem 8.6 (Representation Formula for T-functions). If f = Z(F) € S(Qp, A), then the
K-component of F is

Fie(o,) =277 > (-1 fa+B" Dk

He2(T)

As a consequence, the T-stem function F inducing f is unique and I is a real vector space
isomorphism. Moreover,

flat By =27 3 (~OF I e+ B Dl | (11)

K,He (1)
for all (o, 8) € D and all I,J € T.

Proof. Let us prove the first statement. We begin by computing, under the hypothesis f = Z(F),

Yo nEM par B )= S ()RS L P, BT

He(r) He2(T) K'eP(r)
= > () YT ()T, Fre(a, B)] k0
He(r) K'eZ(7)
= Z [IaFK/(avﬂ)]K/ Z (71)|KOH‘+|HOK"
K€ (1) HeP (1)

=2"[I, Fx (o, B)] i

for all (o, 8) € D, I € T. Here, we used the fact, proven in [I8, Lemma 2.11], that

Z (—1)IKNHIHHAK| _ 27 if K'=K
He (1) 0 ifK' #K
S T
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Using Remark [82] we derive

Fre(a, 27}1 S EH fa+ BT D,

He2(T)

=27 3 (~)EHL fa+ BT Dk

He2(T)

which is the first statement. As a consequence, Z is injective and a real vector space iso-
morphism. Formula () follows immediately, if we take into account that f(a + gJ) =
Y kewm)|) Fr(a, B)lk for all (o, 8) € D, J € T. O

As a consequence of the last theorem, if we fix I € T, then every f € S(p, A) is completely
determined by its restriction fr.

We now prove, in our present nonassociative setting, Proposition [6.I0] which we restate for
the reader’s convenience. We recall that w = wp 3 > 1 is a constant such that ||za| < w]z|||a|
for all x € V,a € A (see Remark 2.27).

Proposition 8.7. Fixz f € S(Qp,A) and I € T. For every nonempty subset D' of D and for
QO :=Qp CQp,

sup [|f]| < (1 +w?)™ sup | f]-

Y 2,

Proof. The Representation Formula () applies to f: for all J € T, («, 8) € D we have

fla+Bhy=27" 3 ()T f+ BT Dl |

K,He2(T)

Thus,
swplff <27 3 swp |[J LS+ F D] |-

K,He2(r) (@P)eD,JeT
K ={ki,....k} with1 <k <...<k, <7 and if we set a := f(o“"BHI),b!:]I,a[K, then
WL Bl el = (| (o - (T s (T ) - D] < @0 || Tiea (- - Ty (T, B)) - )| <
< WK Ub]| = w11, afx|| = W] "[];1(1,;{1(. (NI a)) _))H < < WEl|q.
We conclude that

sup [f <277 Y W sup
v K,HeP(r) (e,B) €D

Tl 5 )

ﬂa+BHDH

= (2‘7 Z sup

He(r )(a’meD' Ke(r)
<sup 1 DI = sl Z( )
s=0|K|=s

=(1+w?)" sup|f].
Q

Here, we took into account that |2?(7)| = 27 and that there are exactly (7) elements K € 2(7)
such that |K| = s. O
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The multiplicative constant (1 + w?)™ appearing in the estimate of Proposition B reduces
to 27 in the cases described in the next remark. These include the case of real octonions @ with
the standard basis B’.

Remark 8.8. Assume the trace function t : A — A to take values in the associative nucleus of
A. If B' is a fitted distinguished basis of A, then Proposition [2.28 guarantees that w = 1, whence
(1+w?)™ =27,

We now prove the generalization to the present nonassociative setting of Proposition [G.11]
Proposition 8.9. If f is strongly T-regular, then f is real analytic.

Proof. Assume f = Z(F) to be strongly T-regular. For I € T fixed, Theorem guarantees
that the K-component F of F is

Fr(a,8) =277 Y (~D) L fr(a+ B Dk -
He2(T)

Now, since f is T-regular, its restriction f; is I-monogenic, whence real analytic by Remark [4.10
It follows at once that each K-component Fi : D — A of I is real analytic. In this situation,
Remark guarantees that

Frc (o, B) = Br, -+ Br, G (o, B?)

for appropriate real analytic functions {G i } ke (r). The equality f = Z(F) now implies that

fla+By= > []Fx(oB)g

Ke22(T)

ZF@(Q,B)-F Z Z Jkl(JkQ("'(Jkpfl(Jkakl---kp(a’ﬁ)))'"))

1<p<r 1<ki <...<kp<T

=Gola, ) + > S BTk BroTia (- By ks (Bry iy Gy ey (2, 82))) )

1<p<71<k1<...<kp<T

for all (o, 8) € D,J € T. Referring to the decomposition of the variable x € Qp performed in
Remark 6] we conclude that

f(@) =G [l=|?, . 27 [%)
+ Y SRR @ (@ Gy (20 P l2T]2)) ).

1<p<7T1<k1<...<kp<T

Since V. — Rg 4y X R7, z+— (20, ]|2||%,...,[|z7||?) is a real polynomial map, it is clear that each
map
Qp — A, x> G (2 ||2?, ..., [|27]|?)

is real analytic. Since V=V C A, 2 =242 +...+27 — 2F is a real linear map for all
ke {l,...,7}, we conclude that f is real analytic, as desired. O

To keep the main focus of the present work on the associative case, we postpone to a future
paper any further study of the properties of T-regular functions over nonassociative *-algebras.
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Appendix
This appendix provides proofs for the results presented in Section[Bl For the reader’s convenience,

the statements are repeated here.

Proofs of the results in Subsection [3.1]

Proposition 3.3. Assume A to be associative. For k = (ki,...,ky) € Z™, the following
properties hold true.

1. There exists a map px = (pY, P, -, p) : R™HL — R™ 1 such that PE = L opi o L'
for any hypercomplex basis B of a hypercomplex subspace M of A.

