
02 May 2024

Design and Develop of a Smart City Digital Twin with 3D Representation and User Interface for What-If
Analysis / Adreani, Lorenzo; Bellini, Pierfrancesco; Fanfani, Marco; Nesi, Paolo; Pantaleo, Gianni. - STAMPA.
- 14111 LNCS:(2023), pp. 531-548. (Intervento presentato al convegno 23rd International Conference on
Computational Science and Its Applications, ICCSA 2023) [10.1007/978-3-031-37126-4_34].

Original Citation:

Design and Develop of a Smart City Digital Twin with 3D
Representation and User Interface for What-If Analysis

Conformità alle politiche dell'editore / Compliance to publisher's policies

Publisher:

Published version:
10.1007/978-3-031-37126-4_34

Terms of use:

Publisher copyright claim:

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1355512 since: 2024-04-10T08:32:42Z

Springer, Cham

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Design and Develop of a Smart City Digital Twin with 3D

Representation and User Interface for What-If Analysis

Lorenzo Adreani, Pierfrancesco Bellini, Marco Fanfani, Paolo Nesi, Gianni Pantaleo

DISIT Lab, https://www.disit.org, https://www.sanp4city.org,

University of Florence, Florence, Italy

<name>.<surname>@unifi.it

Abstract. Digital Twins of Smart Cities are fundamental tools for decision mak-

ers since they can provide interactive 3D visualizations of the city enriched with

real-time information and connected to actual complete digital model of the en-

tities with all their heterogeneous data/info. Such a technology can be exploited

to observe the status of the city, and to perform analysis and simulations, and thus

to develop strategies. Indeed, such solutions must satisfy a series of requirements

spanning from the 3D construction to the interactive functionality of user inter-

face for the decision makers. In this paper, a Smart City Digital Twin model and

tools are presented, which satisfy a wide range of requirements. The principles at

the basis of the design and development are reported and discussed. The solution

has been developed on top of Snap4City platform and validated on Florence City

case (Italy), in CN Mobility of Ministry. Finally, a comparison among several

different Smart City Digital Twin solutions is offered.

Keywords: Digital Twin, Smart City, 3D City Model.

1 Introduction

Nowadays Smart City Digital Twins, SCDTs, are becoming ever more relevant in aca-

demic, government, and industrial fields since they can offer a virtual context that rep-

licates a real city with high fidelity, typically exploiting 3D models of the buildings

enriched with structural and contextual information coming from IoT (Internet of

Things) sensors, heatmaps, analytic services, building information modelling, etc. [1].

Such solutions can provide a fundamental tool for city decision makers and stakehold-

ers which can observe in real-time the status of the city, and perform analysis and sim-

ulations in different application domains like urban planning, mobility and transport,

energy, disaster analysis and prevention, air pollution monitoring, city planning, etc.

On the one hand, in the past years several works addressed the problem of 3D city

modelling in order to create realistic virtual visualizations of the city structure. Clearly,

since such 3D models must cover city-wide areas, both the production of the 3D mod-

els, as well as their handling and processing pose a challenging task still to be solved

[2]. With the purpose of defining an adequate format for the data to be displayed on a

web interface, CityGML [3] proposed a series of requirements according to different

Level of Details (LoD) covered by the model. Five LoD have been defined: LoD0 in-

cludes 2D maps and 3D terrain only, LoD1 introduce simple box-like 3D building mod-

els that are enhanced with 3D roof structures in LoD2. LoD3 introduces realistic tex-

tures, and finally LoD4 describes building interiors. In CityGML3.0, Building Infor-

mation Modelling (BIM) are included using the Industrial Foundation Class (IFC) for-

mat [4].

On the other hand, a SCDT must include information about Point of Interest (POI)

locations, IoT Sensor positions and readings, heatmaps to show for example the disper-

sion of pollutants, paths (e.g., cycling paths) and areas (e.g., city districts). To enhance

the 3D model with this kind of knowledge, the SCDT should be embedded into an

adequate platform capable to model any data kind, and capable to ingest, manipulate,

and index static and real-time data that can then be retrieved using specific API.

In this paper, firstly, a series of requirements for SCDT are reported and discussed

in Section 2 expanding those presented in [5] considering the required data to be in-

cluded into a SCDT, and taking into account the users’ interaction functionalities that

the SCDT interface should provide, and some additional operative requirements that

should be satisfied in order to enhance the functionalities offered by a SCDT. Then, we

present our SCDT solution describing, in Section 3, the development phases; in Section

4, how the 3D building models were obtained, and, finally in Section 5, how the web

interface was developed to integrate all the data and distribute proposed SCDT on a

web browser. In Section 6, the case of study for Florence (Italy) is presented, showing

the possibility of performing What-If analysis via the 3D visual interface. Section 7

provides a comparison with other SCDT and 3D city representations on the basis of the

identified requirements. Finally, in Section 8, conclusions are drawn and future work

highlighted.

2 Requirement analysis

In this section, the requirements that a SCDT should satisfy are reported and discussed.

Clearly, the quality of the 3D representations of buildings is a key aspect of a SCDT.

For example, in [3] different levels of detail (LoD) were proposed. However, a SCDT

must comply with additional requirements that take into account the 3D representation

and the integration of additional massive data to provide a complete tool at support of

decision makers. In [5], a list of requirements was proposed to specify which elements

should be visualized on a 3D representation for SCDT, and to point out the interactivity

aspects to be addressed to guarantee a suitable user experience.

In this paper, we strongly revised and further expanded the requirement list consid-

ering aspects related to the data management, advanced interactivity, costs and licens-

ing aspects. Hereafter, a revised and augmented list of requirements is reported. Firstly,

requirements on data are presented, then the requirements to offer interactive controls

to the user are reported. Finally, the most relevant operative requirements are included.

