
Modeling of GPGPU architectures for performance analysis of CUDA programs

Francesco Terrosi1,*, Francesco Mariotti1, Paolo Lollini1, and Andrea Bondavalli1
1Università degli Studi di Firenze, Firenze, Italia

francesco.terrosi@unifi.it, francesco.mariotti@unifi.it, paolo.lollini@unifi.it, andrea.bondavalli@unifi.it
*corresponding author

Abstract—Graphics Processing Units (GPUs), originally
developed for computer graphics, are now commonly used to
accelerate parallel applications. Given that GPUs are
designed to be as efficient as possible, evaluating their
performance is crucial. This problem has been tackled in the
last years by researchers that started to propose solutions such
as analytical models and digital simulators, which are,
however, often complex to use and/or to adapt to the needs of
the user. Thanks to its high flexibility, model-based analysis
is widely used to evaluate systems’ properties, including
performance. Researchers started working on developing
GPU models that can represent both their architecture and the
software in execution, but they often use strong assumptions
that undermine their usability. In this work we develop a
Stochastic Activity Network model to evaluate the
performance of CUDA applications running on NVIDIA
GPUs. The model takes as input a representation of the
program’s instruction, parsed from the CUDA SASS
assembly file, and a list of parameters to offer configurability
to the user. We tune our model to match the architecture of
two different NVIDIA GPUs and simulate the execution of a
CUDA program. We then compare the results with those
obtained from the execution of the program over the real
GPUs.

Keywords-
performance;modeling;analysis;GPU;CUDA;SAN

1. INTRODUCTION

Graphics Processing Units (GPUs) were initially developed to
accelerate computations in computer graphics applications
like 3D modeling, computer animation and videogames.
However, over the years, they started to be used in other
application fields. Thanks to their architectural design, GPUs
provide great performance when dealing with problems that
have a high level of parallelism in the computation. Many
examples of the usage of GPGPUs can be found in domains
like Machine Learning, Cryptography and Scientific
Computing. The term General-Purpose Graphics Processing
Units (GPGPUs) denotes the use of GPUs in applications that
would be otherwise executed on CPUs. The structure and
functioning of GPUs are quite complex with respect to CPUs,
and they can change from one vendor to another. NVIDIA
proposed the Compute Unified Device Architecture (CUDA)
[1], a parallel computing platform to develop programs that
can be executed on NVIDIA GPUs.

Performance evaluation of GPGPUs has gained much
importance in the last years, due to the increasing use of these
devices in computer systems coming from very different
domains: from the “classic” data elaboration where GPUs are
used to accelerate long computations on local data, to real-
time systems in which GPUs are used to, e.g., elaborate very
quickly images coming from a camera sensor [2], [3]. Both
these application fields may benefit from a performance
analysis activity before buying (or developing) a GPU, e.g.,
for the first case one could compare different architectural
designs to estimate the execution time of these designs on the
reference workload and then choose the less costly option; in
the second case, system designers may also benefit from a
prior performance analysis to check whether the target GPU
is compliant with the system’s timing requirements. Suppose
that a GPU is going to be used as an image processor that
receives data from a sensor camera at a fixed rate, e.g., 60
frames per second. A GPU model would allow one to
understand if the target device can, e.g., process every frame
received by the camera at the given rate. This problem has
been tackled during the last years but the proposed solutions,
although some of them are promising, are: i) complex to use
and/or to adapt to the needs of the user (e.g., digital simulators,
where understanding the model architecture may be time-
consuming), or ii) hiding implementation details that may
undermine the representation accuracy of the GPU [4].
In this work we present a stochastic model based on Stochastic
Activity Networks (SANs) [5] that can be used to carry out
performability analysis of CUDA programs executed on
NVIDIA GPGPUs. Thanks to its high configurability, this
model can represent different architectures, as it is possible to
specify parameters such as the number of multiprocessors or
the size of memories. The model takes as input the list of
program’s instructions, parsed from the CUDA SASS
assembly file, and analyses the performances of the execution
of a program on the GPU. The main objective of this model is
to provide performance measures, with particular focus on the
number of clock cycles required by a specific kernel to run on
a specific GPU. The main metrics that can be derived from our
model are the total number of clock cycles required to execute
the application, the number of active registers at any point of
program’s execution and the distribution of memory accesses
to detect potential bottlenecks. We compare our results with
the information provided by the NVIDIA Nsight profiler [6],
a tool that allows to monitor the execution of CUDA programs
over physical GPUs and to provide insights on the usage of
their components.

761

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

DOI 10.1109/QRS60937.2023.00079

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
Q

ua
lit

y,
 R

el
ia

bi
lit

y,
 a

nd
 S

ec
ur

ity
 (Q

R
S)

 |
97

9-
8-

35
03

-1
95

8-
3/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

Q
R

S6
09

37
.2

02
3.

00
07

9

979-8-3503-1958-3/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

The rest of the paper is organized as follows: in Section II we
provide some background information about GPUs’
architectures and discuss related works. In Section III we
illustrate our modeling approach, describing what we want to
represent in our model. In Section IV we give a detailed
description of our stochastic model. In Section V we apply our
approach to a concrete case study, modeling two GPU
architectures and simulating the execution of a CUDA
program. We compare the results obtained from the
simulation with the execution of the program over the real
GPUs. Finally, in Section VI we draw the conclusions and
discuss possible future developments.
The model is available at [7].

