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Abstract

A general closed interval matrix is a matrix whose entries are closed connected nonempty
subsets of R, while an interval matrix is defined to be a matrix whose entries are closed bounded
nonempty intervals in R. We say that a matrix A with constant entries is contained in a general
closed interval matrix p if, for every 1, j, we have that A; ; € y; ;. Rohn characterized full-rank
square interval matrices, that is, square interval matrices p such that every constant matrix
contained in y is nonsingular. In this paper we generalize this result to general closed interval
matrices.

1 Introduction

Let p,q € N —{0}; a p x ¢ interval matrix is a p X ¢ matrix whose entries are closed bounded
nonempty intervals in R. We say that a p X ¢ matrix A with entries in R is contained in p if, for
every i, j, we have that A;; € p; ;.

On the other side, for any field K, a partial matrix over K is defined to be a matrix where only some
of the entries are given and they are elements of K; a completion of a partial matrix is a specification
in K of the unspecified entries. We say that a submatrix of a partial matrix is specified if all its
entries are specified.

There are several papers both on interval matrices and on partial matrices. On partial matrices,
there is a wide literature about the problem of determining the maximal and the minimal rank of
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the completions of a partial matrix. We quote, for instance, the papers [1], [11] and [3]. In the last,
Cohen, Johnson, Rodman and Woerdeman determined the maximal rank of the completions of a
partial matrix in terms of the ranks and the sizes of its maximal specified submatrices; see also [1]
for the proof. The problem of determining the minimal rank of the completions of a partial matrix
seems more difficult and it has been solved only in some particular cases, see for example [10] for
the case of triangular matrices and the recent paper [2].

Also interval matrices have been widely studied and in particular there are several papers studying
when a p X ¢ interval matrix p has full rank, that is when all the matrices contained in y have rank
equal to min{p, ¢}. For any p x ¢ interval matrix p = ([m; j, M, ;|);; with m;; < M, ;, let C* A*
and |u| be the p x ¢ matrices such that

Mi7j — My

— = |uli.j = max{|m;l, [M;,;|}

Cffj - 9 ij 9

for any ¢, j. For any nonzero natural number p, let Y, = {—1,1}” and, for any = € Y}, denote by T,
the diagonal matrix whose diagonal is z. Finally, for any p x p interval matrix p = ([m; j, M;])i ;.
with m; ; < M, ; for any i, j, and for any z,y € Y}, define the matrix C¥', as follows:

cy,=C =T, A"T,
The following theorem characterizes full-rank square interval matrices:

Theorem 1. (Rohmn, [4]) Let = ([m; j, M, j])i; be a p X p interval matriz, where m; ; < M, ; for
any t,j. Then p is a full-rank interval matriz if and only if, for each x,y, 2",y €Y,

det(CY',) det(Cy, ) > 0.

See [4] and [5] for other characterizations. Finally, as to interval matrices, we want to quote also
the following theorem characterizing full-rank p x ¢ interval matrices, see [6], [7], [9]:

Theorem 2. (Rohn) A p X q interval matriz p with p > q has full rank if and only if the system
of inequalities
|CHz| < A¥|x|, r € R?

has only the trivial solution x = 0.

Obviously the problem of partial matrices in the real case and the one of interval matrices are
connected; in fact we can consider matrices whose entries are closed connected nonempty subsets of
R; these matrices generalize both the interval matrices and the partial matrices. We call a matrix
whose entries are closed connected nonempty subsets of R a “general closed interval matrix”.

In this paper we generalize Rohn’s result on full-rank square interval matrices to general closed
interval matrices, see Theorem 16 for the precise statement.



2 Notation and some recalls

o Let Ry be the set {z € R| z > 0} and let R>o be the set {z € R| x > 0}; we define analogously
R<0 and Rgo.

e Throughout the paper let p,q € N — {0}.

e Let X, be the set of the permutations on {1, ....,p}. For any permutation o, we denote the sign
of o by €(o).

e Let M(p x q,R) denote the set of the p x ¢ matrices with entries in R. For any A € M(p x ¢, R),
let rk(A) denote the rank of A and let AY) be the j-th column of A.

e For any p X ¢ general closed interval matrix u, any {iy,...,is} C {1,...,p} and any {j1,...,j.} C
{1,...,q}, we denote by I o o 8 the matrix obtained from p by deleting the rows 7y, ..., 4; and
the columns jy, ..., j,.

