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“The strong principle for the real world is: never use a model if you don’t know its limitations and

side effects”

Nassim Nicholas Taleb





Abstract

Smoking is a major public health problem in the world. It is a leading cause of preventable

diseases, including lung cancer, heart diseases, and respiratory problems. Efforts to combat

smoking include awareness campaigns, stricter regulations, and support for cessation programs.

The main goal of this dissertation is to produce a model for simulating the evolution of smoking

habits in Tuscany, a region of central Italy, which can be easily adapted to other contexts. The

developed model is based on a system of differential equations. These particular types of

models in epidemiology are called compartmental models and are widely used for understanding

dynamic population phenomena. Their mechanistic nature allows us to straightforwardly predict

the evolution of a phenomenon by simulating its dynamic under different scenarios. However,

the enormous complexity of these models makes the definition of the underlying likelihood

function very difficult. For this reason in this thesis, we also present an overview of the suitable

estimation methods for compartmental models, emphasizing the relevance of likelihood-free

methods. Another important limitation due to the complexity of these models is given by the high

uncertainty of the results and the difficulties in quantifying them. In this thesis, through the use

of Global Sensitivity Analysis, we produce a robustification of the inference resulting from our

model and conclude that the assumptions underlying our model are reasonable. Furthermore, we

were able to assess the impact, in terms of the actual effectiveness, of implementing hypothetical

tobacco control policies in Tuscany. As a conclusion to this thesis, we trace the evolution of

sensitivity analysis over the years and assess its possible future progress.
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Preface

Smoking is a significant public health concern worldwide. The habit of smoking tobacco not

only harms individuals but also poses a substantial burden on society. Moreover, smoking is

a leading cause of preventable diseases such as lung cancer, heart diseases, and respiratory

problems. Additionally, exposure to secondhand smoke can also have detrimental effects. Efforts

to combat this issue include public awareness campaigns, stricter regulations on tobacco sales, and

support for smoking cessation programs. Individuals need to recognize the risks associated with

smoking and make informed choices to protect their health and the well-being of those around

them. Understanding the complex dynamics of tobacco use and its effects on the population

thus remains paramount for crafting effective public health policies, and the development of

models that simulate smoking dynamics under different Tobacco Control Policies (TCPs) is

useful for comparing hypothetical future interventions. Since the 2000s, several models have

been proposed [1–4] to simulates smoking dynamics and most of these are compartmental models.

Compartmental models, starting from a baseline year, perform macro-simulations so that the

population evolves through deaths, births and changes in smoking habits [1–3]. The SimSmoke

model is the most used compartmental model in this field. Developed by [2] to capture smoking

dynamics, it has been implemented in a wide number of countries including Italy [5–8]. Based on

a simple procedure of calibration, that minimizes the difference between observed and predicted

smoking dynamics, the SimSmoke model estimates the relevant parameters that govern the

transitions between compartments and makes projections. Additionally, it explores short and

long-term impacts on smoking dynamics and related health outcomes of different hypothetical

TCPs, the effects of which are taken from literature [2, 3, 5, 6, 8–20].

This dissertation was motivated by the need for a deeper understating of smoking dynamics in

Tuscany, a region in central Italy, and their impacts on population health. The thesis has three

main objectives:

• Formulation of the Smoking Habits Compartmental model. We formulated an adequate

compartmental model that, grounding on previous published works [3, 12, 21, 22], de-

scribes the evolution of smoking dynamics in Tuscany from 1993 to 2019 and forecasts

1
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them until 2043. This model includes flexible terms for modelling the age-specific prob-

ability of starting and stopping smoking, and accounts for different levels of smoking

intensity.

• Systematisation of inference methods for compartmental models. We provided a systematic

overview of the inference methods for compartmental models, from both a frequentist and

a Bayesian point of view, with a special focus on likelihood-free approaches.

• Uncertainty assessment and impact evaluation. We provided robustified inference from

the model on Tuscany data, according to the methods proposed in [23], and we evaluated

the expected impact of alternative TCPs considering all sources of uncertainty.

Formulation of the Smoking Habits Compartmental model

We developed a compartmental model that describes the evolution of smoking habits in Tuscany, a

region of Central Italy, from 1993 to 2019, and forecasts them until 2043. The model assumes that

at each point in time, the population is divided into non-overlapping groups called compartments,

defined according to smoking status (never, current, and former smokers), age and sex [24].

Transitions between compartments are described by probabilistic rules and the annual evolution

of the size of the compartments is governed by a system of difference equations.

In order to avoid identifiability problems, usual in complex compartmental models, we fixed some

of the parameters to values from the literature, estimating the others via a two-step calibration.

In particular we estimated the age-specific probabilities of starting and quitting smoking, the

probability of relapsing smoking, and the mortality rates, performing a calibration on the observed

prevalence of never, current, and former smokers for the years 1993-2019, arising from yearly

local surveys. The objective function of the calibration was based on a simple discrepancy

measure between observed and predicted prevalence.

Compared to previous models on smoking dynamics, we introduced a flexible modelling based

on regression splines for the age-specific probabilities of starting and stopping smoking, usually

assumed as constant over age. Similarly, we allowed the probability of relapsing into smoke to

change with time since cessation. In addition, the model considered different levels of smoking

intensity. The model was used not only to infer the model parameters but also to quantify the

impact of smoking on health in terms of smoking-attributable deaths.

Notably, we addressed the problem of accounting for sampling variability, never considered

in previously published works, through a parametric bootstrap procedure [25, 26], assuming a

Dirichlet distribution on the smoking prevalence. In this way, we obtained confidence intervals

for the parameters and compartment sizes. Moreover, we assessed the predictive performance of

the model using cross-validation on a rolling basis, considering different projection horizons.
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Ultimately, integrating a transparent formalization of the model equations with calibration,

bootstrap, and cross-validation, we proposed a novel and reproducible pipeline for the statistical

analyses in this field. However, it should be stressed that the estimation procedure used has some

limitations. We estimated the parameters in a deterministic way, in the sense that we considered

the distributional assumptions on the prevalence only in the bootstrap procedure but not in the

calibration phase. While likelihood-based approaches are unfeasible in this framework, being

the model extremely complex, likelihood-free inference methods such as Approximate Bayesian

Computation algorithms would allow a full uncertainty quantification [22]. This consideration

motivated the work described in the next section.

Systematisation of inference methods for compartmental models

Compartmental models often exhibit an intractable likelihood function. In some cases, it can be

complex to specify an analytical form for the likelihood, due to the complexity of the model – e.g.,

due to the large number of compartments or to challenging definitions of the allowed transitions

and related probabilistic rules. In other cases an analytical form of the likelihood is available but

its point-wise evaluation is infeasible due to the presence of a large number of unobserved latent

variables. In both cases, the estimation of the model parameters requires suitable methods.

In the literature, the existing reviews on the methods to make inferences on compartmental

models focus only on very specific approaches McKinley et al. [27], Tang et al. [28] and there is

still a lack of a critical and comprehensive overview.

In order to fill this gap, we critically presented different frequentist and Bayesian estimation

strategies in compartmental models, providing a comparison among them. Particular attention is

paid to the distinction between mathematical and statistical compartmental models and to how

introducing stochastic components leads to the definition of a likelihood function associated with

the model. We discussed some of the reasons that make the likelihood intractable and methods

suitable for dealing with this intractability, such as likelihood-free methods. In particular, we

focused on the frequentist approach that combines model calibration with parametric bootstrap,

used for inference on Smoking Habits Compartmental (SHC) model (see previous section), and

Approximate Bayesian Computation (ABC). Calibration and ABC algorithms are very similar in

spirit. The main difference between them is that calibration uses, in the point estimation phase,

the mathematical model, while ABC resorts only to the statistical model. The presented ABC

strategy allows us to consider two sources of variability in a single procedure: the uncertainty

over the parameter space described by prior distributions and the sampling variability reproduced

by the simulator. Instead, the calibration must be combined with an adequate bootstrap procedure

to quantify the sampling variability.
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Using the SHC model for Tuscany as a real-world example, we showed the great potential of

likelihood-free methods, that can retrieve estimates and forecasts even when dealing with very

complex models that prevent the use of whatever likelihood-based method. From a comparison

between calibration and ABC, we concluded that the results are coherent with each other, thus

they give support to the reliability of both methods.

However, calibration and ABC do not take into account the propagation of uncertainty due to

modeling choices and assumptions. For example, an important issue in compartmental models

concerns the problem of parameter identifiability [26]. Complex models with many compartments

obviously have many parameters governing the admitted transitions, but unfortunately observed

data are often insufficient to estimate all of them. To overcome this problem, we need to keep

some parameters fixed at values coming from the literature. This suggests that the estimation

procedure may be heavily affected by the set of fixed parameters, thus indicating the importance

of conducting sensitivity analyses on these model assumptions. Moreover, implementing a formal

procedure to assess uncertainty propagation is crucial for enhancing our understanding of smoking

dynamics. This practice is strongly recommended, especially during health policy evaluation

phases [29]. These considerations, along with the evaluation of different TCPs, motivated the

work described in the next section.

Uncertainty assessment and impact evaluation

Sensitivity analysis, is traditionally associated with scenario analysis, where individual model

parameters are altered, and resultant variations in outcomes are examined. This approach,

commonly known as “one at a time" (OAT) sensitivity analysis, relies on partial derivatives

to isolate the impact of each parameter on the model output. While OAT sensitivity analysis

may seem logical, as changes in output are unequivocally attributed to individual variables, it

falls short in contexts where multiple parameter inputs interact to influence model outcomes.

To address this limitation, a variance based approach called Global Sensitivity Analysis (GSA)

was introduced [29]. GSA is the study of how the uncertainty in the output of a model can be

apportioned to different sources of uncertainty in the model input.

In statistical modeling, uncertainty may arise from various sources, such as measurement errors,

sampling variability, model misspecification, and unobserved variables. Uncertainty assessment

can be integrated with GSA, through the use of sensitivity indexes [30]. Especially when the

overall uncertainty around the output is high, performing GSA is paramount to understanding

which factors mostly influence the answer to our research question. This can help to identify

model assumptions that are most critical and quantify the relative impact of different sources of

uncertainty on the research findings.
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The assumptions addressed underlying the SHC model represents only one of the numerous

modeling choices available [31]. While compartmental models serve as invaluable tools for

representing real-world phenomena, they inherently rely on simplifying assumptions that may

limit their fidelity to reality.

We proposed a procedure aimed at robustifying inference, forecasting, and TCPs assessment

produced by the SHC model. We also illustrated the use of SHC model to predict the future

impact of hypothetical interventions that act on the probabilities of starting and quitting smoking.

This robustification procedure, which can also be reproduced in different models and contexts,

takes into account uncertainties involved in model definition, inference, and forecasting, and

consists of an uncertainty assessment and a variance-based GSA [29, 32].

The discussion of the main objectives of the thesis is organized as follows:

• In Chapter 1 we addressed the objective Formulation of the Smoking Habits Compartmental

model. In this chapter, you will encounter a paper titled A Compartmental Model for

Smoking Dynamics in Italy: A Pipeline for Inference, Validation, and Forecasting Under

Hypothetical Scenarios. This paper, submitted to BMC Medical Research Methodology,

successfully passed the first revision. Although a condensed version is published in Lachi

et al. [21].

• In Chapter 2, we addressed the objective Systematisation of inference methods for com-

partmental models. In this chapter, you will find a paper entitled Frequentist and Bayesian

inference on compartmental models in epidemiology: A critical review with a focus on

likelihood-free approaches. This paper is under review at Statistics in Medicine. Although

a shorter version of this paper is published in [22].

• In Chapter 3, we addressed the objective Uncertainty assessment and impact evaluation.

In this chapter, you will find the draft of a paper, to be submitted to a peer review journal,

entitled Smoking dynamics in Tuscany (Italy) under alternative tobacco control policies:

Robustifying inference and forecasting via uncertainty propagation and Global Sensitivity

Analysis.

• In Chapter 4, you will find a paper entitled An Annotated Timeline of Sensitivity Analysis

that provide an history overview of the evolution of GSA. The paper is published by

Environmental Modelling and Software [33].

• In Chapter 5, you will find the abstract of all the other published papers during the Ph.D.

period and related to the dissertation topics [34–37].
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Abstract

We propose a compartmental model for investigating smoking dynamics in an Italian region.

Calibrating the model on local data from 1993 to 2019, we estimate the probabilities of starting

and quitting smoking and the probability of smoking relapse. Then, we forecast the evolution of

smoking prevalence until 2043 and assess the impact on mortality in terms of attributable deaths.

We introduce elements of novelty with respect to previous studies in this field, including a formal

definition of the equations governing the model dynamics and a flexible modelling of smoking

probabilities based on cubic regression splines. We estimate model parameters by defining a

two-step procedure and quantify the sampling variability via a parametric bootstrap. We propose

the implementation of cross-validation on a rolling basis and variance-based Global Sensitivity
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Analysis to check the robustness of the results and support our findings. Our results suggest a

decrease in smoking prevalence among males and stability among females, over the next two

decades. We estimate that, in 2023, 18% of deaths among males and 8% among females are due

to smoking. We test the use of the model in assessing the impact on smoking prevalence and

mortality of different tobacco control policies, including the tobacco-free generation ban recently

introduced in New Zealand.

Keywords - Compartmental Models, Smoking Dynamics, Tobacco Control Policies, Global

Sensitivity Analysis, Parametric Bootstrap, Cross Validation, Smoking Attributable Deaths,

Forecasting, Calibration, Regression Splines

1.1 Background

Smoking is a significant risk factor for many common chronic diseases, including cancer, cardio-

vascular, cerebrovascular and respiratory diseases, diabetes, and a leading preventable cause of

premature death [1, 2]. Also, smoking reduces length and quality of life [3], and contributes to

health inequities [4]. The Global Burden of Disease study [5] reports that in 2019 smoking was

responsible for around 8,709,000 deaths in the World (15.4% of all deaths), 907,000 in Europe,

and 96,000 in Italy.

The importance of Tobacco Control Policies (TCP) has been firmly established within the

World Health Organization’s (WHO) Framework Convention on Tobacco Control (FCTC),

an international treaty that came into force in 2005 and has been ratified by 182 countries.

Specifically, tobacco control has been included as one of the global development goals, recognized

as crucial and necessary to achieve a one-third reduction in premature mortality by 2030 [6].

Focusing on Italy, data from the Italian surveillance system PASSI (Progressi delle Aziende

Sanitarie per la Salute in Italia) highlighted that in 2021 23.7% of Italians (27.2% in men and

20.2% in women) described themselves as current smokers [7]. Among adolescents, smoking

prevalence stalled in the last years, with a prevalence of current smokers between 27.3% and

32.4% in young people aged 13-16 years [8, 9].

Dynamic simulation models are widely used to describe and project the evolution of smoking

habits in the population over time and to estimate the impact of past and hypothetical future

TCPs. Since the 2000s, several models have been proposed [10–13], some of which developed

within the Cancer Intervention and Surveillance Modelling Network (CISNET), a consortium

of investigators funded by the National Cancer Institute, that uses mathematical modelling to

study the impact of cancer control interventions [14]. These models are mainly of two types:

compartmental models and agent-based models. Compartmental models, starting from a baseline

year, perform macro-simulations so that the population evolves through deaths, births and changes
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in smoking habits [10–12]. The SimSmoke model [15] is the most used compartmental model

[16], implemented for a wide number of countries including Italy [17–20], among others. Agent-

based models, also called micro-simulation models, simulate individual life trajectories and

interactions to assess their effects on the system as a whole [21, 22].

In this paper, grounding on previous works [12, 23–25], we developed a compartmental model

that describes the evolution of smoking habits in Tuscany, a region of Central Italy, from 1993 to

2019, and forecasts them until 2043. The model assumes that at each point in time, the population

is divided into non-overlapping groups called compartments, defined according to smoking status

(never, current, and former smokers), age and sex [26]. Transitions between compartments are

described by simple probabilistic rules and the evolution of the size of the compartments is

governed by a system of differential equations.