2. The equality (ky + 1) py = ks pi, . .. holds true for all distinct s,u € {1,...,m}.

3. Forallz e M,

Z ks vs PE—ES () = Z ks PE—ES (@) vs, (4)

s=1 s=1

K| P () = ke (PP (@) (5)
s=1

4. The equality OsPE = ks PE?ES holds true for all s € {1,...,m}.
Proof of Proposition[Z:3. We prove each property separately.
1. Let us set px := (0,0,...,0) when k € Z™\N™, py := (1,0,...,0) when k = (0,...,0) and

m
K| pf = > kw (Phec, @ + D, T0)
w=1

m
k| pi == —ky plocfequ + Z kw P e, Tw

w=1

for all w € {1,...,m} when k € N\ {(0,...,0)}. With this definition, we claim that

ky pi—eu =k pﬁ—es
for all k € Z™,s,u € {1,...,m}, which is equivalent to property 2. We now proceed by
induction on k.
For k € Z™ \ N™, we find that ngopkoLg1 = 0vg +0v1 + ... 4 Ovy, :OEPE.
For k = (0,...,0), we find that LBOpkOLgl =1vg +0vy + ...+ Ov,, = 1 = PE.

Let us now prove the thesis for k € N\ {(0,...,0)}, assuming it true for k — €5 for all
s € {1,...,m}. Using the definition of PE, the induction hypothesis, the definition of px
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and the claim, we find that

m m
k| PEoLs= Z ks(’PE_GS o Lp) - (zs — mous) = Z(LB 0 Pk—e,) * ks (x5 — 20V5)
s=1 s=1
m m
¥ (z o ,,) R
s=1 \u=0
m m m m m
= Z ks pﬁ—eszs - Z Vs ks pﬁ_esxo + Z Uy <Z ks pﬁ_65$s> — X Z Uy Vs ks pﬁ—es
s=1 s=1 u=1 s—1 s,u=1

M-

(ks plocfesws + ks pfcfe + ZUU ( upk EHZEO + Z kspk €s )

s=1

w
Il
—

0 Z ('Uu vs ks Pﬁ_gs + Vs Uy Ky pk—eu)

1<s<u<m

pk 65z5+pk €s +Z'Uu< upk Eu$0+2kspk €s )

s=1
) Z Vs Uy (ké pkfeS —kuy pk*Eu)

1<s<u<m

m
= [klpk+ > v lklpf+a0 D 00,0

u=1 1<s<u<m

8

HMS

+

m
= [k| > vupit = |k| Ls o px,
u=0

as desired.

. We prove this property, which also settles our previous claim, by induction on k. The
property is clearly true when k € Z™ \ N or k = (0,...,0), which implies that (for all
distinct s,u € {1,...,m}) k+e, —es € Z" \N™ and pj =0 = pi,. .. We now
prove the property for k € N\ {(0,...,0)}, assuming it true for k + ¢, — €5 — €, for all
s,u,w e {1,...,m}. Using first the definition of pi, then three separate instances of the
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induction hypothesis and finally the definition of py, ., we find that

k| (ku + 1) pi = (ku + 1) (kspﬁ_esxo + Z K pi—qf”ﬂ))

w=1

= ko (=(ku+ 1) Phe, @0 + (ku +1) Pl 7s)

+ (ku + 1) ku pi o, @u + > kw (ku + 1) P, @
we{l,...,m¥\{u,s}

= ks (*(ku + 1)p?<—55$0 + (ks - 1)pﬁ+su—2eS$S)

+ (ky + 1) ks Pl + Yo RuksPiie e, Tw
we{l,...,m}\{u,s}

- ks (_ (ku + 1)17&_63330 + (ks - 1)pﬁ+8u—2€5$5

+ (ku + 1)pﬁ755$u + Z k’w pﬁJreufesfeww’w)

= ks |k + €y — €S|pﬁ+eu—es = |k| kS plz-l-eu—es ’
whence the announced property follows immediately. This completes the induction step.

3. Using

m

m
B
Peolp=Lgopx= E VsPg = DiVs 5
s=0 s=0

we prove formula ({@) by the next computation:

m m m
B 3

E kv vy 'Pk,% oLp= E :ku Uy, § :’Uspf(,eu

u=1 u=1 s=0

m m
- Z ku pg—eu Uy + Z ku pi—eu Uy Vs
u=1

s,u=1

m
ks pﬁ—es Vs + Z ks pﬁ—es Uy Vs

s,u=1
m
u
ks § Pk—e, Vu | Us
u=0

ks (Pf_es o LB) Vs

I
NgE

V)
Il
-

M-

1

V)
Il

I
NE

w
Il
i

Here, the third equality follows from property 2 (more precisely, from our previous claim).
Taking into account the definition §f = x, — 200, and the definition of PE , We prove
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formula (B]) by the next computation:

Z ks CSB PE—eS () = Z ks s PE—ES (@) = zo Z ks vs PE—eu ()
s=1 s=1

s=1

= Z ks Pf—es (-T) Ts — To Z ks Pf—eu (‘T) v
s=1
*Zk Pke CBi|k|,Pk(>

For the second equality, we used formula ().

4. We prove this property by induction on k. The equality obviously true when k € Z™\N" or
k = (0,0,...,0), which implies ;PE =0 = /PE%S- We prove it for k € N™\ {(0,0,...,0)},

assuming it true for /Plieu for all w € {1,...,m}, by means of the equalities
k| 0P () = Yk 0s (P, () C3)
u=1
=k (0P, (@) €5 + ks P (@)
u=1
:ZkukSPE—e —€y ( )<8+k ( )Pk 26( )+k5pl§—es(z)
uFs
= ks (|k - 6S| 7)11(5’_65 (.Z') + PE—ES (‘T))
= ks [k P, ().
The proof is now complete. O

Proposition 3.6. Assume A to be associative and fix k € N. Then {PE}|k|:k s a right A-basis
for U,?. Namely, for all P € U,?, the equality

= > PE@) 5 VEIP0) (6)

k|=k
holds true at all x € M.

