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Abstract

A general closed interval matrix is a matrix whose entries are closed connected nonempty
subsets of R, while an interval matrix is defined to be a matrix whose entries are closed bounded
nonempty intervals in R. We say that a matrix A with constant entries is contained in a general
closed interval matrix µ if, for every i, j, we have that Ai,j ∈ µi,j . Rohn characterized full-rank
square interval matrices, that is, square interval matrices µ such that every constant matrix
contained in µ is nonsingular. In this paper we generalize this result to general closed interval
matrices.

1 Introduction

Let p, q ∈ N − {0}; a p × q interval matrix is a p × q matrix whose entries are closed bounded
nonempty intervals in R. We say that a p × q matrix A with entries in R is contained in µ if, for
every i, j, we have that Ai,j ∈ µi,j.
On the other side, for any field K, a partial matrix over K is defined to be a matrix where only some
of the entries are given and they are elements of K; a completion of a partial matrix is a specification
in K of the unspecified entries. We say that a submatrix of a partial matrix is specified if all its
entries are specified.
There are several papers both on interval matrices and on partial matrices. On partial matrices,
there is a wide literature about the problem of determining the maximal and the minimal rank of
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the completions of a partial matrix. We quote, for instance, the papers [1], [11] and [3]. In the last,
Cohen, Johnson, Rodman and Woerdeman determined the maximal rank of the completions of a
partial matrix in terms of the ranks and the sizes of its maximal specified submatrices; see also [1]
for the proof. The problem of determining the minimal rank of the completions of a partial matrix
seems more difficult and it has been solved only in some particular cases, see for example [10] for
the case of triangular matrices and the recent paper [2].
Also interval matrices have been widely studied and in particular there are several papers studying
when a p× q interval matrix µ has full rank, that is when all the matrices contained in µ have rank
equal to min{p, q}. For any p × q interval matrix µ = ([mi,j,Mi,j])i,j with mi,j ≤ Mi,j, let Cµ,∆µ

and |µ| be the p× q matrices such that

Cµ
i,j =

mi,j +Mi,j

2
, ∆µ

i,j =
Mi,j −mi,j

2
, |µ|i,j = max{|mi,j|, |Mi,j|}

for any i, j. For any nonzero natural number p, let Yp = {−1, 1}p and, for any x ∈ Yp, denote by Tx
the diagonal matrix whose diagonal is x. Finally, for any p× p interval matrix µ = ([mi,j,Mi,j])i,j,
with mi,j ≤Mi,j for any i, j, and for any x, y ∈ Yp, define the matrix Cµ

x,y as follows:

Cµ
x,y = Cµ − Tx ∆µ Ty.

The following theorem characterizes full-rank square interval matrices:

Theorem 1. (Rohn, [4]) Let µ = ([mi,j,Mi,j])i,j be a p× p interval matrix, where mi,j ≤Mi,j for
any i, j. Then µ is a full-rank interval matrix if and only if, for each x, y, x′, y′ ∈ Yp,

det(Cµ
x,y) det(C

µ
x′,y′) > 0.

See [4] and [5] for other characterizations. Finally, as to interval matrices, we want to quote also
the following theorem characterizing full-rank p× q interval matrices, see [6], [7], [9]:

Theorem 2. (Rohn) A p× q interval matrix µ with p ≥ q has full rank if and only if the system
of inequalities

|Cµx| ≤ ∆µ|x|, x ∈ Rq

has only the trivial solution x = 0.

Obviously the problem of partial matrices in the real case and the one of interval matrices are
connected; in fact we can consider matrices whose entries are closed connected nonempty subsets of
R; these matrices generalize both the interval matrices and the partial matrices. We call a matrix
whose entries are closed connected nonempty subsets of R a “general closed interval matrix”.
In this paper we generalize Rohn’s result on full-rank square interval matrices to general closed
interval matrices, see Theorem 16 for the precise statement.

2



2 Notation and some recalls

• Let R>0 be the set {x ∈ R| x > 0} and let R≥0 be the set {x ∈ R| x ≥ 0}; we define analogously
R<0 and R≤0.
• Throughout the paper let p, q ∈ N− {0}.
• Let Σp be the set of the permutations on {1, ...., p}. For any permutation σ, we denote the sign
of σ by ε(σ).
• Let M(p× q,R) denote the set of the p× q matrices with entries in R. For any A ∈M(p× q,R),
let rk(A) denote the rank of A and let A(j) be the j-th column of A.
• For any p×q general closed interval matrix µ, any {i1, . . . , is} ⊂ {1, . . . , p} and any {j1, . . . , jr} ⊂
{1, . . . , q}, we denote by µ ̂i1,...,is, ̂j1,...,jr the matrix obtained from µ by deleting the rows i1, . . . , is and
the columns j1, . . . , jr.

