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ON THE GEODESIC PROBLEM FOR THE DIRICHLET METRIC

AND THE EBIN METRIC ON THE SPACE OF SASAKIAN

METRICS

SIMONE CALAMAI, DAVID PETRECCA AND KAI ZHENG

Abstract. We study the geodesic equation for the Dirichlet (gradient) metric
in the space of Kähler potentials. We first solve the initial value problem for
the geodesic equation of the combination metric, including the gradient metric.
We then discuss a comparison theorem between it and the Calabi metric. As
geometric motivation of the combination metric, we find that the Ebin metric
restricted to the space of type II deformations of a Sasakian structure is the
sum of the Calabi metric and the gradient metric.
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Introduction

This is the sequel of the previous paper [13] on the Dirichlet metric, which here
will be called gradient metric. We recall the background briefly. The idea of defining
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a Riemannian structure on the space of all metrics on a fixed manifold goes back
to the sixties with the work of Ebin [19]. His work concerns the pure Riemannian
setting and, among other things, defines a weak Riemannian metric on the space
M of all Riemannian metrics on a fixed compact Riemannian manifold (M, g). The
geometry of the Hilbert manifold M was later studied by Freed and Groisser in [21]
and Gil-Medrano and Michor in [22]. In particular the curvature and the geodesics
of M were computed.

Let (M,ω) be a compact Kähler manifold. The space H of Kähler metrics
cohomologous to ω is isomorphic to the space of the Kähler potentials modulo
constants. It can be endowed with three different metrics, known as the Donaldson-
Mabuchi-Semmes L2-metric (1.2), the Calabi metric (1.5) and the Dirichlet (or
gradient) metric (1.8).

The Calabi metric goes back to Calabi [10] and it was later studied by the first
author in [11] where its Levi-Civita covariant derivative is computed, it is proved
that it is of constant sectional curvature, that H is then isometric to a portion of a
sphere in C∞(M) and that both the Dirichlet problem (find a geodesic connecting
two fixed points) and the Cauchy problem (find a geodesic with assigned starting
point and speed) admit smooth explicit solutions.

The gradient metric was introduced and studied in [11, 13]. Its Levi-Civita
connection, geodesic equation and curvature are written down in [13]. In this paper,
we continue to study its geometry. We solve the Cauchy problem of its geodesic
equation, so we prove it is locally well-posed, unlike the corresponding problem for
the L2 metric, which is known to be ill-posed.

Actually, we define a more general metric, the linear combination of the three
metrics on H we call combination metric whose special instance is the sum metric,
i.e. the sum of the gradient and Calabi metrics.

We denote the Hölder spaces with respect to the fixed Kähler metric g by Ck,α(g).
We prove that our Cauchy problem is well-posed (See Thm. 2.2, 2.8 and 2.15).

Theorem 0.1. On a compact Kähler manifold, for every initial Kähler potential
ϕ0, and initial speed ψ0 in Ck,α(g), for all k ≥ 6 and α ∈ (0, 1), there exists, for a
small time T , a unique C2([0, T ], Ck,α(g)∩H) geodesic for the combination metric,
starting from ϕ0 with initial velocity ψ0. Moreover if (ϕ0, ψ0) are smooth then also
the solution is.

Furthermore, we prove a Rauch type comparison theorem of the Jacobi fields
(Theorem 2.16) between the gradient metric and the Calabi metric.

Theorem 0.2. Let γG and γC be two geodesics of equal length with respect to
the gradient metric and the Calabi metric respectively and suppose that for every
XG ∈ TγG(t)H and XC ∈ TγC(t)H, we have

KG(XG, γ
′

G(t)) ≤ KC(XC , γ
′

C(t)).

Let JG and JC be the Jacobi fields along γG and γC such that

• JG(0) = JC(0) = 0,
• J ′

G(0) is orthogonal to γ′G(0) and J ′

C(0) is orthogonal to γ′C(0) ,
• ‖J ′

G(0)‖ = ‖J ′

C(0)‖.
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then we have, for all t ∈ [0, T ],

‖JG(t)‖ ≥

∣∣∣sin
(

2t
√

vol
)∣∣∣

√
vol

.

The sum metric arises from Sasakian geometry. Indeed the geometric motivation
comes naturally from the space of Sasakian metrics HS as follows.

Since HK naturally embeds in the Ebin space M, it is natural to ask what the
restriction of the Ebin metric is. To our knowledge, the restriction of Ebin metric
to subspaces of the space of Riemannian metrics was first considered by [35, (9.19),
page 2485] (for the space of Kähler metrics, see [15]). In this paper we consider on
HK the metric given by (twice) the sum of the Calabi and the gradient metric and
we will refer to it as the sum metric. Its study is justified by the fact that it arises
when restricting the Ebin metric to the space of Sasakian metrics, introduced (and
endowed with the Sasakian analogue of the Mabuchi metric) in [24, 25].

One of our results is the following.

Proposition 0.3. The restriction of the Ebin metric of M to the space of Sasakian
metrics is twice the sum metric.

Moreover, Theorem 0.1 can be generalized to the Sasakian setting, leading to
the corresponding statement for the restriction of the Ebin metric to the space of
Sasakian metrics.

The paper is organized as follows. In section 1 we recall the main definition of the
space of Kähler metrics and in section 2 we write down the Levi-Civita connection of
the combination metric and study the equation of the Cauchy problem for gradient
metric. Finally, in section 3 we compute the restriction of the Ebin metric on the
space of Sasakian metrics, proving Prop. 0.3.
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and explanations and to Dario Trevisan, Prof. Elmar Schrohe and Prof. Christoph
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1. Preliminaries

In this section we recall the definitions of space of Riemannian and Kähler metrics
and several weak Riemannian structures on them.
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1.1. Ebin metric. The space of the Riemmanian metrics M is identified with the
space S2

+(T ∗M) of all symmetric positive (0, 2)-tensors on M . The formal tangent
space at a metric g ∈ M is then given by all symmetric (0, 2)-tensors S2(T ∗M).
For a, b ∈ TgM, the Ebin [19] metric is defined as the pairing

gE(a, b)g =

∫

M

g(a, b)dvg

where g(a, b) is the metric g extended to (0, 2)-tensors and dvg is the volume form
of g. From e.g. [22] one can see that the curvature is non-positive and the geodesic
satisfies the equation

gtt = gtg
−1gt +

1

4
tr(g−1gtg

−1gt)g −
1

2
tr(g−1gt)gt.