Definition 3. A general interval matrixz is a matriz whose entries are connected nonempty
subsets of R.
A general closed interval matrix is a matrix whose entries are closed connected nonempty
subsets of R.
An wnterval matrix is a matriz whose entries are closed bounded nonempty intervals of R.
Let p be a p X q general interval matriz. As we have already said, given a matriz A € M(p x ¢,R),
we say that A € pif a;; € pij for any i, j.
We define

mrk(p) = min{rk(A)| A € u},

Mrk(p) = maz{rk(A)| A € u}.
We call them respectively minimal rank and maximal rank of .. Moreover, we define

rkRange(p) = {rk(A)| A € p};

we call the set above the rank range of L.

We say that the entry i,j of i is a constant if i, ; is a subset of R given by only one element.
We say that the entry i, j of u is bounded if j1; ; = [a,b] for some a,b € R; we say that the entry i, j
of i is half-bounded if either p; ; = [a, +00) (left-bounded) or y; ; = (—o0, a| (right-bounded)
for some a € R.

Remark 4. Let i1 be an interval matrix. Observe that
rkRange(p) = [mrk(u), Mrk(u)] N N.
See [8] for a proof.

Definition 5. Given a p X p interval matriz, v, a partial generalized diagonal (pg-diagonal
for short) of length k of v is a k-uple of the kind

(Vi17j17 st 7Vik7jk)



for some {iy,...ix} and {ji,...,Jx} subsets of {1,...,p}.

Its complementary matrix is defined to be the submatriz of p given by the rows and columns
whose indices are respectively in {1,...,p} —{i1,...,ix} and in {1,....p} — {j1, .-, Jr}-

We say that a pg-diagonal is totally nonconstant if all its entries are not constant.

We define det(p) as follows:

detc(u) = Z E(O') Ml,a(l) ot ,up,o(p)
o€Yp s.t. H1,6(1)sMp,o(p) are constant
if there exists o € X, such that ), - ., lpo@p) are constant; we define det®(p) to be equal to 0

otherwise.

The following theorem and corollary were proved in [8] for interval matrices; the same proof yields
the results for general closed interval matrices:

Theorem 6. Let pu be a p X p general closed interval matriz. Then Mrk(u) < p if and only if the
following conditions hold:

(1) in p there is no totally nonconstant pg-diagonal of length p,

(2) the complementary matrixz of every totally nonconstant pg-diagonal of length between 0 and p—1
has det® equal to 0 (in particular det®(u) = 0).

Corollary 7. Let p be a general closed interval matriz. Then Mrk(p) is the mazimum of the
natural numbers t such that there is a t x t submatriz of p either with a totally nonconstant pg-
diagonal of length t or with a totally nonconstant pg-diagonal of length between 0 and t — 1 whose
complementary matrix has det® # 0.

Notation 8. Let p be a general closed interval matriz.

e We denote by i the matriz obtained from p by replacing the entries (—oo, +00) with 0.

e We denote by i the matriz obtained from p by replacing every entry of kind [a, +00), for some
a € R, with a and every entry of kind (—oo,b], for some b € R, with b.

e We denote by 1y the matriz obtained from u by replacing every entry of kind |a,b], for some
a,b € R with a <b, with a. We denote by p, the matriz obtained from p by replacing every entry
of kind [a,b], for some a,b € R with a < b, with b.

Definition 9. Let p be a general closed interval matriz.

We say that v is a vertex matriz of ju if v;; € {mi;, M, ;} for any i, j such that y; ; is a bounded
interval and 7y, j = p;; otherwise.

We say that a vertex matriz v of p is of even type if, for every 2 X 2 submatrix of i such that all
its entries are bounded intervals, either the number of the entries of the corresponding submatriz of
v that are equal to the minimum of the corresponding entries of p is even or some of ils entries are
constant. We say that it is of odd type if it is not of even type.



Example. Let

_ (L2 23] [2,+00)
= [_374] [_175] [1a4] .
1 2 [2,400)
4 5 1
vertex matrix of u of odd type.

1 3 [2,—1—00)) s a

is a vertex matrix of u of even type, while § = ( 45 1

Then v = (

It is easy to see that, given a p X p interval matrix p and z,y € Y}, the matrix C¥ is a vertex matrix
of p1 of even type and every vertex matrix of u of even type is equal to C¥, for some z,y € Y},. So,
by using Definition 9, we can restate Rohn’s theorem as follows:

Theorem 10. (Rohn, [4]) Let i be a p x p interval matriz. Then p is a full-rank interval matriz
if and only if, for any verter matrices Ay, Ay of even type of u,

det(Al) d@t(Ag) > 0.

3 The main result

Remark 11. Let p(xy,...,x,) be a polynomial with coefficients in R of degree 1 in every variable.
Let T € R". Then p(x) > 0 (respectively p(z) > 0) for every x € T + R%, if and only if p(z) > 0
(respectively p(T) > 0) and %(x) > 0 for every x € T+ RE and for everyi=1,... n.