Requirements on data (RD) to be included in a SCDT are:

RD1. Buildings of the city. Each single building should be represented with details

in terms of shape (facades, roof, towers, cupolas, etc.), and patterns on facades

and roofs. Multiple representations at different LoD could be included. For exam-

ple, (i) LoD1 structure obtained by extruding the building plans up to the heights of

the eaves, or (ii) higher LoD structure represented as 3D meshes, and (iii) BIM

should be included.

RD2. Ground information as road shapes and names, names of squares and local-

ities, etc., exploiting the so called Orthomaps, with eventual real aerial view pat-

terns, and the actual graph road information for picking and connecting elements.

Orthomaps are typically provided in terms of multi resolution tiled images from GIS

systems using WMS protocol, while the road graph can be coarsely recovered from

Open Street Map or from institutional cadastre.

RD3. Heatmaps are typically superimposed (with variable transparency) on the

ground level without overlapping the buildings. For example, to represent temper-

ature, traffic flow, pollutant distribution, people flow, noise, humidity, etc. In this

case, they are typically provided in term of multi resolution geolocated tiled images,

provided by GIS using WMS protocol. In some cases, a time sequence of heatmap

can be used to show the evolution of the distribution over time. This aspect adds

complexity to the model, because the heatmap can be shaped, calibrated with col-

ormaps, and compounded by different elementary blocks of any shape, or points.

RD4. Paths and areas shapes can be super-imposed over the ground and heatmaps

levels without overlapping the buildings. Such data can be used to describe perim-

eters of gardens, cycling paths, trajectories, border of gov areas, elements of origin

destination matrices, etc. This information is quite specific and must be produced

on the basis of information recovered from some Open Data. Once recovered it can

be distributed by using GIS in WFS/WMS protocols.

RD5. PINs marking the position of services, IoT Devices, Point of Interest (POI),

Key Performance Indicator (KPI), etc., and providing clickable information accord-

ing to some data model which may provide access to Time Series, shapes, etc. This

information is quite specific and can be produced on the basis of the information

recovered from Private and/or Open Data.

RD6. Terrain information and elevation: the elevation of each single building has

to be taken into account and thus the skyline of the city may include surrounding

mountains, in city hills, etc. This means that the buildings and Orthomaps should

be placed according to the terrain elevation, the so-called Digital Terrain Model,

DTM. The DTM can be distributed via WMS from GIS.

RD7. Additional 3D entities for completing the realism of the scenario, such as: (i)

trees, benches, fountains, semaphores, digital signages, luminaries, and any other

city furniture, etc.; and (ii) water bodies should be included into the digital twin to

better represent rivers, lakes, fountains, etc.

In addition, the framework used to present the SCDT must met some requirements

of interactivity with the model and the 3D elements (RI):

RI1. Map controls to change the point of view by zooming, rotating, tilting, and

panning the scene. Changing the light source position, simulating different times of

day/night, should be possible. This should lead to produce shades projected by

buildings on ground and other buildings, and a different illumination from direct to

indirect exposition to daylight, eventual reflections, and transparencies. Picking on

map to recover position and eventual information associated with the city structure

and road graph.

RI2. Dynamic sky to show different sky conditions according to the time of the

day, weather, and/or weather forecast.

RI3. PIN data access to show data associated with IoT Devices, POI, KPI, etc.,

including real time and historical data, time series, or detailed information, and cor-

responding drill down facilities.

RI4. Building picking/manipulation: to provide the possibility to select single

building to: (i) show detailed information associated with the building, or (ii) move

into a BIM view of the building, with the possibility of navigating into the building

structure, and again to access the internal data associate to PINs into the building,

or (iii) to change the building 3D model with a new one to have an evolution over

time.

RI5. Twin management as independent element management loading to have

the possibility to hide, show, replace specific element as entities modelled as Digital

Twins, for example to disable the building view to see only the city PINs, or to load

different heatmaps or paths.

RI6. Business logic call-back to provide the possibility of selecting an element

(3D, PIN, ground, heatmap) to provoke a call back into a business logic tool for

provoking events and actions in the systems, at which the developers may associate

intelligence activities, analytics, other views, etc.

RI7. Underground and elements inspection to provide the possibility of selecting

and inspecting specific areas and see detailed 3D elements placed underground or

inside the buildings, such as water pipes, metro lines, etc. And interacting with com-

plex elements for example, traffic flow, cycling paths, scenarios, city decors, etc.

RI8. Virtual 3D structures as dynamic PIN changing colour and/or size/shape ac-

cording to some data value, OD flows with jumps/arcs, etc. Dynamic pins as SVG

shape and colour by changing with some real time value. Dynamic pins as 3D solids

changing colour or size according to some real time value.

Finally, there are some operative requirements (RO) that must be met to guarantee

an accessible, integrated, and affordable SCDT solution:

RO1. Data analytic processes must be available to let the user develops and/or ex-

ecute specific data analytics.

RO2. Smart Data Model compatibility to guarantee interoperable and replicable

Smart Cities, interoperability at level of data formats, federation at level of protocols

and APIs.

RO3. Logics for data ingestion and transformation required to ingest data from

IoT sensors, and other sources and transform them into different data models and

formats.

RO4. Dynamic data management to have new PINs or elements to be automati-

cally reported in the SCDT as soon as they are included in the platform, event driven

rendering of data.

RO5. Integration with workflow management systems for ticket management.

For example, when an event of a streetlamp fault is detected, in the SCDT the faulty

streetlamp is highlighted together with its connection to the electric infrastructure

in order to ease the maintenance work.

RO6. Web player: (i) the SCDT must be accessible thought a web browser without

additional plugins, and (ii) the player must be released with open or free license.

RO7. No reloading: changes in the SCDT must be rendered without the needs of a

full reload of the map.

