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Abstract. In a graph � D .V;E/, we consider the common closed neighbourhood of
a subset of vertices and use this notion to introduce a Moore closure operator in V . We
also consider the closed twin equivalence relation in which two vertices are equivalent if
they have the same closed neighbourhood. Those notions are explored deeply in the case
when � is the power graph associated with a finite groupG. In that case, among the corre-
sponding closed twin equivalence classes, we introduce the concepts of plain, compound
and critical classes. The study of critical classes, together with properties of the Moore
closure operator, allow us to correct a mistake in the proof of [P. J. Cameron, The power
graph of a finite group, II, J. Group Theory 13 (2010), no. 6, 779–783; Theorem 2] and to
deduce a simple algorithm to reconstruct the directed power graph of a finite group from
its undirected counterpart, as asked in [P. J. Cameron, Graphs defined on groups, Int. J.
Group Theory 11 (2022), no. 2, 53–107; Question 2].

1 Introduction

The interaction between group theory and graph theory has been known since
1878, when Cayley graphs were first defined. In the subsequent years, various
graphs were associated with groups. In 1955, Brauer and Fowler introduced the
commuting graph in [1], in early 2000, directed power graphs were introduced for
semigroups in [14, 15], and in 2009, Chakrabarty, Ghosh and Sen [8] defined the
undirected version, called simply the power graph. Given a group G, the directed
power graph EP .G/ has vertex set G and arc set

¹.x; y/ 2 G2
W x ¤ y; y D xm for some m 2 Nº:

The power graph P .G/ is its underlying graph. The recent state of the art for the
power graph is well summarized in [16].
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Investigating a group G through a graph �.G/ associated with it allows us to
focus on some specific properties of the group, reducing the complexity of the al-
gebraic structure G to the simpler combinatorial object �.G/. Of course, if the re-
duction of information is dramatic, then the use of �.G/ for the study of G can be
almost useless. Among the many graphs associated with groups, the power graph
seems to be one of the best to reveal information about the group structure. A result
among many justifying this opinion is surely [18, Theorem 15], which shows that if
G is a finite simple group, then any finite group having the same power graph asG
must be isomorphic toG. However it is well known that, given two groupsG1 and
G2, P .G1/ Š P .G2/ does not imply G1 6Š G2. In other words, if a certain graph
� is the power graph of some group, then � can be the power graph of many non-
isomorphic groups. For further arguments distinguishing the power graph from
other graphs associated with groups, the reader is referred to [2, Introduction].

In principle, the directed power graph should encode even more information
than the power graph. Surprisingly, this is not the case, at least for finite groups. In
this paper, we deal only with finite groups, and we call a graph � a power graph
if there exists at least one finite group G such that � D P .G/. As our Main The-
orem, we show that, given a power graph � D P .G/, for a certain finite group G,
we can always reconstruct EP .G/ by purely arithmetical and graph theoretical con-
siderations, without taking into account any group theoretical information aboutG
(see Section 6.1 for formal details).

Main Theorem. We can reconstruct the directed power graph from any power
graph.

We also emphasize that the question of reconstructing the directed power graph
from the power graph makes sense also for infinite groups and there are, in the
recent literature, important contributions for certain classes of infinite groups [22].
However, in this paper, we deal only with finite groups. The proof of the Main The-
orem is entirely constructive and gives rise to a precise algorithm whose descrip-
tion and pseudo-code are available in the arXiv version of our paper [3, Appendix].
That completely answers one of the questions recently set by P. J. Cameron [5,
Question 2], which asks for a simple algorithm for reconstructing the directed
power graph from the power graph.

Evidence of emerging interest in such questions includes a very recent preprint
[9], dealing with an algorithm for reconstructing the directed power graph from
both the enhanced power graph and the power graph. Recall that the enhanced
power graph of a group G has vertex set G and two vertices are adjacent if they
generate a cyclic subgroup. That algorithm is completely independent from ours
and based on maximal cyclic subgroups.
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The main scope of our research is theoretical and is mainly inspired by one of
the most cited papers about power graphs, by P. J. Cameron [4]. We have found
there many deep stimulating ideas and tried to exploit them to their maximum
extent.

As a first step, we generalize a construction in [4], based on closed neighbour-
hoods, to any graph giving rise to what we call the neighbourhood closure opera-
tor. Remarkably, this operator turns out to be a Moore closure operator (Section 3).
It plays a central role in our paper and, to the best of our knowledge, it does not
appear elsewhere in the literature. As in [4], we consider the equivalence relation
N which puts in relation two vertices of the power graph of a group G having the
same closed neighbourhood. The study of the partition of the power graph into
the corresponding equivalence classes was initiated in [4], but it is far from com-
plete. As in [4], we split the N-classes into two types (which we call plain and
compound) according to their behaviour with respect to another equivalence rela-
tion ˘, for which two vertices are equivalent if they generate the same subgroup
of G. Then we introduce a further crucial type of N-class, which we call a critical
class (Section 5.2). The critical classes arise, in principle, from the necessity to
rectify a serious mistake in one argument leading to the main result in [4].

We emphasize that the error in [4] is not rectifiable by modifying some rea-
soning (see Section 5.2 for details) and can be fixed only by developing radically
new theoretical instruments. An intriguing question is to determine when a critical
class is of plain or compound type. That task is completed using a recent result by
Feng, Ma and Wang [11]. We observe that, even when all the tools are ready, the
proof of the Main Theorem (Section 6.1) remains non-obvious and some delicate
parts benefit from information coming from general graph theory, such as those
describing the influence of the N-classes on graph automorphisms (Proposition 1).

Finally, we stress that the contribution of our paper goes beyond the reconstruc-
tion of the directed power graph. Our general analysis of the N-classes can be used
for other research on power graphs. Moreover, the creation of a significant Moore
closure for graphs seems to be a promising step towards new general research
on graphs. In particular, even though the neighbourhood closure operator is not
usually a Kuratowski operator, the possibility remains open, for certain classes of
graphs, of obtaining an interesting topological structure.

2 Notation and basic facts

We denote by N the set of positive integers and we set N0 WD N [ ¹0º. For k 2 Z,
we set Œk� WD ¹x 2 N W x � kº and Œk�0 WD ¹x 2 N0 W x � kº. Let X be a finite
set. We denote by 2X its power set and by SX the symmetric group on X . When
X D Œk�, we simplify the notation to Sk . If K D ¹X1; : : : ; Xrº, with r 2 N, is
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a partition of X and  2 SX , then we denote by  .K/ the partition of X given
by ¹ .X1/; : : : ;  .Xr/º. Given A;B � X , we write X D A �[ B if X D A [ B
and A \ B D ¿. Let � D .V;E/ be a graph with vertex set V ¤ ¿ and edge set
E � ¹e � V W jej D 2º. For X � V , we denote by �X the induced subgraph of
� with vertex set X . For x 2 V , the closed neighbourhood of x in � is given
by NŒx� D ¹y 2 V W ¹y; xº 2 Eº [ ¹xº. Note that, for every x; y 2 V , we have
y 2 NŒx� if and only if x 2 NŒy�. If NŒx� D V , then x is called a star vertex
of � . The set of star vertices of � is denoted by S . For x; y 2 V , we write xNy
if NŒx� D NŒy�. The relation N is an equivalence relation on V , called the closed
twin relation of � . Note that xNy, with x ¤ y, implies ¹x; yº 2 E. We denote the
N-class of x 2 V by Œx�N.