Moreover in [22] the explicit expression of the Cauchy geodesics is given.

1.2. Space of Kähler potentials. Moving on to Kähler manifolds, let (M,ω, g)
be a compact Kähler manifold of complex dimension n, with ω a Kähler form
and g the associated Kähler metric. By the ∂∂-Lemma, the space of all Kähler
metrics cohomologous to ω can be parameterized by Kähler potentials; namely, one
considers the space H of all smooth real-valued ϕ such that

ωϕ := ω + i∂∂ϕ > 0

and satisfy the normalization condition [17]

(1.1) I(ϕ) :=

∫

M

ϕ
ωn

n!
−
n−1∑

i=0

i+ 1

n+ 1

∫

M

∂ϕ ∧ ∂ϕ ∧ ωi

i!
∧

ωn−1−i
ϕ

(n− 1 − i)!
= 0.

The tangent space of H at ϕ is then given by

TϕH =

{
ψ ∈ C∞(M) :

∫

M

ψ
ωnϕ

n!
= 0

}
.

1.3. Donaldson-Mabuchi-Semmes’s L2-metric. Donaldson, Mabuchi and Semmes
[17, 30, 33] defined a pairing on the tangent space of H at ϕ given by

gM (ψ1, ψ2)ϕ =

∫

M

ψ1ψ2

ωnϕ

n!
.(1.2)

We shall refer to this metric as the L2-metric. It makes H a non-positively
curved, locally symmetric space. A geodesic ϕ satisfies

ϕ′′ − 1

2
|dϕ′|2ϕ = 0(1.3)

where |dϕ|2ϕ denotes the square norm of the gradient of ϕ′ with respect to the metric
ωϕ. The geodesic equation can be written down as a degenerate complex Monge-
Ampère equation. It was proved by Chen [14] that there is a C1,1 solution for the
Dirichlet problem. More work on this topic was done in [1, 3, 6, 12, 16, 18, 29, 32],
which is far from a complete list.
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1.4. Space of conformal volume forms. According to the Calabi-Yau theorem,
there is a bijection between H and the space of conformal volume forms

(1.4) C =

{
u ∈ C∞(M) :

∫

M

eu
ωn

n!
= vol

}

that is the space of positive smooth functions on M whose integral with respect to
the initial measure is equal to the volume of M (which is constant for all metrics
in H). The map is given by

H ∋ ϕ 7→ log
ωnϕ

ωn0
,

where
ωn

ϕ

ωn
0

represents the unique positive function f such that ωnϕ = fωn0 . The

tangent space TuC is then given by

TuC =

{
v ∈ C∞(M) :

∫

M

veu
ωn

n!
= 0

}
.

1.5. Calabi metric. Calabi [10] introduced the now known Calabi metric as the
pairing

(1.5) gC(ψ1, ψ2)ϕ =

∫

M

∆ϕψ1∆ϕψ2

ωnϕ

n!

where, here and in the rest of the paper, the Laplacian is defined as

∆ϕf = (i∂∂f, ωϕ)ϕ

i.e. the ∂-Laplacian. The geometry studied in [11] is actually the one of C, where
the Calabi metric has the simpler form

(1.6) gC(v1, v2)u =

∫

M

v1v2e
uω

n

n!
.

Back in H, the geodesic equation is

∆ϕϕ
′′ − |i∂∂ϕ′|2ϕ +

1

2
(∆ϕϕ

′)2 +
1

2 vol
gC(ϕ′, ϕ′) = 0.(1.7)

1.6. Dirichlet metric. In [11, 13], the Dirichlet (or gradient) metric is defined as
the pairing

(1.8) gG(ψ1, ψ2)ϕ =

∫

M

(dψ1, dψ2)ϕdµϕ

that is, the global L2(dµϕ)-product of the gradients of ψ1 and ψ2. Its geodesic
equation is

2∆ϕϕ
′′ − |i∂∂ϕ′|2ϕ + (∆ϕϕ

′)2 = 0(1.9)

where |i∂∂ϕ′|2ϕ denotes the square norm with respect to ωϕ of the (1, 1)-form i∂∂ϕ′.
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2. Combination metrics

We can combine together the three metrics as follows. Let α, β, γ be three non-
negative constant and at least one of them positive. Consider the metric

(2.1) g(ψ1, ψ2)ϕ = α · gM (ψ1, ψ2)ϕ + β · gG(ψ1, ψ2)ϕ + γ · gC(ψ1, ψ2)ϕ.

which will be referred to as the combination metric.
Let us prove the existence of the Levi-Civita covariant derivative for the combi-

nation metric. We can write

(2.2) g(ψ1, ψ2)ϕ = gC(Mϕψ1, ψ2).

where

Mϕ = αG2
ϕ − βGϕ + γ

where Gϕ is the Green operator associated to the Laplacian ∆ϕ.
We have the following.

Proposition 2.1. For a curve ϕ ∈ H and a section v on it, the Levi-Civita covari-
ant derivative of the combination metric is the unique Dtv that solves

MϕDtψ = [G2
ϕαD

M
t − βGϕD

G
t + γDC

t ]ψ

where DM, DG
t , D

C
t are the covariant derivatives of the L2, gradient and Calabi

metric.

Proof. We start by proving that Mϕ is a bijection of TϕH. The injectivity holds
because it defines a metric. To prove surjectivity, we see that the problem Mϕu = f

is equivalent to Du = h where D = γ∆2
ϕ − β∆ϕ + α. It is elliptic and then by

known results we have

C∞(M) = kerD ⊕ Im(D)

and by integration and the normalization condition on TϕH we immediately see
that TϕH ∩ kerD = 0, so TϕH = Im(D) ∩ TϕH and we obtain surjectivity.

The fact that Dt is torsion-free is evident from its definition. Let us now compute

d

dt
g(ψ, ψ) = 2αgM (DM

t ψ, ψ) + 2βgG(DG
t ψ, ψ) + 2γgC(DC

t ψ, ψ)

= 2αgC(G2
ϕD

M
t ψ, ψ) − 2βgC(GϕD

G
t ψ, ψ) + 2γgC(DC

t ψ, ψ)

= 2gC([G2
ϕαD

M
t − βGϕD

G
t + γDC

t ]ψ, ψ)

= 2gC(MϕDtψ, ψ)

= 2g(Dtψ, ψ)

so the compatibility with the metric holds as well. �

2.1. Geodesic equation of the combination metric. The geodesic equation of
the combination metric is the combination of the geodesic equations of L2-metric,
gradient metric and the Calabi metric. After rearrangement, it is written in the
following form

[α− β∆ϕ + γ∆2
ϕ]ϕ′′ =

α

2
|dϕ′|2ϕ +

[
β

2
− γ∆ϕ

]
|i∂∂ϕ′|2ϕ +

[
β

2
+
γ

2
∆ϕ

]
(∆ϕϕ

′)2.