While some of the transition parameters in the model were assumed as fixed, we estimated via

a two-step calibration the age-specific probabilities of starting and quitting smoking, modelled

in a flexible way through cubic regression splines [27], the probability of relapsing smoking,

modelled as a nonlinear function of the time from quitting [28], and the mortality rate. We

calibrated the model on the observed prevalence of never, current, and former smokers for the

years from 1993 to 2019, arising from yearly local surveys.

Once we estimated the transition parameters, we predicted the prevalence of never, current, and

former smokers in the regional population over time, and we quantified the impact of smoking in

terms of the number of smoking-attributable deaths (SAD) and population attributable fraction

(PAF). With simple examples, we also illustrated the use of the compartmental model to predict

the future impact of hypothetical interventions that act on the probabilities of starting and quitting

smoking.

Compared to previous studies that dealt with the same problem, we aimed to prove some

methodological advances both in the modelling and estimation strategies. First of all, grounding

on a formal definition of the model equations, we addressed the problem of accounting for the

sampling variability and provided confidence intervals for the estimates of the parameters and

compartment sizes. To this end, due to the unavailability of the likelihood function associated

with the model, we relied on a parametric bootstrap procedure [29, 30]. Also, we introduced

a flexible modelling of the probabilities of starting and stopping smoking, usually assumed as

constant. We allowed them to change over time as a function of age. Moreover, we assessed

the predictive performance of the model using cross-validation on a rolling basis. Finally, we

assessed parameter identifiability through Global Sensitivity Analysis (GSA) [31].
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1.2 Methods

1.2.1 Data

The analyses relied on data from heterogeneous sources. We used data from the National Institute

of Statistics (ISTAT) Multipurpose Surveys “Aspect of Daily Life" (AVQ) (www.istat.it/

it/archivio/91926), which every year collects fundamental information related to the

daily life of individuals and families in Italy. Each yearly AVQ survey enrols about 25,000

families distributed in about 800 Italian municipalities of different population sizes. Specifically,

we obtained from the ISTAT AVQ surveys an estimate of the distribution by smoking habit (never,

current, and former smokers) of the population residing in Tuscany for each year from 1993 to

2019, separately for males and females and by age class (14-17, 18-19, 20-24, 25-34, 35-44,

45-54, 55-59, 60-64, 65-74, 75+). We obtained from the same surveys the smoking intensity

distribution for current smokers, by sex and age class.

We used data from the ISTATsurvey Multipurpose Surveys European Health Survey (EHIS)

(www.istat.it/it/archivio/167485), a survey on the main aspects of public health

carried out every 5 years from 1980 to all member states of the European Union, to obtain an

estimate of the smoking intensity distribution among former smokers, as well as information

about time since smoking cessation, separately for males and females and by the same age classes

reported above. In particular, we considered the surveys for 1994, 1999, 2004, and 2013.

We obtained the size of the Tuscany population on January 1st 1993 and January 1st 2005, by

age and sex, from the ISTAT website (www.istat.it). From the same website, we got the

mortality rates by age and sex and the number of new births in Tuscany for the period 1993-2019.

The relative risks (RR) of death for smokers and ex-smokers versus never smokers are those

reported in Thun et al. [32].

1.2.2 Model specification

We specified a compartmental model for smoking habit dynamics in the population, which we

call the Smoking Habits Compartmental (SHC) model. In order to better present the SHC model

adopted for the analysis, we first introduce a simpler version of it, and then proceed step by step,

adding elements of complexity.

www.istat.it/it/archivio/91926
www.istat.it/it/archivio/91926
www.istat.it/it/archivio/167485
www.istat.it
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FIGURE 1.1: Smoking Habits Compartmental model in its simplest form.

The starting model assumes that at each time the alive population is divided into the following non-

overlapping compartments: never (N), current (C), and former (F) smokers. We consider only

cigarette smoking; current smokers are the individuals who have smoked at least 100 cigarettes in

their life and smoked in the last 30 days, and former smokers are those who stopped smoking for

at least 6 months [33]. Never smokers can become current smokers, current smokers can become

former smokers, and former smokers may restart smoking (smoking relapse). The compartments

C and F are further divided into sub-compartments denoted by Ci and Fi, where i ∈ {l,m,h}
indicates the level of smoking intensity, corresponding to low (<10 cigarettes/day), medium

(≥10 and <20 cigarettes/day), and high (≥20 cigarettes/day) smoking intensity, respectively.

During their life, individuals can change their smoking status, but, for the sake of simplicity, we

assume that they cannot change their level of smoking intensity. The model admits deaths and

new births. From each compartment, subjects can transit to a deceased compartment denoted

by the letter D and a subscript corresponding to the compartment of origin. New births (ν(t) is

the number of new births at time t) increase the size of the compartment N. Transitions of the

individuals from a given compartment to another one determine flows regulated by the transition

parameters, among which the rates of starting smoking (γ∗i ), stopping smoking (ε∗i ), and relapsing

into smoking after having stopped (η∗i ). Note that these rates can depend on the level of smoking

intensity i. Death happens with different rates for never (δ ∗N), current (δ ∗Ci
), and former (δ ∗Fi

)

smokers. For current and former smokers, the mortality rates may depend also on smoking

intensity. This compartmental model, graphically represented in Figure 1.1, is expressed by the

following system of differential equations for each i ∈ {l,m,h}:
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

dN(t)
dt =−N(t)

(
1−δ ∗N

)
γ∗−N(t)δ ∗N +ν(t)

(
1−δ ∗N

)
dCi(t)

dt =−Ci(t)
(

1−δ ∗Ci

)
ε∗i −Ci(t)δ ∗Ci

+N(t)
(

1−δ ∗N

)
γ∗i +Fi(t)

(
1−δ ∗Fi

)
η∗i

dFi(t)
dt =−Fi(t)

(
1−δ ∗Fi

)
η∗i −Fi(t)δ ∗Fi

+Ci(t)
(

1−δ ∗Ci

)
ε∗i

dDN(t)
dt = N(t)δ ∗N +ν(t)δ ∗N

dDCi (t)
dt =Ci(t)δ ∗Ci

dDFi (t)
dt = Fi(t)δ ∗Fi

,

(1.1)

where γ∗ = γ∗l + γ∗m + γ∗h is the overall transition rate from the status of never smoker to the status

of a current smoker. The initial conditions of the system, i.e. the sizes of the compartments at

time 0, set to the 1st of January 1993, are N(0) = n0, DN(0) = 0, Fi(0) = f i
0, Ci(0) = ci

0 and

DCi(0) = DFi(0) = 0 ∀i ∈ {l,m,h}, where n0 is the number of never smokers in the considered

population on the first day of the study period, and f i
0 and ci

0 are the number of ex-smokers and

current smokers with smoking intensity i.

For computational reasons, it is convenient to discretise the system of differential equations in

Equation (1.1), assuming that the size of the compartments is constant during 1-year time steps.

Hereafter, t will denote discrete time, with the year as a time-unit (t ∈ {1, ...,T}), and we replace

the system in Equation (1.1) with a system of difference equations, where the annual probability

of stopping smoking (εi), and the annual probabilities of smoking relapse (ηi) are derived from the

corresponding rates in Equation (1.2), as well as the annual probabilities of death for never (δN),

current (δCi), and former (δFi) smokers. In particular, δN = 1−exp(−δ ∗N), and εi = 1−exp(−ε∗i ),

ηi = 1− exp(−η∗i ), δCi = 1− exp(−δ ∗Ci
), δFi = 1− exp(−δ ∗Fi

) with i ∈ {l,m,h}. Regarding the

probabilities of starting smoking for never smokers, the overall annual probability γ comes

from the corresponding rate, γ = 1− exp(−γ∗), while γi = πCiγ , where πππ = (πCl ,πCm ,πCh) is the

distribution of the level of smoking intensity among the new current smokers. Notice that, if λ

is the rate of occurrence of an event, the probability of experiencing at least one event in the

time unit is 1− exp(−λ ). The resulting system of discretised equations for each i ∈ {l,m,h} and

t ∈ {1, ...,T} is:
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

N(t) = N(t−1)
(

1−δN

)(
1− γ

)
+ν(t−1)

(
1−δN

)
Ci(t) =Ci(t−1)

(
1−δCi

)(
1− εi

)
+N(t−1)

(
1−δN

)
γi +Fi(t−1)

(
1−δFi

)
ηi

Fi(t) = Fi(t−1)
(

1−δFi

)(
1−ηi

)
+Ci(t−1)

(
1−δCi

)
εi

DN(t) = DN(t−1)+N(t−1)δN +ν(t−1)δN

DCi(t) = DCi(t−1)+Ci(t−1)δCi

DFi(t) = DFi(t−1)+Fi(t−1)δFi ,

(1.2)

where ν(t− 1) denotes the newborns in the year t− 1. Note that the initial conditions of the

system of equations in (1.2) coincide with those of the previous model in (1.1).

The SHC model extends the system in Equation (1.2) to account for two additional discrete

time axes: age and time since smoking cessation. The final model is a compartmental model

with separate compartments for each discrete age (a), where also a stratification by years since

smoking cessation (c) is introduced for former smokers. Two separate SHC models are defined by

sex. The final SHC model is defined by the following system of equations for each i ∈ {l,m,h}
and t ∈ {1, ...,T}:
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

N(t;a) = ν(t−1)
(

1−δN(a)
)

if a = 0

N(t;a) = N(t−1;a−1)
(

1−δN(a)
)(

1− γ(a)
)

if a > 0

Ci(t;a) = 0 if a = 0

Ci(t;a) =Ci(t−1;a−1)
(

1−δCi(a)
)(

1− ε(a)
)
+

N(t−1;a−1)
(

1−δN(a)
)

γi(a)+

∑
c>0

Fi(t−1;a−1,c−1)
(

1−δFi(a,c)
)

η(c) if a > 0

Fi(t;a,c) = 0 if a = 0, c≥ 0

Fi(t;a,c) =Ci(t−1;a−1)
(

1−δCi(a)
)

ε(a) if a > 0, c = 0

Fi(t;a,c) = Fi(t−1;a−1,c−1)
(

1−δFi(a,c)
)(

1−η(c)
)

if a > 0, c > 0

DN(t;a) = ν(t−1)δN(a) if a = 0

DN(t;a) = DN(t−1;a)+N(t−1;a−1)δN(a) if a > 0

DCi(t;a) = 0 if a = 0

DCi(t;a) = DCi(t−1;a)+Ci(t−1;a−1)δCi(a) if a > 0

DFi(t;a,c) = 0 if a = 0, c≥ 0

DFi(t;a,c) = 0 if a > 0, c = 0

DFi(t;a,c) = DFi(t−1;a,c)+Fi(t−1;a−1,c−1)δFi(a,c) if a > 0, c > 0.

(1.3)

The initial conditions of the system are obtained by generalizing those of the model in Equation

(1.2), to take into account the stratification by age for current smokers, and the stratification by

age and time since cessation for former smokers.

The age a takes values from 0 to 100. We set γ(a) to 0 until 13 and from 35 years of age, and,

in order to account for the possible non-linearity between 14 and 34, we modeled the logit

transformation of γ(a) through a natural cubic regression spline of age, with 2 equidistant internal

knots. The choice of the number of nodes is motivated by the need to allow flexibility containing

at the same time model complexity and computational times. Similarly, we set ε(a) to 0 until 19

years of age; we introduced a natural cubic regression spline with 2 equidistant internal knots to

model non-linearity for a≥ 20. The resulting functions are the following:

γ(a) =

0 0≤ a≤ 13∪ a≥ 35
exp(s(a;ψψψ))

1+exp(s(a;ψψψ)) 14≤ a≤ 34
ε(a) =

0 0≤ a≤ 19
exp(s(a;φφφ))

1+exp(s(a;φφφ)) a≥ 20,

where ψψψ = (ψ0,ψ1,ψ2,ψ3) and φφφ = (φ0,φ1,φ2,φ3) are vectors of unknown parameters governing

the probabilities of starting and quitting smoking, respectively. The relapsing rate, η∗(c),
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was modeled as a negative exponential function of the time since cessation, with parameters

ωωω = (ω0,ω1):

η
∗(c) =


0 c = 0

ω0ω1 exp(−ω1c) 1≤ c≤ 15

ω0ω1 exp(−ω115) c≥ 16,

where ω0 governs the lifetime probability of no relapse and ω1 tunes how fast the rate of smoking

relapse declines with the time from cessation [12, 23, 28, 34]. Both ω0 and ω1 are assumed to be

positive so that η∗(c) is a positive, decreasing function of c. The assumptions on which the SHC

model is based are summarized in Section A.1, Supplemental Material.

1.2.3 Estimation strategy

An important issue in compartmental models concerns parameter identifiability [30]. Complex

models with many compartments, such as the model in Equation (1.3), have many parameters

governing the admitted transitions, but unfortunately observed data are often insufficient to

estimate all of them. To overcome this problem we fixed some of the parameters to values from

the literature or external data, leaving as unknown the mortality risks and the spline coefficients

φφφ and ψψψ , and ωωω . Details on the values assigned to the fixed parameters are provided in Section

A.2, Supplemental Material. The unknown parameters have been estimated following the two

step-procedure described in the next section.

1.2.3.1 Two-step estimation

In order to estimate the unknown parameters, we adopted a two-step procedure. Both steps

use as observed data the prevalence of never, current and former smokers from ISTAT AVQ,

here denoted by pobs(t;a∗) =
(

pobs
C (t;a∗), pobs

N (t;a∗), pobs
F (t;a∗)

)
, where t denotes the year and

a∗ the age class. In particular, we considered years from 1993 to 2019 and age classes a∗ ∈
{14−17,18−19,20−24,25−34,35−44,45−54,55−59,60−64,65−74,75+}.

First step. We estimated the age-specific risks of mortality for never smokers δN(a) using

both observed prevalence and relative risks coming from the literature. In particular, the

age-specific risks of dying for current and former smokers in the population at time t are

respectively δC(t;a) = RRC × δN(t;a) and δF(t;a) = RRF × δN(t;a), with RRC and RRF the

relative risks of dying for current smokers and former smokers versus never smokers. Let

p(t;a) =
(

pN(t;a), pC(t;a), pF(t;a)
)

be the distribution of never, current and former smokers in
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the population. The overall mortality at age a in the year t, δpop(t;a), is a weighted average of

δN(t;a), δC(t;a), and δF(t;a) with weights p(t;a). Thus, δN(t;a) can be derived as the ratio:

δN(t;a) =
δpop(t;a)

pN(t;a)+RRC pC(t;a)+RRF pF(t;a)
. (1.4)

Therefore, separately for each year t in the period 1993-2019, we obtained an estimate of δN(t;a),

plugging into equation (1.4) the mortality risk at age a reported for Tuscany, the relative risks for

current and former smokers versus never smokers [32], and the observed age-specific prevalence

of never, current and former smokers pobs(t;a∗). Finally, we averaged the year-specific δ̂N(t;a)

over t, obtaining the overall estimate δ̂N(a). The risks of dying for current and former smokers

by i and c were then derived as:

δ̂Ci(a) = RRCi× δ̂N(a) δ̂Fi(a,c) = RRFi(c)× δ̂N(a).