Definition 3. A general interval matrix is a matrix whose entries are connected nonempty
subsets of R.
A general closed interval matrix is a matrix whose entries are closed connected nonempty
subsets of R.
An interval matrix is a matrix whose entries are closed bounded nonempty intervals of R.
Let µ be a p× q general interval matrix. As we have already said, given a matrix A ∈M(p× q,R),
we say that A ∈ µ if ai,j ∈ µi,j for any i, j.
We define

mrk(µ) = min{rk(A)| A ∈ µ},

Mrk(µ) = max{rk(A)| A ∈ µ}.

We call them respectively minimal rank and maximal rank of µ. Moreover, we define

rkRange(µ) = {rk(A)| A ∈ µ};

we call the set above the rank range of µ.
We say that the entry i, j of µ is a constant if µi,j is a subset of R given by only one element.
We say that the entry i, j of µ is bounded if µi,j = [a, b] for some a, b ∈ R; we say that the entry i, j
of µ is half-bounded if either µi,j = [a,+∞) (left-bounded) or µi,j = (−∞, a] (right-bounded)
for some a ∈ R.

Remark 4. Let µ be an interval matrix. Observe that

rkRange(µ) = [mrk(µ),Mrk(µ)] ∩ N.

See [8] for a proof.

Definition 5. Given a p× p interval matrix, ν, a partial generalized diagonal (pg-diagonal
for short) of length k of ν is a k-uple of the kind

(νi1,j1 , . . . , νik,jk)
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for some {i1, . . . ik} and {j1, . . . , jk} subsets of {1, . . . , p}.
Its complementary matrix is defined to be the submatrix of µ given by the rows and columns
whose indices are respectively in {1, . . . , p} − {i1, . . . , ik} and in {1, . . . , p} − {j1, . . . , jk}.
We say that a pg-diagonal is totally nonconstant if all its entries are not constant.
We define detc(µ) as follows:

detc(µ) =
∑

σ∈Σp s.t. µ1,σ(1),...,µp,σ(p) are constant

ε(σ)µ1,σ(1) · . . . · µp,σ(p)

if there exists σ ∈ Σp such that µ1,σ(1), . . . , µp,σ(p) are constant; we define detc(µ) to be equal to 0
otherwise.

The following theorem and corollary were proved in [8] for interval matrices; the same proof yields
the results for general closed interval matrices:

Theorem 6. Let µ be a p× p general closed interval matrix. Then Mrk(µ) < p if and only if the
following conditions hold:
(1) in µ there is no totally nonconstant pg-diagonal of length p,
(2) the complementary matrix of every totally nonconstant pg-diagonal of length between 0 and p−1
has detc equal to 0 (in particular detc(µ) = 0).

Corollary 7. Let µ be a general closed interval matrix. Then Mrk(µ) is the maximum of the
natural numbers t such that there is a t × t submatrix of µ either with a totally nonconstant pg-
diagonal of length t or with a totally nonconstant pg-diagonal of length between 0 and t − 1 whose
complementary matrix has detc 6= 0.

Notation 8. Let µ be a general closed interval matrix.
• We denote by µ̃ the matrix obtained from µ by replacing the entries (−∞,+∞) with 0.
• We denote by µ the matrix obtained from µ by replacing every entry of kind [a,+∞), for some
a ∈ R, with a and every entry of kind (−∞, b], for some b ∈ R, with b.
• We denote by µl the matrix obtained from µ by replacing every entry of kind [a, b], for some
a, b ∈ R with a ≤ b, with a. We denote by µr the matrix obtained from µ by replacing every entry
of kind [a, b], for some a, b ∈ R with a ≤ b, with b.

Definition 9. Let µ be a general closed interval matrix.
We say that γ is a vertex matrix of µ if γi,j ∈ {mi,j,Mi,j} for any i, j such that µi,j is a bounded
interval and γi,j = µi,j otherwise.
We say that a vertex matrix γ of µ is of even type if, for every 2× 2 submatrix of µ such that all
its entries are bounded intervals, either the number of the entries of the corresponding submatrix of
γ that are equal to the minimum of the corresponding entries of µ is even or some of its entries are
constant. We say that it is of odd type if it is not of even type.

