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Studiare non serve, studiare comanda.

— Chiara Valerio [173]





A B S T R A C T

In this thesis, we combine Computer Aided Geometric Design methods with Deep
Learning technologies. The final objective is to develop and apply advanced
geometric reverse engineering methods for the design of complex data-driven
free-form spline geometries. In particular, we address the (re-)construction of
highly accurate CAD models from point clouds, which is both a fundamental
and challenging problem. Depending on the acquisition process, the nature of
the data can strongly vary, from uniformly distributed to scattered and affected
by noise; yet the reconstructed geometric models are required to be compact,
highly accurate, and smooth, while simultaneously capturing key geometric
features. An important and crucial step of any parametric model reconstruction
scheme consists in solving the parameterization problem, namely to suitably
map the input data to a parametric domain. We propose data-driven parame-
terization methods based on (geometric) deep learning to address this problem
both in the univariate and multivariate cases, considering either structured or
unstructured point cloud configurations. The accuracy of the model obtained
with the proposed schemes is higher than the one usually achieved by standard
methods. It should be noted that, to the best of our knowledge, data-driven
models to address the parameterization problem of scattered data sets in a
general multivariate setting were not previously proposed. In addition, we intro-
duce novel adaptive fitting schemes with moving parameterization and truncated
hierarchical B-splines, based on the optimization of different error metrics. In
particular, we propose adaptive alternating and joint optimization methods
to optimize the parameter locations and the control points of the (hierarchi-
cal) spline geometric model. The alternating methods optimize the parameters
separately from the control points computation, whereas the joint approach
optimizes the parameters and control points simultaneously. The use of moving
parameterization instead of fixed parameter values, when suitably combined
with adaptive spline approximation, can significantly improve the resulting
geometric model, thus outperforming state-of-the-art hierarchical spline model
reconstruction schemes.
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1
I N T R O D U C T I O N

The digital representation of geometric objects belonging to the real world is
of fundamental importance in many scientific disciplines and related appli-
cation areas. For example, they can be used for simulations, which involve
numerical computations directly on the model or its components, as well as
for visualization and direct measurements during the design or manufacturing
phases.

The input information typically comes in the form of discrete data, usually col-
lected as 2D/3D point clouds, hence a continuous geometric model needs to be
(re-)constructed. Continuous representations facilitate the shaping and manipu-
lation procedures since the dimensionality and complexity of the considered
geometric objects are reduced.

The final goal of this Thesis consists in developing automatic, robust, highly-
accurate, and efficient methods for the representations of the input discrete data
via a continuous geometric model. To this aim, we properly combine free-
form geometric models with data-driven schemes, hence merging Computer
Aided Geometric Design (CAGD) [55, 91] methods with Deep Learning (DL) [21, 76]
technologies.

1.1 computer aided geometric design

CAGD provides the mathematical and computational methods as well as suitable
modelling and/or approximation schemes for the design, construction, and
analysis of geometric objects, i. e. free-form curves, surfaces, and volumes.
Examples of its applications are Computer Aided Design (CAD) and Computer
Aided Manufacturing (CAM), Geometric Modelling, Robotics, Computer Vision,
Computer Graphics, Pattern Recognition, Image Processing, and Scientific
Visualization. Key computational tools in this settings are splines, meshes, and
subdivision schemes [55, 56, 91], among others.

Splines are piecewise polynomial functions characterized by a certain regu-
larity. The current CAD standard for splines representations relies on B-splines
[12] and their non-uniform rational extension, i. e. Non Uniform Rational B-
Spline (NURBS) [145, 153]. The multivariate case for standard CAD spline repre-

1



2 introduction

(a) (b) (c) (d)

Figure 1.1: Given an initial tensor-product grid (a) and a region of interest for refinement
(b), the refined tensor-product grid (c) propagates the refinement beyond
the marked areas, while the adaptive model with T-junctions enables local
refinement capabilities (d).

sentations relies on the tensor-product structure. This construction poses several
limitations when we want to properly include local properties in the geometric
model. More specifically, tensor-product constructions allow only global refine-
ment. Hence, unnecessary degrees of freedom are added in regions far away
from the one of interest, and this also usually increases the computational costs,
see Figure 1.1 (a–b–c). The need to overcome the limits of tensor-product spline
constructions, the achieve enhanced flexibility and efficient computation of high-
quality approximations, led to the development of new adaptive spline spaces
defined on extensions of tensor-product constructions on T-meshes, which also
include T-junctions and enable local refinement capabilities, see Figure 1.1 (a–b,
d).

Spline adaptivity in this setting can be achieved with different approaches,
and several proposals can be found in the literature. Among others, we mention:
multilevel B-splines [113], defined by a coarse-to-fine hierarchy of control lattices
to generate a sequence of B-spline functions, whose sum gives the final model;
T-splines [161, 162], defined on meshes where T-junctions between axis-aligned
segments are allowed, and related modified versions [95, 117, 119, 181]; S-splines
[118], a generalization of T-splines that solves the problem of additional con-
trol points propagation in T-spline’s local refinement algorithms; PHT-splines
[46], namely polynomial splines over hierarchical T-meshes; LR-splines [48],
locally refined splines for which the refinement is specified by a sequence of
mesh-boxes; U-splines [171], splines defined on unstructured meshes that can
accommodate local variation in cell size, polynomial degree, and smoothness.
Finally, Hierarchical B-splines (Hierarchical B-splines (HB-splines)) [64, 103] are
multilevel B-spline extensions where the tensor-product structure is preserved
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DL

ML

AI

Figure 1.2: AI, ML and DL framework.

at any level of the hierarchy. Their truncated formulation, i. e. Truncated Hierar-
chical B-splines (Truncated Hierarchical B-splines (THB-splines)) [72, 74], is based on
HB-splines and relies on the definition of a certain truncation operator. THB-splines
are a more flexible tool compared to HB-splines since they have smaller supports
and reproduce some characteristic properties of tensor-product B-splines, such
as non-negativity and partition of unity. They also guarantee the preservation of
coefficients, i. e. they preserve the coefficients of functions expressed in terms
of tensor-product B-splines of a certain hierarchical level [73]. For complete-
ness, we recall that a generalization of THB-splines to allow anisotropic mesh
refinement can be achieved in the framework of Patchwork B-splines [50].

In this Thesis, we choose to work with THB-splines because of their local
tensor-product structure, their key properties, and their ease of implementation.

1.2 deep learning

DL is a subset of Machine Learning (ML), the field of Artificial Intelligence (AI)
consisting of algorithms, based on numerical and statistical methods, which
directly learn from data, without being explicitly programmed. The core of ML
algorithms consists in their ability to process row data and produce new proper
representations, suitable for the considered problem, by automatically setting
the value of some internal routine parameters. The novelty of DL, with respect to
standard ML, consists in the use of multiple layers of abstraction to progressively
extract higher-level features from the raw input data [111]. The relationship
between the AI, ML and DL frameworks is summarised in Figure 1.2. It is
very well known that DL methods have improved the state-of-the-art in speech
recognition, visual object recognition, object detection, and many other domains.
In this Thesis, we also show how DL methods can improve the state-of-the-art
for (spline) geometric modelling applications.
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Neural Networks (NNs) are the computational framework of deep learning.
These architectures are usually composed of several processing layers to learn
data representations. Specifically, DL routines perform the data feature extraction
by employing backpropagation algorithms to identify intrinsic relations in big
data sets and determine how to adjust the internal parameters of the NN.
Among others, some examples of NNs are the following. Multi Layer Perceptrons
(Multi Layer Perceptrons (MLPs)) are the core of deep learning models [76],
they consist of at least three fully connected layers, intertwined with non-
linear (activation) functions. Convolutional Neural Networks (Convolutional
Neural Networks (CNNs)) [108] are NNs that use convolutional operators in
place of general matrix multiplication in at least one of their layers. They are a
specialized kind of neural network for processing data that has a known grid-like
topology. RESidual neural networks (RESidual neural networks (RESs)) [85] are
an extension of CNNs, characterized by shortcut connections, introduced in [166]
and also referred to as skip or residual connections, between their input and
output, which allow to efficiently train NNs with many (≫ 100) hidden layers.
Skip connections are also used in the Long Short-Term Memory networks [87]
and TRAnsformer encoder (TRA) models [47]. All the above-mentioned NNs
are feed-forward networks, i. e. the information flows from the input, through
the intermediate computations used to define the architecture, and finally to
the output. There are no feed-back connections in which the outputs of the
model are fed back into itself. When feed-forward neural networks are extended
to include feed-back connections, they are called Recurrent Neural Networks
(RNNs) [155].

In this Thesis, we initially exploit CNNs, which brought several breakthroughs
in processing images, video, speech, and audio, and, in general, they thrive
when any kind of data involving spatial-correlated patterns has to be processed.
On the other hand, CNNs are not suitable to handle data with a non rectilinear-
grid like topology, because of the lack of appropriate structures. Consequently,
we also employ methods from geometric deep learning [21] to properly process
unstructured or unorganized data configurations.

The translation of standard filter operators to graph operators relies on suit-
able aggregations of vertex and neighbour features. In particular, Graph Convolu-
tional neural Networks (GCNs) [186] are a generalization of CNNs to non-Euclidean
data, characterized by a graph structure, e. g., discrete manifolds, graphs, and
general point clouds, 3D shapes, chemical molecules, and social/relational net-
work. Hence, GCNs define the convolution operators on graph domains. Among
the various graph convolutional operators available, see again [186] and the
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references therein, we exploit the fast localized spectral filters developed in [42]
and the dynamic edge convolution operator proposed in [180].

1.3 problem presentation

The core problem addressed in this Thesis is the spline fitting problem, namely
the design of a parametric spline model which approximates a point cloud given
as input. The aim is to develop highly-accurate robust and efficient methods
for the representation of the discrete input via a continuous spline parametric
model.

The data considered in this Thesis are real world data sets or synthetic data
that mimic their behaviour. In particular, depending both on the application and
the collection method, these data can result in structured point grids, meshes, or
scattered point clouds. We propose new (data-driven) parameterization and fitting
procedures that are able to handle different input data configurations and are
suitable for the design of continuous free-from highly accurate and efficient
spline models.

The considered data fitting problem can be mathematically described as
follows. Given a (noisy) data set of the form,

P = {pi ∈ RN | i = 1, . . . , m}, (1.1)

where N = 2 for data points laying a plane and N = 3 for data points which
belong to the three-dimensional space, find a geometric model s : Ω ⊆ RD →
RN, which approximates the data P within a certain tolerance ϵ ∈ R>0, in the
sense that, for each i = 1, . . . , m, dist (si, pi) ≤ ϵ, where si denotes a point on
the geometric model associated with the data point pi, and dist (·, ·) is a certain
distance metric.

By virtue of their properties, B-splines, and their multivariate hierarchical ex-
tension as THB-splines, are a desirable tool for building flexible geometric models.
Therefore, the (TH)B-spline fitting problem can be stated in the following way.
Given a point cloud as in (1.1) and an error tolerance ϵ > 0, find a (TH)B-spline
model s : Ω ⊆ RD → RN, so that

dist (s(ui), pi) ≤ ϵ, with ui ∈ Ω, for each i = 1, . . . , m, (1.2)

, where ui denotes a point on the parametric domain Ω associated with the data
point pi. Solving the problem in (1.2) implies the solution of two essential sub-
problems: (a) the data parameterization and (b) the definition of the THB-spline
approximant s. In particular,
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(a) Any parametric reconstruction scheme needs to define the data parame-
terization, namely to define the parametric set

U := {ui ∈ Ω ⊂ RD | i = 1, . . . , m}, (1.3)

which assign a parameter value ui ∈ Ω ⊂ RD to each point pi ∈ RN,
for i = 1, . . . , m. Since the parameters encode intrinsic characteristics
of the geometric model representation, estimating a good point cloud
parameterization is a fundamental and delicate issue.

(b) The design of a spline model further depends on the characterization of
the spline space V, defined by the multivariate degree d ∈ ND

>0, the knot
line placement, which defines a tessellation of Ω, and, consequently on the
computation of the control points.

In this Thesis, we propose solutions to problem (1.2) for gridded and scattered
data, by addressing both point (a) and (b) separately. As concerns (a), we pro-
pose data-driven parameterization methods based on (geometric) deep learning to
address this problem both in the univariate and multivariate cases, considering
either structured or unstructured point cloud configurations. As concerns (b),
we introduce novel adaptive fitting schemes with moving parameterization and
THB-spline, based on the optimization of different error metrics. In addition, we
propose an adaptive approximation paradigm with THB-splines that addresses
problems (a) and (b) simultaneously. The workflow of the proposed methods is
summarized in Figure 1.3.

1.4 contributions and thesis outline

We start in Chapter 2 by providing a selection of the preliminary notionsChapter 2
for the contents of this Thesis. In particular, the first part of the Chapter is
dedicated to (TH)B-spline constructions: B-splines, tensor-product B-splines,
and THB-splines are introduced. The second part of the Chapter focuses on DL
and NN architectures. More specifically, we concentrate on CNNs and GCNs,
which are the main learning tools employed in the Thesis.

Subsequently, the main problem addressed in this Thesis – data fitting withChapter 3
THB-splines – is introduced in Chapter 3. Once an initial parameter and mesh
configuration are chosen, any adaptive approximation procedure is character-
ized by four main steps which are successively repeated until a certain stopping
criteria is satisfied, i. e.

1. SOLVE → 2. ESTIMATE → 3. MARK → 4. REFINE. (1.4)
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BID edge conv

edge conv ×4

mlp

Adaptive THB-spline representationBIDGCNInput

Figure 1.3: Data-driven point cloud parameterization and adaptive spline fitting. From
left to right: an input scattered point cloud with interior (blue) and boundary
(red) points is processed by the BIDGCN network proposed in [70] to
predict the input point parameterization. The predicted parameters are
subsequently employed in an adaptive surface reconstruction scheme to get
the final hierarchical geometric model.

SOLVE consists in the computation of the approximation on the current mesh;
ESTIMATE computes the error estimation according to a suitable error indicator,
whose values are then exploited to define a suitable marking strategy in MARK.
Finally, REFINE defines the refinement strategies to suitably identify the adap-
tive mesh to be used in the next iteration of the adaptive loop. The algorithm
performance is usually ruled by several input parameters, which establish the
starting setting, the adaptive strategy, and the stopping criteria. Note that, once
the initial configuration is chosen, the process is fully automatic, namely no
user interaction is required.

We start Chapter 3 by reviewing established data fitting methods, i. e. inter-
polation and weighted least square schemes for an arbitrary approximation
space [8]. Subsequently, we present a generalized formulation for reweighted
least squares approximations, as convex combination of certain interpolants.
We also provide a general strategy to iteratively update the weights according
to the approximation error [67]. We then revisit the global Least Squares (LS)
fitting scheme with THB-splines presented in [101], based on ordinary LS, by
extending the automatic (error-driven) selection of the weights, within the
adaptive procedure. Our reWeighted Least Squares (rWLS) scheme is able to
tackle the presence of noisy or corrupted data, as well as data corresponding to
fundamental geometric features to be represented in the final spline model, see
again [67].
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Subsequently, we concentrate on the approximation of scattered data sets with
THB-splines, based on the two-stage adaptive Quasi-Interpolation (QI) method
scheme presented in [19] and further developed in [17]. In particular, we propose
to modify the the first stage of the existing scheme from polynomial least
squares approximations to least squares B-spline approximations, exploiting
also a suitable fairness functional to handle data distributions with a locally
varying density of points. We then also adjust the adaptive refinement strategy to
properly handle the novelties introduced in the first stage. Chapter 3 concludes
with a selection of numerical results of industrial complexity.

We address the parameterization problem for (TH)B-spline fitting schemes inChapter 4
Chapter 4. Standard parameterization methods both for gridded and scattered
point clouds rely on a barycentric mapping induced from the local neigh-
bourhoods of the points [58, 59, 61, 62, 145]. The complexity of the problem
motivates the employment of DL as a viable option to predict an optimal choice
of parameter values.

We develop data-driven parameterization methods for the parameteriza-
tion problem. By introducing PARamerization with Convolutional Neural Net-
work (PARCNN) we tackle the parameterization of planar/spatial point sequences
and gridded point clouds, whereas PARamerization with Convolutional Neural
Network (PARCNN) [41] and Boundary Informed Dynamic Graph Convolutional neural
Network (BIDGCN) [70] address the parameterization of scattered data. In all
these cases, we employ NNs characterized by convolutional operators, defined
on the considered domain, for the parameterization learning problem and to
assign parameter values at an arbitrary number of points for their subsequent
use in (TH)B-spline (adaptive) approximation schemes. Differently from the
other models, BIDGCN is able to process boundary conditions in addition to
the standard vertex features of the discrete surface by a new graph convolution
operator that contains two separate trainable message functions.

For each learning model, we provide details on the architecture developed,
the training strategy, the model hyper-parameters and the data employed for
training, test and validation phases. The performances of each method are
illustrated by the related numerical examples.

All the proposed parameterization learning methods are agnostic to the
dimension of the input, can generalize to point clouds of different dimensions,
are robust to noise, outperform closed-form, heuristic and data-driven choices
of the parameterization, and produce high-quality parameterizations for (TH)B-
spline reconstruction schemes. In addition, BIDGCN overcomes the failing issues
of standard meshless parameterization methods which happen in case of sparse
data neighbourhoods. To the best of our knowledge, dimension-independent
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data-driven models to address the parameterization problem of point sequences
and data sets in a general multivariate setting were not previously proposed.

In Chapter 5, we introduce novel adaptive approximation schemes with Chapter 5
THB-spline and moving parameterization. State-of-the-art (TH)B-spline fitting meth-
ods address the parameterization problem, the construction of the spline space
and the definition of the control net separately. In particular, given P , a suitable
parameterization U is computed and, on such a fixed parameterization, both the
spline space, and the approximating spline model is defined. Instead, we follow
up on the idea that, as the refinement proceeds in an adaptive setting, not only
the geometric model but also the parameter values of each data point should
be optimized. In this Thesis we propose two strategies to properly embed the
parameterization within the adaptive model construction and to deal with a
moving parameterization, rather than a fixed one.

The first strategy consists of enriching the adaptive approximating loop
with iterative applications of the Parameter Correction (PC) routine [90]. In
addition, we propose different adaptive fitting algorithm by exploiting diverse
approximation schemes involved in the SOLVE step, in combination with PC
routine [69]. In particular, we develop the adaptive Alternating Point Distance
Minimization (A-PDM) fitting scheme, as the adaptive multivariate extension of
the Point Distance Minimization (PDM) method originally presented in [90] for
B-spline curve fitting. Moreover, by taking into account within the error term
also the normal direction of the current geometric model at each iterative step,
we develop the adaptive Alternating Tangent Distance Minimization (A-TDM) fitting
scheme, based on the Tangent Distance Minimization (TDM) [9, 123, 179]. As
suggested in [10, 130], we then combine the PDM and TDM error measures and
take into account the discrete curvatures and the point-wise error distribution
of the current model, to formulate the adaptive Alternating Hybrid Distance
Minimization (A-HDM) multivariate fitting technique [69]. Finally, we exploit
the introduction of PC also within an adaptive hierarchical QI methods, based
on two-stage approximation scheme with local B-splines [68].

The second strategy to move the parameters consists of addressing the param-
eterization problem within the SOLVE step of the adaptive loop. The computa-
tion of the approximation on the current mesh in this case is performed by the
solution a non-linear Joint Point Distance Minimization (J-PDM), which consists
in simultaneously computing the optimal parameter sites and control points,
as proposed in [189] for the case of B-spline curve fitting. Therefore, with this
method, we avoid solving a linear system of equations and performing PC at
every adaptive iteration.
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Our study reveals that using a moving parameterization, instead of a fixed
one, can improve the fitting results while also reducing the number of degrees
of freedom required to achieve a certain accuracy. It can also lead to earlier
termination of the adaptive process, thus providing more compact models with
less refinement depth and outperforming state-of-the-art hierarchical spline
model reconstruction schemes.

Finally, Chapter 6 concludes the Thesis by summarizing the research resultsChapter 6
and providing new future research directions and perspectives.

The algorithms related to the learning parameterization models, see Chap-
ter 4, have been implemented in Python with the open-source PyTorch and
PyTorch Geometric libraries [57, 99, 143]. The novel graph convolution operator
introduced for the BIDGCN model, together with the network architecture can
be found at the following repository: https://github.com/felixfeliz/BIDGCN.
The code for PARCNN and PARameterization with Graph Convolutional neural
Network (PARGCN) will be made available on request.

The algorithms related to the adaptive fitting schemes with THB-splines,
see Chapter 3 and Chapter 5, have been implemented in C++ with the open-
source G+Smo library [94, 129]. The developed code for the proposed algorithms
has been integrated and will be available in the next releases.

The original results presented in this Thesis are based on [16, 67] (Chapter 3),
[41, 70, 71] (Chapter 4), and [68, 69] (Chapter 5).

https://github.com/felixfeliz/BIDGCN


2
P R E L I M I N A R I E S

This Chapter provides a selection of preliminary notions for the contents of this
Thesis. We provide CAGD and DL definitions, notations, and operations that will
be essential throughout the following Chapters. After introducing univariate
B-spline constructions and their tensor-product multivariate extensions, we
focus on the hierarchical spline model by considering THB-splines. Subsequently,
we illustrate NN architectures and mainly focus on CNNs and GCNs. The present
Chapter is mostly based on [12, 21, 74, 76].

2.1 adaptive spline constructions

CAGD is concerned with the mathematical and computational methods for
geometric modelling. This discipline is primarily devoted to the construction
and analysis of free-form curves, surfaces, and volumes, such as splines, meshes,
and subdivision surfaces, as well as suitable modelling and/or approximation
schemes for their generation, analysis, and manipulation [55, 91]. The range
of CAGD applications is very wide, e. g., CAD, Computer Aided Engineering
(CAE)/CAM, computer graphics, path planning and motion control, robotics,
and scientific visualization, among others.

The CAGD methods considered in this Thesis concern splines and related ap-
proximation and modelling schemes. The computational CAGD tools employed
are B-splines, piecewise polynomial functions with a certain regularity, and
their multivariate adaptive extensions. In particular, in this Section we present
the main concepts of polynomial B-splines and truncated hierarchical B-splines.

2.1.1 B-splines

The choice of the approximation space plays a fundamental role in the final
accuracy of the geometric model. This is the case of polynomial interpolation
models, which might be affected by oscillations for too high polynomial degree
[156]. A solution to this issue is provided by considering spline models, which
allow to keep the polynomial degree low, while improving the model accuracy
by increasing the number of polynomial pieces for its definition.

11
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Let Ω = [a, b] ⊂ R be a real interval and let τ := {τ0, . . . , τL} be a partition
of [a, b] so that a ≡ τ0 < · · · < τi < τi+1 < . . . < τL ≡ b and define the knot-
vector τ := [τ0, . . . , τL]. Moreover, let γi := [τi, τi+1) for i = 0, . . . , L − 2,
γL−1 := [τL−1, τL], choose d ∈ N a polynomial degree and set k := d + 1 the
corresponding polynomial order.

Definition 1. The space of piecewise polynomial functions with degree d and knot-
vector τ is defined as follows

Pd,τ :=
{

f : Ω → R | f|γi
∈ Πd, for i = 0, . . . , L − 1

}
, (2.1)

where Πd is the space of polynomials of degree less or equal to d.

Pd,τ is a vector space on the field R and its dimension is dim (Pd,τ) =
L (d + 1).

Remark 1. No regularity conditions are imposed in Definition 1, which implies that
the elements of Pd,τ may also not be continuous.

In many CAGD applications, flexible tools are often desirable. Thereby, let
µ = {µ1, . . . , µL−1} the multiplicity vector with 1 ≤ µi ≤ k for i = 1, . . . , L − 1
and define the extended knot-vector

t := [t0, . . . , tk−2, tk−1, . . . , tn+1, tn+2, . . . , tn+k] ,

with

τ = [tk−1, . . . , tn+1] = [τ0, τ1, . . . , τ1︸ ︷︷ ︸
µ1

, . . . , τL−1, . . . , τL−1︸ ︷︷ ︸
µL−1

, τL].

Remark 2. The knots t0, . . . , tk−2 and tn+2, . . . , tn+k are the so called auxiliary knots;
they can be chosen arbitrarily, and the only constraint they have to fulfill is to be ordered.
A common choice consists in choosing them all coincident, respectively, to tk−1 and
tn+1, i. e. t0 ≡ . . . ≡ tk−2 ≡ tk−1 and tn+1 ≡ tn+2 . . . ≡ tn+k−1. An extended knot
vector with this auxiliary knot choice is said to be open.

Definition 2. The space of polynomial spline functions with degree d, global regularity
d − max{µ} and knot-vector t is defined as follows

V :=
{

f : Ω → R | f (r)(τ−
i ) = f (r)(τ+

i ), for r = 0, . . . , d − µi, i = 1, . . . , L − 1
}

.

(2.2)
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V is a vector space on the field R, Πd ⊂ Vd,t ⊂ Pd,τ and its dimension is

n + 1 := dimV = L (d + 1)−
L−1

∑
i=1

(d − µi + 1) = (m + 1) +
L−1

∑
i=1

µi = k + µ,

where µ = ∑L−1
i=1 µi.

The vector space V can be generated by n + 1 univariate B-splines of degree
d over [a, b], which can be recursively defined [12, 13].

Definition 3. Let β j,k : Ω → R indicate the j-th B-spline of order k ≥ 1, for each
j = 0, . . . , n. For x ∈ R, if k = 1 ,

β j,1(x) =

1, if x ∈ [tj, tj+1),

0, otherwise,

and β j,1(tn+1) = 1. If k ≥ 2,

β j,k(x) = ωj,k(x)β j,k−1(x) +
(
1 − ωj+1,k(x)

)
β j+1,k−1(x),

where ωj,k : R → R is a piecewise linear polynomial of the form

ωj,k(x) =


x−tj

tj+k−1−tj
, if x < tj+k−1,

0, otherwise.

Note that each B-spline β j,k for j = 0, . . . , n is a piecewise polynomial function
of degree d, which has maximum local smoothness on each subinterval of the
partition t. On the other hand, the regularity at each unique knot tj ∈ t is
d − µj, where 1 ≤ µj ≤ k is the number of times the knot value tj appears in t.
Moreover, the presence of repeated knots in t implies that choosing tî ≡ tî+1 for
some î modifies the polynomial function ωî,r̂ for some r̂ ≤ k, which can result
identically 0 and leads to a reduction of regularity of the B-splines β î,r for r ≥ r̂.

Univariate B-splines are characterized by three key properties, which follow
directly from Definition 3, namely for each j = 0, . . . , n,

(i) non-negativity, i. e. β j,k(x) ≥ 0 for all x ∈ R;

(ii) local support, i. e. β j,k(x) = 0, if x ̸∈ [tj, tj+k);

(iii) partition of unity, i. e. ∑n
j=0 β j,k(x) = 1 if x ∈ [tk−1, tn+1] ≡ [a, b].
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(a) (b)

Figure 2.1: (a) A B-spline of degree d = 3 and its decomposition in 4 polynomial pieces.
(b) B-splines of degree d = 1 (top) and d = 2 (bottom) on a uniform open
knot-vectors.

Finally, the n + 1 B-splines defined on the open knot vector t are piecewise
polynomials of degree d; they belong to Cd−s (Ω), where s := max1,...,L−1 µi,
and form a basis for the space V [37, 38], hence

V := span{β0,k, . . . , βn,k}.

Figure 2.1 (a) illustrates a B-spline of degree d = 3 and its four polynomial
pieces. Figure 2.1 (b) illustrates a B-spline basis of degree d = 1 (top) and a
B-spline basis of degree d = 2 (bottom) on open knot-vectors t with uniform
interior knots τ.

Remark 3. Let d ∈ N and k = d + 1 be a polynomial degree and order respectively,
and let [0, 1] = Ω ⊂ R. If a knot vector with no interior knots, i. e. τ = [0, 1] and the
corresponding extended open knot vector, i. e.

t = [0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
k

], (2.3)

are considered, the B-spline basis in Definition 3 corresponds to the Bernstein polynomial
basis on Ω [55, 127], namely

β j,k (x) :=
(

k − 1
j

)
xj (1 − x)k−j−1 , for each j = 0, . . . , d. (2.4)
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Once the extended knot-vector t, the degree d and the order k are set, any
B-spline geometry s : Ω → RN can be represented as

s(x) =
n

∑
j=0

cjβ j,k(x), for x ∈ Ω, (2.5)

with coefficients cj ∈ RN, for N ∈ N≥1. In particular, for N = 2 and N = 3 the
spline object s corresponds to a planar or spatial spline curve respectively. An
illustrative example of these two cases is provided in Figure 2.2.

Remark 4. By choosing the space configuration in Remark 3, the representation in
(2.5) is called the Bernstein-Bézier form.

For B-spline curves the following properties hold.

1. B-spline curves are invariant under affine transformations.

2. The value of a spline curve s at a site x ∈ Ω depends only on a convex
combination of k coefficients cj ∈ RN. It follows that, if x ∈ [ti, ti+1] for
some i = k − 1, . . . , n,

s(x) =
i

∑
j=i−k+1

cjβ j,k(x).

3. Each segment of the B-spline curve belongs to the convex-hull of (only) k
consecutive coefficients cj ∈ RN, hence it is usually addressed as strong
convex-hull.

Remark 5. The relationship between the value of the spline curve s and its coefficients
cj, for j = 0, . . . , n has led to addressing them as control points.

From these properties, it clearly follows that B-spline curves are extremely
ductile, and consequently, they represent effective geometric modelling tools.
Additional properties, e. g., end-point interpolation or periodicity, as well as algo-
rithms, e. g., knot-insertion or degree elevation, to design and efficiently manipulate
B-spline curves can be found in [13, 35, 55].

2.1.2 Tensor-product B-splines

Univariate B-splines can be easily extended to higher dimensions by considering
a tensor-product construction. In particular, let Ω be a hypercube of RD, i. e.

Ω :=
D⊗

h=1

[ah, bh], with [ah, bh] ⊂ R for h = 1, . . . , D.
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Figure 2.2: Planar (left) and spatial (right) B-spline curves, together with their control
nets.

Let d = (d1, . . . , dD) be the polynomial multi-degree, k = (k1, . . . , kD) be
the corresponding polynomial multi-order and a suitable knot-vector in each
parametric direction, i. e. t1, . . . , tD. We define the tensor-product mesh G as
G :=×D

h=1 th. A tensor-product B-spline β j : Ω ⊂ RD → R is then defined as
the tensor-product of D univariate B-splines,

β j,k :=
D

∏
h=1

β jh ,kh
, for jh = 0, . . . , nh, h = 1, . . . , D.

More precisely, they can be all identified by a set of multi-indices, i. e.

B =
{

β j | j ∈ Γk
}

,

with

Γk := {j = (j1, . . . , jD) | jh = 1, . . . , nh, h = 1, . . . , D}. (2.6)

Because of the tensor construction, many of the simple algebraic properties
of univariate B-splines hold. In particular, non-negativity, locality, and parti-
tion of unity. Moreover, the tensor-product B-splines defined on the grid G
are piecewise multivariate polynomials of multi-degree d, their regularity is
characterized by the multiplicity of the knot-lines of G and they form a basis
for the tensor-product space, i. e.

V := span{B}.
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(a) (b)

(c) (d)

Figure 2.3: (a) Univariate B-spline basis of degree d = 3 on a uniform open knot-vector
of 5 interior knots (top) and with degree d = 2 on a uniform open knot-
vector with 4 interior knots (bottom). (b) Two example of the basis functions
obtained by the tensor-product construction of the basis in (a). (c) The
tensor-product grid G, built with the knot-vectors for the univariate basis in
(a). (d) The final tensor-product basis of bi-degree d = (3, 2) on G.

In Figure 2.3, we show an example of bivariate tensor product B-splines. In
particular, in (a) we show the univariate B-spline basis of degree 3 (top) and
2 (bottom). In (b) we show 2 of the final 8 × 9 = 72 basis functions, namely
β4,4β1,3 (top) and β3,4β5,3 (bottom). Finally, the bivariate tensor-product grid is
shown in (c) and the resulting tensor-product basis is reported in (d).
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Similarly to the univariate case, once a tensor-product grid G is chosen and
both the multi-degree d and the multi-order k are set, any tensor-product
B-spline geometry s : Ω ⊂ RD → RN can be represented as

s(x) = ∑
j∈Γk

cjβ j,k(x), for x ∈ Ω, (2.7)

with coefficients cj ∈ RN, for N ∈ N≥1. In particular, if D = 2, for N = 2 and
N = 3 the spline geometry s corresponds to a planar or surface spline patch,
respectively.

Remark 6. Likewise in the univariate scenario, see Remark 3 and 4, let Ω = [0, 1]D

and a tensor-product grid G built on open knot-vectors with no interior knots, i. e. th as
in (2.3) for each h = 1, . . . , D. Then the tensor-product B-spline basis corresponds to the
tensor-product Bernstein polynomial basis and the tensor-product B-spline geometries
as in (2.7) are called tensor-product polynomial geometries in Bernstein-Bézier form.

Also for the tensor-product multi-variate case, the properties addressed for
B-spline curves hold, i. e. affine invariance, locality, and strong convex-hull.
Therefore, tensor-product B-splines are quite flexible, and additionally, tensor-
product B-spline basis have good numerical properties and are easy to evaluate
[12, 105]. Note that the coefficients of a multivariate tensor-product B-spline
geometry are called control points, as in Remark 5.

The main limitation of tensor-product B-spline structures arises when a re-
finement strategy occurs. More precisely, the space dimension tends to increase
very fast when mesh refinement is considered, hence leading to computationally
very expensive models. In particular, each time that a knot-line is inserted in
one direction, the dimension of the tensor-product space increases a number
of times equal to the product of the dimensions of the univariate spaces in all
the other directions. Furthermore, when dealing with approximation problems,
tensor-product structures are proven not to be flexible enough since they allow
only global refinement guided by knot lines and preclude suitable adaptive
and local refinement. Thereby, degrees of freedom are also added in regions far
away from the area of interest. Moreover, these degrees of freedom in excess not
only increase the computational costs in memory and time, but they are also
unnecessary to improve the accuracy of the final model due to the local action
of each control point. Figure 2.4 illustrates an example in the bivariate case of
the non-locality of tensor-product refinement. In particular, a tensor-product
grid (top left) is shown together with the corresponding tensor-product basis.
Since the model needs to be refined, along a diagonal direction, the only pos-
sible way to refine the marked elements (top center) consists of performing a
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Figure 2.4: Tensor-product refinement: the initial mesh (top left) and basis (bottom left);
the marked region of interest for refinement (top center); the final refined
mesh (top right) and basis (bottom right).

global uniform refinement, as shown in the resulting mesh (top right) and basis
(bottom right).

2.1.3 THB-splines

When dealing with multivariate settings, the tensor-product constructions allow
only a global distribution of the Dregrees Of Freedom (DOFs) for the problem
at hand, whereas local spline refinement enables the possibility of achieving
flexible and accurate models by strongly reducing the total number of control
points when compared with standard tensor-product B-spline representations.
This type of local mesh refinement is intrinsically supported by hierarchical
splines [64], where local refinement is achieved by introducing tensor-product
B-splines on multiple hierarchical levels. A selection mechanism to properly
identify a Hierarchical B-spline (HB-spline) basis was originally introduced in
[103].
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Let Ω be a hypercube of RD and consider a nested sequence of L tensor-
product B-spline spaces

V0 ⊂ . . . ⊂ VL−1, (2.8)

defined on Ω ⊂ RD. More precisely for each level ℓ = 0, . . . , L − 1, let d be a
polynomial multi-degree and k is the corresponding multi-order. Moreover, let
βℓ

j : Ω → R be the j−th tensor-product B-spline basis function of the space Vℓ.
Hence,

Vℓ = span
{

βℓ
j | j ∈ Γℓ

k

}
,

where Γℓ
k is the set of indices for the tensor-product B-spline basis of level ℓ, as

defined in (2.6).

Remark 7. As long as the tensor-product B-spline spaces are nested as in (2.8), they
can be characterized by different degrees/orders along the levels, see [177].

In addition, each Vℓ is associated with a rectilinear-grid Gℓ and their (non-
empty) quadrilateral elements q are commonly addressed as mesh cells of level
ℓ. We also consider a nested sequence of closed domains

Ω ≡ Ω0 ⊃ . . . ⊃ ΩL = ∅,

so that each Ωℓ is the union of a subset of cells of Gℓ, thus each domain
boundary ∂Ωℓ is aligned with the knot lines of Vℓ, for each ℓ = 0, . . . , L − 1.
The hierarchical mesh is defined as

M :=
{

q ∈ Gℓ | ℓ = 0, . . . , L − 1
}

,

where for each ℓ = 0, . . . , L − 1,

Gℓ :=
{

q ∈ Gℓ | q ⊂ Ωℓ \ Ωℓ+1
}

is called the set of active cells of level ℓ.

Remark 8. Note that the definition of a rectilinear-grid G or a hierarchical mesh M
over the domain Ω induces a domain tessellation T(Ω), as considered in Chapter 3.

The hierarchical spline construction consists in replacing any B-spline of
level ℓ with support completely contained in Ωℓ+1 by B-splines at successively
refined levels.
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Definition 4. The HB-spline basis is defined as follows

H :=
{

βℓ
j | j ∈ Aℓ

k, ℓ = 0, . . . , L − 1
}

(2.9)

where

Aℓ
k :=

{
j ∈ Γℓ

k | supp
(

βℓ
j

)
⊆ Ωℓ ∧ supp

(
βℓ

j

)
̸⊆ Ωℓ+1

}
(2.10)

is the set of indices of active functions and supp
(

βℓ
j

)
denotes the intersection of the

support of βℓ
j with Ω0. The corresponding hierarchical space is defined as

V := span {H} .

A univariate example of HB-spline space with 2 level of refinement is provided
in Figure 2.5, where two nested univariate B-spline basis of degree d = 2 are
defined on a domain Ω ⊂ R. More specifically, the basis displayed in (a)
defined on an open uniform knot-vector with 7 interior knots, whereas the
basis displayed in (b) it is built on an open uniform knot-vector with 16 interior
knots, obtained by dyadically splitting each non-empty knot span of the coarse
knot-vector. The subdomain Ω1 is highlight in red in (c), (d) and (e), where
Ω1 ⊂ Ω0 ≡ Ω. In particular, (c) and (d) show the active univariate B-splines at
level ℓ = 0 and ℓ = 1, respectively, according to the selection mechanism (2.10).
Finally, (d) illustrates the 2 level HB-spline basis, according to Definition 4 and
(2.10).

The hierarchical structure enables to localize the refinement only in the area of
the domain where it is needed. The difference between bivariate tensor-product
refinement and hierarchical dyadic mesh refinement on the same area of interest,
as well the the respective basis, can be visualized in Figure 2.6. In particular,
we show the refined mesh and the corresponding basis of bi-degree d = (2, 2),
obtained by refining the same area of interest, up to 3 hierarchical levels. It is
evident that in the hierarchical approach the refinement is local and adds less
basis elements. In this case, a dyadic refinement procedure is employed, that
is a single element is subdivided into four smaller elements. Again, the small
element can be refined as well, so that we get a refined grid over several levels.
Note that the refined tensor-product basis has 729 basis functions, whereas the
refined hierarchical basis functions has 184 basis functions.

Directly from Definition 4 and from tensor-product B-spline properties, it
immediately follows that HB-splines have a local support and are non-negative.
Moreover, linear independence can be achieved with the help of the local linear
independence of the spline basis at each hierarchical level [103, 177].
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Figure 2.5: Example of univariate HB-spline basis of degree 2: (a) B-spline basis for V0;
(b) B-spline basis for V1; (c) the active B-splines of level 0; (d) the active
B-splines of level 1; (e) the HB-spline basis. The refinement area Ω1 is also
shown (red line).

On the other hand, HB-spline basis are characterized by different overlaps
of coarse and fine B-spline basis function supports, and the partition of unity
property of the basis is lost. A simple way to recover the partition of unity
property consists in suitably weighting the basis, by applying a adequate
scaling factor to the HB-spline basis functions [177]. Nevertheless, there is no
guarantee that the weights would be positive or non-zero, and for some HB-spline
configuration a proper scaling is not guaranteed to exists at all. In order to
ensure the existence of a scaling and the positivity of the weights, additional
constraints on the subdomain configurations need to be considered [177].