Second step. After fixing the mortality risks to the values computed at the first step, δ̂δδ (a,c), we

calibrated the model on the observed prevalence pobs(t;a∗) to estimate the vector of parameters

which were still unknown, θθθ = (ψψψ,φφφ ,ωωω). p(t;a∗,θθθ) =
(

pC(t;a∗,θθθ), pN(t;a∗,θθθ), pF(t;a∗,θθθ)
)

be the vector of the prevalence of never, current and former smokers belonging to the class of age

a∗ at time t, calculated on the population predicted by the model (1.3), given a specific value of

θθθ . With calibration, we searched for the value of θθθ that leads to predicted prevalence as close as

possible to the observed ones. To compare observed and simulated trajectories, we considered

the following objective function, where H(·, ·) denotes the Hellinger distance [35] between two

discrete probability distributions:

Ob j(θθθ) =
1

T ×A∗∑
t,a∗

H

(
p(t;a∗,θθθ), pobs(t;a∗)

)
=

=
1

T ×A∗×
√

2∑
t,a∗

√√√√√ ∑
k∈{C,N,F}

(√
pk(t;a∗,θθθ)−

√
pobs

k (t;a∗)

)2

,

(1.5)

where A∗ is the number of age classes a∗. We minimized the objective function in Equation (1.5)

over θθθ via a global optimization procedure, resorting to the JULIA package Optim.jl [36]. It

is well-known that, in the context of compartmental models, optimization results often depend on

the chosen starting points of the algorithm [37, 38]. To avoid the problem of getting stuck in local

minima, we performed several optimizations using different starting points, then we selected the

solution that brought to the minimum Hellinger distance [30, 37]. The two-step procedure was
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performed separately by sex, obtaining different estimates for males and females and sex-specific

evolution of the compartment sizes.

We estimated the compartment sizes up to 2043 by projecting the model dynamics assuming that

parameters and model structure do not change after 2019.

1.2.3.2 Parametric bootstrap procedure

We quantified the sampling variability around point estimates and projections by using a para-

metric bootstrap procedure [29, 30]. Let θ̂θθ be the vector of parameters minimizing the objective

function in Equation (1.5) and p(t;a∗, θ̂θθ) the corresponding estimated vector of prevalence for

never, current and former smokers of age a∗ in the population at time t. Let n(t;a∗) be the number

of subjects belonging to the age class a∗, enrolled in the ISTAT AVQ in the year t in Tuscany (i.e.

the denominator of the observed prevalence pobs(t;a∗)). The bootstrap procedure consisted of

the following steps:

1. for each a∗ and t, we sampled a vector of prevalence from a Dirichlet distribution:

pb(t;a∗)∼ Dirichlet
(

pC(t;a∗, θ̂θθ)n(t;a∗), pN(t;a∗, θ̂θθ)n(t;a∗), pF(t;a∗, θ̂θθ)n(t;a∗)
)

;

2. we considered the collection of these sampled vectors as the observed values and performed

the two-step estimation, computing the vector δδδ
b(a,c) and finding θθθ

b that minimized the

objective function;

3. we repeated the previous two steps B = 1000 times, collecting a sample of B bootstrap

estimates of δδδ (a,c) and θθθ to be used to estimate as many curves describing the transition

parameters and compartment size trajectories;

4. we calculated the 90% confidence intervals for the quantities of interest as the 5th and 95th

percentiles of the bootstrap estimates; pointwise confidence intervals were calculated for

the curves.

1.2.4 Model validation

In order to evaluate the predictive performance of the estimation procedure described in Section

Estimation strategy, we applied cross-validation (CV) on a rolling basis. We started defining

the first 3 years of the period 1993-2019 as the training set, and the subsequent q years as the

test set. Then, we calibrated the compartmental model in Equation (1.3) on the training set and

used the estimated model to forecast the prevalence of never, current, and former smokers in

the years belonging to the test time window. The discrepancy between observed and projected

prevalence was evaluated in terms of absolute percentage error. Then, we progressively extended
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the length of the training set by adding one year at a time, and we obtained the projections for

the q subsequent years every time. We stopped when the last training set considered the years

between 1993 to 2016. We finally computed the Mean Absolute Percentage Error (MAPE),

by averaging the absolute percentage errors across different types of smokers over time, age

classes, and training sets. Note that in general, for a set of n observations, MAPE is defined

as 100
n ∑

n
i=1
|Oi−Ei|

Oi
, where Oi is the observed value and Ei is the expected one for unit i. We

calculated the MAPE for different forecasting horizons by setting q = 3,6,9,12 years.

1.2.5 Sensitivity analysis

A key assumption of our model is that the dynamics of the studied phenomenon, particularly the

transition probabilities between compartments, remain constant from 1993 to 2019 (and continue

to do so until 2043). To verify its appropriateness, we conducted two separate analyses, first

calibrating the model on the period 1993-2004 and then on the period 2005-2019, and compared

the results. Notice that in the analysis 2005-2019 the initial sizes of the compartments were set to

values obtained from 2005 surveys (see Section A.3, Supplemental Material).

Another crucial point concerns the fact that the inference results could be affected by the model

parameters assumed as fixed. To address this issue, we utilized a variance-based approach to

Global Sensitivity Analysis (GSA) [31]. Given KX mutually independent inputs (X1,X2, ...,XKX )

and a model which, given the inputs, returns KY outputs (Y1,Y2, ...,YKY ), this approach quantifies

the relative importance of each input to the model’s outcomes by propagating uncertainty from

the inputs to the outputs and computing variance indices. In our application, given the model

in Equation 1.3, we considered as inputs all the parameters, both fixed and unknown, and the

Hellinger distance in Equation (1.5) as the output Y . Note that, considering the Hellinger distance

as the output, we directly measure the influence of the inputs on the discrepancy between observed

and predicted data, thus, ultimately, on the inference results. Then we calculated, for each input

Xi, the so-called total variance index (Stot
i ), which Stot

i measures the overall effect of the i-th input

on the output Y , including all the interactions of Xi with the other inputs. This index corresponds

to the expected variance of Y that would be left on average when all the parameters but Xi, X∼i,

are fixed:

Stot
i =

EX∼i(VarXi(Y |X∼i))

Var(Y )
.

A total variance index close to zero indicates that the parameter Xi does not influence Y , and

therefore, the inference results. Conversely, a large total variance index indicates that the

parameter does have an impact on them. In the former case, the parameter can be fixed without

affecting our estimates, or in other words, our model and data do not provide information on



Compartmental model in epidemiology 25

this parameter. The computation of Stot
i relies on Monte Carlo simulations [39]. We simulated

K = 10,000 different combinations of the model inputs, then, for each of them, we predicted the

prevalence values via the model in Equation (1.3) and calculated the corresponding Hellinger

distance. Specifically, we draw the model parameters from the distributions reported in Table

A.3, Supplemental Material, adopting a quasi-random numbers sampling which provides a more

efficient exploration of the sample space [40, 41]. On the basis of the simulated Hellinger distance

and the combination of the parameters, we computed the total variance indices as described

in [39]. It is worth noting that in the GSA we did not include the age-specific mortality rates,

δpop(t;a), among the model inputs. It is reasonable, as done elsewhere [23], to treat these

parameters as not affected by uncertainty, given that they were estimated based on the entire

population.

1.2.6 Health impact assessment

The impact of smoking was quantified in terms of attributable deaths. We calculated the Smoking-

Attributable Deaths (SADs) in the year t as the difference between the number of deaths occurring

in that year under the actual scenario, i.e. the number of deaths predicted by the model in Equation

(1.3) given θ̂θθ and δ̂δδ (a), and the deaths we would observe under a specific counterfactual condition.

We considered the counterfactual condition where current smokers and former smokers in the

year t were never smokers. Therefore, for each age a, we applied to the size of the compartments

of smokers or ex-smokers the excess risk relative to never-smokers. The excess risk is defined

as the difference between risks. For example, the excess risk of current smokers of age a and

smoking intensity i relative to never-smokers is δCi(a,c)−δN(a). Thus, for the year t, the number

of SADs among people of age a was calculated as:

SAD(t;a) = ∑
i

Ci(t,a; θ̂θθ)(δ̂Ci(a)− δ̂N(a))+∑
i

∑
c

Fi(t,a,c; θ̂θθ)(δ̂Fi(a,c)− δ̂N(a)).

The age-specific SAD(t;a) can be summed over a to obtain the total number of attributable

deaths in population or in a certain class of age: SAD(t) = ∑
a

SAD(t;a). The impact of smoking

on population health can be expressed also in terms of Population Attributable Fraction (PAF),

defined as the proportion of deaths that would be avoided if all current and former smokers

in the population or in a subset of it were never smokers [42]. For details, see Section A.4,

Supplemental Material. We calculated SADs and PAFs over the period 1993-2043, separately by

sex and for the ages 35+ and 65+.
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1.2.6.1 Impact of future hypothetical policies

In order to illustrate the use of the compartmental model to assess the impact of hypothetical

TCPs on SAD, we focused on three policies acting on the rates of starting and stopping smoking,

γ∗(a) and ε∗(a). We assumed that all the defined policies are implemented in 2023 and that, in

the absence of policies, the smoking habit dynamics would not change.

Taking inspiration from [43], and from a recent policy introduced in New Zealand (www.bbc.

com/news/world-asia-63954862) we defined the following hypothetical TCPs starting

from 2023:

• TCP1, a policy able to reduce the rate of starting smoking by 25% in 10 years for subjects

between 14 and 34 years of age; for simplicity, we assumed a linear decrease, starting with

a decrease of 2.5% the first year, a decrease of 5% the second one and so on, up to a final

decrease of 25% after 10 years;

• TCP2, a policy able to increase the rate of stopping smoking by 25% in 10 years for

subjects between 25 and 100 years of age; for simplicity, we assumed a linear growth,

starting with an increase of 2.5% the first year, an increase of 5% the second one and so on,

up to a final increase of 25% after 10 years;

• TCP3, a policy that imposes a complete smoking ban on cohorts born since 2009.

For each policy, we calculated the evolution of smoking prevalence and the number of avoided

deaths expected from its implementation, taking the scenario without policies as a reference

(TCP0). To better appreciate the impact of policies in terms of SAD, limited to this analysis, we

extended the projections up to 2063.

1.3 Results

The Tuscany population in 1993 counted 1,697,495 million males and 1,824,090 million females,

and the proportions of never, current, and former smokers estimated from the ISTAT AVQ survey

were respectively 35%, 34%, 31% for males and 67%, 20%, 13% for females.

Figure (1.2), Panel (a) and (b) show, separately for males and females, the estimates of the

parameters left unknown in the SHC model in Equation (1.3), with their 90% confidence intervals

(CI), as obtained from the two-step estimation procedure and bootstrap. In particular, Panel (b)

compares the estimated risk of death for never smokers with the one in the general population.

www.bbc.com/news/world-asia-63954862
www.bbc.com/news/world-asia-63954862
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It is worth noting that while the two risks are similar for females (the mortality among never-

smokers is 8% lower than among the general population), a not negligible difference is observed

for males (25% lower) as noted also in [44].

Figure (1.2), Panel (c) shows the estimates of the probabilities of starting and quitting smoking

and the probability of smoking relapse, derived from the estimated coefficients in Panel (a). Table

1.1 reports some summaries of the curves. Males are more likely to start and quit smoking than

females. In particular, the probability of starting smoking has a peak around 20.0 years of age

for males and 19.2 for females, with a maximum of just over 9% for males and just over 6%

for females. The mean age of initiation is 20.8 for males and 20.8 for females. The probability

of stopping smoking increases after 50 years of age, reaching a maximum of 27.0% for males

and a maximum of 28.0% for females. The probability of smoking relapse is affected by large

sampling variability. However, our results seem to indicate that it is about 80% in the first year,

then declines to about 40% after two years and progressively becomes negligible after 3 years

(Figure (1.2)). On average, former smokers relapse into smoking after 0.6 and 0.5 years, for

males and females respectively (Table 1.1).

Panel (d) shows the estimated prevalence of never, current, and former smokers among those over

14 years old from 1993 to 2043, predicted through the SHC model, together with the observed

data used to calibrate the model (blue and red dots respectively for males and females with their

90% CI). The model fit appears to be adequate, with the predicted values close to the observed

ones. Our forecasts, starting from 2020, suggest that the smoking prevalence will decrease in the

coming years. Panels (e) and (f) show the predicted SAD and PAF over the period 1993-2043,

separately for males and females, calculated for the population over 35 years of age and for the

population over 65 years of age. The impact on males is higher than on females both in absolute

and relative terms. However, while a clear reduction of the attributable deaths is expected in the

coming years for males, for females they slightly decline only after having reached a maximum

around 2030 [45]. Note that the majority of attributable deaths in the population over 35 are due

to deaths in individuals over 65, as shown by the similarity of the curves.
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a) b)

c) d)

e) f)

FIGURE 1.2: Results of the two-step estimation procedure for males in blue and females
in red, with their bootstrap 90% confidence intervals: parameters tuning the probabilities of
starting (ψψψ) and stopping smoking (φφφ ), and the probability of smoking relapse (ωωω) (a), age-
specific mortality for never smokers and for the general population (b), probabilities of starting
(γ(a)), and stopping smoking ( ε(a)) and probability of smoking relapse (η(c)) (c), observed
and predicted prevalence for never (N), current (C) and former (F) smokers (d), Population
Attributable Fraction (PAF) and Smoking Attributable Deaths (SAD) for people over 35 years

old (e) and over 65 years old (f).
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TABLE 1.1: Summaries with 90% confidence intervals of the probabilities of starting and
stopping smoking, and of the probability of smoking relapse, for males and females.

Smoking event Sex Maximum probability Age at maximum Mean probability Mean time at the event

Starting Male 0.09 (0.08 - 0.10) 20.0 (19.8 - 20.2) 0.04 (0.03 - 0.05) 20.81 (20.6 - 21.1)

Female 0.06 (0.05 - 0.07) 19.2 (19.0 - 19.4) 0.03 (0.02 - 0.04) 20.81 (20.3 - 21.4)

Stopping Male 0.27 (0.20 - 0.34) 75.4 (73.8 - 76.2) 0.17 (0.13 - 0.20) 63.91 (62.3 - 64.9)

Female 0.28 (0.23 - 0.34) 20.1 (20.0 - 20.2) 0.12 (0.09 - 0.15) 54.71 (52.2 - 74.9)

Relapsing Male 0.78 (0.73 - 0.81) - 0.03 (0.02 - 0.04) 0.62 (0.5 - 0.7)

Female 0.75 (0.68 - 0.80) - 0.03 (0.02 - 0.04) 0.52 (0.4 - 0.6)
1 Mean age of starting and stopping smoking

2 Mean number of years from smoking cessation to relapse

Tables 1.2 and 1.3 report the percentages of never, current, and former smokers, the SAD and PAF,

estimated every 10 years from 1993 to 2043, with their 90% confidence intervals. As an example,

we estimated that in Tuscany in 2023 smoking was responsible for 4,070 (90% CI:3,795-4,247)

deaths among men over 35 years old and 1,976 (90% CI:1,741-2,407) deaths among women in

the same age class, corresponding to a PAF of 18% and 8%, respectively. Most of the attributable

burden, however, was on people older than 65 (3,497 SAD for men and 1,765 for women).

TABLE 1.2: Estimated prevalence (%) of never, current, and former smokers in the population
with 90% confidence intervals, evaluated every 10 years from 1993 to 2043, for males and

females.

Never Current Former
Year Male Female Male Female Male Female

1993 35.7 (33.8 - 37.7) 66.9 (64.9 - 68.7) 33.7 (31.6 - 35.9) 20.3 (18.8 - 21.8) 30.6 (28.6 - 32.5) 12.8 (11.5 - 14.3)

2003 36.5 (35.0 - 38.3) 63.3 (61.7 - 64.9) 28.7 (27.6 - 29.4) 19.4 (18.5 - 20.2) 34.8 (33.7 - 35.9) 17.3 (16.5 - 18.3)

2013 39.2 (38.0 - 41.0) 60.6 (59.2 - 62.1) 25.1 (23.9 - 25.6) 18.2 (17.2 - 18.7) 35.7 (34.7 - 37.0) 21.2 (20.4 - 22.4)

2023 42.2 (41.2 - 44.0) 58.9 (57.7 - 60.3) 22.9 (21.4 - 23.3) 17.0 (15.8 - 17.5) 34.9 (33.7 - 36.2) 24.1 (23.1 - 25.4)

2033 45.2 (44.3 - 47.0) 59.0 (58.0 - 60.6) 21.7 (20.0 - 22.1) 15.9 (14.7 - 16.5) 33.2 (31.9 - 34.5) 25.1 (24.0 - 26.3)

2043 47.5 (46.8 - 49.7) 60.1 (59.0 - 61.8) 21.5 (19.7 - 22.0) 15.4 (14.1 - 16.1) 31.0 (29.7 - 32.2) 24.6 (23.4 - 25.8)
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TABLE 1.3: Estimated number of Smoking Attributable Deaths (SAD), Population Attributable
Fraction (PAF) (%), and the ratio between population size and SAD in the years 1993, 2003,
2013, 2023, 2033, 2043, 2053 and 2063, with 90% confidence intervals, among males and

females aged over 35 and over 65.

