Effect of crystallinity on the properties of polycaprolactone nanoparticles containing the dual FLAP/mPEGS-1 inhibitor BRP-187-187

Antje Vollrath ^{a, b}, Christian Kretzer ^c, Bärbel Beringer-Siemers ^a, Blerina Shkodra ^{a, b}, Justyna A. Czaplewska ^a, Damiano Bandelli ^{a, b}, Steffi Stumpf ^{a, b}, Stephanie Hoeppener ^{a, b}, Christine Weber ^{a, b}, Oliver Werz ^{b, c}, Ulrich S. Schubert ^{a, b}*

* Corresponding author

^aLaboratory of Organic Chemistry and Macromolecular Chemistry (IOMC) Friedrich Schiller University, Humboldtstraße 10, 07743 Jena, Germany

^bJena Center for Soft Matter (JCSM) Friedrich Schiller University, Philosophenweg 7, 07743 Jena, Germany

^cDepartment of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany

Table S1. Molar mass and composition of the (co)polyesters. Details are described in a previous publication.^[1]

εCL/ δCL ^a	Mn, theo ^b	${f M}_{n,\ NMR^a}$	Mn, SEC ^c	ÐSEC °
(mol %)	(kg mol ⁻¹)	(kg mol ⁻¹)	(kg mol ⁻¹)	
100/0	11	13	19	1.17
87/13	9	13	21	1.57
81/19	9	10	19	1.41
75/25	8	10	19	1.30
61/39	7	9	16	1.26
45/55	7	7	15	1.21
0/100	10	9	6	1.09

(a) Determined by ¹H-NMR spectroscopy of the purified polymers.

(b) Molar mass expected from monomer conversions and the feed ratio.

(c) Determined by size exclusion chromatography (eluent CHCl₃, refractive index detection, polystyrene calibration).

Figure S1. Hydrodynamic diameter (intensity-weighted distribution, circles) and PDI (bars) of the homopolymer ε 100- δ 0 and ε 0- δ 100 NPs over a range of PVA concentration used in the formulation.

εCL/δCL (mol %)	Purified NPs ^a		Lyophiliz ed NPs ^ь	Lyophiliz LC ^c ed NPs ^b		Yield ^e
	d _H (nm)	PDI	$d_{\rm H}$ (nm)	PDI	(%, w/w)	(%)
ε100-δ0	593	0.52	461	0.40	2.00	97
ε87-δ13	427	0.23	349	0.30	2.01	86
ε 81- δ19	445	0.24	465	0.33	1.82	99
ε75-δ25	421	0.28	651	0.62	1.88	95
ε 61- δ39	407	0.19	443	0.40	1.63	76
ε45-δ55	397	0.26	414	0.36	2.26	60
ε 0- δ100	403	0.49	436	0.49	1.66	53

Table S2. Properties of PCL[BRP-187] NPs formulated from THF utilizing polymer concentration of 5 mg mL⁻¹ (n = 1 batch).

dH represents the intensity-weighted distribution.

(a) NPs measured after purification.

(b) NPs measured after lyophilization and subsequent resuspension in water.

(c) Determined by UV-VIS spectroscopy at λ = 316 nm (n = 4) and calculated using LC = (mass of drug recovered) / (mass of particle recovered) x 100.

(d) The determination of PVA in the NPs (%, w/w) was performed according to the published protocol.^[15](e) Yield = (mass of NPs recovered including PVA residue) / (mass of polymer + mass of drug) in the formulation x 100.

Table S3. Particle properties of empty PCL NPs prepared in THF with c = 2.5 mg mL⁻¹ (n = 2 batches) obtained by DLS and ELS measurements after purification and after lyophilization and subsequent resuspension (n = 2 for purified NPs, n = 1 for lyophilized NPs).

εCL/δCL	Purified NPs ^a		Lyophilized NPs ^b		ZP ^b	PVA c	Yield ^d
(mol %)	\mathbf{d}_{H} (nm)	PDI	$d_{\rm H}$ (nm)	PDI	(mV)	(%, w/w)	(%)
ε100-δ0	250	0.08	250	0.21	-33	2.0	93
ε87- δ13	177	0.05	253	0.27	-23	2.0	68
ε 81- δ19	193	0.06	268	0.28	-38	1.8	70
ε75-δ25	196	0.05	279	0.33	-32	1.9	76
ε 61- δ39	170	0.08	220	0.21	-13	1.6	54
ε45-δ55	163	0.06	205	0.23	-33	2.3	51
ε 0- δ100	212	0.08	285	0.30	-40	1.7	67

d_H represents the intensity-weighted distribution (five measurements) and zeta-potential (ZP) (three measurements).

(a) NPs measured after purification.

(b) NPs measured after lyophilization and subsequent resuspension in water.

(c) The determination of PVA in the NPs (%, w/w) was performed according to the published protocol.[15]

(d) Yield = (mass of NPs recovered – mass of found PVA) / (mass of polymer + mass of drug) in the formulation x 100.

Table S4. DLS intensity-weighted size distribution of PCL[BRP-187] NPs of one formulation round after purification, as well as after lyophilization and resuspension in water.

Figure S2. Cell viability measured with a Beckman ViCell XR cell counter by trypan blue staining. A total of 1 x 107 PMNL were diluted in PBS plus 0.1% of glucose and incubated with DMSO, BRP-187 (10 μ M), empty PCL particles (labeled as w/o) or PCL particles with BRP-187 (labeled with BRP-187; respective amount to 10 μ M BRP-187) for 5 h at 37 °C. Values are given as 5-LO products as a percentage of control (DMSO) (n = 3).

Figure S3. Measurement of 5-LO product formation as indicator for the inhibition of the drug target 5-lipoxygenase-activating protein (FLAP) by BRP-187.^[37] A total of 5 x 106 polymorphonuclear leukocytes (PMNL) diluted in PBS containing 0.1% glucose and 1mM CaCl₂ were preincubated with DMSO, BRP-187 (0.3 μ M), empty PCL particles (labeled as w/o) or PCL particles with BRP-187 (labeled as BRP-187; 0.3 μ M respective BRP-187) for 1 h (A) and 2 h (B) at 37 °C and further stimulated with 2.5 μ M A23187 for 10 min. The reaction was stopped with 1 mL ice-cold methanol containing 200 ng mL⁻¹ PGB1 as internal standard. Lipid mediators were extracted via solid-phase extraction (SPE) and analyzed with HPLC. Values are given as 5-LO products (LTB₄, its trans-isomers 4 and 5-HETE) as a percentage of control (DMSO) (n = 3).

Figure S4. Influence of the residual PVA on the efficiency of drug-loaded PCL NPs on 5-LO inhibition. Black-circled data points represent PCL polymers with bulk degree of crystallinity below 10% and glass transition temperature $T_g < 37$ °C.