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ABSTRACT

Aims. We investigated the properties of plasma turbulence at ion scales in the solar wind context. We concentrated on the behaviour
of the Hall physics and the pressure strain interaction and their anisotropy owing to the ambient magnetic field.
Methods. We studied the results of a three-dimensional hybrid simulation of decaying plasma turbulence using the Kármán–Howarth–
Monin (KHM) equation, which quantifies different turbulent processes.
Results. The isotropised KHM analysis shows that kinetic plus magnetic (kinetic+magnetic) energy decays at large scales; this energy
cascades from large to small scales via the magneto-hydrodynamic non-linearity that is partly continued via the Hall coupling around
the ion scales. The cascading kinetic+magnetic energy is partly dissipated at small scales via resistive dissipation. This standard
dissipation is complemented by the pressure–strain interaction, which plays the role of an effective dissipation mechanism and starts
to act at relatively large scales. The pressure–strain interaction has two components, compressive and incompressive. Compressive
interaction is connected with the velocity dilatation, which mostly reversibly exchanges kinetic+magnetic and internal energies.
Incompressive interaction mostly irreversibly converts the kinetic+magnetic energy to internal energy. The compressive effects lead
to important oscillations of the turbulence properties, but the compressibility is strongly reduced when averaged over a time period
spanning a few periods of the oscillations. The ambient magnetic field induces a strong spectral anisotropy. The turbulent fluctuations
exhibit larger scales along the magnetic field compared to the perpendicular directions. The KHM results show the corresponding
anisotropy of turbulent processes: their characteristic scales shift to larger scales in the quasi-parallel direction with respect to the
ambient magnetic field compared to the quasi-perpendicular direction. This anisotropy is weak at large scales owing to the initial
isotropic spectrum, and becomes progressively stronger at small scales.
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1. Introduction

Plasma turbulence in the presence of a sufficiently strong
background magnetic field B0 exhibits a spectral anisotropy:
fluctuating energy is concentrated in modes with strongly
oblique wave-vectors with respect to B0 (Montgomery & Turner
1981; Shebalin et al. 1983; Ghosh & Goldstein 1997). This
anisotropy is not well understood; we have phenomenological
approaches such as those based on geometric decompositions,
for example two-dimensional (2D) plus slab, or conjectures
like critical balance (Matthaeus et al. 1990; Goldreich & Sridhar
1995; Oughton et al. 2015; Oughton & Matthaeus 2020). To
avoid the need of such ad hoc assumptions we can char-
acterise turbulence and its anisotropy using the Kármán–
Howarth–Monin (KHM) equation starting from first prin-
ciples. It was derived in the incompressible, constant
density approximation, first for hydrodynamic turbulence
(de Kármán & Howarth 1938; Monin & Yaglom 1975), and
then extended to magneto-hydrodynamic (MHD) turbulence
(Politano & Pouquet 1998a,b) and Hall MHD (Galtier 2008;

Hellinger et al. 2018; Ferrand et al. 2019). This equation quan-
tifies different processes. In a decaying (non-driven) system, this
equation gives the rate of losses (decay) of energy at large scales
(in the energy-containing range), the cross-scale energy transfer
(cascade), as well as the dissipation. This equation is formulated
in the separation space of increments, which gives a natural pos-
sibility for investigation of turbulence anisotropy in the separa-
tion space looking at increments parallel and perpendicular to
the background magnetic field B0.

Results of the KHM analysis of direct simulation of MHD
turbulence (Verdini et al. 2015) show a clear anisotropy of struc-
ture functions in the separation space (l⊥, l‖). This work also
highlights the somewhat paradoxical properties of turbulence in
magnetised plasmas. The inertial range can be formally defined
as the region where the cascade rate K is equal to the dissi-
pation rate Q. The simulation results of Verdini et al. (2015)
clearly exhibit a tendency to have K(l⊥, l‖) = Q within a range
of scales that is anisotropically distributed in the (l⊥, l‖) space.
In the isotropic case K just expresses the cascade rate, while in
the anisotropic case this quantity characterises the cascade rate
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but does not have any information about the direction of energy
cascade in the (l⊥, l‖) space.

To describe the cross-scale energy transfer in turbulence
spectral or spatial filtering (Eyink & Aluie 2009; Aluie 2011;
Grete et al. 2017) techniques are also used. In this case, however,
filters are usually assumed to be isotropic; when anisotropic spa-
tial filtering (coarse graining) is used the cascade rate exhibits
an anisotropy (Manzini et al. 2022) that is similar to the KHM
results.

For weakly collisional plasmas (such as those in the solar
wind), it is necessary to include the effects of plasma com-
pressibility (Hellinger et al. 2021a) and treat the pressure as
a tensor (Hellinger et al. 2022). The pressure–strain interac-
tion, which couples the magnetic+kinetic energy to the internal
energy (Del Sarto et al. 2016), may work as an effective dissi-
pation channel, as seen in direct kinetic numerical simulations
(Yang et al. 2017; Matthaeus et al. 2020; Hellinger et al. 2022;
Arró et al. 2022).

