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Abstract—Graphics Processing Units (GPUs), originally 
developed for computer graphics, are now commonly used to 
accelerate parallel applications. Given that GPUs are 
designed to be as efficient as possible, evaluating their 
performance is crucial. This problem has been tackled in the 
last years by researchers that started to propose solutions such 
as analytical models and digital simulators, which are, 
however, often complex to use and/or to adapt to the needs of 
the user. Thanks to its high flexibility, model-based analysis 
is widely used to evaluate systems’ properties, including 
performance. Researchers started working on developing 
GPU models that can represent both their architecture and the 
software in execution, but they often use strong assumptions 
that undermine their usability. In this work we develop a 
Stochastic Activity Network model to evaluate the 
performance of CUDA applications running on NVIDIA 
GPUs. The model takes as input a representation of the 
program’s instruction, parsed from the CUDA SASS 
assembly file, and a list of parameters to offer configurability 
to the user. We tune our model to match the architecture of 
two different NVIDIA GPUs and simulate the execution of a 
CUDA program. We then compare the results with those 
obtained from the execution of the program over the real 
GPUs. 
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1. INTRODUCTION

Graphics Processing Units (GPUs) were initially developed to 
accelerate computations in computer graphics applications 
like 3D modeling, computer animation and videogames. 
However, over the years, they started to be used in other 
application fields. Thanks to their architectural design, GPUs 
provide great performance when dealing with problems that 
have a high level of parallelism in the computation. Many 
examples of the usage of GPGPUs can be found in domains 
like Machine Learning, Cryptography and Scientific 
Computing. The term General-Purpose Graphics Processing 
Units (GPGPUs) denotes the use of GPUs in applications that 
would be otherwise executed on CPUs. The structure and 
functioning of GPUs are quite complex with respect to CPUs, 
and they can change from one vendor to another. NVIDIA 
proposed the Compute Unified Device Architecture (CUDA) 
[1], a parallel computing platform to develop programs that 
can be executed on NVIDIA GPUs. 

Performance evaluation of GPGPUs has gained much 
importance in the last years, due to the increasing use of these 
devices in computer systems coming from very different 
domains: from the “classic” data elaboration where GPUs are 
used to accelerate long computations on local data, to real-
time systems in which GPUs are used to, e.g., elaborate very 
quickly images coming from a camera sensor [2], [3]. Both 
these application fields may benefit from a performance 
analysis activity before buying (or developing) a GPU, e.g., 
for the first case one could compare different architectural 
designs to estimate the execution time of these designs on the 
reference workload and then choose the less costly option; in 
the second case, system designers may also benefit from a 
prior performance analysis to check whether the target GPU 
is compliant with the system’s timing requirements. Suppose 
that a GPU is going to be used as an image processor that 
receives data from a sensor camera at a fixed rate, e.g., 60 
frames per second. A GPU model would allow one to 
understand if the target device can, e.g., process every frame 
received by the camera at the given rate. This problem has 
been tackled during the last years but the proposed solutions, 
although some of them are promising, are: i) complex to use 
and/or to adapt to the needs of the user (e.g., digital simulators, 
where understanding the model architecture may be time-
consuming), or ii) hiding implementation details that may 
undermine the representation accuracy of the GPU [4]. 
In this work we present a stochastic model based on Stochastic 
Activity Networks (SANs) [5] that can be used to carry out 
performability analysis of CUDA programs executed on 
NVIDIA GPGPUs. Thanks to its high configurability, this 
model can represent different architectures, as it is possible to 
specify parameters such as the number of multiprocessors or 
the size of memories. The model takes as input the list of 
program’s instructions, parsed from the CUDA SASS 
assembly file, and analyses the performances of the execution 
of a program on the GPU. The main objective of this model is 
to provide performance measures, with particular focus on the 
number of clock cycles required by a specific kernel to run on 
a specific GPU. The main metrics that can be derived from our 
model are the total number of clock cycles required to execute 
the application, the number of active registers at any point of 
program’s execution and the distribution of memory accesses 
to detect potential bottlenecks. We compare our results with 
the information provided by the NVIDIA Nsight profiler [6], 
a tool that allows to monitor the execution of CUDA programs 
over physical GPUs and to provide insights on the usage of 
their components. 
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The rest of the paper is organized as follows: in Section II we 
provide some background information about GPUs’ 
architectures and discuss related works. In Section III we 
illustrate our modeling approach, describing what we want to 
represent in our model. In Section IV we give a detailed 
description of our stochastic model. In Section V we apply our 
approach to a concrete case study, modeling two GPU 
architectures and simulating the execution of a CUDA 
program. We compare the results obtained from the 
simulation with the execution of the program over the real 
GPUs. Finally, in Section VI we draw the conclusions and 
discuss possible future developments. 
The model is available at [7]. 