2. BACKGROUND

2.1. GPU Architecture
GPUs are designed to perform well in parallel tasks. This is
achieved with redundancy of computational and memory
resources. As can be seen from Fig. 1, a GPU is made of
several Streaming Multiprocessors (SM in the figure), which
are the computational units of the device. Shared among the
SMs there is an L2 Cache memory and, possibly, an off-chip
DRAM [9]. Internally, each SM is made of several Processors,
which contain hardware resources to execute the instructions
of a given program.
Fig. 2 shows the architecture of an SM and a processor. An
SM is essentially just a container for Processors (P in the
figure), which are the actual computational units of a GPU. In
its simplest form, internally, each processor has several ALUs
(CUDA cores in the NVIDIA terminology) and a Register
File. An L1 Cache is shared among all the Processors inside
an SM. For execution, threads are split in groups of 32, called
warps, which are the atomic execution unit for GPUs,
independent from each other. Warps are created and
dispatched to the various SMs, trying to optimize and equally
distribute the workload. Each SM assigns warps to their
internal CUDA cores [8].
To facilitate the development of parallel applications running
on GPGPUs, Nvidia proposed the CUDA programming
model [1], an “extension” of C++. The code to be run on the
GPU must be defined in functions denoted by CUDA’s
specific keywords. The set of instructions that will run on the
GPU is called kernel. A kernel is executed as a grid of blocks
of threads. The number of blocks and the number of threads

per block are decided by the programmer and can be
optimized as needed. Inside the GPU, each kernel’s block is
assigned to one Streaming Multiprocessor, which will then
sub-divide the block and assign these portions to its
Processors, where threads are split into warps, representing
the smallest unit of execution observable by the user.

2.2. Related Works
Performance analysis of applications running on GPUs gained
attention due to the increasing use of GPUs to execute
complex programs, such as Neural Networks [10]. There are
many different approaches towards performance evaluation of
hardware components, among which we recall benchmarks,
models, and simulators. Each of these methods uses different
levels of abstraction and has its strengths and weaknesses [11].
Benchmarking is an effective and trustworthy method to
estimate performance. A benchmark is made of a set of
reference programs specifically developed to stimulate
specific areas of a target device. It requires an implementation
of the target device either in software or hardware, hence it is
generally applicable only in the later stages of development.
One of the most appealing features of benchmarks is that they
can also be executed on a digital representation of a device,
but the trustworthiness of the results will then also strictly
depend on how the digital representation was implemented
[12].
Performance evaluation by simulation is one of the most used
approaches, as they allow to estimate the performance of a
hardware component or even a fully developed system based
on an abstract representation of its internal components.
Simulators provide powerful tools to represent and simulate
hardware components in a way that tries to match how the real
hardware device will operate, e.g., using hardware description
languages. These simulators provide good measurement
accuracy, but the codebase is usually complex and the
execution time of such simulations is slow, even for simple
programs [13].
GPGPU-Sim [14] is one of the reference simulators for GPUs.
It is implemented in C++ and is organized as a combination of
two simulators: a functional simulator and a timing simulator.
The former is necessary to “execute” the instruction of the
program, while the latter computes the time (in clock cycles)
required by the GPU to execute an instruction. It is
configurable via a configuration file to simulate the

Figure 1: GPU Architecture

Figure 2: Streaming Multiprocessor and Processor

762

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

architecture of many NVIDIA GPUs. Another simulator that
was proposed in literature is FlexGrip [15]. This simulator is
implemented using VHDL, a hardware description language,
and currently implements the NVIDIA G80 GPU architecture.
Contrary to GPGPU-Sim, FlexGrip can’t be configured to
simulate different hardware architectures, as it requires
manual modification of the software codebase to represent the
novel architecture.
Model-based evaluation [16] has been widely used to carry
out performability analyses of complex systems in different
domains. Petri Nets [17] and their extensions are one of the
most common formalisms used to verify that certain
properties are satisfied in the analysed system. SANs are one
of the most used Petri Nets’ extensions.
There have been proposals to use Petri Nets to evaluate the
performances of GPUs and other parallel architectures on
given workloads. In [18], Colored Petri Nets are used to model
and simulate a concurrent application executed on a
heterogeneous multicore platform. The model is also used to
evaluate the implemented task scheduling policies.
The authors of [19] make use of Stochastic Petri Nets to
estimate the job execution time of an implementation on
GPUs of the map-reduce algorithm. However, their focus is
on modeling the whole map-reduce process, and they do not
detail the execution of the program’s instructions on the GPU,
nor they do consider the GPU’s structure and the interactions
between its components.
The authors of [20] use Colored Petri Nets to evaluate the
performances of GPGPUs, using colors to represent different
instruction types. They model the behavior of two different
kernels on two separate GPU’s architectures. However, the
model is not generalizable to other GPUs, nor to other
applications, as the behavior of the program is embedded in
the net so, in order to evaluate different programs, the model
should be manually modified.
In [21] bounded Petri nets are used to count the computational
and memory operations performed on a GPU, based on the
NVIDIA’s CUDA programming model where memory is
logically partitioned in shared, local, and global. To test the
model, the authors use a pseudocode of an algorithm as input
and compare the number of steps of the model’s execution
against the real kernel execution time on the GPU. We argue
that the code used as input should be derived from the
assembly source file for the specific GPU for a more realistic
evaluation.
Summing up, the existing works mainly focus on specific
programs running on specific GPUs on which the model is
tailored. Moreover, the logical (CUDA) and physical (GPU)
levels are mixed. We argue that memory latencies should be
associated to the physical memory (L1, L2, DRAM) that will
be accessed rather than to CUDA’s logic memories.
Another problematic aspect is that the program is often
represented as a list of pseudo-instructions defined by the
authors, without considering the real Instruction Set
Architecture (ISA).

To the best of our knowledge, our proposal is the first SAN-
based model for GPUs. The use of SANs grants a high level
of parameterization and configurability, which is discussed in
the rest of the paper.

3. MODEL’S OBJECTIVE AND KEY ELEMENTS
In this section we describe the key elements of our model.
Given that we are interested in counting the number of clock
cycles required by a given kernel to execute on a GPU, we can
discretize our timing model. This approach is consistent with
the works discussed in Section 2.2. There is not an official
reference concerning the number of clock cycles needed by
each operation, but they can be derived from different sources
such as benchmarks, knowledge of the GPU’s architecture, or
by presentations and comments by NVIDIA developers [22],
[23], [24].