Numerical simulations and in situ observations suggest that
the pressure–strain channel is likely responsible for correla-
tions between particle velocity-field gradients and temperatures
(Franci et al. 2016; Parashar & Matthaeus 2016; Pezzi et al.
2021; Yordanova et al. 2021), but its properties are not well
understood. Many different physical processes contribute to
this interaction (Yang et al. 2017; Cassak & Barbhuiya 2022),
including those connected with plasma compression and expan-
sion. It is not clear at what spatial scales the pressure–strain
effect acts. Electron and ion energisations are expected to work at
very different scales (Franci et al. 2022), but comparable scales
are observed in some full-particle simulations (Yang et al. 2022).
It is also unclear what the role of the turbulence anisotropy is
(most of the present simulations are two-dimensional) and how it
compares to other processes such as Hall coupling (Papini et al.
2019, 2021). In this paper we extended the two-dimensional
work of Hellinger et al. (2022), we analysed a three-dimensional
hybrid simulation of decaying plasma turbulence using the KHM
equation, and we studied the anisotropy of different turbulent
processes.

2. The Kármán–Howarth–Monin equation

2.1. Extended Hall magnetohydrodynamics

We investigated a system governed by the following extended
compressible inviscid Hall MHD equations for the plasma den-
sity ρ, the plasma mean velocity u, and the magnetic field B:

∂tρ + (u · ∇)ρ = −ρ∇ · u,
ρ∂tu + ρ(u · ∇)u = J × B − ∇ · P, (1)

∂t B = ∇ ×
[
(u − j) × B

]
+ η∇2B.

Here P is the plasma pressure tensor, η is the electric resistivity,
J is the electric current density, j is the electric current den-
sity in velocity units, and j = J/ρc = u − ue (ρc and ue being
the ion charge density and the electron velocity, respectively).
We assume SI units except for the magnetic permeability µ0,
which is set to one (SI results can be obtained by the rescal-
ing B→ Bµ−1/2

0 ). Equation (1) (except the resistive term) can be
derived taking moments of the Vlasov equation for protons and
electrons, and assuming massless electrons. We added a resistive
dissipation, as used in the hybrid code to avoid the accumulation
of energy on small scales; this process substitutes the electron
dissipation. The plasma pressure tensor contains contributions
from protons and electrons but for electrons we further adopted
a scalar pressure (an approximation used in the hybrid code).

For the sum of kinetic (Ekin = 〈ρ|u|2/2〉) and magnetic
(Emag = 〈|B|2/2〉) energies (averaged over a closed volume) we
obtained this budget equation,

∂t

(
Ekin + Emag

)
= 〈P : ∇u〉 − η〈|J |2〉, (2)

where the colon (:) operator denotes a double contraction of two
tensors (i.e., for two tensors T and V, T : V =

∑
i j Ti jVi j, Ti j and

Vi j being their components) and the angle brackets 〈•〉 denote
the averaging. The kinetic and magnetic energy is transferred to
the internal energy by the resistive dissipation rate

Qη = η〈|J |2〉. (3)

The exchanges between the kinetic+magnetic energy and the
internal energy also proceed through the pressure–strain cou-
pling. We defined the pressure–strain rate as

ψ = −〈P : ∇u〉. (4)

Since the pressure–strain may behave as an effective dissipation
rate, we defined the total (effective) dissipation rate as a sum of
the two:

Q = Qη + ψ. (5)

We did not consider an explicit viscosity since it is not present
in the hybrid approximation.

2.2. The KHM equation

For the formulation of the KHM equation in terms of struc-
ture functions for compressible Hall MHD, we used the density-
weighted velocity field w = ρ1/2u (Kida & Orszag 1990) to take
into account a variable density. We characterised the spatial scale
decomposition of the kinetic and magnetic energies (and their
sum) using the second-order structure functions

Sw =
1
4

〈
|δw|2

〉
, S B =

1
4

〈
|δB|2

〉
, and S = S w + S B,

where the deltas denote increments of the corresponding quanti-
ties (e.g., δw = w(x + l) − w(x), x being the position and l the
separation vector).

For the second-order structure function S representing the
sum of the kinetic and magnetic energies, we derived the KHM
equation in the form

∂tS = KMHD + KHall − Ψ − D, (6)

where KMHD and KHall are the MHD and Hall cascade rates,
respectively; Ψ represents the pressure–strain effect; and D
accounts for the effects of dissipation and heating. The cascade
rates KMHD and KHall (as well as Ψ and D) can be expressed in
a few different equivalent forms. Here we used a form that uses
increments of second-order quantities (equivalent to the usual
form involving divergence of a third-order structure function
vector; cf. Hellinger et al. 2021a):

KMHD = −
1
2

〈
δw · δ

[
(u · ∇)w +

1
2
w(∇ · u)

]〉
−

1
2

〈
δw · δ

(
J × B
√
ρ

)〉
+

1
2
〈δJ · δ (u × B)〉 , (7)