SAD (90% CI) PAF (90% CI) Pop/SAD (90% CI)
Age Year Male Female Male Female Male Female

35+ 1993 3,770 (3,371 - 4,219) 785 (640 - 970) 24.9 (22.9 - 27.1) 4.9 (4.1 - 6.0) 788 (704 - 882) 4,375 (3,540 - 5,366)

2003 4,187 (3,911 - 4,446) 1,157 (999 - 1,317) 21.7 (20.3 - 22.9) 5.5 (4.8 - 6.2) 768 (722 - 824) 3,126 (2,745 - 3,625)

2013 4,319 (4,084 - 4,498) 1,669 (1,501 - 1,800) 19.5 (18.5 - 20.2) 6.9 (6.3 - 7.5) 761 (730 - 806) 2,159 (1,999 - 2,404)

2023 4,058 (3,804 - 4,213) 2,127 (1,906 - 2,268) 17.5 (16.5 - 18.2) 8.5 (7.7 - 9.1) 748 (719 - 799) 1,536 (1,438 - 1,716)

2033 3,597 (3,335 - 3,743) 2,219 (1,983 - 2,370) 15.7 (14.6 - 16.3) 9.3 (8.3 - 9.9) 763 (732 - 826) 1,313 (1,227 - 1,472)

2043 3,014 (2,763 - 3,155) 1,952 (1,745 - 2,084) 13.3 (12.2 - 14.0) 8.4 (7.6 - 9.0) 826 (787 - 904) 1,338 (1,251 - 1,500)

65+ 1993 2,919 (2,512 - 3,358) 527 (381 - 709) 22.9 (20.4 - 25.5) 3.6 (2.6 - 4.8) 309 (268 - 359) 2,413 (1,790 - 3,339)

2003 3,369 (3,096 - 3,627) 849 (694 - 999) 19.9 (18.4 - 21.3) 4.3 (3.5 - 5.1) 316 (291 - 347) 1,674 (1,418 - 2,054)

2013 3,640 (3,425 - 3,810) 1,418 (1,250 - 1,547) 18.2 (17.2 - 19.0) 6.2 (5.5 - 6.8) 317 (301 - 339) 1,044 (954 - 1,188)

2023 3,481 (3,249 - 3,635) 1,906 (1,691 - 2,044) 16.6 (15.5 - 17.3) 8.0 (7.2 - 8.6) 335 (319 - 361) 755 (702 - 854)

2033 3,155 (2,911 - 3,304) 2,077 (1,844 - 2,229) 14.9 (13.8 - 15.6) 9.1 (8.1 - 9.7) 393 (374 - 429) 701 (651 - 793)

2043 2,681 (2,448 - 2,821) 1,847 (1,642 - 1,919) 12.6 (11.5 - 13.2) 8.2 (7.3 - 8.8) 463 (438 - 511) 763 (710 - 862)

Regarding the CV procedure, the average values of MAPE for different prediction horizons are

lower than 30% (Table 1.4), indicating that the predictive performance of the model is adequate,

even if not optimal [46]. The MAPE is lower for the model on the male population than for the

model on the female one.

TABLE 1.4: Cross-validation results: MAPE (%) calculated on four-time horizons for the model
on males and the model on females.

Horizon Male Female

3 years 24.3 28.6

6 years 24.4 28.8

9 years 24.7 29.3

12 years 24.9 29.9

Figure 1.3 reports the results of the two separate calibrations of the SHC model, one on the

prevalence data from 1993 to 2004 and one on the prevalence data from 2005 to 2019. The

confidence bands are wider in the second period of calibration than in the first one. For males,

there is evidence of a downward shift of age corresponding to the maximum probability of

starting smoking. For females, calibrating the model in the first years brought a lower projection

of the prevalence of never smokers, which likely reflects a change over time in the smoking habits

among women. Apart from these differences, the two calibrations provided qualitatively similar

results. For numerical details see Tables and Figures in Section A.5, Supplemental Material.
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a) b)

c) d)

FIGURE 1.3: Results of the two-step estimation procedure for males in blue and females in red,
by the period of calibration (from 1993 to 2004 in a light color and from 2005 to 2019 in a dark
color): probabilities of starting (γ(a)) and stopping smoking (ε(a)), and probability of smoking
relapse (η(c)), with 90% confidence bands, (a) and (c); the prevalence of never (N), current (C)

and former (F) smokers, with 90% confidence bands, (b) and (d).

The total variance indices derived from the GSA (Table 1.5) reveal that the primary factor

contributing to the variability of the Hellinger distance is the probability of starting smoking and

its interaction with the other model inputs, resulting in Stot
i values of 0.58 for males and 0.76

for females. This is followed by the probability of quitting smoking, with values of 0.36 for

males and 0.21 for females, and by the probability of smoking relapse, with values of 0.15 for

males and 0.09 for females. Conversely, the parameters assumed to be fixed have a negligible

impact on the Hellinger distance, with total variance indices very close to 0. On the one hand,

this result suggests that calibration does not provide meaningful information about πππ , ν , and

the RRs, thereby supporting our decision to treat these parameters as fixed, while focusing on

inferring ψψψ , φφφ , and ωωω . On the other hand, it indicates that fixing the aforementioned parameters

to specific values does not significantly affect the calibration results and prevalence estimates,

demonstrating their robustness against variations in πππ , ν , and the RRs specifications.
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TABLE 1.5: Total variance indices quantifying the contribution of each input on the Hellinger
distance, calculated for the model on males and the model on females.

Input Male Female

ψψψ 0.58 0.76

φφφ 0.36 0.21

ωωω 0.15 0.09

πππ < 0.01 < 0.01

ννν < 0.01 < 0.01

RRs < 0.01 < 0.01

Figure 1.4 compares the evolution of smoking habits in the male and female populations under

three alternative scenarios that simulate hypothetical tobacco control policies. These scenarios

are compared with the status quo, corresponding to the absence of actions to reduce tobacco

consumption (TCP0). We assumed that the TCPs have been applied since 2023. They have no

substantial effect on the prevalence of never, former, and current smokers during the 10 years

following their implementation. TCP3 has the largest impact: in 2043 it is expected to increase

by 12 percentage points the prevalence of never-smokers among males and by 8 among females,

compared with TCP0 (see Table 1.6).

a) b)

FIGURE 1.4: Estimated prevalence of never (N), current (C) and former (F) smokers under
different tobacco control policies (TCP) with 90% confidence intervals, for males (a) and females

(b).
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TABLE 1.6: Estimated prevalence (%) of never, current, and former smokers in the population
under different tobacco control policies (TCP) evaluated in 2023, 2033, and 2043, with 90%

confidence intervals, for males and females.

Male Female
Status Year TCP0 TCP1 TCP2 TCP3 TCP0 TCP1 TCP2 TCP3

Never 2023 42.2 (41.2 - 44.0) 42.2 (41.2 - 44.0) 42.2 (41.2 - 44.0) 42.2 (41.3 - 44.0) 58.9 (57.7 - 60.3) 58.9 (57.7 - 60.3) 58.9 (57.7 - 60.3) 58.9 (57.7 - 60.3)

2033 45.2 (44.3 - 47.0) 46.0 (45.2 - 47.9) 45.1 (44.0 - 47.0) 49.0 (48.1 - 50.6) 59.0 (58.0 - 60.6) 59.7 (58.6 - 61.2) 59.0 (58.0 - 60.5) 61.7 (60.7 - 63.0)

2043 47.5 (46.8 - 49.7) 49.8 (49.1 - 51.9) 47.5 (46.8 - 49.7) 58.7 (58.2 - 60.2) 60.1 (59.0 - 61.8) 61.8 (60.8 - 63.4) 60.0 (59.0 - 61.8) 67.7 (66.9 - 68.9)

Current 2023 22.9 (21.4 - 23.3) 22.9 (21.4 - 23.3) 22.9 (21.4 - 23.3) 22.9 (21.4 - 23.3) 17.0 (15.8 - 17.5) 17.0 (15.8 - 17.5) 17.0 (15.8 - 17.5) 17.0 (15.8 - 17.5)

2033 21.7 (20.0 - 22.1) 20.9 (19.3 - 21.4) 20.2 (18.6 - 20.7) 18.4 (16.9 - 18.8) 15.9 (14.7 - 16.5) 15.3 (14.1 - 16.0) 14.8 (13.6 - 15.5) 13.7 (12.6 - 14.3)

2043 21.5 (19.7 - 22.0) 19.7 (18.0 - 20.2) 19.2 (17.5 - 19.7) 12.9 (11.6 - 13.3) 15.4 (14.1 - 16.1) 14.1 (12.9 - 14.8) 13.6 (12.4 - 14.3) 10.1 (9.1 - 10.7)

Former 2023 34.9 (33.7 - 36.2) 34.9 (33.7 - 36.2) 35.0 (33.7 - 36.3) 34.9 (33.7 - 36.2) 24.1 (23.1 - 25.4) 24.1 (23.1 - 25.4) 24.1 (23.1 - 25.4) 24.1 (23.1 - 25.4)

2033 33.2 (31.9 - 34.5) 33.0 (31.8 - 34.4) 34.7 (33.3 - 36.0) 32.7 (31.5 - 34.0) 25.1 (24.0 - 26.3) 25.0 (23.9 - 26.2) 26.1 (25.0 - 27.4) 24.6 (23.5 - 25.8)

2043 31.0 (29.7 - 32.2) 30.5 (29.2 - 31.6) 33.4 (31.9 - 34.5) 28.4 (27.3 - 29.6) 24.6 (23.4 - 25.8) 24.1 (22.9 - 25.2) 26.3 (25.1 - 27.5) 22.3 (21.3 - 23.3)

In order to better appreciate the impact of the TCPs on mortality, we extended the forecasting

horizon up to 2063. Table 1.7 reports the predicted number of attributable deaths every 10 years,

from 2023 to 2063, for both males and females under different TCPs, for the classes of age

35+ and 65+. TPC2, which increases the probability of stopping smoking, is the policy that

most impacts mortality in both classes of age. TPC3, which bans access to smoking to the

new generations, despite its effectiveness in reducing current smokers, does not reduce SADs

within the time window considered. Indeed, this policy is expected to have a longer-term impact,

which is not visible before 2063. Additional Tables and Figures are reported in Section A.5,

Supplemental Material.

TABLE 1.7: Expected number of Smoking Attributable Deaths (SAD) under different tobacco
control policies (TCP), in the years 2023, 2033, 2043, 2053, and 2063, with 90% confidence

intervals, among males and females aged over 35 and over 65.

Male Female
Age Year TCP0 TCP1 TCP2 TCP3 TCP0 TCP1 TCP2 TCP3

35+ 2023 4,058 (3,804 - 4,212) 4,058 (3,804 - 4,213) 4,058 (3,804 - 4,212) 4,058 (3,804 - 4,213) 2,127 (1,906 - 2,268) 2,127 (1,906 - 2,268) 2,127 (1,906 - 2,268) 2,127 (1,906 - 2,268)

2033 3,597 (3,335 - 3,743) 3,596 (3,334 - 3,742) 3,547 (3,288 - 3,695) 3,597 (3,335 - 3,743) 2,219 (1,983 - 2,370) 2,218 (1,983 - 2,370) 2,188 (1,953 - 2,339) 2,219 (1,983 - 2,370)

2043 3,014 (2,763 - 3,155) 3,011 (2,760 - 3,152) 2,848 (2,605 - 2,989) 3,014 (2,763 - 3,155) 1,952 (1,745 - 2,084) 1,950 (1,743 - 2,083) 1,849 (1,645 - 1,981) 1,952 (1,745 - 2,084)

2053 2,409 (2,194 - 2,514) 2,397 (2,182 - 2,501) 2,188 (1,984 - 2,294) 2,360 (2,157 - 2,463) 1,590 (1,418 - 1,688) 1,584 (1,412 - 1,683) 1,452 (1,285 - 1,549) 1,575 (1,402 - 1,673)

2063 1,892 (1,711 - 1,968) 1,858 (1,678 - 1,934) 1,667 (1,500 - 1,739) 1,742 (1,570 - 1,815) 1,101 (976 - 1,165) 1,087 (963 - 1,150) 969 (853 - 1,019) 1,053 (930 - 1,116)

65+ 2023 3,481 (3,249 - 3,635) 3,481 (3,249 - 3,635) 3,481 (3,249 - 3,635) 3,481 (3,249 - 3,635) 1,906 (1,691 - 2,044) 1,906 (1,691 - 2,044) 1,906 (1,691 - 2,044) 1,906 (1,691 - 2,044)

2033 3,155 (2,911 - 3,304) 3,155 (2,911 - 3,304) 3,113 (2,869 - 3,262) 3,155 (2,911 - 3,304) 2,077 (1,844 - 2,229) 2,077 (1,844 - 2,229) 2,049 (1,816 - 2,199) 2,077 (1,844 - 2,229)

2043 2,681 (2,448 - 2,821) 2,681 (2,448 - 2,821) 2,534 (2,307 - 2,675) 2,681 (2,448 - 2,821) 1,847 (1,642 - 1,979) 1,847 (1,642 - 1,919) 1,750 (1,548 - 1,881) 1,847 (1,642 - 1,979)

2053 2,081 (1,887 - 2,183) 2,081 (1,887 - 2,183) 1,892 (1,710 - 1,997) 2,081 (1,887 - 2,183) 1,486 (1,316 - 1,585) 1,486 (1,316 - 1,585) 1,359 (1,198 - 1,457) 1,486 (1,316 - 1,585)

2063 1,553 (1,397 - 1,621) 1,552 (1,396 - 1,619) 1,372 (1,230 - 1,434) 1,553 (1,397 - 1,621) 994 (877 - 1,053) 993 (876 - 1,052) 877 (768 - 934) 994 (877 - 1,053)

1.4 Discussion

Interesting findings emerged from our analysis. We found that the probability of starting smoking

reaches its maximum of just over 9% for males and just over 6% for females between 19 and 20

years of age. Considering that younger people have a large probability to become stable smokers

[47], these probabilities are quite worrying. The difference in the mean age of initiation between

males and females is lower than one year, confirming what is reported for high-income countries

[48]. Regarding the probability of stopping smoking, we found that it increases after 50 years
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of age and has a maximum of 29.5% for males and 24.0% for females, even if the confidence

bands around these curves are quite wide. The 80% of ex-smokers relapse into smoking after

1 year, in line with the results of the Italian surveillance system PASSI for the years 2020-

2021 (www.epicentro.iss.it/passi/dati/SmettereFumo). On average, former

smokers relapse into smoking during the second year from cessation (after 1.7 and 1.5 years for

males and females, respectively).

According to our model, in 2023 in Tuscany, 23% of men smoke, while 35% are ex-smokers.

These percentages are lower among women: 16% smoke and 24% are ex-smokers. The preva-

lence of smokers estimated by our model is lower than the one reported in the PASSI survey

for the period 2020-2021 (26.1% and 20.5% in the age class 18-69 for males and females,

respectively), but consistent if we consider that our estimates are calculated on all population,

while PASSI focuses on the age class 18-69 (www.epicentro.iss.it/passi/pdf2020/

Scheda-fumo-PASSI-regione-2016-2019.pdf).