3.1. GPU Representation
From a programming perspective, the GPU is used as an
accelerator for specific computations. A programmer must
specify the number of blocks (also called Cooperative Thread
Arrays, CTAs) and the number of threads per block before
launching the kernel on the GPU. At hardware level, each
block is assigned to a single SM, with a scheduling policy that
tries to occupy the totality of available GPU’s resources.
Internally, the threads in each block are split in groups of 32
threads, called warps, which is the smallest execution unit for
a GPU. It is important to keep in mind that, although all the
threads belonging to the same kernel will execute the same
program, i.e., the same instructions, they may diverge as result
of branching. It is important then to trace which instructions
are effectively executed by the program.
With these considerations we identified the following entities
to be modelled (for additional details we defer to [1]):
• WARP – It is the atomic unit of execution in GPUs, as

the GPU scheduler does not schedule single threads. A
warp contains the list of instructions of the kernel parsed
from the SASS file. Each warp is assigned to one
Processor and warps assigned to different Processors will
execute in parallel, while warps assigned to the same
Processor must execute sequentially. The number of
warps that must be executed sequentially is one of the
most impacting parameters that may slow down the
kernel execution time.

• REGISTER FILE – The register file is the memory in
which threads store data during the computation. Each
instruction executed by a warp requires several registers
to be performed. This number can be mapped based on
knowledge of the ISA or by using the NVIDIA profiler.
Registers are assigned per-thread at the beginning of the
kernel execution and allow for fast data-retrieval. Given
that the number of registers is limited, knowing how
many registers are used by an application may be used to
guide SW/HW optimization.

• STREAMING MULTIPROCESSOR – The Streaming
Multiprocessor is internally composed of many

763

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

Processors. Warps are distributed among SMs to
optimize the workload.

• PROCESSOR – In GPUs, each Processor contains the
hardware resources to perform the given computation,
such as ALUs and Load/Store Units. The Warp Scheduler
inside each Processor selects instructions from active
warps and schedules them one at a time, ensuring that
each warp is executed sequentially.

• CUDA MEMORIES (Local, Global, Shared) – CUDA
adopts a logic memory model to ease programmers from
optimizing their code for optimal memory usage.
Unfortunately, there is not direct correspondence
between CUDA’s logic memories and a GPU physical
memory, e.g., data that resides in “Global Memory” may
actually be retrieved from the L1 Cache of a Processor
instead of the DRAM, which is commonly addressed as
“Global Memory” in computer science.

• PHYSICAL MEMORIES (L1/L2 Cache, DRAM) –
Different memories in the memory hierarchy are built for
different purposes and with different technologies. This
means that each of these memories will have different
time accesses, in terms of clock cycles. We model these
components to tie read and write operations to physical
memories rather than CUDA’s logic memories.

3.2. Program Representation
To represent a program in our model, we take advantage of
the SASS source file that can be obtained during the
compilation of a program. We decided to use SASS code
instead of PTX, because SASS code is tied to the specific GPU
architecture. PTX, instead, is a high-level language that is
architecture-independent, and it is translated by the compiler
to SASS code. SASS code can be easily obtained using
compiler’s utilities [26]. Thanks to the use of the NVIDIA
Nsight profiler, it is also possible to know how many times a
specific instruction was executed. This is extremely useful to
provide a realistic and faithful representation of the program’s
execution, to handle situations such as branch divergency, and
it can also be obtained from static code analysis as shown in
[20], [21]. Each SASS instruction is associated to an identifier
representing the kind of operation, e.g., ALU operation or
Load/Store. This identifier is used to enable the right sub-
model that simulates the execution of that specific instruction.
We developed a tool that parses SASS files and produces the
initialization code for the model. When we parse the file to
represent the program’s instructions inside our model, we also
track the activation and deactivation of registers in the
Register File. This allows to understand the total number of
live registers and hence the register file’s occupancy level at
each instruction.
The parser works as follows: every line of the SASS file is a
CUDA instruction in the form <INST, REGS> where INST is
the instruction’s opcode, e.g., ADD, and REGS is the number
of registers used by that instruction. To produce a code
representation readable by the model, we assign an integer
identifier to the following ISA instructions, which we report
in Table 1.

Operations from ID 0 to ID 3 encode memory operations in
CUDA logic memories. Operations with ID 4 and 5 represent
the execution of arithmetic/logic instructions on the
processors’ ALUs. Given that we want to represent the exact
sequence of instructions as they would be executed on a real
GPU, we order them by associating an index to each, so, the
first instruction executed by the program will be that at index
0, the second instruction at index 1 and so on. The number of
registers activated or deactivated when executing an
instruction depends on the kind of instruction and the index of
such instruction, i.e., it depends on the “past” and “future” of
the program’s execution. E.g., an instruction may reuse
registers that were activated by a previous instruction; hence
the number of active registers would remain the same. We
leverage this information to associate to each instruction’s
index the number of registers activated or deactivated, thus
allowing to count the number of registers in use at any point
of the program’s execution.

3.3. Model Parameters
The model has some parameters to allow for configurability.
These parameters can be tuned based on the GPU’s
architecture and the program’s properties. We defined a set of
global parameters for hardware configuration, such as the
number of Processors and memory latencies.
Some of the most important parameters of the model are:
• Number of Streaming Multiprocessor (nsm) used.

• Number of Processors present in each SM in the GPU’s
architecture under study (nprocessors).

• Number of Warp per Processor (nwarps). This is one of
the most important parameters, as it is the most influent
on the final execution time. In fact, warps in different
processors will execute in parallel, while warps executed
on the same processor must be executed
sequentially/interleaved.

• L1/L2/DRAM access probabilities. These probabilities
guide the access to physical memories, given a logic
(local, global) memory access.