This motivates the construction of another basis for the hierarchical spline
space, the Truncated Hierarchical B-spline (THB-spline) basis [74]. The THB-spline
basis maintains the partition of unity property without any additional as-
sumption on the considered subdomains. In addition to the partition of unity,
THB-spline basis provides various useful properties in the mathematical frame-
work of hierarchical splines, such as strong stability, full approximation power,
and efficient implementation [100, 165]. In particular, a THB-spline basis can be
obtained from a HB-spline basis, by applying a truncation mechanism to each
HB-spline basis function. In particular, the truncation mechanism preserves all
the properties of HB-spline, such as linear independence and non-negativity.
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Figure 2.6: Comparison between tensor-product (left) and hierarchical refinement on
3 levels (right): the tensor-product mesh (top left) with the corresponding
basis (bottom left) and the hierarchical mesh (top right) with the hierarchical
basis (bottom right).

For any ℓ = 0, . . . , L − 2, let s ∈ Vℓ ⊂ Vℓ+1 be a tensor-product spline
represented in terms of the basis of the refined space Vℓ+1 as

s(x) = ∑
j∈Γℓ+1

k

cℓ+1
j (s)βℓ+1

j (x), for x ∈ Ω,
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for suitable coefficients cℓ+1
j (s), for each j ∈ Γℓ+1

k . By separating the basis

functions of Vℓ+1 whose supports are not completely contained in Ωℓ+1, from
the remaining ones, it holds,

s(x) = ∑
j∈Γℓ+1

k

supp
(

βℓ+1
j

)
⊆Ωℓ+1

cℓ+1
j (s)βℓ+1

j (x)+

∑
j∈Γℓ+1

k

supp
(

βℓ+1
j

)
̸⊆Ωℓ+1

cℓ+1
j (s)βℓ+1

j (x), for x ∈ Ω.

Definition 5. The truncation of s ∈ Vℓ at level ℓ+ 1 is defined as

truncℓ+1 (s) := ∑
j∈Γℓ+1

k

supp
(

βℓj

)
̸⊆Ωℓ+1

cℓ+1
j (s) βℓ+1

j (2.11)

and the cumulative truncation with respect to all finer levels is

Truncℓ+1 (s) := truncL−1
(

truncL−2
(

. . .
(

truncℓ+1 (s)
)

. . .
))

, (2.12)

with TruncL(s) ≡ s, for s ∈ VL−1. Finally, the THB-spline basis for the hierarchical
space can be defined as

T :=
{

τℓ
j = Truncℓ+1

(
βℓ

j

)
| j ∈ Aℓ

k, ℓ = 0, . . . , L − 1
}

, (2.13)

where the B-spline βℓ
j is the mother B-spline of the truncated B-spline τℓ

j .

Figure 2.7 shows an example of the truncation mechanism for univariate
B-splines over 2 hierarchical levels, for ℓ = 0, 1. More precisely, the coarse
B-spline (dashed) belonging to V0 can be represented in terms of the 5 finer
B-splines (in the background) belonging to V1, for suitable coefficients c0, . . . , c4.
In addition, we choose a subdomain Ω1, highlighted in red in the picture. The
truncation of the coarser B-spline corresponds to setting to 0 the coefficients of
the finer B-splines whose supports are fully contained in Ω1, i. e. the last two
finer B-splines on the right of the picture.

THB-splines are non-negative, have local support, form a partition of unity, and
generate the same space of the HB-spline basis [74], i. e.

span {H} ≡ span {T } . (2.14)
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Figure 2.7: Truncation mechanism defined in (2.11) for a B-spline of degree 4. The
B-spline of level ℓ = 0 (dashed line) is truncated over the subdomain Ω1 (in
red) via 5 finer B-splines (thin lines) for ℓ = 1 and results in a THB-spline
(thick line).

Figure 2.8: Comparison between hierarchical bases: the hierarchical mesh (left) and the
corresponding HB-spline (center) and THB-spline (right) bases.

The effectiveness of employing THB-splines both for geometric design and isoge-
ometric analysis has been shown in [72], among others. Figure 2.8 shows the
comparison, for the same hierarchical space characterized by the hierarchical
mesh on the left, of the HB-spline basis and THB-spline basis, in the center and
on the right of the picture, respectively. Note that the THB-spline basis functions
reduce the overlaps of the supports related to THB-splines introduced at different
hierarchical levels.

Because of their properties, THB-splines are a desirable tool for building flexible
geometric models. They have been here presented in their more general form,
where their construction can be developed in any parametric and physical
dimension, namely for any D, N ∈ N≥1. In particular, a (TH)B-spline geometry
is a linear combination of (TH)B-splines, defined as

s(x) =
L−1

∑
ℓ=0

∑
j∈Aℓ

k

cjτ
ℓ
j (x), x ∈ Ω, (2.15)
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with cj ∈ RN for j ∈ Aℓ
k, ℓ = 0, . . . , L − 1. For D = 1 a planar (N = 2) or spatial

(N = 3) (TH)B-spline curve can be specified, whereas for D = 2 and N = 3 a
THB-spline surface can be constructed.

2.2 deep learning with neural networks

For centuries science has been an activity operated by humans for humans;
nevertheless, with the advent of programmable computers, a new perspective
has been developed and still subsists, in which science becomes an activity
performed by humans and machines for humans and machines. The paradigm
of using computers to simulate human intelligence was first described in [172],
where the "Turing test" was proposed to determine whether computers were
capable of human intelligence. Subsequently, the term Artificial Intelligence (AI)
was coined [134] as the science and engineering of developing non-biological
systems that mimic human behaviour and intelligence. AI began as a simple
series of if statements and has developed over several decades, resulting in more
advanced algorithms that perform similarly to the human brain. Nowadays, it is
a flourishing field with many applications and active research topics. We exploit
intelligent software to automate routine labour, understand speeches or images,
make diagnoses in medicine, and support scientific research. Furthermore, the
recent increase in data availability led to the development of new AI techniques
capable of handling large data volumes. In this respect, Machine Learning (ML)
is the field of AI consisting of algorithms based on numerical and statistical
methods that directly learn from data without being explicitly programmed [137,
158]. More specifically, throughout this Thesis we will consider the following
concept of learning.

Definition 6 ([137]). A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at task in
T, as measured by P improves with experience E.

Consequently, any learning model should be able to properly generalize based
on its own experience. The core of any learning problem are data, which we
assume to come in a finite amount, hence this results in an intrinsically difficult
problem as we have to generalize from limited data information.

The data employed to define ML models are usually separated into different
pairwise disjoint sets, which play a role at different stages of the creation of
the models, i. e. training, validation and test sets. More precisely, the training
dataset is a set of data used to tune the parameters of the ML model during the
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so-called training phase. Many methodologies that search through training data
for empirical relationships often may happen to overfit the data, meaning that
they can identify and exploit apparent relationships in the training data that
lack general applicability. For this reason, a validation data set is often used
during the training phase to analyze an unbiased evaluation of the model and
implement the early stopping of the training phase. Finally, the test data set is
used to provide an unbiased evaluation of the final trained model and analyze
its generalization capacity.

The nature of the data plays a role also for the definition of the learning
paradigm. In particular, we recall the following learning types, among others.

(i) Supervised Learning: in this case, the data comprises examples of the input
items, along with their corresponding target. The goal consists in building
a function that maps (new) data on expected target values. Examples of its
applications are email spam detection or hand-written digits recognition.
In general, this is the most common scenario associated with classification,
regression, and ranking problems.

(ii) Unsupervised learning: in this case, all the data is unlabelled. On the other
hand, usually the data contains many features which are therefore ex-
ploited to learn useful properties of the structure of this data. Since in
general no labelled example is available in this setting, it can be difficult
to quantitatively evaluate the performance of a model. Clustering and
dimensionality reduction are example of unsupervised learning problems.

The contributions of this Thesis related to learning problems mainly act
within the variety of unsupervised learning framework. In order to provide a
rough idea of the learning approaches, we list additional existing learning
paradigms, which we do not tackle in this Thesis, i. e. Semi-supervised learning
[28], Transductive inference [174], Online learning [157] and Reinforcement
learning [170]. In practice, many more intermediate learning scenarios may
been encountered, see [7] for more details.

The core of ML algorithms consists in their ability to process row-data and
produce new proper representations, suitable for the problem at hand, by
automatically set the value of some internal routine parameters. Despite the
remarkable results which ML can achieve, these systems often require a careful
domain expertise guidance to design a proper feature extractor procedures.
Moreover, ML models also suffer of a lack of generalisation to different scenarios
or input data. Subsequently, DL was designed to overcome the ML limitations,
such as the need of an expert guidance and the lack of generalisation [76].
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Given two measurable spaces P and X , the final goal of DL models consists
in approximating a certain function f : P → X . The workhorse of DL are NNs,
i. e. computational models that are composed of several processing layers to
learn representations of data, with multiple levels of abstraction. Therefore, a
NN approximates f with a parametric mapping x = ϕ(p; ω) by automatically
performing a data feature extraction process, which discover intrinsic relations
in large data sets, and using backpropagation algorithms [155] to determine
how suitably change the internal parameters ω to result in the best function
approximation of f . More precisely, throughout this Thesis we will consider as
DL models, only the ones which agree with the following definitions.

Definition 7 ([76]). The term NN indicates a collection of functions that can be repre-
sented by Directed Acyclic Graphs (DAGs), where the vertices correspond to elementary
almost everywhere differentiable parametric functions and the edges symbolize com-
positions of these functions. The vertices of these DAGs are usually called nodes or
units.

Definition 8 ([5]). DL refers to techniques where deep NNs are used to define the model
and their parameters are set with gradient-based methods.

This latter definition synthesize the two essential cores of DL technologies, i. e.
deep NNs and gradient-based optimization, which will be both subsequently
addressed in this Chapter.

Different NN architectures determine different DL models, where the word
architecture refers to the overall structure of the network: how many units it
has and how these units are connected to each other. The amount of different
possible NN architecture topologies is nowadays incredible, thereby in this
chapter we provide insights of the first architecture ever developed, i. e. MLP
and for then focusing on CNNs and GCNs, employed later on in this Thesis.

2.2.1 Multi Layer Perceptron

The most basic deep NN is the MLP, which has its foundations in the Perceptron
[135, 154], i. e. an algorithm developed to solve the binary classification problem.
More precisely, the problem to be solved can be formalised as in the following
definition.

Definition 9. Let P ,X be two measurable spaces and let

{(Pi, xi) ∈ P ×X : i = 1, . . . , m}
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be a dataset consisting of input features Pi ∈ P and corresponding labels xi ∈ X . A
binary-classification task consists in finding a model f : P → X , with X = {−1,+1},
so that f (Pi) is a good prediction of the true label xi, for i = 1, . . . , m.

The Perceptron defines a two-class model, which maps a real-valued input Pi
into xi ∈ {−1,+1}, by using a non-linear activation function σ. Its architecture
contains a single input layer and an output node, respectively in green and red
in Figure 2.9. The input layer contains m input units that transmit the features
Pi = [p1, . . . , pm] with edges of weight ω = [ω1, . . . , ωm] and bias b, to the
output unit x. More precisely, the linear function

ω · Pi :=
m

∑
j=1

ωj pj + b (2.16)

is computed at the output node and subsequently, the activation function σ

is applied to this real value in order to predict the dependent variable of Pi.
Specifically, for the Perceptron model, σ corresponds to the function sign : R →
{−1,+1}, which maps a real value z to either +1 or −1, i. e.

sign (z) =

+1 if z ≥ 0,

−1 if z < 0,

hence resulting naturally appropriate for binary classification. Finally, the pre-
diction x is computed as

x = σ

(
m

∑
j=1

ωj pj + b

)
= sign

(
m

∑
j=1

ωj pj + b

)
. (2.17)

The error of the prediction is consequently a value drawn from the set {−2, 0 + 2}.
In the case the error is non-zero, the weight values ω and the bias b of the Per-
ceptron need to be updated along the (negative) direction of the error gradient,
to recover and avoid misclassification.

Putting together more Perceptron architectures and different activation func-
tions results in a MLP model. For architectures with multiple layers, these are
classified as input, hidden and output layers, depending on the topology of their
connections. More precisely,

• Input layer: in this case, each unit corresponds to a feature of the input
sample; hence, there are as many units as the number of features of the
considered data. Moreover, the direct graph connections are only in output,
from the units of the input layers towards the units of the following one.
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Figure 2.9: Example of a Perceptron with m input units and 1 output unit.

• Hidden layers: these layers are placed between the input and the output
layers. Their number depends on the chosen architecture, and their amount
of units is unconstrained and can vary within the layers. The number of
hidden layers and hidden units per layer plays a role in the expressiveness
of the model. Finally, any hidden unit can have connections in input and
output, respectively, with the units of the previous or following layer.

• Output layer: the number of units of the output layers depends strictly on
the function at hand, which the NN is required to approximate. In this
case, there is no next layer, and the output unit connections are only along
the incoming direction.

Figure 2.10 shows an MLP with 5 layers, i. e. an input layer with m units (green),
3 hidden layers with m1, m2, m3 units per layer (blue) and 1 output layer with n
units (red). In particular, for an MLP architecture, at any hidden layer, each unit
receives the same real value from every unit of the previous layer and produces
a real value that is passed in output to every unit of the following layer. Due to
their edge topology, MLP architectures are also addressed as Fully Connected
NN.

Definition 10 ([5]). Let L ∈ N≥1, where L + 1 is the total number of layers of a MLP
architecture. For each ℓ = 0, . . . , L, let mℓ be the number of hidden units for the ℓ-th
layer and let

σℓ : R → R
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be an activation function. Moreover, let

W =
{

W(ℓ)
}L

ℓ=1
and b =

{
b(ℓ)

}L

ℓ=1
,

where

W(ℓ) =
(

w(ℓ)
ij

)mℓ ,mℓ−1

i=1,j=1
∈ Rmℓ×mℓ−1 and b(ℓ) ∈ Rmℓ , for ℓ = 1, . . . , L

are the weight matrices, and the bias vectors of the architecture, respectively. More
precisely, w(ℓ)

ij is the weight associated with the edge between the i-th unit of the ℓ-th

layer and the j-th unit of the ℓ− 1 layer, whereas b(ℓ)i is the bias associated with the
i-th unit of the ℓ-th layer, for ℓ = 1, . . . , L − 1.

Finally, let #LP the total number of learnable parameters of the architecture. The
MLP realization function Φ : Rm0 × R#LP → RmL can be defined as

Φ (p, {W, b}) = ϕ(L) (p, {W, b}) ,

where

ϕ(1) (p, {W, b}) = W(1)p + b(1),

ϕ̂(ℓ) (p, {W, b}) = σℓ

(
ϕ(ℓ) (p, {W, b})

)
for ℓ = 1, . . . , L − 1,

ϕ(ℓ+1) (p, {W, b}) = W(ℓ+1)ϕ̂(ℓ) (p, {W, b}) + b(ℓ+1) for ℓ = 1, . . . , L − 1.

The underlying directed acyclic graph of any MLP model is given by the
composition of the affine linear maps ϕ| → W(ℓ)ϕ + b(ℓ) ℓ = 0, . . . , L, with the
activation function σℓ intertwined, for ℓ = 1, . . . , L − 1. An example of an MLP
realization at general layer ℓ+ 1 is illustrated in Figure 2.11.

The choice of activation functions is a critical part of neural network design,
and it depends on the problem at hand. In general, they are needed to be
non-linear functions in order to avoid the trivial situation in which the output is
only a linear combination of the input data [76]. In addition, their concurrence
allows to represent arbitrarily complex functions [1]. A selection of common
activation functions is presented in Figure 2.12.

Remark 9. The Rectified Linear Unit activation function (ReLU) activation function is
commonly used for its simple piecewise linear structure and high performance [187].

The overall number of layers L + 1 gives the depth of the model. The name
“deep learning” arose from this terminology. By adding more layers and more
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Figure 2.10: Example of an MLP with 5-layer Perceptron, m input units, mℓ hidden units
for each ℓth hidden layer and n output units.
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Figure 2.11: Example of MLP architecture realization, according to Definition 10.

units within a layer, a deep NN can represent functions of increasing complexity,
but of course the computational costs increase. It is fundamental to find a proper
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Figure 2.12: Some common activation functions, σ(x) for x ∈ R.

architecture that is a trade-off between computational training costs and the
accuracy that can be achieved.

Remark 10. With the notation introduced in Definition 10, the total number of
learnable parameters #LP of a MLP architecture can be computed as,

#LP :=
L

∑
ℓ=1

mℓ (mℓ−1 + 1) .

2.2.2 Convolutional Neural Networks

The development of CNN arose with the application of deep NN to image
processing [109, 110]. More precisely, fully-connected networks ignore a key
property of images, which is that nearby pixels are more strongly correlated
than the distant ones. Many of the modern approaches to computer vision
exploit this property by extracting local features that depend only on small
subregions of the image. Subsequently, the information extracted from such
features can then be merged into later processing stages.

In order to achieve more sparse learning models, the matrix multiplication
operator, which characterized fully-connected architectures outlined in Defi-
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nition 10, has been substituted by a matrix convolution operator [76]. More
precisely,

Definition 11 ([76]). CNNs are NNs that use convolution in place of general matrix
multiplication in at least one of their layer.

The general formulation of two matrix convolution A, W ∈ Rm×n is
a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amm

 ⋆


ω11 ω12 . . . ω1n

ω21 ω22 . . . ω2n
...

... . . . ...

ωm1 ωm2 . . . ωmm

 =
m−1

∑
i=0

n−1

∑
j=0

am−i,n−jω1+i,1+j.

(2.18)

Figure 2.13 (a) shows an example of 1D (univariate) convolution, whereas
Figure 2.13 (b) shows and example of 2D (bivariate) convolution. In both
cases, the input is processed by a filter through a matrix convolution operator,
according to (2.18), which generates the output feature map, usually given as
input to the successive convolutional operator. In particular, each output item is
given by the sum of the element-wise product between the different local values
of the input (green numbers in Figure 2.13) and the corresponding values of the
filter (red numbers in Figure 2.13). Subsequently, the filter matrix slides on the
input matrix, from left to right in the picture, until the input elements have all
been completely scanned.

Thanks to the nature of convolutional operators, CNNs are characterized by
three unique properties: sparse connectivity, weight sharing, and shift equivari-
ant representations [7, 76]. Sparse connectivity means that the networks have
local receptive fields, which collect information jointly from spatially neighbour-
ing inputs. Weight sharing is achieved by requiring the receptive field to assume
the same values on different instances of the input, and, consequently, the same
parameters are involved to compute each output unit. Finally, shift equivariant
representations follow the definition of the convolutional operations and the
previous two properties. The locality and weight sharing properties for the one
(1D) and the two dimensional (2D) convolutional operators can be seen again
in Figure 2.13.

Finally, Figure 2.14 shows an example of CNN. More precisely, it represents
a deep NN characterized by 1 input layer (green), 6 hidden layers, i. e. 4 convo-
lutional layers (orange), and 2 fully connected layer (blue), and 1 output layer
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Figure 2.13: Examples of convolutional operators for 1D (a) and 2D (b).

(red). Note that the connections within the convolutional layers are less than
the connections between the fully connected layers.

CNNs have been tremendously successful in practical applications for process-
ing data with a known grid-like topology [76, 104, 167, 180]. Examples include
time-series data, which can be thought of as a 1D grid taking samples at regular
time intervals, and image data, which can be thought of as a 2D grid of pixels.

2.2.3 Graph Convolutional Neural networks

In many applications, the data does not exhibit a grid-like structure but may be
characterized by a graph or mesh structure or be completely unorganized, as in



36 preliminaries

convolutional
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input
layer

output
layer

Figure 2.14: Example of a CNN.

the case of scattered data. In order to handle this kind of data, a new learning
theory and related architectures have been developed.

Geometric deep learning refers to the generalization of convolutional neural
networks to non-Euclidean data such as discrete manifolds, graphs and general
point clouds [21]. While for data represented on a regular grid in a Euclidean
space the convolution operator is uniquely defined for arbitrary dimensions, in
the case of unstructured non-Euclidean data many different approaches for the
definition of operators that mimic the behaviour of standard convolution have
been proposed [186].

More precisely, GCN are the CNN counterparts for non-gridded-like domains.
There are two approaches to designing convolutional filters on graphs, namely
the spatial and spectral methods, which result in the definition of spatial-GCNs
and spectral-GCNs, see again [186].

Spatial methods define graph convolutions based on spatial relations between
graph vertices in a similar fashion as standard CNNs. The updated output vertex
is obtained by its convolution with certain neighbours by means of a filter kernel
that transfers the information along the neighbourhood edges; see [77, 138] as
examples of spatial GCNs. Even if the definition of a spatial graph convolutional
operator seems to be a natural extension of standard convolutions, it suffers from
the issue of matching local neighbourhoods and uniquely defining translations
on graphs from a spatial perspective [23].

Spectral-based methods have their foundations in the spectral graph theory,
which links the discrete setting to the continuous one [32]. In particular, the
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convolution theorem defines convolutions as linear operators by exploiting the
Fourier basis represented in terms of eigenvectors of the Laplace operator. With
suitable choices of filter parameterization, the filters defined in the spectral
domain are naturally localized, and the costs arising from computing the Fourier
transform can be contained [42]. Additional examples of spectral GCNs are [23,
116], among others. A comprehensive survey of graph convolutional operators
can be found in [186].

2.2.4 Optimization

We compute an objective function that measures the error (or distance) between
the output and the desired target. The machine then modifies its internal,
adjustable parameters to reduce this error. In a typical deep-learning system,
there may be hundreds of millions of these adjustable weights and hundreds of
millions of (labeled) examples with which to train the machine.

The second ingredient, gradient-based optimization, is made possible by the
observation that, due to the graph-based structure of any neural network, see
e. g., Definition 10, the gradient of an objective function with respect to the
parameters of the neural network can be computed efficiently. This has been
observed in various ways; see [49, 98, 155].





3
D ATA F I T T I N G S C H E M E S W I T H H I E R A R C H I C A L S P L I N E S

Constructing continuous and flexible geometric models that are easy to shape
and manipulate is a fundamental requirement in many applications. For exam-
ple, they can serve for visualization and direct measurements within a design
phase or a manufacturing process, as well as for simulations, i. e. performing
numerical computations directly on the model or its components.

In this Chapter, we consider the problem of constructing a parametric (spline)
model s : Ω → RN on a domain Ω ⊆ RD in any dimension D ∈ N>0 from
pointwise data and parametric values

U × P :=
{
(ui, pi) ∈ RD × RN | i = 1, . . . , m

}
(3.1)

where,

P :=
{

pi ∈ RN | i = 1, . . . , m
}

for N ∈ N>0 are the point observations as in (1.1), at the parametric sites

U :=
{

ui ∈ Ω ⊂ RD | i = 1, . . . , m
}

,

as in (1.3). In CAGD applications, if N = 2 the data points lay on a plane,
whereas if N = 3 the data points belong to the physical space. Moreover, we
require the spline model s to approximate the data P within a certain tolerance
ϵ ∈ R>0, in the sense that

dist (si, pi) ≤ ϵ for each i = 1, . . . , m,

where si denotes a point on the spline model associated with the data point pi,
and dist (·, ·) is a certain distance metric.

By virtue of their properties, such as locality, non-negativity and partition of
unity and their suitability for adaptive refinement, THB-splines are a desirable
tool for building flexible geometric representations, see Section 2.1. Therefore,
the THB-spline fitting problem can be stated in the following way, see also (1.2).
Given a point cloud as in (3.1) and an error tolerance ϵ > 0, find a THB-spline
model s : Ω ⊆ RD → RN, so that

dist (s(ui), pi) ≤ ϵ, with ui ∈ Ω, for each i = 1, . . . , m. (3.2)

39
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The design of a THB-spline approximation depends on the identification of the
hierarchical spline space H, defined in Definition 4, the multivariate degree
d ∈ ND

>0, the hierarchical mesh, which defines a tessellation T(Ω), see also
Remark 8, and finally also the computation of the control points.

In this Chapter, we exploit two main approximation methods to define the
THB-spline model, i. e. the reWeighted Least Squares (rWLS) approximation and the
Quasi-Interpolation (QI) schemes. In particular, we first focus in Section 3.1 on
two very well established classical methods: interpolation and weighted least
squares, and extend the latter as an adaptive rWLS fitting scheme. Subsequently,
in Section 3.2, we present a hierarchical QI scheme with THB-splines. The present
Chapter is mostly based on [16, 67].

3.1 interpolation and weighted least squares

We here focus on two established classical methods: interpolation and weighted
least squares; see e. g., [39]. Even though interpolation is well established,
there is still ongoing research in this field, including the development of effi-
cient algorithms with irregularly-spaced data, see e. g., [25, 26], among others.
Weighted least squares methods [168] can be considered a more general instance
of ordinary least squares methods, studied on weakly admissible meshes in [15].
The key difference between weighted and ordinary least squares is that in the
former, fixed weight values are associated with the observations to incorporate
different weightings in the least squares scheme.

Most of the time, interpolation and least squares methods are regarded as
complementary techniques; however, despite this perception they share a strong
connection in their polynomial formulation, as noted in [27]. Additionally,
as detailed in [40, 45] they can also be used in combination to defeat the
Runge phenomenon [156]. In this Section, we propose a general formulation of
the weighted least squares approximant as a convex combination of suitable
interpolants, for any finite-dimensional function space consisting of real-valued
functions defined on a domain Ω ⊆ RD and address its consequences. As a
special case, our formulation includes the vector space of polynomials up to a
certain degree, for which a relation between weighted polynomial least squares
and interpolation has been discussed in [27].

In addition, we also focus on the choice of the weights. Our main aim is to
update these weights in the spirit of the Iterative Reweighted Least Squares (IRLS)
method [8, 142], with convergence guarantees and efficient algorithms [3, 185].
IRLS also offers robust regression [88] and is used to smooth the reconstruction
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and limit the influence of outliers in the input data. However, the main difference
between our approach to the IRLS method is that our updates allow us to
preserve the sharp features of the final model and are also suitable for adaptive
approximations. Our numerical experiments show the performance of the
proposed method within the spline framework, from curve to surface fitting
with an appropriate underlying mesh, including adaptive spline constructions.

3.1.1 Interpolation

Throughout this Section, we assume that RN, RD, Rn and Rm are column
vectors. Let Ω ⊆ RD and consider a set of given observations as in (3.1).
Moreover, let V be a vector space of functions defined on Ω and taking values
in RD. We denote its finite dimension by n + 1 = dim V and assume that V is
generated by a basis B = {β0, . . . , βn}, with basis functions β j : Ω → R, i. e.
V = span {B}.

The interpolation problem aims to find an element s ∈ V such that s (ui) = pi
holds for each i = 1, . . . , m. If a solution s exists, it can be expressed as

s (x) =
n

∑
j=0

cjβ j, for x ∈ Ω, (3.3)

where the coefficients cj = (c1
j , . . . , cN

j ) ∈ RN can be determined by solving a

linear system for each component k = 1, . . . , N, of the form Bck = pk, where

B = B (U ) =


β0(u1) . . . βn(u1)

... . . . ...

β0(um) . . . βn(um)

 ∈ Rm×(n+1) (3.4)

is the m × (n + 1) collocation matrix defined by the basis B and the parametric
sites U ,

ck = (ck
0, . . . , ck

n)
⊤ ∈ Rn+1 and pk = (pk

1, . . . , pk
m)

⊤ ∈ Rm.

The solution s ∈ V is unique, if and only if B is invertible, hence n + 1 = m is
a necessary condition. However, even if the interpolant s ∈ V exists, it is well
known that it can be affected by poor approximation quality. Several factors
can contribute to this, such as the nature of the data (e. g., their quantity or
distribution) and the intrinsic properties of the function space V (e. g., the
presence of oscillatory behaviour [156]).
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3.1.2 Weighted least squares

As an alternative to interpolation, a common approach is to define the approxi-
mant s ∈ V as the solution to a weighted least squares problem when n + 1 ≤ m. In
this context, we assign a strictly positive weight value ωi ∈ R>0 to each ui ∈ Ω
for i = 1, . . . , m. Let W ∈ Rm×m be the associated diagonal matrix with the i-th
diagonal entry given by ωi. Then, the weighted least squares solution s ∈ V is
obtained by solving the minimization problem

min
v∈V

1
2

m

∑
i=1

ωi ∥v(ui)− pi∥2
2 . (3.5)

By expanding the solution s ∈ V of (3.5) as (3.3) and letting c = (c0, . . . , cn)
⊤ ∈

R(n+1)×D be the coefficient matrix, we can re-write problem (3.5) as

min
c∈R(n+1)×N

∥W
1
2 Bc − W

1
2 p∥2

2, (3.6)

where, p = (p1, . . . , pm)
⊤ ∈ Rm×N,

W = diag{ω1, . . . , ωm} =


ω1 0 . . . 0

0 ω2 . . . 0
...

... . . . ...

0 0 . . . ωm

 ∈ Rm×m

and W
1
2 denotes the element-wise evaluation of the square root of W. The

minimization in (3.6) entails solving a system of linear equations for each
column ck = (ck

0, . . . , ck
n), k = 1, . . . , N, of c. More precisely, for each k =

1, . . . , N, ck is obtained from the normal equation

B⊤WBck = B⊤W f k. (3.7)

3.1.3 Weighted least squares via interpolation

In this part, to alleviate the notation, we will assume that N = 1. Therefore, we
avoid the superscript k introduced above and reduce the bold writing according
to the dimension. Nevertheless, all the results apply in the more general case of
N ≥ 1. Consider Ω ⊆ RD,

U × P =
{
(ui, pi) ∈ RD × R | i = 1, . . . , m

}
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a set of given observations with ui ∈ Ω and pi ∈ R and finally V = span {B}
a vector space of dimension n + 1, with basis B = {β0, . . . , βn} and functions
β j : Ω → R, for j = 0, . . . , n.

For any set K ⊂ N we denote by #(K) the cardinality of K and we define

Kn+1 = {K ⊆ {1, . . . , m} : #(K) = n + 1},

the set of all subsets of {1, . . . , m} with cardinality n + 1, equal to the dimension
of the vector space V. For each K ∈ Kn+1, there exists ki ∈ {1, . . . , m} for
i = 0, . . . , n, such that K = {k0, . . . , kn}. We denote by sK ∈ V the interpolant of
pki at points uki for i = 0, . . . , n. For such K, we define

BK =


β0(uk0) . . . βn(uk0)

... . . . ...

β0(ukn) . . . βn(ukn)

 ∈ R(n+1)×(n+1) (3.8)

which is called the collocation matrix at the points uki with respect to the whole
basis B of V. For K ∈ Kn+1 and positive weights ω1, . . . , ωm ∈ R, we write

ωK = ∏
i∈K

ωi. (3.9)

Following the notation in [27], we define λK = ωK |BK|2, where
∣∣BK
∣∣ denotes

the determinant of BK. Finally, we define K⋆
n+1 ⊂ Kn+1 as the set of all subsets

of {1, . . . , m} of cardinality n + 1 with |BK| ̸= 0. In other words,

K⋆
n+1 = {K ⊆ {1, . . . , m} : #(K) = n + 1, and |BK| ̸= 0} .

Theorem 1. The weighted least squares approximant s ∈ V of the set of points{
(ui, pi)

}m
i=1 is the weighted sum of the interpolants sK ∈ V for K ∈ K⋆

n+1 which
interpolate the points (ui, pi) for i ∈ K, i. e.

s(x) =
∑K∈K⋆

n+1
λKsK(x)

∑K∈K⋆
n+1

λK
, ∀x ∈ RD. (3.10)

Proof. By hypothesis, s ∈ V minimizes (3.5). Let B a basis for V and write s as
in (3.3), for some coefficients cj ∈ R, j = 0, . . . , n. Hence, we set

c = (c0, . . . , cn)
⊤ and p = (p1, . . . , pm)

⊤,



44 data fitting schemes with hierarchical splines

and write the normal equation (3.7) as Ac = b with

A = B⊤WB =


ω1β0(u1) . . . ωmβ0(um)

... . . . ...

ω1βn(u1) . . . ωmβn(um)




β0(u1) . . . βn(u1)
... . . . ...

β0(um) . . . βn(um)

 ,

b = B⊤W p =
(

∑m
i=1 ωiβ0(ui)pi, . . . , ∑m

i=1 ωiβn(ui)pi

)⊤
.

By the Cauchy-Binet theorem [20, Section 4.6],

|A| = ∑
K∈Kn+1

ωK |BK|2

and by Cramer’s rule, we obtain

cj =
∣∣Aj
∣∣ / |A| ,

for each j = 0, . . . , n, where Aj is obtained from A replacing its j-th column
with b for j = 0, . . . , n, namely, Aj = B⊤WBj with

Bj =


β0(u1) . . . β j−1(u1) p1 β j+1(u1) . . . βn(u1)

... . . . ...
...

... . . . ...

β0(um) . . . β j−1(um) pm β j+1(um) . . . βn(um)

 ∈ Rm×(n+1).

Again from the Cauchy-Binet theorem, we obtain∣∣Aj
∣∣ = ∑

K∈Kn+1

ωK |BK|
∣∣Bj,K

∣∣
for j = 0, . . . , n, where Bj,K is obtained from BK by replacing its j-th column
with (p1, . . . , pm)⊤ for j = 0, . . . , n. If K ∈ K⋆

n+1, the interpolation conditions
satisfy

BKcK = pK ,

where pK = (pk1 , . . . , pkn)
⊤ with K = {k0, . . . , kn}. The solution of the linear

problem cK = (c0,K , . . . , cn,K)
⊤ is unique if |BK| ̸= 0, and can be obtained by

Cramer’s rule as follows,

cj,K =
∣∣Bj,K

∣∣ / |BK| .
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The associated interpolant sK(x) for K ∈ K⋆
n+1 can be written as

sK(x) =
n

∑
j=0

cj,Kβ j(x),

hence by letting λK = ωK |BK|2, it holds

s(x) =
n

∑
j=0

cjβ j(x) =
n

∑
j=0

∣∣Aj
∣∣ β j(x)
|A| =

n

∑
j=0

∑K∈Kn+1
ωK |BK|

∣∣Bj,K
∣∣ β j(x)

∑K∈Kn+1
ωK |BK|2

=
∑K∈P⋆

n
ωK |BK|2 ∑n

j=1 cj,Kβ j(x)

∑K∈P⋆
n

ωK |BK|2
=

∑K∈P⋆
n

λKsK(x)
∑K∈P⋆

n
λK

.

Remark 11. Note that Theorem 1 is applicable to any finite-dimensional (multivariate)
vector space. This encompasses various function spaces, such as the space of polynomials
up to a specific degree, spline spaces with fixed degree and order, spline spaces with
varying locations of knot lines, or any other real function space of finite dimension
equipped with a basis. Moreover, note that equation (3.10) in Theorem 1 is very similar
to the formulation of multinode Shepard operators [44] in the case of polynomial spaces
V.

Remark 12. In general, we have #
(
K⋆

n+1
)
≤ # (Kn+1) = ( m

n+1), due to the non-
nullity condition on the determinants |BK|, which guarantees the existence of the
interpolants. In particular, in the case of splines, the condition |BK| ̸= 0 is equivalent
to the Schoenberg-Whitney nesting condition [12]. In addition, the value of λK depends
on the location of the knot lines.

3.1.4 Remarks on weighted least squares approximation

For the univariate polynomial case, results on the upper and lower pointwise
error bounds of the approximant derivatives up to a certain order as well as
on the influence of the weights have been presented in [27, Section 3] and [27,
Section 4], respectively. We extend these results to any vector space V of finite
dimension n + 1. This generalization extends the derived conclusions of [27] in
a broader setting, beyond the polynomial scenario.
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Let r ∈ N be given, if the r-th order derivative of s ∈ V exists, it can
be expressed as the weighted average of the r-th order derivatives of the
interpolants, i. e.

∂αs(x) =
∑K∈K⋆

n+1
λK∂αsK(x)

∑K∈K⋆
n+1

λK
, (3.11)

where α = (α1, . . . , αD) is a suitable multi-index, with ∑D
j=1 αj = r ≥ 0.

In addition, pointwise upper and lower bounds for the value of the r-th order
derivative of s(x) can be obtained from (3.11), i. e.

min
K∈K⋆

n+1

∂αsK(x) ≤ ∂αs(x) ≤ max
K∈K⋆

n+1

∂αsK(x).

Likewise, the pointwise approximation error shares the same weighted average,
given by

f (x)− s(x) =
∑K∈K⋆

n+1
λK ( f (x)− sK(x))

∑K∈K⋆
n+1

λK
.

Furthermore, the following consequences on the influence of the weights ωi
for i = 1, . . . , m and derivative estimations can be inferred.

Remark 13. Let I ⊆ {1, . . . , m} be of cardinality #(I) = r, with 1 ≤ r ≤ n + 1.
Define

sI(x) = lim
ωi→+∞
∀i∈I

s(x)

and

K⋆
n+1 \ I = {K ⊆ {1, . . . , m} \ I | #(K) = n + 1, and |BK| ̸= 0} .

If r = n + 1, then sI(x) = sI(x), represents the interpolant of the data points indexed
by I. If 1 ≤ r < n + 1, then

sI(x) =
∑K∈K⋆

n+1−r\{I} λI,KsI∪K(x)

∑K∈K⋆
n+1−r\{I} λI,K

, with λI,K = ωK |BI∪K|2 .

The proof can be obtained by considering V = span{B}, where B = {β0, . . . , βn}
with β j : Ω → R for j = 0, . . . , n, and substituting the Vandermonde matrices
in [27] with the corresponding collocation matrices B in (3.4) and BK in (3.8).

Another important implication of Theorem 1 is the possibility of rewriting
ℓp–approximation problems as suitable convex combination of interpolants
as outlined in Remark 14 where we exploit the IRLS method, see e. g., [8,
Section 4.5].
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Remark 14. Let us consider the problem

min
v∈V

1
2

m

∑
i=1

∥v(xi)− fi∥p
p (3.12)

with 1 < p < 2, where V = span {B} is a vector space of dimension n + 1, and
B = {β0, . . . , βn} its basis. The IRLS method approximates the exact solution of
problem (3.12) through the iterative computation of weighted least squares problems. In
particular, the weights are recursively updated for a maximum number iterations Kmax
by

ωk+1
i =

∣∣∣sk(xi)− fi

∣∣∣ (p−2)
2 ,

with weights ωk
i and solution sk of problem (3.5), for iterations k = 1, . . . , Kmax. By

direct application of (3.10) in Theorem 1, the outcome of each iteration can be rewritten
as a convex combination of interpolants. Note that the interpolants and the determinant
of the matrices BK do not need to be recomputed. In other words, it is enough to update
the weights ωK according to (3.9), to compute the solution of problem (3.12).

3.1.5 Weighted least squares with splines

We present the numerical verification of Theorem 1 for two different vector
spaces V: the space of polynomials and the space of univariate splines with a
specific degree and regularity. We consider a set of m = 7 observations in the
form (ui, pi), for i = 1, . . . , m, given by

{(−4.5,−2), (−3.5, 0), (−2.2,−1), (−1.2, 2.8), (0.8, 2.9), (2.2, 0.5), (4.0,−2)}.

We define the weights ωi for i = 1, . . . , m as uniformly distributed on (0, 1). In
the polynomial case, we choose the polynomial degree d = 2, which implies

# (Kd+1) =

(
m

d + 1

)
=

(
7
3

)
= 35.

Thus, we have a total of 35 interpolation problems to be solved. Moving on
to polynomial spline spaces, in addition to the degree, we consider the spline
order k = d + 1 = 3 and set the knot vector t = [−5,−5,−5,−5/3, 5/3, 5, 5, 5]
of length 8, implying that the spline space has dimension n+ 1 = 8− 3 = 5 ≤ m.
Since n ≤ m, there are at most

# (Kn+1) =

(
m

n + 1

)
=

(
7
5

)
= 21
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p(x)
s(x)
data

Figure 3.1: Numerical verification of (3.10), Theorem 1: sK(x) interpolants for poly-
nomials (left) and splines (center) and the final weighted least squares
approximations as sum of interpolants (right) for polynomials (red) and
splines (blue).

interpolation problems required to fully reconstruct the spline least squares
approximant. In the case of spline spaces, there is no guarantee that each point
subsequence satisfies the Schoenberg-Whitney nesting conditions. To illustrate
this, consider the data set identified by K = {1, 2, 3, 4, 5} ⊂ {1, . . . , m}, which
does not satisfy these conditions. This is due to the absence of data points within
the support of the last basis function, specifically ui ̸∈ [5/3, 5] for i = 1, . . . , 5.
Consequently, the interpolant sK does not exist, and no interpolation problem
needs to be solved for this particular subset. To fully reconstruct the final
global least squares approximation in this example, we need to compute 20
interpolation problems instead of the original 21.