Proposition 1. Let � D .V;E/ be a graph and K the partition of V into its N-
classes. Then�C2K SC � Aut.�/.

Proof. Let C 2K . For � 2 SC , define Q� WV ! V by Q�.x/D x for all x 2 V nC ,
and Q�.x/ D �.x/ for all x 2 C . We show that Q� is a graph automorphism of � .
Clearly, Q� is a bijection on V . We show that, for every x; y 2 V with x ¤ y, we
have ¹x; yº 2 E if and only if ¹ Q�.x/; Q�.y/º 2 E. If both x; y 2 V n C , simply ob-
serve that ¹ Q�.x/; Q�.y/º D ¹x; yº. If both x; y 2 C , we also have Q�.x/; Q�.y/ 2 C ,
and thus both ¹x; yº 2 E and ¹ Q�.x/; Q�.y/º 2 E hold. Consider finally the case
x 2 C and y 2 V n C . Then we have Q�.x/ 2 C ,NŒx� D NŒ Q�.x/� and Q�.y/ D y.
If ¹x; yº 2 E, then y 2 NŒx� D NŒ Q�.x/� so that ¹ Q�.x/; Q�.y/º D ¹ Q�.x/; yº 2 E.
Conversely, if ¹ Q�.x/; Q�.y/º 2 E, then ¹ Q�.x/; yº 2 E so that y 2 NŒ Q�.x/�D NŒx�
and hence ¹x; yº 2 E. Now, using the fact that K is a partition of V , we immedi-
ately get�C2K SC � Aut.�/.

Throughout the paper, when we desire to emphasize that a set is the vertex
set of a graph � , we indicate it by V� . We do the same for the edge set and for
other symbols related to the graph � . We now briefly recall power graphs, that is,
the graphs on which our paper focuses. All the groups considered in this paper are
finite. LetG be a group with identity element 1. The power graph ofG, denoted by
P .G/, has vertex set V WD G and ¹x; yº 2 E if x ¤ y and there exists a positive
integer m such that x D ym or y D xm. The proper power graph of G, denoted
P �.G/, is the subgraph of P .G/ induced by G n ¹1º. It is easily observed that if
H is a subgroup of G, then the subgraph of P .G/ induced by H coincides with
P .H/. A graph � is said to be a power graph if there exists a group G such that
� D P .G/.

We are also interested in the directed version of the power graph. The di-
rected power graph of G, denoted by EP .G/, has vertex set V WD G and arc set
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A WD ¹.x; y/ 2 G2 W x ¤ y; y D xm for some m 2 Nº. Note that ¹x; yº 2 E if
and only if at least one of .x; y/ 2 A and .y; x/ 2 A holds. We say that x; y 2 G,
with x ¤ y, are joined in P .G/ (or in EP .G/) if ¹x; yº 2 E. Let X; Y � G. We
say that X and Y are joined in P .G/ (or in EP .G/) if there exist x 2 X and y 2 Y
that are joined. In that case, if it happens that .x; y/ 2 A, then we say that the arc
joining X and Y is directed from X to Y .

We denote by � the Euler totient function. Throughout the paper, we freely use
the well-known fact that if m j n, then �.m/ j �.n/ with equality if and only if
m D n or m is odd and n D 2m.

3 A Moore closure operator for graphs

We start our research with a section about closure operators for graphs. The results
that we are going to obtain will be used later to deal with power graphs. However,
they seem to be of interest for graphs in general [10, 20, 21].

Recall that an operator c on a set V is a function cW 2V ! 2V , and that c is called
a Moore closure operator on V (see [19, Section 4.5. a]) if c is isotone (A � B
implies c.A/ � c.B/), extensive (A � c.A/) and idempotent (c2.A/ D c.A/); or
a Kuratowski closure operator on V (see [19, Section 5.19]) if c preserves the
empty set (c.¿/ D ¿), is extensive, idempotent and preserves the binary unions
(c.A [ B/ D c.A/ [ c.B/). It is immediately checked that every Kuratowski clo-
sure operator is also a Moore closure operator. Note also that Moore closures al-
ways exist because one can consider the trivial Moore closure given by c.X/D V
for all X � V . If c is a Moore closure operator, then one defines a subset X of V
to be closed if c.X/ D X . Moore closure operators are interesting in pure and ap-
plied mathematics and computer science as very well described in [7]. Non-trivial
examples naturally arise in algebra. For instance, if G is a group and cW 2G ! 2G

is defined for every X � G by c.X/ WD hXi, then c is a Moore closure operator.
Kuratowski closure operators are especially important because the closed sets of
such operators give a topological structure to V .

In [4], for a subsetX of vertices in a power graph, the setsNŒX� D
T

x2X NŒx�

and OX D NŒN ŒX�� are defined and fruitfully used when X is an N-class. They are
also considered in [22], dealing with some subsets in power graphs of infinite
groups. It seems important to recognize the role of operators of such objects, gen-
eralize them to any graph and explore their properties.

Let � D .V;E/ be a graph. For X � V , we define the common closed neigh-
bourhood of X by

NŒX� WD

´T
x2X NŒx� if X ¤ ¿;

V if X D ¿:
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For instance, one hasNŒV � D S . The consideration of common closed neighbour-
hoods in graph theory dates back at least to Lovász, in 1978, with the famous con-
struction of the neighbour complex N .�/, which allowed him to prove Kneser’s
conjecture [17]. Recall that N .�/ has vertex set V and simplices given by those
X ¨ V havingNŒX� ¤ ¿. We warn the reader that, typically, in the literature, the
symbol NŒX� stands for the union of the closed neighbourhoods of the vertices
in X (see, for instance, [12, Section 2.1]), and not for their intersection.

We next define, for every X � V , the neighbourhood closure of X by

OX WD NŒN ŒX��:

That gives rise to the neighbourhood closure operator on V , which plays a key
role in our research. Note that O¿ D S , OV D V and OS D S .

We present now some useful properties of the common closed neighbourhoods
and of the neighbourhood closure operator.

Proposition 2. Let � D .V;E/ be a graph and N its closed twin relation. Then, for
every X � V , the followings facts hold:

(i) OX � X [ S and if OX ¤ ¿, then OX is a union of N-classes;

(ii) if A � B � V , then NŒA� � NŒB� and OA � OB;

(iii) NŒX� D NŒ OX� and b
. OX/ D OX ;

(iv) if A;B � V , then NŒA [ B� D NŒA� \NŒB� and 1A [ B � OA [ OB;

(v) if C is an N-class and y 2 C , then NŒC � D NŒy� and

OC D
\

z2N Œy�

NŒz� � NŒy�:

Proof. (i) Let X � V . Assume first that NŒX� D ¿. Then

OX D NŒ¿� D V � X [ S :

Assume next that NŒX� ¤ ¿. Then OX D
T

u2N ŒX�NŒu�. Pick x 2 X and let
u 2 NŒX�. Then we have u 2 NŒx� and thus also x 2 NŒu�. It follows that x 2 OX
and hence OX � X . We finally note that

OX D
\

x2N ŒX�

NŒx� �
\

x2V

NŒx� D S :

We now show that, when OX ¤ ¿, OX is a union of N-classes. Let x 2 OX . We
want to show that if v 2 V is such that NŒx� D NŒv�, then v 2 OX . By definition
of OX , we have that x 2 NŒz� for all z 2 NŒX�. Thus, for every z 2 NŒX�, we have
z 2 NŒx� D NŒv� and hence v 2 NŒz�, which gives v 2 OX .
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(ii) Let A � B � V . We first show thatNŒA� � NŒB�. If A D ¿, then we have
NŒA� D V � NŒB�. If A ¤ ¿, then also B ¤ ¿ so that

NŒA� D
\
x2A

NŒx� �
\
x2B

NŒx� D NŒB�:

Applying the established inequality to the subsets NŒA� � NŒB�, we now obtain
OA D NŒN ŒA�� � NŒN ŒB�� D OB .