Proof of Proposition[34. For all k € N™, the function P2 is a k-homogenous polynomial map
by construction. We now check, by induction on k, that PE is left-monogenic with respect to
B. The Fueter polynomial ’P(O 0,..0) = = 1 is obviously left-monogenic with respect to 5. We can

.....

prove the same property for ’Pk, assuming it true for PE?CS for all s € {1,...,m}, by means of
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the equalities

|k| 337)5 = st 53 (Pf—es (SC)C?)
s=1

I
bgs
NE

Uy Oy (Pf—es (SC)Cf)
0

w
Il
i
<
Il

vu ((0uPE_ (2)) ¢F + P, () 9uCF)

[
NER
NIE

ks

0

w
Il
i

u

ko (08PE_. () CB+ > ks (PE_. () 00CE + vs PE_ . (2) 9:CF)

s=1

+ Z ks Pk €s Us) + Uspl?—es (m))

s=1

M-

V)
Il
-

I
o

M1l
o

For the last equality, we have applied formula (). We have therefore proven that {’PE }‘k‘:k C
UB,

We now prove that formula (B) holds true for all P € U,? . As a preparation, we make a
remark. If P: M — A is a k-homogeneous polynomial map, i.e., P(tx) = t*P(z) for all t > 0,
then differentiating with respect to ¢ and evaluating at ¢ = 1 proves Euler’s formula

> 2.0.P(x) =k P(x).
s=0

Combining this property with the equality 0 = dgP = St o vs0s P, we find that

k P(z) = x9 0o P(z) + x5 Z@SP(:C):—:EO szap +Z:cs<9P

i s — xoUs) Os P(x Z(BaP

We are now ready to prove (@), by induction on k. If k& = 0, equality (@) is true because
P,0,...00 = 1 and V(BO’O"”’O)P = P. If (@) is true for all P € U,f, we can prove it for any

o7



P e U,a_l by means of the following chain of equalities:
(k+1)P Z Bo,P(x

S E Y PR VSR @.P)0)

s=1 |k|:k

m 1 .
=268 D Pl@) Vs PO)

s=1 |k|=k

=YY AL @ g VPO

s=1  |K/|=k+1, k,#£0

m 1 ,
> D KGR (@) Vs PO)

k' |=k+1 s=1

V)
=(k+1) Y Pl k,, P(0).
k| =k+1

For the last equality, we have applied formula () to ’PE/. This completes the proof of formula (@).
We are left with proving that {PE }‘k‘:k is a right A-basis for U,?. Clearly, formula (Gl

implies that {PE}|k| . 18 a set of generators for the right A-module UE . We now prove that
the elements of {Pk }‘k‘ _,, are linearly independent. Assume {ax}jk=x C A to be such that
Zlkl:k Pk( )ak = 0 If k/ S Nm haS |k/| = k, then

0= Z V%O’k/)PE(z) ax = Kl ay
k| =k

because of Remark B4 and because k' # k (with |k’| = k = |k|) implies k. > k; for at least one
s € {1,...,m}. Tt follows that axr = 0, as desired. This completes the proof of the fact that
{PE}‘k‘:k is a right A-basis for U,?. O

Proofs of the results in Subsection

Proposition 3.8. Assume A to be associative and fiz a domain G in the hypercomplex subspace
M of A. The following properties hold true for all integrable ¢, : G — A, all a,b € A and all
disjoint domains G1,G2 in M :

1. G=G UGy = [,¢do= [, ¢do+ [, ¢do.
Jolap+bY)do =a [, dpdo+b [, do.
Jo(da+yb)do = ([, pdo)a+ ([, do)b.
(Jo @do)" = [0 do.

I Jgddoll < [ ol do-

o

S

o8



Proof of Proposition[Z.8 We first establish the following facts, valid for all integrable functions

®0,.-.,¢q : G — R and for all real linear endomorphisms F : R¥! — RI+1:
/ ((bo,...,qﬁd)da’:/ (¢0,---,¢d)d0’+/ (Pos...,¢q) do (13)
G1UG» Gi G2
f(/c((bo,...,qﬁd) dO’) :]-'(/Gqﬁodo,...,/cqﬁdda) Z/G]:((bo,...,qﬁd) da, (14)

H/ (¢Oa"'a¢d) do S/ H(¢Oa---a¢d>HRd+1 do . (15)
G Rd+1 G

Formula ([I3)) follows immediately from the fact that fGluGg ¢sdo = fGl s do+ sz ¢s do for all
5€10,...,d}. To establish (I4), it suffices to find real coefficients (asu)s,ueqo,...,ay such that the
s-th component of F (¢o, ..., ¢q) is as0do + . .. + @sqadq and to remark that

Oéso/¢0d0+~--+oésd/¢dd0:/(aso¢0+.-~+asd¢d)d0
a G G

for each s € {0,...,d}. Moreover, ([IT) can be proven as follows: if p = fG (¢o,...,¢4) do has
Ipl|ga+1 = 0, then the inequality is obvious; else, the inequality follows from the next chain of
inequalities:

2 _ _
1o12as = (0, P)ars = <p, ( /G dodo, ..., /G ¢dda) >R
=po/G¢oda+...+pd/G¢dda=/G<po¢o+...+pd¢d>do
:/ <pa (¢05"'7¢d)>]Rd+1 do S ||p||]Rd+1 / ||(¢05"'7¢d)||]]§d+1 do .
G G

We now prove each of the properties listed in Proposition separately, using the notations
CON, Ly, R, set in Remark 2.10)

1. Formula (I3)), along with Definition B7 immediately yields the desired equality.

2. By construction, ¢ f G @ do is real linear. It is also left A-linear because

a/G¢daaLB, </G Lg}¢da) = (Lg o Ly) </G Lg,lgbda)
= Lp (/G(,Ca oLg/l)qbda) = Ly (/G Lg/l(aqb) dO’)
:/agbda.
G

Here, we have used (Idl) with F = L,.
3. The map ¢ — |, ¢ ¢ do is also right A-linear because

(/G¢da) a=Lp (/G LB,1¢>do> a=(Lg oRy,) (/G LB,1¢da)
=Lg (/G(Ra o Lg,l)qﬁdo) =Ly </G Ly (¢a) do)
:/Gqﬁada.

Here, we have used ([dl) with F = R,.

99



4. Using ([[4) with F = CON, we find that

(/L¢do)6::(LB,(/ng}¢da))czz(LB,OCCUV)(/LLg}¢da)
:1%,(KJCOA/OLBh¢da)::LB,(X;LK%¢ﬂda)

wa.

5. Using the fact that Lz : R¥T! — M is an isometry, as well as inequality (I5]), we get

‘/¢MU‘L3(/1%meH‘/L;¢@- g/ﬁw;wmﬁma:/nmmm
G G G Rd+1 G G

as desired. O

Lemma 3.10. HfaBm+1(0,1) (w) |d0w|H < faBm+1(0,1) lo(w)]] |dow|.