RO8. Automatic 3D building construction: (i) 3D buildings must be created auto-

matically, to be able to scale and replicate the SCDT framework; and (ii) the used

software must be released with open or free license.

In the following sections, our solution is presented and described wrt the defined

requirements. Then, in Section 7 a comparison among a selection of the most diffuse

SCDT solutions is reported highlighting for each solution the satisfied requirements.

3 SCDT Development phases

In order to develop a SCDT solution capable to fulfil the above requirements, we iden-

tified the following main phases:

A. Data acquisition: city graph, IoT sensor/actuators, POIs, orthomaps, paths,

digital surface model (DSM) and terrain elevation (DTM), images, etc.

B. Production: Heatmaps computation, traffic flow reconstruction, OD produc-

tions, 3D building construction, etc.

C. Integration and distribution: acquired and produced data are integrated into

a global digital twin model and rendered as 3D multi-data map and distributed as

an interactive web interface.

Phases A, and B are those that mainly respond to reach the data requirements (RD1

– RD7), while phase C must be designed in order to satisfy the requirements on the

interactivity (RI1 -RI8). Instead, the operative requirements are mainly addressed by

the IoT platform on top of which the SCDT is built on. In our case, the Snap4City

platform [6, 7] – an open-source platform developed at DISIT Lab, University of Flor-

ence (https://www.snap4city.org/) – was used. The platform includes Data Analytics

processes to perform analyses and simulations (RO1), is compatible with a large num-

ber of protocols and format and with FIWARE Smart Data Model (RO2), integrates

IoT Apps, based on Node-RED, for data ingestion and transformations (RO3), and,

thanks to the semantically indexing of data in an RDF Knowledge Base, offers dedi-

cated APIs to query the stored data and to model the road graph and related elements,

heatmaps, OD matrices, traffic, scenarios, etc. (RO4).

The developed 3D multi-data map is an open-source web interface (RO6), created

as a dashboard in the Snap4City platform. It can allow the visualization of an interactive

3D reconstruction of the city, with the possibility of showing and inspecting different

kinds of entities and related data, such as IoT devices, POI, heatmaps, geometries re-

lated to bus routes, cycling paths, traffic flows, etc. In this way, the Snap4City platform

allows to exploit a complete open-source framework that can collect, process, and man-

age all the data needed to obtain a high-fidelity SCDT.

Indeed, phase A is realized exploiting the Snap4City capabilities to ingest, manage,

retrieve heterogeneous data: ground information (RD2) and paths and geometry (RD4)

from OSM and Open Data, IoT sensors data, POI and KPI (RD5) to be shown as PINs.

In phase B, heatmaps (RD3) are produced from the acquired data using some Data An-

alytics [8, 9], and the 3D buildings (RD1) and the terrain elevation (RD6) are created

following the procedure described in Section 4. Note that, the algorithm to create the

3D building structure is completely automatic and released as open source1, satisfying

RO8. Additional 3D entities (RD7) can be obtained from free archives of general 3D

models and included into the map. Finally, in phase C, all the data are integrated into

an interactive web interface as shown in Section 5.

4 3D Data Production

A block diagram depicting the 3D production process is reported in Figure 1. As can

be see, inputs, sub-processing blocks and the final storage in the Snap4City platform

are highlighted. Regarding the inputs, the production process requires street-level and

1 Available at https://github.com/disit/3d-building-modelling

Fig. 1. Proposed production process to create the 3D structures of our Smart City Digital

Twin.

aerial (i.e., orthomaps) RGB photos to obtain roof and façade textures and to model

possible High Value Buildings (HVB). Additionally, building plant shapes from OSM

are used to geographically localize the buildings to be produced. Finally, building

height information (in the format of GEOJson files) and DSM data are required to

properly model the 3D structures, while the DTM is used to compute a terrain level and

to put the building at the right elevation position. BIM and additional 3D entities are

considered, possibly requiring some format conversion. Hereafter, more details on the

sub-processing blocks are reported.

To obtain high quality models for the HVBs manual 3D design or automatic com-

puter vision techniques, such as Structure from Motion, can be employed. The obtained

models are then put in the right scale, position, and elevation.

Regarding the roof and façade patterns, they are respectively extracted from ortho-

maps and street level images. In order to obtain an accurate orthomap segmentation to

extract the roof texture, a deep net was used [10] to find the similarity transformation

required to locally warp the orthomaps and make them accurately fit the building plant

shapes. Diversely, façade’s patterns are extracted by identifying the building façade

into the acquired images and then rectifying them using planar homographies.

3D structure of ordinary buildings can be obtained with two different approaches.

Flat-roof buildings are obtained by extrusion from the building plant shapes using the

building height. Such height attribute can be obtained from manual measurements of

the eave heights, or by evaluating the average height of the DSM samples included into

the building plant shape. Differently, 3D-roof buildings are obtained by analysing the

DSM and fitting on its samples planar primitives to describe the different roof slopes.

Such a process includes spatial clustering using region growing [11] and HDBSCAN

[12], multiple line model regression [13] and finally robust plane fitting. In Figure 2,

an example of input DSM and output model is provided. Both flat-roof and 3D-roof

building models can be put at the right terrain elevation exploiting the information en-

coded in the DTM, and roof and façade texture are then applied to the 3D models using

the Python Blender API.

To guarantee a fast model loading through by the browser interactive web interface

we exploited a tiled approach (see Section 5). The complete city map was divided in

(a)

(b)

(c)

Fig. 2. Example of DSM modelling to obtain building models with 3D rooftops. In (a) the

original DSM with superimposed the building plant shape. In (b) and (c) the obtained 3D

model from two different views.

non-overlapping tiles and for each building we computed the tile it belongs considering

the building plant centroid to uniquely assign a building to a tile. All the building 3D

textured models falling into the same tile, considering HVB when available, were then

collected into a single folder and saved into the Snap4City 3D Storage, following a

hierarchical Z/X/Y folder organization used by most of GIS applications like OSM,

QGIS, etc. Z is the zoom factor (fixed at 18 for our tiles) that describe the tile dimen-

sion, while X and Y are the tile coordinates. Note that, even if the models are grouped

in tiles, each single building is represented as a separate entity in order to enable the

picking functionality (RI4). Additional 3D entities (RD7) such as tree, streetlamp or

other minor urban structures can be obtained from free 3D repositories and then placed

into the map exploiting positioning information obtained from Open Data.

