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In this paper we consider the numerical solution of fractional terminal value problems: namely, 
terminal value problems for fractional differential equations. In particular, the proposed method uses 
a Newton-type iteration which is particularly efficient when coupled with a recently-introduced 
step-by-step procedure for solving fractional initial value problems, i.e., initial value problems for 
fractional differential equations. As a result, the method is able to produce spectrally accurate 
solutions of fractional terminal value problems. Some numerical tests are reported to make 
evidence of its effectiveness.

1. Introduction

Fractional differential equations have gained more and more importance in many applications: we refer, e.g., to the classical 
references [14,28] for an introduction.

The present contribution is addressed for solving fractional terminal value problems namely, terminal value problems for fractional 
differential equations (in short, FDE-TVPs) in the form

𝑦(𝛼)(𝑡) = 𝑓 (𝑦(𝑡)), 𝑡 ∈ [0, 𝑇 ], 𝑦(𝑇 ) = 𝜂 ∈ℝ𝑚, (1)

where, for the sake of brevity, we have omitted the argument 𝑡 for 𝑓 . Here, for 𝛼 ∈ (0, 1), 𝑦(𝛼)(𝑡) ≡ 𝐷𝛼𝑦(𝑡) is the Caputo fractional 
derivative:

𝐷𝛼𝑔(𝑡) = 1
Γ(1 − 𝛼)

𝑡

∫
0

(𝑡− 𝑥)−𝛼
[ d
d𝑥
𝑔(𝑥)

]
d𝑥. (2)

The Riemann-Liouville integral associated to (2) is given by:
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𝐼𝛼𝑔(𝑡) = 1
Γ(𝛼)

𝑡

∫
0

(𝑡− 𝑥)𝛼−1𝑔(𝑥)d𝑥. (3)

Usually, one solves fractional initial value problems, that is, initial value problems for fractional differential equations (in short, FDE-

IVPs) (see, e.g. [16,21,22,26,27,30]):

𝑦(𝛼)(𝑡) = 𝑓 (𝑦(𝑡)), 𝑡 ∈ [0, 𝑇 ], 𝑦(0) = 𝜌0 ∈ℝ𝑚, (4)

whose solution is, under suitable assumptions on 𝑓 ,

𝑦(𝑡) = 𝜌0 + 𝐼𝛼𝑓 (𝑦(𝑡)) ≡ 𝜌0 + 1
Γ(𝛼)

𝑡

∫
0

(𝑡− 𝑥)𝛼−1𝑓 (𝑦(𝑥))d𝑥, 𝑡 ∈ [0, 𝑇 ]. (5)

However, under suitable hypothesis on 𝑓 and 𝑇 , also the FDE-TVP is well-posed (see, e.g., [18] for the scalar case, and [29]). 
Consequently, its numerical solution has been considered by many authors (see, e.g., [17,18,23–25,29]). In particular, the scalar 
case of (1) (𝑚 = 1) allows using a shooting procedure coupled with the bisection method [15,19] or, more recently, with the secant 
method [17].

However, as is clear by their very definition, both the above procedures cannot be applied for solving vector problems. Motivated 
by this drawback, in this paper, we propose an alternative approach, based on a straight Newton procedure, able to handle vector 
problems as well.

The procedure takes advantage of a recently introduced method for solving FDE-IVPs, able to obtain spectrally accurate approx-

imations [6,8]. This latter approach has been derived as an extension of Hamiltonian Boundary Value Methods (HBVMs), special 
low-rank Runge-Kutta methods originally devised for Hamiltonian problems (see, e.g., [9,10]), and later extended along several di-

rections (see, e.g., [1,3,5–7,11]), including the numerical solution of FDEs. A main feature of HBVMs is the fact that they can gain 
spectrally accuracy, when approximating ODE-IVPs [2,12,13], and such a feature has been recently extended to the FDE case [6,8].

With this premise, the structure of the paper is as follows: in Section 2 we sketch the shooting-Newton procedure for solving (1), 
along with a corresponding simplified variant; in Section 3 we recall the main facts about the (possibly spectrally accurate) numerical 
solution of FDE-IVPs recently proposed in [6], with the extension for the shooting-Newton procedure; in Section 4 we report a few 
numerical tests, including the case of vector problems; at last, a few conclusions are given in Section 5.

2. The shooting-Newton procedure

To begin with, let us introduce a perturbation result concerning the solution of the FDE-IVP (4). In particular, let us denote by 
𝑦(𝑡, 𝜌0) the solution of this problem, in order to emphasize its dependence from the initial condition. The following result holds true.

Theorem 1. For 𝑡 ∈ [0, 𝑇 ], one has:

𝜕

𝜕𝜌0
𝑦(𝑡, 𝜌0) = Φ(𝑡, 𝜌0), (6)

which is the solution of the fractional variational problem1

Φ(𝛼)(𝑡, 𝜌0) = 𝑓 ′(𝑦(𝑡, 𝜌0))Φ(𝑡, 𝜌0), 𝑡 ∈ [0, 𝑇 ], Φ(0, 𝜌0) = 𝐼, (7)

explicitly given by:

Φ(𝑡, 𝜌0) = 𝐼 +
1

Γ(𝛼)

𝑡

∫
0

(𝑡− 𝑥)𝛼−1𝑓 ′(𝑦(𝑥, 𝜌0))Φ(𝑥, 𝜌0)d𝑥. (8)

Proof. In fact, from (2) and (4), one has:

𝐷𝛼
𝜕

𝜕𝜌0
𝑦(𝑡, 𝜌0) =

𝜕

𝜕𝜌0
𝐷𝛼𝑦(𝑡) = 𝜕

𝜕𝜌0
𝑓 (𝑦(𝑡, 𝜌0)) = 𝑓 ′(𝑦(𝑡, 𝜌0))

𝜕

𝜕𝜌0
𝑦(𝑡, 𝜌0),

and

𝜕

𝜕𝜌0
𝑦(𝑡, 𝜌0)

||||𝑡=0 = 𝜕

𝜕𝜌0
𝜌0 = 𝐼.

Consequently, (6)-(7) follows and, therefore, also (8) follows from (3) and (5). □
2

1 As is usual, 𝑓 ′(𝑦) denotes the Jacobian matrix of 𝑓 (𝑦).



Applied Mathematics and Computation 489 (2025) 129164L. Brugnano, G. Gurioli and F. Iavernaro

Table 1

Algorithm 1 – the shooting-Newton procedure.

fix 𝜌0
for 𝓁 = 0,1,…

solve: 𝑦(𝛼)(𝑡, 𝜌𝓁 ) = 𝑓 (𝑦(𝑡, 𝜌𝓁 )), 𝑡 ∈ [0, 𝑇 ], 𝑦(0, 𝜌𝓁 ) = 𝜌𝓁
and Φ(𝛼)(𝑡, 𝜌𝓁 ) = 𝑓 ′(𝑦(𝑡, 𝜌𝓁 ))Φ(𝑡, 𝜌𝓁 ), 𝑡 ∈ [0, 𝑇 ], Φ(0, 𝜌𝓁 ) = 𝐼

set: 𝜌𝓁+1 = 𝜌𝓁 −Φ(𝑇 , 𝜌𝓁 )−1
[
𝑦(𝑇 , 𝜌𝓁 ) − 𝜂

]
end

Remark 1. Hereafter, in order to guarantee the well-posedness of problem (1), if 𝑦(0) = 𝜌∗ is the initial value of (4) fulfilling the 
FDE-TVP, i.e.,

𝑦(𝑇 , 𝜌∗) = 𝜂, (9)

we shall assume that (see (6))

det
(
Φ(𝑇 , 𝜌∗)

) ≠ 0. (10)

Assuming that 𝑓 is continuously differentiable in a neighborhood of the solution, in turn (10) implies that

∃𝛿 > 0 𝑠.𝑡. ‖𝜌∗ − 𝜌‖ ≤ 𝛿 ⇒ det (Φ(𝑇 , 𝜌)) ≠ 0. (11)

The previous results allow us stating the shooting-Newton procedure for solving (1) sketched in Table 1, where a suitable stopping 
criterion has to be adopted. Moreover, the starting approximation 𝜌0 for the shooting-Newton iteration has to be chosen in some way, 
possibly exploiting any additional information; conversely, the choice 𝜌0 = 𝜂 (i.e., the final value in (1)) can be considered, as proposed 
in [17].