(2.3)

The key observation is that the differential order on the both sides of the geodesic
equation (2.3) are the same. We will carry out in detail in the next section the study
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of the geodesic equation with β = γ = 1 and α = 0, the general case with α = 1 is
similar, so we omit the proof.

This observation suggest that, though the Cauchy problem of the geodesic ray
with respect to the L2-metric is ill-posed, after combining the L2-metric with the
Calabi metric and the gradient metric, the new geodesic equation is well-posed.

2.2. Local well-posedness of the geodesic equation.

2.2.1. Existence and uniqueness. Recall the definition of the space of Kähler po-
tentials

H = {ϕ ∈ C∞(M) : ω + i∂∂ϕ > 0, I(ϕ) = 0}.
We are aiming to solve the geodesic equation with β = γ = 1 and α = 0, i.e. the

equation

(2.4) (∆ϕ − I)

(
(∆ϕϕ

′)′ +
1

2
(∆ϕϕ

′)2
)
− 1

2
|i∂∂ϕ′|2ϕ = 0.

We rewrite it as a system

(2.5)






ϕ′ = ψ

ψ′ = Lϕ(ψ) := ∆−1
ϕ

[
1
2 (∆ϕ − I)−1|i∂∂ψ|2ϕ + |i∂∂ψ|2ϕ + 1

2 (∆ϕψ)2
]

with the initial data ϕ(0) = ϕ0, ψ(0) = ψ0 ∈ Ck,α(g).
Take a constant δ > 0 such that ω + i∂∂ϕ0 ≥ 2δω. Let us introduce also the

following function spaces

Hk,α = {ϕ ∈ Ck,α(g) : ω + i∂∂ϕ > 0, I(ϕ) = 0}
and

Hk,α
δ = {ϕ ∈ Ck,α(g) : ω + i∂∂ϕ ≥ δω, I(ϕ) = 0},

where k ≥ 2 and α ∈ (0, 1).
The aim of this subsection is to prove the following.

Theorem 2.2. For every integer k ≥ 6 and α ∈ (0, 1) and initial data ϕ0 ∈ Hk,α
δ

and ψ0 ∈ Tϕ0
Hk,α there exists a positive ε and a curve ϕ ∈ C2((−ε, ε),Hk,α

δ ) which
is the unique solution of (2.4) with initial data (ϕ0, ψ0).

We need the following lemma.

Lemma 2.3 (Schauder estimates, see [4, p. 463]). Let P be an elliptic linear oper-
ator of order 2 acting on the Hölder space Ck+2,α(g). Then for u ∈ Ck+2,α(g) we
have

‖u‖Ck+2,α(g) ≤ c1‖Pu‖Ck,α(g) + c2‖u‖L∞

where c1 depends only on the Ck,α(g)-norm of the coefficients of P and, if u is
L2(g)-orthogonal to kerP , then c2 = 0.

The structure of the system (2.5) suggests to consider the following complete
metric space

(2.6) X = C2([−ε, ε],Hk,α
δ ) × C2([−ε, ε], Ck,α(g))

as the function space where we are going to look for solutions of our system. The
norm that we consider is defined for ψ ∈ C2([−ε, ε], Ck,α(g)) as

|ψ|k,α := sup
t∈[−ε,ε]

‖ψ(t, ·)‖Ck,α(g),
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and in the product space, the norm of any element (ϕ, ψ) ∈ X is

|(ϕ, ψ)|k,α := |ϕ|k,α + |ψ|k,α.
We work in an appropriate metric ball in X obtained by the following lemma.

Lemma 2.4. There exists r > 0 such that if ϕ ∈ Ck,α(g) is such that ‖ϕ −
ϕ0‖Ck,α(g) < r then ϕ ∈ Hk,α

δ .

Proof. Being k ≥ 2 we have ‖ϕ− ϕ0‖C2,α(g) ≤ ‖ϕ− ϕ0‖Ck,α(g) < r. Then

gϕ = gϕ − gϕ0
+ gϕ0

≥ −‖ϕ− ϕ0‖C2,α(g)g + 2δg

≥ (2δ − r)g

which is strictly bigger than δg for r < δ. �

We consider the operator

(2.7) T (ϕ, ψ) =

(
ϕ0 +

∫ t

0

ψ(s)ds, ψ0 +

∫ t

0

(Lϕ(ψ))(s)ds

)
.

Let us now fix r > 0 as in Lemma 2.4. We have the following proposition, but
first let us isolate a lemma.

Lemma 2.5. There exist a positive C depending only on r and g such that

‖gabϕ ‖Ck,α(g) ≤ C.

Proof. For fixed a, b it holds ‖gabϕ ‖Ck,α(g) ≤ ‖g−1
ϕ ‖Ck,α(g) where the norm is intended

as operator norm. Then by the sub-multiplicative property we have ‖g−1
ϕ ‖Ck,α(g) ≤

‖gϕ‖−1
Ck,α(g)

and by estimate in the proof of Lemma 2.4 we have that ‖gϕ‖−1
Ck,α(g)

≤
(2δ − r)−1‖g‖Ck,α(g) =: C(r, g). �

Proposition 2.6. For any (ϕ0, ψ0) ∈ Hk,α
δ × Ck,α(g) there exists ε > 0 such that

the metric ball Br(ϕ0, ψ0) ⊂ X centered in (ϕ0, ψ0) of radius r is mapped into itself
by T .

Proof. We need to estimate |T (ϕ0, ψ0) − (ϕ0, ψ0)|k,α. Let us estimate the first
component

∣∣∣∣ϕ0 +

∫ t

0

ψ(s)ds− ϕ0

∣∣∣∣
k,α

= sup
t∈[−ε,ε]

∥∥∥∥
∫ t

0

ψ(s)ds

∥∥∥∥
Ck,α(g)

≤ sup
t∈[−ε,ε]

∫ t

0

‖ψ(s)‖Ck,α(g)ds

≤ sup
t∈[−ε,ε]

∫ t

0

sup
s∈[−ε,ε]

‖ψ(s)‖Ck,α(g)ds

≤ ε · (|ψ0|k,α + |ψ − ψ0|k,α)

≤ ε · (|ψ0|k,α + r).