4.1 High resolution DTM encoding

To exploit the DTM as a terrain level in our interactive user interface (see Section 5),

the DTM, expressed in float values, was converted to RGB format and deployed in the

Snap4City Geoserver, a WebServer that mainly uses the WMS protocol over HTTP to

serve through REST API calls tiled images of specific areas of wide and huge GIS

maps. In order to accomplish the DTM conversion, we use the following mapping func-

tion:

{

 𝑅 = ⌊

100000 + 10𝑣

2562
⌋

𝐺 = ⌊
100000 + 10𝑣

256
⌋ − 256𝑅

𝐵 = ⌊100000 + 10𝑣⌋ − 2562𝑅 − 256𝐺

where v ∈ R is the DTM raw value. In this way we can obtain an RGB image able to

encode elevation differences up to 0.1 m. Then, the encoded DTM is loaded into the

Snap4City GeoServer to be retrieved in real-time.

5 Interactive web interface

The general architecture developed for distributing the SCDT as a 3D multi-data map

dashboard in the Snap4City platform is able to distribute and reassemble all the data

required by the requirements RD1-RD7: different version of 3D models of buildings

(LoD1, LoD3, BIM) and additional entities, heatmaps (for traffic flow, pollutant dis-

persion, etc.), PINs (IOT, POI, etc.), 3D terrain from DTM, sky pattern, ground infor-

mation, paths and areas. The architecture implements a client-side business logic that

exploits a series of REST API calls to load the data independently on user demand (as

requested by RI5). For example, the 3D tiled representations are retrieved via HTTPS

protocol, as well as data for POI, IoT devices, paths, etc. obtained with specific geo-

graphic queries on the SuperService Map of Snap4City [14]. Differently, heatmaps

(static or animated) and the encoded DTM are retrieved via WMS protocol over HTTPS

by querying the Snap4City GeoServer, limited to the portion of the map visualized by

the user. The hierarchical layered structure depicted in Figure 3 and described in this

section is used to model and represent the different kinds of information provided.

The rendered solution has been implemented via layered WebGL and APIs, in order

to access to the GPU thanks to the passthrough available in Web Browsers without the

needs of plugin, to satisfy RO6, exploiting the open-source library Deck.gl. Deck.gl

offers some default layers that we used to display 3D elements. And, in order to handle

specific needs, specific layers were modified and/or completely implemented from

scratch. All layers are loaded at runtime on user demand. Thanks to the multi-layer

structure of Deck.gl, layers were implemented individually with their own safe context,

to avoid reciprocal interferences. Every layer has its own scope, managing its own data

type.

First, the Deck.gl application has been realized by using a custom implementation

and management of the ViewState object, in which the geographical information for

the map (such as latitude, longitude, zoom, etc.), are defined. We implemented a custom

rendering system in order to add features like SkyBox – to be able to include a sky

representation into the 3D map – that needs direct access to the WebGL context. The

solution is able to handle two different kinds of terrains, in order to respond at the re-

quirement RD6. The first one uses a flat model, while the second one instead exploits

a three-dimensional terrain with accurate elevation (referring to them as flat or ele-

vated). Note that, each of them uses different layers and structures, as reported in Figure

Fig. 3. Hierarchical layers structure of the interactive web interface.Mapping of the Digital

Twin model on layer structure on rendering on the client.

3. The terrain called ManagedTerrainLayer is displayed in tiles using the default Tile-

Layer, with every tile loading different resources from the WMS servers using business

logic call-back (RI6). The most important data source is the encoded DTM of the tile,

that is used to generate the mesh of the terrain using the Martini tessellation algorithm.

Note that, it possible to mix multiple DTM files, for example with different resolutions:

in such a case one of the DTM has higher priority over the others. The terrain texture

is instead created by merging multiple images: the base image is the Orthomap of the

terrain, over which different heatmaps can be shown on user demand. This data inte-

gration forms a layer called TerrainMeshLayer. The texture merging process is carried

out directly inside the GPU in order to have maximum performance. In order to handle

the opacity level selected, we used the following equations to merge different texture

inside the fragment shader:

{

𝑚𝑖𝑥𝛼 = 1 − (1 − 𝛼2) ∗ (1 − 𝛼1)

𝑚𝑖𝑥𝑅 = (
𝑅2 ∗ 𝛼2
𝑚𝑖𝑥𝛼

) + (
𝑅1 ∗ 𝛼1 ∗ (1 − 𝛼2)

𝑚𝑖𝑥𝛼
)

𝑚𝑖𝑥𝐺 = (
𝐺2 ∗ 𝛼2
𝑚𝑖𝑥𝛼

) + (
𝐺1 ∗ 𝛼1 ∗ (1 − 𝛼2)

𝑚𝑖𝑥𝛼
)

𝑚𝑖𝑥𝐵 = (
𝐵2 ∗ 𝛼2
𝑚𝑖𝑥𝛼

) + (
𝐵1 ∗ 𝛼1 ∗ (1 − 𝛼2)

𝑚𝑖𝑥𝛼
)

where 𝛼𝑖 is the alpha channel of the background image (𝑖 = 1), and the additive image

(𝑖 = 2) to be merged, while 𝑅𝑖, 𝐶𝑖, and 𝐵𝑖 are the RGB channels. When the merge has

to be performed using three or more images, the process is performed progressively for

each pair, cumulating the next on the first couple merged.