KHall = −
1
2
〈δJ · δ ( j × B)〉 , (8)

Ψ = −
1
2

〈
δw · δ

(
∇ · P
√
ρ

)〉
, (9)

D =
1
2
η
〈
|δJ |2

〉
= Qη −

1
2
η∇2S B. (10)
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3. Simulation results

Here we analysed results of three-dimensional (3D) hybrid simu-
lations of decaying plasma turbulence. In the hybrid approxima-
tion, ions are described by a particle-in-cell model, whereas elec-
trons are a massless charge neutralising fluid (Matthews 1994;
Franci et al. 2018a,b)1 The system is numerically integrated in
a 3D domain (x, y, z) with 5123 grid points and the spatial res-
olution ∆x = ∆y = ∆z = di/8. Here di denotes the ion inertial
length. Protons are initially isotropic with βi = 0.5, βi being the
ion beta (i.e., the ratio of the ion to magnetic pressures). In order
to reduce the noise, a Gaussian smoothing on 3 × 3 points is
used on the proton density and velocity in the code. A uniform
ambient magnetic field B0, directed along z is present, whereas
neutralising electrons are assumed to be isothermal with βe = βi;
here βe denotes the electron beta, the ratio of the electron and
magnetic pressures. The system was initialised with an isotropic
3D spectrum of modes with random phases, linear Alfvén polar-
isation (δB ⊥ B0), and vanishing correlation between magnetic
field and velocity fluctuations. These modes were in the range
k ≤ 0.22d−1

i with rms fluctuations δB = 0.25. The time step
is ∆t = 0.005Ω−1

i for particle integration (the magnetic field
is advanced with a smaller time step ∆tB = ∆t/20), the num-
ber of particles per cell Nppc = 4096, and a small resistivity
η = 10−3µ0v

2
A/Ωi is used to avoid energy accumulation at the

smallest scales; we note that no explicit viscosity is present in
the hybrid model. Here Ωi denotes the ion cyclotron frequency,
µ0 is the magnetic permeability of the vacuum, and vA stands for
the Alfvén velocity. We let the system evolve until turbulence
becomes quasi-stationary.

In the simulation, the proton kinetic energy Ekin and the
magnetic energy Emag oscillate with opposite phases, thus sug-
gesting energy exchanges. However, overall these two quantities
decrease. On the other hand, the proton internal energy, Eint =
3〈p〉/2 increases (here p is the scalar pressure, p = tr(P), tr being
the trace). This energisation works throughout the simulation
even before turbulence is well developed. The total energy Etot =
Ekin + Eint + Emag slowly decreases owing to the resistive dissipa-
tion since electrons are assumed to be massless and isothermal.
This behaviour is shown on Fig. 1a, which displays the evolution
of relative changes of the kinetic, magnetic, and internal energies
∆Ekin,mag,int,tot given by ∆E(t) = [E(t)−E(0)]/Etot(0). The proton
energisation is driven by the pressure–strain coupling that plays
the role of an effective dissipation channel. Figure 1b shows the
resistive dissipation rate Qη as a function of time as well as the
two contributions to the pressure–strain rate ψ, the compressive
contribution (Yang et al. 2017)

ψc = −〈p∇ · u〉, (11)

and the incompressive contribution ψi = ψ − ψc. These terms
are normalised to the total effective dissipation rate Q = 7.15 ×
10−5mpv

2
AΩi obtained by averaging ψ + Qη over the time inter-

val 200 ≤ tΩi ≤ 300. The resistive dissipation rate Qη starts at
zero, slowly increases, and becomes quasi-stationary for tΩi &
200. The effective dissipation rate ψi is initially dominant, and
strongly and rapidly oscillates in time for tΩi . 50; later on its
oscillations become weaker and slower. At later times Qη and ψi
become comparable to ψ; during the interval 200 ≤ tΩi ≤ 300
the averaged ψi ' 0.47Q, whereas Qη ' 0.44Q. The compres-
sive component of the pressure–strain interaction ψc starts at
zero (owing to the incompressive initialisation) and reaches val-
ues comparable to Q. At later times it oscillates around zero, so

1 See also http://www.asu.cas.cz/~helinger/camelia.html

-0.02

-0.01

0.00

0.01

0.02

a)

0 50 100 150 200 250 300

-0.5

0.0

0.5

1.0

1.5

b)

tΩi

Qη

ψi

ψc

∆Ekin

∆Emag

∆Eint

∆Etot

Fig. 1. Evolution of different quantities as a function of time: (a) Rela-
tive changes in the kinetic energy ∆Ekin (dashed line), magnetic energy
∆Emag (solid line), internal energy ∆Eint (dash-dotted line), and total
energy ∆Etot (dotted line); (b) resistive dissipation rate Qη (dashed line),
incompressive pressure–strain effective dissipation rate ψi (solid line),
and its compressive counterpart ψc (dotted line). These rates are nor-
malised to the total effective dissipation rate Q = Qη +ψ (averaged over
200 ≤ tΩi ≤ 300).

that its averaged value during the time interval 200 ≤ tΩi ≤ 300
is ψc ' 0.08Q.