Remark 2. Though the procedure described in Algorithm 1 appears to be easily derived, at the best of our knowledge, it has not 
yet been considered for solving FDE-TVPs, so far. Moreover, the use of the variational problem, involved in its implementation and 
described in the next section, is novel as well.

The following straightforward convergence result holds true.

Theorem 2. Assume that, in a neighborhood of the solution 𝜉 = 𝜌∗:

(i) 𝑓 is continuously differentiable,

(ii) Φ(𝑇 , 𝜉)−1 is differentiable.

Then, the shooting-Newton procedure given in Table 1 converges in a suitable neighborhood of 𝜌∗.

Proof. In fact, from (9) it follows that 𝜌∗ is a fixed-point of the corresponding iteration function,

Ψ(𝜉) ∶= 𝜉 −Φ(𝑇 , 𝜉)−1 [𝑦(𝑇 , 𝜉) − 𝜂] ,

whose Jacobian (recall (6)) vanishes at 𝜉 = 𝜌∗. Consequently, from the Perron Theorem [31, Corollary 4.7.2], exponential convergence 
is granted, in a suitable neighborhood of 𝜌∗. □

Further, if convergent, the procedure converges quadratically. However, to prove this statement, we need to recall some well-

known results about the Taylor theorem. In more detail, with reference to (6), assume that Φ(𝑇 , 𝜉) is continuously differentiable in a 
suitable neighborhood of the solution. Then, by setting 𝑦𝑖 the 𝑖-th entry of 𝑦, for a given 𝜌 suitably close to 𝜌𝓁 there exists 𝜃𝑖 ∈ [0, 1]
such that:

𝑦𝑖(𝑇 , 𝜌) = 𝑦𝑖(𝑇 , 𝜌𝓁) +
𝜕

𝜕𝜉
𝑦𝑖(𝑇 , 𝜉)

||||𝜉=𝜌𝓁 (𝜌− 𝜌𝓁)
+1
2
(𝜌− 𝜌𝓁)⊤

𝜕2

𝜕𝜉2
𝑦𝑖(𝑇 , 𝜉)

||||𝜉=𝜌𝓁+𝜃𝑖(𝜌−𝜌𝓁 ) (𝜌− 𝜌𝓁), 𝑖 = 1,… ,𝑚,

with 𝜕
2

𝜕𝜉2
𝑦𝑖(𝑇 , 𝜉) the Hessian matrix of 𝑦𝑖(𝑇 , 𝜉). The previous relations can be written in vector form as follows:

𝑦(𝑇 , 𝜌) = 𝑦(𝑇 , 𝜌𝓁) + Φ(𝑇 , 𝜌𝓁)(𝜌− 𝜌𝓁) +
1
2
Φ′(𝑇 ,Σ𝓁(𝜌))

(
(𝜌− 𝜌𝓁), (𝜌− 𝜌𝓁)

)
,

3

with
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Σ𝓁(𝜌) =
(
𝜌𝓁 + 𝜃1(𝜌− 𝜌𝓁), … , 𝜌𝓁 + 𝜃𝑚(𝜌− 𝜌𝓁)

)
∈ℝ𝑚×𝑚,

and Φ′(𝑇 , Σ𝓁(𝜌)) denoting the derivative of Φ, whose 𝑖-th “slice” is evaluated in the 𝑖-th column of Σ𝓁 (𝜌). With this premise, we can 
now state the following result.

Theorem 3. Assume that, in a neighborhood of the solution 𝜉 = 𝜌∗, Φ(𝑇 , 𝜉) is continuously differentiable. Then, if convergent, the shooting-

Newton procedure given in Table 1 converges quadratically.

Proof. By using the notation about the Taylor theorem exposed before, one has:

0 = 𝑦(𝑇 , 𝜌∗) − 𝜂

= 𝑦(𝑇 , 𝜌𝓁) − 𝜂 +Φ(𝑇 , 𝜌𝓁)
(
𝜌∗ − 𝜌𝓁

)
+ 1

2
Φ′(𝑇 ,Σ𝓁(𝜌∗))

(
(𝜌∗ − 𝜌𝓁), (𝜌∗ − 𝜌𝓁)

)
.

Consequently, considering that2

𝜌𝓁+1 = 𝜌𝓁 −Φ(𝑇 , 𝜌𝓁)−1[𝑦(𝑇 , 𝜌𝓁) − 𝜂],

and setting 𝑒𝓁 = 𝜌∗ − 𝜌𝓁 the error at step 𝓁, one derives:

𝑒𝓁+1 = −1
2
Φ(𝑇 , 𝜌𝓁)−1Φ′(𝑇 ,Σ𝓁(𝜌∗))

(
𝑒𝓁 , 𝑒𝓁

)
.

Passing to norms, one eventually obtains‖𝑒𝓁+1‖‖𝑒𝓁‖2 ≤ 1
2
‖Φ(𝑇 , 𝜌𝓁)−1‖‖Φ′(𝑇 ,Σ𝓁(𝜌∗))‖.

Consequently,

lim
𝓁→∞

‖𝑒𝓁+1‖‖𝑒𝓁‖2 ≤ 1
2
‖Φ(𝑇 , 𝜌∗)−1‖‖Φ′(𝑇 ,Σ∗)‖,

where Σ∗ now denotes the matrix with all the columns equal to 𝜌∗. □

An interesting additional feature is given by the following result.

Theorem 4. For problems in the form

𝑦(𝛼) =𝐴(𝑡)𝑦+ 𝑏(𝑡), 𝑡 ∈ [0, 𝑇 ], 𝑦(𝑇 ) = 𝜂 ∈ℝ𝑚, (12)

with 𝐴(𝑡) and 𝑏(𝑡) continuous functions, the algorithm described in Table 1 converges in exactly one iteration.

Proof. In fact, in such a case, the variational problem (7) simplifies to

Φ(𝛼)(𝑡) =𝐴(𝑡)Φ(𝑡), 𝑡 ∈ [0, 𝑇 ], Φ(0) = 𝐼,

i.e., Φ(𝑡) does not depend on the initial condition. Further, by using the same notation as above,[
𝑦(𝑡, 𝜌0) − 𝑦(𝑡, 𝜌∗)

](𝛼) =𝐴(𝑡) [𝑦(𝑡, 𝜌0) − 𝑦(𝑡, 𝜌∗)] , 𝑡 ∈ [0, 𝑇 ],

whose solution is given by[
𝑦(𝑡, 𝜌0) − 𝑦(𝑡, 𝜌∗)

]
=Φ(𝑡)

[
𝜌0 − 𝜌∗

]
, 𝑡 ∈ [0, 𝑇 ].

