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ABSTRACT

This study aimed at evaluating the quality of imputa-
tion accuracy (IA) by marker (IAm) and by individual 
(IAi) in US crossbred dairy cattle. Holstein × Jersey 
crossbreds were used to evaluate IA from a low- (7K) to 
a medium-density (50K) SNP chip. Crossbred animals, 
as well as their sires (53), dams (77), and maternal 
grandsires (63), were all genotyped with a 78K SNP 
chip. Seven different scenarios of reference populations 
were tested, in which some scenarios used different fam-
ily relationships and others added random unrelated 
purebred and crossbred individuals to those different 
family relationship scenarios. The same scenarios were 
tested on Holstein and Jersey purebred animals to com-
pare these outcomes against those attained in crossbred 
animals. The genotype imputation was performed with 
findhap (version 4) software (VanRaden, 2015). There 
were no significant differences in IA results depending 
on whether the sire of imputed individuals was Holstein 
and the dam was Jersey, or vice versa. The IA increased 
significantly with the addition of related individu-
als in the reference population, from 86.70 ± 0.06% 
when only sires or dams were included in the reference 
population to 90.09 ± 0.06% when sire (S), dam (D), 
and maternal grandsire genomic data were combined 
in the reference population. In all scenarios including 
related individuals in the reference population, IAm and 
IAi were significantly superior in purebred Jersey and 
Holstein animals than in crossbreds, ranging from 90.75 
± 0.06 to 94.02 ± 0.06%, and from 90.88 ± 0.11 to 
94.04 ± 0.10%, respectively. Additionally, a scenario 
called SPB+DLD (where PB indicates purebread and LD 
indicates low density), similar to the genomic evalu-
ations performed on US crossbred dairy, was tested. 
In this scenario, the information from the 5 evaluated 
breeds (Ayrshire, Brown Swiss, Guernsey, Holstein, 

and Jersey) genotyped with a 50K SNP chip and ge-
nomic information from the dams genotyped with a 7K 
SNP chip were combined in the reference population, 
and the IAm and IAi were 80.87 ± 0.06% and 80.85 
± 0.08%, respectively. Adding randomly nonrelated 
genotyped individuals in the reference population re-
duced IA for both purebred and crossbred cows, except 
for scenario SPB+DLD, where adding crossbreds to the 
reference population increased IA values. Our findings 
demonstrate that IA for US Holstein × Jersey crossbred 
ranged from 85 to 90%, and emphasize the significance 
of designing and defining the reference population for 
improved IA.
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INTRODUCTION

Low-density SNP chips are employed in dairy 
populations to genotype the female population. In 
contrast, medium-density chips (50K SNPs or more), 
which are expensive, are typically reserved for valuable 
individuals, mostly contributing to the male path of 
selection (Wiggans et al., 2012). For these low-density 
genotyped individuals, imputation to medium density 
is performed before including information in genomic 
prediction models (VanRaden et al., 2013a). This ge-
notyping strategy has been highly successful, and now 
the dairy population in the Council on Dairy Cattle 
Breeding (CDCB) database contains more than 6 mil-
lion genotyped individuals. High imputation accuracy 
is crucial for estimating the most accurate genetic val-
ues of animals, as reviewed in Calus et al. (2014). In 
purebred dairy cattle, several studies have shown that 
imputation accuracy (IA) from low- to medium- or 
high-density SNP chips is high (Weigel et al., 2010b; 
Mulder et al., 2012; VanRaden et al., 2013b), and ac-
curacy of genomic selection is not notably affected by 
imputation (Weigel et al., 2010a; Wiggans et al., 2012; 
VanRaden et al., 2013b). However, most of these stud-
ies have been conducted in purebred dairy cattle.
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In addition to heterosis and breed complementarity, 
crossbreeding is a potential approach to improve cow 
fertility, cow health, calf survival, and disease resis-
tance (Heins et al., 2008; Sørensen et al., 2008). Cross-
breeding in dairy cattle has increased in popularity in 
recent years. In the United States, almost 7% of the 
3.7 million milk-recorded cattle were crossbred in 2020 
(Norman et al., 2021; Wiggans et al., 2021). Currently, 
the number of crossbred dairy cattle with genomic in-
formation in the CDCB database is increasing, with 
more than 50K individuals, and it continues to grow 
(Figure 1). Genomic data of crossbred cows contribute 
to the genomic prediction of sires, and the genomic 
evaluation of crossbred cattle in the United States is 
currently performed with inclusion of the 5 evaluated 
breeds (Ayrshire, Brown Swiss, Guernsey, Holstein, 
and Jersey) genotyped with medium-density SNP chips 
and dams genotyped with low-density SNP chips (Wig-
gans et al., 2021). However, it is not known how IA of 
crossbred dairy cattle is different from their purebred 
counterparts. To our knowledge, only 2 studies have 
estimated IA for dairy crossbred populations, one in 
African dairy cattle population (Aliloo et al., 2018) and 
the other in a Girolando (Gyr × Holstein) population 
(Oliveira Júnior et al., 2017). To date, no study has yet 
reported results of IA in US crossbred cows.

The aims of this study were as follows: to assess IA 
in US crossbred dairy cattle from a low-density to a 
medium-density SNP chip, using different defined sce-
narios to evaluate the effects of reference population 
size and its relationship with imputed crossbred dairy 
population, to compare IA values obtained in crossbred 
and purebred dairy populations, to compare the pro-
portions of individuals and markers based on their im-
putation accuracy among scenarios, and to compare IA 
for each chromosome under different defined scenarios.

MATERIALS AND METHODS

No live animals were used in this study, and therefore 
Institutional Animal Care and Use Committee approv-
al was not required. This study focused on crossbreds 
Holstein × Jersey (HO×JE, Holstein sire and Jersey 
dam) and Jersey × Holstein (JE×HO, Jersey sire and 
Holstein dam) dairy populations, since these types of 
crossing are the most popular ones in the US. In the 
CDCB database, 79% of the genotyped US crossbred 
dairy population were HO×JE or JE×HO (Table 1).