2. BACKGROUND 

2.1. GPU Architecture 
GPUs are designed to perform well in parallel tasks. This is 
achieved with redundancy of computational and memory 
resources. As can be seen from Fig. 1, a GPU is made of 
several Streaming Multiprocessors (SM in the figure), which 
are the computational units of the device. Shared among the 
SMs there is an L2 Cache memory and, possibly, an off-chip 
DRAM [9]. Internally, each SM is made of several Processors, 
which contain hardware resources to execute the instructions 
of a given program. 
Fig. 2 shows the architecture of an SM and a processor. An 
SM is essentially just a container for Processors (P in the 
figure), which are the actual computational units of a GPU. In 
its simplest form, internally, each processor has several ALUs 
(CUDA cores in the NVIDIA terminology) and a Register 
File. An L1 Cache is shared among all the Processors inside 
an SM. For execution, threads are split in groups of 32, called 
warps, which are the atomic execution unit for GPUs, 
independent from each other. Warps are created and 
dispatched to the various SMs, trying to optimize and equally 
distribute the workload. Each SM assigns warps to their 
internal CUDA cores [8]. 
To facilitate the development of parallel applications running 
on GPGPUs, Nvidia proposed the CUDA programming 
model [1], an “extension” of C++. The code to be run on the 
GPU must be defined in functions denoted by CUDA’s 
specific keywords. The set of instructions that will run on the 
GPU is called kernel. A kernel is executed as a grid of blocks 
of threads. The number of blocks and the number of threads 

per block are decided by the programmer and can be 
optimized as needed. Inside the GPU, each kernel’s block is 
assigned to one Streaming Multiprocessor, which will then 
sub-divide the block and assign these portions to its 
Processors, where threads are split into warps, representing 
the smallest unit of execution observable by the user. 

2.2. Related Works 
Performance analysis of applications running on GPUs gained 
attention due to the increasing use of GPUs to execute 
complex programs, such as Neural Networks [10]. There are 
many different approaches towards performance evaluation of 
hardware components, among which we recall benchmarks, 
models, and simulators. Each of these methods uses different 
levels of abstraction and has its strengths and weaknesses [11]. 
Benchmarking is an effective and trustworthy method to 
estimate performance. A benchmark is made of a set of 
reference programs specifically developed to stimulate 
specific areas of a target device. It requires an implementation 
of the target device either in software or hardware, hence it is 
generally applicable only in the later stages of development. 
One of the most appealing features of benchmarks is that they 
can also be executed on a digital representation of a device, 
but the trustworthiness of the results will then also strictly 
depend on how the digital representation was implemented 
[12]. 
Performance evaluation by simulation is one of the most used 
approaches, as they allow to estimate the performance of a 
hardware component or even a fully developed system based 
on an abstract representation of its internal components. 
Simulators provide powerful tools to represent and simulate 
hardware components in a way that tries to match how the real 
hardware device will operate, e.g., using hardware description 
languages. These simulators provide good measurement 
accuracy, but the codebase is usually complex and the 
execution time of such simulations is slow, even for simple 
programs [13]. 
GPGPU-Sim [14] is one of the reference simulators for GPUs. 
It is implemented in C++ and is organized as a combination of 
two simulators: a functional simulator and a timing simulator. 
The former is necessary to “execute” the instruction of the 
program, while the latter computes the time (in clock cycles) 
required by the GPU to execute an instruction. It is 
configurable via a configuration file to simulate the  

Figure 1: GPU Architecture 
 
 

 
Figure 2: Streaming Multiprocessor and Processor 
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architecture of many NVIDIA GPUs. Another simulator that 
was proposed in literature is FlexGrip [15]. This simulator is 
implemented using VHDL, a hardware description language, 
and currently implements the NVIDIA G80 GPU architecture. 
Contrary to GPGPU-Sim, FlexGrip can’t be configured to 
simulate different hardware architectures, as it requires 
manual modification of the software codebase to represent the 
novel architecture. 
Model-based evaluation [16] has been widely used to carry 
out performability analyses of complex systems in different 
domains. Petri Nets [17] and their extensions are one of the 
most common formalisms used to verify that certain 
properties are satisfied in the analysed system. SANs are one 
of the most used Petri Nets’ extensions. 
There have been proposals to use Petri Nets to evaluate the 
performances of GPUs and other parallel architectures on 
given workloads. In [18], Colored Petri Nets are used to model 
and simulate a concurrent application executed on a 
heterogeneous multicore platform. The model is also used to 
evaluate the implemented task scheduling policies. 
The authors of [19] make use of Stochastic Petri Nets to 
estimate the job execution time of an implementation on 
GPUs of the map-reduce algorithm. However, their focus is 
on modeling the whole map-reduce process, and they do not 
detail the execution of the program’s instructions on the GPU, 
nor they do consider the GPU’s structure and the interactions 
between its components. 
The authors of [20] use Colored Petri Nets to evaluate the 
performances of GPGPUs, using colors to represent different 
instruction types. They model the behavior of two different 
kernels on two separate GPU’s architectures. However, the 
model is not generalizable to other GPUs, nor to other 
applications, as the behavior of the program is embedded in 
the net so, in order to evaluate different programs, the model 
should be manually modified. 
In [21] bounded Petri nets are used to count the computational 
and memory operations performed on a GPU, based on the 
NVIDIA’s CUDA programming model where memory is 
logically partitioned in shared, local, and global. To test the 
model, the authors use a pseudocode of an algorithm as input 
and compare the number of steps of the model’s execution 
against the real kernel execution time on the GPU. We argue 
that the code used as input should be derived from the 
assembly source file for the specific GPU for a more realistic 
evaluation. 
Summing up, the existing works mainly focus on specific 
programs running on specific GPUs on which the model is 
tailored. Moreover, the logical (CUDA) and physical (GPU) 
levels are mixed. We argue that memory latencies should be 
associated to the physical memory (L1, L2, DRAM) that will 
be accessed rather than to CUDA’s logic memories. 
Another problematic aspect is that the program is often 
represented as a list of pseudo-instructions defined by the 
authors, without considering the real Instruction Set 
Architecture (ISA). 