4. MODEL IMPLEMENTATION USING SANS
The developed model was implemented in Möbius [25], a free
tool that allows to develop stochastic models using different
formalisms, including SANs. Among their benefits, SANs
allow to instantiate “special” places, called Extended Places,
which can be initialized with typed tokens, where types can be

Table 1: List of SASS instruction’s ID in the model
Instruction ID in our model
Load Local 0
Store Local 1
Load Global 2
Store Global 3

Integer Arithmetic 4
Float Arithmetic 5

Synchronization Barrier 6

764

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

numbers (short, integer, float) or even data structures such as
arrays. We exploit this feature to initialize the WARP and
REGISTER_FILE sub-models, allowing us to order the
instructions in a sequence that reflects the execution of the
kernel on the GPU.
In this section we give a detailed description of the model.
However, for an in-depth view, we defer to the repository
available at [7].

4.1. Atomic Models
In our model we represent the following entities:
• WARP;

• EXECUTION UNIT;

• MEMORY;

• L1-L2_CACHE / DRAM;

• REGISTER_FILE.

Warp
The WARP sub-model (Fig. 3) represents a group of 32
threads executing on a single Processor inside an SM. The
model contains the following places:
• WARP: extended place that is initialized with the list of

instructions' IDs parsed by the SASS file (see Section
3.2), represented by an array.

• INSTRUCTION_READY: it represents the ready state of
a warp, i.e., the state in which the warp can send
instructions to the execution unit.

• INST_COUNTER: it contains the index of the next
instruction to be executed.

• REGISTERS_FILL: its marking is set to 1 when the warp
must wait for the number of registers in use to be updated
before executing an instruction.

• SCHEDULER: when an instruction is dispatched, it
contains the next instruction type to be executed.

The INST_SELECT input gate is enabled if there are
instructions to be executed, i.e., the instructions’ counter has
not reached the total number of program’s instructions, and if

no other instruction is being executed on the processor to
which the warp is assigned. The input function of
INST_SELECT increases the instructions’ counter and
decreases the INSTRUCTION_READY tokens. The
INST_ISSUE output gate puts the ID of the next instruction
to be executed into the SCHEDULER extended place
(selected from the list of instructions’ IDs contained in
WARP) and set the marking of REGISTERS_FILL to 1. This
is done to activate the needed registers before executing the
instruction.
Execution Unit
The EXECUTION_UNIT sub-model (Fig. 4) represents the
Processor inside an SM. As of now, our model allows to
represent Integer and Floating Point ALU instructions,
memory instructions and barrier synchronization. The model
contains the following places:
• SCHEDULER, INSTRUCTION_READY and

REGISTER_FILL: they have the same semantics as the
analogous places of the WARP model.

• FLOAT_ALU and INT_ALU: they represent a floating
point or integer instruction, respectively, executed by
ALUs.

• READ and WRITE: they determine if a memory
instruction is executed. We make use of extended places
as we codify here the type of logical memory (CUDA
memory) on which the operation will be performed.

• BARRIER: it represents a barrier synchronization
operation.

The RETRIEVE_INSTRUCTION input gate is enabled when
a new instruction is available in the SCHEDULER place and
the REGISTER_FILL marking is 0, meaning that the registers
have been activated. The gate’s function sets the
INSTRUCTION_READY marking to 0. Depending on the
instruction’s type, the DISPATCH output gate dispatches the
instruction to the corresponding place according to the
SCHEDULER marking (e.g., an integer operation is
represented by a token in INT_ALU place). Once the
operation is completed, the processor will be ready to execute
another instruction (i.e., the marking of the
INSTRUCTION_READY place is set to 1).

Figure 3: WARP atomic model

INST_COUNTER

INSTRUCTION_READY

REGISTERS_FILL

WARP

SCHEDULER

INST_SELECT

INST_ISSUE

DISPATCHER

Figure 4: EXECUTION_UNIT atomic model

INSTRUCTION_READY

FLOAT_ALU

INT_ALU
REGISTERS_FILL

BARRIER

SCHEDULER

READ

WRITE

RETRIEVE_INSTRUCTION

DISPATCH

DISPATCHER

BARRIER_SYNC

FLOAT_OP

INT_OP

765

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

Memory
The MEMORY sub-model (Fig. 6) serves as the bridge
between the CUDA programming model and the actual
hardware architecture of a GPU. In fact, CUDA programs
distinguish memory accesses between local/shared accesses
and global accesses. However, this is not directly mapped to
the physical memories of the GPU. In fact, a variable marked
as local may be stored in the DRAM (off-chip memory) at any
point of the program execution. Our model maps SASS
memory instructions (e.g., Load Global) to physical memory
accesses. The model contains the following places:
• READ and WRITE: they have the same meaning of the

same places of the EXECUTION_UNIT model.

• READ_LOCAL and READ_GLOBAL: they represent
the read operation executed on CUDA logic memory.

• READ_L1, READ_L2 and READ_DRAM: they
represent the read operation executed on the actual
physical memory of the device.

• WRITE_LOCAL and WRITE_GLOBAL: they represent
the write operation executed on CUDA logic memory.

• WRITE _L1, WRITE _L2 and WRITE _DRAM: they
represent the write operation executed on the actual
physical memory of the device.

The READ_INPUT input gate is enabled when READ place
contains a significant value, i.e., an identifier of the CUDA
memory type. The READ_SELECT output gate determines
on which CUDA logical memory the read operation is
performed, according to the content of the place READ.
LOCAL_READ_FROM and GLOBAL_READ_FROM
activities have probabilities cases to map operations
performed on CUDA logic memories to the physical
memories of the GPU. Write operations are modelled in an
analogous way.

Physical memories
The physical memory sub-models, L1_CACHE, L2_CACHE
and DRAM, allow to represent hardware memories of the
GPU, to count the accesses performed to each physical
memory. As an example, in Fig. 5 we show the model of the

DRAM memory (L1 and L2 cache models are similar). Each
memory operation (represented by transitions
PERFORM_READ and PERFORM_WRITE) is associated to
a fixed value, representing the number of clock cycles needed
to complete a transfer from the specific physical memory to
the warp requesting those data. We use this information in the
reward models. The completion of one of these operations
enables the next instruction to be executed.