The non-linear coupling between the magnetic and plasma
velocity fields leads to a turbulent cascade. The value of Qη

becomes quasi-stationary for t & 170Ωi and we assume that the
system reaches well-developed turbulence (Mininni & Pouquet
2009; Servidio et al. 2015).

4. Isotropic view

The turbulent cascade leads to a spread of fluctuating magnetic
and kinetic energies over a wide range of scales. During the last
quasi-stationary phase their spectral properties are only weakly
varying. An example is given in Fig. 2 that shows omnidirec-
tional power spectral densities of the magnetic field B, PB (in
red), and the proton velocity field w = ρ1/2u, Pw (in blue), and
their sum P (in black) as a function of k. The magnetic spectrum
is roughly Kolmogorov-like (∝k−5/3) at large scales with a break
at around kdi ∼ 3 where it steepens. The proton kinetic spec-
trum has a somewhat steeper slope at large scales compared to
PB with a break at around kdi ∼ 1 where it strongly steepens.
For kdi & 5 the kinetic spectrum is affected by the numerical
noise connected with the finite number of particles per cell. The
magnetic spectrum is also influenced by the noise and this effect
is important for kdi & 10.

We can test turbulence properties in more detail using the
KHM equation. While the background magnetic field leads to
an important spectral anisotropy (as we discuss later), for the
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Fig. 2. Omnidirectional power spectral densities of the magnetic field B,
PB (red), and the compensated proton velocity field w, Pw (blue), and
their sum P (black) as a function of k normalised to di at t = 250Ω−1

i .
The dotted line shows a spectrum ∝k−5/3 for comparison.

assessment of the overall turbulence behaviour we start with
isotropised quantities. Before we present the analysis of the sim-
ulation results via the KHM equation, we start with a presen-
tation of the theoretical expectations. We assume a simplified
model described with

∂tS = K − D, (12)

where ∂tS represents the decay of the energy, K is the cas-
cade rate, and D stands for the dissipation. The KHM equa-
tion has cumulative properties (Hellinger et al. 2021a,b, see also
Appendix A), the two terms, ∂tS (l) and D(l), behave as a spa-
tial low-pass filter and correspond to the decay and dissipation
rates on scales smaller than l. In contrast, the term K describes
the cross-scale energy transfer (cascade) rate. Figure 3 shows
the expected behaviour of the KHM terms as a function of l.
The value of D starts at zero and increases towards Q. Above
the dissipation length ldiss, where dissipation is not active, D is
then constant: D = Q. In the ideal decaying case the system
is stationary in the dissipation range and in the inertial range,
and ∂tS is zero there. Only on large scales l > louter does this
term become negative, ∂tS → −Q (this is the energy containing
range). Finally, between the dissipation length ldiss and the outer
scale louter the cascade rate is constant, equal to the dissipation
rate K = Q (this relation is the formal definition of the inertial
range).

The KHM equation constitutes a cross-scale energy conser-
vation equation, and its application represents a strong validity
check: one cannot expect that the KHM equation holds exactly
in a numerical code. We defined the validity test O,

O = −∂tS + KMHD + KHall − Ψ − D, (13)

which measures the error of the code owing to numerical and
other issues. Figure 4 displays the validity test and the different
contributing terms (−∂tS , KMHD, KHall, −Ψ, −D) normalised to
the total effective dissipation rate Q as a function of the scale
separation l = |l| (averaged over the quasi-stationary time period
200 ≤ tΩi ≤ 300). Figure 4a shows that the KHM Eq. (6) is rela-
tively well satisfied. The simulated system exhibits the expected
behaviour, but is far from the ideal schema of Fig. 3. In this
case there is no clear separation between the dissipation and

 

-1

 

0

 

1

 

0 = −D +K − ∂tS

ldiss louter

−D

K −∂tS

Fig. 3. Schematic view of the theoretical expectations of a simplified
system 0 = −∂tS + K −D. The decay term −∂tS (blue), the cascade rate
K (green), and the dissipation rate −D (red) are given as a function of l
and are normalised to the dissipation rate Q.

the energy containing ranges. The energy decay ∂tS is negative
and important over a wide range of scales; it becomes negligi-
ble somewhat below l = di. At the same time, the dissipation
processes are active to larger scales. Consequently, the total cas-
cade KMHD + KHall rate only reaches a maximum value of about
one-half the dissipation rate Q. Figure 4b shows that the resistive
dissipation is active on small scales l . 2di, but that the pressure–
strain interaction is active at relatively large scales, l . 20di,
largely extending the dissipation range. On intermediate scales
the dominant process is the MHD cascade; KMHD is negative at
large scales, which indicates an inverse cascade. On small scales
part of the cascade continues via the Hall term, KHall attains a
maximum value of about 15% of Q.