Animals and Data

To investigate IA under different genomic information 
availability, 110 F1 crossbreds HO×JE and JE×HO gen-
otyped with a 78K GGP-HD chip (GeneSeek Genomic 

Profiler, >77K markers; Neogen Corporation; 78K) 
were chosen based on available pedigree and genomic 
information. The breed base representations (BBR) 
of crossbred were 50 ± 10% Holstein and 50 ± 10% 
Jersey. The BBR estimated the similarity of the alleles 
present in the 5 purebred reference groups against those 
of individuals genotyped. These values were restricted 
to be between 0 and 100% for each genotyped animal 
and summed, as explained in VanRaden et al. (2020) 
and Wiggans et al. (2021). These animals’ sires, dams, 
and maternal grandsires were genotyped with the same 
SNP chip (Supplemental Table S1, https:​/​/​doi​.org/​10​
.6084/​m9​.figshare​.21858864; Déru, 2023). Of these 110 
crossbreds, 53 were HO×JE and 57 were JE×HO.

Genotypes

Before imputation, real genotypes were phased within 
each purebred and crossbred population for all animals 
with Beagle 5.3 (Browning et al., 2021). Then, mark-
ers of the 78K SNP chip were masked to mimic the 
Illumina Bovine LD v2.0 BeadChip chip (7,931 mark-
ers, Illumina Inc.; 7K SNP chip) in the validation 
population. Similarly, markers were masked to mimic 
the BovineSNP50 Genotyping BeadChip chip (54,609 
markers, Illumina Inc.; 50K SNP chip) in the refer-
ence population. In total, 6,912 SNP chip overlapped 
with the 50K SNP chip. These 2 SNP chips were stud-
ied because they are the most commonly used low- and 
medium-density chips for predicting the genetic merit 
of dairy cattle (Schefers and Weigel, 2012).

In previous studies conducted in crossbred beef and 
dairy cows, the genetic connectedness between the ref-
erence and the validation population has shown an in-
fluence on IA values (Ventura et al., 2014; Chud et al., 
2015; Oliveira Júnior et al., 2017; Aliloo et al., 2018). 
Therefore, a measure of genomic relationship between 
animals in reference and validation sets was calculated 
within each scenario to investigate the effect of con-
nectedness between reference and imputed populations 
on IA values. For this purpose, the genomic relationship 
matrix (G) was calculated following the first method 
of VanRaden (VanRaden, 2008). Then, the averaged 
genomic value (extracted from the G matrix) between 
all individuals included in the reference and validation 
population were estimated within each scenario and 
called the genomic relationship coefficient (GRC).

Imputation Scenarios

Different reference population scenarios for imput-
ing US crossbred cattle were created and are summa-
rized in Table 2. Seven scenarios differed based on the 
relatives’ information between reference and validation 
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Figure 1. Percentage of individuals and markers according to the imputation accuracy values in the 8 different scenarios presented in Table 2 
(original) and with the addition, in each scenario, of 1,000 crossbred animals (+1,000CR), 1,000 purebred Holstein dairy cattle (+1,000HO) and 
1,000 Jersey dairy cattle (+1,000JE) separately and combined (+1,000HO/JE). S+D = sires and dams genotyped with a 50K chip in reference 
population; S+DLD = sires genotyped with a 50K chip and dams genotyped with a 7K chip in reference population; D = dams genotyped with a 
50K chip in reference population; S+GS = sires and maternal grandsires genotyped with a 50K chip in reference population; S+D+GS = sires, 
dams, and maternal grandsires genotyped with a 50K chip in reference population; SPB+DLD = purebred bulls from 5 different bulls genotyped 
with a 50K chip and dams genotyped with a 7K chip in the reference population.
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populations. The population of imputed individuals 
always consisted of the 110 from each crossbred type 
(either HO×JE or JE×HO) described above; however, 
the reference panel changed from one scenario to an-
other. The genotypes indicated in each scenario were 
those represented in the reference population. The 7 
scenarios were the following:

•	 S+D: This scenario included genomic informa-
tion of the sires (S) and the dams (D) of crossbred 
animals genotyped with the 50K SNP chip.

•	 S+DLD: This scenario included genomic informa-
tion of the sires genotyped with the 50K SNP chip 
and the dams of crossbred animals genotyped with 
the 7K SNP chip (low density, LD).

•	 S: This scenario included genomic information of 
the sires of crossbred animals genotyped with the 
50K SNP chip.

•	 D: This scenario included genomic information of 
the dams of crossbred animals genotyped with the 
50K SNP chip.

•	 S+GS: This scenario included genomic informa-
tion of the sires and maternal grandsires (GS) of 
crossbred animals genotyped with the 50K SNP 
chip.

•	 S+D+GS: This scenario included genomic infor-
mation of the sires, dams, and maternal grandsires 
of crossbred animals all genotyped with the 50K 
SNP chip.

•	 SPB+DLD: This scenario included genomic in-
formation of purebred (PB) bulls from 5 differ-
ent breeds (53 Ayrshire, 53 Guernsey, 53 Brown 
Swiss, 53 Holstein, and 53 Jersey), including sires 
of crossbred (26 out of the 53 Jersey and 27 out of 
the 53 Holstein, respectively) genotyped with the 
50K SNP chip and the dams of crossbred animals 
genotyped with the 7K SNP chip.

The objective of the SPB+DLD scenario was to be simi-
lar to the genomic evaluations currently performed by 
the CDCB (Wiggans et al., 2021). The purebred bulls 
were randomly chosen based on whether they were 
genotyped with a 78K SNP chip, had a BBR of 100%, 
and were born after 2008. Among the 53 Jersey and 
53 Holstein, 26 and 27, respectively, were the sires of 
the crossbreds. The random selection of these animals 
was repeated 5 times. The mean of the 5 replicates was 
subsequently employed as a metric for subsequent IA 
calculations and shown in this scenario.

In addition, we evaluated the effects of adding pure-
bred or crossbred genomic information in the reference 
population. For all aforementioned scenarios, the effects 
on IA of adding to the reference panel 1,000 random 
purebred Holsteins or Jerseys, or a combination of the 
2, as well as 1,000 crossbred animals were evaluated. For 
purebred cattle, all randomly chosen individuals were 
genotyped with a 78K SNP chip, and their genomic 
information was masked to mimic the 50K SNP chip. 
They were not the parents or grandparents of the cross-
breds in the validation population. Because insufficient 
HO×JE crossbreds were genotyped with the 78K SNP 
chip, the selection of crossbred animals was expanded 
to include any crossbred composed of 2 or more of the 
main US breeds (Guernsey, Ayrshire, Brown Swiss, 
Jersey, or Holstein). A total of 4,318 crossbred animals 
met these requirements. The sampling of 1,000 random 
individuals was repeated 5 times (with replacement). 
The average of the 5 replicates was subsequently em-
ployed as a metric for subsequent calculation, as shown 
in the results.