Consequently, at 𝑡 = 𝑇 one has:[
𝑦(𝑇 , 𝜌0) − 𝜂

]
=Φ(𝑇 )

[
𝜌0 − 𝜌∗

]
.

That is,3

𝜌∗ = 𝜌0 − Φ(𝑇 )−1
[
𝑦(𝑇 , 𝜌0) − 𝜂

]
,

so that convergence is gained in exactly one iteration, since the r.h.s. amounts to the very first iteration of Algorithm 1 used for 
solving (12). □

2 We recall that (11) holds true.
4

3 We recall that the assumption det(Φ(𝑇 )) ≠ 0 must clearly hold.
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Table 2

Algorithm 2 – the simplified shooting-Newton procedure.

fix 𝜌0
for 𝓁 = 0,1,…

solve: 𝑦(𝛼)(𝑡, 𝜌𝓁 ) = 𝑓 (𝑦(𝑡, 𝜌𝓁 )), 𝑡 ∈ [0, 𝑇 ], 𝑦(0, 𝜌𝓁 ) = 𝜌𝓁
and compute Φ̂(𝑇 , 𝜌𝓁 ) ≈ Φ(𝑇 , 𝜌𝓁 )

set: 𝜌𝓁+1 = 𝜌𝓁 − Φ̂(𝑇 , 𝜌𝓁 )−1
[
𝑦(𝑇 , 𝜌𝓁 ) − 𝜂

]
end

2.1. A simplified Newton-iteration

As is well-known, sometimes it can be computationally convenient to implement a simplified Newton iteration, instead of the basic 
one. This involves using a simplified version of the algorithm shown in Table 1: it is sketched in Table 2.

For this simplified shooting-Newton procedure, the following result holds true, the proof being similar to that of Theorem 2.

Theorem 5. Assume the hypotheses of Theorem 2 hold true and that Φ̂(𝑇 , 𝜉) is continuously invertible in a neighborhood of 𝜉 = 𝜌∗. Further, 
assume that the spectral radius of the matrix

𝐼 − Φ̂(𝑇 , 𝜌∗)−1Φ(𝑇 , 𝜌∗)

is less than 1. Then, the algorithm described in Table 2 converges in a suitable neighborhood of the solution 𝜌∗.

Remark 3. However, as one may expect, in this case the results of Theorems 3 and 4 does not hold, in general. As matter of fact, 
only a linear convergence can be granted and, for linear problems, convergence in one iteration cannot be expected, in general.

3. Implementing the algorithm

Following the approach in [6], let us now explain the way we compute 𝑦(𝑇 , 𝜌𝓁) in Algorithms 1 and 2, and Φ(𝑇 , 𝜌𝓁) in Algorithm 1.4

From (5) and (8), we have to compute:

𝑦(𝑇 , 𝜌𝓁) = 𝜌𝓁 +
1

Γ(𝛼)

𝑇

∫
0

(𝑇 − 𝑥)𝛼−1𝑓 (𝑦(𝑥, 𝜌𝓁))d𝑥, (13)

and

Φ(𝑇 , 𝜌𝓁) = 𝐼 + 1
Γ(𝛼)

𝑇

∫
0

(𝑇 − 𝑥)𝛼−1𝑓 ′(𝑦(𝑥, 𝜌𝓁))Φ(𝑥, 𝜌𝓁)d𝑥. (14)

To begin with, in order to obtain a piecewise approximation to the solution of the two problems, we consider a partition of the 
integration interval in the form:

𝑡𝑛 = 𝑡𝑛−1 + ℎ𝑛, 𝑛 = 1,… ,𝑁, (15)

where

𝑡0 = 0, 𝑡𝑁 = 𝑇 ≡
𝑁∑
𝑛=1

ℎ𝑛. (16)

In general [6], for coping with possible singularities in the derivative of the vector field at the origin, we shall consider the following 
graded mesh,

ℎ𝑛 = 𝑟𝑛−1ℎ1, 𝑛 = 1… ,𝑁, (17)

where 𝑟 > 1 and ℎ1 > 0 satisfy, by virtue of (16)-(17),

ℎ1
𝑟𝑁 − 1
𝑟− 1

= 𝑇 . (18)

Clearly, when a uniform mesh is considered then, in (17), 𝑟 = 1 and ℎ1 = ℎ ∶= 𝑇 ∕𝑁 , so that ℎ𝑛 = ℎ, 𝑛 = 1, … , 𝑁 .

4 On the contrary, Φ̂(𝑇 , 𝜌𝓁 ) in Algorithm 2 is strictly problem dependent and its computation cannot be stated in general: however, a relevant specific case will be 
5

considered in Section 3.3.
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By setting

𝑦𝑛(𝑐ℎ𝑛, 𝜌𝓁) ∶= 𝑦(𝑡𝑛−1 + 𝑐ℎ𝑛, 𝜌𝓁), 𝑐 ∈ [0,1], 𝑛 = 1,… ,𝑁, (19)

the restriction of the solution of (13) on the interval [𝑡𝑛−1, 𝑡𝑛], and taking into account (15)–(17), one then obtains:

𝑦(𝑇 , 𝜌𝓁) ≡ 𝑦𝑁 (ℎ𝑁,𝜌𝓁) = 𝜌𝓁 +
1

Γ(𝛼)

𝑇

∫
0

(𝑇 − 𝑥)𝛼−1𝑓 (𝑦(𝑥, 𝜌𝓁))d𝑥

= 𝜌𝓁 +
1

Γ(𝛼)

𝑁∑
𝑛=1

𝑡𝑛

∫
𝑡𝑛−1

(𝑡𝑁 − 𝑥)𝛼−1𝑓 (𝑦(𝑥, 𝜌𝓁))d𝑥

= 𝜌𝓁 +
1

Γ(𝛼)

𝑁∑
𝑛=1

ℎ𝑛

∫
0

(𝑡𝑁 − 𝑡𝑛−1 − 𝑥)𝛼−1𝑓 (𝑦𝑛(𝑥, 𝜌𝓁))d𝑥

= 𝜌𝓁 +
1

Γ(𝛼)

𝑁∑
𝑛=1

ℎ𝛼
𝑛

1

∫
0

(
𝑟𝑁−𝑛+1 − 1
𝑟− 1

− 𝜏
)𝛼−1

𝑓 (𝑦𝑛(𝜏ℎ𝑛, 𝜌𝓁))d𝜏. (20)

In case of a constant stepsize ℎ = 𝑇 ∕𝑁 is used, the previous equation becomes:

𝑦(𝑇 , 𝜌𝓁) ≡ 𝑦𝑁 (ℎ, 𝜌𝓁)

= 𝜌𝓁 +
ℎ𝛼

Γ(𝛼)

𝑁∑
𝑛=1

1

∫
0

(𝑁 − 𝑛+ 1 − 𝜏)𝛼−1 𝑓 (𝑦𝑛(𝜏ℎ, 𝜌𝓁))d𝜏. (21)

Similarly, for (14), by setting

Φ𝑛(𝑐ℎ𝑛, 𝜌𝓁) ∶= Φ(𝑡𝑛−1 + 𝑐ℎ𝑛, 𝜌𝓁), 𝑐 ∈ [0,1], 𝑛 = 1,… ,𝑁, (22)

the restriction of the solution on the interval [𝑡𝑛−1, 𝑡𝑛], again by virtue of (15)–(17), one obtains:

Φ(𝑇 , 𝜌𝓁) ≡ Φ𝑁 (ℎ𝑁,𝜌𝓁)

= 𝐼 + 1
Γ(𝛼)

𝑇

∫
0

(𝑇 − 𝑥)𝛼−1𝑓 ′(𝑦(𝑥, 𝜌𝓁))Φ(𝑥, 𝜌𝓁)d𝑥

= 𝐼 + 1
Γ(𝛼)

𝑁∑
𝑛=1

𝑡𝑛

∫
𝑡𝑛−1

(𝑡𝑁 − 𝑥)𝛼−1𝑓 ′(𝑦(𝑥, 𝜌𝓁))Φ(𝑥, 𝜌𝓁)d𝑥

= 𝐼 + 1
Γ(𝛼)

𝑁∑
𝑛=1

ℎ𝑛

∫
0

(𝑡𝑁 − 𝑡𝑛−1 − 𝑥)𝛼−1𝑓 ′(𝑦𝑛(𝑥, 𝜌𝓁))Φ𝑛(𝑥, 𝜌𝓁)d𝑥

= 𝐼 + 1
Γ(𝛼)

𝑁∑
𝑛=1

ℎ𝛼
𝑛

1

∫
0

(
𝑟𝑁−𝑛+1 − 1
𝑟− 1

− 𝜏
)𝛼−1

𝑓 ′(𝑦𝑛(𝜏ℎ𝑛, 𝜌𝓁))Φ𝑛(𝜏ℎ𝑛, 𝜌𝓁)d𝜏,

(23)

and, in case of a constant stepsize ℎ = 𝑇 ∕𝑁 ,

Φ(𝑇 , 𝜌𝓁) ≡ Φ𝑁 (ℎ, 𝜌𝓁)

= 𝐼 + ℎ𝛼

Γ(𝛼)

𝑁∑
𝑛=1

1

∫
0

(𝑁 − 𝑛+ 1 − 𝜏)𝛼−1 𝑓 ′(𝑦𝑛(𝜏ℎ, 𝜌𝓁))Φ𝑛(𝜏ℎ, 𝜌𝓁)d𝜏. (24)

3.1. Piecewise quasi-polynomial approximation

The previous functions are then approximated via a piecewise quasi-polynomial approximation, as described in [6], which we 
here briefly recall, and generalize to the approximation of the fundamental matrix solution, too. In more detail, with reference to 
6

(19) and (22), we shall look for approximations:
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𝜎𝑛(𝑐ℎ𝑛, 𝜌𝓁) ≃ 𝑦𝑛(𝑐ℎ𝑛, 𝜌𝓁), (25)

Ψ𝑛(𝑐ℎ𝑛, 𝜌𝓁) ≃ Φ𝑛(𝑐ℎ𝑛, 𝜌𝓁), 𝑐 ∈ [0,1], 𝑛 = 1,… ,𝑁,

and, consequently,

𝑦(𝑇 , 𝜌𝓁) ≃ 𝜎𝑁 (ℎ𝑁,𝜌𝓁), Φ(𝑇 , 𝜌𝓁) ≃ Ψ𝑁 (ℎ𝑁,𝜌𝓁). (26)

Following steps similar to those in [6, Section 2], we consider the expansion of the vector field along the orthonormal polynomial 
basis, w.r.t. the weight function

𝜔(𝑥) = 𝛼(1 − 𝑥)𝛼−1, 𝑠.𝑡.

1

∫
0

𝜔(𝑥) d𝑥 = 1,

resulting into a scaled and shifted family of Jacobi polynomials5:

𝑃𝑗 (𝑥) ∶=
√

2𝑗 + 𝛼
𝛼

𝑃
(𝛼−1,0)
𝑗

(2𝑥− 1), 𝑥 ∈ [0,1], 𝑗 = 0,1,… .

In so doing, for 𝑛 = 1, … , 𝑁 , one obtains:

𝑓 (𝑦𝑛(𝑐ℎ𝑛, 𝜌𝓁)) =
∑
𝑗≥0

𝑃𝑗 (𝑐)𝛾𝑗 (𝑦𝑛, 𝜌𝓁), 𝑐 ∈ [0,1],

with

𝛾𝑗 (𝑦𝑛, 𝜌𝓁) = 𝛼

1

∫
0

(1 − 𝜏)𝛼−1𝑃𝑗 (𝜏)𝑓 (𝑦𝑛(𝜏ℎ𝑛, 𝜌𝓁))d𝜏, 𝑗 = 0,1,… .

The approximations are derived by truncating the infinite series to a finite sum with 𝑠 terms. Consequently, for 𝑛 = 1, … , 𝑁 , one 
obtains6:

𝜎𝑛(𝑐ℎ𝑛, 𝜌𝓁) = 𝜙𝛼𝑛−1(𝑐, 𝜌𝓁) + ℎ
𝛼
𝑛

𝑠−1∑
𝑗=0

𝛾𝑗 (𝜎𝑛, 𝜌𝓁)𝐼𝛼𝑃𝑗 (𝑐), 𝑐 ∈ [0,1], (27)

with

𝛾𝑗 (𝜎𝑛, 𝜌𝓁) = 𝛼

1

∫
0

(1 − 𝜏)𝛼−1𝑃𝑗 (𝜏)𝑓 (𝜎𝑛(𝜏ℎ𝑛, 𝜌𝓁))d𝜏, 𝑗 = 0,… , 𝑠− 1, (28)

and

𝜙𝛼
𝑛−1(𝑐, 𝜌𝓁) = 𝜌𝓁 +

𝑛−1∑
𝜈=1

ℎ𝛼
𝜈

𝑠−1∑
𝑗=0

𝐽𝛼
𝑗

(
𝑟𝑛−𝜈 − 1
𝑟− 1

+ 𝑐𝑟𝑛−𝜈
)
𝛾𝑗 (𝜎𝜈, 𝜌𝓁), (29)

having set, for 𝑥 > 1,7

𝐽𝛼
𝑗
(𝑥) ∶= 1

Γ(𝛼)

1

∫
0

(𝑥− 𝜏)𝛼−1𝑃𝑗 (𝜏)d𝜏, 𝑗 = 0,… , 𝑠− 1. (30)

If a constant stepsize ℎ = 𝑇 ∕𝑁 is used, then (29) reads:

𝜙𝛼
𝑛−1(𝑐, 𝜌𝓁) = 𝜌𝓁 + ℎ

𝛼

𝑛−1∑
𝜈=1

𝑠−1∑
𝑗=0

𝐽𝛼
𝑗
(𝑛− 𝜈 + 𝑐)𝛾𝑗 (𝜎𝜈, 𝜌𝓁), (31)

and similarly one modifies (27) and (28).