To the best of our knowledge, our proposal is the first SAN-
based model for GPUs. The use of SANs grants a high level 
of parameterization and configurability, which is discussed in 
the rest of the paper.  

3. MODEL’S OBJECTIVE AND KEY ELEMENTS 
In this section we describe the key elements of our model. 
Given that we are interested in counting the number of clock 
cycles required by a given kernel to execute on a GPU, we can 
discretize our timing model. This approach is consistent with 
the works discussed in Section 2.2. There is not an official 
reference concerning the number of clock cycles needed by 
each operation, but they can be derived from different sources 
such as benchmarks, knowledge of the GPU’s architecture, or 
by presentations and comments by NVIDIA developers [22], 
[23], [24]. 

3.1. GPU Representation 
From a programming perspective, the GPU is used as an 
accelerator for specific computations. A programmer must 
specify the number of blocks (also called Cooperative Thread 
Arrays, CTAs) and the number of threads per block before 
launching the kernel on the GPU. At hardware level, each 
block is assigned to a single SM, with a scheduling policy that 
tries to occupy the totality of available GPU’s resources. 
Internally, the threads in each block are split in groups of 32 
threads, called warps, which is the smallest execution unit for 
a GPU. It is important to keep in mind that, although all the 
threads belonging to the same kernel will execute the same 
program, i.e., the same instructions, they may diverge as result 
of branching. It is important then to trace which instructions 
are effectively executed by the program. 
With these considerations we identified the following entities 
to be modelled (for additional details we defer to [1]): 
• WARP – It is the atomic unit of execution in GPUs, as 

the GPU scheduler does not schedule single threads. A 
warp contains the list of instructions of the kernel parsed 
from the SASS file. Each warp is assigned to one 
Processor and warps assigned to different Processors will 
execute in parallel, while warps assigned to the same 
Processor must execute sequentially. The number of 
warps that must be executed sequentially is one of the 
most impacting parameters that may slow down the 
kernel execution time. 

• REGISTER FILE – The register file is the memory in 
which threads store data during the computation. Each 
instruction executed by a warp requires several registers 
to be performed. This number can be mapped based on 
knowledge of the ISA or by using the NVIDIA profiler. 
Registers are assigned per-thread at the beginning of the 
kernel execution and allow for fast data-retrieval. Given 
that the number of registers is limited, knowing how 
many registers are used by an application may be used to 
guide SW/HW optimization. 

• STREAMING MULTIPROCESSOR – The Streaming 
Multiprocessor is internally composed of many 
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Processors. Warps are distributed among SMs to 
optimize the workload. 

• PROCESSOR – In GPUs, each Processor contains the 
hardware resources to perform the given computation, 
such as ALUs and Load/Store Units. The Warp Scheduler 
inside each Processor selects instructions from active 
warps and schedules them one at a time, ensuring that 
each warp is executed sequentially. 

• CUDA MEMORIES (Local, Global, Shared) – CUDA 
adopts a logic memory model to ease programmers from 
optimizing their code for optimal memory usage. 
Unfortunately, there is not direct correspondence 
between CUDA’s logic memories and a GPU physical 
memory, e.g., data that resides in “Global Memory” may 
actually be retrieved from the L1 Cache of a Processor 
instead of the DRAM, which is commonly addressed as 
“Global Memory” in computer science. 

• PHYSICAL MEMORIES (L1/L2 Cache, DRAM) – 
Different memories in the memory hierarchy are built for 
different purposes and with different technologies. This 
means that each of these memories will have different 
time accesses, in terms of clock cycles. We model these 
components to tie read and write operations to physical 
memories rather than CUDA’s logic memories. 