Proof of Lemma 310 If we set, for all integrable functions ¢y, ..., ¢q : IB™1(0,1) — R,

/ (¢Oa"'a¢d) |d0’w|:: (/ ¢O |d0’w|a"'a/ ¢d|d0’w|> ERd+1a
oB™+1(0,1) oB™+1(0,1) oB™+1(0,1)

then [, i1y @(w) [dow| = L/ (Jo Lg' 0 |doy|). The thesis can be proven with the same
technique used in the proof of Proposition O

Theorem 3.11 (Gauss). Assume A to be associative and fix a bounded domain G in the hyper-
complex subspace M of A, with a €' boundary OG. Then

/ Yt h = / (88) 6+ ¥ (Dg0)) do
oG G

for any ¢, € €*(G, A).
Proof of Theorem[311l Using [22], Proposition A.1.12], we compute

d(Wdz*¢) = dp A (dz* ¢) + Y d(da* @) = d A da* ¢ + (—1)™ dz* Ado.
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Now,

dip A dz* = ( BRY, d:z:s> A (Z Uy d:c;;>
s=0 u=0
= Z 05t vy dxs A dax), = Z O0sYvs dxs N do,
s, u=0 s=0
= 0abvydo = (dp)do
s=0
dz* Adg = (Z Uy d:c;;> A (Z Dsh dms>
u=0 s=0
= Z Uy Osp dal A dxs = sz Ospdxy N\ dxs
u,s=0 s=0

= Z Vs as¢ (_1)md0 = (_1)m(55¢) do P

whence _ _ _ _
d(p dz*¢) = (YIg) do ¢ + 1 (pp) do = ((¢05) ¢ + ¢ (Ip¢)) do .
The thesis now immediately follows from Stokes’ theorem, [22, Theorem A.2.18]. O

Lemma 3.13. If we fiz x € M, then the function
M\{z} = A, y— En(y—x)
is both left- and right-monogenic with respect to B.

Proof of Lemma 313 Since the kernel of 0 is invariant under composition with translations,
it suffices to prove that 9gE,, = 0 = E,,0p. Since ||Jz[|™+! = (3™, 22)™ ", we find that

s=0 s

Ol =" aw) = =l 7P (m+ Daswy + |2l 7" 0sw = 2|77 (= (m+ Doy + dsull2]])
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Therefore,

|20 B lel””gzvs (=™ )

m m
- ZUS ”sz+3as(H$”7’mile> - Z szvu ”szJrgas(”Z'Himilzu)
s=0

s=0u=1
m m m m
—(m+1) szxszo +lz)|* + (m +1) Z Z Vs Uy L gLy — Z V2 ||z)|?
s=0 s=0u=1 u=1

— (o o + (m + )y vy + (m+ 1ol

u=1
—(m+ 1z’ + (m + 1)||z|?
=0,

O] (Bms) (@) = ||z Zas(l\xllfmflw“)vs

m m m
= D Ml (llall T o) vs = 0 D 2RO (el T ) v vs
s=0

s=0u=1
=—(m+1) szxovs + [Jz||* + (m + 1) ZZ.T Ly Uy Vg — Z ||| 202
s=0 s=0u=1

—(m+ Doz + (m+1) > zyvuz + (m + 1)||z]|?

u=1
—(m+1)z°z + (m +1)||z|?
=0,

as desired. [

Theorem 3.14 (Borel-Pompeiu). Assume A to be associative and fix a bounded domain G in
the hypercomplex subspace M of A, with a €1 boundary 0G. If ¢ € €1 (G, A), then

o) fzeG
BGEm( y—x)dy” oy /E —$)56¢( )doy = { 0 ifzeM\é_

Proof of Theorem[3.1) If x € M\G, the thesis follows directly from TheoremBITland LemmaB.13

We assume henceforth z € G. For any € > 0 such that B (xz,e) C G, set Ge == G\ Bm+1( ,E).
By Theorem B.11] and by Lemma [3.13] we find that

/ En(y — 2) dy” 6(y) = / En(y — 2) Dsd(y) doy
OG-

€

whence

/ Eu(y — ) dy* $(y) — / By — @) 356(y) do,
OB™+1(z,¢) Bm+1(x,e)

- / En(y — ) dy* 6(y) — / En(y — ) Opd(y) do,
oG G
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Now, for all w € dB™1(0,1) we have E,,(sw) = o,,le™™ 1 (ew)® = e~™E,,(w). Moreover,
Remark guarantees that dy* = €™ w|doy|, where |do,| denotes the surface element of the
sphere 9B™*1(0,1). Thus,

/ By — ) dy” d(y) = / B () w $(z + cw) | dou|
OB™t1(x,e)

aBm+1(0,1)
=o,! / Oz + ew) |doy,| -
oB™+1(0,1)

Since ¢ is continuous, we conclude that
iy Enly=)dy o) =0y [ doy) ofa) = o(a).
=0 Jopm+i(ze) dBm+1(0,1)
Another application of Remark yields
lim By — x) 0¢(y) do,

e—0 Bm+1(m,8)

£
= lim / / 17" B (w) O (x + rw) [doy, | r™ dr
o Japmti(0,1)

e—0

g
=o' lim / / w Opd(x + rw) |doy, | dr
€20 Jo JoaBm+1(0,1)
=0
The thesis immediately follows. O

Proposition 3.16 (Mean value property). Assume A to be associative and fix an open ball
Bmtl = B™tl(z R) in the hypercomplex subspace M of A. If ¢ € ‘gl(Em—H,A) s left-
monogenic with respect to I3, then

o(x) = - / o + Ruw)|dow)
aBM+1(0,1)

Om

Proof of Proposition[3.10. Corollary tells us that ¢(z) = faBm+1(z 9 En(y — ) dy* ¢(y).
Moreover, we already established, as a byproduct of the proof of Theorem B4l the equal-

ity faBm+1(z,s) En(y — z)dy* ¢(y) = o} faBmﬂ(O’l) d(x + ew) |doy| for all e > 0 such that

Fmﬂ(x,a) cG. O

Proofs of the results in Subsection

To prove the results of Subsection 3.3l several preliminary steps are needed.
The next remark recalls the definition of the Gegenbauer polynomials, see [22] Definition
9.22], and some of their properties, see [22] Proposition 9.23 and Proof of Theorem 9.24].