Register file
Each instruction in a program needs to use a certain number
of registers, allocated in the register file. By inspecting the
SASS source file, it is possible to understand whether a
register is activated by a given instruction, e.g., to store the
result of a computation, will be used again or not after the
instruction that required it. The REGISTER_FILE sub-model
(Fig. 7) contains the following places:
• REGISTER_FILL: it has the same semantics as the

analogous places in WARP and EXECUTION_UNIT
atomic models.

• LIVE_REGISTERS: this extended place is initialized with
the list of live registers activated or deactivated by each
instruction obtained by the parser (see Section 3.2),
represented with an array.

• INDEXES: it is used as an index for the array contained in
the LIVE_REGISTERS place.

• ACTIVE_REGISTERS: it contains the current number of
active registers. The number of registers in use by the
kernel is updated before the execution of each instruction.

The READ_REGISTERS input gate is enabled if the marking
of REGISTERS_FILL is equal to 1 and if the marking of
INDEXES is less than the dimension of the array in
LIVE_REGISTERS. When the input function of the gate is
executed, the marking of REGISTERS_FILLS is set to 0 and
the marking of INDEXES is increased. The execution of the
ACTIVATE_REGISTERS output gate updates the current
number of active registers according to the value found in
LIVE_REGISTERS.

Figure. 5: MEMORY atomic model

READ_L1

READ_L2

READ_DRAM

READ_LOCAL

READ_GLOBAL

WRITE_LOCAL

WRITE_GLOBAL

WRITE_L1

WRITE_L2

WRITE_DRA

READ

WRITE

READ_INPUT

WRITE_INPUT

READ_SELECT

WRITE_SELECT

PERFORM_READ

LOCAL_READ_FROM

GLOBAL_READ_FROM

PERFORM_WRITE

LOCAL_WRITE_TO

GLOBAL_WRITE_TO

Figure 6: DRAM atomic model

INSTRUCTION_READY

READ_DRAM

WRITE_DRAM

PERFORM_READ

PERFORM_WRITE

Figure 7: REGISTER_FILE atomic model

indexes

REGISTERS_FILL

ACTIVE_REGISLIVE_REGISTERS READ_REGISTERS MODIFY_REGISTERS ACTIVATE_REGISTERS

766

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

4.2. Composed Model
Möbius allows to design many atomic models, like those
described in the previous section, and to combine them in a
composed model. The model is built using JOIN and REP
constructs, to match the architectural constraints imposed by
the architecture of the GPU. The former is used to link
together the different sub-models; the latter is needed to
replicate the sub-models to match the target GPU architecture.
The complete composed model is depicted in Fig. 8.
The final GPU model is built by linking together the sub-
models (e.g., the DRAM and L2 Cache must be shared among
all the sub-models, as they are shared among all the GPU’s
resources). In this model, places with the same name are
shared between sub-models.
The initial marking of the model is declared in the WARP and
REGISTER_FILE sub-models, with the first being initialized
with the list of the program’s instructions, and the latter with
the list of live registers used or dropped at each instruction.
These two atomic models are joined together, sharing the
REGISTER_FILL place and replicated a number of times
equal to the nwarps parameter.
These sub-models are then joined at Processor level with
EXEC_UNIT and MEMORY sub-models, sharing READ,
WRITE, INSTRUCTION_READY and SCHEDULER
places. These sub-models are replicated according to the
nprocessors parameter and joined with the L1_CACHE sub-
model. Finally, the models are replicated according to the
number of Streaming Multiprocessors (nsm) and joined with
the L2_CACHE and DRAM atomic models.

4.3. Model’s Setting
Setting of the parameters - To have a realistic representation
of the CUDA programs running over GPUs, we tune some
parameters of our model using the information obtained from
the NVIDIA Nsight profiler. We derive the proportions of
accesses to the different physical memories thanks to the
proportion of cache hits and misses provided by the profiler.
We assign these proportions ratios to the cases’ probabilities
of the activities. Looking at the MEMORY atomic model in
Fig. 6, e.g., LOCAL_READ_FROM has three parameterized

cases’ probabilities, local_read_l1, local_read_l2 and
local_read_dram. Assign a probability of 0 to one of these
cases, for both local and global memory operations, simulates
the absence of the corresponding memory, e.g., to examine the
impact of having or not having a local cache. Other
parameters, such as the number of streaming multiprocessors
(nsm), processors (nprocessors) and warps (nwarps) used by
a program depend on the GPU’s architecture and on the
program’s code.
Setting of Reward Variables - As explained in III, we are
interested in a discrete measurement of the number of clock
cycles necessary to execute a program. To accomplish this, we
define some impulse reward variables assigned to specific
activities of the atomic models, which have an impact on the
measure of interest. In particular, the activities which can be
used to count the clock cycles are reported in Table 2. The
table reports the name of the GPU’s operation, the
corresponding activity’s name, the sub-model to which it
belongs, and the reward value representing the clock cycles
needed to perform such operation. We recall that the exact
cost in clock cycles is not known for every operation, so we
had to collect values from different sources [22], [23], [24].
Model Initialization – The model is initialized as follows: the
initial marking of the model is given by the marking of the
WARP extended place in the WARP atomic model, and by
the marking of the LIVE_REGISTERS extended place, in the
REGISTER_FILE atomic model. The marking of these
places consists in an array containing: i) the instructions IDs’
list for the WARP atomic model, and ii) the number of
registers activated or deactivated by each instruction for the
REGISTER_FILE atomic model, as described in Section 3.2.
E.g., a program that executes an arithmetic instruction and a
store to global memory, would be represented in the WARP
atomic model with the array: [4, 3], and in the
REGISTER_FILE atomic model, with the array [+3, -3], if
an integer operation requires 3 registers to be executed, i.e.,
operands registers and result register, that will be released
after the store to global memory.
Example of model composition – To represent a real GPU we
can compose the proposed models in the following way: the
most important parameter that guides the models’ simulation
is nwarps, representing the number of warps that must be run
sequentially on the GPU. This is obviously one of the most
impacting parameters as warps executed in parallel will
spend the same amount of time running in parallel. Hence, if
one is interested only in estimating the number of clock
cycles required to run an application, it is sufficient to
properly set this parameter. This approach is consistent with
other works on GPU stochastic modeling, discussed in
Section 2.2 [20], [21]. For a resource-oriented analysis, it is
also possible to estimate metrics for each hardware resource
represented in our model. The number of SMs present in the
architecture can be modified with the parameter nsm. Each
SM has a fixed number of Processors which is tuned by the
parameter nprocessors. For example, to model the FERMI
GTX 480 GPU, with 15 SMs and 1 Processor each, is