Figure 3.1 illustrates the interpolants and the global least squares approxi-
mation involved in (3.10) for the polynomial and spline spaces introduced for
this numerical example. Note that we choose to show an example related to the
univariate polynomial and spline space, but our results hold in general for any
(multivariate) vector space of finite dimension.

3.1.6 Weighted least squares with hierarchical splines

In the following, we perform a numerical investigation of the role of the weights
addressed in Remark 13, for a weighted least squares problem with hierarchical
splines in the bivariate case.
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We consider a point cloud of 64 × 64, i.e. m = 4096, uniformly gridded data,
obtained by sampling the function

f (x) = f (x, y) =
2

3 exp
(√

(10x − 3)2 + (10y − 3)2
) +

2

3 exp
(√

(10x + 3)2 + (10y+)2
)+

2

3 exp
(√

(10x)2 + (10y)2
) ,

(3.13)

for x = (x, y) ∈ [−1, 1]2 and we associate to each item of the point cloud a
weight ωi > 0 for i = 1, . . . , m. For different weight values we compute the
weighted least squares approximation s (x) of the input data in terms of 521C2

quartic box splines [14], in their hierarchical extension [96].
In order to investigate the role of the weights in the approximation process,

we execute the following two steps for fixed choices of ω0 and ωγ ∈ R>0,

(a) we perform a standard least squares approximation and individuate the
data sites whose approximation error is above a certain threshold ϵ, thus
define K := {i ∈ {1, . . . , m} : |s(xi)− f (xi)| > ϵ};

(b) or i ∈ {1, . . . , m} \ K, we set the corresponding weights values ωi = ω0
and similarly for i ∈ K we set ωi = ωγ.

We then analyse the accuracy behaviour of the resulting approximant s(x)
for different choices of (ω0, ωγ) in terms of MAXimum error (MAX). Setting
ϵ = 5e−4, then #(K) = 124 and for ω0 = ωγ = 1, the resulting ordinary
least squares approximation is characterized by MAX= 2.15e − 3. We then keep
ω0 = 1 and vary ωγ between 1 and 100. The behaviour of MAX is depicted
in Figure 3.2, for ωγ = 1, . . . , 10. In particular, we note that increasing the
value of the weights ωγ may help the final accuracy of the approximant. More
specifically, we obtain MAX= 2.15e − 3, 2.06e − 3, 2.00e − 3 for ωγ = 2, 3, 4 and
MAX decreases further when increasing ωγ until achieving its minimum among
the sample values, with MAX= 1.89e − 3, for ωγ = 6. However, if the weight
values ωγ are too large, the final approximant deteriorates. For instance, for
ωγ = 7, MAX= 1.91e − 3, for ωγ = 10, MAX= 2.63e − 3. If ωγ would be further
increased, the approximation quality would also deteriorate, e. g., for ωγ = 50,
MAX= 0.92e − 2 and for ωγ = 100, MAX= 1.36e − 2. Finally, the choice of



50 data fitting schemes with hierarchical splines

1 2 3 4 5 6 7 8 9 10

2

2.2

2.4

2.6

·10−3

ωγ

M
A

X

Figure 3.2: MAX trend with respect to the weights ωγ for the weighted least suqares
approximation of (3.13) with Hierarchical box splines.

weights can lead to either better or worse spline fitting results in terms of the
MAX error compared to ordinary least squares, where all the weights are set to
ones.

These results can also be observed in Figure 3.3, which depicts the hierarchical
box spline mesh (left) together with two weighted least squares approximations
resulting from two different choices of weights, namely ωγ = 6 (center) and
ωγ = 100 (right). In particular, the scaled pointwise error color map indicates a
worse approximation power for the latter weight choice.

As shown in this example, the choice of weights can lead to either better or
worse spline fitting results in terms of the MAX error compared to ordinary least
squares, where all the weights are set to ones. To the best of our knowledge, only
a few deterministic methods address the use of weights associated with data
points in the spline fitting literature. However, the topic is widely discussed in
the statistics community, going back to locally weighted scatterplot smoothing
(LOWESS) [34] for smoothing scatterplots by robust locally weighted regression
[33] and multivariate adaptive regression splines (MARS) [66], with a more
recent method proposed in [22] and the references therein, for example.
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ωγ = 6, MAX= 1.89e − 3 ωγ = 100, MAX= 1.36e − 2

Figure 3.3: Hierarchical box spline mesh (left); error plots on the WLS hierarchical box
spline approximations for ωγ = 6 (center) and 100 (right).

3.1.7 Reweighted least squares spline fitting

In this section, we propose a strategy to take effective advantage of the weights
associated with each input data in the context of fitting problems. This approach
is inspired by the notion of landmarks used in shape analysis [11], but we
introduce a more general concept of markers and use them within the framework
of curve and surface fitting. Landmarks can be understood as a set of labelled
points that represent some physical identifiable parts of an object, as well as
important features of the input data, which need to be encoded and reproduced
in the final continuous approximation model. Figure 3.4 shows four point
clouds (in blue) and the chosen landmarks (in black), which represent the
features desired to be preserved by the fitted curve. However, depending on the
acquisition process, data can be affected by noise and outliers, while the final
approximation models should avoid the reproduction of corrupted data.

For the given set of observations as in (1.1), we generalize the concept of
landmarks to markers of two types. More precisely, we define the index set

KI ⊆ {1, . . . , m}

as markers of type I if the associated points {ui, pi} for i ∈ KI represent data
features to be preserved, while we define the index set

KI I ⊆ {1, . . . , m}

as markers of type II if the index indicates noisy data or outliers which should
not be reproduced. In particular, we have

KI ∩ KI I = ∅ and KI ∪ KI I ⊆ {1, . . . , m}.
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(a) (b) (c) (d)

Figure 3.4: Point cloud (blue dots) and set of type I markers (black dots)

Note that the choice of type I and type II markers and their identification
depends on the problem at hand, and it is still an open research topic; see, see
e. g., for automatic feature selection [82, 190] or for outlier recognition [53, 54,
139].

The markers identification is out of the scope of the present Section and we
assume the markers (of both types) to be known a priori. Nevertheless, for
synthetic data, we devise an error-driven detection of markers through point
cloud pre-processing. Finally, we provide fitting schemes that can address both
types of markers simultaneously by leveraging the weight values associated
with them depending on the approximation error, also within an adaptive
approximation framework.

The fitting problem with markers consist of finding an element s ∈ V which
approximate the points {ui, pi}m

i=1, i. e. s(xi) ≈ pi, with

∥s(ui)− pi∥2 < tolI , for i ∈ KI and ∥s(ui)− pi∥2 > tolI I , for i ∈ KI I ,

for two different input tolerances tolI and tolI I .

Remark 15. Note that usual formulation of a fitting problem can be interpreted as
a special instance of the present one. In particular, it is equivalent to setting KI =
{1, . . . , m}, KI I = ∅ and choosing tolI = tolI I = ϵ.

The reweighted least squares algorithm with markers is described in Al-
gorithm 1 and it consists of the following steps. For an initial choice of the
weights

1. Solve the weighted least squares approximation problem (3.5).

2. Update the point-wise error ei = ∥s(xi)− fi∥2 for each i = 1, . . . , m.
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3. Check whether the current fitting s ∈ V meets the requirements prescribed
by the markers KI and KI I and the respective error tolerances. If ei <
tolI for i ∈ KI and ei > tolI I for i ∈ KI I , stop and return the current
approximant. Otherwise, if ei > tolI and i ∈ KI , set ωi = ωi · α with α > 1;
if ei < tolI I and i ∈ KI I , set ωi = ωi · α with α < 1.

4. Start again from step 1 with the new weight values.

Note that the update choice of the weights in step 3 increases the values of the
weights related to markers of type I, whereas it decreases them for markers
of type II, for points not satisfying the tolerance conditions. In particular, we
suggest an error-driven update of the weights

α =

(1 + ei) , if i ∈ KI

1
(1+ei)

, if i ∈ KI I .
(3.14)

The reweighted fitting scheme from Algorithm 1 is presented in its more general
formulation, namely, the approximant is sought in any fixed finite-dimensional
vector space V.

Finally, it is worth highlighting that the IRLS procedure [8, 142] falls within
this general fitting scheme for the special choice of α = 1/max{δ, ei} for each
i ∈ KI I , with δ > 0 necessary for the stability of the IRLS method.

3.1.8 Reweighted least squares adaptive spline fitting

In this section we show how to suitably combine the update of the weights
with adaptive spline approximation schemes. More precisely, we will extend
our scheme to advanced THB-spline constructions discussed in Section 2.1.3.

Once an initial configuration is chosen, any adaptive approximation pro-
cedure is characterised by four main steps which are successively repeated,
to suitably identify the adaptive mesh to be used in the next iteration of the
adaptive loop. In particular, any adaptive scheme as in (1.4), is characterized by
1. SOLVE, i. e. computation of the approximation on the current mesh; 2. ESTI-
MATE, i. e. error estimation; 3. MARK, i. e. mesh marking strategy; REFINE, i. e.
mesh refinement strategy. We revisit the adaptive global least squares method
proposed in [101], by suitably assigning weights values to the data observation
within the adaptive routine. The main idea which drives an adaptive fitting
algorithm consists in adding iteratively degrees of freedom in regions of the
domain Ω where the approximation error exceeds a certain input tolerance ϵ.
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Algorithm 1: General formulation of the reweighted least squares fitting.
Input: Point cloud {ui, pi}m

i=1, the set of markers KI , KI I ⊆ {1, . . . , m}, the
tolerances tolI , tolI I , a fixed vector space V = span{β0, . . . , βn}
and a maximum number of iterations Mmax;

1 Initialize the weights ωi = 1 and the point-wise errors ei = 1 for each
i = 1, . . . , m and loop = 0

2 while maxi∈KI ei > tolI and maxi∈I\KI I
ei > tolI I and loop < Mmax do

3 Solve the weighted least squares problem

s(x) = arg min
v∈V

1
2

m

∑
i=1

ωi∥v(xi)− pi∥2
2.

4 Compute the errors

ei = ∥s(ui)− pi∥2, for i = 1, . . . , m.

5 If ei > tolI and i ∈ KI , or ei < tolI I and i ∈ KI I , update the weights
associated to the landmaks KI and KI I , namely

ωi = ωi · α, with α as in (3.14).

6 Set loop = loop + 1.
7 end

Output: s ∈ V the reweighted least squares approximant.

Remark 16. In the presence of landmarks, the algorithm will be then characterized by
three input threshold, i. e. ϵ, which guides the adaptive refinement and tolI and tolI I
which guide the weights update.

Similarly to Algorithm 1, if the points with a too high error belong to KI ,
then their weights will be augmented; otherwise, if they have a too low error
and they belong to KI I , their weights will be diminished. In addition, at each
iteration of the adaptive loop, not only the updates of the weight values but also
of the sets KI and KI I take place. This strategy is effective since, thanks to the
adaptive refinement, in some regions of the domain the accuracy requirements
tolI , tolI I are already locally achieved, and it is useless or even harmful to keep
on modifying the weight values.

Once the initial configuration is chosen, i. e. for a fixed THB-spline space and
for an initial choice of the weights and fixed tolerances the first step of the
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adaptive fitting loop, i. e. SOLVE, consists in computing the control points cℓj
for each j ∈ Aℓ

k and ℓ = 0, . . . , L − 1, to define the geometric model in (2.15).
As concerns the weighted least squared method, this is achieved by solving the
penalized least squares problem

min
cℓj ,j∈Aℓ

k ,
ℓ=0,...,L−1

1
2

m

∑
i=1

ωi ∥s (ui)− pi∥2
2 + λJ (s) , (3.15)

where the penalization term J is the thin-plate energy functional, whose influ-
ence is controlled by a weight λ ≥ 0, i. e. for x = (x, y) ∈ Ω,

J (s) =

∫
Ω

(∥∥∥∥ ∂2s
∂x∂x

∥∥∥∥2

2
+ 2

∥∥∥∥ ∂2s
∂x∂y

∥∥∥∥2

2
+

∥∥∥∥ ∂2s
∂y∂y

∥∥∥∥2

2

)
dxdy. (3.16)

The second step of the adaptive fitting loop, i. e. ESTIMATE, consists of
evaluating the THB-spline approximant on the data sites ui ∈ Ω related to the
data points pi to compute a suitable error indicator. In particular, we choose the
point-wise error distance

∥s(ui)− pi∥2

for each i = 1, . . . , m, among others. The error indicator indicates the region
of the domain Ω where additional degrees of freedom are needed to meet the
prescribed surface accuracy, by individuating the sites ui ∈ Ω where it exceeds
a certain input threshold, i. e.

∥s(ui)− pi∥2 ≥ ϵ.

For the making strategy, i. e. MARK, we select the cells of the current hier-
archical level ℓ that contain the parameters ui identified by the error indicator
and mark them for refinement, together with two surrounding rings of cells in
the hierarchical mesh. Subsequently, the marked cells are dyadically refined to
effectively enlarge the hierarchical spline space, i. e. REFINE.

Finally, if WEIGHTS
UPDATE

∥s(xi)− pi∥2 < ϵ

for each i = 1, . . . , m, we accept the approximation computed in (3.15), other-
wise before performing another loop of the iterative procedure, starting again
from SOLVE, we update the weights values and the marker sets KI and KI I . In
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particular, for each i ∈ KI , if ei < tolI , then the i-th data satisfies the accuracy
requirements and should not belong to the markers of type I any more, namely
KI = KI \ {i}. On the contrary, if ei > tolI , then its corresponding weight needs
to be enlarged, i. e. ωi = α · ωi, with α > 1. Similar considerations hold for
i ∈ KI I , with inverted inequalities and α < 1. A reasonable error-driven choice
for α can be again the one suggested in (3.14).

Note that in the SOLVE step we introduced the penalization term, see (3.15)
and (3.16), usually addressed as thin-plate energy, whose influence is ruled by
a weight λ ≥ 0. The introduction of such a functional is a common practice in
spline geometric modelling, in particular when reconstructing a spline geometry
from a set of unorganized data. More precisely, a regularization term is com-
monly introduced to smoothen the solution and therefore avoid the presence of
spurious oscillations and artefacts, which may affect the final geometric model.
According to [101], we set λ ≥ 0 to be a constant small (∼ e−6) value and
we keep it fixed during the entire fitting process. Non-constant regularization
weight functions for data fitting via least-squares tensor-product splines have
been recently proposed in [114, 136], see also the references therein, e. g., [36,
79, 178].

For more details about the marking and refinement strategies, we refer
the reader to [101], whereas the pseudo-code of the reweighted least squares
adaptive spline algorithm is reported in Algorithm 2.

3.1.9 Numerical results for rWLS spline models

In this Section, we present a selection of numerical experiments to show the per-
formance of the proposed reweighted least squares fitting schemes. In particular,
in Example 3.1.9 (a), we show the effectiveness of the proposed reweighted least
squares spline fitting method to recover the sharp features of the four different
point sequences with type I markers, depicted in Figure 3.4, and confront it
with ordinary least squares spline fitting. Moreover, in Example 3.1.9 (b), for the
task of curve fitting, we compare the proposed method also with smoothing
splines approximations. Finally, in Example 3.1.9 (c) we extend the proposed
method to adaptive spline spaces for surface reconstruction and suggests an
automatic recognition of sharp features and type I markers.

The univariate examples have been implemented in an 8-core laptop (Apple
M2) with 8 GB RAM using MATLAB R2023b, specifically by employing the Curve

Fitting Toolbox [92]. The adaptive surface approximations have been imple-
mented within the open source C++ Geometry + Simulation (G+Smo) library [94,
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Algorithm 2: Reweighted adaptive least squares spline fitting.
Input: Point cloud {ui, pi}m

i=1, the set of markers KI , KI I ⊆ {1, . . . , m}, the
tolerances tolI , tolI I and ϵ > 0, the penalization weight λ ≥ 0, a
tensor product spline space V0 and a maximum number
hierarchical level L.

1 Initialize the weights ωi = 1 and the point-wise errors ei = 1 for each
i = 1, . . . , m and loop = 0

2 while maxi ei > ϵ and loop < L do
3 Solve the penalized weighted least squares problem

min
cℓj ,j∈Aℓ

k ,
ℓ=0,...,L−1

1
2

m

∑
i=1

ωi ∥s (ui)− pi∥2
2 + λJ (s) .

4 Estimate the pointwise errors

ei = ∥s(ui)− pi∥2, for i = 1, . . . , m.

5 For each i ∈ KI , if ei > tolI then
6 update ωi = ωi · α, with α > 1
7 else
8 KI = KI \ {i}.
9 end
10 For each i ∈ KI I , if ei < tolI I then
11 update ωi = ωi · α, with α < 1
12 else
13 KI I = KI I \ {i}.
14 end
15 Mark the domain elements where ei > ϵ and two surrounding rings of

cells in the hierarchical mesh.
16 Perform dyadic refinment of the marked cells.
17 Update the hierarchical mesh M and the hierarchical space V.
18 Set loop = loop+1.
19 end

Output: s ∈ V the reweighted adaptive least squares approximant.



58 data fitting schemes with hierarchical splines

129], by suitably extending the gsHFitting class. Both libraries provide an
efficient and robust implementation of least squares problems by exploiting
suitable solvers for the linear systems at hand, which avoid the direct solution
of a linear system of normal equations.

Example 3.1.9 (a)

To show the performance of Algorithm 1, we consider the point clouds andReweighted spline
curve fitting with

type I markers
markers of type I depicted in Figure 3.4. The point clouds are similar to the
ones presented in the following works: for Figure 3.4 (a) [141], (b) [106], (c)
and (d) [125]. Our main goal is to improve the reconstruction while keeping
the spline space intact. Each considered point sequence P is equipped with
suitable uniform parameter values U , and we compute the approximations of
each dataset for the same spline space, i. e. with the same polynomial degree
and the same amount of interior nodes in the uniform knot vector.

We set the tolerance of the proposed method as tolI = 1e−3 and com-
pare the solution of the rWLS problem with the solution of the ordinary LS
problem, i. e. all the weights are equal to one. The solutions are depicted in Fig-
ure 3.5 (a), (b), (c), and (d), for the input data of Figure 3.4 (a), (b), (c), and (d),
respectively. In particular, we can clearly see that the approximation using the
reweighted least squares method (depicted in purple in Figure 3.5) shows better
accuracy with respect to the solution of the ordinary least squares problem
(shown in red). In particular, we can see that the marked data (illustrated in
black) are better approximated by the fitted curves.

Regarding the approximation error for each experiment, we report that, if
considering all the observation data, the Rooted Mean Squared Error (RMSE) and
MAX are comparable with the ordinary least squares. However, if we compare
only how well we can preserve the sharp features, the rWLS method considerably
outperforms the ordinary LS. More precisely, in Table 3.1, we report the RMSE
and MAX errors measured only for the set of type I marks, respectively for rWLS
and LS.

Example 3.1.9 (b)

In addition to ordinary least squares, another widely used method for curveComparison with
smoothing splines fitting is smoothing splines [79, 80]. This method is derived as the solution to

the penalized least squares problem (3.15), in terms of cubic splines with knots
corresponding to the x-coordinates of the observations.
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(a) Degree 3 and 50 interior knots (b) Degree 3 and 60 interior knots

(c) Degree 3 and 40 interior knots (d) Degree 2 and 84 interior knots

(a) Degree 3 and 50 interior knots (b) Degree 3 and 60 interior knots

(c) Degree 3 and 40 interior knots (d) Degree 2 and 84 interior knots

(a) Degree 3 and 50 interior knots (b) Degree 3 and 60 interior knots

(c) Degree 3 and 40 interior knots (d) Degree 2 and 84 interior knots

(a) Degree 3 and 50 interior knots (b) Degree 3 and 60 interior knots

(c) Degree 3 and 40 interior knots (d) Degree 2 and 84 interior knots

(a) Degree 3 and 50 interior knots (b) Degree 3 and 60 interior knots

(c) Degree 3 and 40 interior knots (d) Degree 2 and 84 interior knots

(a) Degree 3 and 50 interior knots (b) Degree 3 and 60 interior knots

(c) Degree 3 and 40 interior knots (d) Degree 2 and 84 interior knots

(a) Degree 3 and 50 interior knots (b) Degree 3 and 60 interior knots

(c) Degree 3 and 40 interior knots (d) Degree 2 and 84 interior knots

Figure 3.5: Curve fitting experiments described in Example 3.1.9 (a) using ordinary LS

(red) and rWLS (purple) for data with markers of type I.

Therefore, we considered three additional point clouds sampled from the
following functions:

f1(x) =
∣∣∣ 9 sin(3πx)

tanh(−1.5x+1)+1

∣∣∣, f2(x) = 1
0.02

√
π

exp
{
−
( x−0.5

0.02

)2
}

, f3(x) = tanh
(

cos(2πx)
0.05

)
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Method Iterations Time RMSE MAX

(a)
LS – – 6.27e−3 1.30e−2

rWLS 1442 1.35s 8.31e−4 8.95e−4

(b)
LS – – 2.25e−3 3.94e−3

rWLS 1250 1.79s 6.63e−4 1.78e−3

(c)
LS – – 4.63e−3 1.22e−2

rWLS 30 0.03s 1.47e−3 3.54e−3

(d)
LS – – 5.94e−3 1.25e−2

rWLS 81 0.14s 3.77e−4 8.81e−4

Table 3.1: RMSE and MAX errors for type I markers of LS and rWLS solutions in Ex-
ample 3.1.9 (a). For rWLS also the number of iterations (Iterations) and the
computational time (Time) are reported.

and create 3 point clouds with 62, 88, 71 points, respectively. Specifically, we
consider an irregular distribution of the abscissas to obtain more observations
around the functions’ sharp features.

We compute the smoothing spline fitting using the fit function in MATLAB

and use the default “interesting range” value of the smoothing weight λ, which
depends on the abscissa distribution of each experiment. Moreover, we set the
weights of (3.15) to 1.

To ensure a fair comparison, for the rWLS algorithm, we fixed the spline
degree to 3 and selected the knot vectors following the “averaging” technique
described in [145, eq. (9.8)], known in the literature also as NKTP, with 37, 47,
and 47 interior knots, respectively. This technique has been chosen since it also
considers the values of the abscissas as in the case of smoothing splines.

The solutions obtained using rWLS from Algorithm 1 are depicted in Fig-
ure 3.6. Additionally, we report the RMSE and MAX measured only for the set of
type I marks for both rWLS and smoothing splines in Table 3.2. To summarize,
in the presence of sharp features, better results can be obtained using the pro-
posed rWLS from Algorithm 1 with fewer degrees of freedom compared to the
smoothing spline technique.

Example 3.1.9 (c)

In this numerical experiment, we apply Algorithm 2, combined with THB-splines,Reweighted adaptive
spline fitting for

type I markers
to a point cloud obtained by sampling 100 × 100 gridded data from function
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Figure 3.6: Curve fitting experiment described in Example 3.1.9 (b) using smoothing
spline (red) and rWLS (purple) for data with markers of type I (black dots).

Method Iterations Time RMSE MAX

f1
smoothing spline – 0.20s 1.02e−1 2.21e−1

rWLS 10 0.09s 9.13e−6 1.86e−5

f2
smoothing spline – 0.19s 1.36e−1 3.04e−1

rWLS 7 0.03s 1.43e−5 3.18e−5

f3
smoothing spline – 0.14s 2.96e−3 3.86e−3

rWLS 4 0.01s 1.30e−5 2.58e−5

Table 3.2: RMSE and MAX errors for type I markers of smoothing spline and rWLS

solutions of the experiment described in Example 3.1.9 (b). For rWLS also the
number of iterations (Iterations) is reported.

(3.13). This function is characterized by sharp features that we want the final
model to capture, i. e. we will deal with type I markers only, hence KI I = ∅.

To initialize the set KI we perform an ordinary LS fitting with tensor-product
B-splines, of bi-degree d = (3, 3) and a 15 × 15 mesh, and identify the data sites
whose approximation error is above a certain threshold ϵ, namely

KI := {i ∈ {1, . . . , m} : ∥v(ui)− f (ui)∥2 > ϵ}.
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Figure 3.7: MAX error w.r.t. DOFs for the ordinary LS and rWLS fitting scheme with
THB-splines (left); hierarchical mesh (center) and geometry (right) obtained
in output from the rWLS method, for Example 3.1.9 (c).

Given the data points, the markers KI , the tolerances, and the initial tensor-
product B-spline space, we perform Algorithm 2 with tolI = 10ϵ, augmenting
the weights value by 25% at each iteration of the adaptive loop. We then compare
the output of the rWLS fitting method with the result of the ordinary adaptive LS
fitting; the weights are fixed to one along the iterative procedure. More precisely,
we compare the MAX of the final approximations with respect to the number
of Dregrees Of Freedom (DOFs), choosing ϵ to achieve a comparable number
of DOFs. The comparison is reported in Figure 3.7 (left), together with the final
hierarchical mesh (center) and THB-spline approximation (right) obtained with
the rWLS method. More precisely, LS and rWLS methods have the same starting
point, and as long as the adaptive refinement proceeds, we can notice that rWLS
is able to register a smaller MAX error with fewer DOFs in comparison to LS.

3.2 hierarchical quasi-interpolation with adaptive spline con-
structions

In this Section, we consider another fitting routine, which leads to the defi-
nition of a hierarchical QI model with THB-splines, particularly suitable for the
reconstruction of unstructured data sets. The proposed scheme facilitates the
computation of high-quality approximations with an increased level of reso-
lution only in strictly localized areas. More specifically, the computation of
the QI control net consists of implementing a two-stage data fitting algorithm
with THB-splines, by combining local LS B-spline approximations (first stage) with
the assembly of the hierarchical quasi-interpolant based on THB-splines (second
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stage). Finally, to construct the adaptive spline model approximating the whole
data set, a suitable strategy to guide the adaptive refinement is developed.

3.2.1 Local least squares spline fitting

By focusing on two-stage spline approximation schemes for THB-splines, a QI
operator Q is defined, so that

Q (U ,P) (x) = s (x) (3.17)

where s : Ω → RN is as in (2.15). In particular, in this case every coefficient
cj ∈ RN is computed in the first stage of the scheme by using a certain local
subset of data Uj ×Pj ⊂ U × P for each j ∈ Aℓ

k, with Aℓ
k as defined in (2.10),

and for each ℓ = 0, . . . , L − 1, so that

s (ui) ≈ pi, for i = 1, . . . , m.

Note that by exploiting THB-spline constructions, it is possible to define hierar-
chical QI schemes without any additional efforts with respect to their tensor-
product formulations, see [165].

More precisely, for each j ∈ Aℓ
k and ℓ = 0, . . . , L − 1, let βℓ

j be the mother

tensor-product B-spline of the truncated τℓ
j , i. e. τℓ

j = Truncℓ+1
(

βℓ
j

)
, see Defini-

tion 5 in Section 2.1.3. In addition, let

Ωj ⊂ Ω, so that Ωj ∩ supp
(

βℓ
j

)
̸= ∅,

namely, a suitably chosen local subdomain which has a non-empty intersection
with the support of βℓ

j . Subsequently, the indices

Ij =
{

i | ui ∈ U ∩ Ωj
}
⊂ {1, . . . , m}, so that nmin ≤

∣∣Ij
∣∣≪m

have to be selected, together with the corresponding data

Pj =
{

pi | i ∈ Ij
}

, Uj =
{

ui | i ∈ Ij
}

. (3.18)

Finally, denote with

Bj :=
{

βℓ
r | r ∈ Λℓ,j

k ⊂ Γℓ
k

}
the subset of tensor-product B-splines which do not vanish on Ωj (by definition
βℓ

j belongs to it). Therefore, the coefficient cℓj ∈ RN associated to τℓ
j , correspond
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to the coefficient associated with βℓ
j , so that τℓ

j = Truncℓ+1
(

βℓ
j

)
, in a local spline

approximation sj ∈ Vj, with sj : Ωj → RN and Vj := span{Bj}.
In the case of surface approximation, hence for D = 2 and N = 3, the

local spline space Vj has a reasonable approximation power and it includes
the restriction to Ωj of any linear polynomial, as we prove in the following
Proposition.

Proposition 1. The following space inclusion holds true,

Πd|Ωj
⊆ Vj = span{Bj},

where Πd|Ωj
denotes the restriction to Ωj of the tensor-product space of bi-variate

polynomials of bi-degree d = (d1, d2).

Proof. Let q be a cell of the tensor-product mesh Gℓ associated to Vℓ, such that
q ∩ Ωj ̸=. Then the definition of Λℓ,j

k , implies that

if q ⊆ supp
(

βℓ
r

)
, then r ∈ Λℓ,j

k .

Thus,

span{βℓ
r | q ⊆ supp

(
βℓ

r

)
} ⊂ Vj.

Since

span{βℓ
r | q ⊆ supp

(
βℓ

r

)
} = Πd|q,

the proof is completed considering that q is any cells of Gℓ with non-vanishing
intersection with Ωj.

Consequently, if the sites in Uj are not collinear, we then approximate Pj with

sj(u) = ∑
r∈Λℓ,j

k

αℓ
r βℓ

r(u), (3.19)

with control points αℓ
r ∈ RN estimated by solving the following penalized

tensor-product B-spline local least squares approximation,

min
αℓ

r ,r∈Λℓ,j
k

∑
i∈Ij

∥∥sj(ui)− pi
∥∥2

2 + λJ(sj), (3.20)
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where the penalization term J has been chosen again as the thin-plate energy in
(3.16). Hence, we define the j-th control point cℓj associated to τℓ

j as αℓ
j . Finally, If

the sites in Uj are collinear, we define the j-th control point cℓj ∈ RN associated
to τℓ

j as

cℓj =
1∣∣Ij
∣∣ ∑

j∈Ij

pj.

The existence and uniqueness of the local approximant (3.20) in the case of
surface approximation, i. e. for D = 2 and N = 3, is guaranteed by the following
Theorem.

Theorem 2. Let d = (d1, d2) be the polynomial bi-degree. If the sites uj ∈ Ωj, j ∈ Ij
are not collinear, there exists a unique local splines sj ∈ Vj minimizing the following
objective function,

∑
i∈Ij

∥∥sj(ui)− pi
∥∥2

2 + λJ(sj),

where the penalization term J has been chosen again as the thin-plate energy in (3.16).
If such points in Ωj are collinear, then such minimizer does not exists or is not unique.

Proof. The objective function of Theorem 2 can be split in the sum in the sum of
three analogous objective functions, one for each component s(k)j , for k = 1, 2, 3.
Therefore, to alleviate the analysis and the notation, we develop the proof in
the scalar case, which can be extended to R3 in a straightforward way.

Let sj : Ωj → R an element of Vj, hence

sj (x) = ∑
r∈Λℓ,j

k

cjβ
ℓ
r.

Moreover, let dimVj =
(
nj + 1

)
. Therefore, the functional J(sj) can be computed

as

J
(
sj
)
= c⊤Gc,

where c =
(

c0, . . . , cnj

)⊤
∈ R(nj+1) and G ∈ R(nj+1)×(nj+1), so that

Gi,r =

∫
Ωj

(
∂2βℓ

i
∂x∂x

∂2βℓ
r

∂x∂x
+ 2

∂2βℓ
i

∂x∂y
∂2βℓ

r
∂x∂y

+
∂2βℓ

i
∂y∂y

∂2βℓ
r

∂y∂y

)
dxdy,
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where we are assuming that, in the adopted ordering of the tensor-product
B-spline basis Bj of Vj, βℓ

i and βℓ
r are the i-th and r-th basis functions.

In addition,

∑
i∈Ij

(
sj (ui)− pi

)2
= ∥Bc − p∥2

2 = c⊤B⊤Bc − 2p⊤Bc + p⊤p,

where

p =
(

p1, . . . , p|Ij|

)⊤
∈ R|Ij|

denotes the vector collecting all the pi, for i ∈ Ij, and B ∈ R|Ij|×(nj+1) is the
collocation matrix defined on Uj as in (3.4), for the basis Bj generating Vj.

The objective function can then be written also in the following quadratic
form,

c⊤
(

B⊤B + λG
)

c − 2p⊤Bc + p⊤p.

As well known, a quadratic function admits a global unique minimizer if and
only if the symmetric matrix defining its homogeneous quadratic terms is
positive definite and in such case the minimizer is given by its unique stationary
point. In our case, such a matrix is B⊤B + λG and the stationary points are the
solutions of the following linear system of nj + 1 normal equations in as many
unknowns,(

B⊤B + λG
)

c = B⊤p.

For all positive λ, the matrix B⊤B+λG is symmetric and positive semidefinite,
since for any vector ζ ∈ R(nj+1), ζ ̸= 0, it holds

η⊤B⊤Bζ ≥ 0, and ζ⊤Gζ ≥ 0,

where the right inequality descends from the fact that

ζ⊤Gζ = J
(
sζ

)
,

with

sζ (x) = ∑
r∈Λℓ,j

k

ζrβℓ
r. (x) .
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If the points ui, i ∈ Ij are distributed on Ωj along a straight line ax + by + c =

0, Proposition 1 implies that it is possible to find ζ ∈ R(nj+1), ζ ̸= 0, such that
sζ (x) ≡ ax + by + c, for all x ∈ Ωj. This implies that sζ (ui) = 0, for each i ∈ Ij,
namely the vector Bζ ∈ R|Ij| vanishes. Moreover, also 0 = J

(
sζ

)
= ζ⊤Gζ, since

sζ |Ωj
is a linear polynomial. This proves that the symmetric positive semidefinite

matrix
(

B⊤B + λM
)

is not positive definite when all ui, for i ∈ Ij are collinear.
This is also the only possible data distribution associated to a non positive
definite matrix. If the points ui, for i ∈ Ij are not collinear, if ζ ∈ R(nj+1), ζ ̸= 0
is associated to a non-vanishing linear polynomial, it holds ζ⊤Gζ = 0, but
Bζ ̸= 0, hence ζ⊤B⊤Bζ > 0. On the other hand, if ζ ∈ R(nj+1), ζ ̸= 0 is not
associated to a linear polynomial, then ζ⊤Gζ > 0.

The computation of all the local approximations (3.19) for each j ∈ Aℓ
k and

ℓ = 0, . . . , L − 1 terminates the first stage. The pseudo-code related to the
computation of the first stage is illustrated in Algorithm 3.

Remark 17. Note that each control point cℓj depends on a local subset of the input data,
i. e. Uj ⊂ U and Pj ⊂ P ; hence, differently from the scheme presented in Section 3.1.8,
the resolution of a global LS linear system is avoided.

Remark 18. Solving local LS tensor-product spline approximations allow to directly
exploit the local tensor-product spline spaces, hence it significantly simplifies the
algorithm originally proposed for the first stage in [17, 19], where a variable-degree local
polynomial approximation was considered. More precisely, the scheme here proposed
does not require the selection of a suitable degree for the computation of any coefficient
and eliminates the conversion of the computed approximant from the polynomial to the
local tensor-product B-spline basis.

Since the scheme is locally applied, an automatic and eventually data-
dependent selection of the parameter λ in (3.20) could be considered. For
example, the choice may take into account the cardinality of Uj of the local
sample, or the area of Ωj, which influence the value of the first and second
addend in (3.20), respectively. In view of this influence, we can also observe
that a constant value of λ implies that the balancing between the fitting and
the smoothing term in the objective function usually increases when the size of
Uj or the area of Ωj increases. This is true in the second case because second
derivatives are involved in the smoothing term. Both of these choices seem
reasonable and are confirmed by the quality of the results obtained in our
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Algorithm 3: Local least squares spline fitting.

Input: Point cloud {ui, pi}m
i=1, a tensor-product mother B-spline βℓ

j with
basis index j ∈ Aℓ

k for some ℓ = 0, . . . , L − 1, the underlying
tensor-product mesh Mℓ of level ℓ, the smoothing parameter λ ≥ 0
and a minimum required number of local data 3 ≤ nmin≪m;

1 Initialize Ωj = supp(βℓ
j ) and

Ij =
{

i | ui ∈ U ∩ Ωj
}

, Pj =
{

pi | i ∈ Ij
}

, Uj =
{

ui | i ∈ Ij
}

.

2 while
∣∣Ωj
∣∣ < nmin, do

3 Enlarge Ωj with the first surrouding ring of cells of Mℓ

4 Update Ij, Pj and Uj accordingly.
5 end
6 if The sites in Uj are not collinear, then
7 Compute the tensor-product B-spline

sj(u) = ∑
r∈Λℓ,j

k

αℓ
r βℓ

r(u),

by minimizing (3.20), and set cℓj = αℓ
j ,

8 else
9

cℓj =
1∣∣Ij
∣∣ ∑

i∈Ij

pi.

10 end
Output: The coefficient cℓj ∈ RN associated to βℓ

j .

experiments, where a constant value for λ is suitably chosen. For completeness,
adaptive and local choice of λ for least squares data fitting by tensor-product
B-spline surfaces has been proposed in [114, 136].

Differently from [17, 19], in order to better avoid overfitting, a lower bound
nmin for the cardinality of Uj is now required, being nmin ≥ 3 the only extra
input parameter added to the algorithm, besides λ, see Algorithm 3. To fulfill
this condition, Uj is initialized as supp(βℓ

j ) and enlarged until
∣∣Uj
∣∣ ≥ nmin.

Moreover, to guarantee the locality of the method, the choice of nmin should be
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kept reasonably small with respect to the amount of input data m. On the other
hand, it is not necessary to set a maximum value for controlling the enlargement
of the local data set due to the choice of the refinement strategy that takes this
aspect into account, as detailed in the Section 3.2.2 (Remark 19), where the
operator Q is extended to the hierarchical spline spaces.

3.2.2 Quasi-interpolation with THB-splines

The second stage consists of assembling the global approximation defined in
(2.15). In particular, due to the THB-spline properties and by following the general
approach proposed in [165], the hierarchical QI in (3.17) can be constructed as

s (x) =
L−1

∑
ℓ=0

∑
j∈Aℓ

k

cℓj (Pj,Uj)τ
ℓ
j (x), for x ∈ Ω, (3.21)

where each coefficient cℓj (Pj,Uj) directly corresponds to the coefficient αℓ
j asso-

ciated with each mother B-spline βℓ
j in (3.19), as described in Section 3.2.1 and

further detailed in Algorithm 3. The realization of the first and second stage
concludes the first step of the adaptive fitting loop, i. e. SOLVE. Thereby, the
iterative design of the hierarchical mesh M and space V follows.

As for the adaptive fitting procedure presented in Section 3.1.8, we choose
as error indicator to drive the refinement the point-wise error distance. This
concludes the second step of the adaptive loop, i. e. ESTIMATE. More precisely,
given an input threshold ϵ > 0, we evaluate the THB-spline approximant on
the data sites ui ∈ Ω related to the data points pi and compute the Euclidean
distance ∥s(ui)− pi∥2 for each i = 1, . . . , m. This allows us to individuate the
sites ui ∈ Ω where ∥s(ui)− pi∥2 ≥ ϵ.

The MARK step of the adaptive loop considers a a marking strategy based
on basis functions. In particular, the basis function of level ℓ which are active
on the data sites characterized by ∥s (ui)− pi∥2 ≥ ϵ are marked for refinement
and replaced by basis functions of the successive hierarchical level ℓ+ 1.