Remark 0.1. Fiz € R with i > 0 and consider the sequence {C,’;}heN of polynomial functions
[-1,1] = R defined as

Cp(ty) = zh: (_n“) (2n” h)(—ztl)%—h.

n=|%

For t1 € [—1,1] fized, the real power series Y, o Ch(t1)th centered at 0 in the variable ty has
radius of convergence 1. Its sum is the function (—1,1) = R, to — (1 — 21ty + t%) "
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We recall the following properties from [21], §8.930, 8.933, 8.935, 8.937] and [30, Theorem
7.33.1], valid for all ;x> 0 and all h € N.

[ Cg(tl)zl,Cf(tl):Zutl and hC;:(tl) (h+,u—1)t1 Ch 1(t1) (h+2/L 2)Ch Q(tl)
for all t; € [—1,1].

L C” = QMCH-H

® maxj_j 1j |C}L:| = CZL(D = (}H—?_l)'

We will only be interested in the cases when p = 2L or y = mTH For the latter case, we make

2
a useful remark.

Remark 0.2. Since m € N, for h € N the expression (h';m) = (h+m) (h+m)(h+mfl)”'(h+l)

m:
is polynomial Of degree m in the variable h, with rational coefficients. It follows at once that
h-‘rm) = 1.

m

limp— 40 (

We are now ready to prove an important technical lemma. We will use the temporary
notations 9,, and 9% := >.""  v¢ d,,, instead of the usual 9s and dp := >~ v< ds, because two
variables x,y € M are considered.

Lemma 0.3. Let us define u: M — M by setting u(zx) := Tam = 01En (x°) when x # 0, as well
as u(0) :==1. Assume m > 2, set A := {(z,y) € M x M : ||z|| < ||y||} and define A, : A = R as

An(z,y) = Cr T ((u(@),u))) =]

Then, for all (x,y) € A and all s € {1,...,m},

ly =l ="+ =D Ane,y) lyl ="
heN

Oglly —2ll7™ " = O Arra(e,y) lyl 7,

kEN
where both series converge normally in A. Moreover, for any k € N:

1. A— M, (z,y) = 0% Aks1(z,y) |lyl|*+1 is a polynomial function, k-homogeneous in the real
variables xg, 1 . .., Ty and (k+ 1)-homogeneous in the real variables Yo, yi - -, Ym;

2. 0 Ak ()| < V2(m—1) (*77) llz]|* for all (z,y) € A.

Proof. We remark that @ = ||z||u(z) and that ||u(x)|| = 1 for all x € M. For (x,y) € A, by

Theorem [2.25]
ly —z)* = Iyl = 2(z, ) + =l = ly]* (1 - 20222 + 13) ,

where
_ l=ll €10,1).

bi= (u(2) uy) € [FL1, tei=

Thus,

7'm.+1

ly — |7 =yl 7 (1 - 2tata + 83) 2
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Remark guarantees that, for (z,y) € A,

m—+41
ly — | 7" =yl 7" (1 = 200ty +£3)
m_1
=y~ YT ()t

heN
=307 ((u(@),u(y)) ||| y)~™"*
heN
=" Anlayy) [yl
heN

where the series converges normally in A, for the following reason. Let T be a compact subset

of A and set ¢ := ming, yyer [yl > 0, R := max, y)er % < 1: then

—m— h+m_2 —m— h+m—2 —m
D e (e 1 ey A s

for all (x,y) € T. Using Remark [0.2 the root test shows that the number series

A —m—h+1
§(£?§T’ n(z,y) |yl !

converges. Since the choice of T was arbitrary, we have proven normal convergence in A.
We now remark that 4y = 1, that A4 (z,y) ly|| = 2252 (u(z), u(y)) [|=] [|yl| = (m — 1) (z,y)
and that, for any h € N,

An,9) Iyl = Cr = ((ula), u(y))) |l ly]"

14 ,
C:fjvﬁ<:_$)<2@@%mm»h”|whmw

vl

I
™

7=0
5% (74D (B3 s o
= —2(z x
: h—j h—2j Y 4
7=0
is an h-homogeneous polynomial map in the real variables xg,x; ..., x,, and an h-homogeneous
polynomial map in the real variables yo, 91 ..., Ym.

For every s € {1,...,m}, we remark that 9, , Ay = 0, that 9, A1 (z,y) ||yl = (m—1) {vs,y) =
(m — 1) ys and that, for any k € N, the function 9, Ag+1(x,7y) ||y|**! is a polynomial function
A — R, which is k-homogeneous in the real variables zg, 21 ...,z and (k 4+ 1)-homogeneous in
the real variables yo,y1 ..., Ym. For the operator 9% := > """ jv¢d,_, it follows that 9§As = 0,
that 95 A1(z,y) |lyl| = (m — 1) y© and that, for any k € N, the function 9§ A1 (x,y) [Jy|** is
a polynomial function A — M, which is k-homogeneous in the real variables zg,x; ..., z,, and
(k 4+ 1)-homogeneous in the real variables yo, 41 - - ., Ym-

Let us now prove that, for s € {1,...,m}, the series >,y 9z Art1(z,y) ||y~ % and
> wen O Akt (z,y) [lyl| =™ * converge normally in A: their sums will then automatically equal
Oz, |ly — x| 7™ and 0%|ly — x| =™, respectively. We first establish the equalities

Ts¥s

0x, (u(@), u(y)) = Oa, (|2~ (@, uy))) = —s |27 (@, u(y)) + 2]~ (vs, u(y))
= Wsllyll =" — @ 2l =" {ul@), wiy) =7,

k+1
Or, ol H = S a0y 02 = (e 1) ]
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valid for all k € N and all (z,y) € A with « # 0. Then, for the same choices of k and (z,y), we
compute

1

O, A1 (v,y) = 0, (O 71 ((u(@) u(y))) [l=]+)

— (%0’") (u(z), u@))) @allyl = = s 2|~ ), u(w))) 2] *
+Oen (@), u()) (6 + 1) 2 ] !

m+1

= ((m 1) 07 ((ul@), u@)) (s lyll™ = s |27 (u(z), u(y)))

(k) Gy (@) ul) @ ol =) lal* € R,

05 Apr1(z,y) Zv O, Ars1(@,y)

s=0
- ((mfnc:%«u( )uly >>>( (4) — u(a) (u(@). u(w)))
(DO (u(e uf@)) el € M.
for all y € M \ {0}. We point out that