5 Here, 𝑃 (𝑎,𝑏)
𝑗

(𝑥) denotes the 𝑗th Jacobi polynomial with parameters 𝑎 and 𝑏, in [−1, 1].
6 We refer to [4,8] for efficient procedures for computing the fractional integrals 𝐼𝛼

𝑗
𝑃𝑗 (𝑐), 𝑗 = 0, … , 𝑠 − 1.
7

7 We refer to [6,8] for the efficient computation of such integrals.
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It can be shown (see [6]) that 𝜙𝛼
𝑛−1(𝑐, 𝜌𝓁) is nothing but the approximation of the memory term

𝐺𝛼
𝑛−1(𝑐, 𝜌𝓁) = 𝜌𝓁 +

1
Γ(𝛼)

𝑛−1∑
𝜈=1

ℎ𝛼
𝜈

1

∫
0

(
𝑟𝑛−𝜈 − 1
𝑟− 1

+ 𝑐𝑟𝑛−𝜈 − 𝜏
)𝛼−1

𝑓 (𝑦𝑛(𝜏ℎ𝑛, 𝜌𝓁))d𝜏,

such that, for all 𝑐 ∈ [0, 1], and 𝑛 = 1, … , 𝑁 :

𝑦𝑛(𝑐ℎ𝑛, 𝜌𝓁) =𝐺𝛼𝑛−1(𝑐, 𝜌𝓁) +
ℎ𝛼
𝑛

Γ(𝛼)

𝑐

∫
0

(𝑐 − 𝜏)𝛼−1 𝑓 (𝑦𝑛(𝜏ℎ𝑛, 𝜌𝓁))d𝜏. (32)

As matter of fact, (20) corresponds to set 𝑛 =𝑁 and 𝑐 = 1 in (32).

Similarly, when a constant stepsize ℎ = 𝑇 ∕𝑁 is used, then

𝐺𝛼
𝑛−1(𝑐, 𝜌𝓁) = 𝜌𝓁 +

ℎ𝛼

Γ(𝛼)

𝑛−1∑
𝜈=1

1

∫
0

(𝑛− 𝜈 + 𝑐 − 𝜏)𝛼−1 𝑓 (𝑦𝑛(𝜏ℎ, 𝜌𝓁))d𝜏,

and (32) still formally holds, upon replacing ℎ𝑛 with ℎ. Consequently, (21) corresponds again to set 𝑛 =𝑁 and 𝑐 = 1 in (32).

The Fourier coefficients (28) can be approximated up to machine precision by using the Gauss-Jacobi formula of order 2𝑘 based 
at the zeros of 𝑃𝑘(𝑥), 𝑐1, … , 𝑐𝑘, with corresponding weights 𝑏1, … , 𝑏𝑘, by choosing 𝑘 large enough. As is explained in [6, Section 3], 
this allows formulating the discrete problem for computing them as8:

𝜸𝑛 = ⊤
𝑠
Ω⊗𝐼𝑚𝑓

(
𝝓𝛼
𝑛−1 + ℎ

𝛼
𝑛
𝛼
𝑠
⊗ 𝐼𝑚𝜸

𝑛
)
, (33)

with, by setting 𝛾𝑛
𝑗
(𝜌𝓁), 𝑗 = 0, … , 𝑠 − 1, the approximation to 𝛾𝑗 (𝜎𝑛, 𝜌𝓁) obtained by using the Gauss-Jacobi quadrature formula,

𝜸𝑛 =
⎛⎜⎜⎝
𝛾𝑛0 (𝜌𝓁)

⋮
𝛾𝑛
𝑠−1(𝜌𝓁)

⎞⎟⎟⎠ ∈ℝ𝑠𝑚, 𝝓𝛼
𝑛−1 =

⎛⎜⎜⎝
𝜙𝑛−1(𝑐1, 𝜌𝓁)

⋮
𝜙𝑛−1(𝑐𝑘, 𝜌𝓁)

⎞⎟⎟⎠ ∈ℝ𝑘𝑚,

and

𝑠 =
⎛⎜⎜⎝
𝑃0(𝑐1) … 𝑃𝑠−1(𝑐1)

⋮ ⋮
𝑃0(𝑐𝑘) … 𝑃𝑠−1(𝑐𝑘)

⎞⎟⎟⎠ , 𝛼
𝑠
=
⎛⎜⎜⎝
𝐼𝛼𝑃0(𝑐1) … 𝐼𝛼𝑃𝑠−1(𝑐1)

⋮ ⋮
𝐼𝛼𝑃0(𝑐𝑘) … 𝐼𝛼𝑃𝑠−1(𝑐𝑘)

⎞⎟⎟⎠ ∈ℝ𝑘×𝑠,

Ω=
⎛⎜⎜⎝
𝑏1

⋱
𝑏𝑘

⎞⎟⎟⎠ ∈ℝ𝑘×𝑘.

Remark 4. It is worth noticing that the discrete problem (33) has (block) dimension 𝑠, independently of 𝑘. This, in turn, allows using 
relatively large values of 𝑘, in order to have an accurate approximation of the Fourier coefficients, without increasing too much the 
computational cost.

Moreover, the vector 𝝓𝛼
𝑛−1 in (33) only depends on known quantities, computed at the previous timesteps.

Further, we observe that also the matrices 𝑠 , 𝛼𝑠 , as well as all the required integrals (30), can be computed in advance, once for 
all, and they can be used for each new approximation 𝜌𝓁 in both Algorithms 1 and 2. Additionally, it is worth mentioning that, since 
they only depend on 𝑠, 𝑘, 𝛼, 𝑟, in principle they could be tabulated, without needing to be evaluated.

Considering that

𝛼𝑃𝑗 (1) = 1
Γ(𝛼)

1

∫
0

(1 − 𝑥)𝛼−1𝑃𝑗 (𝑥)d𝑥 =
𝛿𝑗0

Γ(𝛼 + 1)
, 𝑗 = 0,… , 𝑠− 1,

the approximations of the solution at 𝑡𝑛 is given by:

𝑦(𝑡𝑛, 𝜌𝓁) ≃ 𝜎𝑛(ℎ𝑛, 𝜌𝓁) ≡ 𝜙𝛼𝑛−1(1, 𝜌𝓁) +
ℎ𝛼
𝑛

Γ(𝛼 + 1)
𝛾𝑛0 (𝜌𝓁), 𝑛 = 1,… ,𝑁. (34)

According to [6] (see also [8]), we give the following definition.

8 As is usual, the function 𝑓 , here evaluated in a (block) vector of dimension 𝑘, denotes the (block) vector made up by 𝑓 evaluated in each (block) entry of the 
8

input argument.
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Definition 1. We shall refer to the method defined by (33)-(34), as a Fractional HBVM with parameters 𝑘 and 𝑠, in short FHBVM(𝑘, 𝑠).

In particular, from (26) and (34) one obtains, considering that 𝑡𝑁 = 𝑇 :

𝑦(𝑇 , 𝜌𝓁) ≃ 𝜎𝑁 (ℎ𝑁,𝜌𝓁) ≡ 𝜙𝛼𝑁−1(1, 𝜌𝓁) +
ℎ𝛼
𝑁

Γ(𝛼 + 1)
𝛾𝑁0 (𝜌𝓁). (35)

Remark 5. When 𝛼 = 1, the polynomials {𝑃𝑗}≥0, become the usual Legendre polynomials orthonormal in [0, 1]. Consequently, a 
FHBVM(𝑘, 𝑠) method reduces to a standard HBVM(𝑘, 𝑠) method, when 𝛼 = 1.