Lemma 12. Let pu be a general closed interval p x p matriz. Then p is full-rank if and only if i is
full-rank and for every i,j such that j; j = (—00,+00) we have that Mrk(u;;) <p—1.

Proof. Suppose p is full-rank. Then obviously f is full-rank. Moreover, let ¢, j be such that p; ; =
(—00, +00). Then the determinant of every A € t; ; must be zero; otherwise, suppose there exists
A € p;; with det(A) # 0; then, for any choice of z; in p; s for any s € {1,...,p} — {j} and x,
in p,; for any r € {1,...,p} — {i}, we can choose z;; € p;; such that, if we define X to be the
matrix such that X, ; = x, ¢ for (r, s) such that either r =i or s = j and Xi,ﬁ' = A, we have that the
determinant of X is zero, which is absurd since p is full-rank. So Mrk(p;;) < p —1 and we have
proved the right-handed implication.

On the other side, let (i1, 1), ..., (is, js) be the indices of the entries of 1 equal to (—oo, +00) and
suppose that fi is full-rank and that Mrk(u; ) <p—1forevery k=1,...,s. Let B € M(pxp, R)
be such that B € pu. For every k =1,...,s, let By be the matrix obtained from B by replacing the

entries (i1, j1), - - -, (ix, jr) With 0. Then det(B) = det(By) = ... = det(B;) since Mrk(u; ;) <p—1
for every k =1,...,s. Obviously B € i, so det(Bs) is nonzero since fi is full-rank; hence det(B) is
nonzero and we conclude. O

Lemma 13. Let v be a general closed interval p X p matriz with only bounded or half-bounded
entries. Then v s full-rank if and only if, for any v vertex matriz of v of even type, we have that
v is full-rank and det(7) has the same sign as det(7;).
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Proof. = Obviously if v is full-rank, then the determinant of all the matrices contained in v must
have the same sign (since the determinant is a continous function and the image by a continous
function of a connected subset is connected), in particular det(7) must have the same sign as det(7;).
<= Let A € M(pxp,R) be such that A € v; define « to be the interval matrix such that «; ; = v;
it v; ; is bounded and «; ; = a;; if v; ; is half-bounded.

To prove that A is full-rank, obviously it is sufficient to prove that « is full-rank. By Rohn’s theorem
(see Theorem 10), to prove that « is full-rank, it is sufficient to prove that any two vertex matrices
Ay, As of even type of o are full-rank and the sign of their determinant is the same. Obviously,
for i = 1,2, the matrix A; is contained in a vertex matrix 7; of even type of v; by assumption,
for ¢ = 1,2, the matrix ~; is full-rank, so the matrix A; is full-rank and its determinant has the
same sign as det(7,;). Moreover, by assumption the sign of det(7,) is equal to the sign of det(7;)
for i = 1,2; in particular det(7,) and det(7,) have the same sign, so det(A;) and det(As) have the
same sign, as we wanted to prove. ]

Notation 14. Let p be a square general closed interval matriz. We say that DET (p) is greater
than 0 (respectively less than 0, equal to 0...) if, for any A € p, we have that det(A) is greater
than 0 (respectively less than 0, equal to 0...). More generally, given a function f : R® — R for
some n € N — {0}, we say that f(xy,...,2n_1, DET(p)) > 0 (respectively < 0, > 0, < 0) if
fz, .., xn_1,det(A)) >0 (respectively < 0, >0, <0) for any A € p.

Lemma 15. Let p be a general closed interval pxp matrix with only constant or half-bounded entries.
Then p is full-rank if and only if det(p) # 0 and, for any (i1, j1), ..., (is,js) € {1,...,p} x{1,...,p}
such that i1, . ..,1is are distinct and ji, ..., Js are distinct and p;, j,,- .., pi,.j, are half-bounded,

( 1)11+]1+12+32+ Aot Is X ((01,1) e (G555)) det( )det(p/\ . ) >0

sy J1sesds’ — )

where:
o the determinant of a 0 x 0 matriz is defined to be 1,
o x((i1,71),- .-, (is,7s)) is defined to be the number of the right-bounded intervals in p;, j,,- - -, Pisjs»
o fort=2,...,s, we define i, to be iy minus the number of the elements among i1, ...1,—1 smaller
than i; and j; to be 3, minus the number of the elements among j1,...ji—1 smaller than j;.