For the flat terrain, the background Orthomaps are implemented through tiles, i.e.,

the TileLayer. The mesh is a flat square, and, in this case, a single bitmap is used to

display an image as a texture exploiting the BitmapLayer. This method has been used

to represent heatmaps, which are essentials to provide a fast access/representation to

large amounts of data. In both cases, data are automatically retrieved from GeoServer.

Heatmaps can be static or animated: static heatmaps are provided as single PNG im-

ages, while animated ones are provided in GIF format in multiple images and rendered

sequentially with a custom delay.

For the implementation of data coming from different sources like IoT devices, tra-

jectories, cycling paths, etc., various layers with a specific JSON mapping have been

implemented. To display paths and geometries, different layers depending on the type

of geometry to be displayed have been used - e.g., PathLayer for the cycling path or the

BusLayer to show bus routes.

Two 3D representations of buildings are used: Extruded (i.e., LoD1 model) and Re-

alistic (including textured LoD3 models, and HVB). The Realistic representation can

be retrieved as a monolithic file or divided in different non overlapping tiles. Extruded

buildings are provided as GeoJSON and loaded in GeoJSONLayer. Differently, Real-

istic buildings can be loaded as both SceneGraph and 3D tiles. In the case of Realistic

building in glTF/GLB format the SceneGraphLayer is used. This type of integration

works well to achieve impressive visualization without impacting too much on the

application performances. In the case of monolithic representation, the model is loaded

and shown as it is regardless of the ViewState. Differently, in the tiled case, the

CachedGLBTileLayer is used, and models are loaded taking into account the viewing

position and angle. Models are loaded from the nearest to the farthest w.r.t the point of

view. Note that it is possible to define a limit to the amount of tile that to be displayed

in order to avoid GPU overloading. This dynamic loading of the building ensures that

only the amount of resource needed to display the current scene are used, since the

buildings outside the ViewState cannot be processed. This is particularly useful when

dealing with Smart City composed by a huge number of buildings. Trees and additional

3D entities are shown in separate layers with a structure similar to the one used to rep-

resent the 3D buildings.

IoT devices and POIs are displayed as pickable PINs on the map. If the terrain is

elevated PINs are raised according to the elevation of the terrain. When a user selects

one of them, a popup is shown with the relative information (static attributes as well as

real-time data, if available), satisfying the requirement RI3. Whenever the sensor pro-

vides real-time data, they can be displayed on dedicated widgets, such as time trends.

A relevant feature refers to the visualization of dynamic pins (RI8). Dynamic pins allow

to graphically represent sensor markers changing shape and/or colour depending on the

value of the metric to which they are associated with. In this way, dynamic pins enable

a fast and immersive data-driven and event-driven visualization of data coming from

physical or virtual sensors. Multiple views for different types of sensors can be ex-

ploited, ranging from dynamic SVG to 3D column representations of real-time data

values. When a SVG is selected for PIN visualization, the dynamic PIN is created dy-

namically in the backend; then it is retrieved and displayed by using the IconLayer. In

the case of a 3D column representing a device attribute value, a composite layer, called

Sensor3DLayer, is generated to recreate a thermometer effect: it can display the value

of any sensors with a 3D cylinder shape whose height is proportional to the considered

metric while the actual value is reported in textual form on top of the cylinder. The

colour of the column typically represents the category of the sensors, and all these ele-

ments can be customized by the user.

The light effects have been modelled with two types of lights: an ambient light to

affect all the scene, and a directional light to model the position of the sun. In order to

calculate the position of the sun, the formula given by the Astronomy Answer articles

about “the position of the sun” [15] was used. This process created the lights and shad-

ows of the scene, and it is useful to simulate when a particular area is well illuminated

or not.

It should be noted that, most of the features working on the 2D representation of data

needed to be revised or completely modified to pass at the 3D representation environ-

ment. For instance, in 2D traffic flow representations are typically represented by col-

oured lines in the map that are marginally visible into the 3D representation. Therefore,

in order to provide a 3D visualization of traffic flows density a new layer called

CrestLayer has been developed. In this layer, traffic density is displayed as raised crests

(with amplitude proportional to the computed traffic density values) following the ter-

rain elevation. The crests are coloured using a standard colour map that can be defined

by the user. Due to the nature of the problem, traffic flow polylines can be fragmented.

Therefore, a data pre-process is performed to have a smoother representation. Every

crest segment is created from three points: a middle point, in which the value is the

traffic density of the specific road segment, and two extrema ones, where densities are

obtained considering the average of all density values of roads connected to it.

A key functionality for urban planning and management that can be offered by a

SCDT is the possibility to observe the effects produced by a change in the contextual

environment modelled in terms of RDF coding of the road graph. For example, to ob-

serve how vehicle routing can change due to a scenario in which an area is blocked to

traffic. Such a functionality is called a What-If analysis [18]. To implement various

scenarios, the platform needs to offer the user the capability of drawing different

shapes. In such a way a street or multiple areas can be blocked to traffic in the road

network for hours and days: which is the definition of a so called What-If scenario.

Then, the results of the What-If analysis can be shown to the user together with the

defined shapes using the new WhatIfLayer. For example, after having selected a city

area to be traffic free, the What-If analytic provides the SCDT with novel routing pos-

sibilities that do not enter into the zones defined in the scenarios (which may be con-

strained according to a set of different descriptors). This can be applied to different

kinds of analysis to understand the impact of these scenarios to traffic flow, possible

routing approaches, pollutant diffusions, people flows, etc.