We estimated that, in 2023, 18% of deaths among males and 8% among females are due

to smoking, corresponding to 4,070 and 1,976 deaths, respectively. These PAFs are in line

with those estimated by the Global Burden of Disease Study for Italy in 2019 (https://

vizhub.healthdata.org/gbd-results/): 20.5% (CI: 19.5-21.7) in males and 8.17%

(CI: 7.51-9.02) in females, slightly lower than those reported for Italy by the Tobacco Atlas ini-

tiative (https://tobaccoatlas.org/challenges/deaths/) and overall coherent

with previous results for Italy and Tuscany ([49]; www.deathsfromsmoking.net).

As shown by the cross-validation results, the model produces quite reliable predictions of

prevalence. Thus, subject to the assumption that all mechanisms underlying smoking dynamics

and demographic evolution do not change in the future, we projected the dynamics. For the

next two decades, we estimated an evident decrease in the prevalence of current smokers for

males, due to an increase in the percentage of never-smokers. For females, substantial stability is

expected. Similar considerations apply to PAFs: a decrease is observed for males and stability

for females. These results confirm that Italy is in the fourth stage of the tobacco epidemic model,

characterized by a continuing slow decline of smoking prevalence in both men and women with

converging rates between sex [50, 51].

The proposed model can be used for assessing the impact of alternative TPCs. For illustrative

purposes, we considered the impact of three policies aimed at reducing smoking in the population.

The first two policies are completely hypothetical and defined in terms of their effect on the

probability of starting (TCP1) and stopping (TPC2) smoking. They are not real policies but

represent the intentions of the legislator to change the rates of smoking initiation and cessation.

The third one (TCP3), which bans smoking in new cohorts since 2009, is inspired by the tobacco-

free generation real intervention implemented in New Zealand as part of a plan for the tobacco

endgame, including also additional strategies aimed at decreasing the affordability and availability

www.epicentro.iss.it/passi/dati/SmettereFumo
www.epicentro.iss.it/passi/pdf2020/Scheda-fumo-PASSI-regione-2016-2019.pdf
www.epicentro.iss.it/passi/pdf2020/Scheda-fumo-PASSI-regione-2016-2019.pdf
https://vizhub.healthdata.org/gbd-results/
https://vizhub.healthdata.org/gbd-results/
https://tobaccoatlas.org/challenges/deaths/
www.deathsfromsmoking.net
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of smoking, reducing the levels of nicotine in tobacco products, and restricting sales to designated

tobacco outlets. We evaluated the expected marginal impact that this tobacco-free generation

intervention would have in Tuscany, assuming complete compliance of new generations to the

smoking ban. The results indicate that under TPC1 and TPC2 the prevalence of current smokers

is reduced by a few percentage points either for women or men. On the contrary, TCP3 produces

a clear increase in never-smokers, thus a reduction in smoking prevalence, which is expected to

decrease in ten years by 9 and 6 percentage points among males and females, respectively. The

impact on mortality of the three policies, in particular TCP1 and TPC3, that act by increasing the

number of never smokers, can be appreciated only by extending the time horizon of forecasting.

Interventions able to increase the probability of stopping smoking, like TPC2, are expected

to produce the largest reduction of SADs in the medium term, especially among the over-65s.

However, this kind of policy does not contribute to reducing smoking among the youngest, thus

effectively stopping the tobacco epidemic.

From a methodological point of view, we introduced several elements of novelty. First of all,

we provided a formal definition of the equations that describe the system dynamics and made

explicit assumptions on the distribution of the involved random variables. We also introduced

cubic regression splines for modelling in a flexible way the probabilities of starting and quitting

smoking as functions of age, thus obtaining more realistic trajectories. Furthermore, we included

in the model dependencies from the smoking intensity, which may allow assessing the impact of

personalized TCPs specific for heavy or moderate smokers, such as lung cancer screening, use of

pharmacological treatment, or smoking cessation campaigns.

Regarding the inference on the unknown parameters, we proposed a two-step estimation strategy

to estimate the curves describing the probability of starting and stopping smoking and the

probability of smoking relapse, as well as the mortality risk among never, current and former

smokers. At the second step of the estimation procedure, we defined the calibration objective

function in terms of a Hellinger distance between observed and predicted prevalence, instead

of the widely used sum of squares function. The use of this discrepancy measure is relatively

new in this framework and allowed handling a bounded loss function, defined in [0,1], that

is simple to minimise and to be interpreted. Finally, we provided confidence intervals/bands

for the parameters/curves of interest. To the best of our knowledge, this is the first time that

quantification of sampling variability is performed in this field. To this aim, we resorted to a

parametric bootstrap procedure defined by adapting to our framework a method proposed for

compartmental models describing infectious dynamics [30]. Note that this quantification of

the sampling variability accounts for the sample size of the surveys from which we derived the

observed prevalence used in the estimation. The estimation procedure has also limitations. We

estimated the parameters in a deterministic way, in the sense that we considered the distributional

assumptions on the prevalence only in the bootstrap procedure but not in the calibration phase.

While likelihood-based approaches are unfeasible in this framework, likelihood-free inference
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methods such as Approximate Bayesian Computation algorithms would allow a full uncertainty

quantification [25].

The reliability of the model’s results depends on several factors. First of all, it depends on the

quality of the data used for calibration. In our case, we used data from yearly surveys conducted

according to well-established methodology on reasonably large sample sizes. Secondly, it depends

on the appropriateness of the values assigned to the parameters treated as fixed. We addressed

this point by proposing the use of GSA in this framework. The GSA results revealed that the

prevalence estimates were robust to variations of the fixed parameters within plausible ranges of

values. Lastly, the reliability of the results depends on the structural assumptions on which the

model is based, not assessed via GSA. Underneath, we qualitatively review the main assumptions

of the model and discuss the limitations that may arise from them. With respect to demographic

dynamics, we assumed that the population was close to immigration and emigration and that the

number of new births did not vary during the study period, effectively feeding the model with

identical cohorts of subjects each year. For more realistic modelling, we could use the observed

yearly number of births to create the new cohorts up to 2019. However, in light of the GSA, we

expect that the impact of this choice on the results has not been significant. We also assumed that

the age-specific mortality rates did not vary over the study period.

Regarding smoking dynamics, we assumed that the probabilities of starting and stopping smoking

were functions of age and that the probability of smoking relapse was a function of time since

cessation, but not of age. We did not allow any of these probabilities to vary over time. By

defining the transition probabilities in this way, we have made a clear choice about which time

axes were most important in our opinion to capture appropriately the smoking dynamics in

the population. This choice is not without problems because in some cases there is evidence

suggesting otherwise. For example, a decreasing trend in the probability of starting smoking

has been reported for both males and females in Europe [52], while evidence of a dependence

between age and risk of smoking relapse has been found in the US population [53]. However,

if introducing multiple time-axes dependence in the transition probabilities could lead to more

realistic results, this would be at the price of further complicating the model by introducing new

unknown parameters to be estimated. We partially explored the goodness of the assumption of

no calendar time dependence through a simple sensitivity analysis, which confirmed that the

probabilities of starting and stopping smoking, and the probability of smoking relapse were quite

similar when two separate calibrations were performed on the periods 1993-2004 and 2005-2019.

It is worth stressing that, even if these two periods correspond to before and after the introduction

of the so-called Sirchia law that banned smoking in all indoor public places in Italy, it was not

our goal to speculate about the causal effect of this intervention on smoking dynamics. We

also assumed that people could not change their smoke intensity during their entire life, that the

probability of stopping and relapsing did not depend on smoking intensity, and, again, that the

distribution of smokers by smoking intensity did not change over the study period.
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Regarding the assumption that individual cannot change level of smoking, it has been reported in

the literature that the probability that smokers that do not stop smoking change their smoking

habits is negligible [54]. Moreover, the assumption of no transitions between levels of smoking

is necessary in order not to further complicate the already complex differential equations system

governing the model. Regarding the assumption of defined the bounded transitions probabilities,

relying on various research studies conducted by the Italian Superior Institute of Health and

carried out in Lugo et al. [55], revealed that over 95% of current smokers began smoking regularly

before the age of 25, and that in the age group 15-24 only 1.4% are former smokers. Furthermore,

national data provided by ISTAT also confirm that there are few former smokers before the age of

20. Accordingly, we speculated that the number of individuals who quit smoking before 20 years

of age is very small and that their impact on the whole dynamic may be considered as negligible.

In general, it is important to note that, underlying all the simplifications introduced in model

specification, is the fact that adding details to a compartmental model goes along with the

definition of new compartments and new transitions, and without available and reliable data,

the model could become non-identifiable producing more uncertain and unstable results [56].

Moreover, microsimulation models or social network models, that explore smoking dynamics

from an individual point of view, could be more suitable solutions to introduce detail and

complexity, including those related, for example, to the course of disease [57, 58], or to explore

the exposure to second-hand smoke that, being related to the social network of the individuals,

was not considered in our analysis.

1.5 Conclusions

We developed an approach for modelling smoking dynamics in the population, that overcomes

many of the limitations of previously proposed models. It includes validation tools like cross-

validation on a rolling basis and GSA, aimed at checking the robustness of our results and

supporting our findings. The model can be easily generalized and applied to other regions and

countries, after carefully checking the validity of the model assumptions in different contexts. It

can be also used to assess the impact of other tobacco control policies on smoking prevalence

and mortality, beyond those considered in this paper.

Authors’ contributions: A.L., C.V. and M.B. conceptualized the model and wrote the first

version of the paper; A.L. wrote the code and conducted the statistical analysis; G.Ce. and G.Ca.

provided critical feedback; M.B. supervised the project. All the authors read and approved the

final version of the paper.





Bibliography

[1] IARC, editor. Tobacco smoke and involuntary smoking: this publication represents the views

and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to

Humans, which met in Lyon, 11 - 18 June 2002. Number 83 in IARC monographs on the

evaluation of carcinogenic risks to humans. IARC, Lyon, 2004. ISBN 978-92-832-1283-6.

[2] Institute of Medicine (U.S.), R.J. Bonnie, K.R. Stratton, and R.B. Wallace, editors. Ending

the tobacco problem: a blueprint for the nation. National Academies Press, Washington,

DC, 2007. ISBN 978-0-309-10382-4.

[3] IARC, editor. A review of human carcinogens. Number 100 in IARC monographs on

the evaluation of carcinogenic risks to humans. IARC, Lyon, 2012. ISBN 978-92-832-

1329-1 978-92-832-1318-5 978-92-832-1319-2 978-92-832-1320-8 978-92-832-1321-5

978-92-832-1322-2 978-92-832-1323-9.

[4] B. Loring. Tobacco and inequities: guidance for addressing inequities in tobacco-related

harm. World Health Organization, Regional Office for Europe, Copenhagen, Denmark,

2014. ISBN 978-92-890-5049-4.

[5] GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 coun-

tries and territories, 1990–2019: a systematic analysis for the Global Burden of Dis-

ease Study 2019. The Lancet, 396(10258):1223–1249, 2020. ISSN 01406736. doi:

10.1016/S0140-6736(20)30752-2. URL https://linkinghub.elsevier.com/

retrieve/pii/S0140673620307522.

[6] World Health Organization. Tobacco control for sustainable development. Regional Office

for South-East Asia, 2017. ISBN 978-92-9022-578-2.

[7] G. Gorini, G. Carreras, A. Lugo, S. Gallus, M. Masocco, L. Spizzichino, and V. Mi-

nardi. Electronic cigarette use as an aid to quit smoking: Evidence from PASSI survey,

2014–2021. Preventive Medicine, 166:107391, 2023. ISSN 00917435. doi: 10.1016/j.

ypmed.2022.107391. URL https://linkinghub.elsevier.com/retrieve/

pii/S009174352200456X.

39

https://linkinghub.elsevier.com/retrieve/pii/S0140673620307522
https://linkinghub.elsevier.com/retrieve/pii/S0140673620307522
https://linkinghub.elsevier.com/retrieve/pii/S009174352200456X
https://linkinghub.elsevier.com/retrieve/pii/S009174352200456X


Compartmental model in epidemiology 40

[8] G. Gorini, S. Gallus, G. Carreras, B. De Mei, M. Masocco, F. Faggiano, L. Charrier,

F. Cavallo, L. Spizzichino, D. Galeone, V. Minardi, S. Lana, A. Lachi, R. Pacifici, B. Cortini,

L. Mastrobattista, C. Mortali, R. Di Pirchio, G. Ferrante, and F. Barone-Adesi. Prevalence

of tobacco smoking and electronic cigarette use among adolescents in Italy: Global Youth

Tobacco Surveys (GYTS), 2010, 2014, 2018. Preventive Medicine, 131:105903, 2020.

ISSN 00917435. doi: 10.1016/j.ypmed.2019.105903. URL https://linkinghub.

elsevier.com/retrieve/pii/S0091743519303834.

[9] S. Cerrai, E. Benedetti, E. Colasante, M. Scalese, G. Gorini, S. Gallus, and S. Molinaro.

E-cigarette use and conventional cigarette smoking among European students: findings

from the 2019 ESPAD survey. Addiction, 117(11):2918–2932, 2022. ISSN 0965-2140,

1360-0443. doi: 10.1111/add.15982. URL https://onlinelibrary.wiley.com/

doi/10.1111/add.15982.

[10] D. Mendez, K.E. Warner, and P.N. Courant. Has Smoking Cessation Ceased? Expected

Trends in the Prevalence of Smoking in the United States. American Journal of Epidemiol-

ogy, 148(3):249–258, 1998. ISSN 0002-9262, 1476-6256. doi: 10.1093/oxfordjournals.aje.

a009632. URL https://academic.oup.com/aje/article-lookup/doi/

10.1093/oxfordjournals.aje.a009632.

[11] D.T. Levy and K. Friend. A Simulation Model of Policies Directed at Treating Tobacco Use

and Dependence. Medical Decision Making, 22(1):6–17, 2002. ISSN 00000000, 0272989X.

doi: 10.1177/02729890222062874. URL http://mdm.sagepub.com/cgi/doi/

10.1177/02729890222062874.

[12] G. Carreras, S. Gallus, L. Iannucci, and G. Gorini. Estimating the probabilities

of making a smoking quit attempt in Italy: stall in smoking cessation levels, 1986-

2009. BMC Public Health, 12(1):183, 2012. ISSN 1471-2458. doi: 10.1186/

1471-2458-12-183. URL http://bmcpublichealth.biomedcentral.com/

articles/10.1186/1471-2458-12-183.

[13] National Center for Chronic Disease Prevention and Health Promotion (US) Office on

Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A

Report of the Surgeon General. Reports of the Surgeon General. Centers for Disease Control

and Prevention (US), Atlanta (GA), 2014. URL http://www.ncbi.nlm.nih.gov/

books/NBK179276/.

[14] E.J. Feuer, D.T. Levy, and W.J. McCarthy. Chapter 1: The Impact of the Reduction in

Tobacco Smoking on U.S. Lung Cancer Mortality, 1975-2000: An Introduction to the

Problem: Introduction: Impact of the Reduction in Tobacco Smoking on U.S. Lung Cancer

Mortality. Risk Analysis, 32:S6–S13, 2012. ISSN 02724332. doi: 10.1111/j.1539-6924.

https://linkinghub.elsevier.com/retrieve/pii/S0091743519303834
https://linkinghub.elsevier.com/retrieve/pii/S0091743519303834
https://onlinelibrary.wiley.com/doi/10.1111/add.15982
https://onlinelibrary.wiley.com/doi/10.1111/add.15982
https://academic.oup.com/aje/article-lookup/doi/10.1093/oxfordjournals.aje.a009632
https://academic.oup.com/aje/article-lookup/doi/10.1093/oxfordjournals.aje.a009632
http://mdm.sagepub.com/cgi/doi/10.1177/02729890222062874
http://mdm.sagepub.com/cgi/doi/10.1177/02729890222062874
http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-183
http://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-183
http://www.ncbi.nlm.nih.gov/books/NBK179276/
http://www.ncbi.nlm.nih.gov/books/NBK179276/


Compartmental model in epidemiology 41

2011.01745.x. URL https://onlinelibrary.wiley.com/doi/10.1111/j.