Proof. By Remark 11, the matrix p is full-rank if and only if det(p) # 0 and, for any iy, j; such that
Piy ;i is half-bounded,
(— 1)21+11+X(Z1,J1 det( )DET(le ]1) >0

and, again by Remark 11, the last condition holds if and only if, for any ¢y, j; such that p;, j, is
half-bounded, we have that

( 1)11+]1+X i1,51) det( )det(p“ Jl) > 0

and, for any s, jo such that i1 # iy and j; # j2 and p;, j, is half-bounded, we have that

( 1)11+31+Z2+J2+X((11,j1) i2,j2)) det( )DET(,O/\ /-\) >0

11,12,J1,J27 —

and so on. []



Theorem 16. Let p be a general closed interval matriz. Then p is full-rank if and only if the
following conditions hold:

(1) for every i,j such that p; ; = (—00,+00) we have that in W ; there are no totally nonconstant
pg-diagonal of length p — 1 and the complementary matrix of every totally nonconstant pg-diagonal
in pi; 5 of length between O and p — 2 has det® equal to 0.

(2) the product of the determinant every vertex matriz of fi of even type and the determinant of [i,
18 positive,

(3) for every vertex matrix v of fi of even type and every (i1, j1),. .., (is,Js) € {1,...,p}x{1,...,p}
such that i1, ...,1s are distinct and ji,...,Js are distinct and p;, j,,. .., [, , are half-bounded, we

have: o o
(_1)il+j1+i2+j2+---+is+js+x((i17j1) ----- (is’jS))det(ﬁl) det(_/\ . ) >0,

TR TR
where:

e the determinant of a 0 x 0 matriz is defined to be 1,

o the number x((i1, j1), - - ., (is, Js)) is defined to be the number of right-bounded intervals in pi;, j,, - - -, [, j.
o fort=2,...,s, we define

i =iy — iy, forr =1, t — 1| i, <4}

Jo=gi—t{g forr=1,...t—1|j. < j}.

Proof. By Lemma 12, the matrix p is full-rank if and only if i is full-rank and for every i, j such
that p;; = (—00,+00) we have that Mrk(u;;) < p— 1. By Theorem 6 this is true if and only if fi
is full-rank and for every i, j such that ji;; = (—00,+00) we have that in y; ; there are no totally
nonconstant pg-diagonal of length p— 1 and the complementary matrix of every totally nonconstant
pg-diagonal in y; 5 of length between 0 and p — 2 has det® equal to 0.

Moreover, by Lemma 13 (with v = fi), we have that f is full-rank if and only if, for any 7 vertex
matrix of fi of even type, we have that v is full-rank and det(7) has the same sign as det(f;).
Finally, this is true if and only if (2) holds and, by Lemma 15, for any 7 vertex matrix of ji of
even type, for any (i1, 1), ..., (is,Js) € {1,...,p} X {1,...,p} such that i,...,i, are distinct and
J1s--.,Js are distinet and v;, j,, ..., 7%, , are half-bounded, we have that det(¥) # 0 and

(_1)i1+j1+i~z+j~z...+i2+j§+x((i17j1),...,(i5,js)) det(7) det(7— — ) >0
11 yeenslssJ1seensfs/ — )

which, by condition (2), is equivalent to condition (3). O

Examples. 1) Let

(—o0,+00) [l,400) 1 1 4

1 2,3 6 2 4

a=| (~,2] 0 [1,4 0 [3,6]
0 ~1,2] 3 1 2

3 0 3 1 2



0 1 11 4
1 2 6 2 4
We can easily show that a does not satisfy condition (2) of Theorem 16, infactd, = |2 0 1 0 3
0 -1 3 1 2
3 0 31 2

has negative determinant, while the following vertex matrix of even type of & has positive determi-
nant:

01114
1 26 2 4
20103
0231 2
30 3 1 2

So « is not full-rank. In fact it contains the matrix

0 1 11 4
1 2 6 2 4
2 0 10 31,
0 6/5 3 1 2
3 0 31 2
which is not invertible.
2) Let
[2,400) 1 2 (—o0,+00)
B [1,2] 0 3 2
3 3,7 5 3
0 0 0 [1,400)

We can easily see that 3 satisfies conditions (1),(2),(3) of Theorem 16, so it is full-rank.
3) Let

(—o0,400) 1 2 (—00, +00)
s_| w2 2
= 3 1,5 4 0
2 [1,2] [—1,400) 3

Obviously it does not satisfy condition (1) of Theorem 16, in fact d; ; contains totally nonconstant
pg-diagonal whose complementary matrix has det® # 0. So J is not full-rank.

Open problem. A problem that naturally arises is the one of the characterization of full-rank
matrices whose entries are (not necessarily closed) connected subsets of R.
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