Finally, the refinement strategy, i. e. REFINE, of the THB-spline fitting scheme
has to be considered. For some data distributions, e. g., for unevenly scattered
data, the parameter values corresponding to the local data set Uj can be con-
centrated in a small part of the support of a marked function, thus splitting
its support may affect the quality of the final approximation. To better handle
these configurations and exploit adaptivity, the refinement procedure is ruled
by the parameter nloc, with nloc ≤ nmin. Thereby, consider a basis function τℓ

k



70 data fitting schemes with hierarchical splines

marked to be refined and its mother βℓ
k. Subsequently, we consider a splitting

of the two sides of supp
(

βℓ
j

)
in n1 and n2 uniform segments, respectively, and

subdivide supp
(

βℓ
j

)
in the resulting n1n2 subregions, where we then check the

presence of at least ⌈nloc/(n1n2)⌉ data points. The pseudocode for the adaptive
hierarchical QI spline fitting is illustrated in Algorithm 4.

Remark 19. The requirement nloc ≥ nmin guarantees that the points needed to compute
the coefficients associated with the new functions in the first stage of the next iteration
can be found not too far from the support of the functions themselves. Indeed, in
Algorithm 3, after a few enlargements, Ωj will surely include the support of a refined

function of the previous level intersecting supp
(

βℓ
j

)
.

As a consequence, analogously to nmin, a high value of nloc contributes to
the reduction of oscillations deriving from overfitting, but this value should
also be low enough to guarantee that the refinement strategy can generate a
hierarchical spline space with enough degrees of freedom for satisfying the
given tolerance ϵ. For this reason, some tuning is necessary for a good selection
of nloc.

The proposed adaptive approximation method also extends to the case of
surfaces closed in one (or even two) parametric directions, not addressed in
previous works. Note that the local nature of the considered approximation
approach makes the implementation especially easy, since coefficients associ-
ated with a THB-spline present at successive steps of the adaptive refinement
procedure (even if possibly further truncated) do not need to be recomputed.

3.3 industrial applications for hierarchical qi spline fitting

In this Section, we consider the reconstruction of scattered data of industrial
complexity, obtained by an optical scanning process of four different aircraft
engine parts, represented in terms of bivariate THB-spline models with bi-degree
d = (d, d). For each of these surfaces, as a characterizing dimension, we report
the length R of the diagonal of the minimal axis-aligned bounding box associ-
ated to the given point cloud. Note that, in industrial applications it is common
to require a certain percentage ν of data points to satisfy the error tolerance ϵ.

The results highlight the effects of considering a minimum number of local
data points nmin (also) in the first stage of the method, as well as the improve-
ments obtained by introducing a regularized B-spline approximation for each
local fitting with respect to the scattered data fitting scheme considered in
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Algorithm 4: Hierarchical QI spline fitting

Input: Point cloud {ui, pi}m
i=1, a tensor-product mesh M0 and the

corresponding tensor-product spline space V0, the maximum
number of hierarchical levels L ≥ 1, the smoothing parameter
λ ≥ 0 and a minimum required number of local data 3 ≤ nmin≪m,
the error threshold ϵ > 0 and the percentage of data points
required to satisfy the error tolerance ν, minimum number of local
data required for refinement nmin ≤ nloc≪m and the number of
support splits n1 and n2.

1 Initialize the hierarchical mesh M = M0, the hierarchical spline space
V = V0, the point-wise errors ei = 1 for each i = 1, . . . , m and set
loop = 0

2 while |{i | ei > ϵ}| > ν · m and loop < L do
3 Compute the coefficients of the tensor-product QI with Algorithm 3

and define s ∈ V as in (3.21).
4 Estimate the pointwise errors ei = ∥s(ui)− pi∥, for i = 1, . . . , m.
5 Mark the basis functions τℓ

j active on ui such that ei > ϵ.

6 Refine by dyadic split of the marked cells which contains at least
⌈nloc/(n1n2)⌉ in any of the n1n2 sub-rectangles which uniformly split
supp

(
βℓ

j

)
, mother of τℓ

j .

7 Update accordingly the hierarchical mesh M and the hierarchical
space V.

8 Set loop = loop+1.
9 end

Output: The hierarchical QI as defined in (3.21).

[17]. In order to try to produce a very detailed reconstruction, a quite small
value has been chosen for nmin, more precisely, we suggest selecting it among
the integers in the range [d2, (d + 1)2]. By combining these two changes, the
two-stage approximation algorithm is more stable and unwanted oscillations
are further reduced.
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3.3.1 Tensile

In this example,we consider THB-spline approximations to reconstruct a part
of a tensile from the set of 9281 scattered data shown in Figure 3.8, which
has reference dimension R = 2.5e−2m. We compare the new local scheme
based on local B-spline approximations with the algorithm based on local
polynomial approximations of variable degree presented in [17], where this test
was originally considered. Note that for this example we have never dealt with
local sets of collinear points in our experiments.

As a first test, we ran both algorithms with the same setting considered in [17],
namely, by starting with a 4 × 4 tensor-product mesh with d = (2, 2), threshold
ϵ = 5e−5m, percentage bound ν = 95% and nloc = 20. The algorithm with local
polynomial approximations with the parameter choice considered in [17] led to
an approximation with 2501 DOFs, 96.25% of points below the tolerance and MAX
error of 1.23e−4m. The new scheme based on local B-spline approximations
with nmin = 6, λ = 1e−6, and n1 = n2 = 1 generated a THB-spline surface with
1855 degrees of freedom that satisfies the required tolerance in 98.88% of points
with a MAX error of 8.06e−5m. The number of levels used is 5, but all the cells
of the first two levels are refined.

As a second test, we ran both algorithms by starting with a 16 × 4 tensor-
product mesh with d = (2, 2), percentage ν = 95%, threshold ϵ = 5e−5m,
and nloc = 15. The algorithm with local polynomial approximations led to
an approximation with 5922 degrees of freedom, 98.18% of points below the
tolerance, and a MAX error of 1.44e−4m. The surface and the corresponding
hierarchical mesh are shown in Figure 3.8 (center). This approximation clearly
shows strong oscillations on the boundary of the reconstructed surface due
to a lack of available data points for the local fitting in correspondence with
high refinement levels. The scheme based on local B-spline approximations,
with nmin = 7, λ = 1e−6, and n1 = n2 = 1, produced a THB-spline surface with
1960 degrees of freedom that satisfies the required tolerance in the 99.36% of
the data points with a MAX error of 8.11e−5m. The surface, free of unwanted
oscillations along the boundary, and the corresponding hierarchical mesh are
shown in Figure 3.8 (bottom). The number of levels used is 4, with the cells of
level 0 completely refined.
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Figure 3.8: Scattered data set corresponding to a critical part of a tensile (top), the recon-
structed surfaces and the corresponding hierarchical meshes obtained with
the algorithm in [17] (center) and the new scheme (bottom) in Section 3.3.1.

3.3.2 Blade

In this example, we consider the second test discussed in [17] on the set of 27191
scattered data representing a scanned part of a blade shown in Figure 3.9 (top),
whose reference dimension is R = 5e−2m. Again, to compare the new local
scheme with the algorithm based on local polynomial approximations, we ran
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Figure 3.9: Scattered data set corresponding to a critical part of a blade (top), the
reconstructed surface and the corresponding hierarchical mesh obtained
with the new scheme(bottom) in Section 3.3.2

both algorithms with the same setting of [17], namely, by starting with a 4 × 4
tensor-product mesh with d = (3, 3), threshold ϵ = 2e−5m, percentage bound
ν = 95% and nloc = 60. The algorithm with local polynomial approximations
with the parameter choice as in [17] led to an approximation with 12721 DOFs,
97.06% of points below the tolerance and MAX error of 1.08e−4m. The new
scheme based on local B-spline approximations with nmin = 6, λ = 1e−8 and
n1 = n2 = 1 generated a THB-spline surface with 8314 DOFs that satisfies the
required tolerance in 99.94% of points with a maximum error of 1.33e−4m.
The surface and the corresponding hierarchical mesh are shown in Figure 3.9
(bottom). The number of levels used with the new scheme is 7, with all the
cells of the first two levels completely refined, one less than with the old
approach. Finally, for completeness, we precise that the local collinearity check
in Algorithm 3 is active for 5 coefficients.
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3.3.3 Endwall

In this example, we illustrate the behaviour of the adaptive algorithm on data
sets with voids by considering the reconstruction of an endwall part from the
scattered data set of 43.869 points shown in Figure 3.10 (top), whose reference
dimension is R = 5e−1m. The figure shows that in this case, the data set
represents a model with three different holes where no input data are available.
The aim of this reconstruction is to avoid artifacts due to a lack of points and
obtain a sufficiently regular surface, i. e. by avoiding self-intersections, that can
be post-processed with standard geometric software tools to obtain a suitably
trimmed model. Consequently, not only the number of points in the local data
sets is important to reach this aim, but also their distribution. To properly
address this issue, we consider a real density parameter with a value between
0 and 1, which determines whether the distribution of the points in the local
set is reliable or not for the fitting. The distribution of the local data points is
computed as the number of mesh cells of level ℓ inside the support of of the
marked function βℓ

j or its enlargement, which contain at least one point, over
the total number of mesh cells, either in the support of βℓ

j or its enlargement. If
this ratio is below a density threshold, then more data points are required and
the function support is enlarged for the computation of the local approximation
in the first stage of the method. The approximation is developed by starting
from a 32 × 32 tensor-product mesh, with d = (3, 3), nloc = 15, nmin = 11,
λ = 1e−6 and n1 = n2 = 2. A choice of the density parameter to 0.3 permits
to take care of the difficult distribution of data points in the construction of
the approximation. By considering a threshold ϵ = 5e−5m and a percentage
bound ν = 95%, the refinement generated a THB-spline approximation with 3
hierarchical levels, 11211 DOFs, 98.70% of points below the threshold and MAX
error of 5.69e−4m. The surface and the corresponding hierarchical mesh are
shown in Figure 3.10. In this case there are 18 coefficients of the last level and
15 of the last but one (all associated with B-splines whose support intersects a
void) such that the related Uj is made up of all collinear points.

3.3.4 Airfoil

In this last example, we illustrate the behaviour of the new adaptive fitting algo-
rithm with local B-spline approximations for surfaces closed in one parametric
direction. In particular, we test the scheme to reconstruct a blade airfoil from a
set of 19669 scattered data, shown in Figure 3.11, whose reference dimension
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Figure 3.10: Scattered data set corresponding to a critical part of a endwall (top), the
reconstructed surface and the corresponding hierarchical mesh obtained
with the new scheme(bottom) in Section 3.3.3

is R = 1e−1m. We ran the method by starting from a 32 × 4 tensor-product
mesh with d = (3, 3), setting the percentage bound ν = 0.95, the threshold
ϵ = 5e−5m, nloc = 30, nmin = 12, λ = 1e−6, and n1 = n2 = 1. The adaptive
scheme produces a THB-spline approximation with 3 hierarchical levels and 1865
DOFs distributed in the last two levels, and it satisfies the tolerance in 95.06% of
the data points with a MAX error of 1.88e−4m. The surface and the correspond-
ing hierarchical mesh are shown in Figure 3.11 (bottom). By trying to force
additional refinement, some oscillations appear. In this case, they are consistent
with the data distribution since there are clusters of high-density points due
to scan noise. Consequently, they do not represent artifacts caused by regions
with very low density of data and cannot be prevented by exploiting the bound
for cardinality of the local data sample governed by nloc.



3.3 industrial applications for hierarchical qi spline fitting 77

Figure 3.11: Scattered data set corresponding to a critical part of an airfoil (top), the
reconstructed surface and the corresponding hierarchical mesh obtained
with the new scheme(bottom) in Section 3.3.4





4
PA R A M E T E R I Z AT I O N F O R P O I N T C L O U D S P L I N E F I T T I N G

In the previous Chapter we have introduced and analyzed the fitting problem of
data observations of the form U × P as in (3.1), where the points P (1.1) in RN

are provided together with their locations U (1.3) over a subdomain Ω ⊂ RD.
Nevertheless, in many contexts, e. g., real-world applications, the data sites U
are unknown, and the task of approximating a point cloud without data sites
results in a complicated non-linear problem.

Therefore, the first fundamental problem of any spline fitting method, com-
monly addressed as the parameterization problem, consists in defining a one-to-
one mapping between the points P and their distinct parametric values belonging
to a subdomain Ω ⊂ RD. While this parameterization process plays a crucial
role in the final reconstructed geometry, it is still an open research topic, and
several solutions have been proposed that are not optimal in a universal way.
Moreover, the complexity of the problem motivates the employment of DL as a
viable option for tackling it.

In this Chapter, we propose different data-driven parameterization procedures
depending on the nature of the input data, i. e. whether they consist of point
sequences or point clouds, as well as whether they are organized or scattered.
More specifically, deep CNNs have led to improvements in image processing,
see e. g., [104, 109, 110], but they also thrive when any kind of data involving
spatial-correlated patterns, as for example audio files [167] and geometric data
processing [180], have to be processed. Therefore, CNNs are employed for the
parameterization learning problem of points on a rectilinear grid, as illustrated
in Section 4.1. On the other hand, CNNs are not suitable to handle scattered
data because of the lack of structure among the input data; hence, we propose
to employ methods from geometric deep learning to properly address the
parameterization problem in this setting. In particular, the parameterization
learning problem for unstructured data configurations is solved by means
of GCNs, which are a generalization of CNNs to non-Euclidean data, such as
discrete manifolds, graphs, and general point clouds, as shown in Section 4.2
and Section 4.3. In all the considered examples, the proposed data-driven
parameterization methods overcome state-of-the-art standard schemes. The
present Chapter is mostly based on [41, 70, 71].

79
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4.1 parcnn : parameterization of gridded data with convolu-
tional neural networks

Gridded data consists of (measurement) values obtained at regularly spaced
points that form a rectilinear grid. This kind of geometric data with a regular
structure arises in different scientific application settings, such as geographic
information systems, meteorology, and medical imaging, when, for example,
measurements at regular space or time intervals are acquired through different
types of technological instruments. The result is a set of ordered points that
can represent curvilinear, surface, volumetric, or even higher-dimensional data.
Since the possibility of suitably extending the measurement information to
regions where no data are available is often required, efficient parameterization
and fitting schemes are usually needed.

In this Section we employ CNNs for the parameterization problem to assign
parameter values at an arbitrary number of points on a rectilinear grid for
their subsequent use in multivariate polynomial spline approximation schemes.
We call the proposed model PARamerization with Convolutional Neural Net-
work (PARCNN). We train our model using synthetic data generated by sampling
random tensor-product polynomial curves and surfaces by considering univari-
ate and bivariate polynomial least-squares approximations. In our experiments,
we also add noise to the test data to simulate measurement errors in the input
of the proposed networks. Moreover, we use the resulting parameterization
to fit point clouds with non-uniform spline constructions and show that the
accuracy of the model properly scales under adaptive mesh refinement. The
choice of CNNs allows us to obtain a method that is agnostic to the size of the
input point cloud and performs well with an input of a different size from
the one considered in the training phase. The experiments highlight that our
PARCNN model can also be effective when multivariate adaptive spline fitting
with THB-splines is considered.

Over the last decades several approaches have been developed to handle theRelated works
parameterization of gridded data. Standard methods rely either on a UNIform
(UNI) distribution of parameter values over the parametric domain or on scaled
configurations of the physical points on the parametric space, as for example the
CHord-Length (CHL) or CENtripetal (CEN) parameterizations [112]. Alternatives
to these standard methods were presented in the literature, with special focus
on the univariate setting. In particular, variants of the scaled parameterizations
were proposed in [52, 131], whereas an example of an iterative procedure
of different kind can be found in [2]. In addition, the so–called universal
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parameterization method, closely related to the uniform parameterization, was
presented in [31] in the context of univariate and bivariate spline interpolation.
The potential of exploiting ML techniques for B-spline curve approximation was
originally outlined in [107] and [106] by considering support vector machines
and MLPs, respectively. While the focus of [107] was on identifying a suitable
knot placement strategy, a scheme based on two interdependent deep neural
networks to compute both the knot and parameter values was proposed in [106].
In particular, the neural network used to predict the parameters consists of a
standard MLP that takes as input a planar point sequence of fixed length equal
to 100 and returns as output the corresponding parametric values. Therefore, if
the given number of data points does not match 100, pre- and post-processing
steps for super- or sub-sampling the input data need to be performed. To
overcome the computational limitations of this method, the authors in [160]
proposed a method for univariate polynomial curve approximation based on
a residual neural network. In this case, the network takes as input a planar
point sequence of length 2d + 1, where d ∈ N is the polynomial degree. The
residual building blocks of the proposed networks are characterized by fully
connected layers, which constrain the architecture to deal with an input of fixed
size. Consequently, this approach also requires multiple network evaluations
and a post-processing step to handle point sequences of arbitrary size.

It should also be noted that, to the best of our knowledge, data-driven
methods to address the parameterization problem of gridded data sets in a
multivariate setting were not previously proposed. To properly process input
datasets with varying dimensions without requiring additional computations,
we here propose a deep convolutional approach.

4.1.1 Problem presentation

Let P be a point cloud, defined in (1.1) with items in RN and characterized
by a rectilinear grid structure along D ≤ N directions. More precisely, let
h = 1, . . . , D be the index associated with the parametric direction, and let mh
be the point sequence length along each direction h. We define the multi-index
set

I = {I = (i1, . . . , iD) | ih = 1, . . . , mh, h = 1, . . . , D} ,

where each multi-index I uniquely identifies a point pI of the point cloud P .
Consequently, the point cloud P in (1.1) can be rewritten as

P =
{

pI ∈ RN | I = (i1, . . . , iD) , ih = 1, . . . , mh, h = 1, . . . , D
}

. (4.1)
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Figure 4.1: Example of a gridded point cloud with items in RN , with N = 3, and D = 2
parametric directions. The feature extraction step derives the edge vectors
eh

ij of the input grid.

We denote the cardinality of the point cloud as m := ∏D
d=1 md. Figure 4.1 shows

an example of a point cloud P , characterized by D = 2 parametric directions
and elements belonging to RN, with N = 3. The point sequences in the two
directions have lengths m1 = m2 = 4. Each item of the point cloud pI is uniquely
determined by the multi-index I = (i1, i2), with i1, i2 = 1, . . . , 4.

To construct a gridded data approximation scheme, as for example the ones
presented in Chapter 3, a parameterization of the point cloud P is needed. This
problem requires to identify a set of suitable parametric values U as in (1.3),
which can be rewritten as

U = {uI ∈ Ω | I = (i1, . . . , iD) , ih = 1, . . . , mh, h = 1, . . . , D} , (4.2)

so that any point pI ∈ P in (4.1) is associated to the parameter uI ∈ U . Moreover,
without loss of generality, we set Ω = [0, 1]D.

The identification of a suitable parametrization method for the definition
of the set U of parameter values is a challenging open problem within the
polynomial spline fitting framework. In particular, it can naturally influence the
quality of the final approximation, leading to sub-optimal approximation error
results if not carefully handled; see, see e. g., [60, 63], which address the case of
curve interpolation. In the tensor-product B-spline setting, see Section 2.1.2, once
the univariate parameterization along each parametric direction is computed,
the multivariate parameterization can be simply obtained by averaging across
all the other parametric directions [145].
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Figure 4.2: The CNN architecture.

The data connectivity information on proximity and distance plays a funda-
mental role in geometric data processing. Within the data learning framework,
modelling the interactions between data relies on their weighted sums, com-
puted via NNs convolutional operators, has become a building block for deep
learning architectures to process data with a grid-like topology, for example
when reconstructing a free-form model starting from a set of gridded obser-
vations pI ∈ RN, for I ∈ I. Architectures that involve convolutional operators
within their layers are addressed as CNNs; see Section 2.2.2. The architecture
we designed is a pure CNN, hence consisting only of convolutional blocks. This
choice has been made to take advantage of the locality of convolutional opera-
tors in order to be able to support variable input sizes without any additional
effort and/or pre- or post-processing of the data. In particular, since the convo-
lutional neural network is characterized by local operators, the particular size
of the considered point clouds does not play a fundamental role, whereas the
filter dimension does. Consequently, even if a convolutional model is trained on
point cloud of fixed size, it can be easily generalised to point cloud of different
dimensions. In the following, we detail the proposed architecture, together
with information on the data generation, the hyperparameter selection, and the
training process.

4.1.2 Learning model architecture

The proposed architecture, presented in Figure 4.2, is a sequential CNN, namely,
a progression of layers which consists of a feature extraction layer, B convolu-
tional building blocks (characterized by convolutional layers coupled with ReLU
activation functions), a final block of one convolutional layer, the softmax acti-
vation function, and a cumulative sum layer connected to the output. We now
give a detailed description of each component of our architecture to illustrate
how to obtain the output parameterization result.

Input The learning model takes as input a point cloud P of gridded data,
organised in a tensor structure, as in (4.1).
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Features The feature extraction layer produces a relational representation of
the point cloud that is translation invariant. It consists in the computation
of mh − 1 edges in RN between each pair of consecutive points along each
direction h = 1, . . . , D. Figure 4.1 illustrates the feature extraction process
for a structured point cloud with N = 3 and D = 2. In particular, the
edge associated to the element p22 along the direction h = 1 is e1

22 :=
p32 − p22 (shown in red in Figure 4.1), whereas the edge associated to
the element p32 along the direction h = 2 is e2

32 := p33 − p32 (shown in
blue in Figure 4.1). More precisely, for any D ≥ 1, let I = (i1, . . . , iD)
for ih = 1, . . . , mh − 1, h = 1, . . . , D, and let I + h be the multi-index I
augmented by 1 along the h-th direction, for h = 1, . . . , D, namely I + h :=
(i1, . . . , ih + 1, . . . , iD). For all I = (i1, . . . , iD) with ih = 1, . . . , mh − 1 and
h = 1, . . . , D, we define the edges eh

I as eh
I := pI+h − pI . Note that eh

I ∈ RN .
By concatenating the edges eI =

(
e1

I , . . . , eD
I
)
, the extracted features are

defined as the collection of edges

E =
{

eI ∈ RN×D | I = (i1, . . . , iD), ih = 1, . . . , mh − 1, h = 1, . . . , D
}

.

(4.3)

The extracted features are then passed as input to the convolutional
building blocks.

D-conv The convolutional layers perform a D-dimensional convolution over
the input, see e. g., Figure 2.13 in Chapter 2 for 1D and 2D convolution
examples. Each block is characterized by discrete convolutional operators
whose hyperparameters along each direction h = 1, . . . , D are the number
of input and output channels ch

in, cd
out ∈ N \ {0}, the size of the convolving

filter ksh ∈ 2N + 1, the amount of padding added to the boundaries of
the input padh ∈ N, the stride of the convolutional operator sh ∈ N \ {0},
and the spacing between the filter elements dilh ∈ N. By denoting with
uh ∈ Rch

in×Lh
in the input instance of any convolutional layer along the

direction h = 1, . . . , D, and with yh ∈ Rch
out×Lh

out its output, the relationship
between the input (Lh

in) and the output (Lh
out) sizes is

Lh
out =

Lh
in + 2 · padh − dilh ·

(
ksh − 1

)
sh + 1

. (4.4)

In order to fully convert the input along any direction h = 1, . . . , D,
through the filter of dimension ksh and obtain an output with the same
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sequence length, namely Lh
in = Lh

out, we specify sh = 1 and dilh = 0 and

suitably pad the input of each convolutional layer by adding
⌊

ksh/2
⌋

elements around the boundary of each item along any direction h =
1, . . . , D. In particular, we repeat the first and the last input element
(reflect padding mode)

⌊
ksh/2

⌋
times at the beginning and at the end

of each input item, along each direction h = 1, . . . , D. Moreover, we
set the hyperparameter values of the architecture along each direction
h = 1, . . . , D as ksh = 2kh − 1, where kh is the spline order along direction
h, ch

in = m (amount of points) in the first convolutional layer and ch
out = D

in the last convolutional layer. The input/output channels of the hidden
layers are fixed to 100. In particular, their values depends on the user
choice, with the only constrain that ch

out = ch
in for two consecutive layers.

ReLU The ReLU is applied element-wise to the output of all except the last
convolutional hidden layer. It is defined as σ(z) := max {0, z} and it is
used for practical applications among most feedforward neural networks
due both to its simple piecewise linear structure and its high performance
[187].

Softmax As a final activation function we apply the softmax function along
each direction h to generate parameter intervals that form a partition of
unity along each h = 1, . . . , D. In particular, the output of the softmax are
the elements ∆h

I ∈ [0, 1] associated to each edge eh
I computed in the feature

extraction layer, for I = (i1, . . . , iD), with ih = 1, . . . , mh − 1, h = 1, . . . , D.

CumSum In conclusion, the parametric values are recovered by applying
the cumulative sum operation along each direction h = 1, . . . , D. More
precisely, we define the parametric values as

uh
(1,i2,...,iD)

= 0, uh
I+h = xh

I + ∆h
I ,

where I + h is the multi-index I augmented by 1 along the h-th direction,
for h = 1, . . . , D. Thanks to the application of the softmax activation
function, for each h = 1, . . . , D, it is also ensured that the remaining
boundary points are mapped to the boundary of the parameter domain,
namely uh

(i1,i2,...,iD−1,mD)
= 1.

Output The output of the learning model consists of the parametric values U
as defined in (4.2), associated to the input point cloud P .
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4.1.3 Loss function

Once the parameterization as in (4.2) is computed with the PARCNN model, we
estimate the control points of the approximating geometry by solving the least
squares minimization problem, see Section 3.1, in Bernstein-Bézier polynomial
form. The reconstructed geometry s : [0, 1]D → RN is then used to defined the
loss function of our unsupervised learning model.

In particular, let

L : [0, 1]m×D × Rm×N → R

be the Mean Squared Error (MSE) between the values of the polynomial approx-
imation model at the learnt parameters U , i. e.

P̂ =
{

p̂I ∈ RN | p̂I = s(uI), I ∈ I
}

.

and the corresponding data P . The loss function is the residual

L (U , P) :=
1
2 ∑

I∈I

∥p̂I − pI∥2
2 , (4.5)

of the least-squares fitting problem (3.5) in Section 3.1, computed with the
parameters U in output from the network. Note that our method falls into the
unsupervised learning class, since the real parametric values are not considered
to guide the optimization problem, hence our input data are unlabelled.

4.1.4 Curve and surface parameterization learning

In the following, we provide the information concerning the training of our
models. The method we propose can be implemented for any spatial dimension
N ≥ 1 and parametric dimension D ≤ N, thanks to the general definition
of the convolutional operator. Note that we just set up and train a different
model for any distinct pair of values N and D, independently of the considered
point cloud. Moreover, since the input processed by the convolutional layers are
the edges computed in (4.3), our parameterization method is affine invariant.
Thereby, we focus on two cases: the parameterization of point sequences, when
N = 2 or N = 3 and D = 1, and the parameterization of spatial gridded
data, when N = 3 and D = 2, to subsequently compute polynomial and
spline approximations in terms of (univariate) curves and (bivariate) surfaces,
respectively.
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Deep learning has its roots in data-driven artificial intelligence and the Data generation
considered datasets naturally play a fundamental role for the performance of
the model. In view of the lack of public datasets for the problem at hand, the
points used in the training phase have been randomly generated. We produced
multiple synthetic data sets by sampling different kinds of parametric objects,
either curves (D = 1, N = 2, 3) or surfaces (D = 2, N = 3). The proposed
algorithm for data generation is Algorithm 5. The type of the parametric object
in step 1 naturally characterizes the generated point cloud. In particular, for
N = 2, 3 and D = 1 we deal with random polynomial curves of fixed degree
d in Bernstein-Bézier form, see Remark 4 and 6 in Chapter 2, where the basis
β j,k for j = 0, . . . , d are defined in terms of Bernstein polynomials, and cj ∈ RN

for j = 0, . . . , d are the corresponding control points sampled from the standard
normal distribution N (0, 1). For N = 3 and D = 2, we generate an initial
polynomial tensor-product surface with control points cj = (c1

j , c2
j , c3

j )
⊤, where

(c1
j , c2

j )
⊤ are chosen as the tensor product Greville abscissae for degree d and

c3
j are sampled randomly accordingly to the uniform distribution in [0, 1]. The

resulting surface is then also randomly rotated.
Training our neural network consists in using our synthetic data to minimize Hyperparameters

selection and
training process

the loss function (4.5), so that the model weights tend to be optimal for both
seen and unseen input point clouds. In order to optimize the performance of
the network, we set up an extensive grid search on optimizers, learning rates,
filter sizes, and number of convolutional building blocks when applying the
learning parameterization model in the context of planar polynomial curves,
namely for N = 2 and D = 1. In particular, we tested three optimizers (Adam,
SGD, RMSprop) with learning rates ζ = 1e − i, i = 1, . . . , 6. Inspired by [160],
the filter size is set to be 2d + 1, i. e. twice the polynomial degree plus one,
and finally the number of building blocks is B = 4. In addition, we randomly
select the point sequence length of each training batch in the range m ∈ [2d +
1, 100]. We obtained the best results using RMSprop as optimizer, learning rate
equals to 1e − 5, and momentum 0.9 [169]. We then used these hyperparameter
configurations also to train the model designed for higher dimensions, in
particular for N = 3 and D = 2 to address the surface fitting problem. In this
case we increase B to 5 and we fix the point cloud size to m = 100. Note that
we train a different model for any value of N and D without a fixed number
of steps. By following the so-called early stopping criteria, the training phase
continues until the validation loss stagnates, a strategy commonly used to avoid
overfitting.
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Algorithm 5: Generation of rectilinear point clouds.

Input: Polynomial multi-order k ∈ ND, number of samples mh along
each direction h = 1, . . . , D.

1 Generate a random parametric curve s : [0, 1]D → RN, by sampling its
coefficients according to the normal distribution N (0, 1).

2 Sample{
xih ∈ [0, 1] : ih = 1, . . . , mh

}
parameters according to the random uniform distribution Uniform(0, 1),
along each direction h = 1, . . . , D.

3 Normalize the parametric values xih in [0, 1], so that x1 = 0, xmh = 1, i. e.

xih =
xih − minj=1,...,mh xj

maxj=1,...,mh xj − minj=1,...,mh xj
.

4 Define a tensor-product mesh of samples X :=×D
h=1 xh, namely

X =
{

xI ∈ [0, 1]D : xI , I = (i1, . . . , iD) , ih = 1, . . . , mh, h = 1, . . . , D
}

.

5 Evaluate the parametric curve s computed in step 1 on the parametric
values X , so that pI = s(xI) and collect them in P .

6 Normalize P in [0, 1]N.
Output: Rectilinear point cloud P in [0, 1]N.

4.1.5 Alternative deep learning parameterization models

Even if the choice of the convolutional parameterization model is naturally
inspired by the possibility of considering input data sets of variable dimensions,
a comparison of its performance with alternative architectures is needed. We
then also consider an MLP, a TRAnsformer encoder (TRA) and a RESidual neural
network (RES) with convolutional layers. It should be noted that, except for
MLP, both the TRA and RES architectures can also support point sequences of
variable lengths. The performance comparison of these architectures presented
in Table 4.1 motivates the choice of the CNN architecture, resulting in the
proposed PARCNN model.

The MLP we considered is represented in Figure 4.3 (left). It consists of aMultilayer
Perceptron
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Figure 4.3: The MLP (left), TRA (center) and RES (right) architectures.

feed forward model with 7 fully connected layers (Linear) alternated by ReLU
activation function. Each hidden (fully connected) layer has 100 hidden units,
while the first and last ones have m − 1 (corresponding to the relative edges
of the point sequence) and m units, respectively. The output of the last fully
connected layer is sequentially fed to the softmax activation function and the
cumulative sum to obtain suitable parameter values.

By following recent advancements in sequence modelling for natural language Transformer
Encoderprocessing with Bidirectional Encoder Representations from Transformers (BERT)

[47], we applied a TRA to our point sequences. One of the most peculiar feature
of Transformer is the so-called Attention mechanism [175], which introduces
competition to select most valuable information from the input sequence. The
structure of our transformer is illustrated in Figure 4.3 (center). In particular,
we used a model architecture similar to BERT, which consists of 6 encoder
layers with 2048-sized feed-forward layers, dropout probability 10% and N
head attentions (instead of 8 as in BERT) to match our data dimension. The
transformer takes as input the relative distances of the point sequences and its



90 parameterization for point cloud spline fitting

output is sequentially fed to a convolutional layer, a softmax function and a
cumulative sum in order to obtain a suitable parameterization. Even if TRAs, be-
ing very over-parametrized models characterized by quadratic time complexity
on attention layers with respect to the input length, are more computational
expensive than other models, they are capable to handle variable length point
sequence like CNNs.

In order to design our convolutional RES, whose configuration is illustratedConvolutional
Residual Neural

Network
in Figure 4.3 (right), we follow the structure of the residual neural networks
presented in [160] and [85]. In particular, we assemble 3 convolutional residual
blocks, each of them consisting in a feed-forward CNN with 75 (hidden) channels
and skip connections, i. e. the 1st layer output has an additional convolutional
layer connected with the 4th layer. More precisely, each residual block (repre-
sented with the dashed box in Figure 4.3(c)) has one D-convolutional layer to
which the batch normalization and the ReLU follow. Furthermore, there is a
skip connection, implemented as a D-convolution with kernel size 1, that takes
the current residual block input and sums its output to the convolutional layer
output. Softmax activation function and cumulative sum are then applied on
the output of the residual blocks. The other convolutional hyperparameters are
chosen as in Section 4.1.4 for the CNN proposed in Section 4.1.2. The motivation
for choosing this architecture is to prevent the vanishing gradient problem on
very deep architectures during the back-propagation phase, when the chain rule
of derivatives can tend to 0 on top layers. Therefore, by adding skip connections
we can shorten the distance between the starting layers and the last one. This
architecture has similar advantages and disadvantages to a feed-forward CNN,
i.e. can support variable lengths of point sequences but it is computationally
slower compared to a feed-forward CNN due to the multiple branches.

4.1.6 Numerical results for PARCNN

In this section we present a selection of experiments to analyze the perfor-
mance of the introduced learning parameterization model and its generalization
capabilities with respect to a variety of structured data and different spline
approximation schemes. The quality of the parameterization model is defined
in terms of the final accuracy, measured in terms of MAX, MSE or HauSdorff
Distance (HSD).

Firstly, a comparison with state-of-the-art neural networks in the case of poly-
nomial data is presented in Example 4.1.6 (a) and continues in Example 4.1.6 (b),
which shows the flexibility of the proposed CNN-based model on input se-
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quences of variable lengths. Trigonometric and noisy data approximation is
addressed in Example 4.1.6 (c) in the context of adaptive spline curve approxi-
mation. The performance of the proposed CNN model on benchmark datasets
for spline curve approximation is then illustrated in Example 4.1.6 (d).

By moving to the surface case, Example 4.1.6 (e) shows the results on poly-
nomial data, together with the model robustness to noise. Subsequently, in
Example 4.1.6 (f), we provide numerically evidence of the generalization ca-
pabilities of the proposed parameterization model with respect to datasets
significantly different (in nature and size) from the synthetic data used during
the training phase. Finally, in Example 4.1.6 (g) we investigate the performance
of the learning parameterization model for tensor-product B-spline least squares
fitting scheme.

Example 4.1.6 (a)

In this first example, we analyze the different learning parameterization mod- Architectures
comparisonels illustrated in the previous sections. More specifically, we compare our

convolutional model (CNN) with the three deep learning models (MLP, TRA,
RES) of Section 4.1.5 as well as with the results reported in [160, Table 1], i. e.
Parameterization for Polynomial curve Network (PPN). In particular, we assem-
bled all the new networks in order to have about the same number of learnable
parameters (#LP) as PPN. As additional term of comparison, for each considered
metric we also report the best value obtained with the STandarD (STD) schemes
of the form

ui+1 = ui +
∆pi

∆p
for i = 1, . . . , m − 1,

with

u0 = 0, ∆pi := ∥pi+1 − pi∥α , ∆p =
m−1

∑
i=1

∆pi,

among UNI, CHL and CEN parameterizations, that can be recovered by setting
α = 0, 1, 1/2 respectively.

In all the required cases, the filter dimension is set to 2d + 1. We trained
MLP, TRA, RES and CNN on polynomial point sequences of length m = 2d + 1
generated with the algorithm reported in Section 4.1.4, and performed the
tests on 100 data sequences of the same kind of the training set for degrees
d = 2, . . . , 5. The results in terms of averaged MSE, MAX and Direct Hausdorff
Distance (DHD) are reported in Table 4.1 together with #LP. The number of input
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STD MLP TRA RES PPN CNN

d = 2

#LP 5.19e + 4 6.17e + 4 3.02e + 4 5.45e + 4 2.31e + 4

MSE 2.74e − 3 3.78e − 5 1.58e − 2 2.82e − 4 7.8e − 5 2.22e − 5

MAX 4.62e − 2 7.60e − 5 2.60e − 2 5.56e − 4 1.0e − 2 4.37e − 5

HSD 6.17e − 2 7.50e − 3 1.78e − 1 2.27e − 2 8.2e − 3 6.33e − 3

d = 3

#LP 5.25e + 4 6.17e + 4 4.19e + 4 5.47e + 4 3.23e + 4

MSE 1.86e − 3 1.17e − 4 9.94e − 3 3.40e − 4 1.3e − 4 4.55e − 5

MAX 6.09e − 2 2.83e − 4 1.53e − 2 6.63e − 4 1.5e − 2 1.23e − 4

HSD 5.88e − 2 1.45e − 2 1.51e − 1 2.69e − 2 1.2e − 2 9.73e − 3

d = 4

#LP 5.31e + 4 6.17e + 4 5.36e + 4 5.50e + 4 4.15e + 4

MSE 8.96e − 4 1.13e − 4 6.69e − 3 2.48e − 4 1.4e − 4 2.72e − 5

MAX 2.11e − 2 2.87e − 4 1.07e − 2 5.32e − 4 1.7e − 2 5.44e − 5

HSD 4.47e − 2 1.58e − 2 1.31e − 1 2.50e − 2 1.4e − 2 8.05e − 3

d = 5

#LP 5.37e + 4 6.17e + 4 6.52e + 4 5.52e + 4 5.07e + 4

MSE 4.75e − 4 1.60e − 4 4.94e − 3 2.09e − 4 1.5e − 4 2.22e − 5

MAX 1.16e − 2 6.52e − 4 9.49e − 3 3.63e − 4 1.9e − 2 6.32e − 5

HSD 3.41e − 2 1.96e − 2 1.17e − 1 2.41e − 2 1.6e − 2 7.67e − 3

Table 4.1: Comparison of the different parameterization methods on polynomial data
sets of 2d + 1 points for d = 2, 3, 4, 5 in Example 4.1.6 (a). The learnable
parameters (#LP) for the different neural networks are also shown.

units and the kernel size increase with the degree and, consequently, also the
number of learnable parameters changes. As concerns TRA, the change is not
evident within the first 3 significant digits, since the encoder architecture, which
is the prevalent part of this network, is not affected by the input dimension and
the kernel size. We can note that, except for TRA, the learning parameterization
models outperform the standard parameterization techniques by gaining up
to two (RES, PPN) or three (MLP, CNN) order of accuracy with respect to the
different metrics. The best error results are highlighted in bold, in particular it
should be noted that the CNN model always scores the lowest approximation
errors, while also having the smallest amount of #LP.
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m = 20 m = 50 m = 80

d STD PPN CNN STD PPN CNN STD PPN CNN

2 2.97e − 3 5.3e − 4 3.21e − 5 1.79e − 3 7.3e − 4 2.23e − 5 1.46e − 3 7.9e − 4 4.13e − 5

3 2.20e − 3 6.7e − 4 1.31e − 4 1.43e − 3 8.7e − 4 8.80e − 5 1.41e − 3 8.5e − 4 1.09e − 4

4 1.66e − 3 3.3e − 4 7.24e − 5 1.06e − 3 4.3e − 4 5.30e − 5 9.48e − 4 4.1e − 4 6.13e − 5

5 1.35e − 3 4.8e − 4 3.71e − 5 7.65e − 4 5.8e − 4 2.50e − 5 5.09e − 4 5.6e − 4 3.55e − 5

Table 4.2: MSE error for Bézier approximation of degree d = 2, 3, 4, 5 on polynomial
data for different input lengths m = 20, 50, 80 in Example 4.1.6 (b).