1539-6924.2011.01745.x.

[15] D.T. Levy, L. Nikolayev, E. Mumford, and C. Compton. The Healthy People 2010 smoking

prevalence and tobacco control objectives: results from the SimSmoke tobacco control

policy simulation model (United States). Cancer Causes and Control, 16(4):359–371,

2005. ISSN 0957-5243, 1573-7225. doi: 10.1007/s10552-004-7841-4. URL http:

//link.springer.com/10.1007/s10552-004-7841-4.

[16] A. Singh, N. Wilson, and T. Blakely. Simulating future public health ben-

efits of tobacco control interventions: a systematic review of models. To-

bacco Control, 30(4):460–470, 2021. ISSN 0964-4563, 1468-3318. doi: 10.

1136/tobaccocontrol-2019-055425. URL https://tobaccocontrol.bmj.com/

lookup/doi/10.1136/tobaccocontrol-2019-055425.

[17] D.T. Levy, S. Gallus, K. Blackman, G. Carreras, C. La Vecchia, and G. Gorini. Italy

SimSmoke: the effect of tobacco control policies on smoking prevalence and smoking-

attributable deaths in Italy. BMC Public Health, 12(1):709, 2012. ISSN 1471-2458. doi:

10.1186/1471-2458-12-709. URL https://bmcpublichealth.biomedcentral.

com/articles/10.1186/1471-2458-12-709.

[18] D.T. Levy, L.M. Sánchez-Romero, Y. Li, Z. Yuan, N. Travis, M.J. Jarvis, J. Brown, and

A. McNeill. England SimSmoke: the impact of nicotine vaping on smoking prevalence

and smoking-attributable deaths in England. Addiction, 116(5):1196–1211, 2021. ISSN

0965-2140, 1360-0443. doi: 10.1111/add.15269. URL https://onlinelibrary.

wiley.com/doi/10.1111/add.15269.

[19] A.M. Near, K. Blackman, L.M. Currie, and D.T. Levy. Sweden SimSmoke: the ef-

fect of tobacco control policies on smoking and snus prevalence and attributable deaths.

The European Journal of Public Health, 24(3):451–458, 2014. ISSN 1101-1262, 1464-

360X. doi: 10.1093/eurpub/ckt178. URL https://academic.oup.com/eurpub/

article-lookup/doi/10.1093/eurpub/ckt178.

[20] L.M. Sánchez-Romero, L. Zavala-Arciniega, L.M. Reynales-Shigematsu, B.S. De Miera-

Juárez, Z. Yuan, Y. Li, Y.K. Lau, N.L. Fleischer, R. Meza, J.F. Thrasher, and D.T. Levy.

The Mexico SimSmoke tobacco control policy model: Development of a simulation model

of daily and nondaily cigarette smoking. PLOS ONE, 16(6):e0248215, 2021. ISSN 1932-

6203. doi: 10.1371/journal.pone.0248215. URL https://dx.plos.org/10.1371/

journal.pone.0248215.

[21] Institute of Medicine (U.S.), R.B. Wallace, A. Geller, and V.A. Ogawa, editors. Assessing the

use of agent-based models for tobacco regulation. National Academies Press, Washington,

D.C, 2015. ISBN 978-0-309-31722-1.

https://onlinelibrary.wiley.com/doi/10.1111/j.1539-6924.2011.01745.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1539-6924.2011.01745.x
http://link.springer.com/10.1007/s10552-004-7841-4
http://link.springer.com/10.1007/s10552-004-7841-4
https://tobaccocontrol.bmj.com/lookup/doi/10.1136/tobaccocontrol-2019-055425
https://tobaccocontrol.bmj.com/lookup/doi/10.1136/tobaccocontrol-2019-055425
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-709
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-12-709
https://onlinelibrary.wiley.com/doi/10.1111/add.15269
https://onlinelibrary.wiley.com/doi/10.1111/add.15269
https://academic.oup.com/eurpub/article-lookup/doi/10.1093/eurpub/ckt178
https://academic.oup.com/eurpub/article-lookup/doi/10.1093/eurpub/ckt178
https://dx.plos.org/10.1371/journal.pone.0248215
https://dx.plos.org/10.1371/journal.pone.0248215


Compartmental model in epidemiology 42

[22] J. Tam, D.T. Levy, J. Jeon, J. Clarke, S. Gilkeson, T. Hall, E.J. Feuer, T.R. Holford,

and R. Meza. Projecting the effects of tobacco control policies in the USA through

microsimulation: a study protocol. BMJ Open, 8(3):e019169, 2018. ISSN 2044-6055, 2044-

6055. doi: 10.1136/bmjopen-2017-019169. URL https://bmjopen.bmj.com/

lookup/doi/10.1136/bmjopen-2017-019169.

[23] G. Carreras, G. Gorini, and E. Paci. Can a National Lung Cancer Screening Pro-

gram in Combination with Smoking Cessation Policies Cause an Early Decrease in

Tobacco Deaths in Italy? Cancer Prevention Research, 5(6):874–882, 2012. ISSN

1940-6207, 1940-6215. doi: 10.1158/1940-6207.CAPR-12-0019. URL https:

//aacrjournals.org/cancerpreventionresearch/article/5/6/874/

49965/Can-a-National-Lung-Cancer-Screening-Program-in.

[24] A. Lachi, C. Viscardi, M.C. Malevolti, G. Carreras, and M. Baccini. Compartmental models

in epidemiology: Application on smoking habits in tuscany. In Book of short papers SIS,

pages 1437–1442. Pearson, 2022.

[25] A. Lachi, C. Viscardi, G. Cereda, G. Carreras, and M. Baccini. A compartmental models for

smoking dynamics in Italy: A pipeline for inference, validation, and forecasting under hypo-

thetical scenarios. preprint, In Review, 2023. URL https://www.researchsquare.

com/article/rs-3303111/v1.

[26] L.D. Broemeling. Bayesian analysis of infectious diseases: COVID-19 and beyond. Chap-

man and Hall/CRC biostatistics series. CRC Press, Taylor and Francis Group, Boca Raton

London New York, 2021. ISBN 978-0-367-64724-7 978-0-367-63386-8.

[27] M. Baccini, G. Cereda, and C. Viscardi. The first wave of the SARS-CoV-2 epidemic

in Tuscany (Italy): A SI2R2D compartmental model with uncertainty evaluation. PLOS

ONE, 16(4):e0250029, 2021. ISSN 1932-6203. doi: 10.1371/journal.pone.0250029. URL

https://dx.plos.org/10.1371/journal.pone.0250029.

[28] R.T. Hoogenveen, P.Hm. Van Baal, H.C. Boshuizen, and T.L. Feenstra. Dynamic effects

of smoking cessation on disease incidence, mortality and quality of life: The role of

time since cessation. Cost Effectiveness and Resource Allocation, 6(1):1, 2008. ISSN

1478-7547. doi: 10.1186/1478-7547-6-1. URL http://resource-allocation.

biomedcentral.com/articles/10.1186/1478-7547-6-1.

[29] B. Efron and R. Tibshirani. An introduction to the bootstrap. Number 57 in Monographs

on statistics and applied probability. Chapman and Hall, New York, 1993. ISBN 978-0-412-

04231-7.

[30] G. Chowell. Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A

primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling,

https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2017-019169
https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2017-019169
https://aacrjournals.org/cancerpreventionresearch/article/5/6/874/49965/Can-a-National-Lung-Cancer-Screening-Program-in
https://aacrjournals.org/cancerpreventionresearch/article/5/6/874/49965/Can-a-National-Lung-Cancer-Screening-Program-in
https://aacrjournals.org/cancerpreventionresearch/article/5/6/874/49965/Can-a-National-Lung-Cancer-Screening-Program-in
https://www.researchsquare.com/article/rs-3303111/v1
https://www.researchsquare.com/article/rs-3303111/v1
https://dx.plos.org/10.1371/journal.pone.0250029
http://resource-allocation.biomedcentral.com/articles/10.1186/1478-7547-6-1
http://resource-allocation.biomedcentral.com/articles/10.1186/1478-7547-6-1


Compartmental model in epidemiology 43

2(3):379–398, 2017. ISSN 24680427. doi: 10.1016/j.idm.2017.08.001. URL https:

//linkinghub.elsevier.com/retrieve/pii/S2468042717300234.

[31] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and

S. Tarantola. Global sensitivity analysis: the primer. John Wiley & Sons, Ltd, 2008. ISBN

978-0-470-05997-5.

[32] M.J. Thun, B.D. Carter, D. Feskanich, N.D. Freedman, R. Prentice, A.D. Lopez, P. Hartge,

and S.M. Gapstur. 50-Year Trends in Smoking-Related Mortality in the United States.

New England Journal of Medicine, 368(4):351–364, 2013. ISSN 0028-4793, 1533-4406.

doi: 10.1056/NEJMsa1211127. URL http://www.nejm.org/doi/10.1056/

NEJMsa1211127.

[33] H. Ryan, A. Trosclair, and J. Gfroerer. Adult Current Smoking: Differences in Definitions

and Prevalence Estimates—NHIS and NSDUH, 2008. Journal of Environmental and Public

Health, 2012:1–11, 2012. ISSN 1687-9805, 1687-9813. doi: 10.1155/2012/918368. URL

http://www.hindawi.com/journals/jeph/2012/918368/.

[34] G. Carreras, G. Gorini, S. Gallus, L. Iannucci, and D.T. Levy. Predicting the future

prevalence of cigarette smoking in Italy over the next three decades. European Journal of

Public Health, 22(5):699–704, 2012. ISSN 1464-360X, 1101-1262. doi: 10.1093/eurpub/

ckr108. URL https://academic.oup.com/eurpub/article-lookup/doi/

10.1093/eurpub/ckr108.

[35] E. Hellinger. Neue Begründung der Theorie quadratischer Formen von unendlichvielen

Veränderlichen. Journal für die reine und angewandte Mathematik, 1909(136):210–271,

1909. ISSN 1435-5345, 0075-4102. doi: 10.1515/crll.1909.136.210. URL https://www.

degruyter.com/document/doi/10.1515/crll.1909.136.210/html.

[36] P.K. Mogensen and A.N. Riseth. Optim: A mathematical optimization package for Julia.

Journal of Open Source Software, 3(24):615, 2018. ISSN 2475-9066. doi: 10.21105/joss.

00615. URL http://joss.theoj.org/papers/10.21105/joss.00615.

[37] W. Zucchini, I.L. MacDonald, and R. Langrock. Hidden Markov models for time series: an

introduction using R. Chapman and Hall/CRC, New York, second edition edition, 2016.

ISBN 978-1-03-217949-0 978-1-4822-5383-2. doi: 10.1201/b20790.

[38] K. Roosa and G. Chowell. Assessing parameter identifiability in compartmental dy-

namic models using a computational approach: application to infectious disease trans-

mission models. Theoretical Biology and Medical Modelling, 16(1):1, 2019. ISSN 1742-

4682. doi: 10.1186/s12976-018-0097-6. URL https://tbiomed.biomedcentral.

com/articles/10.1186/s12976-018-0097-6.

https://linkinghub.elsevier.com/retrieve/pii/S2468042717300234
https://linkinghub.elsevier.com/retrieve/pii/S2468042717300234
http://www.nejm.org/doi/10.1056/NEJMsa1211127
http://www.nejm.org/doi/10.1056/NEJMsa1211127
http://www.hindawi.com/journals/jeph/2012/918368/
https://academic.oup.com/eurpub/article-lookup/doi/10.1093/eurpub/ckr108
https://academic.oup.com/eurpub/article-lookup/doi/10.1093/eurpub/ckr108
https://www.degruyter.com/document/doi/10.1515/crll.1909.136.210/html
https://www.degruyter.com/document/doi/10.1515/crll.1909.136.210/html
http://joss.theoj.org/papers/10.21105/joss.00615
https://tbiomed.biomedcentral.com/articles/10.1186/s12976-018-0097-6
https://tbiomed.biomedcentral.com/articles/10.1186/s12976-018-0097-6


Compartmental model in epidemiology 44

[39] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola. Variance-

based sensitivity analysis of model output. Design and estimator for the total sensitivity

index. Computer Physics Communications, 181(2):259–270, 2010. ISSN 00104655.

doi: 10.1016/j.cpc.2009.09.018. URL https://linkinghub.elsevier.com/

retrieve/pii/S0010465509003087.

[40] I.M. Sobol. A primer for the Monte Carlo method. CRC Press, Boca Raton, 1994. ISBN

978-0-8493-8673-2.

[41] S. Kucherenko, D. Albrecht, and A. Saltelli. Exploring multi-dimensional spaces: a com-

parison of latin hypercube and quasi monte carlo sampling techniques. arXiv - University

of Cornell (USA). JRC98050, 2015. doi: https://doi.org/10.48550/arXiv.1505.02350.

[42] GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in

the prevalence of smoking tobacco use and attributable disease burden in 204 coun-

tries and territories, 1990-2019: a systematic analysis from the Global Burden of Dis-

ease Study 2019. The Lancet, 397(10292):2337–2360, 2021. ISSN 01406736. doi:

10.1016/S0140-6736(21)01169-7. URL https://linkinghub.elsevier.com/

retrieve/pii/S0140673621011697.

[43] M.C. Kulik, W.J. Nusselder, H.C. Boshuizen, S.K. Lhachimi, E. Fernández, P. Baili,

K. Bennett, J.P. Mackenbach, and H.A. Smit. Comparison of Tobacco Control Scenarios:

Quantifying Estimates of Long-Term Health Impact Using the DYNAMO-HIA Modeling

Tool. PLoS ONE, 7(2):e32363, 2012. ISSN 1932-6203. doi: 10.1371/journal.pone.0032363.

URL https://dx.plos.org/10.1371/journal.pone.0032363.

[44] M. Hara, T. Sobue, S. Sasaki, S. Tsugane, and the JPHC Study Group. Smoking and Risk

of Premature Death among Middle-aged Japanese: Ten-year Follow-up of the Japan Public

Health Center-based Prospective Study on Cancer and Cardiovascular Diseases (JPHC

Study) Cohort I. Japanese Journal of Cancer Research, 93(1):6–14, 2002. ISSN 09105050.

doi: 10.1111/j.1349-7006.2002.tb01194.x. URL https://onlinelibrary.wiley.

com/doi/10.1111/j.1349-7006.2002.tb01194.x.

[45] M. Wensink, J.A. Alvarez, S. Rizzi, F. Janssen, and R. Lindahl-Jacobsen. Progression of

the smoking epidemic in high-income regions and its effects on male-female survival differ-

ences: a cohort-by-age analysis of 17 countries. BMC Public Health, 20(1):39, 2020. ISSN

1471-2458. doi: 10.1186/s12889-020-8148-4. URL https://bmcpublichealth.

biomedcentral.com/articles/10.1186/s12889-020-8148-4.