(iii) We show first that NŒX� D NŒ OX�. By (i), we have OX � X , and hence, by
(ii), we get NŒX� � NŒ OX�. Assume, by contradiction, that NŒX� © NŒ OX�. Then
there exists u 2 NŒX� nNŒ OX�. In particular, NŒX� ¤ ¿ and NŒ OX� ¤ V . Thus

NŒ OX� D
\

x2 OX

NŒx�;

and since u … NŒ OX�, we deduce that there exists Ox 2 OX such that u … NŒ Ox�. On
the other hand, since NŒX� ¤ ¿, we have that OX D

T
x2N ŒX�NŒx�. As a conse-

quence, by u 2 NŒX�, we obtain OX � NŒu�. Thus Ox 2 NŒu�, that is, u 2 NŒ Ox�,
a contradiction.

Now, we immediately deduce also that b. OX/ D NŒN Œ OX�� D NŒN ŒX�� D OX .
(iv) LetA;B � V . If one ofA andB is empty, thenNŒA [ B� D NŒA� \NŒB�

trivially follows. Assume that they are both nonempty. Then also A [ B is non-
empty and we have

NŒA [ B� D
\

x2A[B

NŒx� D
\
x2A

NŒx� \
\
x2B

NŒx� D NŒA� \NŒB�:

As a consequence, by (ii), we have

1A [ B D NŒN ŒA [ B�� D NŒN ŒA� \NŒB�� � NŒN ŒA�� [NŒN ŒB�� D OA [ OB:
(v) Let y 2 C . Then C D Œy�N ¤ ¿ so that, by the definition of the relation N,

we deduce
NŒC � D

\
x2Œy�N

NŒx� D NŒy� ¤ ¿:

Since y 2 NŒy�, it follows that OC D NŒN Œy�� D
T

z2N Œy�NŒz� � NŒy�.

Observe that, as an easy consequence of Proposition 2, the neighbourhood clo-
sure of a set of vertices is empty if and only if that set is empty and the graph admits
no star. We also observe that the inclusion 1A [ B � OA [ OB in Proposition 2 (iv) is
generally proper as the following example shows.

Example 3. Let � D .V;E/, where V D Œ5� andE D ¹¹1; 2º; ¹2; 3º; ¹3; 1º; ¹3; 4ºº.
If A WD ¹1º and B WD ¹5º, then it is immediately checked that 1A [ B D V and
OA [ OB D V n ¹4º ¨ 1A [ B .
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The next result is now an immediate consequence of Proposition 2 (i)–(iii) and
of Example 3.

Corollary 4. The neighbourhood closure operator is a Moore closure operator
which is not, in general, a Kuratowski closure operator.

Clearly, there exist graphs for which the neighbourhood closure operator is
a Kuratowski closure operator. For instance, this is the case for the totally dis-
connected graph on a set V . We set then the following problem.

Question 5. For which families of graphs is the neighbourhood closure operator
also a Kuratowski closure operator?

Note that, in order to respect the preservation of the empty set, we need S D ¿.
But this is not enough to guarantee that our operator is a Kuratowski closure oper-
ator. Indeed, as Example 3 shows, even when the star set is empty, binary unions
are not necessarily preserved. A deep enquiry into those aspects is out of scope for
the present paper, but surely deserves future attention.

4 Preliminary results on power graphs

We now come back to the focus of our research, power graphs. Let G be a group
and x; y 2 G. We write x ˘ y if hxi D hyi. Note that x ˘ y if and only if x D y
or both .x; y/ and .y; x/ are arcs of EP .G/. The relation ˘ is clearly an equivalence
relation in G. We denote the ˘-class of x 2 G by Œx�˘. Note that Œx�˘ is the set
of generators of hxi. In particular, jŒx�˘j D �.o.x//. It is easily checked that if
N is the closed twin relation of P .G/, then x ˘ y implies xNy. In other words,
the relation ˘ is a refinement of the relation N. As a consequence, an N-class is
a union of ˘-classes. Moreover, it is immediately observed that, for every x 2 G,
we have Œx�˘ � Œx�N � NP .G/Œx� and hxi � NP .G/Œx�. In particular, two distinct
elements of G in the same N-class are joined and P .G/Œx�N is a complete graph.
Note that Œ1�N D SP .G/. For this reason, we call the N-class of the identity element
of G the star class. When the star class is not equal to ¹1º, there are well-known
consequences for the structure of the group and the nature of the star class itself.

Proposition 6 ([4, Proposition 4]). Let G be a group with jGj D n such that
jSP .G/j > 1. Then one of the following facts holds:

(a) G is a cyclic p-group and SP .G/ D G;

(b) G is cyclic, not a p-group, and SP .G/ consists of 1 and the generators of G,
so that jSP .G/j D 1C �.n/;
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(c) G is a generalized quaternion 2-group and SP .G/ contains 1 and the unique
involution of G, so that jSP .G/j D 2.

In particular, P .G/ is a complete graph if and only if G Š Cpm for some prime p
and some m 2 N0.

We now present a useful auxiliary result. For simplicity, from now on, when a
single groupG is under consideration, we completely omit all the subscripts P .G/

in our notation and assume that N is the closed twin relation of P .G/.

Lemma 7. LetG be a group and let x; y 2 G be elements whose orders are powers
of the same prime p, and such that o.x/ � o.y/. Then NŒx� � NŒy� if and only if
x is a power of y.

Proof. Assume that NŒx� � NŒy�. Then y 2 NŒx�, which implies hxi � hyi or
hyi � hxi. Since o.x/ � o.y/, we then have hxi � hyi so that x is a power of y.
Conversely, assume that x is a power of y. Pick z 2 NŒy�. If y is a power of z,
then x is a power of z too. If z is a power of y, then x and z belong to the cyclic
p-group generated by y. Hence, since P .hyi/ is complete, we have z 2 NŒx�.

5 N-classes in power graphs

We have observed that an N-class in a power graph is a union of ˘-classes. Hence
we can sensibly distinguish two types of N-classes.

Definition 8. Let G be a group and C an N-class. We say that C is a class of plain
type if C is a single ˘-class; C is a class of compound type if C is the union of at
least two ˘-classes.

Those classes are called, in [4], of type .a/ and .b/ respectively. The classes of
plain type are easily characterized by the order of their elements.

Lemma 9. Let G be a group and C an N-class. Then C is of plain type if and only
if all elements in C have the same order.

Proof. Let C be of plain type. If x; y 2 C , then we have hxi D hyi and thus
o.x/ D o.y/. Assume, conversely, that the elements in C have the same order.
Let C D Œx�N for some x 2 G. Since we know that Œx�˘ � Œx�N, we need only
show that Œx�N � Œx�˘. Let y 2 Œx�N. Then ¹x; yº 2 E and o.x/ D o.y/. Then we
deduce y ˘ x.
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We observe that it is possible to have plain classes with elements of any fixed or-
der k 2 N. Indeed, consider G WD hai � hbi with o.a/ D 2, o.b/ D k. It is easily
checked that Œb�N is a class of plain type whose elements have order k.