In a similar way, for 𝑛 = 1, … , 𝑁 :

Ψ𝑛(𝑐ℎ𝑛, 𝜌𝓁) = Θ𝛼
𝑛−1(𝑐, 𝜌𝓁) + ℎ

𝛼
𝑛

𝑠−1∑
𝑗=0

Γ𝑗 (𝜎𝑛, 𝜌𝓁)𝐼𝛼𝑃𝑗 (𝑐), 𝑐 ∈ [0,1], (36)

with

Γ𝑗 (𝜎𝑛, 𝜌𝓁) = 𝛼

1

∫
0

(1 − 𝜏)𝛼−1𝑃𝑗 (𝜏)𝑓 ′(𝜎𝑛(𝜏ℎ𝑛, 𝜌𝓁))Ψ𝑛(𝜏ℎ𝑛, 𝜌𝓁)d𝜏, 𝑗 = 0,… , 𝑠− 1, (37)

and (see (30))

Θ𝛼
𝑛−1(𝑐, 𝜌𝓁) = 𝐼 +

𝑛−1∑
𝜈=1

ℎ𝛼
𝜈

𝑠−1∑
𝑗=0

𝐽𝛼
𝑗

(
𝑟𝑛−𝜈 − 1
𝑟− 1

+ 𝑐𝑟𝑛−𝜈
)
Γ𝑗 (𝜎𝜈, 𝜌𝓁). (38)

Similarly as in (31), when a constant stepsize ℎ = 𝑇 ∕𝑁 is used, then (38) becomes:

Θ𝛼
𝑛−1(𝑐, 𝜌𝓁) = 𝐼 + ℎ

𝛼

𝑛−1∑
𝜈=1

𝑠−1∑
𝑗=0

𝐽𝛼
𝑗
(𝑛− 𝜈 + 𝑐)Γ𝑗 (𝜎𝜈, 𝜌𝓁). (39)

As done for (28), by approximating the integrals in (37) by using the same Gauss-Jacobi formula as before, from (36) and (37)

one derives a discrete problem in the form

𝚪𝑛 = ⊤
𝑠
Ω⊗𝐼𝑚𝑓

′ (𝝓𝛼
𝑛−1 + ℎ

𝛼
𝑛
𝛼
𝑠
⊗ 𝐼𝑚𝜸

𝑛
) [
𝚯𝛼
𝑛−1 + ℎ

𝛼
𝑛
𝛼
𝑠
⊗ 𝐼𝑚𝚪𝑛

]
, (40)

where 𝝓𝛼
𝑛−1 and 𝜸𝑛 have been already computed in (33),

𝑓 ′ (𝝓𝛼
𝑛−1 + ℎ

𝛼
𝑛
𝛼
𝑠
⊗ 𝐼𝑚𝜸

𝑛
)
∈ℝ𝑘𝑚×𝑘𝑚

is the block diagonal matrix whose diagonal blocks are given by the corresponding evaluations of the Jacobian of 𝑓 ,

𝚯𝛼
𝑛−1 =

⎛⎜⎜⎝
Θ𝛼
𝑛−1(𝑐1, 𝜌𝓁)

⋮
Θ𝛼
𝑛−1(𝑐𝑘, 𝜌𝓁)

⎞⎟⎟⎠ ∈ℝ𝑘𝑚×𝑚,

and, by setting Γ𝑛
𝑗
(𝜌𝓁), 𝑗 = 0, … , 𝑠 − 1, the approximation to Γ𝑗 (𝜎𝑛, 𝜌𝓁) obtained through the Gauss-Jacobi formula,

𝚪𝑛 =
⎛⎜⎜⎝

Γ𝑛0(𝜌𝓁)
⋮

Γ𝑛
𝑠−1(𝜌𝓁)

⎞⎟⎟⎠ ∈ℝ𝑠𝑚×𝑚,

with the approximation of the solution at 𝑡𝑛 given by:

Φ(𝑡𝑛, 𝜌𝓁) ≃ Ψ𝑛(ℎ𝑛, 𝜌𝓁) ≡Θ𝛼
𝑛−1(1, 𝜌𝓁) +

ℎ𝛼
𝑛

Γ(𝛼 + 1)
Γ𝑛0(𝜌𝓁), 𝑛 = 1,… ,𝑁. (41)

As is clear, (40)-(41) define the application of the FHBVM(𝑘, 𝑠) method to the variational problem.

We observe that considerations similar to those made in Remark 4 for (33) can be now repeated for (40), with the additional fact 
that (40) amounts to just solving a linear system of equations.

At last, from (26) and (41) one eventually obtains:

ℎ𝛼
𝑁

9

Φ(𝑇 , 𝜌𝓁) ≃ Ψ𝑁 (ℎ𝑁,𝜌𝓁) ≡Θ𝛼
𝑁−1(1, 𝜌𝓁) + Γ(𝛼 + 1)

Γ𝑁0 (𝜌𝓁). (42)
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Remark 6. By choosing values of 𝑠, and 𝑘 ≥ 𝑠, large enough, it can be seen that the approximations (35) and (42) provided by a 
FHBVM(𝑘, 𝑠) method can be accurate up to machine precision. In fact, from the analysis carried out in [6], the error in approximating 
(13) and (14) is proved to be bounded by

𝑂(ℎ2𝛼1 + ℎ𝑠+𝛼
𝑁

),

if a graded mesh (15)–(17) is used, or by

𝑂(ℎ𝑠+𝛼−1), ℎ = 𝑇 ∕𝑁,

if a uniform mesh can be considered. This latter case is appropriate when the vector field is everywhere smooth, in a neighborhood 
of the solution.

Actually, this amounts to using the method as a spectrally accurate method in time, as is the case for HBVMs [2,5,12,13]. This kind 
of approximations will be considered in the implementation of the algorithm listed in Table 1 (and for the simplified version of it, 
listed in Table 2), which we shall use for the numerical tests reported in Section 4.

3.2. Error estimation

It is worth mentioning that the procedure explained in the previous section allows to derive, as a by-product, an estimate for the 
error in the computed solution, due to the fact that, in Algorithm 1, the iteration is stopped when, for a suitably small tolerance 𝑡𝑜𝑙,

|𝜌𝓁+1 − 𝜌𝓁| ≤ 𝑡𝑜𝑙. (43)

In fact, in such a case, one expects that |𝜌𝓁+1 −𝜌∗| ≈ 𝑡𝑜𝑙 as well. Consequently, by considering that at the mesh points, for 𝑛 = 1, … , 𝑁 :

𝑦(𝑡𝑛, 𝜌𝓁) ≃ 𝜎𝑛(ℎ𝑛, 𝜌𝓁) ≡ 𝜙𝛼𝑛−1(1, 𝜌𝓁) +
ℎ𝛼
𝑛

Γ(𝛼 + 1)
𝛾𝑛0 (𝜌𝓁), (44)

and, similarly,

Φ(𝑡𝑛, 𝜌𝓁) ≃ Ψ𝑛(ℎ𝑛, 𝜌𝓁) ≡Θ𝛼
𝑛−1(1, 𝜌𝓁) +

ℎ𝛼
𝑛

Γ(𝛼 + 1)
Γ𝑛0(𝜌𝓁),

by virtue of the perturbation result of Theorem 1, one derives the estimates

‖𝑦(𝑡𝑛, 𝜌∗) − 𝑦(𝑡𝑛, 𝜌𝓁)‖ ≈ 2 ⋅ 𝑡𝑜𝑙 ⋅ ‖Ψ𝑛(ℎ𝑛, 𝜌𝓁)‖, 𝑛 = 1,… ,𝑁. (45)

3.3. The simplified shooting-Newton algorithm for semi-linear problems

For the simplified algorithm in Table 2, the approximation to Φ̂(𝑇 , 𝜌𝓁) is in general problem dependent. However, there is a 
specific case where an efficient approximation can be readily obtained, i.e., when problem (1) is semi-linear:

𝑦(𝛼)(𝑡) =𝐿𝑦(𝑡) + 𝑔(𝑦(𝑡)), 𝑡 ∈ [0, 𝑇 ], 𝑦(𝑇 ) = 𝜂 ∈ℝ𝑚, (46)

with 𝐿 ∈ℝ𝑚×𝑚 and ‖𝐿‖ ≫ ‖𝑔‖ in a suitable neighborhood of the solution. In fact, in such a case, one can approximate the variational 
problem (7) with the linear part only (thus, independent of 𝜌),

Φ̂(𝛼)(𝑡) =𝐿Φ(𝑡), 𝑡 ∈ [0, 𝑇 ], Φ(0) = 𝐼.