Example 4.1.6 (b)

In this experiment, we exploit the PARCNN model on univariate polynomial data Polynomial curve
approximationfor different degrees d and variable point sequence lengths m. For each degree

d = 2, . . . , 5, and length m = 20, 50, 80, we generate 100 polynomial point se-
quences P =

{
pi ∈ R2 | i = 1, . . . , m

}
as detailed in Section 4.1.4. Subsequently,

we compute their parameterization U = {ui ∈ [0, 1] | i = 1, . . . , m} with the
proposed CNN-based approach and with standard parameterization schemes.
We then compare the averaged MSE obtained building the Bézier fitting model
at the parametric values given by the best standard technique (STD), the results
presented in [160, Table 2] (PPN), and the ones obtained with our convolutional
model (CNN). The outcome of this analysis is reported in Table 4.2, where the
best approximation errors are highlighted in bold. The CNN outperforms STD
methods and the PPN model in terms of MSE. In particular, the MSE obtained
with CNN is reduced up to one and two orders of magnitude as regards PPN and
STD, respectively. The advantage of our PARCNN model lies not only in the better
performance shown in Table 4.2, but also in the novelty of its self-contained
nature. For each input point sequence of any length, our convolutional learning
method directly computes the corresponding point parameterization, without
any additional computation. The approach proposed in [160] instead requires
multiple network evaluations and a post processing step to handle arbitrary
sequence lengths.

Example 4.1.6 (c)

In this example we investigate the generalization capabilities of our convolu- Spline curve
approximation of
trigonometric and
noisy datasets

tional parameterization model to different datasets and adaptive B-spline curve
fitting of various degrees (d = 2, 3, 4, 5), as well as its robustness to noise. By
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considering the algorithms presented in Section 4.1.4, we generate two distinct
datasets of size 100 by sampling trigonometric and polynomial curves. The
trigonometric curves are defined as

c(t) = a0 +
r

∑
j=1

aj cos(jt) +
r

∑
j=1

bj sin(jt),

for a fixed degree r, where a0, aj, bj ∈ R2 are values sampled from the standard
normal distribution N (0, 1), for j = 0, 1, . . . , r. In the polynomial case, we added
a factor of 1e − 2 random Gaussian noise to the data points.

We test the CNN parameterization by considering adaptive B-spline least-
squares approximation obtained by performing dyadic refinement of the knot
intervals which exhibit the highest error values. The resulting MSE is shown in
in Table 4.3 for trigonometric data of degree r = 5 (top) and noisy polynomial
data (bottom), for different input sequence lengths (m = 20, 50, 80) and adaptive
B-spline approximations with a final number of 5 interior knots. The proposed
CNN parameterization model always obtains better results, highlighted in bold,
than the best standard methods (STD). In particular, in the case of trigonometric
data (Table 4.3 (top)), it gains up to two order accuracy. For the results on noisy
polynomial data (Table 4.3 (bottom)), the accuracy obtained with CNN model is
improved up to one order of magnitude when compared to STD.

To better understand the generalization capabilities of the network when an
increasing number of knots is considered, we present a final test with fixed
input length equals to m = 20. We then perform an adaptive B-spline curve
fitting with dyadic refinement, starting from the polynomial case of 0 internal
knots up to 10 internal knots. The results in terms of MSE for the CEN, CHL,
UNI and CNN parameterizations for d = 3, 4, 5 are shown in Figure 4.4 (top)
for trigonometric data of degree r = 5 and in Figure 4.4 (bottom) for noisy
polynomial data. We may observe that in Figure 4.4 (top) for d = 3, 5 the MSE
error gap between CNN and STD is maintained or even increased with respect
to the number of interior knots inserted. In Figure 4.4 (top) for d = 4 and in
Figure 4.4 (bottom) for all the degrees, the MSE error gap between CNN and
STD tends to reduce with the number of interior knots inserted, but the CNN
parameterization model always achieves the best results.

Example 4.1.6 (d)

In this experiment, we test our parameterization model on point sequencesSpline curve
approximation of

benchmark datasets
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m = 20 m = 50 m = 80

d STD CNN STD CNN STD CNN

2 3.01e − 4 1.56e − 5 2.17e − 4 6.08e − 6 1.71e − 4 5.82e − 6

3 1.35e − 4 1.63e − 5 1.10e − 4 1.05e − 5 3.16e − 5 7.84e − 6

4 1.74e − 4 5.53e − 6 2.48e − 5 3.66e − 6 3.14e − 5 4.74e − 6

5 3.09e − 5 2.54e − 6 1.17e − 5 1.88e − 6 4.03e − 5 1.92e − 6

m = 20 m = 50 m = 80

d STD CNN STD CNN STD CNN

2 1.27e − 4 7.69e − 5 1.32e − 4 9.46e − 5 1.54e − 4 1.02e − 4

3 9.54e − 5 3.36e − 5 1.21e − 4 6.33e − 5 1.12e − 4 7.24e − 5

4 7.37e − 5 2.68e − 5 1.66e − 4 8.89e − 5 8.41e − 5 4.04e − 5

5 9.02e − 5 2.72e − 5 1.68e − 4 7.64e−5 1.04e − 4 6.11e − 5

Table 4.3: MSE for adaptive B-spline approximation with 5 interior knots of degree
d = 2, 3, 4, 5 on trigonometric data (top) and polynomial data with random
Gaussian noise (bottom) for different input lengths m = 20, 50, 80 in Exam-
ple 4.1.6 (c).

sampled by the benchmark presented in [141]. By considering B-spline approx-
imation of degree d = 4 with at most 15 adaptive interior knots, Figure 4.5
presents the results obtained employing the standard (UNI, CHL, CEN) and
the CNN parameterizations on an increasing number of input points, namely
m = 20, 50, 80. An analogous comparison on a sequence of m = 65 points,
approximated with degree d = 5 B-splines and adaptive knot vectors with a
varying number (4, 7, and 10) of interior knots is shown in Figure 4.6.

Example 4.1.6 (e)

In this experiment we illustrate the performance of the proposed parameteriza- Polynomial surface
approximationtion model on both exact and noisy data sampled from polynomial patches in

the bivariate case. In particular, we collect structured point clouds by sampling
Bézier surfaces of bi-degree d = (d, d). For each d = 2, 3, 4, 5, we generate 100
point clouds consisting of m = 144 gridded points following the algorithm
described in Section 4.1.4. In addition, we also create a noisy version of this
dataset by perturbing each point cloud with Gaussian noise, considering a
factor ϵ = 5e − 3. The results of the parametric polynomial fitting of bi-degree
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Figure 4.4: MSE for adaptive B-spline approximations with increasing number of knots
tested on m = 20 trigonometric (top) and noisy (bottom) data for degree
d = 3 (left), d = 4 (center) and d = 5 (right) in Example 4.1.6 (c).

Figure 4.5: B-spline approximation of degree d = 4 with 15 interior knots for 20 (left),
50 (center), and 80 points (right) in Example 4.1.6 (d).

Figure 4.6: B-spline approximation of 65 points with d = 5 and 4 (left), 7 (center), 10
(right) interior knots in Example 4.1.6 (d).
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exact noisy

d STD CNN STD CNN

2 1.20e − 3 5.21e − 4 1.26e − 3 5.94e − 4

3 6.07e − 4 2.25e − 4 6.45e − 4 2.57e − 4

4 3.91e − 4 1.46e − 4 4.62e − 4 1.94e − 4

5 2.19e − 4 8.97e − 5 2.75e − 4 1.35e − 4

Table 4.4: MSE error for polynomial least-squares approximation of polynomial (left) and
noisy (right) data of bi-degree = (d, d), for d = 2, 3, 4, 5 in Example 4.1.6 (e).

d = (d, d) of the aforementioned generated point clouds are reported in Ta-
ble 4.4 in terms of MSE for the best standard parameterization technique (STD),
among UNI, CHL and CEN, and the proposed convolutional model (CNN). The
best approximation MSE values are highlighted in bold. The errors give nu-
merically evidence of the generalization capabilities of the trained model with
respect to datasets which are somehow similar but at the same time indepen-
dent from the ones used in the training phase. In particular, the proposed
model avoids potential over-fitting problems, it is robust to noise, and it always
increases the accuracy of the polynomial approximation more than 50% over
STD parameterization techniques in all the considered configurations.

Example 4.1.6 (f)

In this experiment, we analize the generalization capabilities of the parame- Polynomial
approximation of
geometric models

terization learning model for data which are different both in dimension and
nature from the one used in the training phase. More precisely, we sample point
clouds of dimension either m = 1089 or m = 3025 from 3 different B-spline
geometries of bi-degree d = (d, d), representing a car, a ship hull, and a wind
turbine. The corresponding point clouds are illustrated in Figure 4.7 for the
case of 1089 (top) and 3025 (bottom) samples. Moreover, for this experiment
we have also stored the true parametric values X using during the sampling
phase and we will refer to them as the ground truth (GT) in the comparisons.
Once the data have been parametrized with the convolutional method (CNN),
we performed polynomial approximation of bi-degree d = (d, d) and compare
the MSE and MAX obtained with GT and CNN parameterizations. Note that the
GT parameters come from a specific B-spline geometry with different degrees
and knot lines configurations, therefore if used for different spline models they
not necessarily lead to zero error at the evaluation sites.
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Figure 4.7: Point clouds obtained from a car (left), a ship hull (center), and a wind
turbine (right) model of 1089 (top) and 3025 (bottom) points.

The results are reported in Table 4.5, where the best approximation values are
highlighted in bold. They numerically show the generalization capabilities of
the proposed model with respect to the size of the input point clouds and to the
nature of the data. For the car geometry, in all the considered configurations, the
MSE error of the final reconstructed polynomial approximation is smaller in the
case of the CNN parameterization, with a gain in accuracy up to more than 50%
for d = 3. When the ship hull geometry is considered, the best performances
are achieved if the CNN parameterization is applied in combination with lower
polynomial bi-degrees d = (d, d), namely d = 2, 3, and for d = 2 the final
reconstructed geometry of the bigger point cloud gains more than 60% of
accuracy. As concerns the final wind turbine geometry, the best advantage is
registered on the point cloud of size m = 1089 among all the different bi-degrees,
where the MSE is improved up to more than 60% for bi-degree d = (3, 3). The
same bi-degree d = (3, 3) leads also to the best error results for the bigger wind
turbine point cloud.

Example 4.1.6 (g)

In this example we show the generalization capabilities of the convolutionalTensor product
B-splines

approximation
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car ship hull wind turbine

d GT CNN GT CNN GT CNN

m
=

10
89

2 1.38e − 3 8.28e − 4 2.53e − 4 1.11e − 4 1.95e − 3 1.30e − 3

3 4.58e − 4 1.94e − 4 7.28e − 5 6.01e − 5 1.18e − 4 3.94e − 5

4 1.19e − 4 7.63e − 5 2.78e − 5 1.88e − 5 4.21e − 5 3.54e − 5

5 7.82e − 5 6.73e − 5 5.89e − 6 1.19e − 5 2.67e − 5 1.38e − 5

m
=

30
25

2 1.32e − 3 8.10e − 4 2.34e − 4 8.44e − 5 1.90e − 3 1.55e − 4

3 4.42e − 4 2.03e − 4 6.76e − 5 4.95e − 5 1.14e − 4 7.63e − 5

4 1.14e − 4 5.54e − 5 2.62e − 5 2.05e − 5 4.14e − 5 5.55e − 5

5 7.47e − 5 5.13e − 5 5.67e − 5 1.17e − 4 2.62e − 5 2.14e − 5

Table 4.5: MSE for polynomial least-squares surface approximation with different bi-
degrees d = (d, d) of the car shell, the ship hull, and the wind turbine point
clouds of size m = 1089 and m = 3025 in Example 4.1.6 (f).

parameterization for tensor product B-spline models. In particular, we consider
the point clouds obtained from the car shell geometry introduced in Exam-
ple 4.1.6 (f) for which we perform a tensor product B-spline approximation of
bi-degree d = (3, 3) with 3 levels of uniform refinement, both considering the
given parameterization (GT) and the convolutional parameterization (CNN).

Concerning the point cloud of dimension 1089, the MSE error registered using
GT parameterization is 8.18e − 6. If the CNN parameterization is considered,
the MSE is more than halved and reduces to 3.54e − 6. Analogous results are
achieved when considering the point clouds of dimension 3025 for which
the GT parameterization leads to MSE of 8.21e − 6, whereas by using the CNN
parameterization the accuracy improves more than 40% obtaining an MSE equals
to 4.31e − 6.

The scaled error distributions of the final approximation plotted on the
parametric and physical domain, for both GT and CNN parameterizations, are
illustrated in Figure 4.8 for the point cloud of size 3025. More precisely, plots
(a) and (b) in Figure 4.8 are the error distributions for the GT parameterization,
whereas the corresponding results for the CNN parameterization are shown in
plots (c) and (d) of the same figure.
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(a) (b) (c) (d)

Figure 4.8: Point-wise error on the parametric (a-c) and geometric (b-d) domain of the
tensor product B-spline approximation of bi-degree d = (3, 3) for the car
shell point cloud of size 3025 using the given GT (a-b) and the CNN (c-d)
parameterizations in Example 4.1.6 (g).

4.2 pargcn : parameterization of scattered data with graph

convolutional neural networks

The standard paradigms of deep learning have been designed in order to process
data characterized by a regular multiple array structure, as for the rectilinear
point clouds analyzed in the previous Section. However, CNNs are not suitable
for applications whose data has a graph or mesh structure or is completely
unorganized, e. g., 3D shapes, chemical molecules, social/relational networks,
citation networks, scattered point clouds, among others. In order to handle
this kind of data, a new learning theory and related architectures have been
developed.

GCNs have become the counterpart of CNNs to process data belonging to dis-
crete manifolds, graphs, or general point clouds, and many different approaches
to defining convolutional operators on graph domains have been proposed [186].
In particular, the translation of standard filter operators to graph operators relies
on suitable aggregations of vertex and neighbour features; see for more details
Section 2.2.3. GCNs are employed in the next two Sections, i. e. Section 4.2 and
Section 4.3, to address the parameterization problem of scattered point clouds.

In this Section, we propose a deep learning approach called PARGCN for
parameterizing an unorganized or scattered point cloud in R3 with GCNs. The
proposed parameterization learning model builds upon a GCN that predicts
the weights (called parameterization weights) of certain convex combinations
that lead to a mapping of the physical points into a planar parameter domain,
after solving a sparse linear system. This is a novel learning approach that
goes beyond closed-form heuristic choices of the parameterization weights
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[62], thus introducing a geometry-informed learning procedure that produces
parameterizations of high quality.

While graph neural networks have been successfully applied to classification
tasks such as shape recognition, segmentation and registration [83, 152, 163,
182], regression tasks where the network should predict a (potentially vector-
valued) function on the input geometry are much less studied [6, 51, 71]. One
difficulty is that GCNs aim to perform classification, segmentation or regression
on the vertices V of a given graph G = (V , E). However, we are interested
in performing regression on the edges E instead of the vertices V of G. To
overcome this problem, given the directed graph G, we extract its line graph
(dual-graph) [78, 84], which represents the adjacencies between edges of the
original graph. The line graph is used as input to a geometry-informed graph
convolutional neural network trained to learn optimal parameterizations.

4.2.1 Meshless barycentric parameterization

Let P be a scattered point cloud, as in (1.1). The adjective scattered usually
indicates that the points do not have a regular structure. Thereby, the only
assumption we make consists in assuming that the unorganized point cloud P
can be partitioned into two disjoint subsets, i. e. P = PI∪̇PB, with

PI =
{

pi ∈ R3 | i = 1, . . . , n
}

, (4.6)

the set of interior points, and

PB =
{

pi ∈ R3 | i = n + 1, . . . , m
}

, (4.7)

the set of boundary points. Our objective consists in finding a suitable parame-
terization U as in (1.3) for the unorganized data in P .

In [62], the authors propose a method for parameterizing an unstructured
point cloud over a convex polygonal domain Ω ⊂ R2. It consists of two steps:

1. Boundary point cloud parameterization. The boundary points PB in (4.7) are
parameterized over the boundary of the parameter domain Ω, resulting
in parameters

UB = {ui ∈ ∂Ω | i = n + 1, . . . , m} , (4.8)

that lie in anticlockwise order on ∂Ω.
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Figure 4.9: A radius neighbourhood.

2. Interior point cloud parameterization. A directed graph G, whose vertices
are the points in P , is determined. The parameters that correspond to
the points PI in (4.6) are assumed to be convex combinations of their
neighbours in the graph with certain weights. This leads to a sparse linear
system whose solution is the parameterization of PI , i. e.

UI = {ui ∈ Ω | i = 1, . . . , n} . (4.9)

As far as the first step of the method is concerned, several approaches are
available for the parameterization of point sequences, as already discussed in
Section 4.1. We then assume that the parametric values UB in (4.8) corresponding
to the boundary points PB in (4.7) are known.

In the second step, for each point in pi ∈ PI , i = 1, . . . , n, a neighbourhood
Ni ⊂ {1, . . . , m} \ {i} is determined. In particular, we use the ball neighbour-
hood

Ni =
{

j ∈ {1, . . . , m} : 0 < ∥pi − pj∥ < r
}

, i = 1, . . . , n, (4.10)

for some radius r > 0, as illustrated in Figure 4.9. Choosing a neighbourhood
for each point in PI leads to a directed graph G = (V , E), whose vertices
V = {1, . . . , m} are the indices of P and whose directed edges E are all ordered
pairs (i, j) such that i ∈ {1, . . . n} and j ∈ Ni. Each directed edge (i, j) ∈ E
connects an interior index i with either an interior or a boundary index j. The
graph G is the so-called fixed-radius near neighbour graph [4] from PI into P
or, for short, the radius graph of the points P .

The unknown parameter ui for each point pi ∈ PI is assumed to be a convex
combination

ui = ∑
j∈Ni

λij uj, i = 1, . . . , n, (4.11)
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pi λij

λki

λik

Figure 4.10: Examples of two directed neighbourhoods for the interior points pi and
pk, for any i, k = 1, . . . , n. The interior points PI in (4.6) are cyan, while the
boundary points PB in (4.7) are red.

of its neighbours in G, where the parameterization weights fulfill λij > 0 and
∑j∈Ni

λij = 1. Figure 4.10 shows an example for two interior points pi, pk ∈ PI
(in blue) and their corresponding neighbourhoods Ni and Nk, where we identify
the vertices in G with the corresponding points in P .

We collect the linear equations (4.11) in a linear system

A UI = B, (4.12)

where A is the sparse n × n-matrix

Aij =


1 if i = j,

−λij if j ∈ Ni,

0 otherwise,

B is the n × 2 matrix B = (b1, . . . , bn)
⊤ with

bi = ∑
{1,...,n}∩Ni

λijuj

and UI = (u1, . . . , un)
⊤ is the n × 2 matrix that contains the unknown parame-

ters of the interior points.
In order to guarantee that the matrix A in (4.12) has full rank, the choice of the

radius r is crucial. As proved in [62, Proposition 3.3], each interior parameter
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Figure 4.11: A Delaunay neighbourhood.

needs to be related to at least one boundary point by a sequence of linear
equations, which corresponds to the existence of a path in G from each interior
index i = 1, . . . , n, to any boundary index.

What remains to be determined is the specific choice of the parameterization
weights λij for i = 1, . . . , n and j ∈ Ni. The latter determine the parameterization
of PI and it is therefore important to choose them carefully in order to obtain
good results. The particular choice of λij is still open, while some heuristics
have been proposed. More precisely, in [62] two heuristic choices are suggested:
UNIForm parameterization weights (UNIF) and RECiprocal Distance parameter-
ization weights (RECD). The uniform weights aim at generalizing the concept
of uniform parameterization of curves to surfaces, hence the parameterization
weights are simply chosen as

λij =
1

|Ni|
.

The reciprocal distance weights are meant to generalize the concept of chord-
length parameterization to surfaces, thus, the weights are chosen as

λij =
∥pj − pi∥−1

∑k∈Ni
∥pk − pi∥−1 .

A third choice that is proposed in [62] are the Local Projection Shape-
Preserving parameterization weights (LPSP), which are not defined on the
radius graph. Instead, for all interior points pi the neighbourhood (4.10) is
projected onto its best-approximating plane. The resulting planar point cloud
is then triangulated by a Delaunay triangulation [43, 81]. The neighbours of
pi in the Delaunay triangulation are its neighbours in the local projection graph
G, see Figure 4.11. The corresponding weights are found based on the shape
preserving weights for triangulated surfaces presented in [58]. For each interior
point pi, the neighbours are ordered counter-clockwise and intermediate local
parameters ũ are determined such that for all j ∈ Ni

∥ũi − ũj∥ = ∥pi − pj∥
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and

∠(ũj, ũi, ũj+1) =
2π∠(pj, pi, pj+1)

∑k,(k+1)∈Ni
∠(pk, pi, pk+1)

,

i. e. the lengths and the angle ratios around pi are preserved. Finally, corre-
sponding weights λij are computed from the parameters ũj. For details about
the implementation we refer to [58].

In general, there is no constraint on the choice of the weights, besides all
weights being positive and weights that belong to a common interior point to
sum up to one, i. e.

λij > 0, ∑
j∈Ni

λij = 1, for i = 1, . . . , n, and j ∈ Ni.

Consequently, the space of possible weights, and resulting parameterizations,
is very large. This motivates us to train a deep neural network to predict the
optimal choice of parameterization weights.

In the following, we present the details of our neural network based method
for predicting the optimal parameterization weights λij in (4.11). Our method
takes as input an unstructured point cloud with parameterized boundary
curves. The feature extraction step proceeds as follows. First, the radius graph
associated to the unstructured point cloud is computed, and then its line graph,
together with appropriate vertex features suitably identified as described in
Section 4.2.2, is derived. The line graph is then given as input to our graph
convolutional neural network, detailed in Section 4.2.3. The output of the
network is a set of parameterization weights λij, for any interior point, i =
1, . . . , n and neighbouring point, j ∈ Ni. Those are mapped back to the radius
graph, and finally, a system of the form (4.12) is solved to obtain the parametric
values.

4.2.2 Preprocessing and feature extraction

As a preprocessing step, the input point cloud is normalized by translation
and scaling so that it is contained inside the unit cube [0, 1]3. As outlined in
Section 4.2.1, the interior points in PI are parameterized using neighborhood
relationships in a directed graph G, which is the radius graph from PI into
P , based on the ball neighborhoods (4.10). Therefore, predicting optimal pa-
rameterization weights corresponds to predicting edge weights on the directed
graph. However, while a number of graph neural network architectures can
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Figure 4.12: Examples of a directed graph G (left) and its corresponding directed line
graph L (G) (right).

incorporate given edge weights in their convolution, their predictions live on the
vertices of the graph. In order to predict an output on the directed edges of G,
we transform G into a line graph L (G) whose vertices are the directed edges of
G. The formal definition of the line graph follows.

Definition 12. The line graph of a directed graph G = (V , E) is the directed graph
L (G) = (V ′, E ′) whose vertex set V ′ corresponds to the directed edges E . E ′ contains
all directed edges from a vertex (i, j) ∈ V ′ to a vertex (k, ℓ) ∈ V ′ such that j = k,
j, k ∈ V .

An example of a directed graph G and its corresponding directed line graph
L (G) is shown in Figure 4.12.

In order to define the features on the vertices L (G) that the network will
process, we define features on the edges of G and transfer them to the vertices
of L (G). For each edge of G = (V , E), i.e. (i, j) ∈ E , we define the edge feature

eij :=
(

pi, pi − pj
)⊤ ∈ R6, (4.13)

which are attached to the vertices of L (G). This choice of features was suggested
in [180], and motivated by the aim to achieve partial translation-invariance.

4.2.3 Architecture

The architecture developed for this study is a graph convolutional neural
network, characterized by a suitable choice of fast and localized spectral convo-
lutional operators introduced in [42]. The mathematical foundations of spectral
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convolutional graph neural networks are rooted in graph signal processing and
graph Fourier transforms. In view of the convolution theorem [128], spectral
convolutions are defined as linear operators that diagonalize self-adjoint oper-
ators of the graph in the Fourier (i. e. eigenvector) basis of the spectral space.
State-of-the art graph convolutional operators are implemented by means of
functional calculus.

Given a graph G = (V , E), we are interested in performing vertex regression
on G, hence in processing the features (also called signals) defined on V . Assum-
ing V to be finite, namely |V| = v, let W ∈ Rv×v be the (weighted) adjacency
matrix describing the graph connections between pair of vertices, i. e.

Wij =

0 if (i, j) ̸∈ E ,

wij > 0 if (i, j) ∈ E .

Moreover, let D ∈ Rv×v be the degree matrix, which is a diagonal matrix whose
elements are

Dii :=
v

∑
j=1,j ̸=i

wij, for i = 1, . . . , v

and 0 otherwise. The frequency (i.e. spectral) domain of a graph can be deter-
mined by the self-adjoint Laplacian operator ∆, either considering its unnormal-
ized definition

∆ := D − W

or its normalized form

∆ := Iv − D
1
2 WD

1
2 ,

where Iv is the v × v identity matrix. Let {µℓ}v
ℓ=1, µℓ ∈ R≥0 for each ℓ, be

the ordered set of eigenvalues for ∆ and let {xℓ}v
ℓ=1, xℓ ∈ Rv, their associated

orthonormal eigenvectors. It follows that for s ∈ Rv,

∆s =
v

∑
i=1

µi⟨s, xi⟩xi,

where ⟨·, ·⟩ is an inner product in Rv. In addition, let gθ : R → R be a filter
function depending on the parameter θ ∈ R. We can apply gθ on ∆, resulting in

gθ (∆) s =
v

∑
i=1

gθ (µi) ⟨s, xi⟩xi.
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Figure 4.13: PARGCN Architecture design.

For suitable choices of gθ, its application to ∆, reported in the above equation,
has an explicit formulation. In particular, this is the case of [42], where gθ is
defined as a polynomial filter, so that

gθ (µi) =
d

∑
j=0

θjµ
j
i , for each i = 1, . . . , v,

where θj are polynomial coefficients. To develop a recursive and fast formulation
of spectral filter, the authors in [42] exploit the Chebychev polynomials. During
the training phase, described later in Section 4.2.6, optimal values for θj will be
computed. For further details about spectral convolutional operators and their
properties we refer to [42] and [115].

To predict the weights needed for constructing a meshless parameterizationPARGCN
architecture of an unorganized point cloud, we design a sequential graph convolutional

neural network to which we add shortcut connections. The layout of the learning
architecture is illustrated in Figure 4.13. It consists of the input (Input), 4 spectral
convolutional layers (ChC), ReLU activation functions after each convolution
(relu), a concatenation layer (cat), an MLP (mlp), composed by 3 fully connected
layers, the softmax activation function (σ) and, finally, the output (Output).

In the following, we give a detailed description of each component of our
architecture and the identification of the resulting parameterization.

Input The directed line graph L (G) = (V ′, E ′) together with the (line graph)
vertex features (4.13) form the input of the neural network. The line graph
is built on the radius graph of the unorganized point cloud P , for which
we want to compute the parameterization.

ChC The spectral graph convolutional layers are characterized by the Cheby-
chev polynomial filters proposed in [42], based on the normalized graph
Laplacian ∆. For each layer ℓ = 1, . . . , 4, the corresponding convolutional
layer ChC

(
f in
ℓ , f out

ℓ , gℓ
)

is defined by declaring the size of input and out-
put features f in

ℓ , f out
ℓ and the dimension of the convolving filter gℓ. More
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precisely, for each ℓ = 1, . . . , 4, we choose gℓ = 2d + 1, depending on the
polynomial bi-degree d = (d, d) used in the loss function in (4.14). As
concerns the dimension of the layer features, for the first layer f in

1 = 6, ac-
cordingly to (4.13), whereas we choose f out

1 , f in
ℓ , f out

ℓ = 64 for ℓ = 2, . . . , 4.

relu The ReLU activation function is applied element-wise to the output of
each spectral convolutional layer, in order to obtain a non-linear learning
model.

cat In order to prevent the degradation problem, due to numerical instabilities
related to a potentially too high number or learnable parameters [85, 166],
we introduce short-cut connections by concatenating the output of each
ReLU function, enabling the network to skip the sequence of layers in
between.

mlp The content of the concatenation layer is processed by an MLP charac-
terized by three hidden layers: the input layer, the hidden layer, and the
output layer, of dimensions f in = 262, f h = 64, and f out = 1, respectively.
Note that f in is a constrained dimension due to the dimension of the pre-
vious concatenation layer, f h is an author’s choice, and f out corresponds
to the dimension of the output features related to the problem. In this
case, we want to predict one weight for each vertex of the line graph L (G),
corresponding to each edge of the graph G.

σ Finally, we apply the softmax function to each local neighbourhood identi-
fied by Ni, for each i = 1, . . . , n, in order to guarantee the parameterization
weights to be positive and to form a partition of unity for each neighbour-
hood Ni. More precisely, for j ∈ Ni and i = 1, . . . , n,

σ(xj) =
exp(xj)

∑k∈Ni
exp(xk)

.

Output The output of the model is a vector of length |V ′|, whose components
correspond to the predicted parameterization weights λij for i = 1, . . . , n
and j ∈ Ni to be used to assemble and solve the linear system in (4.12).
Due to the final softmax activation function σ, they are positive and we
have ∑j∈Ni

λij = 1, for all i = 1, . . . n.
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4.2.4 Loss function

There are multiple strategies for training the neural network on our data set, con-
sisting of synthetically generated data. One possibility is to compute the exact
parameterization weights λij from (4.11) and use them as labels, minimizing the
MSE of the output weights predicted by our network. We can alternatively solve
the linear system (4.11) based on the predicted parameterization weights and
minimize the MSE with respect to the exact parameters. These two approaches
result in a supervised learning method, as the exact parameterization for the
training data needs to be available.

In this Thesis, we instead pursue an unsupervised learning approach: from the
predicted parameterization weights, we first solve the linear system (4.11) to
obtain a suitable parameterization U as in (1.3) of the input point cloud P as in
(1.1). When training the network, we use this parameterization to fit a tensor
product Bézier surface s to the data by solving the linear least-squares problem,
see (3.5) in Section 3.1. The loss function is the residual

L(λij,P) =
m

∑
i=1

∥s(ui)− pi∥2
2 , (4.14)

of the least-squares fitting problem corresponding to the parameter ui that
were obtained from the predicted parameterization weights λij, by solving the
system in (4.11). Note that in the implementation of the method it is necessary
to obtain the gradients of the solution to the linear problem (4.11) and the linear
least-squares problem, with respect to the input λij and U .

One advantage of this unsupervised learning approach is that the network
can be trained on arbitrary point clouds, even if the points are not sampled from
a tensor product Bézier surface or if no parameterization is known. Moreover,
even for training data sampled from tensor product Bézier surfaces, minimizing
the loss function (4.14) leads to better experimental results than minimizing the
MSE with respect to the parameterization weights or the parameters.

4.2.5 Shape preserving correction

From the predicted parameters λij, we obtain the parameters U by solving
the linear system (4.12). While we can directly use these parameters for fitting
a polynomial surface to the input point cloud by solving the least-squares
problem, we also investigate the use of a further correction step inspired by the
shape preserving parameterization from [58]. To this end, we first obtain a global
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Delaunay triangulation of the planar parameters ui, i = 1, . . . , m. Then, for each
interior point pi, i = 1, . . . , n, we determine the shape preserving weights λij
with respect to the corresponding neighbours pj in the planar triangulation,
as described in Section 4.2.1. By solving the linear system (4.12) once more
based on the neighbourhoods defined by the Delaunay triangulation and the
shape preserving corrected weights, we obtain the corrected parameterization. In
Example 4.2.7 (a), we empirically analyze the difference between the parameters
obtained using the predicted parameterization weights and the shape preserving
corrected weights.

4.2.6 Learning meshless parameterization

In this section, we present the necessary steps for implementing the PARGCN
method described in the previous sections. Since our method follows a data-
driven approach, it is necessary to obtain a large enough data set, which we
generate synthetically, similarly to the procedure described in Section 4.1.4. In
what follows, we also summarize the hyperparameters used for the training
process.

Data-driven methods naturally depend on data, and in particular on their Data generation
availability, amount, and nature. The network architecture takes as input a
directed line graph based on the radius graph of the point cloud. Since there
are no public data sets available that are suitable for the parameterization of
unorganized point clouds, we generate synthetic data by randomly sampling
points from randomly generated polynomial parametric surfaces of bi-degree
d = (d, d). The precise algorithm for data generation follows, see Algorithm 6. In
particular, as concerns step 1, we generate an initial polynomial tensor product
surface with control points cj = [c1

j , c2
j , c3

j ]
T, where [c1

j , c2
j ]

T are chosen as the
tensor product Greville abscissae for bi-degree d = (d, d), and c3

j are sampled
randomly accordingly to the uniform distribution in [0, 1]. We then choose a
random rotation axis x ∈ R3 by sampling each of its components with respect
to the random uniform distribution on [0, 1] and a random angle ψ according to
the random uniform distribution on [0, π]. The initial surface is rotated around
x ∈ [0, 1]3 by ψ.

The resulting point cloud is the ordered union of PI and PB, i. e.

P = {p1, . . . , pn, pn+1, . . . , pm} .

Note that the surfaces created by this algorithm are graph surfaces of tensor
product polynomial functions of arbitrary orientations in space. While this
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Algorithm 6: Generation of scattered point clouds.
Input: Polynomial bi-degree d = (d1, d2), number of interior samples n

1 Generate a random polynomial tensor product surface of bi-degree d.
2 Sample random interior parameters ui =

(
u1

i , u2
i
)

for i = 1, . . . , n
according to the uniform distribution on (0, 1)2.

3 Set m = n + 4
(⌈√

n
⌉
+ 1
)

and sample random boundary parameters ui for
i = n + 1, . . . , m according the uniform distribution on ∂[0, 1]2.

4 Evaluate the surface on the interior parameters ui, and define the interior
points pi ∈ PI , i.e. pi = s (ui) for i = 1, . . . , n.

5 Evaluate the surface on the boundary parameters ui, and define the
boundary points pi ∈ PB, i.e. pi = s (ui) for i = n + 1, . . . , m.

Output: Scattered point cloud P = PI∪̇PB

may seem like a restriction of the training data, the network has no problems
generalizing to arbitrary surface data, as we will demonstrate in the numerical
experiments in Section 4.2.7.

We use Algorithm 6, to generate a training data set of 10.000 point cloudsHyperparameter
selection and

training
sampled from polynomial parametric surfaces of bi-degree d = (2, 2), each
consisting of m = 264 points of which n = 200 were sampled from the surface
interior. Before training, we performed the preprocessing and feature extraction
steps described in Section 4.2.2. For computing the radius graph, we set the
radius to r = 0.2 and se 32 as the maximum number of neighbours for each
vertex in the graph, to reduce the computational complexity and the size of the
line graph computed from the radius graph. This choice of hyperparameters
leads to a preprocessed training set of size 29 GB.

We additionally generated a validation data set of 2.500 (7.2 GB) preprocessed
point clouds with the same properties as the training set in order to choose the
final model. The architecture we design has 80.641 learnable parameters, whose
(optimal) values are set by solving the stochastic optimization problem using
the Adam optimizer with learning rate 1e − 3 and momentum 0.9. In order to
compute the loss function described in Section 4.2.4, we solve the polynomial
least-squares problem with bi-degree d = (2, 2), namely the same polynomial
degree that characterizes the training and validation data. According to the
learning curves in Figure 4.14, showing the training and validation errors across
the training epochs, we choose the learning model corresponding to the 50th
epoch. The performance on the test set is reported in Example 4.2.7 (a).
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Figure 4.14: Training and validation error converngence rate across the epochs.

Remark 20. Our network architecture can also be trained on the graph obtained by local
projections that is used for the shape preserving parameterization. In our experiments,
this resulted in similar training and validation errors as for training on the radius
graph.

4.2.7 Numerical results for PARGCN

In this section, we present a selection of experiments in order to analyze the
performance and generalization capability of the learning meshless parameteri-
zation model on a variety of different scattered point cloud data sets.

The quality of the proposed meshless learning parameterization model
PARGCN is evaluated in terms of geometric model reconstruction accuracy
based on MSE and the one-sided Direct Hausdorff Distance (DHD). For each test,
we compare the error measures MSE and DHD of the geometric models obtained
with PARGCN and the parameterization choices introduced in [62] and briefly
discussed in Section 4.2.1 (UNIF, RECD and LPSP). We remind that after the
preprocessing step, each point cloud is contained in the unit cube [0, 1]3; hence,
a few digits of difference in the error measures correspond to a significant gain
in accuracy.

The numerical experiments reported in Example 4.2.7 (a), show the perfor-
mance of the predicted meshless parameterization on a test set of the same
nature as the training and validation sets described in Section 4.2.6. In Ex-
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ample 4.2.7 (b), we show the generalization capabilities of the learning model
on polynomial data sets of varying bi-degree d = (d, d), together with its
robustness when tested on noisy data configurations. Subsequently, in Exam-
ple 4.2.7 (c), we illustrate the generalization capability of PARGCN with respect
to non-polynomial point clouds of arbitrary dimension, together with its suit-
ability for polynomial least-squares fitting. Finally, in Example 4.2.7 (d), we
numerically demonstrate that the trained meshless parameterization model is
capable of properly generalizing to tensor product B-spline fitting of arbitrary
point clouds.

Example 4.2.7 (a)

In this experiment, we analyze the quality of the learning model by its evalua-Test error
tion on the so called test set, i. e. a data set of the same nature as training and
validation sets, but whose items have never been seen by the network during
the training phase. Furthermore, we motivate the choice of introducing the
shape preserving correction step described in Section 4.2.5.

More precisely, we generate 100 unorganized point clouds of m = 264 points,
with n = 200 interior points as detailed in Section 4.2.6, and we preprocess
them as described in Section 4.2.2, building their radius graph for a fixed radius
r = 0.2 and allowing each interior point to have at most 32 neighbours.

After evaluating the network on this data set and solving the system in
Equation (4.12), without performing the shape preserving correction step, the
MSE resulting from the polynomial least-squares fitting with bi-degree d = (2, 2),
averaged on 100 point clouds, is 1.59e − 4 and the DHD, averaged on the whole
data set, is 1.90e − 2. These results prove the transferability of the network with
respect to unseen data of the same complexity as the training and validation
sets, since they are in line with the values obtained during the training phase,
already discussed in Figure 4.14. By adding the shape preserving correction
step explained in Section 4.2.5, we obtain MSE and DHD equal to 4.45e − 5 and
1.12e − 2, respectively. This improvement motivates us to include the shape
preserving correction as the final step in the PARGCN method. Figure 4.15 shows
the Delaunay triangulation for the parametric and spatial domains built from the
PARGCN parameterizations without (b-c) or with (d-e) the parameter correction
step for an item from our test set.

Example 4.2.7 (b)

In this section, we numerically prove the generalization capability of the pro-Polynomial
approximation of

synthetic data
posed learning model with respect to the approximation of data characterized by
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(a) (b) (c) (d) (e)

Figure 4.15: An input point cloud (a) and the Delaunay triangulations for the parametric
(b,d) and spatial (c,e) domain related to the PARGCN parameterization
obtained with (d-e) or without (b-c) the shape preserving correction step
for Example 4.2.7 (a).

different attributes. More precisely, we consider polynomial fitting for different
bi-degrees, and the robustness of the model in presence of noise.

We evaluate the PARGCN model on unorganized point clouds sampled from
polynomial surfaces of various bi-degrees. We generate 100 unorganized point
clouds by sampling m = 264 points, of which n = 200 are interior points
and 64 are boundary points, from tensor product polynomial surfaces of bi-
degree d = (d, d) for d = 2, 3, 4, 5. In addition, we generate a test set similar
to the previous one but corrupted with random Gaussian noise by a factor
ϵ = 1e − 2. For each point cloud we perform the feature extraction described in
Section 4.2.2, setting the radius to r = 0.2 and allowing each interior point to
have at most 64 neighbours. Finally we run the least-squares fitting scheme for
the corresponding polynomial bi-degree d = (d, d).