As for the second component, it is clear it is enough to estimate ‖Lϕ(ψ)‖Ck,α(g)

for every t.
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We have, by Lemma 2.3,

‖Lϕ(ψ)‖Ck,α(g) ≤
∥∥∥∥∆−1

ϕ

[
1

2
(∆ϕ − I)−1|i∂∂ψ|2ϕ + |i∂∂ψ|2ϕ +

1

2
(∆ϕψ)2

]∥∥∥∥
Ck,α(g)

≤ C(‖ϕ‖Ck,α(g))

∥∥∥∥
1

2
(∆ϕ − I)−1|i∂∂ψ|2ϕ + |i∂∂ψ|2ϕ +

1

2
(∆ϕψ)2

∥∥∥∥
Ck−2,α(g)

.

To estimate the first summand we have∥∥∥∥
1

2
(∆ϕ − I)−1|i∂∂ψ|2ϕ

∥∥∥∥
Ck−2,α(g)

≤ C(‖ϕ‖Ck−2,α(g))‖|i∂∂ψ|2ϕ‖Ck−4,α(g)

≤ C(r)‖giϕ gkℓϕ ψiℓψk‖Ck−4,α(g)

≤ C(r)‖ψ‖Ck,α(g)

where in the first inequality we have used again Lemma 2.3 and in the last we have
used that ‖ψ‖Ck−2,α(g) ≤ ‖ψ‖Ck,α(g) < r.

The second summand is estimated, similarly as before, by

‖|i∂∂ψ|2ϕ‖Ck−2,α(g) ≤ C(r)‖ψ‖Ck,α(g).

The third summand is∥∥∥∥
1

2
(∆ϕψ)2

∥∥∥∥
Ck−2,α(g)

≤ ‖(∆ϕψ)2‖Ck−2,α(g) ≤ ‖giϕψi‖2Ck−2,α(g)

≤ C(r)‖ψ‖Ck,α(g).

So we can conclude that the second component of |T (ϕ0, ψ0) − (ϕ0, ψ0)|k,α is
estimated by εC(r)|ψ − ψ0|k,α ≤ εrC(r), so it is enough to choose ε(r) such that
ε(r)C(r) < 1. �

Our second step is the following.

Proposition 2.7. The map T on the metric ball Br(ϕ0, ψ0) is a contraction.

Proof. For (ϕ, ψ) and (ϕ̃, ψ̃) in Br(ϕ0, ψ0), let for simplicity L̃ = Lϕ̃. We need

to estimate ‖L(ψ) − L̃(ψ̃)‖Ck,α(g). Define f and f̃ such that L(ψ) = ∆−1
ϕ f and

L̃(ψ̃) = ∆−1
ϕ̃ f̃ . Then we have

∆ϕ(L(ψ) − L̃(ψ̃)) = f − f̃ − ∆ϕL̃(ψ̃) + ∆ϕ̃L̃(ψ̃)

= f − f̃ + (giϕ̃ − giϕ )(L̃(ψ̃))i

so by the Schauder estimates of Lemma 2.3 we have

‖L(ψ) − L̃(ψ̃)‖Ck,α(g) ≤ C(‖ϕ‖Ck,α(g))

·
(
‖f − f̃‖Ck−2,α(g) + ‖∆ϕ̃L̃(ψ̃) − ∆ϕL̃(ψ̃)‖Ck−2,α(g)

)
.

To estimate the second summand, let gs = (1− s)gϕ + sgϕ̃. Then we notice we can
write

∆ϕ̃L̃(ψ̃) − ∆ϕL̃(ψ̃) = −
(∫ 1

0

giℓs g
k
s ds

)
· (ϕ̃− ϕ)kℓ · (L̃(ψ̃))i.

so we have

‖∆ϕ̃L̃(ψ̃) − ∆ϕL̃(ψ̃)‖Ck−2,α(g) ≤ C(‖ϕ‖Ck,α(g), ‖ϕ̃‖Ck,α(g))‖ϕ̃− ϕ‖Ck,α(g) · ‖L̃ψ̃‖Ck,α(g)

≤ C(r)‖ϕ̃ − ϕ‖Ck,α(g)
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where in the last inequality we have used the estimate for ‖L̃ψ̃‖Ck,α(g) from the
previous proposition.

Let us now consider f̃ − f which can be written as

f̃ − f =
1

2
(∆ϕ − 1)−1|i∂∂ψ|2ϕ − 1

2
(∆ϕ̃ − 1)−1|i∂∂ψ̃|2ϕ̃(2.8)

+ |i∂∂ψ|2ϕ − |i∂∂ψ̃|2ϕ̃

− 1

2
(∆ϕψ)2 +

1

2
(∆ϕ̃ψ̃)2.

Let h− h̃ be the first summand, so we can write

(∆ϕ − 1)(h− h̃) = |i∂∂ψ|2ϕ − |i∂∂ψ̃|2ϕ̃ + (∆ϕ̃ − ∆ϕ)h̃.

Again by Lemma 2.3 we have

‖h− h̃‖Ck−2,α(g) ≤ C(‖ϕ‖Ck−2,α(g)) · ‖|i∂∂ψ|2ϕ − |i∂∂ψ̃|2ϕ̃ + (∆ϕ̃ − ∆ϕ)h̃‖Ck−4,α(g).

The second summand is

‖(∆ϕ̃ − ∆ϕ)h̃‖Ck−4,α(g) ≤
∥∥∥∥−

(∫ 1

0

giℓs g
k
s ds

)
· (ϕ̃− ϕ)kℓ · h̃i

∥∥∥∥
Ck−4,α(g)

≤ C(‖ϕ‖Ck−2,α(g), ‖ϕ̃‖Ck−2,α(g)) · ‖ϕ̃− ϕ‖Ck−2,α(g) · ‖h̃‖Ck−2,α(g).

By definition of h̃ we estimate then

‖h̃‖Ck−2,α(g) ≤ C(‖ϕ̃‖Ck−2,α(g)) · ‖|i∂∂ψ̃|2ϕ̃‖Ck−4,α(g)

≤ C(r)(‖ϕ̃‖Ck−2,α(g) + 1)2 · ‖ψ̃‖2Ck−2,α(g)

≤ C(r).