4



Example. Let

µ =

(
[1, 2] [2, 3] [2,+∞)

[−3, 4] [−1, 5] [1, 4]

)
.

Then γ =

(
1 2 [2,+∞)
4 5 1

)
is a vertex matrix of µ of even type, while δ =

(
1 3 [2,+∞)
4 5 1

)
is a

vertex matrix of µ of odd type.

It is easy to see that, given a p×p interval matrix µ and x, y ∈ Yp, the matrix Cµ
x,y is a vertex matrix

of µ of even type and every vertex matrix of µ of even type is equal to Cµ
x,y for some x, y ∈ Yp. So,

by using Definition 9, we can restate Rohn’s theorem as follows:

Theorem 10. (Rohn, [4]) Let µ be a p× p interval matrix. Then µ is a full-rank interval matrix
if and only if, for any vertex matrices A1, A2 of even type of µ,

det(A1) det(A2) > 0.

3 The main result

Remark 11. Let p(x1, . . . , xn) be a polynomial with coefficients in R of degree 1 in every variable.
Let x ∈ Rn. Then p(x) ≥ 0 (respectively p(x) > 0) for every x ∈ x + Rn

≥0 if and only if p(x) ≥ 0

(respectively p(x) > 0) and ∂ p
∂xi

(x) ≥ 0 for every x ∈ x+ Rn
≥0 and for every i = 1, . . . , n.

Lemma 12. Let µ be a general closed interval p× p matrix. Then µ is full-rank if and only if µ̃ is
full-rank and for every i, j such that µi,j = (−∞,+∞) we have that Mrk(µî,ĵ) < p− 1.

Proof. Suppose µ is full-rank. Then obviously µ̃ is full-rank. Moreover, let i, j be such that µi,j =
(−∞,+∞). Then the determinant of every A ∈ µî,ĵ must be zero; otherwise, suppose there exists
A ∈ µî,ĵ with det(A) 6= 0; then, for any choice of xi,s in µi,s for any s ∈ {1, . . . , p} − {j} and xr,j
in µr,j for any r ∈ {1, . . . , p} − {i}, we can choose xi,j ∈ µi,j such that, if we define X to be the
matrix such that Xr,s = xr,s for (r, s) such that either r = i or s = j and Xî,ĵ = A, we have that the
determinant of X is zero, which is absurd since µ is full-rank. So Mrk(µî,ĵ) < p − 1 and we have
proved the right-handed implication.
On the other side, let (i1, j1), . . . , (is, js) be the indices of the entries of µ equal to (−∞,+∞) and
suppose that µ̃ is full-rank and that Mrk(µîk,ĵk) < p−1 for every k = 1, . . . , s. Let B ∈M(p×p,R)
be such that B ∈ µ. For every k = 1, . . . , s, let Bk be the matrix obtained from B by replacing the
entries (i1, j1), . . . , (ik, jk) with 0. Then det(B) = det(B1) = . . . = det(Bs) since Mrk(µîk,ĵk) < p−1
for every k = 1, . . . , s. Obviously Bs ∈ µ̃, so det(Bs) is nonzero since µ̃ is full-rank; hence det(B) is
nonzero and we conclude.

Lemma 13. Let ν be a general closed interval p × p matrix with only bounded or half-bounded
entries. Then ν is full-rank if and only if, for any γ vertex matrix of ν of even type, we have that
γ is full-rank and det(γ) has the same sign as det(νl).
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Proof. =⇒ Obviously if ν is full-rank, then the determinant of all the matrices contained in ν must
have the same sign (since the determinant is a continous function and the image by a continous
function of a connected subset is connected), in particular det(γ) must have the same sign as det(νl).
⇐= Let A ∈M(p×p,R) be such that A ∈ ν; define α to be the interval matrix such that αi,j = νi,j
if νi,j is bounded and αi,j = ai,j if νi,j is half-bounded.
To prove that A is full-rank, obviously it is sufficient to prove that α is full-rank. By Rohn’s theorem
(see Theorem 10), to prove that α is full-rank, it is sufficient to prove that any two vertex matrices
A1, A2 of even type of α are full-rank and the sign of their determinant is the same. Obviously,
for i = 1, 2, the matrix Ai is contained in a vertex matrix γi of even type of ν; by assumption,
for i = 1, 2, the matrix γi is full-rank, so the matrix Ai is full-rank and its determinant has the
same sign as det(γi). Moreover, by assumption the sign of det(γi) is equal to the sign of det(νl)
for i = 1, 2; in particular det(γ1) and det(γ2) have the same sign, so det(A1) and det(A2) have the
same sign, as we wanted to prove.