The results for exact and noisy data are shown in Table 4.6. For each bi-
degree and for each parameterization methods, we report the MSE and the DHD
obtained on the two test sets. The best approximation results are highlighted
in bold. We observe that the accuracy gained by PARGCN with respect to LPSP
when considering the MSE, is between 52% (d = 3) and 70% (d = 2) on exact
data. For noisy data, PARGCN is able to outperform the LPSP method gaining on
average for each degree 41% of accuracy with respect to MSE. The metric values
for PARGCN prove that performing the training with a fixed polynomial degree
does not induce a bias in the final learning model. Furthermore, PARGCN’s
results are suitable for solving the parameterization problem of scattered data
for a variety of degrees being in addition robust to noise.
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exact noisy

MSE DHD MSE DHD

d = 2

UNIF 1.09e − 3 4.18e − 2 1.09e − 3 4.59e − 2

RECD 5.01e − 4 2.42e − 2 5.00e − 4 2.80e − 2

LPSP 5.75e − 5 9.90e − 3 5.31e − 5 1.58e − 2

PARGCN 1.69e − 5 7.80e − 3 3.43e − 5 1.48e − 2

d = 3

UNIF 8.84e − 4 3.68e − 2 9.09e − 4 4.69e − 2

RECD 3.44e − 4 2.91e − 2 3.67e − 4 3.92e − 2

LPSP 2.93e − 5 1.08e − 2 1.15e − 4 2.91e − 2

PARGCN 1.40e − 5 9.05e − 3 6.41e − 5 2.58e − 2

d = 4

UNIF 6.41e − 4 3.68e − 2 7.37e − 4 4.45e − 2

RECD 2.38e − 4 2.98e − 2 2.64e − 4 3.86e − 2

LPSP 3.51e − 5 1.39e − 2 9.14e − 5 2.63e − 2

PARGCN 1.34e − 5 9.70e − 3 5.15e − 5 2.49e − 2

d = 5

UNIF 4.48e − 4 3.67e − 2 4.71e − 4 4.18e − 2

RECD 1.34e − 4 2.97e − 2 1.58e − 4 3.58e − 2

LPSP 2.60e − 5 1.19e − 2 7.60e − 5 2.49e − 2

PARGCN 1.06e − 5 9.93e − 3 4.53e − 5 2.31e − 2

Table 4.6: Exact and noisy data polynomial least squares fitting for different bi-degree
d = (d, d) with d = 2, 3, 4, 5. Average MSE and DHD on 100 point clouds
with m = 264 points, of which n = 200 interiors, and a fixed number of
maximum neighbours 64, parameterized with UNIF, RECD, LPSP, and PARGCN

parameterization weights for Example 4.2.7 (b).

Example 4.2.7 (c)

In this example we show the capabilities of the PARGCN model to generalizePolynomial
approximation of a

ship hull
with respect to data sets of different nature and size. We consider the point
cloud shown in Figure 4.16 obtained by randomly sampling m = 596 points
(500 interior and 96 boundary points) from a B-spline model of a ship hull. We
then preprocess the data as described in Section 4.2.2 building a radius graph
with r = 0.1 while allowing a maximum number of 72 neighbours. Finally,
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Figure 4.16: Point cloud sampled from the model of a ship hull.

RECD LPSP PARGCN RECD LPSP PARGCN

d = 2 d = 3

MSE 6.80e − 4 1.32e − 4 7.55e − 5 2.55e − 4 4.10e − 4 2.51e − 5

DHD 4.02e − 2 3.39e − 2 3.71e − 2 4.73e − 2 2.39e − 2 2.32e − 2

d = 4 d = 5

MSE 1.74e − 4 2.27e − 5 1.10e − 5 1.20e − 4 1.68e − 5 6.39e − 6

DHD 3.20e − 2 1.39e − 2 1.08e − 2 3.14e − 2 1.07e − 2 8.94e − 3

Table 4.7: Polynomial least-squares fitting of bi-degree for d = (d, d) with d = 2, 3, 4, 5
for Example 4.2.7 (c) parameterized with UNIF, RECD, LPSP, and PARGCN

parameterization weights.

we parameterize the input data with the RECD, LPSP, and PARGCN methods
and compute the least-squares tensor product polynomial approximation of
bi-degree d = (d, d) with d = 2, 3, 4, 5. The average MSE and DHD errors are re-
ported in Table 4.7, whereas the polynomial reconstructed models are shown in
Figure 4.17. The best approximation error values are highlighted in bold. While
the approximations obtained with RECD parameterization show a significant
mesh distortion, the LPSP and PARGCN parameterizations lead to effective recon-
structions, always with a reduced MSE for the second one. When comparing the
MSE for PARGCN and LPSP, we register an average gain of 49% accuracy for the
first method with respect to the second one.

Example 4.2.7 (d)

In this experiment, we demonstrate that the learning meshless parameterization B-spline
approximation of a
face

model is capable of properly generalizing from polynomial to B-spline scattered
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Figure 4.17: Polynomial least-squares approximation of the ship-hull point cloud shown
in Figure 4.16 for RECD (top), LPSP (center), and PARGCN (bottom) parame-
terization weights and bi-degree (d, d) with d = 2, 3, 4, 5 from left to right
for Example 4.2.7 (c).

data fitting. In particular, we show the suitability of the output parameterization
for tensor product B-spline penalized least-squares fitting.

We process an unorganized point cloud consisting of m = 543 points (458
interior points and 85 boundary points) sampled from a face model; see Fig-
ure 4.19 (left). In this case, we build a radius graph with r = 0.2, allowing a
maximum number of 64 neighbours for each interior point. The parametric val-
ues in [0, 1]2, resulting from different parameterization methods, namely RECD,
LPSP, and PARGCN, together with the resulting triangulations, are shown in Fig-
ure 4.18. Note that the parametric values for RECD and LPSP are more clustered
and therefore lead to bigger voids (i. e. lack of data) in the parametric domain.
The low quality results obtained with RECD and LPSP in this example are visible
also by analyzing the triangulations in Figure 4.18 (left and center). This leads
to mesh distortion phenomena and the presence of artifacts when these param-
eterizations are considered for polynomial and spline surface reconstruction.
The MSE for polynomial approximation for different bi-degrees d = (d, d), with
d = 2, 3, 4, 5, is shown in the left column of Table 4.8, while the right column
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RECD LPSP PARGCN

Figure 4.18: Parametric values on [0, 1]2 (top) for the face example, and 3D Delaunay
triangulations for different methods (bottom) for Example 4.2.7 (d).

reports the MSE obtained when performing a (penalized) least-squares fitting
with tensor product B-splines characterized by 4 levels of uniform refinement.
Across all degrees, when PARGCN is used in order to perform polynomial least-
squares approximation, we are able to gain on average 32% of accuracy with
respect to LPSP for MSE. Moving to the B-spline setting, the MSE decreases due
to the growth of degrees of freedom for all the methods, but PARGCN registers
a gain in accuracy of 70% on average for each degree. Figure 4.19 shows the
geometric model obtained by computing the (penalized) B-spline least-squares
fitting with two (center) and four (right) levels of uniform refinement when the
PARGCN parameterization model is considered. Moreover, Figure 4.20 illustrates
the parameter distribution of the B-spline surface resulting from PARGCN and 4
levels of uniform refinement.
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Polynomial surface B-Spline surface

MSE DHD MSE DHD

d = 2

RECD 3.54e − 3 1.71e − 1 2.68e − 4 8.65e − 2

LPSP 1.55e − 3 1.55e − 1 8.43e − 5 3.32e − 2

PARGCN 8.62e − 4 1.24e − 1 2.76e − 5 4.00e − 2

d = 3

RECD 2.25e − 3 1.28e − 1 2.42e − 4 7.98e − 2

LPSP 7.10e − 4 1.10e − 1 8.97e − 5 3.52e − 2

PARGCN 4.31e − 4 1.09e − 1 2.52e − 5 3.73e − 2

d = 4

RECD 1.71e − 3 1.24e − 1 2.43e − 4 7.91e − 2

LPSP 4.30e − 4 9.96e − 2 8.13e − 5 3.40e − 2

PARGCN 3.57e − 4 1.05e − 1 2.48e − 5 3.91e − 2

d = 5

RECD 1.21e − 3 1.06e − 1 2.31e − 4 7.90e − 2

LPSP 3.37e − 4 9.01e − 2 8.48e − 5 3.51e − 2

PARGCN 2.42e − 4 8.87e − 2 2.39e − 5 3.74e − 2

Table 4.8: Polynomial least-squares fitting and B-Spline fitting after 4 steps of uniform
refinement, with bi-degree d = (d, d) for d = 2, 3, 4, 5 in Example 4.2.7 (d),
with m = 543 points, of which n = 458 interiors, parameterized with UNIF,
RECD, LPSP, and PARGCN parameterization weights.

4.2.8 Beyond PARGCN

The PARGCN parameterization method is a novel learning approach for the
meshless parameterization problem of scattered datasets. It goes beyond closed-
form heuristic choices of the parameterization weights, thus injecting geometric
deep learning into a fundamental process of surface modeling and computer-
aided design to improve performance. In particular, the numerical results
show the performance of the proposed model and its capabilities to suitably
generalize with respect to different data configurations, such as the size of the
point clouds, the presence of noise, different polynomial degrees, and data
sampled from non-polynomial surfaces. In particular, we applied the method to
real-world data, and we also investigated the generalization of the method to
fitting B-spline surfaces of varying refinement levels.
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Figure 4.19: Point cloud considered in Example 4.2.7 (d) (left) and penalized B-spline
least-squares fitting of bi-degree d = (5, 5) obtained with PARGCN parame-
terization for 2 (center) and 4 (right) levels of uniform refinement.

Figure 4.20: Parameter distribution along the two parametric dimensions for the tensor
product B-spline model with 4 levels of uniform refinement in Exam-
ple 4.2.7 (d).

A key step of our PARGCN method is the novel local feature extraction scheme
by means of a directed line graph that is computed from the radius graph of
an unstructured point cloud, see Section 4.2.2. This enabled us to design a new
network architecture that has the ability to predict barycentric parameterization
weights for each edge in the radius graph, which are then used to obtain a
suitable parameterization.

On the other hand, the computation of the line-graph L (G) as in Definition 12

represents the bottleneck of this approach in terms of computational time and
memory. In particular, for point clouds with a high number of vertices (> 103),
the number of edge connections can potentially be very high, and therefore,
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the dimension of the dual graph drastically increases. This led us to work with
datasets of the magnitude of hundreds of data points. In particular, we report
the dimension of the training and validation sets in Section 4.2.6: to store 12.500
point clouds, each consisting of 264 items in R3, and their radius graph and
line graph, about 36.2GB are needed. In addition, a crucial role is played by
the choice of the radius r to define the graph G. As highlighted in Section 4.2.1,
the existence, uniqueness, and suitability of the solution of (4.12), i. e. of a
parameterization for the input point cloud, depend on the choice of r. If r is
relatively too small or too big, a suitable parameterization for the input point
cloud at hand does not exist. The fine-tuning of r is therefore fundamental and
unavoidable for the proposed method. Finally, post-processing steps, e. g., the
solution of the linear system in (4.12), are required in order to recover the final
parameterization after evaluating the network.

These considerations motivate the development of a data-driven method that
performs a fully automatic regression on the input point cloud. In particular, it is
desirable to avoid the computation of the radius graph G, hence the translation
into its dual counterpart L (G). In addition, we also want to avoid further
computations after the network evaluation, i. e. we seek a learning method that
takes as input a scattered point cloud and gives directly in output a suitable
parameterization. In the next Section, we propose a graph neural network
architecture, characterized by a novel boundary enforcing layer that is applied
directly to point cloud data.

4.3 bidgcn : parameterization of scattered data with boundary

information

Most current graph neural network architectures are classified as message passing
neural networks [75], meaning that hidden states at each vertex are computed
by aggregating the output of message functions applied to the features of
the vertex and its neighbours connected by an edge. GCNs that are employed
for processing discrete surface data have mostly been applied so far to closed
surfaces, i. e. surfaces without boundary. This simplifies the design of suitable
graph convolutional operators significantly, since all vertices of the discrete
manifold or point cloud can be handled in the same way and no explicit dis-
tinction between interior and boundary vertices needs to be made. However, in
many applications in geometric modelling, geometry processing, and numerical
analysis, the input geometries are given as discrete surfaces with boundary. For
a variety of problems, boundary conditions are imposed on the corresponding



4.3 bidgcn : parameterizatio of scattered data with boundary infomation 123

vertices, and often the solution to a problem is only uniquely determined up
to the boundary conditions. For example, this is the case for boundary value
problems of elliptic partial differential equations on surfaces, as well as for
the problem of scattered point cloud parameterization. In order to apply deep
learning-based methods to this kind of problems, it is therefore necessary to
devise a network architecture that takes into account the boundary conditions
in addition to the standard vertex features. Since boundary conditions can be
regarded as additional features that are defined only on the boundary vertices
but not on the interior vertices, this means that such a network architecture
needs to be able to handle data with varying feature dimensions.

In this Section, we propose the new model, called BIDGCN, for processing
scattered point clouds. The key idea of BIDGCN is to treat boundary conditions
as additional features at the boundary vertices of the point cloud. These features
are propagated into the whole point cloud by a novel graph convolution operator
that contains two separate trainable message functions: the first one for edges
between interior and boundary vertices, and the second one for edges between
interior vertices. In the subsequent hidden layers, the information stemming
from the boundary conditions is further processed and used to predict the
solution for the problem at hand. The two main properties of the proposed
network layer are: (i) the ability to incorporate boundary conditions in its
prediction (due to the boundary input layer) (ii) the dynamic prediction of
the graph used for message passing (due to the dynamic edge convolution
approach as in [180]).

As a use case for our new network architecture, we apply it to the problem of
scattered point cloud parameterization. In particular, the new BIDGCN parame-
terization method overcomes the limitations of the classical methods and of the
PARGCN method, discussed in Section 4.2 in terms of efficiency, robustness, and
sensitivity to parameter-dependent graph connectivity.

In our approach, we also assume that the boundary is already parameterized,
as in the standard methods, see Section 4.2.1. We then use a network architecture
based on our new BIDGCN to predict the parameterization of the interior vertices.
Using our boundary informed dynamic graph convolutional network leads to a
number of advantages compared to the classical methods for scattered point
cloud parameterization:

1. Computational efficiency. After training the network its evaluation is com-
putationally much more efficient than applying the classical methods in
[62] and the learning-based method in [71]. In particular, once the train-
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ing process is completed, large advantages in computational time can be
observed, ranging from 4 times upto a speedup of 180 times.

2. Robustness with respect to noise. Our method is robust with respect to noise
and results in much better approximations when approximating noisy
point clouds with polynomial surfaces. In particular, an improvement in
the accuracy from 60% up to 80% is observed with respect to existing
algorithms.

3. Robustness with respect to adjacency graph. While for existing methods, e. g.,
[62, 71], it is necessary to construct a graph by suitably choosing the
local neighbourhoods of each interior vertex, our method automatically
predicts a suitable graph without the need of free parameter selection.
Note that an improper graph selection can even lead to failure of classic
parameterization algorithms due to non-invertible linear systems in case
of sparse neighbourhoods.

After we determine a parameterization of the scattered point cloud using our
proposed method, we use that parameterization to approximate the point cloud
with a smooth spline surface.

4.3.1 BIDGCN: Boundary Informed Dynamic Graph Convolutional Network

The graph convolutional neural network we propose is characterized by its
ability to handle and propagate point cloud boundary information. This is
achieved by the development of a new boundary informed dynamic edge
convolutional layer, which is an extension of the dynamic edge convolution
operator originally proposed in [180]. We first briefly describe the original
dynamic edge convolution operator, and then we present our new boundary
informed dynamic convolutional layer and the additional layers of the network
architecture.

We assume to be given a point cloud P together with vertex features xi ∈ Rp,Dynamic edge
convolution where p ∈ N is the input dimension. The dynamic edge convolution operator

defined in [180] computes new features yi ∈ Rq for all points in P , where
q ∈ N is the output dimension. To this end, first the k-nearest neighbour graph
G is computed based on the input features. This is a directed graph where
the existence of a directed edge (j, i) implies that j is among the k nearest
neighbours of i with respect to the Euclidean distance

∥∥xi − xj
∥∥

2 of the input
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features. In the next step, edge features are computed for each directed edge in
G: for all (j, i) ∈ G

eji = hΘ(xi, xj − xi),

is evaluated, where hΘ is a feed-forward neural network

hΘ : R2p → Rq

with trainable weights Θ. Finally, at each vertex of G, the edge contributions are
aggregated as

x′i = 2(j,i)∈Geji,

where 2 computes the mean value. In a dynamic edge convolution network, the
k-nearest neighbour graph is recomputed after each layer with respect to the
new features x′i, thereby allowing the network to pass information arbitrarily
fast across the point cloud. The dynamic approach enables the network to
automatically predict a suitable graph for message passing instead of using a
fixed one. This implies that information can travel arbitrarily far in each layer,
as it is determined by the training process. In [180] it was shown that updating
the graph after each layer leads to a significantly improved accuracy compared
to performing edge convolution on a static graph.

As a slight modification, while in [180] the k-nearest-neighbour graph was
used, to emphasize locality we propose to use the radius graph also in the
hidden layers. In particular, instead of specifying the number of neighbours k,
we specify a radius r > 0 and add directed edges (i, j) and (j, i) for all i, j ∈ V
such that∥∥xi − xj

∥∥
2 ≤ r.

By dynamically recomputing the radius graph instead of the k-nearest neighbour
graph, we reduce the dependence of the network architecture on the local
density of the input point clouds. In particular, the radius graph results in
neighbourhoods with a fixed maximum distance, while a k-nearest graph might
associate points with very large distances if the point cloud is locally sparse.

Based on the dynamic edge convolution, we introduce a new boundary Boundary informed
dynamic edge
convolution

informed input layer that takes as input the point cloud with its vertex features
as well as the boundary conditions and propagates the boundary conditions
into the new features of the interior points. The output of this layer consists
of all interior points together with new vertex features. We name the resulting
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neural network architecture Boundary Informed Dynamic Graph Convolutional
neural Network (BIDGCN).

Assume that the input point cloud is decomposed like in Section 4.2.1 as
P = PI∪̇PB into interior and boundary points and that each vertex pi ∈ PI
comes with features xi ∈ Rp and every vertex pj ∈ PB comes with features(

xj, uj
)
∈ Rp × Rs, were we regard uj ∈ Rs as boundary conditions.

We first compute two different radius graphs

GI→I and GB→I ,

where GI→I contains all directed edges

(j, i) with pi, pj ∈ PI :
∥∥xi − xj

∥∥ ≤ r,

while GB→I contains all directed edges

(k, i) with pi ∈ PI , pk ∈ PB : ∥xi − xk∥ ≤ r.

This means that even in GB→I , the edges do not depend on the boundary condi-
tions uj. Note that vertices in PB only have outgoing edges and no incoming
ones.

We then compute edge contributions for all edges using two separate neural
networks. For all (j, i) ∈ GI→I , we compute

eji = hΘ
(
xi, xj − xi

)
,

where h is a feed-forward neural network

hΘ : R2p → Rq

with output feature size q and learnable weights Θ.
For edges (k, i) ∈ GB→I , the boundary conditions at the boundary vertices

are concatenated with the vertex features and we compute

eik = gΦ (xi, xk − xi, uk) ,

where g is another feed-forward neural network

gΦ : R2p+s → Rq

with the same output feature size and independent learnable weights Φ.
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interior points
PI : n × p

radius graph GI→I ,
2(j,i)∈GI→I

hΘ
(

xi , xj − xi
)

n × q

boundary points and parameters
PB ×UB: (m − n)× (p + s)

radius graph GB→I ,
2(k,i)∈GB→I

gΦ (xi , xk − xi , uk)

n × q2

Output: n × q

Figure 4.21: Boundary informed input layer.

Finally, the edge contributions are aggregated in the target vertices of the
directed edges. By construction, all target vertices are contained in PI . For
pi ∈ PI , we have

x′i =
(
2j:(j,i)∈GI→I

eji

)
2

(
2k:(k,i)∈GB→I

eki

)
,

where the aggregation operator 2 can be the sum, the mean or the component-
wise maximum value. The output of the layer consists of features of dimension
q for the interior point cloud PI . During training Θ and Φ are optimized
simultaneously. The flow of the input layer is depicted in Figure 4.21 and its
application to an interior vertex is illustrated in Figure 4.22.

The input layer gives as output new features in Rm for the interior point cloud
PI . These features can then be processed by further hidden layers, e. g., based
on dynamic edge convolution. Through the application of the different layers,
the information that was transported by the input layer from the boundary
vertices to their neighbours in GB→I is propagated further into the interior of
the point cloud.

The novel BIDGCN layer gives as output new features in Rq for the interior Hidden layers
point cloud PI . To further process these features, we proceed like in the original
Dynamic Graph Convolutional Neural Network (DGCNN) by computing a new
graph for PI based on the new features x′i ∈ Rm. As a slight modification,
while in [180] the k nearest-neighbour graph was used, we propose to use the
radius graph also in the hidden layers. This makes BIDGCN architecture more
independent on the sampling density of the point cloud. Since the number
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xi

(
xk0 , uk0

)

(
xk1 , uk1

)
xk2

xk3

xk4

gΦ
(
xi , xk0 − xi , uk0

)
gΦ
(

xi , xk1 − xi , uk1

) hΘ
(
xi , xk2 − xi

)
hΘ
(
xi , xk3 − xi

)
hΘ
(
xi , xk4 − xi

)

Figure 4.22: Edge contributions of the input layer for xi (blue) computed from the
features at the neighbouring boundary vertices (red) and interior vertices
(green).

of neighbours of the vertices is not constant, we use the mean value as the
aggregation of the edge features, also motivated by the goal of achieving
independence of the sampling density.

Through the application of the different layers, the information that was
transported by the input layer from the boundary vertices to their neighbours in
GB→I is propagated further into the interior of the point cloud. Since the radius
graph is recomputed after each layer, the information can travel arbitrarily as
far as determined by the training process.

4.3.2 Point cloud parameterization using BIDGCN

In the following, we present how a network architecture based on BIDGCN can
be used to address the parameterization problem of scattered point clouds.
As detailed in the previous section, the task for our trained neural network is
to predict parameters ui ∈ [0, 1]2 ⊂ R2 for the given point cloud. The neural
network should then approximate an operator that assigns to each sufficiently
large set of input features a parameterization that is optimal for fitting a surface
s : [0, 1]2 → R3 to the input points. Without fixing some of the parameter
values a priori, this operator is not uniquely defined, making it difficult to
directly train a neural network for this task. Therefore, the parameters uj for the
boundary points needs to be suitably computed. This determines a well-defined
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specific parameterization operator that takes as input the positions of all points,
together with the boundary parameterization, and gives as output the unique
optimal parameterization of the interior points. We train our neural network to
approximate this operator.

In order to predict the optimal parameterization with respect to a specific
choice of boundary parameters, the neural network needs to take into account
the boundary parameters as boundary conditions. This motivates our choice to
apply BIDGCN to the parameterization problem.

We design a neural network based on the new boundary informed input BIDGCN
architecturelayer described in Section 4.3.1. The architecture of our BIDGCN is shown in

Figure 4.23, and it has an overall number of trainable parameters of 192, 130.
It consists of the boundary informed input layer (BIDGC layer), four hidden
dynamic edge convolution layers (DGC layers), and an MLP as output layer.

Input The learning model takes as input the interior points PI , whose features
correspond to their Cartesian coordinates, together with the boundary
points PB and their features, i. e. their Cartesian coordinates and their
parameters UB.

BIDGC In the Boundary Informed Convolutional layer, we have two MLPs,
one for the edges in GI→I and one for the edges GB→I . For GI→I we train
an MLP with layer sizes {6, 64, 64}, while for GB→I we train an MLP with
layer sizes {8, 64, 64}. Note that the input dimension corresponds to the
edge features in the two different graphs.

DGCN The hidden layers are assembled as ordinary Dinamic Edge Convolu-
tional layers, where the k-nearest neighbour graph has been replaced by
the radius graph. In all hidden dynamic edge convolution layers, the MLP
has size {128, 64}. The output feature dimension of the hidden layers is
deliberately chosen to be moderate because a new radius graph is com-
puted after each layer with respect to the output features, which can be
costly for high dimensions.

cat Finally, the output of the last hidden layer is concatenated with the output
of all hidden layers and fed into a final MLP of size {320, 256, 256, 2}.

Output The parameterization UI for the interior points PI .

After each hidden layer, the ReLU activation function is applied. Finally, after
the output layer, the sigmoid activation function is applied to enforce that the
predicted parameters lie in [0, 1]2. Since all layers in BIDGCN are convolutional
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except for the last layer that is applied vertex-wise, the network can be applied
to any point cloud, independent of its size.

The overall number of trainable parameters in this network architecture is
192.130. We remark that the choice of using four hidden layers takes into account
a suitable trade-off between computational time and error. Indeed adding more
hidden layers slightly increased the computation times without effective gains
in accuracy.

4.3.3 Loss function

To train the neural network for the prediction of optimal fitting parameters,
we follow an unsupervised strategy and use the predicted parameters for the
interior points UI as well as the prescribed parameters for the boundary points
UB to fit a bi-quadratic polynomial surface to the point cloud. More precisely,
we assemble the collocation matrix, as defined in (3.4), Section 3.1, i. e.

A =


β0(u1) . . . β8(u1)

... . . . ...

β0(um) . . . β8(um)

 ∈ Rm×8,

where, β j are the bi-quadratic tensor-product Bernstein polynomials and ui ∈
[0, 1]2 are the prescribed parameters if pi ∈ PB and the parameters predicted by
the neural network if pi ∈ PI .

The right hand side b ∈ Rm×3 is given by the features of the point cloud, i. e.

bi = xi.

Consequently, we solve the linear system, representing the least-squares prob-
lem,

min
c∈R9×3

∥Ac − b∥2
2 (4.15)

using QR decomposition and keeping track of the gradients with respect to the
learnable weights of the neural network. The loss for the predicted parameteri-
zation of the interior points is the residual of (4.15).

4.3.4 Learning boundary informed parameterization

In order to train the network for parameterizing scattered point cloud data, we
generate a data set consisting of 100, 000 point clouds by following Algorithm 6.
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Input: PI ∪ (PB ×UB)

BIDGC layer
MLPs, size {6, 64, 64} and {8, 64, 64}

ReLU

n × 64

DGC layer
MLP, size {128, 64}

ReLu

n × 64

DGC layer
MLP, size {128, 64}

ReLU

n × 64

DGC
MLP, size {128, 64}

ReLU

n × 64

DGC
MLP, size {128, 64}

ReLU

n × 64

cat
MLP, size {320, 256, 256, d}

Sigmoid

Output: UI , n × 2

Figure 4.23: BIDGCN architecture for p = 3 (dimension of the point cloud) and s = 2
(parametric dimension).

The points are sampled from bi-quadratic tensor-product Bézier surfaces whose
control points cij are randomly sampled from
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for i, j = 0, . . . 2, according to the uniform distribution. This choice of sampling
space ensures a large variation in the complexity of the surfaces while avoiding
self-intersections. Finally, we rotate each surface around a randomly sampled
axis in R3 by a random angle. Besides the vertex features xi ∈ R3 for all interior
and boundary points, we store the exact parameters ui ∈ R2 for all boundary
points. Each point cloud P = PI∪̇PB contains 1000 interior points and 34
boundary points, and thus the ratio of interior points to boundary points is
equivalent to a uniformly distributed point cloud.

Remark 21. Note that the choice of point cloud size in the training data set does
not mean that the trained network is limited to point clouds of this size. The network
described in the previous section can be applied to any point cloud, and we will observe
in the numerical experiments that it performs well for a large range of point cloud sizes.

Before evaluating the network on a point cloud from the training data set,
from the validation and data sets, or from a real-world sample, we normalize
the vertex features xi ∈ R3 by translating and scaling them so that they lie in
[0, 1]3. Due to the affine invariance of Bézier and B-Spline surfaces this does not
affect the optimal choice of parameters ui ∈ R2.

4.3.5 Numerical results for BIDGCN

We implemented our method using the PyTorch [143] and PyG [57] libraries. The
code for training and testing is available at https://github.com/felixfeliz/
BIDGCN.

We trained the network architecture described in Section 4.3.2 and visualized
in Figure 4.23 on our data set consisting of 100.000 point clouds sampled
from bi-quadratic surfaces according to Section 4.3.4. Referring to Section 4.3.3,
the loss function during training is the fitting error. We trained the network
using stochastic gradient descent, starting with learning rate 0.1 and decreasing
whenever the loss plateaus.

Moreover, we also consider noisy data, where we added Gaussian noise with
varying standard deviation.

In order to test the performance of our method, we generate several test
data sets as described in Section 4.3.4. Each data set consists of 100 point
clouds sampled from tensor-product polynomial surfaces. We generated distinct
test data sets by varying the polynomial degree, the amount of noise and the
number of sample points. In particular, we used polynomial bi-degrees 2, 3, 4
and 5, Gaussian noise with standard deviation 5e − 3, 1e − 2 and 5e − 2, and

https://github.com/felixfeliz/BIDGCN
https://github.com/felixfeliz/BIDGCN
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No. trainable parameters 192.130

No. DGCNN layers 4

Optimizer Stochastic gradient descent

Learning Rate 0.1, decreased on plateaus

Batch size 1

Training set size 100.000

GPU NVIDIA GeForce GTX 1060

Floating point precision double

Degree in test data 2, 3, 4, 5

Noise in test data 0, 5e − 3, 1e − 2, 5e − 2

Table 4.9: Summary of hyperparameters.

sample sizes between 200 and 2000 inner points. The number of boundary
points was always set so that the ratio between inner points and boundary
points is equivalent to the one of a uniform mesh. Moreover, we also consider
real-world data sets.

We start in Example 4.3.5 (a) with an ablation study of our new boundary
informed layer to demonstrate its fundamental role in tackling the parameteri-
zation problem. We then show the comparison of the proposed method with
the three standard approaches described in Section 4.2.1 in Example 4.3.5 (b)–
4.3.5 (e).

The training, as well as all evaluations of the different methods, was per-
formed on a standard workstation computer with an NVIDIA GeForce GTX
1060 GPU. The hyperparameters for training and testing our method are sum-
marized in Table 4.9.

Example 4.3.5 (a)

In our first experiment, we compare the performance of BIDGCN with two Ablation study and
comparison with
learning-based
methods on exact
and noisy data

other learning methods based on graph neural networks. The first method we
compare with is the standard dynamic graph convolutional neural network
proposed in [180]. In order to ensure a fair comparison, we trained a network
with the same architecture as our BIDGCN shown in Figure 4.23, with the only
difference being that instead of our novel BIDGCN input layer, we use as input
layer another standard dynamic edge convolution layer. Thus, this comparison
serves at the same time also as an ablation study for our novel boundary
informed input layer. We trained this network on the same dataset that we used
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for training BIDGCN, as described in Section 4.3.4. In our plots, we will denote
this method by DGCNN. The second learning-based method that we compare
with is the PARGCN method proposed in [71] and described in Section 4.2. We
recall that PARGCN is based on the standard parameterization methods but it
uses a graph convolutional neural network to predict parameterization weights
instead of determining them heuristically. Since the parameterization weights
are defined edge-wise, PARGCN generates a line graph of the initial radius graph,
which can be costly. Moreover, it applies a post-processing step called shape-
preserving correction, which is similar to the shape-preserving parameterization
described in Section 4.2.1. PARGCN was trained on a dataset consisting of point
clouds of size 200, sampled from randomly generated bi-quadratic surfaces.

We first apply the three methods to a test data set consisting of point clouds
sampled from bi-quadratic surfaces with sample size varying between 200 and
2000. Note that while BIDGCN was trained only on point clouds of size 1000, it
is important to ensure that it gives good results for point clouds of any size.
We use each predicted parameterization to fit the input point cloud with a bi-
quadratic surface and compute the MSE of the approximation. The computation
time as well as the fitting MSE is shown in the left column of Figure 4.24. All
the plots are semi-log plots with a logarithmic scale used for the time and error
axes.

Our first observation is that the MSE resulting from DGCNN is prohibitively
large while the network based on our novel BIDGCN input layer results in
a very good approximation. This is expected since, as described earlier, the
parameterization problem cannot be solved without taking into account the
parameterization of the boundary curves and a boundary-informed input layer
is therefore necessary. This ablation study demonstrates this fact and moreover
shows that our novel BIDGCN layer is indeed able to correctly process the
given boundary information. In order to better visualize the difference of the
predicted parameterizations of BIDGCN and DGCNN, we plot two examples
from our test data set in Figure 4.25. We observe that the parameterization
predicted by DGCNN contains large voids and is far from the original. This is
expected, since the optimal parameterization is not uniquely defined by the
positional vertex features only. On the other hand, BIDGCN correctly takes the
boundary conditions into account and predicts parameters that are very close
to the original ones, leading to a much better approximation with a bi-quadratic
surface.

A second observation from Figure 4.24 is that the performance of BIDGCN
does not depend significantly on the size of the scattered data set, even if the
network was trained exclusively on data with 1000 points per point cloud.
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Comparing our method with PARGCN, we observe that the MSE is of the same
order with PARGCN, which was trained with sample size 200, having a slight
edge for smaller point clouds. However, the difference in computation time
is very large and the speed-up of BIDGCN over PARGCN is over two orders of
magnitude. We note that a large part of PARGCN’s computational complexity
is due to its reliance on an expensive post-processing step. The BIDGCN-based
parameterization method does not need an expensive post-processing and the
predicted parameters can directly be used for fitting a surface to the point cloud.

Measured real-world data is always subjected to noise. For this reason, we
study the behaviour of BIDGCN, DGCNN, and PARGCN when applied to noisy
data. In particular, we evaluate all methods on 100 point clouds sampled from
bi-quadratic surfaces with added Gaussian noise of standard deviation 5e − 3
and 1e − 2. In the middle and right columns of Figure 4.24 we show the MSE
and computation time when applying the methods to noisy data with Gaussian
noise of standard deviation 5e − 3 and 1e − 2, respectively. As in the non-noisy
case, the plain DGCNN does not result in acceptable fitting errors in the presence
of noise. We observe that BIDGCN is more robust than PARGCN with respect
to noise and results in better approximations for larger point clouds while
needing much smaller amount of computation time. In particular, this means
that BIDGCN is able to predict good parameterizations even for data that it is
not of the same class as the data that it was trained on.

Example 4.3.5 (b)

In this example, we study the performance of our neural network when applied Comparison with
standard methods
on exact and noisy
data

to data from the same class as the training data, i. e. data sampled from bi-
quadratic surfaces. As a benchmark, we use the three parameterization methods
presented in Section 4.2.1: parameterization with UNIF, RECD, and LPSP weights.
For these methods, we choose the radius for defining the local neighbourhoods
adaptively depending on the number of points per point cloud as

r =
3√
m

. (4.16)

Choosing the optimal radius r for these methods is a complicated manual task
that, for general data, cannot be solved efficiently. Here, the factor

√
m is derived

from the number of points on an axis-aligned line in a uniformly distributed
point cloud. The factor 3 was determined empirically to be close to optimal for
the standard methods when parameterizing point clouds of 200 points.

In order to compare the methods, we evaluate them on 100 point clouds and
report the MSE as well as the total computational time needed to parameterize
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Figure 4.24: Comparison between learning parameterization methods of Exam-
ple 4.3.5 (a). MSE (top) and computation time (bottom) when applying
the three learning-base methods BIDGCN, DGCNN, and PARGCN to point
clouds of different sizes sampled from 100 bi-quadratic surfaces without
noise (left), with Gaussian noise of standard deviation 5e − 3 (middle) and
with Gaussian noise of standard deviation 1e − 2 (right).

and approximate all 100 point clouds. In particular, we study the dependence
of accuracy and computation time on the number of points in each point cloud.
Note that while BIDGCN was trained only on point clouds of size 1000, it is
important to ensure that it gives good results for point clouds of any size. The
left column of Figure 4.26 shows the comparison of the methods on point clouds
sampled from surfaces that were generated in the same way as the training data
set for our neural network, see Section 4.3.4. All the plots are semi-log plots,
with a logarithmic scale used for the time and error axes. We observe that the
MSEs produced by our method are much smaller than the ones resulting from
the UNIF and RECD parameterizations. On the other hand, while the accuracy of
our method on this synthetic data is similar to that of LPSP parameterization,
the computational time of the neural network-based method is much lower than
the time needed for all three other methods. In particular, LPSP is very costly,
with a computational time that is about two orders of magnitude higher than
the one of BIDGCN.

We perform the comparison of BIDGCN with the previously considered stan-
dard methods on noisy data. The middle column of Figure 4.26 shows the
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Figure 4.25: Comparison of the BIDGCN network with a pure DGCNN trained for the
point parameterization problem considered in Example 4.3.5 (a). Top row:
Original parameters and parameters predicted by the networks. Middle
row: Input data and the evaluation of the fitted surfaces at the predicted
parameters. Bottom row: The original surface and the fitted bi-quadratic
surfaces.

behaviour of all four methods when applied to data with Gaussian noise of
standard deviation 5e − 3, while the right column of Figure 4.26 shows their
behaviour on surfaces with Gaussian noise of standard deviation 1e − 2. We
observe that when applied to noisy data, BIDGCN performs much better than
the three other methods.

As in the non-noisy data case, we observe that the evaluation of our method
is much faster than the evaluations of the other methods. In particular, the
speed-up with respect to LPSP is significant.

A further advantage of BIDGCN is that it is very robust with respect to the
presence of noise, even if the noise becomes very large. For the standard methods
suitably choosing the radius that determines the local neighbourhood becomes
near impossible when the data is non-regularly distributed. For a fixed choice
of radius or our simple adaptive choice (4.16), this means that these methods
often fail due to neighbourhoods that are too small. In particular, LPSP needs
enough points in each neighbourhood to generate a Delaunay triangulation.
Figure 4.27 (left) shows how many surfaces out of 100 surfaces with Gaussian
noise of standard deviation 5e − 2 could be successfully parameterized by the
four methods. We observe that BIDGCN was always successful, while the number
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Figure 4.26: Comparison between BIDGCN and standard meshless parameterization
methods of Example 4.3.5 (b). MSE (top) and computation time (bottom)
when applying the four methods to point clouds of different sizes sampled
from 100 bi-quadratic surfaces from the same class as the training data
set without noise (left), with Gaussian noise of standard deviation 5e − 3
(middle) and with Gaussian noise of standard deviation 1e − 2 (right).

of surfaces that could be parameterized using LPSP strongly decreases with the
number of points per point cloud. One possible way to tackle this problem could
be by suitably choosing a different radius ri for each point i ∈ P ; however, there
is no obvious way how to realize such an adaptive local choice in a robust way.
Moreover, a local choice, if one exists, would further increase the computational
complexity and overall efficiency risks to deteriorate even further.

Finally, we report the MSEs of the surfaces that were successfully parame-
terized in Figure 4.27 (right). Also in this case the neural network results in
significantly smaller errors.

Example 4.3.5 (c)

In order to test the generalization properties of the neural network in terms ofGeneralization to
higher degrees different degrees, we apply it to point clouds sampled from surfaces of higher

bi-degree, namely d = (d, d) with d = 3, 4, 5, with and without Gaussian noise
and we use tensor-product Bézier surfaces of the same degree for fitting the
parameterized point clouds. Figure 4.28 shows the MSEs as well as the timings
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Figure 4.27: Number of successfully parameterized surfaces out of 100 bi-quadratic sur-
faces of magnitude m with added Gaussian noise of size 5e− 2 analyzed in
Example 4.3.5 (b) (left). MSE when applying BIDGCN and the three standard
methods to point clouds of different sizes sampled from 100 bi-quadratic
surfaces with added Gaussian noise of standard deviation 5e − 2 analyzed
in Example 4.3.5 (b) (right); all cases where a method did not succeed were
removed from the computation of the MSE.

for point clouds without noise. We observe that BIDGCN results in similar MSEs
compared to the LPSP parameterization. However, the computation time for
BIDGCN is more than one order of magnitude smaller with respect to LPSP.

Figure 4.29 shows the results on point clouds with added Gaussian noise
of standard deviation 1e − 2. We observe that in this case, BIDGCN results in
improved MSEs compared to the LPSP parameterization, while the computation
time is still more than one order of magnitude smaller.