So we finally have for the first summand in (2.8)
∥∥∥∥

1

2
(∆ϕ−1)−1|i∂∂ψ|2ϕ−

1

2
(∆ϕ̃−1)−1|i∂∂ψ̃|2ϕ̃

∥∥∥∥
Ck−2,α(g)

≤ C(r)(‖ϕ̃−ϕ‖Ck−2,α(g)+‖ψ̃−ψ‖Ck−2,α(g)).

The second summand in (2.8) is estimated by the same trick as in the previous
proposition.

For the last summand in (2.8) we have

1

2
(∆ϕ̃ψ̃)2 − 1

2
(∆ϕψ)2 =

1

2
(∆ϕψ − ∆ϕ̃ψ̃)(∆ϕψ + ∆ϕ̃ψ̃)

=
1

2
(∆ϕψ − ∆ϕ̃ψ + ∆ϕ̃ψ − ∆ϕ̃ψ̃)(∆ϕψ + ∆ϕ̃ψ̃).

so we estimate∥∥∥∥
1

2
(∆ϕ̃ψ̃)2 − 1

2
(∆ϕψ)2

∥∥∥∥
Ck−2,α(g)

≤
(
‖∆ϕψ − ∆ϕ̃ψ‖Ck−2,α(g) + ‖∆ϕ̃ψ − ∆ϕ̃ψ̃‖Ck−2,α(g)

)

·
(
‖∆ϕψ‖Ck−2,α(g) + ‖∆ϕ̃ψ̃‖Ck−2,α(g)

)
.

By the estimates for the Laplacians we are able to say that this quantity is

≤ C(r)(‖ϕ̃ − ϕ‖Ck,α(g) + ‖ψ̃ − ψ‖Ck,α(g)).
Again, the estimate for the norm | · |k,α is the same multiplied by ε, so again it

suffices to pick ε(r) such that ε(r)C(r) < 1. �
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2.2.2. Higher regularity. Now we explain how to obtain the smoothness of the so-
lution of Theorem 2.2.

Theorem 2.8. For every ϕ0 ∈ H , ψ0 ∈ Tϕ0
H , there exists a positive ε and a

curve ϕ ∈ C∞((−ε, ε),H) which is the unique solution of (2.4) with smooth initial
data (ϕ0, ψ0).

We isolate the following technical lemma that can be proved by computation in
local coordinates.

Lemma 2.9. Let ∂A be the derivative with respect to the complex coordinate zA
and let fA = ∂Af . Then the following hold

(giϕ )A = −gisϕ (gϕsm)Ag
m
ϕ ;

∂A(∆ϕf) = ∆ϕfA + (giϕ )Afi;

∂A|i∂∂ψ|2ϕ = 2(i∂∂ψ, i∂∂ψA) − ψiψkℓg
is
ϕ (gϕsm)Ag

mℓ
ϕ gmϕ − ψiψkℓg

iℓ
ϕ g

ks
ϕ (gϕsm)Ag

m
ϕ

= 2(i∂∂ψ, i∂∂ψA) +BϕψϕA;

∂A(∆ϕψ)2 = 2∆ϕψ[∆ϕψA + (giϕ )Aψi]

where Bϕψ is a linear operator.

We want to derive the second equation of (2.10) by deriving the equation

(2.9) F (ϕ, ψ) = (∆ϕ − 1)

[
∆ϕψ

′ − |i∂∂ψ|2ϕ +
1

2
(∆ϕψ)2

]
− 1

2
|i∂∂ψ|2ϕ = 0.

Lemma 2.10. ∂AF (ϕ, ψ) is a linear fourth order operator on (ϕA, ψA). When
(ϕ, ψ) are Ck,α, the coefficients of ∂AF (ϕ, ψ) are Ck−4,α.

Proof. The derivative of the first term is, by Lemma 2.9,

∂A(∆ϕ − 1)∆ϕψ
′ = (∆ϕ − 1)

[
∆ϕψ

′

A + (giϕ )Aψ
′

i)
]

+ (giϕ )A(∆ϕψ
′)i

where we notice linearity with respect to ϕA and ψA.
The derivative of the second term is

∂A(∆ϕ − 1)|i∂∂ψ|2ϕ = (∆ϕ − 1)∂A|i∂∂ψ|2ϕ + (giϕ )A(|i∂∂ψ|2ϕ)i

= (∆ϕ − 1)[2(i∂∂ψ, i∂∂ψA) +BϕψϕA] + (giϕ )A(|i∂∂ψ|2ϕ)i

and we notice again linearity with respect to ϕA and ψA.
The third and fourth terms are as in Lemma 2.9 and are linear with respect to

ϕA and ψA as well. �

Proof of Theorem 2.8. When we are given a smooth initial data (ϕ0, ψ0) and Hölder
exponent (k, α) with k ≥ 6 and α ∈ (0, 1), according to Theorem 2.2, we have
a maximal lifespan ε = ε(k + 1, α) of the geodesic ϕ(t) ∈ C2((−ε, ε),Hk+1,α).
Meanwhile, for a less regular space (k, α), we have an other maximal lifespan ε(k, α).
In general,

ε(k + 1, α) ≤ ε(k, α).

Now we explore the important property of our geodesic equation and thus prove
the inverse inequality ε(k + 1, α) ≥ ε(k, α).

Recall that our geodesic equation could be written down as a couple system
(2.5).
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The important observation is that this system is of order zero. In a local coordi-
nate chart on M , we take the derivative ∂A = ∂

∂zA
on the both side of the equations

and get

(2.10)

{
(∂Aϕ)′ = ∂Aψ

(∂Aψ)′ = ∂A(Lϕψ).

If we manage to prove that this is a linear system in ϕA = ∂Aϕ and ψA = ∂Aψ

(all other functions treated as constants) then we can argue as follows. According to
Lemma 2.10, the coefficients of (2.10) are Ck−4,α and exist for |t| < ε(k, α). Because
of its linearity and of fourth order on (ϕA, ψA), its Ck,α solution (ϕA, ψA) exists
as long as the coefficients do, so we have that ϕ is Ck+1,α at least for |t| < ε(k, α),
proving that ε(k + 1, α) ≥ ε(k, α). �

2.3. Exponential map, Jacobi fields and conjugate points. With the local
well-posedness of the geodesic, we are able to define the exponential map locally at
point ϕ ∈ H by

expϕ(tψ) = γ(t), 0 ≤ t ≤ ε(2.11)

where γ is the geodesic starting from ϕ with initial speed ψ. Furthermore, we have
the following.