Finally, purebred Holstein or Jersey cattle were used 
in the validation population for the first 6 reference 
population scenarios, serving as a benchmark for IA 
(Supplemental Table S2, https:​/​/​doi​.org/​10​.6084/​m9​
.figshare​.21858906​.v1; Déru et al., 2023a).
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Table 1. Number of genotyped US crossbred dairy cattle (in bold) and those with available genomic data for 
the 78K marker chip in particular (in italics) depending on the sire breed in row and dam breed in column in 
the Council of Dairy Cattle Breeding database

Sire breed

Dam breed

Holstein Jersey Ayrshire Brown Swiss Guernsey Crossbred

Holstein — 19,641 64 102 15 3,750
94 2 1 0 92

Jersey 21,541 — 23 14 7 5,897
132 0 0 0 471

Ayrshire 422 13 — 1 0 7
15 0 0 0 1

Brown Swiss 270 46 0 — 1 28
2 1 0 0 0

Guernsey 57 15 0 4 — 5
0 0 0 0 0

Crossbred 45 66 0 0 0 —
4 0 0 0 0

https://doi.org/10.6084/m9.figshare.21858906.v1
https://doi.org/10.6084/m9.figshare.21858906.v1


Journal of Dairy Science Vol. 107 No. 1, 2024

402

Imputation Accuracy

Genotype imputation was performed using findhap 
software (version 4; VanRaden, 2015). The latest 
version of findhap was used; this version is currently 
not quite ready for routine use on US chip data but 
performs better than version 3 for sequence data. The 
parameter settings were those recommended to com-
bine 3K or 6K with 50K SNP chip (VanRaden, 2015). 
The maximum and minimum lengths of segments to 
check for haplotyping were 600 and 75 SNPs, respec-
tively. The number of steps to get from maximum to 
minimum length was 3; the maximum iterations for 
haplotype imputation was 4; and the maximum num-
ber of different haplotypes within any segment was 
fixed at 1,000. The fraction of miscalled alleles was set 
to be 0.004.

The IA per marker (IAm) and per individual (IAi) 
were calculated as the averaged proportion of correctly 
imputed genotypes between actual and imputed geno-
types per marker and per individual (i.e., concordance 
rate, as presented in Calus et al., 2014), with the SNPs 
on the 29 autosomal chromosomes considered; thus not 
on sex chromosomes.

Post-Analysis Statistics

A statistical comparison was conducted to assess the 
differences in IAm and IAi between the different sce-
narios. A linear model was fitted for IAm:

y = Xβ + e,

where y is IAm; β is the vector of fixed effects: scenarios 
and interaction between chromosomes and scenarios; X 
is the incidence matrix relating observations to fixed 
effects; and e I~ ,N e0 2σ( ) is the residual random effect, 

with I the incidence matrix and σe
2 the residual vari-

ance.
A similar model for IAi was fitted, including only 

the effect of scenarios. Least squares means (LSM) for 
IAm and IAi were obtained for each scenario using the 
lsmeans() function of the lsmeans package in R (Lenth, 
2016). The LSM were compared between scenarios with 
a t-test via the contrast() function of the same package. 
The distributions of IAm and IAi were obtained for all 
scenarios. Individuals and markers were classified in 
3 classes according to their IA values: less than 80% 
(low), between 80 and 90% (moderate), and above 90% 
(high). To compare the proportion of individuals or 
markers between groups and scenarios, a 2-proportions 
Z-test was performed with the prop.test() function in R 
(R Core Team, 2016).

To observe any differences in IAm for a given chro-
mosome between scenarios, the difference in IAm 
between scenarios for each chromosome were com-
pared. The contrasts between LSM obtained between 
scenarios were estimated with the contrast() function 
in R (Lenth, 2016), which allows pairwise comparisons 
of LSM by testing linear contrasts among predictions. 
To evaluate the effects and the significance of the 
length of the chromosome on IA values, the Pearson 
correlation between the length of the chromosome and 
IA was calculated for each scenario with the cor.test() 
function in R (R Core Team, 2016). Similarly, the 
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Table 2. Imputation scenarios used in the study for 110 Holstein × Jersey (HO×JE) and Jersey × Holstein (JE×HO) crosses1

Scenario 
(abbreviation)   No. reference   Description of reference  

Description of 
crossbreds

Sire + dam 
  (S+D)

  130 
(53 sires + 77 dams)

Dams and sires genotyped with a 50K chip   53 HO×JE, 
57 JE×HO

Sire + damLD 
  (S+DLD)

  130 
(53 sires + 77 dams)

Sires genotyped with a 50K chip, dams 
genotyped with a 7K chip

  53 HO×JE, 
57 JE×HO

Sire only 
  (S)

  53 Sires genotyped with a 50K chip   53 HO×JE, 
57 JE×HO

Dam only 
  (D)

  77 Dams genotyped with a 50K chip   53 HO×JE, 
57 JE×HO

Sire + maternal  
  grandsire 
  (S+GS)

  115 
(53 sires + 62 maternal grandsires)

Sires and maternal grandsires genotyped with 
a 50K chip

  53 HO×JE, 
57 JE×HO

Sire + dam +  
  maternal grandsire 
  (S+D+GS)

  192 
(77 dams + 62 maternal grandsires + 53 sires)

Sires, dams, and maternal grandsires 
genotyped with a 50K chip

  53 HO×JE, 
57 JE×HO

SirePB + damLD 
  (SPB+DLD)

  342 
(53 Holstein bulls + 53 Jersey bulls + 53 
Guernsey bulls + 53 Ayrshire bulls + 53 
Brown Swiss bulls + 77 dams)

Purebred bulls included sires of crossbreds 
genotyped with a 50K chip and dams 
genotyped with a 7K chip

  53 HO×JE, 
57 JE×HO

1HO = Holstein; JE = Jersey; S = sire; D = dam; GS = maternal grandsire; PB = purebred; LD = low density. HO×JE: sire is Holstein, dam 
is Jersey. JE×HO: dam is Jersey, sire is Holstein.
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Pearson correlation between the percentage of homo-
zygosity per marker and the IAm obtained was also 
calculated.

RESULTS

Comparison of Imputation Accuracy by Marker  
and Individual

The LSM of IAm and IAi in the different scenarios for 
HO×JE and JE×HO separately, combined, and within 
purebred animals, are presented in Table 3.