3.2. Program Representation 
To represent a program in our model, we take advantage of 
the SASS source file that can be obtained during the 
compilation of a program. We decided to use SASS code 
instead of PTX, because SASS code is tied to the specific GPU 
architecture. PTX, instead, is a high-level language that is 
architecture-independent, and it is translated by the compiler 
to SASS code. SASS code can be easily obtained using 
compiler’s utilities [26]. Thanks to the use of the NVIDIA 
Nsight profiler, it is also possible to know how many times a 
specific instruction was executed. This is extremely useful to 
provide a realistic and faithful  representation of the program’s 
execution, to handle situations such as branch divergency, and 
it can also be obtained from static code analysis as shown in 
[20], [21]. Each SASS instruction is associated to an identifier 
representing the kind of operation, e.g., ALU operation or 
Load/Store. This identifier is used to enable the right sub-
model that simulates the execution of that specific instruction. 
We developed a tool that parses SASS files and produces the 
initialization code for the model. When we parse the file to 
represent the program’s instructions inside our model, we also 
track the activation and deactivation of registers in the 
Register File. This allows to understand the total number of 
live registers and hence the register file’s occupancy level at 
each instruction. 
The parser works as follows: every line of the SASS file is a 
CUDA instruction in the form <INST, REGS> where INST is 
the instruction’s opcode, e.g., ADD, and REGS is the number 
of registers used by that instruction. To produce a code 
representation readable by the model, we assign an integer 
identifier to the following ISA instructions, which we report 
in Table 1. 

Operations from ID 0 to ID 3 encode memory operations in 
CUDA logic memories. Operations with ID 4 and 5 represent 
the execution of arithmetic/logic instructions on the 
processors’ ALUs. Given that we want to represent the exact 
sequence of instructions as they would be executed on a real 
GPU, we order them by associating an index to each, so, the 
first instruction executed by the program will be that at index 
0, the second instruction at index 1 and so on. The number of 
registers activated or deactivated when executing an 
instruction depends on the kind of instruction and the index of 
such instruction, i.e., it depends on the “past” and “future” of 
the program’s execution. E.g., an instruction may reuse 
registers that were activated by a previous instruction; hence 
the number of active registers would remain the same. We 
leverage this information to associate to each instruction’s 
index the number of registers activated or deactivated, thus 
allowing to count the number of registers in use at any point 
of the program’s execution. 

3.3. Model Parameters 
The model has some parameters to allow for configurability. 
These parameters can be tuned based on the GPU’s 
architecture and the program’s properties. We defined a set of 
global parameters for hardware configuration, such as the 
number of Processors and memory latencies. 
Some of the most important parameters of the model are: 
• Number of Streaming Multiprocessor (nsm) used. 

• Number of Processors present in each SM in the GPU’s 
architecture under study (nprocessors). 

• Number of Warp per Processor (nwarps). This is one of 
the most important parameters, as it is the most influent 
on the final execution time. In fact, warps in different 
processors will execute in parallel, while warps executed 
on the same processor must be executed 
sequentially/interleaved. 

• L1/L2/DRAM access probabilities. These probabilities 
guide the access to physical memories, given a logic 
(local, global) memory access. 

4. MODEL IMPLEMENTATION USING SANS 
The developed model was implemented in Möbius [25], a free 
tool that allows to develop stochastic models using different 
formalisms, including SANs. Among their benefits, SANs 
allow to instantiate “special” places, called Extended Places, 
which can be initialized with typed tokens, where types can be 

Table 1: List of SASS instruction’s ID in the model 
Instruction ID in our model 
Load Local 0 
Store Local 1 
Load Global 2 
Store Global 3 

Integer Arithmetic 4 
Float Arithmetic 5 

Synchronization Barrier 6 
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numbers (short, integer, float) or even data structures such as 
arrays. We exploit this feature to initialize the WARP and 
REGISTER_FILE sub-models, allowing us to order the 
instructions in a sequence that reflects the execution of the 
kernel on the GPU.  
In this section we give a detailed description of the model. 
However, for an in-depth view, we defer to the repository 
available at [7]. 

4.1. Atomic Models 
In our model we represent the following entities: 
• WARP; 

• EXECUTION UNIT; 

• MEMORY; 

• L1-L2_CACHE / DRAM; 

• REGISTER_FILE. 

Warp 
The WARP sub-model (Fig. 3) represents a group of 32 
threads executing on a single Processor inside an SM. The 
model contains the following places: 
• WARP: extended place that is initialized with the list of 

instructions' IDs parsed by the SASS file (see Section 
3.2), represented by an array. 

• INSTRUCTION_READY: it represents the ready state of 
a warp, i.e., the state in which the warp can send 
instructions to the execution unit. 

• INST_COUNTER: it contains the index of the next 
instruction to be executed. 

• REGISTERS_FILL: its marking is set to 1 when the warp 
must wait for the number of registers in use to be updated 
before executing an instruction. 

• SCHEDULER: when an instruction is dispatched, it 
contains the next instruction type to be executed. 

The INST_SELECT input gate is enabled if there are 
instructions to be executed, i.e., the instructions’ counter has 
not reached the total number of program’s instructions, and if 

no other instruction is being executed on the processor to 
which the warp is assigned. The input function of 
INST_SELECT increases the instructions’ counter and 
decreases the INSTRUCTION_READY tokens. The 
INST_ISSUE output gate puts the ID of the next instruction 
to be executed into the SCHEDULER extended place 
(selected from the list of instructions’ IDs contained in 
WARP) and set the marking of REGISTERS_FILL to 1. This 
is done to activate the needed registers before executing the 
instruction. 
Execution Unit 
The EXECUTION_UNIT sub-model (Fig. 4) represents the 
Processor inside an SM. As of now, our model allows to 
represent Integer and Floating Point ALU instructions, 
memory instructions and barrier synchronization. The model 
contains the following places: 
• SCHEDULER, INSTRUCTION_READY and 

REGISTER_FILL: they have the same semantics as the 
analogous places of the WARP model. 