Example 4.3.5 (d)

While the error in the previous examples was averaged over a large number of Visual comparison
of the methodspoint clouds, we will now present particular examples that visually demonstrate

the performance of the neural network in terms of quality of the reconstructed
model. We applied BIDGCN as well as LPSP to the first two point clouds of size
1000 in our test data set, with and without noise, sampled from bi-quadratic
surfaces. For LPSP, we compare two choices of the radius: r = 0.09 ≈ 3/

√
m

and r = 0.2. The parameters, the fitted surface for both methods, the evaluation
of the resultant surface at the parameters, and the input data are displayed in
Figure 4.30. The point cloud displayed in Figure 4.30 (a) is noise free, whereas
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Figure 4.28: MSE (top) and computation time (bottom) when applying the four methods
to point clouds of different sizes sampled from 100 surfaces of bi-degree
d = (d, d) with d = 3 (left), d = 4 (middle) and d = 5 (right) considered in
Example 4.3.5 (c).

we added Gaussian noise with standard deviation 1e − 2 to the point cloud
displayed in Figure 4.30 (b). We observe that the neural network predicts
parameters that are visually very close to the original parameters, both for the
noisy and the non-noisy cases. On the other hand, the behaviour of LPSP largely
depends on the choice of the radius r. For r = 0.09, LPSP parameterization
performs well but appears to result in larger deviations from the original
parameters compared to BIDGCN. For the choice r = 0.2, the parameterization
contains large gaps in the interior of the parameter domain. This shows that for
using LPSP effectively, one needs to carefully choose the radius r, while BIDGCN
is able to predict the optimal graph in the first layers of the network architecture
and therefore does not require any fine-tuning.

Example 4.3.5 (e)

In this experiment, we process real world point clouds of different sizes, repre-Real-world data
senting a Nefertiti face model, and we lead a comparison between the standard
parameterization methods and the proposed BIDGCN, in terms of accuracy and
computational time. As concerns the standard parameterization methods, a suit-
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Figure 4.29: MSE (top) and computation time (bottom) when applying the four methods
to point clouds of different sizes sampled from 100 of bi-degree d = (d, d),
with d = 3 (left), d = 4 (middle) and d = 5 (right), with added Gaussian
noise of standard deviation 1e − 2 analyzed in Example 4.3.5 (c).

able choice of the radius r needs to be selected. To produce fair comparisons and
avoid unreasonable parameter value distributions, as illustrated in Figure 4.30,
we execute a heuristic search for r = 3√

m , 0.05, 0.075, 0.1, . . . , 0.25, 0.275, 0.3 on
each dataset by computing the polynomial approximation of bi-degree d =
(2, 2), and selecting the radius r giving the best MSE. By analyzing the value of
the error with respect to r, we decide to fix the radius as defined in (4.16) since it
leads to the best approximation results for almost all the real data point clouds.
Subsequently, we collect 6 data sets of m = 532, 1043, 2062, 3253, 6024, 8818
points, acquired from the same Nefertiti face model. We then compute the
parametric values for each Nefertiti point cloud with the standard and the
proposed BIDGCN methods to construct a polynomial bi-quadratic least-squares
approximation. For each method, we report the MSE associated with the re-
constructed polynomial surface and the total computational time needed to
parameterize and approximate each point cloud in Figure 4.31. In line with
the trends observed on the synthetic data investigated in the previous sections,
the uniform and inverse distance parameterizations lead to MSEs that are, in
general, much higher than LPSP and BIDGCN. On the other hand, the error values
obtained with BIDGCN and LPSP are similar, but our method scales favourably
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(a)

(b)

Figure 4.30: Visual comparison described in Example 4.3.5 (d) of the BIDGCN and LPSP

for radius r = 0.2 and r = 0.09 on a point cloud of size 1000 sampled
from a bi-quadratic surface without noise (a) and with Gaussian noise of
standard deviation 1e − 2 (b).
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Figure 4.31: Quantitative comparison described in Example 4.3.5 (e) of MSE (left) and
computational time (s) (right) of the approximating bi-quadratic surface
when parameterizing the point clouds of different size m sampled from
the Nefertiti bust model using BIDGCN and the standard methods.

with the dimension of the point cloud always having the lowest computational
time.





5
A D A P T I V E T H B - S P L I N E F I T T I N G W I T H M O V I N G
PA R A M E T E R I Z AT I O N

In this Chapter, we present adaptive spline model reconstruction schemes with
moving parameterization, which consist of a suitable combination of parameter
locations and the control points optimization with adaptive refinement routines,
using THB-splines. In particular, we propose adaptive alternating and joint opti-
mization methods to optimize the parameter locations and the control points of
the (hierarchical) spline geometric model.

We start in Section 5.1 by analyzing existing alternating fitting schemes for
tensor-product B-splines. These alternating methods optimize the parameters
separately from the control point computation by iteratively inferring the foot-
points of the point cloud on the current surface and subsequently updating
the control points. The method involved in this second step, e. g., Point Dis-
tance Minimization (PDM), Tangent Distance Minimization (TDM) [179], Hybrid
Distance Minimization (HDM) [10], or QI, gives the name to the whole fitting
procedure.

In Section 5.2, we extend the alternating fitting scheme to the adaptive spline
constructions and propose novel adaptive fitting schemes with THB-splines based
on different error metrics. We compare the behaviour of different optimiza-
tion settings for the critical task of distance minimization by also relating the
effectiveness of the correction step to the quality of the initial parameterization.

Finally, in Section 5.3 we extend to adaptive spline scenarios the Joint Point
Distance Minimization (J-PDM) method, based on the simultaneous joint opti-
mization of control points and parameters, hence avoiding the solution of a
linear system of equations and the computation of foot-point projection at every
refinement iteration.

We apply the proposed approaches to the reconstruction of real-world data
sets, also consisting of aircraft engine components from scanned point data, see
Section 5.4. Our study reveals that using a moving parameterization instead
of a fixed one, when suitably combined with the adaptive spline loop, can
significantly improve the fitting results while also reducing the number of
degrees of freedom required to achieve a certain accuracy. More specifically, it
can lead to earlier termination of the adaptive process, thus providing more

145
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compact models with less refinement levels and outperforming state-of-the-art
hierarchical spline model reconstruction schemes. This Chapter is mostly based
on [68] and [69].

5.1 alternating fitting schemes : a-pdm , a-tdm , a-hdm , a-qi

In this Section, we consider the surface fitting problem (5.1) addressed at the
beginning of Chapter 4, in case of B-spline constructions. Given a set of scattered
points as in (1.1), so that P = PI∪̇PB, i. e. disjoint union between interior and
boundary points, find a spline model s : Ω ⊂ RD → RN,

s (x) =
n

∑
j=0

cjβ j (x) , for x ∈ Ω

with B-spline basis {β0, . . . , βn}, coefficients cj ∈ RN for j = 0, . . . , n, collected
in the matrix C, and point parametric values U (1.3), collected in the matrix U,
so that it satisfies

arg min
U, C

1
2

m

∑
i=1

∥∥∥∥∥ n

∑
j=0

cjβ j(ui)− pi

∥∥∥∥∥
2

2

+ λJ (C) , (5.1)

where J is a fairing term, which we choose as in (3.16).
Due to the complexity of this non-linear problem, standard methods usu-

ally decouple it into two smaller sub-problems, treated separately, i. e. the
computation of the parameters U and the computation of the control points.
Moreover, a fixed parameterization U is initially constructed and is often kept
fixed throughout the (adaptive) fitting algorithm.

The idea that the parameterization must also be adjusted to the fitted geom-
etry was introduced in [90], in the context of B-spline curve approximation.
The so-called intrinsic parametrization, or Parameter Correction (PC) method,
is (iteratively) computed starting from a certain initial approximation. At each
iteration, the fitted points P are projected onto the current geometry, and the
projected footpoints take the place of the previous parameter values. The control
points of the B-spline geometry are updated by re-fitting the geometry with the
updated parameter values. Note that each re-fit can then significantly improve
the reconstructed geometric model. The core of the method relies on efficient
footpoint projection, which is reduced to a non-linear minimization problem.
The iterative approach of [90] for finding the footpoint (i. e. the closest point
on the geometry) has been revisited in [159], where a Newton-like method
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is proposed for the problem. As in all non-linear minimization schemes, the
quality of the initial points, the nature of the objective function, as well as the
different stepping strategies play a crucial role in the computation.

For a fixed spline space, tackling the problem of foot-points and control
points separately, brought to the development of alternating fitting methods,
based on the iterative execution of the two following steps:

1. footpoint projection and parameter update;

2. control points computation.

5.1.1 Foot-point projection and parameter update

This method consists of locating the points on the geometric model that are the
closest to the data points in terms of Euclidean distance. Given a point cloud
P , its parameterization U , and a surface s : Ω ⊂ R2 → R3, the surface closest
point problem consists in solving the following minimization problem,

min
ui∈Ω

1
2
∥s (ui)− pi∥2

2 , for each i = 1, . . . , m. (5.2)

This two-dimensional nonlinear problem can be explicitly formulated as

(s (ui)− pi)
T ∇s (ui) = 0, for each i = 1, . . . , m, (5.3)

where ∇s indicates the gradient of the surface s, and solved by employing a
suitable optimizer. In view of (5.3), the vector connecting the data point pi to the
surface point s(ui) has to be orthogonal to the tangent plane of the surface, and
s (ui) is then usually called the footpoint of pi over s for each i = 1, . . . , m. The
updated parameterization ūi is defined as the solution of (5.3), for i = 1, . . . , m.
Figure 5.1 illustrates the projection of a point pi and its footpoint over a surface
s. The connection between the data point and the surface point is represented by
a dotted line, whereas the connection between the data point and its footpoint
over the surface is represented by a dashed line. Finally, the updated parameter
ūi to be associated with pi is highlighted in red.

Remark 22. Since we assume the point cloud P to be a disjoint union between interior
and boundary points, i. e. P = PI∪̇PB, we decouple the problem in (5.2) accordingly.
In particular, if pi ∈ PI , i. e. for interior points, we solve the problem in (5.2). On the
other hand, if if pi ∈ PB, i. e. for boundary points, we solve

min
ui∈∂Ω

1
2
∥s (ui)− pi∥2

2 , for each i = n + 1, . . . , m,
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pi

s(ui)
s(ūi) ≡ p⊥

i

Figure 5.1: Foot-point projection.

where ∂Ω indicates the boundary of the parametric domain Ω ⊂ RD. Moreover, if the
boundary of the domain is composed of more than 1 curve, we further decouple the
optimization problem by constraining each boundary point to be projected only on the
boundary curve it belongs to.

5.1.2 Control points computation

Depending on the strategy employed to compute the control points, different
methods have been developed.

A-PDM

Solving at each iteration

min
C

1
2

m

∑
i=1

∥∥∥∥∥ n

∑
j=0

cjβ j(ui)− pi

∥∥∥∥∥
2

2

+ λJ (C) , (5.4)

with respect to the coefficients C ∈ R(n+1)×N, leads to the formulation of the
Alternating Point Distance Minimization (A-PDM) method. This method is wildly
used because of its simplicity, see e. g., [65, 89, 90, 144, 146, 159]. As observed
in [8], from an optimization view-point, A-PDM exhibits linear convergence.

Remark 23. Note that the coefficients update of A-PDM, correspond to the weighted LS
problem discussed in Section 3.1 (with λ = 0) see (3.15), with constant weights equal
to 1.

Consequently, the linear system of normal equations to solve at each step of
A-PDM is(

B⊤B + λG
)

c = B⊤p, (5.5)
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where B is the collocation matrix as in (3.4), G is the matrix representing the
contribution of the functional J, i. e.

Gi,j =

∫
Ω

(
∂2βi

∂x∂x
∂2β j

∂x∂x
+ 2

∂2βi

∂x∂y
∂2β j

∂x∂y
+

∂2βi

∂y∂y
∂2β j

∂y∂y

)
dxdy, (5.6)

for i, j = 0, . . . , n, p ∈ Rm×N is the matrix containing the points of P , and
c ∈ R(n+1)×N is the matrix containing the unknown coefficients.

We now introduce a different arrangement of the linear system of equations
in (5.5), which will be useful for the following discussions. Let B̃ ∈ RNm×N(n+1)

be the matrix, where the main-diagonal blocks B consists of the collocation
matrix (3.4),

B̃ =


B 0 . . . 0

0 B . . . 0
...

... . . . ...

0 0 . . . B

 . (5.7)

Similarly, let G̃ ∈ RN(n+1)×N(n+1) be of the form

G̃ =


G 0 . . . 0

0 G . . . 0
...

... . . . ...

0 0 . . . G

 , (5.8)

where the main-diagonal blocks correspond to the matrix G as in (5.6), repre-
senting the functional J. Finally, let p̃ ∈ RmN be the vector containing the data
points ordered as follows,

p̃ =
(

p(1)1 , . . . , p(1)m , . . . , p(N)
1 , . . . , p(N)

m

)⊤
∈ RmN. (5.9)

Hence, the problem in (5.5) can be rewritten as(
Ãpdm + λG̃

)
c = bpdm, (5.10)

where Ãpdm ∈ RN(n+1)×N(n+1) and bpdm ∈ RN(n+1), so that

Ãpdm = B̃⊤B̃, bpdm = B̃⊤ p̃,

and c ∈ RN(n+1) is the vector of unknowns, i. e.

c =
(

c(1)0 , . . . , c(1)n , . . . , c(N)
0 , . . . , c(N)

n

)⊤
. (5.11)
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A-TDM

The A-TDM method [9, 123, 179] is characterized by the following update rule
for the control points,

min
C

1
2

m

∑
i=1

( n

∑
j=0

cjβ j(ui)− pi

)T

· ni

2

+ λJ (C) , (5.12)

where

ni =
(

n(1)
i , . . . , n(N)

i

)⊤
∈ RN

is the unit normal vector at the surface point s(ui), for each i = 1, . . . , m. For
N = 2, 3, and for each i = 1, . . . , m the term( n

∑
j=0

cjβ j(ui)− pi

)T

· ni

2

= [(s (ui)− pi) · ni]
2 ,

defines the distance between the data point pi and the tangent line (if D = 1) or
plane (if D = 2) at s (ui).

In order to recover the linear system of equation to be solved at each step
of the A-TDM method, for each k = 1, . . . , N, let Nk ∈ Rm×m be the diagonal
matrix containing the normal components at each point along the k-th physical
direction, i. e.

Nk =


n(k)

1 0 . . . 0

0 n(k)
2 . . . 0

...
... . . . ...

0 0 . . . n(k)
m

 ,

and let Ñ ∈ RNm×m the block matrix, so that its blocks correspond to Nk, i. e.

Ñ =


N1

N2
...

NN

 ∈ RNm×m.
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The problem in (5.12) can be rewritten in matrix form as

min
c

1
2

[(
B̃c − p̃

)⊤
Ñ
] [(

B̃c − p̃
)⊤

Ñ
]⊤

+ λG̃,

with B̃, G̃, p̃ and c as defined in (5.7), (5.8), (5.9) and (5.11), respectively. There-
fore, the normal equations with respect to the unknowns c are(

Ãtdm + λG̃
)

c = btdm, (5.13)

where Ãtdm ∈ RN(n+1)×N(n+1) and btdm ∈ RN(n+1) so that

Ãtdm = B̃⊤ÑÑ⊤B̃, btdm = B̃⊤ÑÑ⊤ p̃.

It is well known that A-TDM does not show a stable performance near high
curvature regions. Moreover, it has been proven to be a Gauss-Newton mini-
mization without a step-size control, see [179], and a regularization term needs
to be added in order to improve the stability of the method. In particular, it is
common to apply the Levenberg–Marquardt regularization, see [179, 189], by
modifying (5.13) as(

Ãtdm + γI + λG̃
)

c = btdm, (5.14)

to add the term γI, where I ∈ RN(n+1)×N(n+1) is the identity matrix and
γ ∈ R, γ ≥ 0. This A-TDM variant is usually addressed in the literature as
Alternating Tangent Distance Minimization Levenberg-Marquardt (A-TDMLM).

A-HDM

By combining the A-PDM and A-TDM methods, the Alternating Hybrid Distance
Minimization (A-HDM) method can be defined, see, e. g., [10, 130]. In this case,
the distance metric at a sample s (ui) for each i = 1, . . . , m takes into account
both PDM and TDM metrics, i. e.

γi ∥s (ui)− pi∥2
2 + δi

[
(s (ui)− pi)

⊤ · ni

]2
, (5.15)

with γi, δi ≥ 0 and γi + δi = 1. The objective function for the control point
update to minimize is then

min
C

1
2

m

∑
i=1

γi

∥∥∥∥∥ n

∑
j=0

cjβ j(ui)− pi

∥∥∥∥∥
2

2

+ δi

( n

∑
j=0

cjβ j(ui)− pi

)T

· ni

2
+λJ (C) .
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Remark 24. If γi = 1 and δi = 0 for each i = 1, . . . , m, we recover the A-PDM method.
Similarly, if γi = 0 and δi = 1, then we fall back to the A-TDM method.

The authors in [130] suggest the following choice of the blending weights,

γi =
di

2 maxj=1,...,m dj
and δi = (1 − γi) , for i = 1, . . . , m,

for which (5.15) results to be a weighted combination of the A-PDM and A-TDM
error terms, depending on the point-wise distance

di = ∥s (ui)− pi∥2 .

In order to exploit the curvature information from the point cloud P , the authors
in [10], propose as blending weights

γi =
di

di + ρi
and δi = (1 − γi) =

ρi

di + ρi
,

with,

ρi =
1

max {|ci,1| , |ci,2|}
,

where ci,1, ci,2 are the principal curvature values at every data points pi ∈ P ,
for i = 1, . . . , m. Hence, (5.15) becomes a weighted combination of the A-PDM
and A-TDM error terms, with weights depending also on the surface discrete
curvature. In the numerical investigation presented in this Thesis, we also
consider a more simple choice of the blending weights as constant non-negative
values, i. e.

γi = γ ≥ 0, and δi = δ = (1 − γ) , for i = 1, . . . , m,

with γ + δ = 1.
Independently from the specific choice of the blending weights, the linear

system of equations to be solved at each iteration of the A-HDM method has the
following form,(

Ãpdm + Ãtdm + λĜ
)

c =
(
bpdm + btdm

)
, (5.16)
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where the matrices and right-hand-sides defined in (5.5) and (5.13) include the
blending weight matrices

Γ = diag{γ1, . . . , γm} ∈ Rm×m,

Γ̃ =


Γ 0 . . . 0

0 Γ . . . 0
...

... . . . ...

0 0 . . . Γ

 ∈ RNm×Nm,

D = diag{δ1, . . . , δm} ∈ Rm×m,

(5.17)

so that

Ãpdm = B̃⊤Γ̃B̃, and Ãtdm = B̃⊤ÑDÑ⊤B̃,

and

bpdm = B̃⊤Γ̃p̃, and btdm = B̃⊤ÑDÑ⊤ p̃.

Remark 25. When dealing with open surfaces, to reconstruct point clouds P =
PI∪̇PB, instability might arise from the normals computed at the boundary points
PB. To reduce this unstable behaviour, we modify the A-TDM method by decoupling the
computation of the unknowns related to the interior of the surface from the computation
of the unknowns for the boundary curves. In particular, c = cint ∪̇ cbdr, where cint is
the solution of (5.16) built on the interior parameters UI and points PI , and similarly,
cbdr is the solution of (5.5) built on the boundary parameters UB and points PB.

Remark 26. A-HDM can be considered a regularized version of A-TDM. While for
A-TDMLM the regularization term is a diagonal matrix γI as in (5.14), in this case the
regularization term is played by the PDM matrix Ãpdm as in (5.16). Moreover, from all
the numerical results of [10], we can infer that A-HDM with curvature-based weights
and A-TDMLM can achieve the same accuracy. We also experienced that, independently
of the choice of the weights, the A-HDM system matrix results more numerically stable
than the A-TDMLM, hence better suited for numerical computations, in particular for
complex, e. g., adaptive, constructions. For this reason, we prefer A-HDM over A-TDMLM
to conduct the analysis developed in the following sections. Note, however, that A-PDM
is nevertheless the method whose system matrix has lower condition numbers, being
numerically more stable also of A-HDM.

For completeness, we recall that the A-HDM method is a variant of the
Alternating Squared Distance Minimization (A-SDM) method, based on the
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local quadratic approximants of the squared distance function of a surface to
a point. A-SDM has been developed in [147, 149] for active contour models to
fit a surface to a target shape, applied to subdivision fitting schemes in [29],
and subsequently adjusted in [179] for the problem of B-spline curve fitting to
points clouds and in [122] for the problem of surface fitting and registration.
Further discussion on the local quadratic approximants for the squared distance
function can be found in [148].

A-QI

All the presented methods are characterized by the solution of a minimization
problem for the computation of the control points of the spline geometry.
However, there are no constraints on the method to be used for their definition.
In particular, we consider an additional alternating method, i. e. the Alternating
Quasi-Interpolation (A-QI), where the second step of the alternating scheme,
see Section 5.1, consists in the solution of a QI problem, as the one described in
Section 3.2.1.

5.1.3 Comparison of different weight choice for A-HDM

In this Section we compare the behaviour of the A-PDM and A-HDM methods for
different choices of blending weights. More precisely, for A-HDM, we consider
the blending weights in [130], [10], together with a suitable constant choice.
We consider a gridded point cloud, shown in the middle of the bottom line
of Figure 4.7, consisting of 3025 data sampled from a ship hull geometry.
Subsequently, we parameterize the data with CEN and CHL parameterization
methods [145]. We then compute a first initial approximation by performing a
penalized LS fit, i. e. PDM, with tensor-product B-splines of bi-degree d = (2, 2),
a 5 × 2 tensor-product mesh, and penalization weight λ = 1e − 7. We then
consider this initial approximation as starting point for the A-PDM and A-HDM
schemes.

As concerns the A-HDM method with constant weights, for the shiphull
point cloud parameterized with CEN, we perform a fine-tuning search on the
values of γ, with δ = (1 − γ). More precisely, we execute the A-HDM method
for γ = 1e − 3, 1e − 2, 1e − 1, 2.5e − 1, 5e − 1, 7.5e − 1 and show the results in
Figure 5.2 in terms of MSE evolution over the number of alternating iterations
(10 on the left and 30 on the right). From this fine-tuning, we choose to set
γ = 1e − 2 (the violet line in the plots) as constant choice in view of the higher
approximation accuracy achieved in this case.
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Figure 5.2: Shiphull point cloud with 3025 gridded points initially parametrized with
standard CEN method. Alternating spline approximation for bi-degree d =

(2, 2), on a 5 × 2 tensor-product mesh. Comparison of MSE for different
choice of constant weights in the A-HDM method for 10 (left) and 30 (right)
iterations.

Figure 5.3 shows the comparison of different weight choices for the A-HDM
with A-PDM, performed with 10 (left) and 30 (right) iterations, for the approxi-
mation of the point cloud with initial CEN parameterization. We can observe
that the A-HDM method, for any choice of blending weights, improves the
approximation accuracy in terms of MSE with respect to the A-PDM method
by about 1 order of magnitude. Note also that for the first 10 iterations, the
curvature-based blending weights (teal line in the plots) show the worst approx-
imation behaviour, among the other weight choices. Nevertheless, if we let the
algorithm perform a sufficient number of iterations, e. g., 30, then they show
better behaviour with respect to the error-driven weights of [130] (olive line in
the plots) and achieve the same accuracy as the constant fine-tuned weights
(violet line in the plots).

Analogous results can be observed in Figure 5.4 for the approximation of
the ship hull point cloud initially parameterized with CHL. In particular, the
curvature error-based methods show better performance if we let the alternating
fitting algorithm run for a sufficient number of iterations.
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Figure 5.3: Alternating B-spline fitting of the shiphull point cloud with 3025 gridded
data points for bi-degree d = (2, 2), on a 5 × 2 tensor-product mesh, with
initial CEN parameterization. The comparison of MSE between A-PDM, A-HDM

with constant choice of the weights, A-HDM with the weights of [130] and
A-HDM with the weights of [10] is shown for 10 (left) and 30 (right) iterations.
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Figure 5.4: Alternating B-spline fitting of the shiphull point cloud with 3025 gridded
data points for bi-degree d = (2, 2), on a 5 × 2 tensor-product mesh, with
initial CHL parameterization. The comparison of MSE between A-PDM, A-HDM

with constant choice of the weights, A-HDM with the weights of [130] and
A-HDM with the weights of [10] is shown for 10 (left) and 30 (right) iterations.
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5.2 adaptive alternating fitting schemes

In this Section, we extend the presented methods to adaptive THB-spline fitting
frameworks, motivated by the idea that, as the refinement proceeds in an adap-
tive setting, not only the geometric hierarchical model but also the parameter
values of each data point should be optimized. In fact, when adaptively fitting
a parametric geometric model, there is no evidence that the initial (possible)
optimality of the parameterization is maintained when the approximation space
is iteratively refined. Note, however, that the optimality of the initial parameter-
ization is fundamental for the success of the proposed method, as discussed
in Example 5.2.2 (d).

In the adaptive THB-spline fitting scenario, once an initial parameterization
and mesh configuration are chosen, the adaptive fitting technique consists of
four fundamental steps described in (1.4) that are successively repeated: 1.
SOLVE: fitting the THB-spline approximation on the current (hierarchical) mesh;
2. ESTIMATE: error estimation; 3. MARK: mesh marking strategy; 4. REFINE:
mesh refinement strategy to suitably identify the new hierarchical mesh to be
used in the next iteration, which starts again from 1.

To address the parameter update within the adaptive fitting loop, we propose
exploiting the alternating fitting methods covered in Section 5.1 in the first
step of the adaptive scheme, i. e. SOLVE. This choice enables the definition of
adaptive THB-spline fitting with moving parameters.

At the beginning of any adaptive iteration, the SOLVE routine is performed
as follows. Compute the control points according to the chosen method, e. g.,
PDM, TDM, HDM, or QI; perform a certain number of PC steps, i. e.

1. solve (5.3) for s belonging to the current hierarchical space, hence pro-
jecting the points of P on the THB-spline surface s, and considering their
foot-point as the new parameters U ;

2. update the geometric THB-spline model by fitting again the surface s to the
points P with the corrected parameters.

After the conclusion of the PC steps, the new parameters and updated THB-spline
geometry are considered for the next iteration of the adaptive loop. Note that
the a certain number of PC-like is applied globally to the entire approximant. In
particular, in the A-QI scheme, for each local problem the parameters U are kept
fixed.

As for standard adaptive fitting strategies, the described loop is performed
until the maximum point-wise error is within an input tolerance ϵ or a maximum
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number of hierarchical levels L is reached. Note that PC steps should naturally
be embedded in any adaptive scheme, i. e. not limited to fitting problems, since
even if the starting parameterization benefits from optimality within the initial
space, there is no evidence that optimality is maintained when moving to wider
successively refined approximation spaces.

The pseudocode for the adaptive A-HDM fitting scheme is reported in Al-
gorithm 7. The algorithm for the adaptive A-PDM and A-TDM methods can be
recovered by choosing δi and γi for i = 1, . . . , m on line 3 as in Remark 24.
Finally, the algorithm for the adaptive A-QI can be inferred by suitably adding
the PC routine (lines 4–6 of Algorithm 7) after line 3 of Algorithm 4.

5.2.1 Interaction of foot-point projection with adaptive spline configurations

Finding successfully the foot-point projection of a point on a surface is a chal-
lenging open problem; see, e. g., [102] and references therein. As far as parameter
correction is concerned, the foot-point projection in [90] is performed iteratively
by linearizing the problem in (5.3). Subsequently, in [159], the iterative proce-
dure has been replaced by the application of a Newton-like approach. Due to the
locality of Newton-like gradient methods, to properly correct the parameters,
it is of fundamental importance to start with a good initial parameterization
guess as well as with a reasonably good geometric model.

Figure 5.5 shows the consequences of incorporating the PC routine at a too-
early stage of an adaptive fitting scheme. More specifically, we consider the
point cloud of Section 3.3.1, consisting of 9281 scattered data acquired from an
industrial tensile part, which is approximately 2.5e − 2 m long. We fit this data
with the adaptive LS scheme developed in [101], equipped with the PC routine.
Note that combining the PC with the adaptive LS fitting scheme results in the
adaptive extension of the A-PDM method.

An initial tensor-product B-spline approximation of bi-degree d = (2, 2) is
built on a coarse 4 × 4 tensor-product mesh and illustrated in Figure 5.5 (a).
This initial coarse mesh is then adaptively refined using a criterion of error
threshold with ϵ = 5e − 5 m, leading to a final THB-spline model with 1136
DOFs that registers a MAX error of 8.33e − 5 m. The THB-spline approximation
obtained by introducing 1 PC step at each iteration of the adaptive loop is
shown in Figure 5.5 (b) and is characterized by 969 DOFs, MAX error of 3.059e −
4 m. Consequently, we may note that using the inaccurate approximation
shown in Figure 5.5 (a) to compute the foot-point projections and correct the
parameters leads to a final fitting result that is not suitable for further processing
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Algorithm 7: Adaptive alternating fitting scheme.
Input: Point cloud and initial parameterization {ui, pi}m

i=1, an initial
tensor-product B-spline space V0, the error tolerance ϵ > 0, a
maximum number of hierarchical levels L, and a maximum
number of PC steps cmax.

1 Compute the initial tensor-product B-spline approximation s ∈ V0 and
the point-wise errors ei = ∥s(ui)− pi∥2, for each i = 1, . . . , m and set
loop = 0

2 while maxi ei > ϵ and loop < L do
3 Solve the least squares problem

s = arg min
v∈V

1
2

m

∑
i=1

δi ∥s (ui)− pi∥2
2 + γi

[
(s (ui)− pi)

⊤ · ni

]
.

4 for step = 1, . . . , cmax do
5 Compute the foot-point projections

min
ui∈Ω

1
2
∥s (ui)− pi∥2

2 , for each i = 1, . . . , m

and update the parameters and control points of the spline
geometry.

6 end
7 Compute the errors ei = ∥s(ui)− pi∥2, for i = 1, . . . , m.
8 Mark the domain elements where ei > ϵ.
9 Refine the marked cells and the two surrounding rings of cells.
10 Update the hierarchical mesh M and hierarchical space V.
11 Set loop = loop + 1.
12 end

Output: s ∈ V, the THB-spline approximant.

due to the self-intersections visible in Figure 5.5 (b). We then consider as an
initial spline configuration the tensor-product B-spline approximation built on
a tensor-product mesh with two additional dyadic refinements with respect
to Figure 5.5 (a), i. e. with a 16 × 16 mesh, as shown in Figure 5.5 (c). These
settings lead to stable foot-point projection due to the quality of the initial
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(a) coarse initial
B-spline model

(b) THB-spline
model (969 DOFs)

(c) refined initial
B-spline model

(d) THB-spline
model (607 DOFs)

Figure 5.5: Adaptive A-PDM with THB-splines: effect of the initial tensor-product B-spline
approximation. The THB-spline model (b) constructed from the initial con-
figuration (a) defined on a 4 × 4 tensor-product mesh is affected by self-
intersections due to the too coarse initial mesh. The THB-spline model (d)
constructed from the initial configuration (c) defined on a 16 × 16 tensor-
product mesh is successfully computed.

approximation, and the LS scheme with moving parameters results in a model
with 607 DOFs and MAX error 8.467e − 5 m, shown in Figure 5.5 (d).

The choice of the optimizer and its settings are fundamental for the successful
computation of the foot-point projections. Here, we consider the LS adaptive
fitting method with moving parameters and compare the results with respect
to the use of different optimizers and optimization settings. In particular, we
start with the configuration of Figure 5.5 (c), i. e. bi-degree d = (2, 2) and a
16× 16 tensor-product mesh, and apply 1 PC step at each adaptive iteration. For
better comparison, we also fix the total number of adaptive refinement steps.
The results are shown in Table 5.1. As a reference, we consider the commercial
library Parasolid [164]. We can see that taking a too-big minimum step s in the
Gradient Descent (GD) method leads to a final result that can be worse than not
moving the parameters at all, with respect to the number of DOFs of the final
models and its accuracy in terms of MAX and MSE. However, if carefully fine-
tuned, the results obtained by Parasolid in terms of DOFs, MAX, and MSE can be
reached for s = 1e − 12. In the following numerical examples, we employed the
Hybrid Limited memory Broyden-Fletcher-Goldfarb-Shanno (HLBFGS) method
[124] with minimum step length s = 1e − 9, since it has always shown to
provide extremely similar results to Parasolid in all the considered examples.
The results obtained employing HLBFGS for the above-mentioned configuration
are also shown in Table 5.1.
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method pts < ϵ MAX (m) MSE (m2) DOFs

no PC 92.77% 1.97e − 4 7.30e − 10 751

GD, s = 1e − 9 91.91% 2.92e − 4 1.06473e − 9 748

GD, s = 1e − 10 96.88% 1.62e − 4 4.43e − 10 690

GD, s = 1e − 11 99.29% 8.47e − 5 2.41e − 10 607

GD, s = 1e − 12 99.31% 8.47e − 5 2.37e − 10 607

HLBFGS 99.31% 8.47e − 5 2.37e − 10 607

Parasolid 99.31% 8.47e − 5 2.37e − 10 607

Table 5.1: Influence of optimizers used for the foot-point computation loop starting
from configuration of Figure 5.5 (c).

5.2.2 Numerical examples for adaptive alternating methods

In this Section, we present a selection of numerical examples to assess the
benefits of the moving parameterization approach in combination with the
adaptive PDM fitting scheme. In particular, we numerically prove that including
the PC routine on a proper initial guess and choosing suitable settings for the
optimizer leads to outperforming the state-of-the-art THB-spline fitting schemes,
see Example 5.2.2 (a). In addition, we combine the presented adaptive A-PDM
fitting methods with the parameterization methods presented in Chapter 4 to
further improve the accuracy of the final reconstructed geometry, see Exam-
ple 5.2.2 (b) and Example 5.2.2 (c). Besides the strength of moving the parameters
accordingly to the designed space, we show that finding an optimal parameter-
ization for the initial settings plays a fundamental role, see Example 5.2.2 (d).
In Example 5.2.2 (e), we combine the moving parameterization technique with
the parameterization method in Section 4.3 and the (reweighted) fitting scheme
proposed in Section 3.1.8. Finally, in Example 5.2.2 (f) we conduct a comparison
between the adaptive A-PDM and A-HDM.

Example 5.2.2 (a)

In the following example, we analyze the effects of enriching the adaptive Adaptive A-PDM
LS fitting scheme with the moving parameterization method. In particular,
we approximate a point cloud of 9636 scattered data in R3, illustrated in
Figure 5.6 (c), obtained by sampling a ship hull B-spline geometry according to
the uniform random distribution.

In this example, we also store the exact sampling parametric values in [0, 1]2,
in order to exploit the properties of the method and reduce the influence of the
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(a) (b) (c) (d)

Figure 5.6: Nefertiti (a), face (b), ship hull (c) and wind turbine (d) scattered point
clouds characterized by 8818 (a), 9283 (b), 9636 (c-d) points.

initial parametrization. On the contrary, in all the following numerical results,
we assume the parametric values to be unknown, and we will consequently
compute them, showing in addition how a good initial parameterization is
fundamental.

By performing the adaptive LS fitting algorithm proposed in [101] with bi-
degree d = (2, 2), the final reconstructed geometry has 7173 DOFs, i. e. 74% of
the points, and the THB-spline model accuracy is characterized by a MSE equal
to 5.54e − 5. By enriching the previous method with the moving parameter
schemes, i. e. performing the adaptive A-PDM method, the final geometry is
characterized by 4277 degrees of freedom, i. e. 44% of the points, and a MSE of
4.25e − 6. Thus, introducing the PC scheme inside the adaptive loop results in a
considerably smaller and more accurate THB-spline model, with about 40% of
DOFs less. The final THB-spline models and the relative hierarchical meshes are
illustrated in Figure 5.7.

Example 5.2.2 (b)

In this experiment, we exploit the performance of the PARCNN parameteriza-Adaptive A-PDM
with PARCNN tion model, introduced in Section 4.1, with the adaptive A-PDM fitting scheme.

We consider the gridded point cloud consisting of 3025 items, shown in Fig-
ure 4.7 (bottom line, center) and we compute its initial parameterization with
the PARCNN model. Subsequently, we perform the A-PDM fitting scheme. The
resulting hierarchical mesh and the THB-spline approximation are shown in
Figure 5.8. In particular, the final geometry has 1349 DOFs and an accuracy
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(a) (b) (c) (d)

Figure 5.7: The hierarchical THB-spline models (a-c) and the corresponding hierarchical
meshes (b-d) for the ship hull point cloud of dimension 9636 obtained with
adaptive LS (a-b) and adaptive A-PDM (c-d) in Example 5.2.2 (a).

Figure 5.8: Reconstructed geometric spline model (left) and hierarchical mesh (right) of
the ship hull point cloud of dimension 3025 via the adaptive scheme with
THB-splines in Example 5.2.2 (b).

characterized by a MSE equals to 2.02e − 11. Note that the degrees of freedom
are properly distributed along the parametric domain Ω, by following the sharp
feature and high curvature regions of the geometry, as shown in Figure 5.8.

Example 5.2.2 (c)

In this example, we investigate the generalization capabilities of the BIDGCN Adaptive A-PDM
with BIDGCNparameterization, proposed in Section 4.3, to spline configurations of different

bi-degrees for the reconstruction of different point clouds.
We start by performing the adaptive A-PDM fitting scheme with THB-splines of

a human face model of 9283 points, shown in Figure 5.6 (b).
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In particular, we reconstruct the THB-spline models of the input point cloud
by performing the adaptive A-PDM fitting scheme both for bidegree (3, 3) and
(4, 4). In the first case, we start from a tensor-product space with bi-degree
d = (3, 3) and perfom 8 adaptive iterations, each of them characterized by 1
step of PC. The smoothig weight λ is set to 1e−6 and the refinement threshold
is ϵ = 8e−4. The final reconstructed geometry has 4 uniformly refined and 4
locally refined hierarchical levels. Moreover, it has 2687 degrees of freedom (29%
of the number of points) that approximate the input point cloud registering
a MSE of 1.45e−8, a MAX error of 1.03e−3, and the DHD from the point cloud
to the surface is 3.43e−2. In the second case, the algorithm settings are the
same of the previous configuration, except for the bi-degree, which is not set
to d = (4, 4), and the refinement threshold, which is lowered to 6.5e−4. The
final reconstructed model is a THB-spline geometry with 4 uniformly refined
and 4 locally refined hierarchical levels, and 2793 degrees of freedom (30% of
the number of points) that approximates the input point cloud with a MSE
of 1.44e−8, a maximum error of 1.07e−3, and the DHD from the point cloud
to the surface is 3.23e−2. The reconstructed THB-spline models, their scaled
error distributions on the point cloud, the computed parametric values, and the
corresponding hierarchical meshes are illustrated in Figure 5.9.

We conclude this example by considering two additional point clouds of
9636 items collected from a ship hull and a wind turbine, shown in Fig-
ure 5.6 (c) and (d). In particular, we approximate the two scattered data sets
by performing 8 iterations of the adaptive A-PDM fitting algorithm, starting
from a tensor-product polynomial space with bi-degree d = (5, 2). The point
clouds, the reconstructed THB-spline model, the point wise error distribution on
the scattered data and the hierarchical meshes are displayed in Figure 5.10 for
both the ship hull (top) and the wind turbine (bottom).

As concerns the ship hull data, we set the smoothig weight λ = 1e−6 and the
refinement threshold is ϵ = 1e−5. The final THB-spline model has 5 uniformly
refined and 3 locally refined hierarchical levels. More specifically, it has 4092
degrees of freedom (i.e. 42% of the number of points), a MSE equal to 1.30e−10,
a MAX error equal to 2.27e−4, and registers a DHD from the points to the surface
equals to 8.45e−2.

Finally, for the wind turbine point cloud we set the smoothig weight as
λ = 1e−6 and the refinement threshold as ϵ = 5e−5. The final THB-spline model
has 5 uniformly refined and 3 locally refined hierarchical levels, 2449 degrees
of freedom, equivalent in magnitude to 25% of the number of input data, a MSE
of 2.13e−10, a MAX error of 4.57e−4, and DHD from the points to the surface of
1.66e−1.
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Figure 5.9: Hierarchical spline model reconstruction of the face point cloud shown in
Figure 5.6 (b) for bidegree d = (3, 3) (top) and d = (4, 4) (bottom) using the
BIDGCN parameterization. The reconstructed THB-spline models are shown
together with the scaled error distributions on the point cloud, the computed
parametric values, and the corresponding hierarchical meshes (from left to
right) for Example 5.2.2 (c).