In all scenarios, we found no significant difference be-
tween the imputation accuracy (IAm and IAi) between 
HO×JE, JE×HO, and both type of crossbred combined 
(P = 0.65). Thus, only results for the combined popula-
tion are shown and those found in purebreds. In scenar-
ios S and D, IA was 86.70 ± 0.06 and 86.83 ± 0.06 for 
crossbred but significantly higher in purebred animals 
(P < 0.05; >91.01 ± 0.06). No significant differences 
were observed in crossbreds for IAm and IAi, regard-
less of whether the genomic information of the sire or 
the dam was included in the reference population. In 
the S+D scenario, IA was significantly higher than in 

scenarios S and D (P < 0.05), with values that were 
still higher in purebreds than in crossbreds (around +4 
percentage points higher in purebreds). In the scenario 
S+DLD, IA values were between those of scenario S+D 
and scenarios S and D. In scenario S+GS, IAm and 
IAi were lower than in the S+D scenario for crossbreds 
(−1.37 percentage points for IAm and −1.18 percentage 
points for IAi; P < 0.05). The same observation was 
made in purebred populations, but IA values were still 
significantly higher than in crossbred populations for 
this scenario (P < 0.05). In the scenarios including re-
lated individuals in the reference population, the lowest 
IA was observed for the scenario SPB+DLD (IAm = 80.87 
± 0.06 and IAi = 80.85 ± 0.08). Finally, the highest 
IAm and IAi were found for the scenario that combined 
the genomic information of sires, dams, and maternal 
grandsires in the reference (scenario S+D+GS) in all 
crossbreds (IAm = 90.09 ± 0.06 and IAi = 89.99 ± 
0.08), purebred Jerseys (IAm = 92.99 ± 0.10 and IAi = 
93.11 ± 0.11), and purebred Holsteins (IAm = 93.65 ± 
0.06 and IAi = 93.74 ± 0.06).

In all scenarios with the addition of related individuals 
(S, D, S+D, S+DLD, S+GS, and S+D+GS), IA values 
were significantly higher in purebred animals than in 
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Table 3. Least squares means of imputation accuracy per marker and per individual in the different scenarios for Holstein × Jersey (HO×JE), 
Jersey × Holstein (JE×HO), both combined (Both), purebred Holstein (HO), and purebred Jersey (JE), along with their standard errors

Scenario1

LSM2 (SE), 
imputation accuracy by marker

 

LSM3 (SE), 
imputation accuracy by individual

HO×JE JE×HO Both HO JE HO×JE JE×HO Both HO JE

S+D 89.70a 89.66a 89.68a 94.02a 93.94a   89.65a 89.59a 89.62a 94.04a 94.01a

(0.06) (0.06) (0.06) (0.06) (0.06)   (0.10) (0.12) (0.08) (0.10) (0.11)
S+DLD 87.69b 87.58a 87.64b 92.80b 92.73b   87.71b 87.53b 87.62b 92.89b 92.82b

(0.06) (0.06) (0.06) (0.06) (0.06)   (0.10) (0.12) (0.08) (0.10) (0.11)
S 86.79c 86.61b 86.70c 91.18c 91.01c   86.85c 86.64c 86.74c 91.26c 91.15c

(0.06) (0.06) (0.06) (0.06) (0.06)   (0.10) (0.12) (0.08) (0.10) (0.11)
D 86.66c 86.99c 86.83c 91.36c 91.35d   86.51c 86.88c 86.70c 91.53c 91.54c

(0.06) (0.06) (0.06) (0.06) (0.06)   (0.10) (0.12) (0.08) (0.10) (0.11)
S+GS 88.42d 88.29d 88.35d 91.28c 90.75e   88.49d 88.39d 88.44d 91.27c 90.88c

(0.06) (0.06) (0.06) (0.06) (0.06)   (0.10) (0.12) (0.08) (0.10) (0.11)
S+D+GS 90.08e 90.10e 90.09e 93.65d 92.99f   89.99a 89.98a 89.99e 93.74a 93.11b

(0.06) (0.06) (0.06) (0.06) (0.06)   (0.10) (0.12) (0.08) (0.10) (0.11)
SPB+DLD 80.91f 80.84f 80.87f — —   80.91e 80.79e 80.85f — —

(0.06) (0.06) (0.06)     (0.12) (0.08)
a–fLeast squares means in the same column with different superscripts are statistically different according to a t-test (P < 0.05).
1S+D = sires and dams genotyped with a 50K chip in reference population; S+DLD = sires genotyped with a 50K chip and dams genotyped 
with a 7K chip in reference population; S = sire; D = dams genotyped with a 50K chip in reference population; S+GS = sires and maternal 
grandsires genotyped with a 50K chip in reference population; S+D+GS = sires, dams, and maternal grandsires genotyped with a 50K chip in 
reference population; SPB+DLD = purebred bulls from 5 different bulls genotyped with a 50K chip and dams genotyped with a 7K chip in the 
reference population.
2From a linear mixed model including the fixed effects of the scenario, the chromosome, and the interaction between the scenario and the chro-
mosome. All effects were significant for P < 0.0001.
3From a linear mixed model including the fixed effects of the scenario, which was significant for P < 0.0001. The effect of the type of crossbred 
(HO×JE and JE×HO) was tested but not included in the model because this was not significant (P = 0.65).
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crossbred animals, and adding more related individuals 
to the reference population increased IA values.

Effects of Extended Reference Population  
With Unrelated Individuals on Imputation Accuracy

Table 4 highlights the effects of adding 1,000 unre-
lated individuals of crossbreds and purebreds to the 
reference population on IAm and IAi in the correspond-
ing validation crossbred or purebred populations.

For scenarios S, D, S+D, S+DLD, S+GS, and 
S+D+GS, we detected no increase of IAm and IAi with 
adding 1,000 unrelated individuals to crossbreds and 
purebred in the reference population. A decrease of IA 
in all scenarios (from −1% to −6%) was observed with 
the addition of these individuals. However, for SPB+DLD, 
the inclusion of 1,000 crossbreds to the reference popu-
lation increased IAm (+3%) and IAi (+3%), but the 
inclusion of purebreds did not increase IA values.

In original scenarios (S, D, S+D, S+DLD, S+GS, and 
S+D+GS) without the addition of random individu-
als, the GRC was between 0.316 and 0.323. With the 
addition of random purebreds and crossbreds in the 

reference population, the GRC was lower than in origi-
nal scenarios (0.287 to 0.305), except in the scenario 
SPB+DLD, where GRC was lower in original scenario 
(0.262 to 0.264) than with the addition of supplemen-
tary individuals (0.270 to 0.284; Supplemental Table 
S3, https:​/​/​figshare​.com/​articles/​figure/​Supplemental​
_Table​_S3/​21858924; Déru et al., 2023b).