Thanks to Proposition 6 and Lemma 9, we observe that S is of compound type
if and only if S ¤ ¹1º. We now characterize the N-classes of G different from S

and of compound type. Our result is very little more than [4, Proposition 5]. We
give full details for two reasons. First, some unspecified conditions in [4] are pre-
sumably at the origin of a gap that we are going to correct later (see the comments
to Proposition 14). Second, we need to clearly introduce some notation for the
sequel.

Proposition 10 ([4, Proposition 5]). Let G be a group and C an N-class ofG, with
C ¤ S . The following facts are equivalent.

(i) C is a compound-class.

(ii) If y is an element of maximum order in C , then o.y/ D pr for some prime p
and some integer r � 2. Moreover, there exists s 2 Œr � 2�0 such that

C D ¹z 2 hyi W psC1
� o.z/ � pr

º:

In particular, we have that the number of ˘-classes into which a compound N-class
C splits is r � s � 2. The orders of the elements in those ˘-classes are given by
psC1; psC2; : : : ; pr and the sizes of those ˘-classes are

�.psC1/; �.psC2/; : : : ; �.pr/

respectively. The ordered list .p; r; s/ is uniquely determined by C .

Proof. (i)) (ii) Let C be a compound-class. We first claim that if x; y 2 C are
two elements of distinct order, then those orders are suitable powers, with positive
integer exponent, of the same prime. Let x; y 2 C with o.x/ ¤ o.y/. Then, re-
naming if necessary, we have o.x/ < o.y/. In particular, x ¤ y. Moreover, both
x and y are different from 1 as C ¤ S D Œ1�N. Since NŒx� D NŒy�, x and y are
joined and o.x/ is a proper divisor of o.y/. So let k WD o.x/ and kl WD o.y/ for
some k; l � 2. We show that k and l are powers of the same prime. It suffices
to show that if p is a prime dividing k, then the only prime dividing l is p it-
self. Assume, by contradiction, that we have a prime p j k and a prime q ¤ p
such that q j l . Then .kq/=p D .k=p/q j kl D o.y/ and thus there exists an ele-
ment z 2 hyi with o.z/ D .k=p/q. Now z 2 NŒy� D NŒx�. But o.z/ − o.x/ and
o.x/ − o.z/. Indeed, assume that o.z/ j o.x/. Then .k=p/q j k D p.k=p/, which
implies the contradiction q j p. Assume next o.x/ j o.z/. Then k j .k=p/q and
thus p.k=p/ j q.k=p/, which implies the contradiction p j q.
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Now choose x 2 C such that o.x/ is minimum in C and y 2 C such that o.y/
is maximum in C . Since C is compound, by Lemma 9, those orders are dis-
tinct. Moreover, since C ¤ S , those orders are different from 1. Hence we have
o.x/ D psC1 for some integer s � 0 and o.y/ D pr for some integer r � s C 2.
Pick z 2 C . Since z; y 2 C , y and z are joined and, since o.z/ � o.y/, we have
that z is a power of y. Moreover, o.z/ � psC1. This shows that

C � ¹z 2 hyi W psC1
� o.z/ � pr

º:

Next let z 2 hyi with o.z/ � psC1 D o.x/. Then we have z 2 NŒy� D NŒx�, and
hence z D x 2 C or z and x are joined. In this latter case, we necessarily have
that x is a power of z. Moreover, x and z are of prime power order so that, by
Lemma 7, we obtain NŒx� � NŒz� � NŒy� D NŒx� and thus NŒx� D NŒz�, so
that z 2 C . Thus C D ¹z 2 hyi W psC1 � o.z/ � prº.

(ii)) (i) In C , there exist elements with different order. Thus, by Lemma 9, C
cannot be plain and hence it is compound.

Definition 11. If C ¤ S is an N-class of compound type for a group G, then we
call an element y 2 C of maximum order a root of C . Moreover, we call the
ordered list .p; r; s/, described in Proposition 10, the parameters of C .

Recall that p is a prime, r and s are integer with r � 2 and s 2 Œr � 2�0.

5.1 Examples of classes of compound type

In [6, Proposition 2], Cameron and Ghosh prove, translated within our language,
that if C is a compound class in an abelian group G, then C D S . This is not true,
in general, for non-abelian groups, as shown by the following example.

Example 12. The N-classes of the elements of order 4 in S4 are of compound type
with parameters .p; r; s/ D .2; 2; 0/. For instance,

Œ.1234/�N D ¹.1234/; .1432/; .13/.24/º

is the union of the two ˘-classes

Œ.1234/�˘ D ¹.1234/; .1432/º and Œ.13/.24/�˘ D ¹.13/.24/º:

This example shows that s D 0 can occur as a parameter of a compound class.
That possibility, wrongly denied in [4], is not sporadic at all. We can indeed easily
construct an infinite family of groups admitting N-classes of compound type with
s D 0. Recall that the dihedral group D2n of order 2n, for n � 2, is defined by

D2n WD ha; b j a
n
D 1 D b2; b�1ab D a�1

i: (5.1)
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Now consider the choice n D pr for a prime p and r 2 N, with r � 2. It is
easily checked that P .D2pr / is composed of the complete graph Kpr on the ver-
tices in hai and pr further vertices given by the involutions in D2n n hai joined
only with 1. Therefore, we have that Œa�N D hai n ¹1º is of compound type, since
it contains elements of different orders. Moreover, its parameters are .p; r; 0/.

The construction of an infinite family of groups admitting N-classes of com-
pound type with s D 1 is a bit more tricky. Consider, for n � 4, the quasidihedral
group of order 2n defined by

QD2n WD ha; b j a2n�1

D b2
D 1; b�1ab D a�1C2n�2

i

(see, for instance, [13, Satz I.14.9]). Then it is easily checked that its proper power
graph P �.QD2n/ is composed of a clique of order 2n�1 � 1 given by the graph
induced by hai, 2n�3 triangles having the vertex a2n�2

in common and all the
2n�2 remaining vertices isolated. Then the class Œa�N is compound with parameters
.2; n � 1; 1/. Figure 1 shows this in the n D 4 case.

a a7

a6

a5

a4

a3

a2

a7b

a3ba5b

ab

a2b

a4b

a6bb

Figure 1. P �.QD16/: vertices with different colours are in distinct N-classes.
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5.2 Critical classes

The Moore closure operator defined in Section 3 is a very useful tool for the study
of N-classes. The proposition below is essentially extracted from [4]. We state it
formally and prove it making use of the neighbourhood closure operator.

Proposition 13. Let G be a group and C ¤ S an N-class of compound type, root
y 2 G and parameters .p; r; s/. Then jC j D pr � ps and OC D hyi. In particular,
j OC j D pr .