Notation 14. Let ρ be a square general closed interval matrix. We say that DET (ρ) is greater
than 0 (respectively less than 0, equal to 0...) if, for any A ∈ ρ, we have that det(A) is greater
than 0 (respectively less than 0, equal to 0...). More generally, given a function f : Rn → R for
some n ∈ N − {0}, we say that f(x1, . . . , xn−1, DET (ρ)) ≥ 0 (respectively ≤ 0, > 0, < 0) if
f(x1, . . . , xn−1, det(A)) ≥ 0 (respectively ≤ 0, > 0, < 0) for any A ∈ ρ.

Lemma 15. Let ρ be a general closed interval p×p matrix with only constant or half-bounded entries.
Then ρ is full-rank if and only if det(ρ) 6= 0 and, for any (i1, j1), . . . , (is, js) ∈ {1, . . . , p}×{1, . . . , p}
such that i1, . . . , is are distinct and j1, . . . , js are distinct and ρi1,j1 , . . . , ρis,js are half-bounded,

(−1)i1+j1+ĩ2+j̃2+...+ĩs+j̃s+χ((i1,j1),...,(is,js))det(ρ) det(ρ ̂i1,...,is, ̂j1,...,js) ≥ 0,

where:
• the determinant of a 0× 0 matrix is defined to be 1,
• χ((i1, j1), . . . , (is, js)) is defined to be the number of the right-bounded intervals in ρi1,j1 , . . . , ρis,js,

• for t = 2, . . . , s, we define ĩt to be it minus the number of the elements among i1, . . . it−1 smaller
than it and j̃t to be jt minus the number of the elements among j1, . . . jt−1 smaller than jt.

Proof. By Remark 11, the matrix ρ is full-rank if and only if det(ρ) 6= 0 and, for any i1, j1 such that
ρi1,j1 is half-bounded,

(−1)i1+j1+χ(i1,j1) det(ρ)DET (ρî1,ĵ1) ≥ 0

and, again by Remark 11, the last condition holds if and only if, for any i1, j1 such that ρi1,j1 is
half-bounded, we have that

(−1)i1+j1+χ(i1,j1) det(ρ) det(ρî1,ĵ1) ≥ 0

and, for any i2, j2 such that i1 6= i2 and j1 6= j2 and ρi2,j2 is half-bounded, we have that

(−1)i1+j1+ĩ2+j̃2+χ((i1,j1),(i2,j2)) det(ρ)DET (ρ
î1,i2,ĵ1,j2

) ≥ 0

and so on.
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Theorem 16. Let µ be a general closed interval matrix. Then µ is full-rank if and only if the
following conditions hold:
(1) for every i, j such that µi,j = (−∞,+∞) we have that in µî,ĵ there are no totally nonconstant
pg-diagonal of length p− 1 and the complementary matrix of every totally nonconstant pg-diagonal
in µî,ĵ of length between 0 and p− 2 has detc equal to 0.

(2) the product of the determinant every vertex matrix of µ̃ of even type and the determinant of µ̃l
is positive,
(3) for every vertex matrix γ of µ̃ of even type and every (i1, j1), . . . , (is, js) ∈ {1, . . . , p}×{1, . . . , p}
such that i1, . . . , is are distinct and j1, . . . , js are distinct and µi1,j1 , . . . , µis,js are half-bounded, we
have:

(−1)i1+j1+ĩ2+j̃2+...+ĩs+j̃s+χ((i1,j1),...,(is,js))det(µ̃l) det(γ ̂i1,...,is, ̂j1,...,js) ≥ 0,

where:
• the determinant of a 0× 0 matrix is defined to be 1,
• the number χ((i1, j1), . . . , (is, js)) is defined to be the number of right-bounded intervals in µi1,j1 , . . . , µis,js,
• for t = 2, . . . , s, we define

ĩt := it − ]{ir for r = 1, . . . , t− 1| ir < it}

j̃t := jt − ]{jr for r = 1, . . . , t− 1| jr < jt}.