Figures 2a and 2b report the values and percentage of 
increase of IAm and IAi when adding related individu-
als to the 1,000 unrelated individuals in comparison 
to a scenario with only these random individuals and 
unrelated individuals in the reference population.

When no related individuals were included in the 
reference population, IA were higher when +1,000 ran-
dom crossbreds were added to the reference population 
(IAm = 80.75 and IAi = 79.14) than when +1,000 HO 
(IAm = 75.92 and IAi = 75.01), +1,000 JE (IAm = 77.30 
and IAi = 77.77), and 1,000 HO/JE (IAm = 77.99 and 
IAi = 79.14) were added to the reference population

When random individuals were added to the refer-
ence population, IA were higher when related individu-
als were already present in the reference population 
(scenarios S, D, S+D, S+DLD, S+GS, and S+D+GS) 
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Table 4. Percentage increase in imputation accuracy by marker and by individual in different scenarios with 110 crossbreds (CR), purebred 
Holstein (HO), or purebred Jersey (JE), and with the addition of 1,000 random purebred Holstein (+1,000 HO), Jersey (+1,000 JE), crossbred 
(+1,000 CR), or +1,000 Holstein and +1,000 Jersey combined (+1,000 HO/JE) in the reference population

Scenario1

Percentage increase of imputation accuracy per marker2   Percentage increase of imputation accuracy per individual2

+1,000 HO +1,000 JE +1,000 CR +1,000 HO/JE   +1,000 HO +1,000 JE +1,000 CR +1,000 HO/JE

Crossbred
  S+D −2%* −1%* −2%* −2%*   −2%* −2%* −2%*, −2%*
  S+DLD −3%* −3%* −2%* −2%*   −3%* −3%* −2%* −2%*
  S −2%* −1%* −1%* −2%*   2%* −2%* −1%* −2%*
  D −1%* −2%* −1%* −2%*   −1%* −2%* −1%* −2%*
  S+GS −2%* −3%* −4%* −3%*   −3%* −3%* −4%* −3%*
  S+D+GS −2%* −2%* −2%* −2%*   −2%* −2%* −2%* −2%*
  SPB+DLD −2%* −3%* +3%* −1%*   −2%* −3%* +3%* −2%*
Purebred Holstein
  S+D −6%* — — —   −6%* — — —
  S+DLD 6%* — — —   −8%** — — —
  S −4%* — — —   −4%* — — —
  D −4%* — — —   −4%* — — —
  S+GS −4%* — — —   −4%* — — —
  S+D+GS −6%* — — —   −6%* — — —
Purebred Jersey
  S+D — −3%* — —   — −3%* — —
  S+DLD — −2%* — —   — −2%* — —
  S — −1%* — —   — −1%* — —
  D — −1%* — —   — −1%* — —
  S+GS — −2%** — —   — −0% — —
  S+D+GS — −2%* — —   — −2%* — —
1S+D = sires and dams genotyped with a 50K chip in reference population; S+DLD = sires genotyped with a 50K chip and dams genotyped 
with a 7K chip in reference population; D = dams genotyped with a 50K chip in reference population; S+GS = sires and maternal grandsires 
genotyped with a 50K chip in reference population; S+D+GS = sires, dams, and maternal grandsires genotyped with a 50K chip in reference 
population; SPB+DLD = purebred bulls from 5 different bulls genotyped with a 50K chip and dams genotyped with a 7K chip in the reference 
population.
2Least squares of imputation accuracy were compared before and after the addition of supplementary dairy cattle in the reference population 
by a t-test.
*P < 0.05. **P < 0.01.

https://figshare.com/articles/figure/Supplemental_Table_S3/21858924
https://figshare.com/articles/figure/Supplemental_Table_S3/21858924
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Figure 2. (a) Percentage increase in imputation accuracy by marker in different scenarios compared with the scenario with no related in-
dividuals in the reference population, within scenarios with the addition of 1,000 random purebred Holstein (+1,000HO), Jersey (+1,000JE), 
crossbred (+1,000CR) or +1,000 Holstein and +1,000 Jersey combined (+1,000HO/JE) in the reference population. (b) Percentage increase 
in imputation accuracy by individual in different scenarios compared with the scenario with no related individuals in the reference population, 
within scenarios with +1,000HO, +1,000JE, +1,000CR, or +1,000HO/JE in the reference population. S+D = sires and dams genotyped with 
a 50K chip in the reference population; S+DLD = sires genotyped with a 50K chip and dams genotyped with a 7K chip in reference population; 
D = dams genotyped with a 50K chip in reference population; S+GS = sires and maternal grandsires genotyped with a 50K chip in reference 
population; S+D+GS = sires, dams, and maternal grandsires genotyped with a 50K chip in reference population; SPB+DLD = purebred bulls 
from 5 different bulls genotyped with a 50K chip and dams genotyped with a 7K chip in the reference population. Blue-red color represents 
positive values in blue, negative values in red, and values close to zero in yellow.
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compared with when no related individuals were pres-
ent, in the order of +5 to +15%. However, IA were 
higher in the scenario with no relatives but 1,000 cross-
breds, compared with the SPB+DLD scenario with 1,000 
additional crossed individuals (+1 to +3%).

Distribution of Individuals and Markers According  
to Imputation Accuracy

Figure 1 illustrates the percentages of individuals and 
markers based on estimated IA values within differ-
ent imputation scenarios; detailed values are shown in 
Supplemental Tables S4 (https:​/​/​doi​.org/​10​.6084/​m9​
.figshare​.21858930; Déru et al., 2023c) and S5 (https:​
/​/​doi​.org/​10​.6084/​m9​.figshare​.21858948; Déru et al., 
2023d).

The results between crossbred and purebred animals 
within the imputation scenarios compared and the per-
centages of individuals and markers on estimated IA 
values were categorized into 3 groups (IA <80%, 80% < 
IA < 90%, and IA >90%). Across all original imputation 
scenarios having relative individuals in the reference 
population, the percentage of higher imputed mark-
ers (IAm >90%) was significantly higher for purebreds 
(66–79%) than for crossbreds (44–60%). Additionally, 
purebred animals had a significantly higher percentage 
of accurate imputed individuals (>92%) than crossbred 
animals (0–53%). In all these imputation scenarios, the 
percentage of lower (IAm <80%) or medium (80% < 
IAm < 90%) imputed markers was higher and observed 
more in crossbred than in purebred animals.