[46] N. Meade. Industrial and business forecasting methods, Lewis, C.D., Borough Green,

Sevenoaks, Kent: Butterworth, 1982. Price: £9.25. Pages: 144. Journal of Forecasting,

2(2):194–196, 1983. ISSN 02776693, 1099131X. doi: 10.1002/for.3980020210. URL

https://onlinelibrary.wiley.com/doi/10.1002/for.3980020210.

https://linkinghub.elsevier.com/retrieve/pii/S0010465509003087
https://linkinghub.elsevier.com/retrieve/pii/S0010465509003087
https://linkinghub.elsevier.com/retrieve/pii/S0140673621011697
https://linkinghub.elsevier.com/retrieve/pii/S0140673621011697
https://dx.plos.org/10.1371/journal.pone.0032363
https://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2002.tb01194.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1349-7006.2002.tb01194.x
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-020-8148-4
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-020-8148-4
https://onlinelibrary.wiley.com/doi/10.1002/for.3980020210


Compartmental model in epidemiology 45

[47] S.D. Mahajan, G.G. Homish, and A. Quisenberry. Multifactorial Etiology of Adoles-

cent Nicotine Addiction: A Review of the Neurobiology of Nicotine Addiction and Its

Implications for Smoking Cessation Pharmacotherapy. Frontiers in Public Health, 9:

664748, 2021. ISSN 2296-2565. doi: 10.3389/fpubh.2021.664748. URL https://www.

frontiersin.org/articles/10.3389/fpubh.2021.664748/full.

[48] M.B. Reitsma, L.S. Flor, E.C. Mullany, V. Gupta, S.I. Hay, and E. Gakidou. Spatial, tempo-

ral, and demographic patterns in the prevalence of smoking tobacco use and initiation among

young people in 204 countries and territories, 1990–2019. The Lancet Public Health, 6(7):

e472–e481, 2021. ISSN 24682667. doi: 10.1016/S2468-2667(21)00102-X. URL https:

//linkinghub.elsevier.com/retrieve/pii/S246826672100102X.

[49] G. Gorini, A. Costantini, G. Franchi, and R. Terrone. [Environmental tobacco smoke (ETS)

at the workplace: considerations about a survey carried out in a pharmaceutical industry].

Epidemiologia & Prevenzione, 26(1):35–39, 2002. ISSN 1120-9763.

[50] A.D. Lopez, N.E. Collishaw, and T. Piha. A descriptive model of the cigarette epidemic

in developed countries. Tobacco Control, 3(3):242–247, 1994. ISSN 0964-4563. doi:

10.1136/tc.3.3.242. URL https://tobaccocontrol.bmj.com/lookup/doi/

10.1136/tc.3.3.242.

[51] G. Gorini, G. Carreras, E. Allara, and F. Faggiano. Decennial trends of social differences

in smoking habits in Italy: a 30-year update. Cancer Causes and Control, 24(7):1385–

1391, 2013. ISSN 0957-5243, 1573-7225. doi: 10.1007/s10552-013-0218-9. URL

http://link.springer.com/10.1007/s10552-013-0218-9.

[52] A. Marcon, G. Pesce, L. Calciano, V. Bellisario, S.C. Dharmage, J. Garcia-Aymerich,

T. Gislasson, J. Heinrich, M. Holm, C. Janson, D. Jarvis, B. Leynaert, M.C. Matheson,

P. Pirina, C. Svanes, S. Villani, T. Zuberbier, C. Minelli, S. Accordini, and the Ageing

Lungs In European Cohorts study. Trends in smoking initiation in Europe over 40 years:

A retrospective cohort study. PLOS ONE, 13(8):e0201881, 2018. ISSN 1932-6203. doi:

10.1371/journal.pone.0201881. URL https://dx.plos.org/10.1371/journal.

pone.0201881.

[53] A. Alboksmaty, I.T. Agaku, S. Odani, and F.T. Filippidis. Prevalence and determi-

nants of cigarette smoking relapse among US adult smokers: a longitudinal study.

BMJ Open, 9(11):e031676, 2019. ISSN 2044-6055, 2044-6055. doi: 10.1136/

bmjopen-2019-031676. URL https://bmjopen.bmj.com/lookup/doi/10.

1136/bmjopen-2019-031676.

[54] United States Public Health Service Office et al. Patterns of smoking cessation among us

adults, young adults, and youth. In Smoking Cessation: A Report of the Surgeon General

[Internet]. US Department of Health and Human Services, 2020.

https://www.frontiersin.org/articles/10.3389/fpubh.2021.664748/full
https://www.frontiersin.org/articles/10.3389/fpubh.2021.664748/full
https://linkinghub.elsevier.com/retrieve/pii/S246826672100102X
https://linkinghub.elsevier.com/retrieve/pii/S246826672100102X
https://tobaccocontrol.bmj.com/lookup/doi/10.1136/tc.3.3.242
https://tobaccocontrol.bmj.com/lookup/doi/10.1136/tc.3.3.242
http://link.springer.com/10.1007/s10552-013-0218-9
https://dx.plos.org/10.1371/journal.pone.0201881
https://dx.plos.org/10.1371/journal.pone.0201881
https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2019-031676
https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2019-031676


Compartmental model in epidemiology 46

[55] Alessandra Lugo, Rosario Asciutto, Roberta Pacifici, Paolo Colombo, Carlo la Vecchia, and

Silvano gallus. Smoking in italy 2013-2014, with a focus on the young. Tumori journal,

2013.

[56] A. Puy, P. Beneventano, S.A. Levin, S. Lo Piano, T. Portaluri, and A. Saltelli. Models with

higher effective dimensions tend to produce more uncertain estimates. Science Advances,

8(42):eabn9450, 2022. ISSN 2375-2548. doi: 10.1126/sciadv.abn9450. URL https:

//www.science.org/doi/10.1126/sciadv.abn9450.

[57] M.L Bongers, D. De Ruysscher, C. Oberije, P. Lambin, C.A. Uyl–de Groot, and

V.M.H. Coupé. Multistate Statistical Modeling: A Tool to Build a Lung Cancer Mi-

crosimulation Model That Includes Parameter Uncertainty and Patient Heterogeneity.

Medical Decision Making, 36(1):86–100, 2016. ISSN 0272-989X, 1552-681X. doi:

10.1177/0272989X15574500. URL http://journals.sagepub.com/doi/10.

1177/0272989X15574500.

[58] S.A. Chrysanthopoulou. MILC: A Microsimulation Model of the Natural History of Lung

Cancer. International Journal of Microsimulation, 10(3):5–26, 2016. doi: 10.34196/ijm.

00164. URL http://www.microsimulation.org/IJM/V10_3/IJM_2017_

10_3_1.pdf.

https://www.science.org/doi/10.1126/sciadv.abn9450
https://www.science.org/doi/10.1126/sciadv.abn9450
http://journals.sagepub.com/doi/10.1177/0272989X15574500
http://journals.sagepub.com/doi/10.1177/0272989X15574500
http://www.microsimulation.org/IJM/V10_3/IJM_2017_10_3_1.pdf
http://www.microsimulation.org/IJM/V10_3/IJM_2017_10_3_1.pdf


CHAPTER 2

Frequentist and Bayesian inference on compartmental models in
epidemiology: A critical review with a focus on likelihood-free

approaches

Paper submitted to Statistics in Medicine, under review

Cecilia Viscardi1,2, Alessio Lachi1,3, Michela Baccini1,2,

1 Department of Statistics, Computer Science, and Applications “Giuseppe Parenti" (DiSIA), University

of Florence, Viale Giovan Battista Morgagni 59-65 50134 - Florence, Italy
2 Florence Center for Data Science, University of Florence, Viale Giovanni Battista Morgagni 59-65 50134

- Florence, Italy
3 Epidemiology and Health Research, Institute of Clinical Physiology of the Italian National Institute

Research Council (IFC-CNR), Via Giuseppe Moruzzi 1 56124 - Pisa

Abstract

Compartmental models have emerged as useful tools in various scientific domains, from epi-

demiology to pharmacokinetics and engineering. Due to their mechanistic nature, they provide

insights into complex dynamic systems and allow predictions under different scenarios. In the

last few years, they experimented with a vast spreading due to the increasing interest in modeling

epidemic dynamics. However, despite their widespread use, there is still a gap in the literature,

concerning their statistical formalization and a systematic discussion of the statistical methods

suitable for both tasks of inference and forecasting. This work aims to fill the gap between

statistical literature and practical applications. Starting from the fundamental distinction between

deterministic compartmental models and stochastic compartmental models, we delve into the

various challenges encountered in formulating and evaluating the likelihood function associated

with the stochastic model. We distinguish two reasons for the intractability of the likelihood
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function, the high dimension of missing data and the complexity of the model structure, to discuss

suitable methods for addressing the problem both from a frequentist and Bayesian perspective.

We overview likelihood-based methods and explore the use of likelihood-free approaches in

this framework, focusing on Approximate Bayesian computation algorithms and a method that

combines model calibration with a parametric bootstrap procedure. We showcase their feasibility

and reliability through a toy example of the Susceptible-Infected-Removed model on simulated

data. Finally, we explore the relevance of likelihood-free methods in a real-world framework

through an example of a complex compartmental model developed to study smoking dynamics in

the Tuscany region (Italy).

Keywords - Approximate Bayesian Computation, Bayesian inference, Bootstrap, Calibration,

Compartmental models, Complex model, Frequentist inference, Incomplete data, Likelihood-free

inference

2.1 Introduction

Compartmental models are a class of models used to understand and describe the dynamic

evolution of a phenomenon of interest in a population. Due to their simple mechanistic nature,

they are widely used for modeling infectious diseases. In particular, in the last few years,

compartmental models experimented with a vast spreading due to the increasing interest in

epidemiological analyses of the SARS-CoV-2 epidemic [1]. However, compartmental models

are also useful and widely employed in other fields such as engineering, pharmacology, and the

study of social phenomena [2–4].

Compartmental models assume that, at each point in time, the population is divided into non-

overlapping groups, called compartments, which are homogeneous concerning some specific

characteristics of the individuals in the population – e.g. the health status. Starting from an initial

population, the transitions between compartments are allowed and described by a system of

ordinary differential equations (ODEs) that define the evolution of the size of each compartment

over time. These ODEs are governed by a set of model parameters that tune the transition rates.

Compartmental models are very flexible and can be employed in a forward perspective, to

simulate dynamics under different scenarios defined by specific values of transition parameters,

or to understand and predict the evolution of a phenomenon by estimating the model parameters

based on observed dynamics. Here we will refer to this second case as the backward procedure.

However, in both cases, a realistic description of a complex phenomenon cannot rely only

on the mathematical rules defined by the system of ODEs but must take into account the

uncertainty and variability that characterize reality. The widespread use of mathematical models

in epidemiology, often without knowledge of their limitations, has the drawback of leading to
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misleading conclusions. It follows that a stochastic extension is essential, especially to predict

future scenarios more reliably by providing uncertainty quantification. This extension is based on

the formulation of a statistical model, beyond the mathematical model, in which each transition

of an individual from a given compartment to another one follows probabilistic rules. The

likelihood function associated with the model depends on these rules, as well as on the other

model assumptions.

Unfortunately, compartmental models often exhibit an intractable likelihood function. In some

cases, it can be complex to specify an analytical form for the likelihood, due to the complexity

of the model – e.g., due to the large number of compartments or to challenging definitions of

the allowed transitions and related probabilistic rules. In other cases an analytical form of the

likelihood is available but its point-wise evaluation is infeasible due to the presence of a large

number of unobserved latent variables. In both cases, the estimation of the model parameters

requires suitable methods.

In the literature, the existing reviews on the methods to make inferences on compartmental models

focus only on very specific approaches. For example McKinley et al. [5] discusses only the most

popular Bayesian algorithms used to provide parameter estimates in various epidemiological

applications. Tang et al. [6] provides a comprehensive review of frequentist and Bayesian methods,

but the considered methods are suitable only for precise mathematical/statistical models and they

cannot be compared to each other. Thus, there is still a lack of a critical and comprehensive

review.

This paper is aimed at describing and discussing different frequentist and Bayesian estimation

strategies in compartmental models, and at providing comparisons among them. Particular

attention is paid to the distinction between mathematical and statistical compartmental models

and how introducing stochastic components leads to the definition of a likelihood function

associated with the model. We describe some of the reasons that make the likelihood intractable

and several methods to address such intractability. Finally, for each method, we discuss adequate

strategies for the quantification of the uncertainty around point estimates. A special focus is given

on the reliability and flexibility of likelihood-free methods in this framework. In particular, we

deal with Approximate Bayesian Computation algorithms and a method that combines model

calibration with a parametric bootstrap procedure.

The paper is organized as follows: in Section 2.2 we provide a general description of com-

partmental models and the relation between mathematical and statistical models. In Section

2.2.2 a focus on the Susceptible-Infected-Removed (SIR) model is given. The SIR model will

be used as an illustrative example in the rest of the paper. Section 2.3.1 and 2.3.2 describe

frequentist and Bayesian methods for conducting inference in three different situations: the case

in which the likelihood function is tractable and complete data are available; the case in which the

likelihood would be tractable but missing data makes its evaluation infeasible; the case in which
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the likelihood is intractable. The results of the SIR example are reported in Section 2.4. Finally,

as an example of a model whose likelihood is unavailable, we consider a complex compartmental

model designed to describe the evolution over time of smoking dynamics in the population of the

Tuscany region (Italy). Section 2.5 discusses and compares the results from all the considered

methods, providing final remarks and conclusions.

2.2 Compartmental models

Compartmental models describe the evolution of a phenomenon in a population over time. At

each point in time, the population is divided into compartments – i.e. groups of individuals

homogeneous concerning some characteristics, such as health status. Starting from an initial

condition, individuals can change their status and transit from a given compartment to another

one. It follows that the size of each compartment changes over time. Compartmental models

formalize a dynamic system relying on a system of ordinary differential equations (ODEs). This

simple mathematical model describes the trajectory of the size of each compartment over time

as a function of a set of parameters that govern the transition rates. The system of ODEs, for

computational reasons, is often transformed into a system of difference equations defined in

discrete time [7].

2.2.1 From mathematical to statistical models

Mathematical models describe reality in a deterministic way, however realistic modeling requires

a stochastic extension. Statistical models enable us to account for sampling variability and to

quantify uncertainty both in the estimation and prediction phases. They integrate a systematic

component – i.e. the mathematical model – and a stochastic component. This latter is intro-

duced by establishing that the number of transitions that occur between two compartments are

realizations of random variables that follow specific probability distributions.

Let us denote by X(t) =
(
X1,(t), ...,Xc(t), ...,XC(t)

)
the state of a system made of C compart-

ments, where Xc(t) denotes the size of the c-th compartment at time t. A mathematical model

defines a function f (· ;θ) that expresses the change of the size of each compartment as a function

of a set of parameters θ . In particular, the mathematical model can be specified by ODEs in

continuous time: d
dt X(t) = f (X(t);θ).

Given a vector of parameters, θ , that describes a specific scenario, the solution of the system of

ODEs, intended as the dynamic that satisfies the ODEs, provides the evolution of the compartment

sizes in a forward perspective. The system of ODEs is often difficult to solve analytically and

involves a lot of calculations. A practical solution is given by Euler’s method [7]. This method
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considers a system of equations defined in discrete time, meaning that t assumes values in a

subset of I, the set of integer numbers. When considering discrete time, the mathematical model

specifies the size of each compartment at time t as a function of the sizes at the previous point

in time: X(t) = X(t−δ )+∆X(t), where ∆X(t) = f (X(t−δ );θ) denotes the variations caused

by the transitions between compartments that occur in the time interval [t−δ , t). δ is an integer

number that represents a time increment and is often assumed to be equal to 1. The smaller δ

corresponds to a better approximation from a continuous to a discrete process.

Mathematical models can be used also in a backward perspective, to understand the dynamic

underlying the observed phenomenon by learning the transition parameters. In such a case,

optimization strategies are implemented to find the optimal value θ ∗, i.e. the value that minimizes

a distance function between the observed data and the trajectories described by the solution of

the system of equations with θ = θ ∗.

Both from a forward and a backward perspective, mathematical models do not account for

the occurrence of whatever deviation from the solution of the system. They are not intended

to capture the randomness of a phenomenon despite, at least at an individual level, they are

inherently stochastic, meaning that each individual can experiment (or not) a transition with

a certain probability at each point in time. Kurtz [8, 9] proved that the solution of a well-

defined mathematical compartmental model is the infinite population limit of a stochastic system.