Figure 8: Composed model

Rep1

PROCESSOR_REP

SM_REP

PROCESSOR

STREAMING_MULTIPROCESSOR

DEVICE

WARP_REG

REGISTER_FILE

L1_CACHE

DRAM L2_CACHE

WARP

EXEC_UNIT MEMORY
Rep

Rep

Rep

Join

Join

Join

Join

Submodel

Submodel

Submodel Submodel

Submodel

Submodel Submodel

767

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

sufficient to set the parameter nsm to 15 and nprocessors to
1. Instead, the parameter nwarps is computed depending on
the number of hardware resources and on the number of
threads generated by the kernel.

Table 2. GPU's operations representation in the model along
with the reward variable associated to count the number of

clock cycles needed by the operation.
GPU OP ACTIVITY NAME SUBMODEL REWARD
INT
Operation INT_OP EXEC_UNIT 2

FLOAT
Operation FLOAT_OP EXEC_UNIT 2

L1
Access

PERFORM_READ
PERFORM_WRITE L1_CACHE 12

L2
Access

PERFORM_READ
PERFORM_WRITE L2_CACHE 300

DRAM
Access

PERFORM_READ
PERFORM_WRITE DRAM 600

Barrier BARRIER_SYNC EXEC_UNIT 3000

5. CASE STUDY
In this section we describe the validation campaign performed
to validate the model, along with the algorithm chosen and the
reference architectures. We evaluate our model by simulation,
until it reaches a terminating state. We ran each simulation
with, respectively, 100 and 1000 minimum and maximum
number of batches (simulation runs), with a 0.1 relative
confidence interval and a 0.95 confidence level.

5.1. Target Algorithm and GPUs
To validate our model, we chose the most frequently used
algorithm on GPUs, that is: General Matrix Multiplication
(GEMM) solver. The code is shown in Fig. 9. We configured
the model to match the architectures of the NVIDIA RTX
2080 GPU and the NVIDIA QUADRO 6000 RTX. The
former has 46 SMs with 4 Processors each, with a maximum
number of warps that can run in parallel equal to 46 x 4 = 184;
the latter has instead 72 SMs with 4 Processors each, hence
capable of running 72 x 4 = 288 warps in parallel. The launch
parameters of the Kernel, i.e., the number of blocks and the
number of threads per blocks, are needed to understand the
level of parallelism of the application, which allows one to
compute how many warps will be scheduled per processor.
The model can be initialized depending on the kind of analysis
that one intends to perform as discussed in Section 4.3. We
show here an example based on the GEMM 256 case. First of
all, the number of SMs and Processors can be configured
according to the considered architecture, e.g., for the NVIDIA
RTX 2080, nsm equal to 46 and nprocessors equal to 4.
GEMM 256 creates 2048 threads, that the GPU distributes
among its SMs and Processors. Given that the RTX 2080 has
184 parallel processors, the number of warps that must be run
sequentially (nwarps) is 12.
The GEMM algorithm used in this work was implemented
from scratch. This was done mostly for easiness of use and of
configuration of the size of the problem (matrix). Each matrix
is initialized with random numbers.

5.2. Results of the Simulations
The kernel was first profiled with matrices of Increasing size:
32x32, 64x64, 128x128, 256x256, 512x512. To validate our
results, the number of clock cycles estimated by the model is
then compared to the one measured on the real GPU using the
NVIDIA Nsight Profiler.
Fig. 10 shows the simulated and real clock cycles spent by the
kernel to perform GEMM on these matrices for RTX 2080
GPU. The figure report on the x-axis the number of clock
cycles, while on the y-axis it is reported the size of the matrix.
It is possible to notice that the results obtained by the model
simulation are close to those profiled on the real GPU.
To better visualize the accuracy of our model, we plot in Fig.
11 the absolute value of the relative error of our model against
the real value obtained by the NVIDIA Nsight Profiler.
The average error measurement is 6%, comparable to other
works in literature, e.g., in [20], the average error
measurement is 6% on the NVIDIA FERMI GTX 480 and 8%
on the NVIDIA KEPLER K20m. If we measure the error from

__global__ void gemm(const int* a, const int* b,
long* c) {
 int row = blockIdx.x * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 for (int = 0; i < N; i++) {
 c[row * N + col] += a[row * N + i] *
 b[i * N + col];

 }
}

Figure 9: General Matrix Multiplication (GEMM) code
used. This version is developed to compute a*b=c,

where a and b are matrices of fixed size NxN.

Figure 10: Clock cycles estimated by the model (black)
against the clock cycle profile by the NVIDIA Nsight

Profiler (white) for the NVIDIA RTX 2080. The y-axis
reports the number of clock cycles, while the x-axis

reports the size of the matrix.