Furthermore, the results of imputed crossbreds within 
defined imputation scenarios were compared. As more 
related individuals were added to the reference popu-
lation, the percentage of accurately imputed markers 
and individuals increased. In fact, the percentages of 
imputed markers greater than 90% in the S, D, S+DLD, 
S+GS, S+D, and S+D+GS scenarios were 44, 44, 48, 
53, 58, and 60%, respectively. Similarly, the percentages 
of individuals well imputed over 90% when imputation 
scenarios defined for S, D, S+DLD, S+GS, S+D, and 
S+D+GS in the reference populations were 0, 0, 0, 0, 
32, and 53%, respectively. However, the percentages of 
markers and individuals well imputed over 90% in the 
SPB+DLD scenario were low, with 20% and 0%, respec-
tively.

The addition of 1,000 unrelated genotyped cross-
breds to the reference population of scenarios (S, D, 
S+DLD, S+GS, S+D, and S+D+GS) did not improve 
the percentage of imputed markers and individuals, 
and in some scenarios this percentage was decreased. 
A similar pattern was observed when 1,000 unrelated 
genotyped purebreds (Holstein or Jersey) were added 
to those predetermined reference population scenarios. 

In scenario SPB+DLD, an increase in IA values was al-
ready observed with adding 1,000 unrelated crossbred 
animals to the reference population. In this case, the 
percentage of well imputed markers over 90% increased 
from 20 to 27%, and the percentage of lower imputed 
markers (IAm < 80%) decreased from 6 to 0%.

Imputation Accuracy by Chromosome

Variability in IA by chromosome was observed across 
different imputation scenarios and was similar to overall 
IAm across all scenarios. The IA by chromosome rang-
ing between 86.01 and 93.20%, 84.47 to 90.18%, 82.78 
to 90.18%, 84.04 to 90.17%, 84.42 to 92.10%, 86.73 to 
93.38%, and 78.24 to 82.78% for S+D, S+DLD, S, D, 
S+GS, S+D+GS, and SPB+DLD scenarios, respectively. 
Lower IA was found for chromosomes 27, 27, 27, 28, 29, 
25, and 28, and higher IA was found for chromosomes 
26, 26, 6, 19, 20, 19 and 26 in scenarios S+D, S+DLD, S, 
D, S+GS, S+D+GS, and SPB+DLD, respectively.

Only 5 imputation scenarios (S+D: 0.38l P < 0.05), 
S: 0.52 (P < 0.01), D: 0.50 (P < 0.01), S+D+GS: 
0.52 (P < 0.01), SPB+DLD: 0.46 (P < 0.05)] revealed 
a statistically significant Pearson correlation between 
chromosome length and IAm. On the contrary, we found 
a meaningful correlation between marker homozygosity 
and IAm, with Pearson correlations greater than 0.82 in 
all defined imputation scenarios (P < 0.0001).

Differences in Chromosome Imputation Accuracy 
Between Scenarios

Figure 3 depicts the comparison of LSMeans of IA 
by chromosome between paired imputation scenarios 
for imputed crossbred animals. Even though the aver-
aged IAm was not significantly different between the S 
and D scenarios, the estimated IA by chromosome were 
significantly different for 13 out of the 29 chromosomes 
between these 2 scenarios (Chromosomes 2, 4, 6, 10, 12, 
15, 18, 19, 22, 23, 24, 27, 28; P < 0.05).

With the exception of chromosomes 6, 15, and 22, all 
chromosomes showed an increase in IA from extend-
ing reference population scenario S to S+D. However, 
expanding reference population scenario D to S+D 
increased IA on all chromosomes except for chromo-
somes 23, 27, and 29. Additionally, it was discovered 
that when the genotypes of the dams were added to the 
reference population of imputation scenario S+GS, IA 
was not significantly increased on chromosome 6 but 
was significantly increased on chromosomes 15 and 22 
(P > 0.05 and P > 0.001, respectively), which was not 
the case when adding the genotypes of the dams to the 
reference population scenario S. When maternal grand-
sire genotypes were added to the reference population 

Déru et al.: IMPUTATION ACCURACY IN US CROSSBRED CATTLE

https://doi.org/10.6084/m9.figshare.21858930
https://doi.org/10.6084/m9.figshare.21858930
https://doi.org/10.6084/m9.figshare.21858948
https://doi.org/10.6084/m9.figshare.21858948


407

Journal of Dairy Science Vol. 107 No. 1, 2024

of imputation scenario S and S+D, the IA of 5 common 
chromosomes of 14, 17, 19, 23, and 27 was significantly 
increased. Thus, the results of estimated IA by chromo-
somes showed that incorporating first- or second-order 
relationships of individuals in the validation population 
into the imputation scenarios did not result in the same 
set of chromosomes increasing the IA.

DISCUSSION

The present study aimed to evaluate the quality of 
IAm and IAi in US crossbred dairy cattle. It was car-
ried out by exploring the IAm and IAi, as well as their 

distributions, from imputing 7K to 50K SNP chips, the 
most common chips used by dairy breeders. The effects 
of the size and relationships between the reference and 
validation population were also evaluated.

Imputation Accuracy for Crossbred Versus Purebred 
Dairy Population

When related individuals were included in the refer-
ence population scenarios, the estimated IAm and IAi 
for crossbreds ranged from 86.70 to 90.09%, whereas 
purebreds exceeded 90.75%. Our IA results for cross-
breds were consistent with those imputed from 20K 
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Figure 3. Comparison between LSM of imputation accuracy by chromosome across pairwise scenarios, with their associated P-values (*P < 
0.05). S+D = sires and dams genotyped with a 50K chip in reference population; S+DLD = sires genotyped with a 50K chip and dams genotyped 
with a 7K chip in reference population; D = dams genotyped with a 50K chip in reference population; S+GS = sires and maternal grandsires geno-
typed with a 50K chip in reference population; S+D+GS = sires, dams, and maternal grandsires genotyped with a 50K chip in reference popula-
tion; SPB+DLD = purebred bulls from 5 different bulls genotyped with a 50K chip and dams genotyped with a 7K chip in the reference population.