• FLOAT_ALU and INT_ALU: they represent a floating 
point or integer instruction, respectively, executed by  
ALUs. 

• READ and WRITE: they determine if a memory 
instruction is executed. We make use of extended places 
as we codify here the type of logical memory (CUDA 
memory) on which the operation will be performed. 

• BARRIER: it represents a barrier synchronization 
operation. 

The RETRIEVE_INSTRUCTION input gate is enabled when 
a new instruction is available in the SCHEDULER place and 
the REGISTER_FILL marking is 0, meaning that the registers 
have been activated. The gate’s function sets the 
INSTRUCTION_READY marking to 0. Depending on the 
instruction’s type, the DISPATCH output gate dispatches the 
instruction to the corresponding place according to the 
SCHEDULER marking (e.g., an integer operation is 
represented by a token in INT_ALU place). Once the 
operation is completed, the processor will be ready to execute 
another instruction (i.e., the marking of the 
INSTRUCTION_READY place is set to 1). 

 
Figure 3: WARP atomic model 
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Figure 4:  EXECUTION_UNIT atomic model 
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Memory 
The MEMORY sub-model (Fig. 6) serves as the bridge 
between the CUDA programming model and the actual 
hardware architecture of a GPU. In fact, CUDA programs 
distinguish memory accesses between local/shared accesses 
and global accesses. However, this is not directly mapped to 
the physical memories of the GPU. In fact, a variable marked 
as local may be stored in the DRAM (off-chip memory) at any 
point of the program execution. Our model maps SASS 
memory instructions (e.g., Load Global) to physical memory 
accesses. The model contains the following places: 
• READ and WRITE: they have the same meaning of the 

same places of the EXECUTION_UNIT model. 

• READ_LOCAL and READ_GLOBAL: they represent 
the read operation executed on CUDA logic memory. 

• READ_L1, READ_L2 and READ_DRAM: they 
represent the read operation executed on the actual 
physical memory of the device. 

• WRITE_LOCAL and WRITE_GLOBAL: they represent 
the write operation executed on CUDA logic memory. 

• WRITE _L1, WRITE _L2 and WRITE _DRAM: they 
represent the write operation executed on the actual 
physical memory of the device. 

The READ_INPUT input gate is enabled when READ place 
contains a significant value, i.e., an identifier of the CUDA 
memory type. The READ_SELECT output gate determines 
on which CUDA logical memory the read operation is 
performed, according to the content of the place READ. 
LOCAL_READ_FROM and GLOBAL_READ_FROM 
activities have probabilities cases to map operations 
performed on CUDA logic memories to the physical 
memories of the GPU. Write operations are modelled in an 
analogous way. 

Physical memories 
The physical memory sub-models, L1_CACHE, L2_CACHE 
and DRAM, allow to represent hardware memories of the 
GPU, to count the accesses performed to each physical 
memory. As an example, in Fig. 5 we show the model of the 

DRAM memory (L1 and L2 cache models are similar). Each 
memory operation (represented by transitions 
PERFORM_READ and PERFORM_WRITE) is associated to 
a fixed value, representing the number of clock cycles needed 
to complete a transfer from the specific physical memory to 
the warp requesting those data. We use this information in the 
reward models. The completion of one of these operations 
enables the next instruction to be executed. 

Register file 
Each instruction in a program needs to use a certain number 
of registers, allocated in the register file. By inspecting the 
SASS source file, it is possible to understand whether a 
register is activated by a given instruction, e.g., to store the 
result of a computation, will be used again or not after the 
instruction that required it. The REGISTER_FILE sub-model 
(Fig. 7)  contains the following places:  
• REGISTER_FILL: it has the same semantics as the 

analogous places in WARP and EXECUTION_UNIT 
atomic models. 

• LIVE_REGISTERS: this extended place is initialized with 
the list of live registers activated or deactivated by each 
instruction obtained by the parser (see Section 3.2), 
represented with an array.  

• INDEXES: it is used as an index for the array contained in 
the LIVE_REGISTERS place. 

• ACTIVE_REGISTERS: it contains the current number of 
active registers. The number of registers in use by the 
kernel is updated before the execution of each instruction. 

The READ_REGISTERS input gate is enabled if the marking 
of REGISTERS_FILL is equal to 1 and if the marking of 
INDEXES is less than the dimension of the array in 
LIVE_REGISTERS. When the input function of the gate is 
executed, the marking of REGISTERS_FILLS is set to 0 and 
the marking of INDEXES is increased. The execution of the 
ACTIVATE_REGISTERS output gate updates the current 
number of active registers according to the value found in 
LIVE_REGISTERS. 