Proof. By Proposition 10, we have C � hyi DW Y and

jC j D jY j � j¹z 2 Y W o.z/ � ps
ºj D pr

� ps:

We first show that Y � OC . Let a 2 Y . Then a is a power of y and, by Lemma 7,
we have NŒa� � NŒy�. By Proposition 2 (v), recalling that y 2 C , we deduce

NŒC � D NŒy� �
\
a2Y

NŒa� D NŒY �:

Therefore, by Proposition 2 (i)–(ii), we get Y � OY D NŒN ŒY �� � NŒN ŒC �� D OC .
We next show that Y D OC . Suppose, by contradiction, that there exists some

u 2 OC n Y . Assume first that the order of u is not a power of p. By Proposi-
tion 2 (v), we have u 2 OC � NŒy�. But u ¤ y, because the order of y is a power
of p. It follows that u and y are joined. Then hui > hyi since u … Y . Thus there
exist t 2 N0 andm 2 N withm � 2 and gcd.m; p/ D 1 such that o.u/ D prCtm.
Now note that o.upt m/ D o.y/ D pr . Thus upt m and y are generators of the
unique subgroup of order pr inside the cyclic group hui. As a consequence, there
exists k 2 N with gcd.k; p/ D 1 such that upt mk D y. Thus

yp
D .upt mk/p D uptC1mk :

Now o.yp/ D pr�1 and, since y is a root for C , we have yp 2 C so that yNyp

holds. It follows thatNŒy� D NŒyp�. We see that this is impossible by considering
w WD uptC1

and showing that w 2 NŒyp� nNŒy�. Note first that

o.w/ D pr�1m … ¹pr�1; pr
º;

and thus w … ¹yp; yº. Since yp D wmk , we have that w 2 NŒyp�. On the other
hand, w … NŒy� because o.y/ D pr − o.w/ and o.w/ − o.y/.

Assume next that the order of u is a power of p. By Proposition 2 (v), we have
that u 2 OC n Y � NŒy� n Y . Thus u ¤ y, u is joined to y and necessarily y is
a power of u. Since u … Y , we have that o.u/ > o.y/. Hence, by Lemma 7, we
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haveNŒu� � NŒy�. Assume thatNŒu� D NŒy�. Then u 2 C � Y , a contradiction.
Thus the inclusion is proper. As a consequence, there exists w 2 NŒy� such that
w …NŒu�. It follows that u …NŒw�, which implies u … OC D

T
z2N Œy�NŒz�, a con-

tradiction.

Remarkably, Proposition 13 points out that if C ¤ S is an N-class of compound
type, then some strong arithmetic restrictions on jC j and j OC j arise. As a conse-
quence, an N-class different from S that does not satisfy those restrictions is neces-
sarily of plain type. However, as we show in the next proposition, those arithmetic
restrictions can be satisfied also by an N-class of plain type in a very specific case
that we can completely clarify.

Proposition 14. Let G be a group and C an N-class of plain type. Assume that
there exist a prime p and integers r � 2 and s 2 Œr � 2�0 such that jC j D pr � ps

and j OC j D pr . Then OC D C �[ ¹1º, s D 0 and C D Œy�˘ for some y 2 G, with
o.y/ > 1 not a prime power and such that �.o.y// D pr � 1.

Proof. By Proposition 2 (i), we have OC � C [ ¹1º and OC is a union of N-classes
and hence of ˘-classes. Observe that pr < 2.pr � ps/. Indeed, that inequality is
equivalent to 2 < pr�s and, surely, pr�s � p2 > 2. It follows that j OC j < 2jC j.
As a consequence, every ˘-class included in OC and distinct from C must have size
smaller than jC j. Pick y 2 C . Since C is of plain type, we have C D Œy�N D Œy�˘.
Note that, since jC j D ps.pr�s � 1/ � 3 and Œ1�˘ D ¹1º, we have y ¤ 1. Then,
by Lemma 9, all the elements in C have order equal to o.y/ > 1 and 1 … C . In
particular, we have C [ ¹1º D C �[ ¹1º.

Claim 1. OC n Œy�˘ contains no elements of order greater than or equal to o.y/.

Assume, by contradiction, that there exists x 2 OC n Œy�˘ such that o.x/ � o.y/.
Then x ¤ y and, by Proposition 2 (v), we have OC � NŒy�. Thus x 2 NŒy� n Œy�˘.
Hence, since o.x/ � o.y/, we necessarily have y 2 hxi. Then o.y/ j o.x/, which
implies �.o.y// j �.o.x//. In particular, we have that �.o.y// � �.o.x//. Since
OC is a union of ˘-classes, we have that Œx�˘ � OC . It follows that

jŒx�˘j D �.o.x// � �.o.y// D jC j;

a contradiction.

Claim 2. OC � hyi.

Let x 2 OC . If hxi D hyi, then x is a power of y. If hxi ¤ hyi, then x 2 OC n Œy�˘
so that, by Claim 1, we have o.x/ < o.y/. Now, by Proposition 2 (v), we have
OC � NŒy� so that x 2 NŒy�, and thus, again, x is a power of y.
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Hence we have reached the following chain of inclusions:

C [ ¹1º � OC � hyi: (5.2)

We now show that o.y/ cannot be a prime power. Assume, by contradiction,
that o.y/ D qt for some prime q and some integer t � 1.

We claim that NŒz� � hyi holds true for all z 2 NŒy�. Let z 2 NŒy�. Then
we have z 2 hyi or y 2 hzi. Assume first that o.z/ � o.y/. Then z 2 hyi. Now,
by the fact that o.y/ D qt , it follows that P .hyi/ is a complete graph and thus
hyi � NŒz�. Assume next that o.z/ > o.y/. Then necessarily y 2 hzi and hence
hyi � hzi � NŒz�.

Now, by Proposition 2 (v), we know that OC D
T

z2N Œy�NŒz�. Thus OC � hyi
and, by (5.2), we deduce OC D hyi. As a consequence, pr D j OC j D jhyij D qt .
But then q D p, t D r , and hence pr � ps D jC j D �.pr/ D pr � pr�1, which
implies s D r � 1, a contradiction.

Hence we have o.y/ D m for some integer m > 1, not a prime power.

Claim 3. OC D C [ ¹1º.

By (5.2), we just need to show that OC � C [ ¹1º. Let x 2 OC . By (5.2), we have
that x D yk for some k 2 N. Assume, by contradiction, that yk … C [ ¹1º. Then
yk is neither a generator nor the identity of the cyclic group hyi of order m.
By Proposition 6 applied to P .hyi/, there exists w 2 hyi such that w ¤ yk and
¹yk; wº …EP .hyi/. Then we also have ¹yk; wº …EP .G/. It follows thatw 2NŒy�,
while yk … NŒw�. Since, by Proposition 2 (v), we have OC D

T
z2N Œy�NŒz�, we

deduce x D yk … OC , a contradiction. By OC D C �[ ¹1º, we now deduce j OC j D
jC j C 1 and thus pr � ps D jC j D j OC j � 1 D pr � 1, which implies s D 0. As
a consequence, we also have �.o.y// D jC j D pr � 1.

In [4, pages 782–783], it is claimed that there is no N-class C of plain type
satisfying jC j D pr � ps and j OC j D pr for a prime p and integers r; s with r � 2
and s 2 Œr � 2�0. That is mistaken because we can exhibit examples of N-classes
of plain type satisfying those arithmetical restrictions.