Journal of Dairy Science Vol. 107 No. 1, 2024

408

to 50K in a tropical crossbred dairy cattle population, 
ranging from 50 to 94% (Oliveira Júnior et al., 2017). 
However, estimated IA in our study were greater than 
those found in crossbred Canadian beef reported by 
Ventura et al. (2014) imputing 6K to 50K SNP chip, 
and they investigated the IA for crossbreds using a 
reference population of older purebreds, showing that 
it ranged from 54 to 74% accuracy. This difference in 
the magnitude of IA could be explained in part by the 
fact that their population was admixed, whereas the 
imputed crossbreds in the validation population in our 
study were 50% Jersey and 50% Holstein. The reference 
population in our study had a strong relationship (sires, 
dams, maternal grandsire, or combination of those) 
with validation population for crossbred, which was the 
explanation of greater estimated IA compared with the 
study of Ventura et al. (2014). When only purebreds 
were used as a reference population to impute genotyped 
crossbred in a validation population for African dairy 
cattle, the IA based on correlation between masked and 
imputed genotypes was reported to be less than 82% 
using 3 different imputation software programs (Aliloo 
et al., 2018). However, when related purebred breeds 
were added to the reference population of imputation 
scenarios in this study, the estimated IA were greater 
than those observed by Aliloo et al. (2018).

Numerous studies showed high IA for using purebred 
dairy in the reference population to impute the same 
purebred breed, which was confirmed by our findings 
for Jersey and Holstein cattle. For instance, the per-
centage of correctly imputed genotypes for a subset of 
purebred US Holsteins to impute the same population 
were 90.5% from 3K to 99.0% from 50K using findhap 
software, and 91.1% from 3K to 99.3% from 50K us-
ing FImpute (VanRaden et al., 2013b). In addition, a 
study to impute purebred US Jersey cows from 2K or 
4K to 50K SNP chips revealed IA in the range of 80 
to 95% (Weigel et al., 2010b). In our study, the same 
imputation scenario was applied to compare IA for 
crossbred versus purebred Jersey and Holstein. Thus, it 
is concluded that IA in purebred cows was significantly 
higher than in crossbred cows because the inclusion 
of 2 different purebred breeds in reference population 
increases the number of probable haplotypes, and long-
range haplotypes in crossbreds will likely differ from 
those in a purebred reference population (Aliloo et 
al., 2018), which may explain the lower estimated IA 
in crossbreds compared with purebreds. A significant 
correlation between homozygosity and IA was also re-
vealed and highlighted in our study. The higher IA in 
purebred dairy populations compared with crossbred 
dairy populations may also be due to homozygous re-
gions, which were more common in purebred cows than 
in crossbred cows.

Effects of Reference Population Scenarios  
on Crossbreds in Validation

In this study, the estimated IA in crossbred and 
purebred populations significantly increased as the pro-
portion of relationship between individuals in the refer-
ence and validation population increased. Aliloo et al. 
(2018) reported similar findings for African crossbred 
dairy cows and discovered that IA increased as the ge-
nomic relationship between the reference and validation 
populations increased. The importance of relatedness 
between reference and validation populations was also 
confirmed by Oliveira Júnior et al. (2017) for increasing 
IA for tropical crossbred dairy cattle. In a multi-breed 
beef cattle population, Ventura et al. (2014) reported 
higher IA when closely related individuals, along with 
a representation of the breed composition of the im-
puted group, were included in the reference population. 
The recommendation to add closely related animals to 
impute genotypes of crossbred animals has also been 
made in other species, such as pigs (Xiang et al., 2015) 
and sheep (Ventura et al., 2016). Indeed, closely related 
individuals shared longer haplotype segments, which 
were used to infer missing markers. The imputation 
methodology used in our study by findhap (version 
4) software (VanRaden, 2015) constructed haplotype 
segments that were as large as possible and iteratively 
moved to smaller ones if no consistent haplotypes were 
found in the reference population. Thus, when refer-
ence and validation populations were unrelated, they 
shared very short haplotypes, explaining the lower IA 
in these scenarios. In addition, this software considers 
the pedigree information to phase the haplotypes, al-
lowing higher IA when related individuals are present 
in the reference population.

In this study, it is important to note that all of the 
data were phased ahead of time using the 78K SNP 
chip genotypes and Beagle 5.3 software (Browning et 
al., 2021). However, it is worth mentioning that real-
world data may be phased using medium- or low-densi-
ty chips, which could result in slightly lower imputation 
accuracies than those observed in this study.

Based on our results, adding 1,000 unrelated pure-
bred animals in the reference population when related 
individuals are already present in the reference popula-
tion did not increase IA and can even reduce these val-
ues and reduce the percentage of well-imputed markers 
and individuals. One reason could be that the refer-
ence population was less related to the population of 
crossbred animals in the validation population than in 
scenarios where only closely related animals are added, 
based on the GRC (Supplemental Table S4). According 
to published research, Ventura et al. (2014) showed that 
adding purebred animals to the reference population of 
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another purebred population did not improve the IA 
from a 6K to a 50K SNP chip. In addition, inclusion of 
purebred Holstein and Gyr in the reference population 
had limited or no gain in IA for imputing crossbred 
Girolando (Gyr × Holstein) dairy cattle (Oliveira 
Júnior et al., 2017). In the literature, the addition of 
crossbred animals to the reference population improved 
the IA in Girolando (Oliveira Júnior et al., 2017), tropi-
cal crossbreds (Aliloo et al., 2018), and US crossbreds 
(VanRaden et al., 2020). Based on our analysis, we ex-
pected an increase in IA for crossbreds as they shared 
more common haplotypes with the imputed crossbred 
population compared with purebreds. However, adding 
1,000 crossbred animals to the reference population did 
not result in improved IA for HO×JE or JE×HO cross-
breds in the validation population, as per our study.

The fact that IA have not improved in our study 
may be due to using genotypes of crossbred animals 
from different breeds in the reference population, with 
few genotype data available for HO×JE and JE×HO 
to impute our Holstein and Jersey crossbreds in the 
validation population. Additionally, the GRC between 
the validation and reference populations was lower in 
the scenario with the 1,000 crossbred animals randomly 
added to the reference population than it was in the 
scenarios without these animals (Supplemental Table 
S4). The crossbred animals in the reference population 
likely had few haplotypes in common with the crossbred 
animals in the validation population, and therefore no 
increase in IA was observed. Another hypothesis sug-
gests that IA has already reached a maximum value 
for scenarios that included parents (i.e., the closest 
individuals). In fact, we also noticed results of the same 
nature in purebred Jersey and Holstein, and the IA 
was not improved by the inclusion of 1,000 random 
individuals to the reference population.