6 Case of study: Florence city, Italy

To validate the proposed SCDT solution, we selected as case of study the city of Flor-

ence in Italy. Our SCDT encompass the full Florence municipality (as shown in Figure

4) covering an approximate extension of 151 km2 (wider than the area of the Florence

municipality of 102 km2). Our SCDT of Florence, freely accessible through a web in-

terface2 and presented in Figure 5, includes LoD1 and LoD3 3D building models, and

terrain elevation.

The DSM and DTM data used in this work to model respectively the buildings and

the terrain were kindly provided by the “Sistema Informativo Territoriale ed Ambien-

tale” of Tuscany Region. They were obtained from a LiDAR survey and are composed

by several tiles covering the city of Florence, with a resolution of 1 square meter. 3D

building models were enhanced with roof textures obtained from orthomaps of the city

of Florence. The RGB photos are tiles with a resolution of 8200x6200 pixels, with par-

tial overlap and rough geo-localization in the EPSG 3003 (Monte Mario / Italy zone 1)

coordinate system. The SCDT includes PIN indicating position of POI and IoT Sensors.

Thanks to the semantic indexing of data offered by the Snap4City Knowledge Base,

different PINs can be represented with specific icons according to their semantic cate-

gory [16, 17]. Information associated with a specific sensor or city element can be ac-

cessed by simply clicking on the device PIN: a popup is shown to the user presenting

static attributes and, when available, real-time and historical data. Moreover, heatmaps

2 https://www.snap4city.org/dashboardSmartCity/view/Gea-Night.php?iddasboard=MzQ5OA==

https://www.snap4city.org/dashboardSmartCity/view/Gea-Night.php?iddasboard=MzQ5OA==

can be loaded at user demand to show for example real-time dispersion of pollutant,

and traffic reconstruction representations are shown as animated 3D crest.

In order to show the capability of our SCDT system to let the user carry out simula-

tion and analysis on routing, controls for What-If analysis [18] were implemented into

the web interface. By clicking on the map, the user can select specific points or areas

to simulate a traffic restriction. Then the routing algorithm produces trajectories be-

tween any start and end position considering the defined restriction. An example of

What-If on routing is presented in Figure 6: as can be seen an area was selected to ban

traffic from the enclosed streets and the updated routing is shown to the user.

7 SCDT solution comparison

According to the requirements identified in Section 2, a comparison among different

SCDT solutions has been carried out. To produce the comparison, we manually in-

spected the available information of a set of other solutions: except for [3] who has

associated papers describing it, the other solutions have been studied mainly by analys-

ing their 3D web interfaces, and, if not available (as for example [23]) by exploiting all

the available information such as web pages and videos. In this comparison, we in-

cluded at first CityGML [3] in order to define a baseline for SCDT solutions. Then we

considered the following cases: the SCDT of the city of Helsinki, that includes LoD3

city model was implemented and made publicly available [19]. However, such a system

does not provide integration with IoT data or other kinds of city related information.

Another similar solution was proposed by the city of Rotterdam [20], exploiting LoD2

building models, without integrating neither any decoration elements nor elevation of

terrain. A 3D model for the city of Berlin was presented in [21], providing pickable

Fig. 4. Extension of the modelled Florence area. In blue the administrative border of Flor-

ence municipality; in red the area covered by our Digital Twin. This map is shown in the

EPGS:3003 coordinate system.

LoD2 models of buildings, supporting WMS and terrain layers. The city of Stockholm

[22] implemented many aspects of the Digital Twin concept, such as POI, LoD3 build-

ings, either with 3D tiles and modelled ones, and others 3D entities. However, the so-

lution lacks in the implementation of WMS heatmaps. More recently, a SCDT of Wel-

lington was proposed [23]. Powered by the Unreal Engine, such a solution can offer

LoD3 building models, paths, sensor data, terrain elevation, and additional 3D entities.

However, the usage of the Unreal Engine can limit the accessibility of such a solution.

Finally, in the scope of the DUET project [24], Digital Twins of Flanders, Athens, and

Pilsen were produced in a project not actually accessible. Such solutions implement

building models with different LoD, terrain elevation, heatmaps, and additional 3D el-

ements. However, this solution seems to be a work in progress, with several test cases

with a public web interface very limited. In Table 1, the full comparison is reported

w.r.t. the previously defined requirements. As can be seen, most of the solutions are

able to satisfy the data requirements (RD1 – RD7). Differently, the interactivity require-

ments seem to be more difficult to be respected, in particular those that are related to

(a)

(b)

(c)

Fig. 5. Snap4City dashboard showing the Smart City Digital Twin of Florence. In (a) the

dashboard is presented with LoD3 and HVB models shown together with PINs, 3D Crests

for traffic, heatmaps, 3D Cylinders, trees. In (b) a close-up view of the Florence city center.

In (c) another close-up showing entities correclty elevated according to the 3D terrain

(textured with satellite orthomaps). To try our SCDT of Florence the reader is invited to

visit the following link https://www.snap4city.org/dashboardSmartCity/view/Gea-

Night.php?iddasboard=MzQ5OA==

https://www.snap4city.org/dashboardSmartCity/view/Gea-Night.php?iddasboard=MzQ5OA==
https://www.snap4city.org/dashboardSmartCity/view/Gea-Night.php?iddasboard=MzQ5OA==

the dynamic change of some models (RI4.ii, RI4.iii) and for the underground inspection

(RI7). For the interactive requirements, the most advanced solution appear to be [23]:

in our opinion, this is due to the fact that is the only solution powered by Unreal Engine.

Indeed, such a 3D engine can offer additional functionality respect to simpler 3D en-

gine/web player, and it requires higher computational resources, at least from server-

side, since the 3D web interface (that should be based on Pixel Streaming) requires the

3D rendering be carried out on the server while the client receive only a video stream

of the 3D scene. Finally, the operative requirements (RO1 – RO8) seem to be the hard-

est ones to be meet by all the compared approaches except for our solution since our

SCDT is embedded into the IoT platform Snap4City. The platform offers business

logic, data ingestion and manipulation capabilities, data analytics, etc., enhancing the

geospatial data rendered in the 3D map with a plethora of additional information and

services, realizing a complete Smart City Digital Twin.