Example 15. Consider G D D30 with the notation in (5.1). Let C WD Œa�N. Then
C contains the element a of order 15 and 15 is not a prime power. We remark
that, by Proposition 10, if an N-class C D Œx�N ¤ S is compound, then o.x/ > 1 is
a prime power. Thus we deduce that C is of plain type. As a consequence, we have
C D Œa�˘ and jC j D �.15/ D 8 D 32 � 1. Defining p WD 3, r WD 2, s WD 0, we
see that jC j D pr � ps . In order to show j OC j D pr , we prove that OC D C �[ ¹1º.
Since the elements in C have order 15, clearly 1 … C and thus C [ ¹1º D C �[ ¹1º.
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By Proposition 2 (i), we have OC � C [ ¹1º. Assume, by contradiction, that there
exists x 2 OC n .C [ ¹1º/. Then we have o.x/ … ¹1;15º. In particular, x ¤ a. More-
over, by Proposition 2 (v), we have OC � NŒa� and therefore x 2 hai. Then, by
Proposition 6, there exists y 2 hai n ¹xº such that y is not joined to x. It follows
that y 2 NŒa� and x … NŒy� so that x … OC D

T
z2N Œa�NŒz�, a contradiction.

We are now in position to give birth to a crucial and original definition, the main
player of our research.

Definition 16. Let � be a power graph. A critical class is an N-class C such that
OC D C �[ ¹1º and there exist a prime p and an integer r � 2 with j OC j D pr .

We emphasize that, in order to check if an N-class is critical, one has to make
only arithmetical or graph theoretical considerations. No group theoretical consid-
eration is involved. We also want to emphasize that both critical classes of plain
type and of compound type can arise in a power graph as shown in Examples 12
and 15. Note that S is never critical since 1 2 S .

It is interesting to note that a compound class C is critical if and only if C ¤ S

and C has parameters .p; r; 0/. This can easily be proved as follows. Assume that
C is critical. Then C ¤ S because S is never critical. Moreover, OC D C �[ ¹1º
and j OC j D pr for some prime p and integer r � 2. Hence we have jC j D pr � 1.
Then, by Proposition 13, the parameters of C are .p; r; 0/. Conversely, assume
that C ¤ S and the parameters of C are .p; r; 0/. By Proposition 13, j OC j D pr

and jC j D pr � 1. Now, clearly, 1 … C ; otherwise, C D S . On the other hand, by
Proposition 2 (i), we have OC � C [ ¹1º. It follows that OC D C �[ ¹1º. Hence C is
critical.

We stress that a critical class C is an N-class, different from S , which we cannot
immediately recognize as plain or compound by arithmetical considerations of its
size and the size of its closure. On the other hand, if we exclude those classes, the
recognition is easy.

Proposition 17. Let G be a group and C ¤ S a non-critical N-class. Then C is
compound if and only if there exist a prime p, and integers r � 2 and s 2 Œr � 2�0
such that jC j D pr � ps and j OC j D pr .

Proof. If C is compound, by Proposition 13, there exist a prime p, and inte-
gers r � 2 and s 2 Œr � 2�0 such that jC j D pr � ps and j OC j D pr . Conversely,
Proposition 14 shows that if such p, r and s exist and C is plain, then C is critical,
a contradiction.
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For a better final insight on N-classes, we need the following result by Feng, Ma
and Wang [11].

Proposition 18 ([11, Lemma 3.5]). Let G be a group and x; y 2 G. Let Œx�N and
Œy�N be two distinct N-classes different from S . If hxi < hyi, then jŒx�Nj � jŒy�Nj,
with equality if and only if both the following two conditions hold:

(i) both Œx�N and Œy�N are of plain type;

(ii) o.y/ D 2 o.x/ and o.x/ � 3 is odd.

We can now state and prove a result that allows us to recognize if a critical class
is plain or compound, by purely graph theoretical considerations, when the star
class is trivial. Such a result will be crucial for the proof of the Main Theorem.

Proposition 19. Let G be a group with S D ¹1º and let C D Œy�N be a critical
class. Then C is of plain type if and only if there exists x 2 G n OC such that
jŒx�Nj � jC j and ¹x; yº 2 E.

Proof. Note that we haveC ¤ S because S is never critical. Assume first thatC is
of plain type. Then OC is formed by the generators of hyi and 1. By Proposition 14,
we have o.y/ D m > 1, not a prime power. In particular,m is not a prime and thus
m > �.m/C 1. As a consequence, hyi n OC ¤ ¿. Pick x 2 hyi n OC . Then we have
hxi < hyi and thus ¹x; yº 2 E. Note that, since x ¤ 1, we have Œx�N ¤ S D ¹1º.
Moreover, since x does not generate hyi, we also have Œx�N ¤ Œy�N D Œy�˘. Hence,
by Proposition 18, we deduce jŒx�Nj � jC j.

Assume next that there exists x 2 G n OC such that jŒx�Nj � jC j D jŒy�Nj and
¹x; yº 2 E. Note that x ¤ 1 since x … OC D C �[ ¹1º. As a consequence, we get
Œx�N ¤ S D ¹1º. Observe next that Œx�N ¤ Œy�N holds; otherwise, we would have
x 2 C � OC . In particular, hxi ¤ hyi. Since ¹x; yº 2 E, it follows that hyi < hxi
or hxi < hyi. If hyi < hxi, then by Proposition 18, we deduce jŒy�Nj � jŒx�Nj
and hence jŒx�Nj D jŒy�Nj. Thus, by Proposition 18, C D Œy�N is of plain type. If
hxi < hyi, then x 2 hyi. Suppose, by contradiction, that C is of compound type.
Let z be a root of C . Then, by Propositions 10 and 13, we get x 2 hyi � hzi D OC ,
a contradiction.

6 The reconstruction of the directed power graph

We now describe the ˘-classes inside the directed power graph, exploiting some
facts observed in [4]. The following lemma, together with other previous results,
paves the way for the effective reconstruction of the directed power graph from its
undirected counterpart.
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Lemma 20. LetG be a group and letX; Y be two distinct ˘-classes. In EP .G/, the
following facts hold.

(i) The subdigraph induced by a ˘-class is a complete digraph.

(ii) If there is at least one arc directed from X to Y , then .x; y/ is an arc for all
x 2 X and y 2 Y . Moreover, there is no arc directed from Y to X .

(iii) Let X and Y be joined and jX j > jY j. Then there is an arc directed from X

to Y .

(iv) Let X and Y be joined and 1 ¤ jX j D jY j. There is an arc directed from X

to Y if and only if there exists an involution � 2 G such that Œ� �˘ is joined
with X .

(v) Let X and Y be joined and 1 D jX j D jY j. Then one of them is Œ1�˘, the
other is Œ� �˘, with � 2 G an involution, and .�; 1/ is the only arc between the
two ˘-classes.

Proof. Recall that A denotes the arc set of EP .G/.
(i) This is obvious by the definition of the relation ˘.
(ii) Note first that if x 2 X and y 2 Y , then we cannot have in A both the arcs

.x; y/ and .y; x/; otherwise, we would have x ˘ y and then X D Y . Suppose now
that there exist Nx 2 X and Ny 2 Y such that . Nx; Ny/ 2 A. Pick x 2 X and y 2 Y .
Then y is a power of Ny, which is a power of Nx, which in turn is a power of x.
Hence .x; y/ 2 A.

(iii) Since the classes are joined, there exist joined vertices x 2 X and y 2 Y .
Since

�.o.x// D jX j > jY j D �.o.y//;

we deduce that o.y/ j o.x/ and so y is a power of x.
(iv) LetX D Œx�˘ and Y D Œy�˘ for some x;y 2G. Assume first that .x;y/ 2A.

Then y 2 hxi and o.y/ j o.x/. Now jX j D jY j implies �.o.x// D �.o.y//. This
implies o.x/D 2o.y/, with o.y/ odd, since otherwise we would have o.x/D o.y/
and then also the contradiction X D Y . Observe that � WD xo.y/ is an involution
and that x ¤ � because jŒ� �˘j D 1 ¤ jŒx�˘j. It follows that .x; �/ 2 A and thus
Œ� �˘ and X are joined.