0.00E+00

3.00E+05

6.00E+05

9.00E+05

1.20E+06

1.50E+06

1.80E+06

2.10E+06

32 64 128 256 512

SIM REAL

768

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

32x32 to 256x256, obtain an average error of 0.0275. In the
512x512 case we have a huge increase in measurement error
to 20%. We argue that the improvements made by
manufacturers to boost GPUs performance also undermine the
predictability of their performance, leaving room for
measurement errors. This is pointed out also in [4], where
some models are shown to fail at predicting performance of
more recent GPUs.
Fig. 12 reports the simulation of the GEMM algorithm on the
NVIDIA Quadro 6000 RTX. We plot the absolute relative
error in Fig. 13. First, we can see that the model predicts with
higher accuracy the case 512x512, with an error of 2% against
the error of 20% previously observed for the RTX 2080. The
model is much more accurate on this GPU, with a maximum
error of 10% and an average error of 4%. Compared to the
error measured with the NVIDIA RTX 2080, it has a slightly
lower accuracy in the first four cases, but it doesn’t show the
anomaly observed previously in the 512x512 case, where the
measured error was 20%. The measurement error for the
512x512 case on this GPU is, instead, 2%.
The model can be used to perform different kinds of analysis.
We report here an analysis of the load distribution on the
hardware units used in our GEMM implementation, i.e.,
ALUs, L1 and L2 Cache and DRAM. Fig. 14 shows the
percentage of clock cycles spent by the program on each of
these hardware units on the Quadro RTX 6000. We can see
that when the dimension of the matrix is small, in the 32x32
and 64x64 cases, the bottleneck is caused by the L2 cache.
This is consistent with GPU behavior; in fact, data transfers to
and from the CPU must pass through the L2 cache [27], and,
for small matrices, they may entirely reside in this memory.
Thus, warps spend most of their time for data to be read from
the L2 Cache (more than 70% of the whole execution time),
process these data in few cycles (the time spent on ALUs is
less than 2%), and then write these data to global memory. The
benefits of having an L1 Cache can be observed becoming
relevant starting from the 128x128 case. We can also observe

Figure 11: measurement error on the clock cycles

estimated by our model w.r.t. those measured by the
NVIDIA Nsight profiler on the NVIDIA RTX 2080

GPU.

0.00

0.03 0.03

0.05

0.20

0.00

0.05

0.10

0.15

0.20

0.25

32 64 128 256 512

Figure 12: Clock cycles estimated by the model (black)
against the clock cycle profile by the NVIDIA Nsight

Profiler (white) for the NVIDIA Quadro 6000 RTX. The
y-axis reports the number of clock cycles, while the x-

axis reports the size of the matrix.

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

32 64 128 256 512

SIM REAL

Figure 13: measurement error on the clock cycles

estimated by our model w.r.t. those measured by the
NVIDIA Nsight profiler on the NVIDIA Quadro 6000

RTX GPU.

0.05

0.03

0.01

0.10

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

32 64 128 256 512

769

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

that the load distribution of the 256x256 case is very similar
to the 512x512 one.

6. FINAL DISCUSSION AND CONCLUSION
In this work we developed a stochastic model using SANs to
simulate the execution of CUDA programs running on
NVIDIA GPUs. Other stochastic models discussed in
literature rely on a custom program representation; we,
instead, parse directly the CUDA SASS code file to obtain a
faithful program representation as input for the model. In this
way each instruction represented in our model is tied to a
specific CUDA ISA instruction. We simulated a matrix
multiplication algorithm on two NVIDIA GPUs: the RTX
2080 and the Quadro RTX 6000 to estimate the number of
clock cycles required with matrices of increasing size. We also
showed an example of how the model can be used to measure
the percentage of clock cycles spent on the different functional
units.
The results show good prediction accuracy in both our
experiments, with the highest error in the case of the 512x512
GEMM Solver on the RTX 2080. Excluding this anomaly, the
model is very accurate, with an average measurement error of
0.0275. The predictions for the Quadro RTX 6000 instead are
better, with an average error of 4%. A decrease in accuracy as
the workload size increases is also observable in [20], [21], to
the best of our knowledge, the only works that try to model
the internal structure of a GPU. However, the work in [21]
does not focus on estimating the number of clock cycles
required by a given application, hence we compare our results
with those in [20].
The authors of [20] estimate the number of clock cycles on an
implementation of the GEMM algorithm. They validated their
model by simulating the NVIDIA FERMI GTX 480 and
NVIDIA KEPLER K20m GPUs. An increase in measurement
error as the workload gets larger is observed in their work too,
however if we average the errors for all the experiments, we

can see that their model has an error of 7% while our model
has an error of 5%.
We argue that, as stated in [4], the lack of knowledge of
internal architectural details and possible hardware
optimizations, which are often not disclosed by vendors, limit
the accuracy of the results.
As pointed out in Section 2.2, it may be possible to obtain
better results using tools such as, e.g., digital simulators, or
benchmarking. However, these techniques are adopted to
develop and/or validate prototypes of a final product, and
comparing many different solutions in such a way is
expensive and time-consuming. The purpose of model-based
analysis is, instead, different. Its goal is to help system
designers in comparing many technical solutions quickly and
with minimum effort, usually at the early stages of system’s
development. Hence, the strength of the proposed model is its
configurability, with the possibility of simulating many
hardware configurations, to allow to quickly compare many
different architectural solutions.
In fields such as that of safety-critical systems, designers are
required not only to evaluate the performance of different
technical solutions working in nominal conditions, they also
must evaluate situations in which the system is working in
degraded conditions. We argue that with minor modifications,
the model proposed in this work could be an effective tool to
simulate such situations.
As future work, our major interest is to extend the model to
simulate: i) situations in which a hardware unit is failed prior
to running a program and, ii) situations in which a hardware
unit fails during the execution of a program. Other
improvements to the model are to extend our SASS parser and
to include novel functional units such as Tensor Cores.