8 Conclusions

In this paper, the processes used to develop a Smart City Digital Twin were described.

Firstly, a series of requirements were presented and discussed. Then the development

phases, guided by the previously defined requirements, were presented. Data and pro-

cesses used to build the 3D structure to be included into the Digital Twin model infra-

structure were described, as well as the layered structured used on client-side rendering

on interactive web interface. In order to include additional information - e.g., IoT sensor

data, POI locations, heatmaps, paths, etc. - our solution has been implemented into the

Snap4City platform, to exploit specific API calls to retrieve the data and show them on

the map on specific layer loaded on user demand. The implementation of the Digital

Twin of the Florence city – publicly available at https://www.snap4city.org/dash-

boardSmartCity/view/Gea-Night.php?iddasboard=MzQ5OA== – was discussed as a

case of study, showing in particular some of the most complex functionalities offered

such as the possibility to perform What-If analysis on demand. Finally, a comparison

(a)

(b)

Fig. 6. Example of What-If analysis on vehicle routing. In (a) the intial routing, shown as a

purple elevated line. In (b) a What-If scenario is enabled: a blue polygon highlight the

blocked area and the updated routing is shown to the user.

with other state of the art Digital Twin solutions was carried out, showing that our ap-

Table 1. Comparison of SCDT platforms: (*) defines only the building model, (**) functional-

ity implemented in CESIUM but without any model placed underground, (x) use CESIUM, it

could be possible, (C) based on CESIUM.

C
it

y
G

M
L

 [
3
]

H
el

si
n

k
i

[1
9
]

R
o
tt

e
rd

a
m

[2
0
]

B
er

li
n

 [
2
1

]

S
to

ck
h

o
lm

[2
2
]

W
e
ll

in
g

to
n

[2
3
]

D
U

E
T

 [
2
4
]

S
n

a
p

4
C

it
y

(o
u

r)

RD1.i Yes No No No No No Yes Yes

RD1.ii Yes
(LoD3)

Yes Yes
(LoD2)

Yes
(LoD2)

Yes (LoD3) Yes
(LoD3)

Yes
(LoD2/LoD3)

Yes

RD1.iii No No No No No Proba-
bly

No Yes

RD2 No Yes Yes
(C)

Yes
(C)

Yes Yes Yes Yes

RD3 No No No Yes No Proba-
bly

Yes Yes

RD4 No Yes
(C)

Yes
(C)

No (x) Yes Yes No Yes

RD5 No No No No Yes Yes No Yes

RD6 Yes Yes No No Yes Yes Yes Yes

RD7.i Yes Yes No No Yes Yes Yes Yes

RD7.ii Yes No No No No Yes No No

RI1 No (*) Yes Yes Yes Yes Yes Yes Yes

RI2 No (*) No No No No Yes No Yes

RI3 No (*) No Yes No Yes Yes No Yes

RI4.i Not
clear
(maybe)

Yes
(s)

Yes Yes No Proba-
bly

No Yes

RI4.ii No No No No No Proba-
bly

No No

RI4.iii No No No No No Yes No No

RI5 No No No Yes No Yes No Yes

RI6 No (*) No No No Yes No Yes Yes

RI7 No (*) Yes
(**)

Yes
(**)

No (x) No No No No

RI8 No No No No Yes Yes No Yes

RO1 No No No No No No No Yes

RO2 No No No No No No No Yes

RO3 No No No No No No No Yes

RO4 No No No
(not
speci-
fied)

No No (not speci-
fied)

No
(not
speci-
fied)

No Yes

RO5 No No No No No No No No

RO6.i No Yes Yes Yes Yes Yes Yes Yes

RO6.ii n/a Non-
free

Free Free Non-free Non-
free

Non-free Free

RO7 No Yes Possi-
ble (x)

Possi-
ble (x)

Possible Yes Possible Yes

RO8.i No Yes Yes No Yes Yes Not clear Yes

RO8.ii n/a Non
free

Non
free

n/a Non free Non
free

Not clear Yes

proach can offer a more complete solution, considering in particular the interactive and

the operative requirements as reported in Table 1.

In future works, the digital twin and its 3D representation will be further enriched

with additional kind of models, and novel functionalities will be introduced in our in-

teractive web inter-face. Moreover, the Snap4City knowledge base (Km4City) will be

further expanded considering all the entities included into the Digital Twin to be able

to perform semantic, relational, temporal and geographical queries to handle and re-

trieve all the data to be presented in our Smart City Digital Twin.

Acknowledgement

The authors would like to thank the MIUR, the University of Florence and the com-

panies involved for co-founding the national Center on Sustainable Mobility, MOST.

A thanks to the many developers on snap4city platforms. Snap4City

(https://www.snap4city.org) is open technologies of DISIT Lab.

References

1. G. Mylonas, A. Kalogers, G. Kkalogeras, C. Anagnostopoulos, C. Alexakos, L. Muñoz,

“Digital Twins From Smart Manufacturing to Smart Cities: A Survey”, in IEEE Access, vol.

9, pp. 143222-143249, 2021, doi: 10.1109/ACCESS.2021.3120843.

2. E. Shahat, C. T. Hyun and C. Yeom, “City Digital Twin Potentials: A Review and Research

Agenda” MDPI, pp. 3, 2021.

3. G. Gröger and L. Plümer, “CityGML Interoperable semantic 3D city models,” ISPRS Jour-

nal of Photogrammetry and Remote Sensing, pp. 16-21, 2012.