Conversely, assume that there exists an involution � 2 G such that Œ� �˘ and X
are joined. Then we have jX j > jŒ� �˘j D 1 and thus, by (iii), .x; �/ 2 A. We show
that .x; y/ 2 A. Assume, by contradiction, that .y; x/ 2 A. As before, one obtains
o.y/ D 2o.x/, with o.x/ odd, against the fact that 2 D o.�/ j o.x/.

(v) A ˘-class of size one contains either 1 or an involution, and involutions are
never joined. The result therefore follows from the definition of EP .G/.
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6.1 The Main Theorem

We now pass to proving our Main Theorem. First we need to be precise about our
terminology. It seems that, in the literature, a clear definition of reconstruction was
missing.

We say that we can reconstruct the directed power graph from a power graph
� D .V;E/ if we are able, by purely arithmetical or graph theoretical considera-
tions, without taking into account any group theoretical information, to do one of
the following:

� prove that there exists a unique group G such that � D P .G/ and exhibit such
G;

� exhibit a digraph E� isomorphic to EP .G/ for all those G such that � D P .G/.

Note that, in the first case, G is uniquely determined and exhibited, and thus we
can clearly also exhibit its directed power graph. In the second case, there could
be many groups G realizing � D P .G/, and usually, one is not able to explicitly
exhibit them. The point is that, whatever those groups are, we require to be able
to show a directed graph which, up to isomorphisms of directed graphs, is the
directed power graph of all those groups. In particular, the directed power graphs
of all those G will be isomorphic.

For the proof, we use some methods from the proof of [4, Theorem 2], correct-
ing the mistake about critical classes and filling in some missing details. Of course,
since we are proving a stronger result, the architecture of the proof and some parts
of it are completely original.

Main Theorem. We can reconstruct the directed power graph from any power
graph.

Proof. Let � D .V;E/ be a power graph and let n WD jV j. Since � is a power
graph, there exists a group G such that � D P .G/ and V D G. If n D 1, then
G D 1; if n D 2, then G Š C2. Hence, in those cases, G is uniquely determined
and exhibited. Assume then that n � 3.

We consider the size of the set S of star vertices in � . By Proposition 6, if
jS j > 1, the following three possibilities arise, each of them leading to a unique
and exhibited group G.

� jS j D n. In this case, the only possibility is G Š Cn with n a prime power.

� jS j D 1C �.n/ ¤ n. Here we have the only possibility G Š Cn, with n not
a prime power.
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� jS j D 2. Note that we are not in one of the previous cases because n � 3 im-
plies 2 ¤ n, and 2 ¤ 1C �.n/. Here G is the generalized quaternion group of
order n.

We now study the case jS j D 1. Then S D ¹1º, and we recognize which vertex of
� is the identity element 1 of the group G. This is the genuine interesting case to
deal with and it needs the whole machinery of the paper.

Let K be the partition of V n ¹1º into N-classes. We show that, given a class
in K , we can decide if it is of plain or compound type by arithmetical or graph
theoretical considerations, without taking into account any group theoretical infor-
mation.

Pick then C D Œy�N 2K . Assume first that C is critical. Then, by Proposi-
tion 19, C is plain if and only if there exists x 2 V n OC such that jŒx�Nj � jC j
and ¹x; yº 2 E. Assume next that C is not critical. Then, by Proposition 17, C is
compound if and only if there exist a prime p and integers r � 2 and s 2 Œr � 2�0
such that jC j D pr � ps and j OC j D pr .

In K , denote by KP the set of plain classes and by KC the set of compound
classes. Of course, we have K DKP �[KC.

Let C 2KC. By Proposition 13, we have parameters .p; r; s/ associated with
C , where p is a prime, r � 2 and s 2 Œr � 2�0. Recall that jC j D pr � ps and
j OC j D pr and note that

pr
� ps

D

rX
iDsC1

.pi
� pi�1/ D

rX
iDsC1

�.pi /:

We now partition C , arbitrarily, into r � s � 2 subsets Xi .C / of sizes �.pi / for
s C 1 � i � r . Let KC WD ¹Xi .C / W s C 1 � i � rº be this partition of C .

By Proposition 10, we know that C 2KC also admits the partition ˘C given
by the r � s ˘-classes of C , and that the sizes of those ˘-classes are �.pi / for
s C 1 � i � r . Thus KC and ˘C are two partitions of C with the same num-
ber of subsets of the same sizes. As a consequence, there clearly exists  C 2 SC

such that  C .Xi .C // is a ˘-class of C of size �.pi / for all s C 1 � i � r , and
˘C D ¹ C .X/ W X 2KC º D  C .KC /.

Next define the partition K˘ of V n ¹1º given by K˘ WDKP [
S

C2KC
KC .

By the above argument, there exists C 2�C2KC
SC such that C.

S
C2KC

KC /

is the partition of the set
S

C2KC
C into its ˘-classes. Completing the permuta-

tion  C to a permutation of V which fixes the ˘-classes in KP and 1, we obtain
 2�C2K[¹Sº SC such that  .K˘/ is the partition of V n ¹1º in ˘-classes.

Now, by Proposition 1, the group�C2K[¹Sº SC is a group of automorphisms
for the power graph � . Hence the above argument proves that K˘ is, up to the
graph isomorphism  , the partition of V n ¹1º in ˘-classes.
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We are now ready to define a set of arcs AE� � V � V . For every ¹x; yº 2 E,
we are going to set .x; y/ 2 AE� or .y; x/ 2 AE� (or both).

Let ¹x;yº 2E. Assume first that 1 2 ¹x;yº, say yD 1. Then we set .x;1/ 2AE� .
Assume next that 1 … ¹x; yº. If there exists C 2K˘ such that x; y 2 C , then we
set both .x; y/ 2 AE� and .y; x/ 2 AE� . If x 2 X , y 2 Y , with X; Y 2K˘ and
X ¤ Y , we make a choice based on the computation of jX j and jY j. If jX j > jY j,
then we set .x; y/ 2 AE� . Assume next that jX j D jY j ¤ 1. Then we also have
j .X/j D j .Y /j ¤ 1 and, by definition of  ,  .X/ and  .Y / are ˘-classes.
Thus Lemma 20 implies that there exists Z 2K˘ such that  .Z/ D Œ� �˘, with
� 2 G an involution and .Z/ is joined with exactly one of .X/ or .Y /. Hence
jZj D 1 and, since  is a graph isomorphism, Z is joined with exactly one of X
or Y . We set .x; y/ 2 AE� if X is joined with Z, and we set .y; x/ 2 AE� if Y is
joined with Z. Finally, we suppose, by contradiction, that jX j D jY j D 1. Then,
by Lemma 20, one of the ˘-classes  .X/ and  .Y / must be S D ¹1º, contradict-
ing the fact that  .X/;  .Y / 2K˘, a partition of V n ¹1º.