 
Figure. 5: MEMORY atomic model 
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Figure 6: DRAM atomic model 
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Figure 7: REGISTER_FILE atomic model 
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4.2. Composed Model 
Möbius allows to design many atomic models, like those 
described in the previous section, and to combine them in a 
composed model. The model is built using JOIN and REP 
constructs, to match the architectural constraints imposed by 
the architecture of the GPU. The former is used to link 
together the different sub-models; the latter is needed to 
replicate the sub-models to match the target GPU architecture. 
The complete composed model is depicted in Fig. 8. 
The final GPU model is built by linking together the sub-
models (e.g., the DRAM and L2 Cache must be shared among 
all the sub-models, as they are shared among all the GPU’s 
resources). In this model, places with the same name are 
shared between sub-models. 
The initial marking of the model is declared in the WARP and 
REGISTER_FILE sub-models, with the first being initialized 
with the list of the program’s instructions, and the latter with 
the list of live registers used or dropped at each instruction. 
These two atomic models are joined together, sharing the 
REGISTER_FILL place and replicated a number of times 
equal to the nwarps parameter.  
These sub-models are then joined at Processor level with 
EXEC_UNIT and MEMORY sub-models, sharing READ, 
WRITE, INSTRUCTION_READY and SCHEDULER 
places. These sub-models are replicated according to the 
nprocessors parameter and joined with the L1_CACHE sub-
model. Finally, the models are replicated according to the 
number of Streaming Multiprocessors (nsm) and joined with 
the L2_CACHE and DRAM atomic models. 

4.3. Model’s Setting 
Setting of the parameters - To have a realistic representation 
of the CUDA programs running over GPUs, we tune some 
parameters of our model using the information obtained from 
the NVIDIA Nsight profiler. We derive the proportions of 
accesses to the different physical memories thanks to the 
proportion of cache hits and misses provided by the profiler. 
We assign these proportions ratios to the cases’ probabilities 
of the activities.  Looking at the MEMORY atomic model in 
Fig. 6, e.g., LOCAL_READ_FROM has three parameterized 

cases’ probabilities, local_read_l1, local_read_l2 and 
local_read_dram. Assign a probability of 0 to one of these 
cases, for both local and global memory operations, simulates 
the absence of the corresponding memory, e.g., to examine the 
impact of having or not having a local cache. Other 
parameters, such as the number of streaming multiprocessors 
(nsm), processors (nprocessors) and warps (nwarps) used by 
a program depend on the GPU’s architecture and on the 
program’s code. 
Setting of Reward Variables - As explained in III, we are 
interested in a discrete measurement of the number of clock 
cycles necessary to execute a program. To accomplish this, we 
define some impulse reward variables assigned to specific 
activities of the atomic models, which have an impact on the 
measure of interest. In particular, the activities which can be 
used to count the clock cycles are reported in Table 2. The 
table reports the name of the GPU’s operation, the 
corresponding activity’s name, the sub-model to which it 
belongs, and the reward value representing the clock cycles 
needed to perform such operation. We recall that the exact 
cost in clock cycles is not known for every operation, so we 
had to collect values from different sources [22], [23], [24]. 
Model Initialization – The model is initialized as follows: the 
initial marking of the model is given by the marking of the 
WARP extended place in the WARP atomic model, and by 
the marking of the LIVE_REGISTERS extended place, in the 
REGISTER_FILE atomic model. The marking of these 
places consists in an array containing: i) the instructions IDs’ 
list for the WARP atomic model, and ii) the number of 
registers activated or deactivated by each instruction for the 
REGISTER_FILE atomic model, as described in Section 3.2. 
E.g., a program that executes an arithmetic instruction and a 
store to global memory, would be represented in the WARP 
atomic model with the array: [4, 3], and in the 
REGISTER_FILE atomic model, with the array [+3, -3], if 
an integer operation requires 3 registers to be executed, i.e., 
operands registers and result register, that will be released 
after the store to global memory. 
Example of model composition – To represent a real GPU we 
can compose the proposed models in the following way: the 
most important parameter that guides the models’ simulation 
is nwarps, representing the number of warps that must be run 
sequentially on the GPU. This is obviously one of the most 
impacting parameters as warps executed in parallel will 
spend the same amount of time running in parallel. Hence, if 
one is interested only in estimating the number of clock 
cycles required to run an application, it is sufficient to 
properly set this parameter. This approach is consistent with 
other works on GPU stochastic modeling, discussed in 
Section 2.2 [20], [21]. For a resource-oriented analysis, it is 
also possible to estimate metrics for each hardware resource 
represented in our model. The number of SMs present in the 
architecture can be modified with the parameter nsm. Each 
SM has a fixed number of Processors which is tuned by the 
parameter nprocessors. For example, to model the FERMI 
GTX 480 GPU, with 15 SMs and 1 Processor each, is 

 
Figure 8: Composed model 
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sufficient to set the parameter nsm to 15 and nprocessors to 
1. Instead, the parameter nwarps is computed depending on 
the number of hardware resources and on the number of 
threads generated by the kernel. 
 