Corollary 2.11. For any ϕ1 ∈ H, there exists an ε > 0 so that for any ϕ2 ∈ H
with ‖ϕ1−ϕ2‖C2,α < ε, there is a unique geodesic connecting ϕ1 to ϕ2 whose length
is less than ε.

Now that we have achieved the existence of smooth short-time geodesics we can
move a step further to bring the definition of its Jacobi vector fields. The very
definition comes from classical Riemannian geometry, see [11] for more details.

Let γ : [0, ε) → H be a smooth geodesic for the metric connection D on H. A
Jacobi field J along γ is a map J : [0, ε) → TH such that J(t) ∈ Tγ(t)H for all
t ∈ [0, ε) and moreover satisfies the Jacobi equation

(2.12)
D2

dt2
J(t) +R

(
J(t),

d

dt
γ(t)

)
d

dt
γ(t) = 0.

The Jacobi field is a vector field along the geodesic γ(t). Let v = d
dt
|t=0γ(t) at

γ(0) = ϕ, the geodesic is given by the exponential map γ(t) = expϕ tv. Then given
w ∈ TϕH, the solution of the Jacobi equation (2.12) with initial condition J(0) = 0
and J ′(0) = w is given by

J(t) = d expϕ |tvtw.
The definition of conjugate points in the infinite dimensional setting is different

from the one from classical Riemannian geometry. Let ϕ ∈ H, ψ ∈ TϕH and let
γ be the geodesic with γ(0) = ϕ and γ′(0) = ψ. There are two notions related to
conjugate points, cf. e.g. [23, 28, 31].

Definition 2.12. We say that γ(1) is

• monoconjugate to ϕ if d expϕ |ψ is not injective;
• epiconjugate to ϕ if d expϕ |ψ is not surjective.

Remark 2.13. In order to understand the conjugate points, it turns out to further
study whether d expϕ |ψ is a Fredholm operator between the tangent spaces of H.
Then the infinite dimensional version of Sard’s theorem applies [34].
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2.4. Dirichlet metric and a comparison theorem. Now we continue the study
of the (Dirichlet) gradient metric.

2.4.1. Sectional curvature for the gradient metric. We denote ϕ = ϕ(s, t) be a
smooth two parameter family of curves in the space of Kähler metrics H, and the
corresponding two parameter families of curves of tangent vectors ϕt, ϕs along ϕ are
R-linearly independent. The sectional curvature of the gradient metric is computed
in [13],

KG(ϕs, ϕt)ϕ =
1

2

∫

M

|da(s, t)|2gϕ
ωnϕ

n!
− 1

2

∫

M

(da(s, s), da(t, t))gϕ
ωnϕ

n!
,

where the symmetric expression a(σ, τ) satisfies

∆ϕa(σ, τ) = ∆ϕϕσ∆ϕϕτ − (i∂∂ϕσ, i∂∂ϕτ ).

We let

{ϕs, ϕt}ϕ =

√
−1

2

(
gi
∂ϕs

∂zi
∂ϕt

∂z
− gi

∂ϕt

∂zi
∂ϕs

∂z

)
= Im(∂ϕs, ∂ϕt)ϕ .

The expression of the sectional curvature KM for the L2 metric is, for all linearly
independent sections ϕs, ϕt,

KM (ϕs, ϕt)ϕ = −
∫
M

Im(∂ϕs, ∂ϕt)
2
ϕ

ωn
ϕ

n!√∫
M
ϕ2
s

ωn
ϕ

n!

√∫
M
ϕ2
s

ωn
ϕ

n! −
∫
M
ϕsϕt

ωn
ϕ

n!

.

Therefore, KM ≤ 0. On the other side, the first author proved that, for any linearly
independent sections ϕs, ϕt the sectional curvature for the Calabi metric KC is

KC(ϕs, ϕt) =
1

4 vol
.

In a private communication, Calabi conjectured that there exists the following
relation among the sectional curvatures of L2 metric, gradient metric and Calabi
metric,

KM ≤ KG < KC .

Remark 2.14. It would be interesting to construct examples to detect the sign of the
sectional curvature of the gradient metric and determine whether this conjecture
holds.

2.4.2. Local well-posedness for the gradient metric. On the other hand, the appli-
cation of the proofs of Theorem 2.2 and 2.8 leads to the corresponding theorem of
the gradient metric.

Theorem 2.15. For every integer k ≥ 6 and α ∈ (0, 1) and initial data ϕ0 ∈ Hk,α

and ψ0 ∈ Tϕ0
Hk,α there exists a positive ε and a curve ϕ ∈ C2((−ε, ε),Hk,α)

which is the unique solution of the geodesic equation (1.9) with initial data (ϕ0, ψ0).
Moreover, if the initial data is smooth, then the solution ϕ is also smooth.
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2.4.3. Sectional curvature and stability. The idea that the sign of the sectional
curvature could be used to predict the stability of the geodesic ray goes back to
Arnold [2]. Intuitively, when the sectional curvature is positive, all Jacobi fields
are uniformly bounded, then under a small perturbation of the initial velocities,
the geodesics remain nearby. When the sectional curvature is negative, the Jacobi
fields grow exponentially in time, then the geodesic rays grow unstable. When the
sectional curvature is zero, the geodesic ray is linear. For the gradient metric, the
picture might be more complicated as the sign of the sectional curvature might
vary along different planes. However, we are able to examine the growth of Jacobi
fields along geodesics by applying the comparison theorem for infinite dimensional
manifolds.

Then with the definitions of the Jacobi equation and conjugate points in Section
2.3, we could apply Biliotti’s [5] Rauch comparison theorem for weak Riemannian
metrics, see [27].

Theorem 2.16. Let γG and γC be two geodesics of equal length with respect to
the gradient metric and the Calabi metric respectively and suppose that for every
XG ∈ TγG(t)H and XC ∈ TγC(t)H, we have

KG(XG, γ
′

G(t)) ≤ 1

4 vol
= KC(XC , γ

′

C(t)).