In so doing, one obtains the approximation

Φ̂(𝑇 ) =𝐸𝛼(𝐿𝑇 𝛼) ∶=
∑
𝑗≥0

(𝐿𝑇 𝛼)𝑗

Γ(𝛼𝑗 + 1)
,

with 𝐸𝛼 the one-parameter Mittag-Leffler function. Furthermore, since we are interested in deriving only a convenient approximation 
to the fundamental matrix function, we can truncate the above series to a suitable finite sum. As an example, for a given tolerance 𝜀, 
one may consider the approximation:

Φ̂(𝑇 ) =
𝐽∑
𝑗=0

(𝐿𝑇 𝛼)𝑗

Γ(𝛼𝑗 + 1)
, 𝑠.𝑡.

‖(𝐿𝑇 𝛼)𝐽‖
Γ(𝛼𝐽 + 1)

≤ 𝜀. (47)

4. Numerical tests

We here report a few numerical tests aimed at illustrating the theoretical findings. For all tests, we use 𝑘 = 22 and 𝑠 = 20, so that 
we are going to use a FHBVM(22,20) method. In other words, we use a local polynomial approximation of degree 𝑠 − 1 = 19 for 
10

the vector field, coupled with a Gauss-Jacobi quadrature formula of order 2𝑘 = 44 for approximating the Fourier coefficients (28)
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Table 3

Results for Problem (48).

𝓁 𝜌𝓁

0 2.500000000000000e-01

1 -6.974105632991501e-03

2 -6.267686473630449e-06

3 -5.040632537594832e-12

4 -2.508583045846617e-15

and (37). We have used straightforward fixed-point iterations, derived from (33) and (40), respectively, to solve the corresponding 
discrete problems.9 Namely,

𝜸𝑛,𝑗+1 = ⊤
𝑠
Ω⊗𝐼𝑚𝑓

(
𝝓𝛼
𝑛−1 + ℎ𝑛𝛼𝑠 ⊗ 𝐼𝑚𝜸

𝑛,𝑗
)
, 𝑗 = 0,1,… ,

starting from 𝜸𝑛,0 = 𝟎, for (33), and similarly for (40).10 The iterations are carried out until full machine accuracy is gained, so that 
we expect full machine accuracy for the computed approximation (42) to Φ(𝑇 , 𝜌𝓁), as well as a corresponding fully accurate discrete 
solution (44).

We consider 6 test problems:

• the first 3 problems are the same scalar test problems in [17, Section 5];

• the last 3 problems are vector problems.

For all problems, (see (1)) the initial guess 𝜌0 = 𝜂 has been considered. All numerical tests have been performed in Matlab© (Rel. 
2023b) on a Silicon M2 laptop with 16GB of shared memory. The iteration of Algorithm 1 is stopped by using a tolerance 𝑡𝑜𝑙 = 10−14
in (43). The same tolerance and stopping criterion will be used for Algorithm 2. To be more precise, we shall consider Algorithm 1

for solving all the problems, and Algorithm 2 for solving the last problem, which is semi-linear.

4.1. Example 1

The first problem is given by:

𝑦(0.3) = −|𝑦|1.5 + 8!
Γ(8.7)

𝑡7.7 − 3Γ(5.15)
Γ(4.85)

𝑡3.85 +
(3
2
𝑡0.15 − 𝑡4

)3
+ 9

4
Γ(1.3),

𝑡 ∈ [0,1], 𝑦(1) = 1
4
, (48)

whose solution is

𝑦(𝑡) = 𝑡8 − 3 𝑡4.15 + 9
4
𝑡0.3.

In this case, we use a uniform mesh with stepsize ℎ = 1∕10. The method converges in 4 iterations producing the approximations in 
Table 3. It is possible to appreciate the quadratic convergence of the iteration in the first iterations (in the last one, roundoff errors 
clearly dominate). The maximum error on the final solution is ≈ 6 ⋅ 10−15, whereas the estimated one, by using (45), is 2 ⋅ 10−14.

4.2. Example 2

The second problem is given by:

𝑦(0.3) = −3
2
𝑦, 𝑡 ∈ [0,7],

𝑦(7) = 14
5
𝐸0.3

(
−3
2
70.3

)
≃ .6476128469955936, (49)

with 𝐸0.3 the Mittag-Leffler function of order 0.3, with solution

𝑦(𝑡) = 14
5
𝐸0.3

(
−3
2
𝑡0.3

)
.

We refer to [20] and the accompanying software ml.m, for an efficient Matlab© implementation of the Mittag-Leffler function.

In this case a uniform mesh is not appropriate, since the vector field is proportional to the solution, which has a singularity in 
the first derivative at the origin. Consequently, we use a graded mesh, according to (17), with ℎ1 = 10−14 and 𝑁 = 500. Taking into 

9 We have used a fixed point iteration also for solving (40), despite the fact that it is just a linear system of equations.
11

10 More refined nonlinear iterations are described in [8].
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Table 4

Results for Problem (49).

𝓁 𝜌𝓁

0 .6476128469955936

1 2.799999999999968

Fig. 1. Reference solution for problem (50).

Table 5

Results for Problem (50).

𝓁 𝜌𝓁

0 .8360565285776644

1 1.115178544783084

2 1.057854760373079

3 1.006528883050734

4 .9999714859685488

5 .9999999991678453

6 .9999999999999855

account (18), this implies 𝑟 ≃ 1.064914852480467. According to the result of Theorem 4, the method converges in one iteration, as 
is shown in Table 4. The maximum error on the final solution is ≈ 2 ⋅ 10−13, whereas the estimated one, by using is (45), is 2 ⋅ 10−14
(in this case, the maximum error is essentially close to the origin, where there is the singularity of the derivative).

4.3. Example 3

The third problem is given by:

𝑦(0.7) = 1
𝑡+ 1

sin(𝑡 ⋅ 𝑦), 𝑡 ∈ [0,20],

𝑦(20) = 0.8360565285776644, (50)

which corresponds to the initial value 𝑦(0) = 1. In such a case, the solution is not known in closed form, and the final value has been 
taken from a reference solution computed by using the FHBVM(22,20) method with a constant stepsize ℎ = 0.02 (i.e., by using 1000 
timesteps). This solution is depicted in Fig. 1, and the estimated error (by using a doubled mesh) is ≈ 1.8 ⋅ 10−14.

For solving problem (50), we use a uniform mesh with stepsize ℎ = 20∕400 = 1∕20. The method converges in 6 iterations, producing 
the approximations listed in Table 5. Also in the case, it is possible to appreciate a quadratic-like convergence of the iteration. The 
12

maximum error in the final solution is ≈ 2 ⋅ 10−14, whereas the estimated one, by using is (45), is 6 ⋅ 10−14.
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Table 6

Results for Problem (51).