Table 2. GPU's operations representation in the model along 
with the reward variable associated to count the number of 

clock cycles needed by the operation. 
GPU OP ACTIVITY NAME SUBMODEL REWARD 
INT 
Operation INT_OP EXEC_UNIT 2 

FLOAT 
Operation FLOAT_OP EXEC_UNIT 2 

L1 
Access 

PERFORM_READ 
PERFORM_WRITE L1_CACHE 12 

L2 
Access 

PERFORM_READ 
PERFORM_WRITE L2_CACHE 300 

DRAM 
Access 

PERFORM_READ 
PERFORM_WRITE DRAM 600 

Barrier BARRIER_SYNC EXEC_UNIT 3000 

5. CASE STUDY 
In this section we describe the validation campaign performed 
to validate the model, along with the algorithm chosen and the 
reference architectures. We evaluate our model by simulation, 
until it reaches a terminating state. We ran each simulation 
with, respectively, 100 and 1000 minimum and maximum 
number of batches (simulation runs), with a 0.1 relative 
confidence interval and a 0.95 confidence level.   

5.1. Target Algorithm and GPUs 
To validate our model, we chose the most frequently used 
algorithm on GPUs, that is: General Matrix Multiplication 
(GEMM) solver. The code is shown in Fig. 9. We configured 
the model to match the architectures of the NVIDIA RTX 
2080 GPU and the NVIDIA QUADRO 6000 RTX. The 
former has 46 SMs with 4 Processors each, with a maximum 
number of warps that can run in parallel equal to 46 x 4 = 184; 
the latter has instead 72 SMs with 4 Processors each, hence 
capable of running 72 x 4 = 288 warps in parallel. The launch 
parameters of the Kernel, i.e., the number of blocks and the 
number of threads per blocks, are needed to understand the 
level of parallelism of the application, which allows one to 
compute how many warps will be scheduled per processor. 
The model can be initialized depending on the kind of analysis 
that one intends to perform as discussed in Section 4.3. We 
show here an example based on the GEMM 256 case. First of 
all, the number of SMs and Processors can be configured 
according to the considered architecture, e.g., for the NVIDIA 
RTX 2080, nsm equal to 46 and nprocessors equal to 4. 
GEMM 256 creates 2048 threads, that the GPU distributes 
among its SMs and Processors. Given that the RTX 2080 has 
184 parallel processors, the number of warps that must be run 
sequentially (nwarps) is 12.  
The GEMM algorithm used in this work was implemented 
from scratch. This was done mostly for easiness of use and of 
configuration of the size of the problem (matrix). Each matrix 
is initialized with random numbers.  

5.2. Results of the Simulations 
The kernel was first profiled with matrices of Increasing size: 
32x32, 64x64, 128x128, 256x256, 512x512. To validate our 
results, the number of clock cycles estimated by the model is 
then compared to the one measured on the real GPU using the 
NVIDIA Nsight Profiler.  
Fig. 10 shows the simulated and real clock cycles spent by the 
kernel to perform GEMM on these matrices for RTX 2080 
GPU. The figure report on the x-axis the number of clock 
cycles, while on the y-axis it is reported the size of the matrix.  
It is possible to notice that the results obtained by the model 
simulation are close to those profiled on the real GPU. 
To better visualize the accuracy of our model, we plot in Fig. 
11 the absolute value of the relative error of our model against 
the real value obtained by the NVIDIA Nsight Profiler. 
The average error measurement is 6%, comparable to other 
works in literature, e.g., in [20], the average error 
measurement is 6% on the NVIDIA FERMI GTX 480 and 8% 
on the NVIDIA KEPLER K20m. If we measure the error from 

__global__ void gemm(const int* a, const int* b, 
long* c) {  
    int row = blockIdx.x * blockDim.y + threadIdx.y; 
    int col = blockIdx.x * blockDim.x + threadIdx.x; 
    for (int = 0; i < N; i++) {  
        c[row * N + col] += a[row * N + i] *              
    b[i * N + col]; 
   
 } 
} 

Figure 9: General Matrix Multiplication (GEMM) code 
used. This version is developed to compute a*b=c, 

where a and b are matrices of fixed size NxN. 

 
Figure 10: Clock cycles estimated by the model (black) 
against the clock cycle profile by the NVIDIA Nsight 

Profiler (white) for the NVIDIA RTX 2080. The y-axis 
reports the number of clock cycles, while the x-axis 