Let JG and JC be the Jacobi fields along γG and γC such that

• JG(0) = JC(0) = 0,
• J ′

G(0) is orthogonal to γ′G(0) and J ′

C(0) is orthogonal to γ′C(0) ,
• ‖J ′

G(0)‖ = ‖J ′

C(0)‖.
then we have, for all t ∈ [0, T ],

‖JG(t)‖ ≥

∣∣∣sin
(

2t
√

vol
)∣∣∣

√
vol

.

Proof. In Biliotti’s Rauch comparison theorem, it is required that JC(t) is nowhere
zero in the interval (0, T ] and if γC has most a finite number of points which are
epiconjugate but not monoconjugate in (0, T ], this condition is satisfied for the
Calabi metric, see [11]. Therefore the conclusion of the comparison theorem is
that, for all t ∈ [0, T ],

‖JG(t)‖ ≥ ‖JC(t)‖.
We know that, as an application of [11, Theorem 8], that

‖JC(t)‖ =

∣∣∣sin
(

2t
√

vol
)∣∣∣

√
vol

,

thus the resulting inequality in the proposition follows. �

3. The space of Sasakian metrics

3.1. The restricted Ebin metric. Since the sum metric arises in the context
of Sasakian geometry, in this subsection we recall the definitions of the case. A
Sasakian manifold is a (2n+ 1)-dimensional M together with a contact form η, its
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Reeb field ξ, a (1, 1)-tensor field Φ and a Riemannian metric g that makes ξ Killing,
such that

η(ξ) = 1, ιξdη = 0

Φ2 = − id +ξ ⊗ η

g(Φ·,Φ·) = g + η ⊗ η

dη = g(Φ·, ·)
NΦ + ξ ⊗ dη = 0

where NΦ is the torsion of Φ. The first four mean that M is a contact metric
manifold and the last one means it is normal, see [7, Chap. 6].

The foliation defined by ξ is called characteristic foliation. Let D = ker η. It is
known that (dη, J = Φ|D) is a transversally Kähler structure, as the second, third
and fourth equation above say.

A form α is said to be basic if ιξα = 0 and ιξdα = 0. A function f ∈ C∞(M)
is basic if ξ · f = 0. The space of smooth basic functions on M is denoted by
C∞

B (M). The transverse Kähler structure defines the transverse operators ∂, ∂ and

dc = i
2 (∂ − ∂) acting on basic forms, analogously as in complex geometry.1 The

form dη is basic and its basic class is called transverse Kähler class.
Given an initial Sasakian manifold (M, η0, ξ0,Φ0, g0), basic functions parameter-

ize a family of other Sasakian structures on M which share the same characteristic
foliation and are in the same transverse Kähler class, in the following way. We
follow the notation of [7, p. 238].

Let ϕ ∈ C∞

B (M) and define ηϕ = η0 + dcϕ. The space of all ϕ’s is

H̃S = {ϕ ∈ C∞

B (M) : ηϕ ∧ dηϕ 6= 0}
and, in analogy of the Kähler case, we consider normalized “potentials”

HS = {ϕ ∈ H̃S : I(ϕ) = 0}.
The equation I = 0 is a normalization condition, similar to (1.1). We refer to [25]
for the definition of I in our case, which is such that

TϕHS =

{
ψ ∈ C∞

B (M) :

∫

M

ψ
1

n!
ηϕ ∧ dηnϕ = 0

}
.

These deformations are called of type II and it is easy to check that they leave
the Reeb foliation and the transverse holomorphic structure fixed, since ξ is still
the Reeb field for ηϕ.

Every ϕ ∈ HS defines a new Sasakian structure where the Reeb field and the
transverse holomorphic structure are the same and

(3.1)

ηϕ = η0 + dcϕ

Φϕ = Φ0 − (ξ ⊗ dcϕ) ◦ Φ0

gϕ = dηϕ ◦ (id⊗Φϕ) + ηϕ ⊗ ηϕ.

Note that one could write gϕ = dηϕ ◦ (id⊗Φ0) + ηϕ ⊗ ηϕ since the endomorphism
Φϕ − Φ0 has values parallel to ξ and dηϕ is basic. Indeed, the range of Φϕ is the
one of Φ0 plus a component along ξ, so if we contract it with dη the latter vanishes.

1This definition with the 1

2
is classical in Sasakian geometry and differs from the convention

usually used in complex geometry dc = i(∂ − ∂). With this convention, the relation ddc = i∂∂

holds on basic forms.
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As in the Kähler case, these deformations keep the volume of M fixed, which will
be denoted by vol.

The L2 metric was generalized to HS in [25, 26], where Guan and Zhang solved
the Dirichlet problem for the geodesic equation and He provided a Sasakian ana-
logue of Donaldson’s picture about extremal metrics.

On the space HS one can define the Calabi metric and the gradient metric in
the same ways as in formulae (1.5) and (1.8) by using the so called basic Laplacian
which acts on basic functions in the same way as in the Kähler case and by using
the volume form 1

n!ηϕ ∧ dηnϕ in the integrals.
In this setting, it is easy to see that the map

HS ∋ ϕ 7→ log
ηϕ ∧ dηnϕ
η0 ∧ dηn0

maps basic functions to basic functions. The transverse Calabi-Yau theorem of [8]
allows to prove the surjectivity of this map as in the Kähler case, more precisely
between HS and the space of basic conformal volume forms

CB =

{
u ∈ C∞

B (M) :

∫

M

eu
1

n!
η0 ∧ dηn0 = vol

}
.

As noted above, the space C can be defined also for Sasakian manifolds by just
taking the Sasakian volume form 1

n!η0 ∧ dηn0 instead of the Kähler one. One might
ask how the spaces CB and C are related. Obviously CB ⊆ C but we can say more.

Proposition 3.1. CB is totally geodesic in C.
Proof. It is straightforward to verify that for any curve in CB and section along
it, the covariant derivative defined in [11] is still basic, meaning that the (formal)
second fundamental form of CB vanishes. �

Let M be the Ebin space of all Riemannian metrics on (M, g0, ξ0, η0) Sasakian
of dimension 2n+ 1.

We define an immersion Γ : HS → M that maps ϕ 7→ gϕ as defined in (3.1). As
in the Kähler case, it is injective. Indeed if two basic function ϕ1, ϕ2 ∈ HS give
rise to the same Sasakian metric, taking the corresponding transverse structures we
would have ddc(ϕ1 − ϕ2) = 0 forcing ϕ1 − ϕ2 = const. The normalization I(·) = 0
then implies ϕ1 = ϕ2.