If k> 1, we also have 0, Ar41(0,y) = 0= 05Ar41(0,y)

u(x) is a unitary element of M and that u(y) — u(x ) (u(x),u(y)) is the component orthogonal to
u(z) of the unitary vector u(y). Now, fix s € {1,...,m}. For all k > 1 and all (z,y) € A, we
obtain the estimate

100, Arr (@, 9)] < |95 Ak (@, 9)]
s\/(m1)2 () ez (M) el
g\/(m1)2+(k+1)2(k1127;7;é%221)2 (’”m> e

<m0 [14 s (07 el

<Va(m -1 (") 1,

This estimate is consistent with [T, Formula (11.12)], because v/2(m — 1)% = \/ﬁ(%kQ +

m(m—1)
(% + 1)k +1) < 2v/2(k? + 1) (as a consequence of the inequality k < k2 and of our hypothesis
2 <'m). Additionally, we remark that 0§A:(z,y) = (m — 1) u(y)® has

m
00, A )] < 105 (o)l = m =1 < VE (= 1) ()

for all (z,y) € A. Recalling our previous choices of T, ¢ > 0 and R < 1, we conclude that the
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inequalities
102, Awsa (2 9) Iyl ™| < 05 Ak @) Iyl ™|

< V3G -1 (M)
S A e

hold true for all k¥ € N and all (z,y) € T. Using Remark [[.2] the root test immediately shows
that the number series

max_ (9, Awsr (,y) [y 7] Z

—m—kH
N (@VET

(;I;z)ix HGBAkJ,-l(x y) vl

both converge. Since the choice of the compact subset T' of A was arbitrary, we conclude that:

the real-valued series Y, o 0z, Ars1(x,y) [y =™ " converges normally in A to the function

A =R, (z,y) — Oy, |ly — x| 7™"; the M-valued series oy OfAr+1(x,y) |y =™ " converges

normally in A to the function A — M, (x,y) — 0%y — z| =™ . O
Our technical preparation allows us to finally prove Theorem [B.I8

Theorem 3.18. There exists a family {qk}keNm’ where, for |k| =k, qx : M\ {0} = M is a
(k 4+ 1)-homogeneous polynomial function such that

oa(y)
E’"( Z Z Pk H Hm+2k+1
™ keN |k|=k

for all (x,y) € A :={(z,y) € M x M : ||z|| < ||ly||}. Here, the series converges normally in A

because o) )
+m —m—
| S Ao el < va (M) el
2 PO m
In particular, En,(y—2x) is a real analytic function in the real variables xo, T1 ..., Tm, Yo, Y1 - -+ s Ym -

Proof of Theorem[3 18 We first assume m > 2. For fixed y € M, we may apply the operator
0F =31 Jve Dy, to the function M \ {y} = R, = — [ly — x| "™ ", to obtain

s=0 "s

m

Oglly =l 7™ =D vsda.lly

s=0

=(m=1)lly -] Y vy
s=0
=(m =1y -7 (y — 2)°
=on(m—1)E,(y —x).
By Lemma [0.3] if we define P, : A — M as
Py(z,y) = (m —1)"" (FgArsr (2. 9)) Iyl ™",

71,H7m+1

then
Ep(y —x) = 0,," (m —1)"" 9g[ly — =f| 7™+
=0, Y Pelx,y)

keN
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for all (x,y) € A. The convergence of the series is normal in A because
k+m o
2ol < VE (5 el

for all (z,y) € A. Moreover, Lemma guarantees that Py (x,y) [|y||™F?*+1 is a polynomial
function, k-homogenous in g, 21, ..., Z;, and (k + 1)-homogeneous in yo,y1, . . ., Ym, whence Py
is real analytic.

If instead m = 1, then M is a plane and a *-subalgebra of A that is *-isomorphic to C. We
remark that

1 c_ e
Eiy—2) = — -2

-1 -1 -1, —1 —1\~1 1 Z
- = — = 1 — - — P
o1 Hy — 1'H2 oy (y ‘T) o1y ( xry ) ol = k(‘ray)

k k—

where Py(z,y) =y~ oy~ H)F = 2Fy~
A because || Py (z,y)|| = ||lz||* [|y||=*~. Moreover, Py(x,y) ||y[|?**? = 2F(y¢)**! is a polynomial
function, k-homogenous in xg, 27 and (k + 1)-homogeneous in yo, y1.

Now take any m € N\ {0}. We have proven, in particular that A — M, (x,y) — En(y —
r) = > ey Pr(z,y) is a real analytic function in the real variables o, 1 ..., %m, Yo, Y1+ Ym-
Now fix k € N and y € M \ {0}. By the uniqueness of the Taylor expansion of real analytic
functions, o,,} Py(x,y) is the k-homogenous component of the Taylor expansion of the function
B™TH0, |ly||) = M, x> E,,(y — x), which is left-monogenic with respect to B by Lemma B.13}
Let us prove that the function B™+1(0,||y||) — M, z +— Py(x,y) is left-monogenic with respect
to B. Following [I, Lemma 11.3.3], for all h € N™*! with |h| = k — 1, we remark that

0= V%O = V%EZEm(y —x) = Ezngm(y — )

! and where the series > ken Pr converges normally in

whence, comparing constant terms,

Since x — EZP;C (x,y) is a (k—1)-homogeneous polynomial function and the last chain of equalities
is true for arbitrary h with |h| = k& — 1, we conclude that asz(ac, y) = 0, as desired.
By Proposition B.8] for any y € M \ {0} there exists a finite sequence {ax(y)} k=1 C A such

that
Py(w,y) = Y Pelz)ax(y)
k|=F

for all z € B™*1(0, ||ly||). Now, set g : M\ {0} = A, y > ax(y) ||y||™+?**! for all k € N™ with
|k| = k, so that

Pi(z,y) [yl = " PR (@) ar(y) lyl|™ 2 = > PR () acly) -
k|=k k| =k

We recall that Py (z,y) ||y||™"2**! is a polynomial function A — M, which is k-homogenous in
20, &1, -« Ty and (k 4+ 1)-homogeneous in yo, y1, - . ., Ym. For any k' € N™ with |k’| = k we can
apply the differential operator Vgo’k ) toz s Py (z,y) ||y||mT2r+L
0.k’ m 0,k’
Vi (Prly) ") = 37 VP @) awy) = K aw ()
K=k

and remark that the expression

still defines a polynomial function A — M, now 0-homogenous in g, x1, ..., Z,, but still (k4 1)-
homogeneous in yo,y1,...,Ym. For the last equality, we applied Remark 34 We conclude,
as desired, that ¢ is a polynomial function M \ {0} — M, which is (k + 1)-homogeneous in