Compressive effects contribute to the pressure–strain cou-
pling and can be described as

Ψc = −
1
2

〈
δw · δ

(
∇p
√
ρ

)〉
(14)

(see Eq. (9)). The magenta dashed line in Fig. 4 shows the Ψc
contribution to Ψ as in the case of the pressure-dilatation term
ψc, Ψc is weak when averaged over 200 ≤ tΩi ≤ 300.

The KHM equation is valid during the whole simulation (it
is relatively well satisfied |O|/Q . 10%), so we can investigate
how turbulence begins, evolves, and varies. Figure 5 shows the
evolution of the isotropised KHM results, the different contribut-
ing terms as a function of time, and the separation scale l = |l|
normalised to the total effective dissipation rate Q (averaged over
the last third of the simulation 200 ≤ tΩi ≤ 300).

Figure 5 demonstrates that the features of well-developed
turbulence seen in Fig. 4 only appear at later times. During the
turbulence onset (for about tΩi . 200) ∂tS is positive on inter-
mediate scales. This means that the kinetic+magnetic energy
increases in time on these scales owing to the MHD non-linear
term (since ∂tS ∼ KMHD). At later times, ∂tS becomes negative,
monotonically decreasing with l as expected for the cumulative
low-pass filter property. The range where ∂tS is positive shifts
with time to smaller scales as these are produced. As the energy
transfer towards smaller scales continues, the resistive dissipa-
tion gradually appears. At later times we recover the cumulative
properties of the resistive term D, increasing from 0 to about
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Fig. 4. Isotropised KHM analysis averaged results over a period of
pressure–strain oscillations (200 ≤ tΩi ≤ 300): (a) Validity test O (black
line) as a function of l along with combined dissipative terms −(D + Ψ)
(red), combined cascade rates KMHD + KHall (green), and the decay rate
−∂tS (blue) in a format similar to Fig. 3. (b) Different separate con-
tributing terms to the KHM equation: the decay rate −∂tS (blue), the
MHD cascade rate KMHD (green), the Hall cascade rate KHall (orange),
the resistive dissipation rate −D (red), and the pressure–strain (effective
dissipation) rate −Ψ (magenta). The dashed magenta curve displays the
compressive component of −Ψ. All the quantities are normalised to the
time-averaged effective total dissipation rate Q.

a constant value for l & 2di. The cross-scale energy transfer
(cascade) rate KMHD remains negative on large scales (which
is a possible signature of an inverse cascade), but it is positive
on intermediate scales indicating an energy transfer (cascade)
from large to small scales. The range of positive KMHD slowly
shifts to smaller scales over time as these are produced. For
100 . tΩi . 200 positive values of KHall gradually appear as
the Hall physics sets in.

The evolution of the pressure–strain interaction is more com-
plicated. As in the case of pressure–strain rate, We split Ψ
into its compressive part Ψc and the remaining Ψi = Ψ − Ψc,
incompressive part (corresponding to the Pi-D term of
Yang et al. 2017). The compressive contribution Ψc exhibits
oscillations between about −0.5Q and 0.5Q within a range
of scales that extends to smaller scales as the cascade devel-
ops. Oscillations between positive and negative values indicate
reversible exchanges between the magnetic+kinetic energy and
the internal energy; as can be seen in Fig. 4, the average value
of Ψc during tΩi & 200 is much weaker than its amplitude

10
-1

10
0

10
1

10
2

-2

-1

0

1

2

10
-1

10
0

10
1

10
2

-2

-1

0

1

2

10
-1

10
0

10
1

10
2

-0.4

-0.2

0.0

0.2

0.4

10
-1

10
0

10
1

10
2

-1.0

-0.5

0.0

0.5

1.0

10
-1

10
0

10
1

10
2

-1.0

-0.5

0.0

0.5

1.0

10
-1

10
0

10
1

10
2

0 50 100 150 200 250 300

-1.0

-0.5

0.0

0.5

1.0

l/
d
i

l/
d
i

l/
d
i

l/
d
i

l/
d
i

l/
d
i

tΩi

a)

b)

c)

d)

e)

f)

∂tS

KMHD

KHall

D

Ψi

Ψc

Fig. 5. Evolution of isotropised KHM results. Shown are the different
KHM terms as a function of time t and l: (a) decay rate ∂tS , (b) MHD
cascade rate KMHD, (c) Hall cascade rate KHall, (d) resistive dissipation
rate D, (e) compressive pressure–strain rate Ψc, and (f) incompressive
pressure–strain rate Ψi. All the quantities are normalised to the effective
total dissipation rate Q.

of oscillation. In contrast, the incompressive part Ψi remains
mostly positive; however, small negative values of both Ψi and
Ψc for tΩi . 50 suggest some weak opposite transfer on small
scales. After a transient period (for tΩi & 30), Ψi monotonically
increases with l (as expected for the cumulative low-pass filter)
similarly to D; it works as an effective dissipation mechanism.
The range where Ψi is active (i.e., where it strongly increases
with l) shifts with time from large to intermediate scales. The
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Fig. 6. Color scale plots of gyrotropised power spectral densities of (a)
the magnetic energy PB, and (b) the kinetic energy Pw as a function of
k⊥ and k‖ (normalised to di).

system is quasi-stationary for tΩi & 200; the properties seen in
Fig. 4 do not qualitatively change, but only exhibit some oscilla-
tions due to the compressive pressure–strain component Ψc.