REFERENCES
[1] CUDA, https://developer.nvidia.com/cuda-toolkit - Last

visited: 23-06-2023
[2] Bridges, Robert A., Neena Imam, and Tiffany M. Mintz.

"Understanding GPU power: A survey of profiling,
modeling, and simulation methods." ACM Computing
Surveys (CSUR) 49.3 (2016): 1-27.

[3] Khairy, Mahmoud, et al. "Accel-Sim: An extensible
simulation framework for validated GPU modeling."
2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2020.

[4] Lopez-Novoa, Unai, Alexander Mendiburu, and Jose
Miguel-Alonso. "A survey of performance modeling and
simulation techniques for accelerator-based computing."
IEEE Transactions on Parallel and Distributed Systems
26.1 (2014): 272-281.

[5] W. Sanders and J. Meyer, “Stochastic activity networks:
formal definition and concepts,” in Lectures on formal
methods and performance analysis, ser. LNCS. Springer,
2002, vol. 2090, pp. 315–343.

Figure 14: fraction of time spent on ALU, L1 and L2
Cache, and DRAM for the GEMM algorithm on the

NVIDIA Quadro RTX 6000.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

32 64 128 256 512

ALU L1 L2 DRAM

770

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

[6] NVIDIA Nsight System -
https://developer.nvidia.com/nsight-systems, visited:
27/04/2023

[7] https://github.com/FrancescoTerrosi/gpu-
model/tree/validation

[8] Glaskowsky, Peter N. "NVIDIA’s Fermi: the first
complete GPU computing architecture." White paper 18
(2009).

[9] The History of the GPU - New Developments, Jon
Peddie, DOI https://doi.org/10.1007/978-3-031-14047-
1, Springer Cham, ISBN 978-3-031-14046-4, 03 January
2023

[10] Shi, Shaohuai & Chu, Xiaowen. (2017). Performance
Modeling and Evaluation of Distributed Deep Learning
Frameworks on GPUs.

[11] Lucas Jr, Henry. "Performance evaluation and
monitoring." ACM Computing Surveys (CSUR) 3.3
(1971): 79-91.

[12] Dattakumar, R., and R. Jagadeesh. "A review of
literature on benchmarking." Benchmarking: An
International Journal 10.3 (2003): 176-209.

[13] Munteanu, Daniela, and J-L. Autran. "Modeling and
simulation of single-event effects in digital devices and
ICs." IEEE Transactions on Nuclear science 55.4 (2008):
1854-1878.

[14] Bakhoda, Ali, et al. "Analyzing CUDA workloads using
a detailed GPU simulator." 2009 IEEE international
symposium on performance analysis of systems and
software. IEEE, 2009.

[15] Andryc, Kevin, Murtaza Merchant, and Russell Tessier.
"FlexGrip: A soft GPGPU for FPGAs." 2013
International Conference on Field-Programmable
Technology (FPT). IEEE, 2013.

[16] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-
based evaluation: From dependability to security,” IEEE
Trans.Depend. Sec. Comput., vol. 1, no. 1, pp. 48–65,
Jan./Mar. 2004.

[17] Petri, Carl Adam (1962). Kommunikation mit
Automaten (Ph. D. thesis). University of Bonn.

[18] I. D. Mironescu and L. Vinţan, "Coloured Petri Net
modelling of task scheduling on a heterogeneous
computational node," 2014 IEEE 10th International
Conference on Intelligent Computer Communication
and Processing (ICCP), Cluj-Napoca, Cluj, Romania,
2014, pp. 323-330, doi: 10.1109/ICCP.2014.6937016.

[19] Yang Hung, Sheng-Tzong Cheng, Chia-Mei Chen. 2015.
Estimation of Job Execution Time in MapReduce
Framework over GPU clusters. PESARO 2015, The
Fifth International Conference on Performance, Safety
and Robustness in Complex Systems and Applications,
Barcelona, Spain, ISBN: 978-1-61208-401-5, Pages: 15
to 20

[20] Souley Madougou, Ana Lucia Varbanescu, and Cees de
Laat. 2016. Using colored petri nets for GPGPU
performance modeling. In Proceedings of the ACM
International Conference on Computing Frontiers (CF
'16). Association for Computing Machinery, New York,
NY, USA, 240–249.
https://doi.org/10.1145/2903150.2903167

[21] Gogolińska, A., Mikulski, Ł., Piątkowski, M. (2018).
GPU Computations and Memory Access Model Based
on Petri Nets. In: Koutny, M., Kristensen, L., Penczek,
W. (eds) Transactions on Petri Nets and Other Models of
Concurrency XIII. Lecture Notes in Computer Science(),
vol 11090. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-58381-4_7

[22] NVIDIA Developer Forum -
https://forums.developer.nvidia.com/, visited:
27/04/2023

[23] Mei, Xinxin, et al. "Benchmarking the memory
hierarchy of modern GPUs." Network and Parallel
Computing: 11th IFIP WG 10.3 International
Conference, NPC 2014, Ilan, Taiwan, September 18-20,
2014. Proceedings 11. Springer Berlin Heidelberg, 2014.

[24] Wong, Henry, et al. "Demystifying GPU
microarchitecture through microbenchmarking." 2010
IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS). IEEE, 2010.

[25] Daly, David, et al. "Möbius: An extensible tool for
performance and dependability modeling." Computer
Performance Evaluation. Modelling Techniques and
Tools: 11th International Conference, TOOLS 2000
Schaumburg, IL, USA, March 27–31, 2000 Proceedings
11. Springer Berlin Heidelberg, 2000.

[26] CUDA Binary Utilities,
https://docs.nvidia.com/cuda/cuda-binary-
utilities/index.html - Last visited: 23-06-2023

[27] NVIDIA Developer Forum -
https://forums.developer.nvidia.com/t/cudamemcpy-
and-l2-cache/42817, visited: 11/07/2023

771

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on January 19,2024 at 17:42:14 UTC from IEEE Xplore. Restrictions apply.