Yo, Yty Ym- O
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Theorem 3.19 (Integral formula for Vi¢). Assume A to be associative. Fix a domain G in the
hypercomplex subspace M of A and a function ¢ : G — A that is left-monogenic with respect to B.
Then ¢ is harmonic with respect to B and real analytic. For every h € N™*L: the function ngﬁ 18
still left-monogenic with respect to B and real analytic; given any open ball B™+!1 = B™+1(p R)

=m+1l . . .
whose closure B is contained in G,

Viola) = ()M [ (VhE) (=) d” ()

aBmt1

for all x € B™t; and, at the center p of the ball B™+!,

C
h < m — 9 h
||VB¢(p>H = R‘h‘ 6111317%251 H¢” ) Cm = Om W BBTI’E%)((OJ) ||VBEm|| .

Proof of Theorem[Z13. Let us list some properties of the reproducing kernel A — M, (x,y) —
E,.(y —x):

e it is left- and right-monogenic with respect to z and with respect to y by Lemma 313}
e it is real analytic by Theorem B.I&

e for any h € N™*! its h-partial derivative with respect to the variable z, which is the
map A = M, (z,y) — (—1)PI(VBE,)(y — 2), is still real analytic, as well as left- and
right-monogenic with respect to 2 and with respect to y (because Vlé commutes with 0p).

For later use, let us also prove by induction on h € N™+! the property that
Un(x) = ||z "R VR E,, (2)

is an (|h|+1)-homogeneous polynomial function. This property is clearly true for V(BO’O"”’O)Em =

Enm, since |z|™ ! B, (x) = -~°. If the property is true for VEE,,, then for b’ = h + ¢, we
compute
/ _ o uh _ Un(z)  _ ||2]?0s¢n(z) — (m + 2/h| + D)zs¢n(2)
V5 En(z) = 0V En(z) = 05 ][ 2T [[]| 23 :

Since m + 2|h| + 3 = m + 2|h’| 4+ 1, the property is also true for Vg E,,. The induction step is
therefore complete.

Now fix h € N™*! and an open ball B™*1 = B™+1(p R) whose closure B™* is contained
in G. Recall that Corollary B.I5] provides the integral formula

o) = [ Enly—a)dy’ olo).
oBm+1
valid for all z € B™!. From the listed properties, we see that V¢ exists in B 1, that
Vo) = [ ()M(TEBL) - ) dy o)
oBm+1

for all z € B™T! and that V3¢ is left-monogenic in B™*!. Since the choice of h and B™*! was
arbitrary, in particular ¢ € €%(G, A). An application of Remark 238 now proves that ¢ : G — A
is harmonic with respect to B and real analytic.
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Let us now prove the inequality appearing in the statement. For w € dB™*1(0,1) and for
y = p + Ruw, it follows from the first part of the proof that (VEE,,)(y — p) = VBE,,(Rw) =
R‘m_‘h‘V%Em(w). Using Remark B9, we compute VBE,, at the center p of B™*! as

VBo) = (-0 [ (VBEW) ) d o)
oBm+1
— (o | R0 (TR, ) (w) R™ w g(p+ Ruw) |doy|
aB™m+1(0,1)
—RM [ (ThEw)w)w ol + Ru)fdou].
aBm+1(0,1)

Using Lemma [3.10, we find that

Vi) <m0 V5B () w 6(p -+ )| ldow|
oB™+1(0,1)
< p Il ol |VBE, (w)wé(p + Rw)|| -/aBmH(OJ) |dow |
SR Mo max VBB max [ws@)] o,
=R Mg, w2 o IVEEn] - Jmax [|o],

as desired. For the third and fourth inequalities, we applied Remark along with the fact
that VléEm takes values in M. O

Theorem 3.21 (Maximum Modulus Principle). Assume A to be associative. Fiz a domain G
in the hypercomplex subspace M of A and a function ¢ : G — A, left-monogenic with respect to
B. If the function ||¢| : G — R has a global mazimum point in G, then ¢ is constant in G.

Proof of Theorem[ZZ1l Let p := supq ||¢||. Our hypothesis is that p is finite and that p =
max¢ ||¢]. We will first prove that ||¢]| = u in G, then prove that ¢ itself is constant.

Using the continuity of ||¢|| and our hypothesis, we see that the level set £ := {z € G :
[¢(x)]] = u} is a nonempty closed subset of G. Moreover, this level set £ must be open: for
every x such that ||¢(z)|| = p and every R > 0 such that B™*! := B™+1(z R) C G, we can prove
that B™*! is contained in £. Indeed, for any r with 0 < r < R, if there existed w € 9B™*+1(0,1)
such that ||¢(z + rw)|| < pu (whence a spherical cap in 9B™1(0,1) where the same inequality
holds true), then the Mean Value Property B16] would yield ||¢(z)|| < p. Since £ is a nonempty
closed and open subset of the connected set G, we conclude that £ = G. In other words, ||¢]| = u
in G.

Let us express ¢ as ¢ = ZZ:O @y Uy, with respect to the basis B’ = {vg,v1,...,vq} of A. We
know from Theorem that Ag¢ = 0 and conclude that Agg, = 0 for each u € {0,...,d}.
Moreover, the equality ||¢||? = u? reads as ZZ:O @2 = pu?. For each s € {0,...,m}, by applying
0s to both hands of the equality, we find 2 Zi:o ¢u0sdy = 0. Repeating the operation, we find
that 237 ((8s6u)? + ¢u02¢,) = 0. Thus,

d m d m
0=>" (Z(&%)Q + qﬁuquﬁu) =) (0:6u)*.

u=0 \s=0 u=0 s=0

It follows that 9s¢, = 0 for all s € {0,...,m} and all u € {0,...,d}, whence ¢ is constant. [
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Proofs of the results in Subsection [3.4]

Theorem 3.22 (Series expansion). Assume A to be associative. Fix a domain G in the hyper-
complex subspace M of A and a function ¢ : G — A that is left-monogenic with respect to B. In
every open ball B™(p, R) contained in G, the following series expansion is valid:

D=2, 2 Pela-plm o %V%?’%(p).

keN |k|=k

Here, the series converges normally in B™*(p, R) because

Y Pe@—p akH<w2\/_(k+m) (E)k max [¢(y)

m T —p||=r
=k 2 ly—pll=r2

max
llz—pll<r:

whenever 0 < ry < ro < R.