We started with the spectral anisotropy of turbulent fluctua-
tions. Figure 6 displays the (gyrotropised) power spectral den-
sities of the magnetic energy PB and the kinetic energy Pw as a
function of k⊥ and k‖. Figure 6 shows that the power spectra are
strongly anisotropic in the (k⊥, k‖) plane, indicating a preferen-
tial cascade direction that is strongly oblique with respect to the
ambient magnetic field B0. Similarly to the isotropised spectra,
Pw decreases with k⊥ faster than PB. Their spectral anisotropies
are weak on large scales (due to the initial isotropic spectrum)
and increase towards small scales. The magnetic power spec-
trum PB exhibits a change in behaviour for k⊥di & 1, a possible
indication of the effect of the Hall term.

To analysed the different turbulent processes we used the full
KHM equation where we gyrotropised the terms to obtain two-
dimensional results as a function of l‖ = |l · b0| and l⊥ = |l − (l ·
b0)b0| (where b0 = B0/|B0|). Figure 7 displays the anisotropic
properties of the KHM equation, iso-contours of different quanti-
ties as a function of the separation scales l⊥ and l‖ (averaged over
the time period 200 ≤ tΩi ≤ 300). Figure 7a shows the second-
order structure function S as a reference (along with a circle
l2⊥ + l2

‖
= const. to emphasise the anisotropy and the effect of the

log-log plot); S decreases from large to small scales and exhibits
a clear anisotropy with respect to the ambient magnetic field;
at large scales S is weakly anisotropic (due to the isotropic ini-
tialisation) and the anisotropy increases towards smaller scales
in agreement with the spectral properties of fluctuating mag-
netic and kinetic energies (see Fig. 6). The different terms in
the KHM equation exhibit different anisotropic properties in the
(l⊥, l‖) plane, but their overall behaviours are similar to that of
S : their anisotropy is weak on large scales and strong on small
scales. Figure 7b shows the decaying term ∂tS that is impor-
tant on large scales; its main anisotropy is that |∂tS | decreases
faster with decreasing l‖. Figure 7c displays the MHD cascade
rate KMHD; the region where KMHD dominates shifts to larger
scales and shrinks when moving from the quasi-perpendicular
to quasi-parallel angles. The sign of KMHD becomes negative
at large scales, which indicates some (anisotropic) inverse cas-
cade. Figure 7d shows the Hall cascade rate KHall; the Hall cas-
cade rate exhibits a strong anisotropy, the Hall cascade (and the
Hall term) becomes important at larger scales for quasi-parallel
angles compared to quasi-perpendicular ones. The shrinking
and shifting of the MHD cascade rate KMHD becomes less pro-
nounced (but does not disappear) when we consider the total
cascade rate K = KMHD + KHall. Figure 7e displays the pressure–
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Fig. 7. Anisotropic KHM results, labelled iso-contours of different
quantities as a function of the separation scales l⊥ and l‖ (averaged over
the time period 200 ≤ tΩi ≤ 300): (a) Second-order structure func-
tion S , (b) Decay rate ∂tS , (c) MHD cascade rate KMHD, (d) Hall cas-
cade rate KHall, (e) pressure–strain (effective dissipation) term Ψ, and (f)
resistive dissipation term D. The dotted line in panel a displays a circle
l2
⊥ + l2

‖
= const. as a measure of anisotropy. The dotted lines in panel c

denote non-positive values. The KHM quantities are normalised to the
(time-averaged) effective total dissipation rate Q.

strain term Ψ. It exhibits a similar anisotropy to the Hall cas-
cade rate on small scales but becomes more isotropic on inter-
mediate scales; the range of scales where Ψ varies is narrower at
quasi-parallel scales compared to the quasi-perpendicular scales.
Finally, Fig. 7f shows the resistive dissipation term; it exhibits a
similar strong anisotropy to the Hall cascade rate KHall.

The compressive effects that lead to large oscillations of Ψc
lead to important and anisotropic oscillations of ∂tS , KMHD, and
Ψ mainly on large scales. However, further analysis of this phe-
nomenon is beyond the scope of this paper.