Let us compute the differential of Γ. Let ϕ(t) be a curve in HS with ϕ(0) = ϕ

and ϕ′(0) = ψ ∈ TϕHS . Then

(3.2) Γ∗ϕψ =
d

dt

∣∣∣∣
t=0

gϕ(t) = ddcψ(Φ0 ⊗ id) + 2dcψ ⊙ ηϕ

with the convention a ⊙ b = 1
2 (a ⊗ b + b ⊗ a). For easier notation we call βψ :=

ddcψ(Φ0 ⊗ 1).
The differential of Γ is also injective. Indeed if ψ is in its kernel, then

0 = Γ∗ϕψ(ξ, ·) = dcψ,

forcing ψ to be zero, as it has zero integral.
On TgM recall that the Ebin metric is given by, for a, b ∈ TgM = Γ(S2M),

gE(a, b)g =

∫

M

g(a, b)dvg.

We want to compute the restriction of the Ebin metric on the space HS .
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Proposition 3.2. The restriction of the Ebin metric to HS is twice the sum of the
Calabi metric with the gradient metric

1

2
Γ∗gE = gC + gG

which we have called the sum metric.

Proof. Computing the length with respect to gϕ of the tensor in (3.2) we get

|βψ + 2dcψ ⊙ ηϕ|2gϕ = gϕ(βψ, βψ) + 2gϕ(dcψ ⊗ ηϕ, d
cψ ⊗ ηϕ) + 2gϕ(βψ , 2d

cψ ⊙ ηϕ)

= gϕ(βψ, βψ) + 2gϕ(dcψ, dcψ)gϕ(ηϕ, ηϕ) + 2βψ((dcψ)♯, ξ)

= gϕ(βψ, βψ) + 2gϕ(dcψ, dcψ)

using the fact that the gϕ-dual of ηϕ is ξ, that the ♯ is done with respect to gϕ and
finally the fact that the tensor βψ is transverse, i.e. vanishes when evaluated on ξ.

Integrating with respect to dµϕ we have

〈Γ∗ϕψ,Γ∗ϕψ〉ϕ = ‖βψ‖2ϕ + 2‖dcψ‖2ϕ
where the right hand side are L2 norms with respect to the metric gϕ. The second
summand is twice the gradient metric on HS given by

gG(ψ, ψ) =

∫

M

gϕ(dψ, dψ)
1

n!
ηϕ ∧ dηnϕ.

(For a basic function, there is no difference between its Riemannian gradient and
its basic gradient).

We now want to establish a useful formula that we will need in a while. Fix
ϕ ∈ HS and h ∈ TϕHS we consider the curve ϕ(t) = ϕ + th which is in HS for
small t. We then compute for every curve f(t) ∈ TϕHS ,

0 =
d

dt

∣∣∣∣
t=0

∫

M

∆ϕ(t)f
1

n!
ηϕ(t)∧dηnϕ(t) =

∫

M

(∆ϕf
′(t)−(ddcf, ddch)ϕ+∆ϕf∆ϕh)

1

n!
ηϕ∧dηnϕ.

which means that

gC(f, h)ϕ =

∫

M

(ddcf, ddch)ϕ
1

n!
ηϕ ∧ dηnϕ.

Then we have, since βψ is the (transverse) 2-tensor associated to the basic form
ddcψ, whose point-wise norms are related by |βψ |2 = 2|ddcψ|2,

gC(ψ, ψ) =

∫

M

(∆ϕψ)2
1

n!
ηϕ ∧ dηnϕ =

∫

M

(ddcψ, ddcψ)ωϕ

1

n!
ηϕ ∧ dηnϕ =

1

2
‖βψ‖2ϕ.

�

3.2. The sum metric on HS. Consider on HS the metric g = 2gC + 2gG. It can
be written, for ϕ ∈ HS and α, β ∈ TϕHS ,

g(α, β) = 2

∫

M

∆ϕα∆ϕβ
1

n!
ηϕ ∧ dηnϕ − 2

∫

M

α∆ϕβ
1

n!
ηϕ ∧ dηnϕ

= 2

∫

M

∆ϕ(α−Gϕα)∆ϕβ
1

n!
ηϕ ∧ dηnϕ

= gC(Lϕα, β)

where Lϕ = 2(I −Gϕ) with Gϕ the Green operator associated to ∆ϕ.
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Note that the Gϕ acting on functions with zero integral with respect to dµϕ is
the inverse of ∆ϕ, since the projection on the space of harmonic functions is

Hϕ : f 7→ 1

volgϕ

∫

M

f
1

n!
ηϕ ∧ dηnϕ = 0

and because of the known relation I = Hϕ + ∆ϕGϕ.
We have the first result.

Proposition 3.3. For any curve ϕ in HS and any section v on ϕ, the only solution
Dtv of

(3.3)
1

2
LϕDtv = DC

t v −GϕD
G
t v

is the Levi-Civita covariant derivative of g, i.e. it is torsion free and

(3.4)
d

dt
g(v, v) = 2g(Dtv, v).

Its proof is analogous to Proposition 2.1 and makes use of the results in [20]
about transversally elliptic operators. The geodesic equation is then

(3.5) ∆2
ϕD

C
t ϕ

′ − ∆ϕD
G
t ϕ

′ = 0

which is rewritten as (2.4), i.e.

(3.6) (∆ϕ − I)

(
(∆ϕϕ

′)′ +
1

2
(∆ϕϕ

′)2
)
− 1

2
|i∂∂ϕ′|2ϕ = 0.

Remark 3.4. It is clear that a curve ϕ which is a geodesic for both the Calabi and
the gradient metric would be a geodesic for our metric as well. Unfortunately there
are no such nontrivial curves, as one can easily see from the equations.

3.3. Another space of Sasakian metrics, an open problem. Back to Sasakian
geometry, it is interesting to consider also the space G of Sasakian structures that
share the same underlying CR structure. These deformations are known as type
I and we refer to [7, Chap. 8]. The most striking differences between G and the
HS is that the former is finite dimensional and the metrics in it do not have the
same volume. Recently, it was studied by Boyer, Huang, Legendre and Tønnesen-
Friedman [9] in relation to the existence of constant scalar curvature Sasakian
metrics.

It would be interesting to compute the restriction of the Ebin metric to G ⊂ M
and study its intrinsic and extrinsic geometry.
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