We now define E� WD .V; AE�/. We claim that  is a digraph isomorphism be-
tween E� and the directed power graph EP .G/ D .G;A/. First observe that  is,
by definition, a bijection between the vertex sets V D G of the two digraphs. We
show that .x; y/ 2 AE� if and only if . .x/;  .y// 2 A. Assume first that x; y be-
long to the same C 2K˘. This happens if and only if  .x/ and  .y/ belong to
the same ˘-class  .C/. Hence .x; y/ 2 AE� if and only if . .x/;  .y// 2 A, by
the construction above and by Lemma 20 (i). Assume next that x 2 X , y 2 Y , with
X; Y 2K˘ andX ¤ Y . This happens if and only if  .x/ 2  .X/,  .y/ 2  .Y /
with  .X/ ¤  .Y / ˘-classes.

Then, by the definition of AE� and by Lemma 20 (iii)–(iv), one of the following
holds.

� jX j > jY j if and only if j .X/j > j .Y /j and hence .x; y/ 2 AE� if and only if
. .x/;  .y// 2 A.

� jX j D jY j ¤ 1 and there exists Z 2K˘ such that jZj D 1 and Z is joined to
X if and only if the same is true when we replace X; Y and Z with, respec-
tively,  .X/;  .Y / and  .Z/. Thus it follows that .x; y/ 2 AE� if and only if
. .x/;  .y// 2 A.

It remains to consider the arcs in AE� incident to 1. By the construction of E� ,
those arcs are of the form .x; 1/ for x 2 G n ¹1º, and obviously,

. .x/;  .1// D . .x/; 1/ 2 A for all x 2 G n ¹1º:

As a corollary, we immediately deduce the following result. It appeared in [4],
as the main theorem, with a step of the proof affected by a mistake, as explained in
Section 5.2. Thanks to the Main Theorem, we can completely confirm its validity.
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Corollary 21 ([4, Theorem 2]). IfG1 andG2 are finite groups whose power graphs
are isomorphic, then their directed power graphs are also isomorphic.

We emphasize that the Main Theorem expresses a stronger result than Corol-
lary 21. In particular, it allows us to give a clear answer to the request, posed in
2022 by P. J. Cameron [5, Question 2], for a “simple” algorithm able to recon-
struct the directed power graph of a group from its power graph. Indeed, its proof
is constructive and can be explicitly converted into an algorithm. The reader in-
terested in the description of the algorithm and its pseudo-code are referred to the
appendix in the arXiv version [3] of this paper. Here, we prefer to illustrate how the
algorithm works on some enlightening examples and in the framework of a game.
This approach should make clear that the Main Theorem expresses quite a surpris-
ing result: we can reconstruct the directed version of a power graph, without any
knowledge about the possible groups of which it is the power graph.

6.2 Examples of reconstruction of the directed power graph

Imagine we play mathematics with a friend. She has a finite group G in her hands
and computes the power graph � WD P .G/. Then she hides G inside an inaccessi-
ble black-box and lets us see only � . She challenges us to guess the shape of EP .G/.

The game is quite boring if the graph shown has a star set with more than one
vertex. In that case, we can easily guess what the group G in the black-box is, by
Proposition 6, and then obtain its directed power graph.

So suppose she opts for something like G D D30. The graph that she shows us
is that in Figure 2, but without colours. We put colours to distinguish the different
nature of the vertices. The white vertex is clearly the only star vertex; hence it is the
identity of the group. The orange vertices are joined only with the identity, so they
are involutions. We split the remaining vertices into N-classes just by examining the
edges in the graph. We end up with three N-classes, each containing only vertices of
one colour: blue, yellow and magenta. We now want to understand if those classes
are of plain or of compound type. Let x, z and y be, respectively, a blue, yellow and
magenta vertex. Observing the graph, we are able to compute the neighbourhood
closure of Œx�N and Œz�N. We obtain

bŒx�N D Œx�N [ Œy�N [ ¹1º and bŒz�N D Œz�N [ Œy�N [ ¹1ºI

hence Œx�N and Œz�N are not critical classes. Since we have jŒx�Nj D 4, jbŒx�Nj D 12,
jŒz�Nj D 2, jbŒz�Nj D 10, neither Œx�N nor Œz�N are of compound type, by Proposi-
tion 13. Now that the simple cases are treated, let us focus on the class Œy�N of
magenta vertices. As before, we compute the neighbourhood closure obtaining
bŒy�N D Œy�N �[ ¹1º. Evaluating jbŒy�Nj D 9 D 32 as well, we see that Œy�N is a criti-
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cal class, just by recalling Definition 16. In order to understand the nature of Œy�N,
we look outside bŒy�N. It is straightforward to check the following facts for x, one
of the blue vertices:

(1) x 2 G nbŒy�N;

(2) 4 D jŒx�Nj � jŒy�Nj D 8;

(3) ¹x; yº 2 E.

Therefore, by Proposition 19, we deduce that Œy�N is of plain type. Summarizing,
we have Œx�N D Œx�˘, Œz�N D Œz�˘ and Œy�N D Œy�˘.

We now have the partition formed by Œx�˘, Œz�˘, Œy�˘ and a further sixteen ˘-
classes, each containing the identity or an involution. That is the partition of V in
˘-classes.

The game is not over yet, because we need to exhibit a digraph, but we are in the
home stretch. We replace all the edges joining a vertex with the identity with arcs
of the type .v; 1/ for v 2 V n ¹1º. For all the other edges, we follow Lemma 20.
In particular, we use (i) and (iii). Edges between vertices of the same ˘-class are
replaced by two arcs, one for both the directions. The remaining edges are those
between the magenta vertices and the blue or yellow vertices. Without hesitating,
we replace all those edges with arcs starting in the magenta vertices and ending in
the blue or yellow vertices, because jŒy�Nj D 8, jŒx�Nj D 4 and jŒz�Nj D 2 hold.

Our friend asks for a rematch. This time she prepares for us the graph P .D18/

in Figure 3 (a). As before, imagine it without colours. This time a delicate situ-
ation, which we did not face in the previous case, arises. The white and orange
vertices are, as before, the identity and the involutions. For the remaining vertices,
it is easily checked, by a study of the closed neighbourhoods, that they belong to
a unique N-class C . Since OC D C �[ ¹1º and j OC j D 9, we have that C is a critical
class. Note that we have jC j D 8 D 32 � 1 and j OC j D 9 D 32 as in the previous
case. Without too much effort, it is checked that there exists no x 2 G n OC joined
with a vertex of C , and hence, by Proposition 19, C is of compound type.

As a consequence, there exists y 2 C with o.y/ D 32 such that

C D ¹z 2 hyi W 3 � o.z/ � 32
º:

Here we face the delicate situation. We have seen that knowing the partition in
˘-classes allows us to use Lemma 20. But, whenever a compound class appears,
we cannot directly see the ˘-partition. However, we can find it up to a graph iso-
morphism. We arbitrarily partition the vertices of C in two sets, one formed by
6 elements and one by 2 elements. In Figure 3 (a), such a partition is revealed by
the two colours magenta and blue. In C , the partition in ˘-classes has exactly two
sets with the same sizes as those in our partition. By an argument in the proof of
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Figure 2. P .D30/

the Main Theorem, our arbitrary partition of the vertices in C is, up to a graph
isomorphism, just the partition of C into ˘-classes.

We now have, up to isomorphism, the partition of G into ˘-classes. It is formed
by the sets of the partition above and the singletons containing each an involution
or 1. Mimicking the instructions in Lemma 20, we now assign the directions on
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(a) P .D18/ (b) EP .D18/

Figure 3. Example of reconstruction of the directed power graph from a power graph:
elements of the same order have the same colour.

the edges, obtaining the digraph shown in Figure 3 (b). By the Main Theorem, that
directed graph is just EP .D18/.
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