5. Discussion

In this paper we studied decaying plasma turbulence using the
3D hybrid code. The spectral properties of the simulated system
are similar to those in previous works (Markovskii & Vasquez
2011; Franci et al. 2018b). We concentrated our analysis of tur-
bulence on the KHM equation (in the form that can be easily
calculated using the fast Fourier transform Banerjee & Galtier
2017; Hellinger et al. 2021a; Montagud-Camps et al. 2022). The
KHM results show how turbulence evolves from large-scale
zero-cross helicity Alfvénic-like fluctuation. The non-linear
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coupling leads to a transfer (cascade) of energy to small
scales and the resistive dissipation rate slowly increases until it
becomes quasi-stationary. On the other hand, the pressure–strain
rate starts to be important early in the simulation and continues to
be strong (i.e., of the same order as the resistive dissipation rate)
during the whole simulation and exhibits important temporal
variations. These oscillations are caused by the compressive part
of the pressure–strain interaction that leads to largely reversible
energy exchanges between the kinetic+magnetic energy and
the internal energy; analogous behaviour is observed in hydro-
dynamic simulations (Hellinger et al. 2021b). In contrast, the
incompressive (Pi-D) part of the pressure–strain coupling works
as an effective dissipation mechanism. Our results suggest that
the compressibility effects tend to be negligible for a good sta-
tistical sample; in our case we took a spatio-temporal aver-
age, these effects may be important locally and may affect for
instance the cascade rates estimated from observations based on
limited time intervals (Marino & Sorriso-Valvo 2023).

The onset of turbulence quantified using the KHM equa-
tion is similar to the results of the 2D Hall MHD simula-
tions (Hellinger et al. 2021a), except that the pressure–strain
effective dissipation appears early in the simulation. After the
system reaches a quasi-stationary state it exhibits an overall
behaviour similar to that of 2D hybrid simulations: the fluc-
tuating (kinetic+magnetic) energy decreases at large scales; at
intermediate scales the energy cascades via the MHD non-linear
coupling. The MHD cascade partially continues to small scales
through the Hall term, but the small scales are dominated by the
resistive dissipation; however, the pressure–strain effective dis-
sipation takes place over a wide range of scales. The isotropised
view of the KHM equation is semi-quantitatively similar to the
2D results (Hellinger et al. 2022). The oscillations of the com-
pressive pressure–strain rate is accompanied by variations of the
decay and the MHD cascade rates that are typically more impor-
tant at larger scales.

The presence of the ambient magnetic field induces a
strong anisotropy similar to that observed in 3D MHD simu-
lations (Verdini et al. 2015; Montagud-Camps et al. 2022), even
though the KHM equation is only very weakly dependent
on B0 (as clearly seen in its equivalent form, Eq. (3) of
Hellinger et al. 2021a). The turbulent processes have similar
anisotropic behaviour; they are weakly anisotropic on large
scales (owing to the isotropic initialisation), and the anisotropy
gets stronger towards smaller scales. The energy-containing
range where the fluctuating energy decays is weakly anisotropic
and importantly varies with time due to the compressive effects.
The MHD cascade rate tends to be constant within an anisotropic
range of scales. The Hall cascade rate is nearly stationary and
strongly anisotropic; the onset of the Hall effect shifts to larger
scales at quasi-parallel angles (with respect to the ambient mag-
netic field) compared to the quasi-perpendicular angles. The
resistive dissipation is also nearly stationary and exhibits an
anisotropy similar to that of the Hall cascade rate. The pressure–
strain coupling is also anisotropic, works on a relatively wide
range of scales, and has a weak anisotropy on large scales and
strong one on small scales.

In the isotropised version of the KHM equation we have a
relatively clear interpretation of the different terms. The cascade
rates KMHD and KHall represent the (magnetic+kinetic energy)
cascade rates and ∂tS , D, and Ψ have cumulative properties (cf.
Hellinger et al. 2021a) as can be seen when comparing the KHM
results to the results of the isotropic spectral transfer analysis
(see Appendix A). The interpretation of the anisotropic terms
is less clear. The behaviours of ∂tS , D, and Ψ suggest some

sort of cumulative properties. We tried a few spectral transfer
analyses with some anisotropic filters (cylindrical or ellipsoid)
and found only a qualitative similarity to the anisotropic KHM
results. The cascade rates KMHD and KHall seem to have the ten-
dency to be constant in a region that is anisotropically distributed
in the (l⊥, l‖). However, they are just scalars and indicate noth-
ing about the direction of the cascading energy. The third-order
structure function vectors in the usual form of the KHM equation
possibly contain information about the direction of the cascade
(cf. Verdini et al. 2015), but this assumption is not physically jus-
tified. Our simulation results, and previous results as well, indi-
cate that turbulence develops in the inertial range K(l⊥, l‖) = Q
with (generally anisotropic) outer scales connected with the ini-
tial conditions (or injection) properties. The turbulent cascade
develops an important anisotropy that induces an anisotropy at
the dissipation scales, and Hall scales as well.