𝓁 𝜌𝓁

0 .2591172572977875 .5953212597441289

1 2.000000000000012 3.000000000000012

4.4. Example 4

We now consider the following linear (vector) FDE-TVP:

𝑦(0.5) =
(
−3 0
−2 −1

)
𝑦, 𝑡 ∈ [0,2], (51)

𝑦(2) =

(
2𝐸0.5

(
−3 ⋅ 20.5

)
2𝐸0.5

(
−3 ⋅ 20.5

)
+𝐸0.5

(
−20.5

) ) ≃

(
.2591172572977875
.5953212597441289

)
,

having solution

𝑦(𝑡) =

(
2𝐸0.5

(
−3 ⋅ 𝑡0.5

)
2𝐸0.5

(
−3 ⋅ 𝑡0.5

)
+𝐸0.5

(
−𝑡0.5

) ) ,
corresponding to the initial value 𝑦(0) = (2, 3)⊤. Since the vector field is linearly related to the solution, which has a singularity in the 
first derivative at the origin, we use a graded mesh with ℎ1 = 10−14 and 𝑁 = 100. According to the result of Theorem 4, convergence 
is gained in just one iteration, as is confirmed by Table 6. The maximum error in the final solution is ≈ 7 ⋅10−15, whereas the estimated 
one, by using (45), is 2 ⋅ 10−14.

4.5. Example 5

We now consider the following fractional Brusselator model:

𝑦
(0.7)
1 = 1 − 4𝑦1 + 𝑦21𝑦2, (52)

𝑦
(0.7)
2 = 3𝑦1 − 𝑦21𝑦2, 𝑡 ∈ [0,5],

𝑦(5) =

(
.8904632063462272
3.326603532694057

)
.

In such a case, the solution is not explicitly known, and we have computed the final value starting from 𝑦(0) = (1.2, 2.8)⊤ by using 
the FHBVM(22,20) method with a graded mesh with ℎ1 = 10−14 and 𝑁 = 1000: the reference solution is plotted in Fig. 2 in solid 
line, with the initial condition marked by the circle. We solve the problem by using the FHBVM(22,20) method on a graded mesh 
with ℎ1 = 10−14 and 𝑁 = 200. In so doing, the algorithm described in Table 1 converges in 5 iterations, with a quadratic-like order, 
obtaining the results listed in Table 7. The maximum estimated error in the final solution is ≈ 10−13, whereas that in the final point 
is ≈ 4 ⋅ 10−16.

4.6. Example 6

As a last example, we consider a family of semi-linear problems with 𝑦 ∈ℝ2𝜈 and

𝑦(0.7) =
(

𝐼𝜈
−𝐼𝜈

)
𝑦+ 1

20
cos(𝐷𝜈𝑦), 𝑡 ∈ [0,5], (53)

where 𝐼𝜈 ∈ℝ𝜈×𝜈 is the identity matrix, the function cos is meant to be applied in vector mode, and

𝐷𝜈 = diag (1, 2,… ,2𝜈)−1 .

The reference solution at 𝑡 = 5 has been computed by using the FHBVM(22,20) method on a graded mesh with 𝑁 = 300 and ℎ1 = 10−14, 
solving (53) starting from the initial value with entries:

𝑦𝑖(0) =
1
𝑖
cos

(
(𝑖− 1)𝜋

𝜈

)
, 𝑖 = 1,… ,2𝜈. (54)

We solve, at first, the FDE-TVP (53) with 𝑦(5) given, by using Algorithm 1 with the FHBVM(22,20) method on a graded mesh with 
𝑁 = 35 and ℎ1 = 10−8, for 𝜈 = 1, … , 35, thus solving FDE-TVPs having dimension 2, 4, . . . , 70.

The algorithm in Table 1 turns out to always converge in 4–5 iterations. The error in the computed initial value is always less 
than 1.5 ⋅ 10−13. In Fig. 3 is the plot of the execution mean times (over 5 runs) of the algorithm versus the dimension of the problem. 
13

In more detail, the figure plots:
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Fig. 2. Reference solution for problem (52) (solid line). The circle denotes the actual initial condition, whereas the pluses denote the final approximate solution.

Table 7

Results for Problem (52).

𝓁 𝜌𝓁

0 .8904632063462272 3.326603532694057

1 1.195221947994766 2.798766749634182

2 1.199608077826518 2.800213499824565

3 1.199998157974212 2.800001859877902

4 1.199999999973615 2.800000000034993

5 1.199999999999924 2.800000000000298
14

Fig. 3. Execution times of Algorithm 1 for solving problem (53) with 𝑦(5) given, for dimensions ranging from 2 to 70. See the text for details.
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Fig. 4. Comparison of the total execution times of Algorithm 1 and Algorithm 2 for solving problem (53) with 𝑦(5) given. See the text for details.

• the total execution time (all times are in sec);

• the time for computing the required memory terms 𝜙𝛼
𝑛−1(𝑐, 𝜌𝓁) (29) in the local problems (LPs);

• the time for solving the local problems (33);

• the time for computing the memory terms (38) in the local variational problems (LVPs);

• the time for solving the local variational problems (40).

According to Remark 4, we have not considered the pre-processing time for evaluating the integrals 𝐼𝛼𝑃𝑗 in (27) and 𝐽𝛼
𝑗
(𝑥) (30), also 

because they require an extended precision arithmetic (quadruple precision would be enough) but, at the moment, they are computed 
symbolically in Matlab, and not numerically, so that this part of the code is not yet optimized.

From the obtained results, one may conclude that most of the computational time of Algorithm 1 is spent in the solution of 
the variational problem: in particular, the evaluation of the memory terms for the local variational problems. For this reason, we 
now consider Algorithm 2 for solving problem (53). In fact, since the problem is in the form (46), we can use the (quite cheap) 
approximation (47) in place of the fundamental matrix function. Having fixed a tolerance 𝜀 = 10−10, this results in using 𝐽 = 40 in 
(47), which is quite inexpensive. In such a case, the algorithm in Table 2 converges in 9–10 iterations, instead of 4–5. Nevertheless, the 
overall execution time results to be relatively small, due to the fact that the solution of the variational problem is no more required. 
Fig. 4 contains the comparison between the total execution times of Algorithm 1, as seen in Fig. 3, and of Algorithm 2: this latter is 
used for solving problem (53) with 𝜈 = 5, 10, 15, 20, … , 405. The highest dimension (2𝜈 = 810) is chosen because the corresponding 
execution time is practically the same as that of Algorithm 1 when solving the problem of dimension 70 (about 7.5 sec). This clearly 
shows the superiority of the simplified shooting-Newton iteration over the original one, for this semi-linear problem.

5. Conclusions

In this paper we have described a novel shooting procedure which, coupled with the Newton method, proves very appealing for 
numerically solving terminal value problems for fractional differential equations. The implementation details of the given procedure 
have been thoroughly given, when the underlying numerical methods are FHBVMs. These latter methods, when used as spectrally 
accurate methods in time, allow deriving very accurate solutions, along with a suitable estimate of the error in the computed solution.

A corresponding cheaper procedure, relying on a simplified Newton method, has been also described. This latter procedure appears 
to be very promising for semi-linear problems since, in such a case, the associated variational equation is no more required. Numerical 
tests on both scalar and vector problems confirm the effectiveness of the presented approach.

Further directions of investigations include the extension for solving two-point boundary value problems, as well as the efficient 
numerical solution of the local variational problems, due to the fact that they amount to solving just linear systems of algebraic 
equations.
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