reports the size of the matrix. 
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32x32 to 256x256, obtain an average error of 0.0275. In the 
512x512 case we have a huge increase in measurement error 
to 20%. We argue that the improvements made by 
manufacturers to boost GPUs performance also undermine the 
predictability of their performance, leaving room for 
measurement errors. This is pointed out also in [4], where 
some models are shown to fail at predicting performance of 
more recent GPUs.  
Fig. 12 reports the simulation of the GEMM algorithm on the 
NVIDIA Quadro 6000 RTX. We plot the absolute relative 
error in Fig. 13. First, we can see that the model predicts with 
higher accuracy the case 512x512, with an error of 2% against 
the error of 20% previously observed for the RTX 2080. The 
model is much more accurate on this GPU, with a maximum 
error of 10% and an average error of 4%. Compared to the 
error measured with the NVIDIA RTX 2080, it has a slightly 
lower accuracy in the first four cases, but it doesn’t show the 
anomaly observed previously in the 512x512 case, where the 
measured error was 20%. The measurement error for the 
512x512 case on this GPU is, instead, 2%.  
The model can be used to perform different kinds of analysis. 
We report here an analysis of the load distribution on the 
hardware units used in our GEMM implementation, i.e., 
ALUs, L1 and L2 Cache and DRAM. Fig. 14 shows the 
percentage of clock cycles spent by the program on each of 
these hardware units on the Quadro RTX 6000. We can see 
that when the dimension of the matrix is small, in the 32x32 
and 64x64 cases, the bottleneck is caused by the L2 cache. 
This is consistent with GPU behavior; in fact, data transfers to 
and from the CPU must pass through the L2 cache [27], and, 
for small matrices, they may entirely reside in this memory. 
Thus, warps spend most of their time for data to be read from 
the L2 Cache (more than 70% of the whole execution time), 
process these data in few cycles (the time spent on ALUs is 
less than 2%), and then write these data to global memory. The 
benefits of having an L1 Cache can be observed becoming 
relevant starting from the 128x128 case. We can also observe 

 
Figure 11: measurement error on the clock cycles 

estimated by our model w.r.t. those measured by the 
NVIDIA Nsight profiler on the NVIDIA RTX 2080 

GPU. 
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Figure 12: Clock cycles estimated by the model (black) 
against the clock cycle profile by the NVIDIA Nsight 

Profiler (white) for the NVIDIA Quadro 6000 RTX. The 
y-axis reports the number of clock cycles, while the x-

axis reports the size of the matrix. 
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Figure 13: measurement error on the clock cycles 

estimated by our model w.r.t. those measured by the 
NVIDIA Nsight profiler on the NVIDIA Quadro 6000 

RTX GPU. 
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that the load distribution of the 256x256 case is very similar 
to the 512x512 one. 

6. FINAL DISCUSSION AND CONCLUSION 
In this work we developed a stochastic model using SANs to 
simulate the execution of CUDA programs running on 
NVIDIA GPUs. Other stochastic models discussed in 
literature rely on a custom program representation; we, 
instead, parse directly the CUDA SASS code file to obtain a 
faithful program representation as input for the model. In this 
way each instruction represented in our model is tied to a 
specific CUDA ISA instruction. We simulated a matrix 
multiplication algorithm on two NVIDIA GPUs: the RTX 
2080 and the Quadro RTX 6000 to estimate the number of 
clock cycles required with matrices of increasing size. We also 
showed an example of how the model can be used to measure 
the percentage of clock cycles spent on the different functional 
units. 
The results show good prediction accuracy in both our 
experiments, with the highest error in the case of the 512x512 
GEMM Solver on the RTX 2080. Excluding this anomaly, the 
model is very accurate, with an average measurement error of 
0.0275. The predictions for the Quadro RTX 6000 instead are 
better, with an average error of 4%. A decrease in accuracy as 
the workload size increases is also observable in [20], [21], to 
the best of our knowledge, the only works that try to model 
the internal structure of a GPU. However, the work in [21] 
does not focus on estimating the number of clock cycles 
required by a given application, hence we compare our results 
with those in [20]. 
The authors of [20] estimate the number of clock cycles on an 
implementation of the GEMM algorithm. They validated their 
model by simulating the NVIDIA FERMI GTX 480 and 
NVIDIA KEPLER K20m GPUs. An increase in measurement 
error as the workload gets larger is observed in their work too, 
however if we average the errors for all the experiments, we 

can see that their model has an error of 7% while our model 
has an error of 5%. 
We argue that, as stated in [4], the lack of knowledge of 
internal architectural details and possible hardware 
optimizations, which are often not disclosed by vendors, limit 
the accuracy of the results. 
As pointed out in Section 2.2, it may be possible to obtain 
better results using tools such as, e.g., digital simulators, or 
benchmarking. However, these techniques are adopted to 
develop and/or validate prototypes of a final product, and 
comparing many different solutions in such a way is 
expensive and time-consuming. The purpose of model-based 
analysis is, instead, different. Its goal is to help system 
designers in comparing many technical solutions quickly and 
with minimum effort, usually at the early stages of system’s 
development. Hence, the strength of the proposed model is its 
configurability, with the possibility of simulating many 
hardware configurations, to allow to quickly compare many 
different architectural solutions.  
In fields such as that of safety-critical systems, designers are 
required not only to evaluate the performance of different 
technical solutions working in nominal conditions, they also 
must evaluate situations in which the system is working in 
degraded conditions. We argue that with minor modifications, 
the model proposed in this work could be an effective tool to 
simulate such situations. 
As future work, our major interest is to extend the model to 
simulate: i) situations in which a hardware unit is failed prior 
to running a program and, ii) situations in which a hardware 
unit fails during the execution of a program. Other 
improvements to the model are to extend our SASS parser and 
to include novel functional units such as Tensor Cores. 
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