The KHM equation is nicely satisfied in the simulation indi-
cating that the kinetic plasma system and different turbulent pro-
cesses are clearly numerically resolved. However, the simula-
tion box size is not well separated from the ion characteristic
scales owing to the computational constraints. Moreover, the ion
pressure–strain coupling sets in at relatively large scales (∼10di)
compared to the ion characteristic scales di and ρi. This is likely
a reason for the fast onset and strong oscillations of the compres-
sive pressure–strain rate, the decay, and the MHD cascade rate.
We expect that for a larger system (and larger driving scales) the
temporal variations would be reduced. This would justify our
use of time-averaging to improve the statistics of turbulent fluc-
tuations and to reduce the compressibility effects. More work is
needed with a better separation between the injection (energy
containing) range and the scale of the pressure–strain coupling.
We presented one case study of plasma turbulence; more simu-
lations are necessary to assess the role of the amplitude of tur-
bulent fluctuations δB/B0 and plasma betas, as well as the cross-
helicity (Montagud-Camps et al. 2022).
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Appendix A: Isotropic spectral transfer

Another way to analyse the scale dependence of turbu-
lence and its processes is spectral (Fourier) decomposition
(cf. Mininni et al. 2007; Grete et al. 2017). To characterise
turbulence it is possible to use isotropic low-pass filtered
kinetic+magnetic energy (i.e., the energy in modes with wave-
vector magnitudes smaller than or equal to k; cf. Hellinger et al.
2021b)

Ek =
1
2

∑
|k′ |≤k

(
|ŵ|2 + |B̂|2

)
, (A.1)

where the wide hat denotes the Fourier transform. For Ek we
obtained the following dynamic equation

∂tEk + SMHDk + SHallk = −Ψk − Dk, (A.2)

where SMHDk and SHallk represent the MHD and Hall energy
transfer rates, respectively; Ψk describes the pressure–strain
effect; and Dk is the resistive dissipation rate for modes with
wave-vector magnitudes smaller than or equal to k. They can be
expressed as

SMHDk = <
∑
|k′ |≤k

[
ŵ∗ · ̂(u · ∇)w +

1
2
ŵ∗ · ̂w(∇ · u)

− ŵ∗ · ̂ρ−1/2 J × B − B̂
∗
· ̂∇ × (u × B)

]
, (A.3)

SHallk = <
∑
|k′ |≤k

B̂
∗
· ̂∇ × ( j × B), (A.4)

Ψk = <
∑
|k′ |≤k

ŵ∗ · ̂ρ−1/2∇ · P, (A.5)

Dk = η
∑
|k′ |≤k

|k′|2|B̂|2. (A.6)

In these expression the asterisk denotes the complex conjugate,
and < denotes the real part. For fully developed turbulence
SMHDk and SHallk are the MHD and Hall cascade rates, respec-
tively.

Similarly to the KHM case, we defined the validity test of
the spectral transfer (ST) equation, Eq. (A.2), as

Ok = ∂tEk + SMHDk + SHallk + Ψk + Dk. (A.7)

Figure A.1 shows the ST validity test Ok and the contributing
terms as functions of k averaged over the time interval 200 ≤
tΩi ≤ 300.

Figure A.2 displays a direct comparison between the ST
and KHM contributing terms as a function of k (through
the inverse proportionality kl =

√
3. Figure A.2 shows that

the MHD and Hall cascade rates in both the approaches are
comparable

SMHDk ' KMHD, SHallk ' KHall. (A.8)

The MHD cascade term dominates at scales where the total
power spectrum is close to a k−5/3 power law. The other terms
in the ST and KHM approaches are complementary:

∂t [Ek + S(l)] ' −Q, Dk + D(l) ' Qη, Ψk + Ψ(l) ' ψ. (A.9)
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Fig. A.1. Spectral transfer analysis, the validity test of the isotropic
ST Ok, Eq. (A.7), as a function of k (averaged over the time inter-
val 200 ≤ tΩi ≤ 300) (black line) along with the different contribut-
ing terms: decay rate ∂tEk (blue), MHD cascade rate SMHDk (green),
Hall cascade rate SHallk (orange), resistive dissipation rate Dk (red), and
pressure–strain rate Ψk (magenta). All the quantities are given in units
of the total (effective) heating rate Q.
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k =
√
3/l [d−1

i ]

Fig. A.2. Comparison between the ST and KHM approaches. The solid
lines show the contributing terms of the ST equation as a function of
k: (blue) the decay rate ∂tEk, (green) the MHD cascade rate S MHDk,
(orange) the Hall cascade rate S Hallk, (red) the dissipation rate Dk − Q,
and (magenta) the pressure–strain rate Ψk − ψ. The dashed lines show
the corresponding results of the KHM equation function of k through
the relation l =

√
3/k: (blue) the decay rate −∂tS −Q, (green) the MHD

cascade rate KMHD, (orange) the Hall cascade rate KHall, (red) the dis-
sipation rate −D, and (magenta) the pressure–strain rate −Ψ . All the
quantities are given in units of the total (effective) dissipation rate Q.

This means that ∂tEk represents the rate of change of the
kinetic energy at scales with wave-vector magnitudes smaller
than or equal to k, whereas ∂tS represents approximately the rate
for wave-vector magnitudes larger than k (with l '

√
3/k). Sim-

ilarly, Dk (Ψk) is the dissipation (pressure–strain) rate on scales
≤ k, whereas D(l) (Ψ(l)) represents the corresponding rate on
scales > k.
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