Example 5.2.2 (d)

In this example, we process the point cloud representing a Nefertiti face model, Comparison
between adaptive
A-PDM with LPSP
and BIDGCN

of size 8818, shown in Figure 5.6 (a) to perform a comparison between the
standard parameterization methods described in Section 4.2.1 and the learning
BIDGCN parameterization method proposed in Section 4.3. As concerns the
standard parameterization methods, a suitable choice of the radius r needs to be
selected. To produce fair comparisons and avoid unreasonable parameter value
distributions, as already illustrated in Figure 4.30, we execute a heuristic search
for r = 3√

m , 0.05, 0.075, 0.1, . . . , 0.25, 0.275, 0.3, by computing the polynomial
approximation of bi-degree d = (2, 2), and select the radius r giving the best MSE.
By analyzing the value of the error with respect to r, we decide to fix the radius
as defined in (4.16), i. e. r = 3√

8818
, since it leads to the best approximation result.

We then parameterize the input scattered point cloud with the standard LPSP
method as well as the learning BIDGCN method and subsequently reconstruct
hierarchical spline model by performing the adaptive A-PDM fitting scheme for
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Figure 5.10: The hierarchical spline model reconstruction, the scaled error distribution
and the hierarchical mesh for a ship hull (top) and a wind turbine (bottom)
using the BIDGCN parameterization with bi-degree d = (5, 2) in Exam-
ple 5.2.2 (c).

bi-degree d = (2, 2). Note that among all the listed values for the radius r of
the LPSP method that we tested on this point cloud, the choice r = 3√

m gives
the best results in terms of biquadratic polynomial approximation. We start
from a tensor-product space with bi-degree d = (2, 2) and perform 8 adaptive
iterations, each of them characterized by 1 step of PC. To properly compare the
results, the refinement tolerances are chosen such that the final THB-spline models
have (almost) the same number of degrees of freedom. Both BIDGCN and LPSP
are characterized by 4 uniformly refined and 4 locally refined hierarchical levels.
Moreover, when the LPSP method is considered, we obtain a THB-spline model
with 5672 degrees of freedom, which is 64% of the total number of scattered
input items, characterized by a MSE of 5.50e−6, a MAX error of 3.34e−2, and
DHD from the points to the surface of 1.22. If we parameterize the Nefertiti
data with the BIDGCN method, the THB-spline approximation has 5404 degrees of
freedom, i.e. 61% of the number of points, and a corresponding MSE of 1.75e−6,
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Figure 5.11: Hierarchical spline model reconstruction of the Nefertiti point cloud shown
on left of Figure 5.6 for LPSP parameterization with 5492 degrees of freedom
(top), as well al for the BIDGCN parameterization with 5288 degrees of
freedom (bottom) with bi-degree d = (2, 2). The reconstructed THB-spline

models are shown together with the scaled error distributions on the point
cloud, the computed parametric values, and the corresponding hierarchical
meshes (from left to right).

MAX error of 1.41e−2, and DHD from the data points to the surface of 3.46e−1.
The THB-spline approximations, scaled error distributions on the point cloud,
parameter values, and hierarchical meshes obtained with LPSP and BIDGCN
parameterizations are shown on the top and bottom of Figure 5.11, respectively.
We observe that BIDGCN leads to better results in terms of final model accuracy,
since in average a smaller error is registered and the sharp features are better
reproduced. In particular, close to the mouth of the model, the shape preserving
parametric values tend to be clustered, a behaviour that clearly affects the final
quality of the adaptive spline approximation.

Example 5.2.2 (e)

In this example, we perform the reweighted adaptive spline least squares fit- Adaptive A-PDM
with type II markers
and BIDGCN

ting scheme proposed in Section 3.1.8, enriched by the moving parameterization
technique, to approximate a scattered point cloud of 9000 points representing
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a Nefertiti bust, illustrated in Figure 5.12 (top-left). Firstly, we parameterize
the input data with the BIDGCN method proposed in Section 4.3. In addition,
to tackle the presence of corrupted data, we exploit the use of the weights
associated to the data. More precisely, together with the points, we are given
a set of markers of the second type KI I , highlighted in black in Figure 5.12

(bottom-left) which we use to perform the reweighted adaptive scheme. Due
to the complexity of the problem, we decide not to update the markers KI I
but to keep them fixed over all the iterative scheme, by setting tolI I sufficiently
small. We then compare the results obtained by the proposed rWLS with the
ordinary adaptive least squares scheme LS, where all the weights set to one.
Note that both schemes are enriched by the moving parametrization technique,
included within the refinement procedure. Such a comparison is illustrated in
Figure 5.12, where we show on the top the hierarchical approximation obtained
by LS and on the bottom the one obtained by rWLS. In particular, the region
corresponding to the corrupted data is better approximated by the rWLS method,
which results free of self-intersections and it is smoother than the one obtained
with LS. Finally, the MAX error registered by LS is 3.28e − 2, whereas the MAX of
rWLS is 1.57e − 2.

Example 5.2.2 (f)

In this last example, we analyze the behaviour of the adaptive A-PDM andComparison of
A-PDM, A-HDM adaptive A-HDM with two different choices of blending weights, the weights

proposed in [10], and the constant choice. We adaptively approximate the ship
hull point cloud already considered in Section 5.1.3, consisting of 3025 gridded
data points and initial CEN parameterization.

As initial settings, we choose the polynomial bi-degree d = (2, 2), the initial
5 × 2 tensor-product mesh, smoothing weight λ = 1e − 7, and we set the refine-
ment threshold as ϵ = 1e − 4. Moreover, based on the weights investigations
conducted in Section 5.1.3, we select the constant weight choice γ = 1e − 2. We
run the adaptive alternating fitting methods for 1 and 5 PC steps performed at
each adaptive loop. The results in terms of MSE are shown in Figure 5.13.

We can observe that the A-HDM method with constant weight choice (orange
line) shows better approximation performance with respect to A-PDM, whereas
this is not the case for the A-HDM method with curvature-based weights as in
[10], for 1 PC step. This is in line with the results presented in Section 5.1.3,
specifically in Figure 5.3. After 1 PC step, the A-HDM methods tend not to be in
a convergence regime, hence initiating the refinement on a bad approximation
leads to a worse final result; see also the considerations in Section 5.2.1.
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Figure 5.12: Adaptive surface fitting experiment described in Example 5.2.2 (e) using
adaptive LS (top) and rWLS (bottom) for data with markers of type II. The
data point clouds and the marked points are also shown.

We finally run all the adaptive alternating algorithms with 5 PC steps. In this
case, also adaptive A-HDM with curvature-based weights shows good approx-
imation performance, better than A-PDM. Note that the accuracy gain is kept
for all the weight choices during the adaptive refinement. In particular, the
constant choice of the weights results in the best choice for this example. The
final geometries obtained with 5 PC steps are in Figure 5.14, together with their
respective number of DOFs and MSE values. More specifically, the least number
of DOFs and the lowest MSE are registered by A-HDM with constant weights.
When using curvature-based weights, A-HDM requires around 35% more DOFs
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Figure 5.13: Adaptive spline approximation for the ship hull point cloud consisting
of 3025 gridded data points parametrized with CEN method. Comparison
of MSE between adaptive A-PDM (blue), A-HDM with the weights as in [10]
(teal) and A-HDM with constant choice of the weights, for γ = 1e − 2
(orange), for 1PC (left) and 5PC (right) steps within the adaptive loop.

to attain the same level of accuracy, whereas A-PDM requires about 55% more
DOFs to achieve the same level of precision, yet registering a higher MSE.

5.3 adaptive fitting with joint-optimization

Moving parameterization methods consider the point parameters as variables
that might be adjusted during the fitting process in order to optimize the
final geometry. The optimization problem proper of the alternating methods
discussed in the previous Sections is linear with respect to the control points
of the spline surface s and non-linear with respect to the point parameters U .
Going one step further, we propose in this section a Joint Optimization approach
to solve simultaneously the parameterization and fitting problems for a fixed
spline space, i. e. to address the problem in (5.1). Subsequently, we extend this
surface fitting optimization method to the adaptive spline framework. More
precisely, we address the parameterization problem within the first step (SOLVE)
of the adaptive loop by simultaneously computing the optimal parameter sites U
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A-PDM A-HDM [10] A-HDM γ = 1e − 2
DOFs = 762
MSE = 3.70e − 10

DOFs = 536
MSE = 6.94e − 10

DOFs = 345
MSE = 2.59e − 10

Figure 5.14: Adaptive spline approximation for the ship hull point cloud consisting
of 3025 gridded data points and initial CEN parameterization in Exam-
ple 5.3.3 (a). From left to right: final THB-spline model with adaptive A-PDM,
A-HDM and the weights choice in [10], and A-HDM and constant weights
γ = 1e − 2, with 5PC steps within each adaptive loop. The DOFs and MSE

are alro reported.

for P and control points for s. Therefore, with this method, we avoid solving
a linear system of equations and performing PC routines at every adaptive
iteration.

The spline fitting problem is here addressed as a non-linear minimization
problem, whose Jacobian can be explicitly computed by exploiting the properties
of the B-spline basis functions, see Chapter 2 and the references therein. In
particular, the explicit computation of the Jacobian matrix enables the use of
numerical optimization techniques. Since the explicit calculation of the Hessian
matrix can potentially be a costly procedure, we consider an optimization
framework based on the Limited memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) optimizer [24, 121], which exploit the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) for the Hessian corrections, with the difference that these corrections
are stored separately, and when the available storage is complete, the oldest
correction is deleted to make space for the new one. The benefits of exploiting
LBFGS-based methods can be particularly appreciated to solve problems in
which the Hessian matrices are large, unstructured, dense, or even unavailable.

5.3.1 Limited memory BFGS optimization

In the following, we provide some background knowledge on the LBFGS method,
used in our fitting method to minimize (5.1). Let f : Rn → R be a non-linear
function, and let g : Rn → Rn be its known gradient. The LBFGS method
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is a quasi-Newton algorithm for solving large, i. e. n ≫ 50 [24], non-linear
optimization problems, namely

min
x

f (x), (5.18)

where x is the set of unknown variables. The LBFGS method approximates the
inverse of the Hessian matrix of the objective function Hk by a sequence of
gradient vectors from previous iterations. The user specifies the number ν of
BFGS corrections that are to be kept and provides an initial sparse symmetric and
positive definite matrix H0

0 , which approximates the inverse of the Hessian of f .
During the first ν iterations, the LBFGS method is identical to the BFGS method.
For k > ν, Hk is obtained by applying m BFGS updates to H0

k using information
from the ν previous iterations. More precisely, at each iteration k, the current
iterate xk, the function value fk, the gradient gk, and the approximation of the
Hessian Hk are given; therefore, this allows us to compute

sk = xk+1 − xk,

yk = gk+1 − gk,

ρk =
1

y⊤
k sk

,

Mk = I − ρkyks⊤k ,

H0
k =

s⊤k−1yk−1

y⊤
k−1yk−1

I

and thereafter,

Hk =
(

M⊤
k−1 . . . M⊤

k−m

)
H0

k (Mk−m . . . Mk−1)

+ ρk−m

(
M⊤

k−1 . . . M⊤
k−m+1

)
sk−ms⊤k−m (Mk−m+1 . . . Mk−1)

+ ρk−m+1

(
M⊤

k−1 . . . M⊤
k−m+2

)
sk−m+1s⊤k−m+1 (Mk−m+2 . . . Mk−1)

...

+ ρk−1sk−1s⊤k−1.

Subsequently, at the end of the k-th iteration of LBFGS the variables are updated
by

dk = −Hkgk,

xk+1 = xk + γkdk,
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where γk is a scalar variable controlling the step-size, which satisfies the Wolfe
conditions [183, 184], i. e.

f (xk + γkdk) ≤ f (xk) + c1γkg⊤k dk,

g (xk + γkdk)
⊤ dk ≥ c2g⊤k dk,

with 0 < c1 < c2 < 1. Finally, the LBFGS algorithm terminates when the
gradient of the objective function is smaller than a specified input tolerance, i. e.
∥∇ f ∥ < η or a maximum number of iterations Kmax is reached.

Remark 27. The LBFGS algorithm uses a sequence of m gradient vectors to approximate
the inverse of the Hessian matrix. Thus, a large value of m can potentially lead to a more
accurate guess while simultaneously increasing the computational costs. According to
the literature, the default suggested value to be used is ν = 20 [140, 189].

5.3.2 Adaptive spline fitting with LBFGS

We employ the LBFGS algorithm to address the problem of spline surface fitting.
In particular, given a point cloud P as in (1.1), so that P = PI∪̇PB, i. e. disjoint
union between interior points and boundary points, for a fixed spline space
V = span {β0, . . . , βn} of dimension n + 1, our goal consists in finding a spline
model s ∈ V, which satisfied (5.1). The outline of the proposed optimization
approach consists in the following three steps:

1. define an initial parameterization U ;

2. define the initial control points, hence the initial spline geometry s0 ∈ V;

3. run the HLBFGS optimizer until convergence.

Note that there are no requirements concerning the initial guesses in steps 1
and 2. For instance, any method discussed in Chapter 4 can be suitably applied
to compute the initial parameterization, as any fitting method presented in
Chapter 3 or in the first part of the present Chapter to compute the initial
spline configuration. Nevertheless, both the chosen parameterization and spline
geometry need to be good enough to guarantee fast convergence to a more
accurate solution.

The unknowns of this problem are both the coefficients of the spline model
and the parametric sites U associated to the data points. We then arrange them
in the matrices

c ∈ R(n+1)×N and u ∈ Rm×D,
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respectively. Moreover, we consider the collocation matrix B = B (U ) as in (3.4),
and we obtain the matrix form of the objective function (5.1), i. e.

f (c, u) = ∥Bc − p∥2
F + λJ (c) = trace

{
[Bc − p] [Bc − p]⊤

}
+ λJ (c) , (5.19)

where ∥ · ∥F represents the Frobenius norm, p ∈ Rm×N is a matrix containing
the data points P , and J (c) represents the contribution of the smoothing term.
In order to exploit the LBFGS optimizer, we need to provide the gradient of
the objective function (5.19), namely to compute the (partial) derivative of our
fitting spline object with respect to each coefficient as well as with respect to
each parametric site. More precisely,

∇ f (c, u) =(
∂ f

∂c(1)0

, . . . , ∂ f

∂c(1)n
, . . . , ∂ f

∂c(N)
0

, . . . , ∂ f

∂c(N)
n

, ∂ f

∂u(1)
1

, . . . , ∂ f

∂u(1)
m

, . . . , ∂ f

∂u(D)
1

, . . . , ∂ f

∂u(D)
m

)
,

(5.20)

hence, by letting G as in (5.6),

∇c f (c, u) =
(

B⊤B + λG
)

c − B⊤p

∇u(k) f (c, u) =
1
2
∇u(k)trace

(
(Bc − p) (Bc − p)⊤

)
= diag

(
(Bc − p)

(
∂u(k)Bc

)⊤) , k = 1, . . . , D.

(5.21)

Similarly to Remark 22, we are again dealing with the disjoint union of
interior and boundary points and, consequently, with interior and boundary
parameters, i. e. U = UI∪̇UB. In particular, in this case, we constrained the
boundary parameters UB to live only on the boundary curve they belong to.
This can be achieved by discarding from the optimization variables, hence
also from (5.20), the parametric directions u(k)

j , for j = n + 1, . . . , m and some
k = 1, . . . , D, pointing towards the interior of Ω. Figure 5.15 illustrates the
boundary constraints in the case of D = 2 and Ω = [0, 1]2, with 4 boundary
edges. More precisely, the parametric site ui = (u(1)

i , u(2)
i ) belongs to the west

edge of the domain; hence, the only component of ui that plays a role in the
optimization problem (5.1) is u(2)

i , whereas u(1)
i is kept fixed to 0. Similarly, uj

belongs to the south edge of the domain; hence, we optimize u(1)
j while we set

u(2)
j = 0.
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ui

uj

×

×

Figure 5.15: Two parametric sites ui and uj respectively constrained to the west and
the south boundary edge of the rectangular domain Ω. The only possible
directions are highlighted by blue arrows for ui and red arrows for uj.
In addition, not acceptable directions are represented by dashed arrows,
marked by a cross symbol.

The advantage of the proposed fitting method consists in avoiding the com-
putation of the foot-point projections and solving a very large linear system of
equations at every time step. For completeness, we recall that a B-spline curve
fitting method based on LBFGS has been developed in [189].

In this Section, we extend the joint optimization fitting method to the adaptive
THB-spline framework. In this way, we provide a new strategy to embed the
moving parameterization within adaptive spline fitting schemes.

Given a point cloud P = PI∪̇PB, a suitable parameterization U , and a
THB-spline geometry s ∈ V as in (2.15), belonging to a hierarchical spline space V,
at the beginning of each adaptive routine (1.4), we perform the joint optimization
fitting algorithm for the current fixed spline space V, using as initial guesses
the parameter and the control points coming from the previous adaptive loop.
Subsequently, the output of the LBFGS optimizer defines the new control points
cj ∈ RN, for j ∈ Aℓ

k and ℓ = 0, . . . , L − 1, of the spline geometry s ∈ V and
the new parametric sites U of the data points, which are not kept fixed over
the adaptive fitting scheme, but updated at each iteration. The remaining three
adaptive steps are similar to the ones implemented for the adaptive alternating
methods. To summarize, the optimal geometry s is evaluated on the new
parametric sites U and the point-wise error estimator is computed, namely

∥s(ui)− pi∥2 , for each i = 1, . . . , m.

We identify the cells of the current hierarchical level ℓ, which contain the
parameters ui so that ∥s(ui)− pi∥2 > ϵ, for a certain input error threshold
ϵ > 0, and mark them for refinement, together with two surrounding rings of
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Algorithm 8: Adaptive joint optimization fitting scheme.
Input: Point cloud and parameters {ui, pi}m

i=1, an initial tensor-product
B-spline space V0, the error tolerance ϵ > 0, a maximum number
of hierarchical levels L.

1 Compute the initial tensor-product LS B-spline approximation s ∈ V0 and
the point-wise errors ei = ∥s(ui)− pi∥2, for each i = 1, . . . , m and set
loop = 0

2 while maxi ei > ϵ and loop < L do
3 Solve the non linear least squares problem

s = arg min
cj , j∈Aℓ ,ℓ=0,...,loop

ui∈Ω,i=1,...,m

1
2

m

∑
i=1

∥s (ui)− pi∥2
2 + λJ(c).

4 Compute the errors ei = ∥s(ui)− pi∥2, for i = 1, . . . , m.
5 Mark the domain elements where ei > ϵ.
6 Refine the marked cells and two surrounding rings of cells.
7 Update the hierarchical mesh M and hierarchical space V.
8 Project the solution s onto the refine space V.
9 Set loop = loop + 1.

10 end
Output: s ∈ V, the THB-spline approximant.

cells in the hierarchical mesh. Finally, the marked cells are dyadically split in
order to refine the hierarchical space.

Remark 28. After refinement, the hierarchical space has been updated by the insertion
of a new hierarchical level, and a new iteration of the adaptive loop can potentially begin.
Note that, in order to initialize the HLBFGS optimizer on the enlarged hierarchical spline
space, we need to project the solution from the previous iteration to the new spline space.

Finally, we suggest as automatic approach to generating the initial tensor-
product B-spline fitting geometry to solve the (weighted) LS problem for a
given input parameterization, see Section 3.1. The joint optimization routine is
summarized in Algorithm 8.
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5.3.3 Numerical results

In this Section, we present a comparison between the adaptive fitting schemes
with moving parameterization presented in this Chapter, i. e. the adaptive
A-PDM, A-HDM methods of Section 5.2, and the adaptive J-PDM of Section 5.3.
In Example 5.3.3 (a) we approximate a ship hull point cloud of 3025 gridded
data, for which we investigate different fine-tuning strategies for adaptive
J-PDM. In Example 5.3.3 (a), we approximate a real-world data set of 9000 points
representing a Nefertiti bust. From both examples, the J-PDM method results in
the best approximation accuracy from a qualitative and quantitative perspective,
being on the other hand the most computationally expensive.

The algorithms related to the adaptive fitting schemes with THB-splines have
been implemented in C++ with the open-source G+Smo library [94, 129]. The
developed code for the proposed algorithms has been integrated and will be
available in the next releases. As concerns the implementation of the LBFGS opti-
mization method, we exploit the HLBFGS C++ library [124], which provides the
LBFGS method, the preconditioned LBFGS method [93], and the preconditioned
conjugate gradient method [150, 151].

Example 5.3.3 (a)

In this example, we revisit the adaptive approximation analyzed in Exam- Comparison on the
ship hull point cloudple 5.2.2 (f). We start with the same initial configuration, i. e. we approximate

a ship hull point cloud consisting of 3025 gridded data points and initial CEN
parameterization, starting with a tensor-product B-spline of bi-degree d = (2, 2)
on a 5 × 2 mesh. Differently from Example 5.2.2 (f), we lower the refinement
threshold to ϵ = 1e − 5 to induce more refinement levels.

As concerns the adaptive A-PDM we perform 10 steps of PC within each
adaptive loop. As concerns adaptive J-PDM, we exploit two configurations for
its hyper-parameters, namely the tolerance on the norm of the gradient ν and
the maximum number of iterations Kmax.

(a) In this first configuration we set η = 1e − 6 and Kmax = 500.

(b) In this second configuration, we set η0 = 1e − 5 and K0
max = 2ℓ · 200 and

adaptively change them with the number of hierarchical level, i. e.

ηℓ =
η0

2ℓ
, and Kℓ

max = 2ℓ · K0
max, (5.22)

for ℓ = 0, . . . , L − 1.
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The configuration in (b) arises from the idea that spline space V poses a
constraint to the solution of (5.1). In particular, if the approximation space V is
too coarse, it is not reasonable to spend computational resources, by setting ν

too low or Kmax too high, to find an optimal solution in V, which will not satisfy
the refinement threshold ϵ and will be anyway recomputed after refinement.
On the other hand, when the space V enlarges, then it is more plausible that
the solution satisfying the input tolerance ϵ belongs to it; hence, it is valuable
to search for an optimum within this space. Higher accuracy is achieved by
lowering the threshold ν; consequently, we also increase the LBFGS maximum
number of iterations Kmax in order not to stop the optimization routine too
early. Note that a too low choice for η0 and K0

max might result in a geometry
with too poor quality at the end of the first loop of the adaptive scheme, which
would also affect the refinement and the whole adaptive approximation results,
similarly to the analysis in Section 5.2.1.

The results are shown in Figure 5.16 in terms of MSE (left) and MAX (right)
for the adaptive A-PDM (solid blue line), J-PDM for the configuration (a) (solid
magenta line), and J-PDM for the configuration (b) (dashed magenta line). We
can observe that both J-PDM configurations show considerably better approxi-
mation accuracy with respect to A-PDM in terms of MSE and MAX errors. More
specifically, we can note that the convergence rate of the adaptive J-PDM with
the hyper-parameter configuration in (b) overcomes all the other schemes, sat-
isfying the input tolerance ϵ with less than 400 DOFs, whereas in all the other
configurations more than 1000 DOFs are required, up to 2329 DOFs for adaptive
A-PDM.

The reconstructed geometries are shown in Figure 5.17, from left to right for
A-PDM, J-PDM (a), and J-PDM (b), together with their DOFs, MSE and MAX values.

Example 5.3.3 (b)

In this last example, we compare the adaptive fitting methods with movingComparison
on the Nefertiti

real-wrold point
cloud

parameterization on a real-world dataset, corresponding to 9000 scattered points
representing a Nefertiti bust already considered in Example 5.2.2 (e), and we
compute the initial parameterization with the BIDGCN method, presented in
Chapter 4. We start the adaptive loop from a polynomial space of bi-degree
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Figure 5.16: Adaptive spline approximation for the ship hull point cloud consisting
of 3025 gridded data points and initial CEN parameterization in Exam-
ple 5.3.3 (a). Comparison of MSE (left) and MAX (right) between adaptive
A-PDM (blue) and the J-PDM approach with constant hyper parameters
(solid magenta) and adaptive hyper parameters (dashed magenta).

A-PDM J-PDM (a) J-PDM (b)
DOFs = 2329
MSE = 1.76e − 12
MAX = 8.48e − 6

DOFs = 1078
MSE = 4.21e − 12
MAX = 9.56e − 6

DOFs = 634
MSE = 3.29e − 12
MAX = 7.84e − 6

Figure 5.17: Adaptive spline approximation for the ship hull point cloud consisting
of 3025 gridded data points and initial CEN parameterization in Exam-
ple 5.3.3 (a). From left to right: final THB-spline model with adaptive A-PDM,
J-PDM (a) and J-PDM (b). The DOFs, MSE and MAX values are also reported.

d = (2, 2) and set the refinement threshold to ϵ = 2.5e − 3. The input point
cloud is characterized by high-curvature regions; hence, the point projection
involved in the adaptive alternating methods is very challenging. Consequently,
performing too many PC steps affects the quality of the final reconstructed
geometry. For this reason, we perform only 1 PC step within each adaptive
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loop of the alternating methods. By the analysis conducted in Section 5.1.3
and Example 5.2.2 (f), adaptive A-HDM method with curvature-/error-based
blending weights does not show a stable behaviour after only 1 step of PC, hence
proceeding with the refinement ruins the accuracy of the final reconstructed
hierarchical model. For this reason, we consider A-HDM with constant blending
weights, with γ = 1/3, chosen after an appropriate fine-tuning. As concerns
adaptive J-PDM, we set η = 1e − 5 and Kmax = 100 and we keep them constant.

The results in terms of MSE and MAX are illustrated in Figure 5.18, whereas
Figure 5.19 shows the qualitative results. More precisely, from left to right,
the moved parameters, the hierarchical mesh, the hierarchical reconstructed
geometry, and the scaled point-wise error distributions for the three considered
fitting schemes, adaptive A-PDM (top), A-HDM (middle), and J-PDM (bottom).

We can notice that A-PDM and A-HDM show very similar approximation
behaviour in terms of MSE. This can be motivated by the choice of the initial
parameterization: BIDGCN computes a parameterization that minimizes the PDM
error term, see Section 4.3.3, and the optimality is maintained also for the
adaptive A-PDM scheme, characterized by the minimization of the same error
term. On the other hand, the MAX error stagnates at ∼ 2.00e − 2 for adaptive
A-PDM, whereas it keeps decreasing for adaptive A-HDM until 8.35e− 3, achieved
with 2249 and 2197 DOFs, respectively. Finally, adaptive J-PDM exhibits a better
approximation capacity both for MSE and MAX if compared with the adaptive
alternating methods. As concerns the MAX, adaptive A-HDM and J-PDM converge
to very similar values. More precisely, J-PDM registers a MAX error of 7.96e − 3,
obtained with 2116 DOFs. However, the quality of the reconstructed geometry
is higher for J-PDM, as can be observed in Figure 5.19, especially in the area
around the eyes.

5.4 industrial applications with adaptive a-pdm and a-qi

In this Section, we illustrate the performance of the proposed fitting methods
within an industrial environment. More precisely, we consider the reverse
engineering problem of reconstructing highly accurate CAD models of aircraft
engine components. This reverse engineering process consists of three major
steps, i. e.

1. data acquisition;
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Figure 5.18: Adaptive spline approximation for the Nefertiti point cloud consisting of
9000 scattered data points with initial BIDGCN parameterization. Compari-
son of MSE (left) and MAX (right) between adaptive A-PDM (blue), A-HDM

(orange) and J-PDM (magenta).

2. point processing;

3. surface fitting;

4. geometric model post-processing.

More specifically, step 1 consists of the collection of the data from a physical part
through scanning, e. g., white light scanners, laser scanners, charge-coupled de-
vice (CCD) sensors, or coordinate-measuring machines (CMM). Step 2 concerns
more specific procedures, such as the construction of a suitable triangulation,
trimming, feature extractions, and data segmentation, among others. In partic-
ular, these routines are needed to recover intrinsic features of the geometric
part, e. g., holes, slots, or curves. In step 3, dynamic fitting algorithms are used
for surface generation. That is the case of our examples, where the considered
data, due to the acquisition process, are scattered and affected by noise, yet the
reconstructed geometric models are required to be compact and smooth while
simultaneously capturing key geometric features of the engine parts. Finally,
step 4 consists of the post-processing of the reconstructed surface models to
shape and assemble the final CAD model. For instance, trimming routines can
be performed to introduce holes, see e. g., [133], whereas multi-patch repre-
sentations can be exploited to merge several components of the CAD model, see
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Figure 5.19: Adaptive spline approximation for the Nefertiti point cloud consisting of
9000 scattered data points with initial BIDGCN parameterization. Compari-
son of adaptive A-PDM (top line), A-HDM (central line), and J-PDM (bottom
line). From left to right: the final (moved) parameters, the final hierarchical
mesh, the final approximating THB-spline geometry ad the scaled point wise
error.

e. g., [176]. Subsequently, the virtual models obtained are used for redesign
operations, further manufacturing, or numerical simulations.

Throughout this section, we use two fitting methods, namely the global
adaptive PDM approximation with THB-splines and the QI scheme using local
spline approximation, both described in Chapter 3, to assess the benefits of the
moving parameterization approach. Hence, we compare adaptive PDM and QI
with adaptive A-PDM and A-QI on scanned data provided by MTU Aero Engines.

The algorithms related to the adaptive fitting schemes with THB-splines have
been implemented in C++ with the open-source G+Smo library [94, 129]. The
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Figure 5.20: Adaptive THB-spline QI with moving parameters (adaptive A-QI) in Sec-
tion 5.4.1. From left to right: models computed with 0, 1, and 2 PC steps.

developed code for the proposed algorithms has been integrated and will be
available in the next releases.

5.4.1 Tensile with moving parameterization

In this example, we revisit the second configuration of Section 3.3.1, where
the point cloud of a tensile part is initially approximated by a bi-quadratic
spline on a tensor-product basis defined on a 4 × 16 mesh, with tolerance
ϵ = 5e − 5m. We compare the performance of the QI scheme without PC and
with one or more rounds of PC after the adaptive refinement step (adaptive
A-QI). The LBFGS optimizer with minimum step-size s = 1e − 9 is used for the
foot-point projection. In particular, the resulting geometries when applying 0, 1
or 2 rounds of PC after each refinement step are shown in Figure 5.20. We can
observe that all the fitting surfaces are of good quality. Nevertheless, in this case
suitably embedding the parameter correction routine in the adaptive loop led to
gaining the same precision in terms of MAX and MSE errors, while using fewer
degrees of freedom to reconstruct the final geometric model, as summarized in
the first three lines of Table 5.2. In particular, applying 3 steps of PC after each
hierarchical mesh refinement produces an approximation with 15.20% fewer
DOFs with respect to the one achieved with the standard adaptive QI scheme,
while simultaneously reducing the MAX error by 9.89% and the MSE by 17.20%.
Note that additional rounds (from 4 to 6 in Table 5.2) of parameter correction,
yield diminishing improvements, since the DOFs are still reduced, but there is
no gain in terms of MAX and MSE. This suggests that from 1 to 3 PC steps are in
general a proper choice when including the parameter correction within A-QI.
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method %pts < ϵ MAX (m) MSE (m2) DOFs

QI 99.36 8.11e − 5 1.42e − 10 1960

A-QI, 1 PC 99.33 8.17e − 5 1.41e − 10 1834 6.43%

A-QI, 2 PC 99.40 7.97e − 5 1.25e − 10 1718 12.35%

A-QI, 3 PC 99.46 7.31e − 5 1.17e − 10 1662 15.20%

A-QI, 4 PC 99.15 8.66e − 5 1.22e − 10 1659 15.36%

A-QI, 5 PC 99.02 8.52e − 5 1.23e − 10 1621 17.30%

A-QI, 6 PC 99.11 9.19e − 5 1.15e − 10 1621 17.30%

Table 5.2: Analysis in terms of points within the prescribed tolerance (%pts < ϵ), MAX

or MSE, and final number of DOFs for the adaptive THB-spline QI scheme in
Section 5.4.1. The percentages of the DOFs reduction with respect to QI without
PC are also reported.

5.4.2 Blade with moving parameterization

In this example, we revisit Section 3.3.2. However, in view of the considerations
of Section 5.2.1, the initial tensor-product basis of bi-degree d = (3, 3) is now
more refined, i. e. we start with a 8 × 8 tensor product mesh. The results are
still comparable, as the lowest level basis is entirely refined in the configuration
considered in Section 3.3.2. We then fit the set of 27191 measured data points
from a blade geometry that has a length of about 5e− 2m. We compare adaptive
A-PDM and A-QI, by always considering as smoothing coefficient λ = 1e − 8. In
both cases, we stop when at least 95% of data points are within the tolerance
ϵ = 2e − 5m.

Figure 5.21 shows the final THB-spline models obtained with adaptive A-PDM
(top) and A-QI (bottom) when 0 (PDM, QI), 1, or 2 PC steps are considered in the
adaptive THB-spline fitting schemes. In particular, we can observe that the A-QI
geometries are characterized by a smaller amount of oscillations along the sharp
features. To have more insights into this phenomenon, we present the reflection
lines on the different THB-spline models in Figure 5.22. By analyzing the top and
bottom row of this figure from left to right, we see that the PC improves the
surface quality by reducing the oscillations near the top left corner. Moreover,
by comparing the A-PDM (top) and A-QI (bottom) results in each column, we
can see that the oscillations just under the feature in the top right area of the
blade are reduced in the THB-spline models obtained with A-QI scheme.

The quantitative analysis for this example is detailed in Table 5.3. In particular,
both for A-PDM and A-QI schemes, we report the final percentage of points within
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method %pts < ϵ MAX (m) MSE (m2) DOFs

PDM 99.99 2.12e − 5 6.32e − 12 8164

A-PDM, 1 PC 99.19 4.04e − 5 2.48e − 11 2314 71.66%

A-PDM, 2 PC 99.65 2.90e − 5 2.37e − 11 2212 72.91%

QI 99.98 2.74e − 5 1.00e − 11 8278

A-QI, 1 PC 97.42 8.86e − 5 4.71e − 11 2554 69.15%

A-QI, 2 PC 95.97 5.71e − 5 5.93e − 11 2539 69.33%

Table 5.3: Analysis in terms of points within the tolerance (%pts < ϵ), MAX or MSE,
and number of DOFs for the adaptive THB-spline A-PDM and A-QI schemes in
Section 5.4.2. The percentages of the DOFs reduction with respect to A-PDM

and A-QI without PC are also reported.

the tolerance, the MAX and MSE errors, as well as the number of DOFs, when 0
(PDM, QI), 1, or 2 parameter corrections are considered. Note that the stopping
criterion (95% pts < 2e − 5m) is met in all cases, with a significant reduction
(∼ 70%) of DOFs both for A-PDM and A-QI schemes when 1 or 2 PC steps are
applied. This is due to the fact that the prescribed precision is achieved two
iterations earlier, preventing the introduction of two additional hierarchical
levels. This can be explicitly seen in Figure 5.23 for A-PDM (left) and A-QI (right),
where the number of points below the prescribed tolerance versus the amount
of DOFs at each adaptive iteration is reported. In this example, either one or two
PC steps, after each refinement procedure, are a good choice, since the results
are very similar, iteration by iteration, both for A-PDM and A-QI.
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Figure 5.21: THB-spline models with control nets in Example 5.4.2. Top row, from left
to right: PDM, A-PDM with 1, and 2 PC steps; bottom row: from left to right:
QI, A-QI with 1, and 2 PC steps.

Figure 5.22: THB-spline models with reflection lines in Section 5.4.2. Top row, from left
to right: PDM, A-PDM with 1, and 2 PC steps; bottom row: from left to right:
QI, A-QI with 1, and 2 PC steps.
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6
C O N C L U S I O N A N D F U T U R E D E V E L O P M E N T

In this Thesis, we presented novel (adaptive) fitting methods with THB-splines for
the (re-)construction of highly accurate CAD models from input point clouds. We
combined CAGD approaches with DL technology to produce robust, automatic,
and efficient fitting schemes.

In Chapter 2, we collected a selection of preliminaries notions on B-splines,
THB-splines and NNs, with special focus on CNNs and GCNs.

In Chapter 3, we reviewed interpolation and least squares approximation
schemes and provided a new general formulation for reweighted least squares
as a convex combination of certain interpolants. Furthermore, we exploited
the weights for spline fitting problems, also in the case of adaptive THB-spline
constructions. We proposed a strategy to automatically update the weights
within the fitting scheme, either to emphasize data marked as sharp features
or to smoothen data marked as corrupted [67]. The two-stage hierarchical QI
scheme for the approximation of scattered dataset using THB-splines [17, 19] was
then revisited. We modified the first stage of the scheme by introducing local
B-spline approximations to handle distribution with varying density of points.
This choice improved the performance of the existing scheme by increasing the
accuracy of the model and simultaneously reducing the computational costs.
The advantages of this choice was proven in the numerical examples, where the
reconstruction of industrial geometries was addressed [16].

In Chapter 4, we proposed novel data driven models both for gridded and
scattered point cloud parameterization. These models were characterized by
suitable NNs architectures based on convolutional operators, defined on the
considered domain. The PARCNN model [41] was based on a pure CNN archi-
tecture, i. e. consisting only of convolutional blocks. This choice was made to
take advantage of the locality of convolutional operators in order to be able
to support variable input sizes without any additional effort and/or pre- or
post-processing of the data. To overcome the limitation of CNNs to process
only data with a grid-like topology, we then considered GCNs to address the
parameterization learning problem of scattered data. PARGCN [71] processed data
with a graph structure, corresponding to the radius neighbours graph of the
input scattered point cloud. Subsequently, we devised BIDGCN [70], a new GCN
architecture for the parameterization of scattered data that takes into account
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boundary conditions in addition to the standard vertex features of the discrete
surface.

All the proposed methods were agnostic to the size of the input point cloud,
were robust to noise, and generalized to point clouds different from the ones
used during the training phase. They outperformed both closed form, heuristic
and data-driven parameterization choices and produced high-quality parame-
terizations for (TH)B-spline reconstruction schemes. In addition, BIDGCN, once
trained, was computationally more efficient than the classical meshless parame-
terization methods.

In Chapter 5, we introduced novel adaptive fitting schemes with moving
parameterization and THB-splines, based on the optimization of different error
metrics [68, 69]. The first strategy to move the parameters, consisted of enriching
the adaptive approximating loop with the PC routine [90]. As concerns the
control points, we proposed different diverse update rules, which bring to the
development of adaptive A-PDM, A-TDM, and A-HDM. In addition, we exploited
the introduction of PC within the adaptive hierarchical QI scheme presented in
Chapter 3. The second strategy to move the parameters consisted of addressing
the parameterization problem together with the computation of the control
points in the first step of the adaptive loop. This could be achieved by solving a
non-linear joint optimization problem, J-PDM, which simultaneously computed
the optimal parameter sites for the input point cloud and the optimal control
points for the approximating surface. With this method, we avoided the need
of solving a linear system of equations and performing PC at every adaptive
iteration.

Our study revealed that, independently from the chosen strategy, addressing
moving the parameterization within the adaptive loop could improve the fitting
results while also reducing the number of degrees of freedom required to
achieve a certain accuracy. This technique could lead to earlier termination of
the adaptive process, thus providing more compact models with less refinement
levels, being at the same time more accurate.

As concerns the parameterization of scattered point clouds, the methods in
this Thesis assume the data to be already partitioned between interior and
boundary points. In order to fully automate the point cloud reconstruction, a
future research direction consists in developing new data-driven techniques
to address the point cloud boundary detection problem, see e. g., [86, 126]. It
is also of interest to develop new data-driven parameterization methods that
learn quasi-conformal surface parameterization and reduce possible geometric
distortion [30]. Finally, also domain parameterization could be enhanced by the
development of suitable learning techniques, see e. g., [188].
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As concerns fitting schemes, it is of interest to extend the methods presented
in this Thesis to different adaptive spline functions e. g., [18, 97, 120]. Moreover,
to design a full CAD model, multi-patch constructions need to be addressed.
Consequently, it is of particular interest to develop multi-patch fitting schemes,
see e. g., [132].
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