4. D. Jovanovic, S. Milovanov, I. Ruskovski, M. Govedarica, D. Sladic , A. Radulovic, and V.

Pajic, “Building Virtual 3D City Model for Smart Cities Applications: A Case Study on

Campus Area of the University of Novi Sad,” ISPRS International Journal of Geo-Infor-

mation, pp. 16-21, 2020.

5. Adreani, L., Bellini, P., Colombo, C., Fanfani, M., Nesi, P., Pantaleo, G., Pisanu, R. “Digital

Twin Framework for Smart City Solutions”. In proceedings of the 28th International DMS

Conference on Visualization and Visual Languages (DMSVIVA 2022), 2022.

6. Q. Han, P. Nesi, G. Pantaleo, I. Paoli, "Smart City Dashboards: Design, Development and

Evaluation", Proc. of the IEEE ICHMS 2020, International Conference on Human Machine

Systems, September 2020. http://ichms.dimes.unical.it/

7. C. Garau, P. Nesi, I. Paoli, M. Paolucci, P. Zamperlin, A Big Data Platform for Smart and

Sustainable Cities: Environmental Monitoring case studies in Europe. Proc. of International

Conference on Computational Science and its Applications, ICCSA2020. Cagliari, Italy, 1-

4 July 2020. http://www.iccsa.org/ https://link.springer.com/chapter/10.1007%2F978-3-

030-58820-5_30

8. Bilotta, Stefano, and Paolo Nesi. "Traffic flow reconstruction by solving indeterminacy on

traffic distribution at junctions." Future Generation Computer Systems 114 (2021): 649-660.

9. S. Bilotta, E. Collini, P. Nesi and G. Pantaleo, "Short-Term Prediction of City Traffic Flow

via Convolutional Deep Learning," in IEEE Access, vol. 10, pp. 113086-113099, 2022, doi:

10.1109/ACCESS.2022.3217240.

10. N. Girard, G. Charpiat and Y. Tarabalka, «Aligning and Updating Cadaster Maps with Aer-

ial Images by Multi-task, Multi-resolution Deep Learning,» in ACCV, 2018.

11. Pal, Nikhil R; Pal, Sankar K (1993). "A review on image segmentation techniques". Pattern

Recognition. 26 (9): 1277–1278. doi:10.1016/0031-3203(93)90135-J

12. Campello, R.J.G.B., Moulavi, D., Sander, J. (2013). Density-Based Clustering Based on Hi-

erarchical Density Estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds)

Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Com-

puter Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

37456-2_14

13. Toldo, R., Fusiello, A. (2008). Robust Multiple Structures Estimation with J-Linkage. In:

Forsyth, D., Torr, P., Zisserman, A. (eds) Computer Vision – ECCV 2008. ECCV 2008.

Lecture Notes in Computer Science, vol 5302. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-88682-2_41

14. Badii, C., Bellini, P., Cenni, D., Difino, A., Nesi, P., & Paolucci, M. (2017). Analysis and

assessment of a knowledge based smart city architecture providing service APIs. Future

Generation Computer Systems, 75, 14-29.

15. https://www.aa.quae.nl/en/reken/zonpositie.html

16. Nesi, Paolo, et al. "An integrated smart city platform." Semantic Keyword-based Search on

Structured Data Sources. Springer, Cham, 2017.

17. P. Bellini, F. Bugli, P. Nesi, G. Pantaleo, M. Paolucci, I. Zaza, "Data Flow Management and

Visual Analytic for Big Data Smart City/IOT", 19th IEEE Int. Conf. on Scalable Computing

and Communication, IEEE SCALCOM 2019, Leicester, UK

https://www.slideshare.net/paolonesi/data-flow-management-and-visual-analytic-for-big-

data-smart-cityiot

18. P. Bellini, S. Bilotta, L. A. Ipsaro Palesi, P. Nesi, G. Pantaleo, "Vehicular Traffic Flow Re-

construction Analysis to Mitigate Scenarios with Large City Changes", IEEE Access, 2022,

ISSN: 2169-3536. https://ieeexplore.ieee.org/document/9984661

19. Helsinki 3D city model. Available online: https://kartta.hel.fi/3d/#/

20. Rotterdam 3D. Available online: https://www.3drotterdam.nl

21. Berlin 3D, 3dcitydb. Available online: https://www.3dcitydb.org/3dcitydb-web-

map/1.7/3dwebclient/index.html?title=Berlin_Demo&batchSize=1&lati-

tude=52.517479728958044&longi-

tude=13.411141287558161&height=534.3099172951087&head-

ing=345.2992773976952&pitch=-

44.26228062802528&roll=359.933888621294&layer_0=url%3Dhttps%253A%252F%252

Fwww.3dcitydb.org%252F3dcitydb%252Ffileadmin%252Fmydata%252FBer-

lin_Demo%252FBerlin_Buildings_rgbTexture_ScaleFactor_0.3%252FBerlin_Build-

ings_rgbTexture_collada_MasterJSON.json%26name%3DBrlin_Buildings_rgbTex-

ture%26active%3Dtrue%26spreadshee-

tUrl%3Dhttps%253A%252F%252Fwww.google.com%252Ffusiontables%252FData-

Source%253Fdocid%253D19cuclDgIHMqrRQyBwLEztMLeGzP83IB-

WfEtKQA3B%2526pli%253D1%2523rows%253Aid%253D1%26cityob-

jectsJsonUrl%3D%26minLodPixels%3D100%26maxLodPix-

els%3D1.7976931348623157e%252B308%26maxSizeOfCachedTiles%3D200%26max-

CountOfVisibleTiles%3D200

22. Stockholm Opencities Planner. Available online: https://eu.opencitiesplanner.bent-

ley.com/stockholm/stockholmvaxer

23. Wellington DT: https://buildmedia.com/work/wellington-digital-twin

24. DUET Project: https://www.digitalurbantwins.com/

https://www.digitalurbantwins.com/