Proof. By Lemma 12, the matrix µ is full-rank if and only if µ̃ is full-rank and for every i, j such
that µi,j = (−∞,+∞) we have that Mrk(µî,ĵ) < p− 1. By Theorem 6 this is true if and only if µ̃
is full-rank and for every i, j such that µi,j = (−∞,+∞) we have that in µî,ĵ there are no totally
nonconstant pg-diagonal of length p−1 and the complementary matrix of every totally nonconstant
pg-diagonal in µî,ĵ of length between 0 and p− 2 has detc equal to 0.
Moreover, by Lemma 13 (with ν = µ̃), we have that µ̃ is full-rank if and only if, for any γ vertex
matrix of µ̃ of even type, we have that γ is full-rank and det(γ) has the same sign as det(µ̃l).
Finally, this is true if and only if (2) holds and, by Lemma 15, for any γ vertex matrix of µ̃ of
even type, for any (i1, j1), . . . , (is, js) ∈ {1, . . . , p} × {1, . . . , p} such that i1, . . . , is are distinct and
j1, . . . , js are distinct and γi1,j1 , . . . , γis,js are half-bounded, we have that det(γ) 6= 0 and

(−1)i1+j1+ĩ2+j̃2...+ĩs+j̃s+χ((i1,j1),...,(is,js)) det(γ) det(γ ̂i1,...,is, ̂j1,...,js) ≥ 0,

which, by condition (2), is equivalent to condition (3).

Examples. 1) Let

α =


(−∞,+∞) [1,+∞) 1 1 4

1 [2, 3] 6 2 4
(−∞, 2] 0 [1, 4] 0 [3, 6]

0 [−1, 2] 3 1 2
3 0 3 1 2

 .
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We can easily show that α does not satisfy condition (2) of Theorem 16, in fact α̃l =


0 1 1 1 4
1 2 6 2 4
2 0 1 0 3
0 −1 3 1 2
3 0 3 1 2


has negative determinant, while the following vertex matrix of even type of α̃ has positive determi-
nant: 

0 1 1 1 4
1 2 6 2 4
2 0 1 0 3
0 2 3 1 2
3 0 3 1 2


So α is not full-rank. In fact it contains the matrix

0 1 1 1 4
1 2 6 2 4
2 0 1 0 3
0 6/5 3 1 2
3 0 3 1 2

 ,

which is not invertible.
2) Let

β =


[2,+∞) 1 2 (−∞,+∞)

[1, 2] 0 3 2
3 [3, 7] 5 3
0 0 0 [1,+∞)

 .

We can easily see that β satisfies conditions (1),(2),(3) of Theorem 16, so it is full-rank.
3) Let

δ =


(−∞,+∞) 1 2 (−∞,+∞)

[1, 2] [1, 2] 9 2
3 [1, 5] 4 0
2 [1, 2] [−1,+∞) 3

 .

Obviously it does not satisfy condition (1) of Theorem 16, in fact δ1̂,1̂ contains totally nonconstant
pg-diagonal whose complementary matrix has detc 6= 0. So δ is not full-rank.

Open problem. A problem that naturally arises is the one of the characterization of full-rank
matrices whose entries are (not necessarily closed) connected subsets of R.

Acknowledgments. This work was supported by the National Group for Algebraic and Geometric
Structures, and their Applications (GNSAGA-INdAM).
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[4] Rohn, J. Systems of Linear Interval Equations. Linear Algebra Appl. 126 (1989) 39-78.

[5] Rohn, J. Forty necessary and sufficient conditins for regularity of interval matrices: A
survey. Electronic Journal of Linear Algebra 18 (2009) 500-512.

[6] Rohn, J. A Handbook of Results on Interval Linear Problems, Prague: Insitute of Com-
puter Science, Academy of Sciences of the Czech Republic, 2012.

[7] Rohn, J. Enclosing solutions of overdetermined systems of linear interval equations, Re-
liable Computing, 2 (1996), 167-171.

[8] Rubei, E. On rank range of interval matrices, arXiv:1712.09940

[9] Shary, S.P. On Full-Rank Interval Matrices Numerical Analysis and Applications 7
(2014), no. 3, 241-254.

[10] Woerdeman, H. J. The lower order of lower triangular operators and minimal rank ex-
tensions. Integral Equations and Operator Theory 10 (1987), 859-879.

[11] Woerdeman, H. J. Minimal rank completions for block matrices. Linear algebra and
applications (Valencia, 1987). Linear Algebra Appl. 121 (1989), 105-122.

9