Thus, our results showed that it is possible to achieve 
greater than 85% IA in US crossbred dairy cattle when 
related individuals of those crossbreds were added to 
the reference population. The addition of unrelated 
crossbred genotypes to the reference population had 
no effect on IA improvement. However, the addition of 
genotype information from relative crossbred animals 
to the reference population could not be tested in our 
study but could increase and improve IA, as already 
demonstrated by Aliloo et al. (2018).

Effects of Chromosomes on Imputation Accuracy

The estimated IA value for each individual chro-
mosome in our study was similar to the estimated 
IA for the whole genome. In 3 out of the 7 imputa-
tion scenarios, IA value increased as the chromosome 
length increased, but even for large chromosomes, this 

difference was minimal. Evidence suggests association 
between IA and chromosome length in sheep and beef 
cattle (Sun et al., 2012; Piccoli et al., 2014; Ventura et 
al., 2016). Chromosomes 1 to 29 were arranged in de-
creasing order of length, and it was discovered that the 
last chromosomes frequently had the lowest IA value 
in different reference population scenarios. In addition, 
studies on Angus, Braford, and Hereford beef cattle, 
as well as sheep, had previously supported the finding 
that the last chromosomes typically had lower IA than 
the first chromosomes (Sun et al., 2012; Piccoli et al., 
2014; Ventura et al., 2016).

In this study, the relatedness between the reference 
and validation populations did not have the same effect 
on chromosomal IA, and different chromosomes showed 
an increase in IA values depending on whether the ge-
nomic data from the sire, dams, or maternal grandsire 
was added to the reference population. However, when-
ever related animals of validation population included 
to the reference population of imputation scenarios, the 
IA values of the first 5 long chromosomes increased 
noticeably, and the IA values of the last shorter chro-
mosomes decreased. This may be because the shorter 
the chromosomes, the lower the overall chromosome 
accuracy, as misattributed distal regions comprise a 
larger proportion of the overall chromosome (Sun et 
al., 2012).

To conclude, the IA on each chromosome differed 
according to the degree of relatedness between refer-
ence and validation population for crossbreds. Includ-
ing more related individuals into reference population 
seems promising to increase IA, particularly for the 
first chromosomes but not for the last.

Imputation for US Crossbred Dairy Population

The findings of this study confirmed that IA was in 
the range of 85 to 90% for HO×JE and JE×HO US 
crossbred dairy population when imputing from 7K to 
50K SNP chip, still lower than in purebred animals. The 
scenario of S+D+GS achieved the highest imputation 
accuracy (~90%) for imputing commercial 50K SNP 
panels. This result is promising because according to 
the CDCB database, 53% of the HO×JE and JE×HO 
crossbred animals had available genomic information 
of the sire, dam, and maternal grandsire (Supplemen-
tal Table S1). The second most common scenario in 
the CDCB database was the S+DLD scenario with IA 
of around 87%, and the potential addition of related 
crossbred individuals of HO×JE or JE×HO to the 
reference population could be beneficial to improve IA 
for this scenario and should be tested. The third most 
common scenario in the CDCB database is the scenario 
S+D (8% JE×HO and HO×JE, Supplemental Table 
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S1). This case is promising because the IA was only one 
point lower than in the scenario S+D+GS. However, 
the scenario SPB+DLD, which is the most frequently 
used approach by CDCB for genomic evaluation of 
crossbreds, did not gave the most promising IA results 
(~80%), so the strategy could eventually be rethought. 
Thus, adding genomic information from bulls of other 
breeds than Holstein or Jersey in the reference popula-
tion would not be a good strategy to impute crossbred 
animals. In addition, in cases where no genotyped re-
lated individuals were available, the best scenario was 
to put crossbred individuals in the reference population 
rather than purebred animals.

The breeding scheme for dairy cattle is already an 
advantage for the imputation of crossbred, as dairy 
cattle are characterized by a small number of sires with 
large family sizes and complete pedigree information 
in many generations. This structure is a considerable 
advantage for the imputation compared with other spe-
cies such as beef cattle (Ventura et al., 2014) or sheep 
(Hayes et al., 2012), where alternative solutions have 
to be found to face the problem of pedigree structure.

This study determined IA values only for F1 HO×JE 
and JE×HO crossbreds. The same type of analysis can 
also be verified later in other types of crosses commonly 
found in the United States, such as Ayrshire × Holstein 
and Brown Swiss × Holstein. The results can also be 
investigated for crossbreds rather than F1 crossbreds. 
Indeed, 19% of crossbreds with genomic data in the 
CDCB database result from of a cross between a pure-
bred animal and an already crossed individual (Supple-
mental Table S1), such as backcross, second backcross, 
or 3-breed backcross, for example. Different approaches 
will likely need to be considered in this type of situa-
tion, and the makeup of the reference panel will need 
to be examined.

The accuracy of the imputation is crucial for the es-
timation of correct genetic values. Numerous studies on 
purebred Jersey and Holstein cows revealed that the ac-
curacy of genomic selection did not appear to decrease 
with imputation (Weigel et al., 2010a; VanRaden, et 
al., 2011; Mulder et al., 2012). However, for crossbred 
dairy populations, no study confirms that the accuracy 
of genomic selection does not decline with imputation. 
The study by VanRaden et al. (2020) did not observe 
the quality of imputation, but highlighted that genomic 
predictions weighted by BBR were slightly more ac-
curate than predictions using only the predominant 
breed. Thus, one of the solutions for estimating genetic 
values of crossbreds could be to consider the BBR to 
estimate the genetic values, as suggested by VanRaden 
et al. (2020). Further studies will need to ensure that 
the accuracy of the genetic values is not affected by the 

imputation of the data, even if some studies explained 
that imputations with high error rates and bias from 
wrongly inferred genotypes will not propagate in ac-
curacy of subsequent genomic predictions (Wu et al., 
2016).

CONCLUSIONS

This study aimed to evaluate the IA for the US cross-
bred dairy cattle population (HO×JE and JE×HO). 
The results may provide information to assist future 
studies involving genomic data in crossbred US dairy 
cattle. The highest IA for crossbreds were shown for 
the S+D+GS scenario and confirmed the importance 
of adding relative individuals of crossbred animals in 
the reference population for imputation strategy. Ad-
ditional research should be performed on other types of 
crosses that are also found in the United States, with a 
focus on ensuring that the influence of imputation on 
the genetic evaluation of these crossbreds is kept to a 
minimum.
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