Proof of Theorem[ZZ2 Let us fix an open ball B™*(p, R) contained in G. Since the kernel of
Op is invariant under composition with translations, we may assume without loss of generality

p = 0. Pick any 7 with 0 < 7 < R and set B™*! := B™1(p,r), which has B ca. Using
Corollary B15 and Theorem [BI8] we see that

o) = /6  Baly= )y ol)

oo Ly (B 32 RO ) 000

keEN |k|=k

ZZkaa

keN |k|=k

for all x € B™*!, where

1 o (y) .
akg ;= — ——=L .
P /aBm+1 Tyl 2eeT 7 0W)

In the previous chain of equalities: the last equality is true, and the series ), Zlklzk PE ax
converges normally in B™*1 because of the following argument. For all w € dB™1(0,1), we
recall that g (rw) = r/¥I+1g (w). Using Remark B we compute

Z Pic (z) ax = Z Pic (x /aBm+1 ﬁ% dy™ o(y)

|k|:k ‘k‘ k
! a(v)
opmi1 kz_:k k(x)”y”erQkJrl v o(y)
! B, k(W)

— Py () w ¢(rw) |doy |
Om, aB™+1(0,1) kZ_k k rk

for all z € B™*+!. Take any ry with 0 < r; < r, set C := EmH(O,rl) and T := C' x 90B™+! C
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A={(z,y) e M x M : ||z|| < ||ly|l}. Using Lemma B.10, we remark:

! ai(w)
maXH PB(2) akH < —/ maXH P () wd)(rw)H \dou|
e kz—k “ Om Jopm+1(0,1) ©€C Z k rk
1
S _ max H P (T’w)H / |d0w|
om (er)et l;k a aB™+1(0,1)
— PB H
e |37 ) 2w o)
|k|=k
PB H
@%ETH > P Wax  flwe(w)]
Ik|=k
'ﬁ??THka zkHH mase o]

max_([l]|* [yll7*) - max 4]

2 \/_ <k+m) (z,y)eT
W(’”m) ()" mas ol

r/ aBmti

Here, we first used Remark 227 along with the fact that >, _, PE(z) % takes values in M,
then Theorem [3.18 Remark and the root test show that the number series

> max| 32 P
[k|=Fk
converges. For any r1 with 0 < r; < R, it is possible to choose r2 such that 0 < r; < ry < R.
Thus, the series ) oy >k PB(x) ax converges normally in B™+1(0, R), as desired.
We are left with proving that ay = %Vg’k)qﬁ(p) for all k € N, Fix k’ € N™: Theorem [3.19
guarantees that Vg)’k,)qb exists and is still left-monogenic with respect to B, as well as real an-

alytic. By the first part of the proof, there exists a sequence {aj }xenm C A such that Vg)’k/)qﬁ
expands throughout B™*1(0, R) into the normally convergent series Y-, o > lk|=k PB(x)aj. In

particular, a’(o 0 = Vggo’k/)gb(()). By the uniqueness of the Taylor expansions of real ana-

lytic functions, a(o ..,0) can be obtained by applying Vg‘)’k/) to the |k’|-homogenous component
p—— PE(x) ax of the expansion ¢(z) = Y, o > lk|=k PE(z) ax. Therefore,

0,k’
al(o,...,o)zvgs ) Z PE(x)ak

(| = [k’
k'
- 3 R
[k |= [k’
Ek!ak/,

where the last equality follows from Remark B4 Thus, ax = “(o,u‘,,o) _ k”v(Ok )¢( 0), a
desired. D

Theorem 3.23 (Identity Principle). Assume A to be associative. Fix a domain G in the hy-
percomplex subspace M of A and functions ¢,v : G — A that are left-monogenic with respect
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to B. If G contains a set of Hausdorff dimension n > m where ¢ and i coincide, then ¢ =
throughout G.

Proof of Theorem[323 Let S denote the set of all points of G C M where ¢ and 1) coincide, i.e,
the zero set of x := ¢ — 1. Seeking a contradiction, we assume that neither the equality S = G
nor the inequality dimg(S) < m hold true. Since dimg(M) = m+1 and since y is a real analytic
function, it follows that dimg(S) = m and that there exists an open ball B™*1 C M such that
SN B™t! is a real analytic hypersurface of B™*!. We will prove that the zero set of y includes
an open ball, thus reaching a contradiction with our hypotheses.

Taking into account Theorem [B.22] which provides a series expansion of x centered at any
p € G with coefficients {%V(Bo’k)x(p)}keNm, it suffices to prove that Vi vanishes identically in
SN B™H for all h € N™T1. We do so by induction on |h|. The induction basis is the fact that x
vanishes identically in SN B™*!. The induction step from h to h+1 consists in assuming V%X to
vanish in S N B! for all h € N™*1 with |h| = h and proving that V% x vanishes in SN B!
for all h’ € N™*! with |h/| = h + 1. This is the same as proving that, for any h € N™*! with
|h| = h and any p € SN B™! the vector

(B0 VEx)(p)

(D1 V) (p)

w = e Al

(vagx)(p)

is the zero vector. Since Vgx vanishes identically on the hypersurface SN B™*!, there exists an
m X (m + 1) matrix A of rank m, with entries in R C A, such that Aw =0 € A™. Thus, there
exist n € {0,...,m} and ¢, ..., ¢, € R (with ¢, = 1) such that

co
C1 h
w=1 . [(@.V5Ex)(p)-
Cm
Now, since Vgx is still left-monogenic,
0= (08VEX)(p) = Y v:(0:Vax)(p) = <Z vscs> (0nVEX)(P) -
s=0 s=0

Now, 37 jvscs belongs to M and is not zero because ¢, = 1. We conclude that > 7" jvscs is
not a left zero divisor in A and that (9, VEx)(p) = 0. Thus, w is the zero vector in A™*!, as
desired. [
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