However, when the size of the population is finite, variability must be modeled and evaluated to

come up with conscious analyses and avoid misleading conclusions. Statistical models are the

proper tools to combine the mathematical function with a stochastic component. They define a

stochastic function that expresses the evolution of the size of each compartment as a function

of the parameters θ and a random noise. Again, from a forward perspective, the statistical

model can be employed to simulate the dynamic corresponding to a scenario described by the

vector of parameters θ . However, the model will simulate different dynamics even considering

the same vector θ , since they are the output of a stochastic generative process that involves a

random noise. The probability of observing a specific dynamic x = {x(0), ...,x(T )} depends on

the formulation of the statistical model – i.e. how the random components are integrated into the

model. The likelihood function, L(θ | x), comes from the probability mass/density functions of

X = {X(0), ...,X(T )} evaluated at x and viewed as a function of the parameters. It quantifies how

likely the scenario described by θ is, in the light of the observed data. The likelihood function

plays a key role in the inference process but, in compartmental models, it often results in being

intractable.

Let us consider a simple way to come up with an easy-to-handle statistical model: the introduction

of additive random noises. Denoting by x̂(θ) = {x̂(0;θ), ..., x̂(T ;θ)} the solution of the system

of equations evaluated at t ∈ {0, ...,T}, we have that X(t) = x̂(t;θ)+E(t) is a random variable

whose randomness comes from E(t), the vector of random perturbation noises at time t. Observed
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data are x(t) = x̂(t;θ)+ ε(t), where ε(t) denotes a realization of the random vector E(t), for

each t. When assuming Gaussian errors E(t)∼MV N(µ = 0,Σ) – where µ and Σ are a vector

and a matrix of sizes C and C×C, respectively – random variables X(t) have MV N distributions

with mean x̂(t;θ) and variance Σ. Under the assumption of independence among the errors over

time, the likelihood function is:

L
(
θ | x

)
=

T

∏
t=0

1
(2π)C/2|Σ|1/2 exp

(
− 1

2
(x(t)− x̂(t;θ))′Σ−1(x(t)− x̂(t;θ))

)
. (2.1)

Even in this simple case, the point-wise evaluation of the likelihood is based on the computation

of x̂(θ) that may require a numerical solution of the system of equations. This often makes

the inferential process computationally demanding, because both frequentist and Bayesian

methods require several evaluations of the likelihood function. This problem becomes even

more serious when the random noise depends in turn on the parameter vector θ . For example,

this happens when the waiting time (continuous or discrete) between events – i.e. transitions

between compartments – is assumed to follow an exponential or geometric distribution [10] and

the number of transitions at each point in time are Poisson or Binomial random variables. In such

cases, compartmental models are often associated with an intractable likelihood function. These

situations will be detailed in the next section resorting to a working example.

2.2.2 Working example: the SIR model

The definition and the evaluation of the likelihood function are of paramount importance in the

inferential process, both from a Bayesian and a frequentist point of view. Unfortunately, in many

compartmental models, a point-wise evaluation of the likelihood function is prohibitive. This

may happen at least in two cases: when the model is so complex that it makes it infeasible to

write down an analytical form for the associated likelihood function; or when the analytical form

is available but its evaluation is computationally demanding. In what follows we will describe the

formulation of the likelihood function and the reasons that make its evaluation infeasible using a

simple working example. An example addressing a much more complex model is deferred to

Section 2.4.2.

Let us consider the well-known Susceptible-Infected-Removed (SIR) model [11–13]. The SIR

model subdivides the population into three compartments: susceptible individuals (S) are those

who can potentially contract the disease when they come into contact with an infectious individual

since they are not immunized; infectious individuals (I) are those who are currently infected and

infective, thus they can transmit the disease to susceptible individuals; removed individuals (R)
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have been infected and have either recovered from the disease or have died. In this model, once

an individual recovers, she/he is assumed to have immunity to the disease.

S I R
β γ

FIGURE 2.1: Graphical representation of the SIR model. Each node represents a compartment
and edges indicate the allowed transitions between compartments.

Figure 2.1 shows the transitions allowed by the model and the parameters governing the transition

rates. We denote by γ the resolution rate defined as 1/τ , where τ is the average time spent by an

infected individual in the compartment I. The instantaneous rate of transmission of the infection

is denoted by β . From β and γ , we can compute the basic reproduction number – i.e. the expected

number of secondary infections caused by a single infected individual at the beginning of the

epidemic – as R0 = β/γ . Here, we denote by θ = (τ,R0) the vector of parameters to be inferred,

and by S(t), I(t) and R(t) the sizes of the three compartments at time t.

The following system of differential equations describes the dynamic of the SIR model:


dS(t)

dt = −β
I(t)
S(0)S(t)

dI(t)
dt = β

I(t)
S(0)S(t)− γI(t)

dR(t)
dt = γI(t).

(2.2)

Note that in Equation (2.2),β I(t)
S(0) is the infection rate at time t. It depends on I(t)

S(0) , which is the

fraction of infectious individuals with whom a susceptible individual can come into contact at

time t, and on β , which represents the instantaneous rate at which an infectious individual infects

a susceptible one. The system of ODEs in Equation (2.2), may be replaced by the following

system of equations in discrete time:


S(t) = S(t−1)−πSI(t−1)S(t−1)

I(t) = I(t−1)+πSI(t−1)S(t−1)−πIRI(t−1)

R(t) = R(t−1)+πIRI(t−1),

(2.3)

where πSI(t − 1) = 1− exp
(
− β

I(t−1)
S(0)

)
and πIR = 1− exp(−γ) are the probability of being

infected and the probability of recovering or dying during a unit time interval, respectively. These

probabilities come from the assumption that the waiting time before experimenting with an event

(infection or recovery/death) has an exponential distribution. In particular, πSI and πIR are the
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probabilities of waiting a time smaller than 1, i.e. the probability of exiting the compartment

between t and t +1.

A possible way to introduce stochasticity in the SIR model is assuming two independent Binomial

distributions for the random variables that count new infections and resolutions, say i(t) and r(t):

i(t)∼ Binom[S(t),πSI(t)] and r(t)∼ Binom[R(t),πIR] for each t ∈ {0, ...,T} (Figure 2.2). Note

that, as shown by Allen and Burgin [14], the solution of the mathematical model can be seen

as the expected value of the statistical one. This is apparent looking at Equation (2.3), where

the number of new infections and recoveries, at each time t, resemble expected values of two

Binomial distributions.

Let us denote by it1:t2 =
(
i(t1), ..., i(t2)

)
and rt1:t2 =

(
r(t1), ...,r(t2)

)
the random vectors of new

infections and new resolutions from t1 until t2 (t1 and t2 ∈ {0, ...T}, t2 ≥ t1), and by i∗t1:t2 and r∗t1:t2

their realization. Under the binomial assumption, the likelihood function is:

L
(
θ | i1:T = i∗1:T ,r1:T = r∗1:T

)
=

T

∏
t=1

Pr
(
i(t) = i∗(t) | i∗0:t−1,r

∗
0:t−1

)
Pr
(
r(t) = r∗(t) | i∗0:t−1,r

∗
0:t−1

)
=

T

∏
t=1

(
S(t)
i∗(t)

)
πSI(t)i∗(t)[1−πSI(t)]S(t)−i∗(t)

(
I(t)
r∗(t)

)
π

r∗(t)
IR [1−πIR]

I(t)−r∗(t),

(2.4)

where S(t) = S(t−1)− i∗(t−1) and I(t) = I(t−1)+ i∗(t−1)−r∗(t−1) and the initial condition

of the system is assumed to be: S(0) = N−1, with N equal to the size of the population; I(0) = 1;

R(0) = 0. This likelihood is analytically tractable, but different distributional assumptions about

the process may complicate its form.

Furthermore, the model described so far is based on several strong assumptions:

• the population is closed to births and deaths (except those due to the studied infectious

disease), to immigration and emigration, thus S(t)+ I(t)+R(t) = N for each t ∈ {0, ...,T};

• the population is homogeneously mixed;

• all the individuals in the same compartment at the same time t have the same risk of leaving

the compartment, regardless of the time already spent in it;

• individuals are infected from the onset of the infection until recovery or death;

• the reinfection rate is equal to 0;

• both the instantaneous infection rate and the resolution rate are constant over time.
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To relax the above-mentioned assumptions, in the literature have been proposed several strategies,

such as the introduction of further compartments to take into account the incubation period [15]

or the availability of vaccines [16]. Some of them relax the homogeneity assumption by assuming

that the spreading process of infectious disease occurs over a network structure. Some models

relax the assumption of constant transition rates by introducing some dependencies from the

calendar time, or other variables (e.g. age) [17, 18]. Most of these extensions complicate the

likelihood function in Equation (2.4) making it intractable.

However, even very simple compartmental models may be associated with an intractable likeli-

hood function. This is often due to a problem of missing data. A typical example is when, in the

SIR model, we observe only the daily number of new infections, i∗1:T . Note that this is a quite

realistic situation that occurs when there is no notification of recovery. Indeed, in this framework,

the vector r∗1:T is missing, r1:T represents a latent variable, and the evaluation of the probability

of the data requires marginalization over it:

L
(
θ | i1:T = i∗1:T

)
= ∑

r∗1:T∈R
Pr
(
i1:T = i∗1:T ,r1:T = r∗1:T | θ

)
= ∑

r∗1:T∈R

T

∏
t=1

(
S(t)
i∗(t)

)
πSI(t)i∗(t)[1−πSI(t)]S(t)−i∗(t)

(
I(t)
r∗(t)

)
π

r∗(t)
IR [1−πIR]

I(t)−r∗(t),

(2.5)

where R is the subset of IT that contains all possible sequences r∗1:T that are compatible with the

observed series of infections. The structure and the cardinality of R often make the point-wise

evaluation of the likelihood and likelihood-based methods computationally intensive.

To summarize, the main difficulties one can come across are two:

• unavailability of the analytical expression of the likelihood function, due to the complex

structure of the model;

• intractability of the likelihood function due to the presence of high dimensional latent

variables, despite the availability of an analytical form.
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FIGURE 2.2: Evolution of compartment sizes in a mathematical SIR model (continuous line)
and in four realizations from a statistical SIR model (dashed line) for T = 90 days, setting

θ = [τ = 14,R0 = 3], S(0) = 9,990, I(0) = 10, and R(0) = 0.

2.3 Estimation methods

In this section, we review some of the principal frequentist and Bayesian methods for inferring

the parameters governing statistical compartmental models defined in discrete time. We describe

a suitable method for each of the following situations:

• analytically available likelihood function, with complete data;

• analytically available likelihood function, with incomplete data;

• intractable likelihood due to a too complex model.

TABLE 2.1: Cases and methods addressed in the present work.

Likelihood Frequentist Bayesian

Complete data Available, tractable MLE MC

Incomplete data Available, intractable EM DA-MCMC

Complex model Unavailable Calibration ABC

Specifically, we focus on the methods reported in Table 2.1. It is worth noting from the beginning

that likelihood-free methods, such as calibration and Approximate Bayesian Computation (ABC),

can be used also when the likelihood function is available, while they are the only option when the

likelihood is unavailable. In Section 2.4.1 we compare the results provided by likelihood-based

methods with those provided by likelihood-free methods at work on the SIR example with

incomplete data.
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2.3.1 Frequentist approaches

From a frequentist point of view, we are interested in providing point estimates and confidence

intervals around the estimates, to account for sampling variability. Depending on the availability

of the likelihood function and complete data, we suggest three different solutions to come up

with point estimates. As regards confidence intervals, we describe a bootstrap procedure suitable

for all the considered methods.

2.3.1.1 Maximum likelihood estimation

When the likelihood function has a tractable analytical form as that in Equation (2.4) and

complete data are available, one can infer the parameters governing transition rates via numerical

maximization of the likelihood function using algorithms such as those described by Nelder and

Mead [19]. In the literature, there are several works dealing with the asymptotic theory of these

estimators in compartmental models. In some of them, the asymptotic behavior is achieved by

considering an increasing number of observations in a given time window – this is possible when

working in continuous time – while others consider an increasing time window with T → ∞. We

do not deepen into the technicalities of the properties of such estimators and refer the readers to

the review in [6]. This review, in discussing different Maximum likelihood (ML) estimators, also

reports methods for the estimation of their variance, resorting to composite likelihood strategies

or martingale methods. Here, we suggest to implement a flexible bootstrap approach to compute

confidence intervals in all the considered cases.

2.3.1.2 Expectation-Maximization algorithm

The Expectation Maximization (EM) algorithm [20] is a computational method for finding ML

estimates when the likelihood function is available but intractable, and imputing hidden/missing

data simplifies its evaluation. This is the case of simple compartmental models that exhibit a

tractable likelihood function when complete data are available, but the incompleteness of the data

makes its evaluation infeasible.

Let us denote by x the observed data, by z some missing data, and by y = (x,z) the complete

data. The evaluation of the complete likelihood, L(θ | y), is straightforward but the evaluation of

the incomplete likelihood, L(θ | x), is not. The EM algorithm iterates two steps:

• the E-step computes the expected value of the complete log-likelihood, ℓ(θ | x,z), w.r.t.

missing variables Z;

• the M-step maximizes this expected value w.r.t. to θ .



Compartmental model in epidemiology 58

When the expected value is difficult to evaluate, its analytical evaluation can be replaced by a

Monte Carlo estimate based on a sample of size m from the distribution of the latent variables

p(z | x,θ (s−1)), as proposed by Levine and Casella [21].

Algorithm 1 Expectation Maximization

1: Inizialize θ (0) as random starting value

2: Set e

3: for s in 1 : S do
4: Assign θ (s) = argmax

θ

EZ∼p(z|x,θ (s−1))[ℓ(θ |x,z)]≈ argmax
θ

1
m

m
∑

i=1
ℓ(θ |x,z(i))

5: if θ (s)−θ (s−1)

θ (s−1) ≤ e then
6: Break
7: end if
8: end for

Algorithm 1 summarizes the EM algorithm implemented in our working example where missing

data z correspond to the series r∗1:T , and observed data x are i∗1:T (see Section 2.4.1).

The main problem of the EM algorithm is that it is highly dependent on the starting points and

does not ensure convergence when the expected value of the log-likelihood is too complex to

optimize.

2.3.1.3 Calibration

In some cases, compartmental models are so complex that there is no analytical form for the

associated likelihood function. In such cases, a possible solution to provide point estimates is

the calibration procedure [22]. This method consists of searching for the optimal parameter

values that lead to an evolution of the system as close as possible to the observed one. The

procedure requires only the availability of a mathematical model that allows for producing

forward simulations of the compartment sizes.

Let us denote by x =
(
x(0), ...,x(T )

)
the observed dynamic of the system, and by x̂(θ) =(

x̂(0;θ), ..., x̂(T ;θ)
)

the dynamic simulated by the mathematical model when it takes the vector

of parameter θ as an input. Given a discrepancy function ρ(·, ·), the calibration procedure

optimizes the objective function, i.e. minimizes over θ the discrepancy between observed and

simulated data:

θ̂ = argmin
θ∈Θ

ρ
(
x, x̂(θ)

)
. (2.6)
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The optimization is performed numerically and the results achieved by minimization algorithms

often depend on the values at which they are initialized. To avoid the problem of getting

stuck in local minima, we select the initial values through a preliminary optimization over a

multidimensional grid [22, 23].

This method is very flexible since it completely disregards the likelihood formulation and relies

only on the mathematical model. This fact enables its use regardless of the reason why the

likelihood is challenging to handle (e.g. complex model or high dimensional latent variables).

2.3.1.4 Bootstrap procedure

In all of the three cases considered above, we can quantify sampling variability around the point

estimate of θ and provide confidence intervals, by using a bootstrap procedure [24]. Specifically,

we resort to a parametric bootstrap as proposed by [22]. This choice makes it possible to account

for sampling variability according to the distributional assumptions underlying the likelihood

function associated with the statistical model in two steps:

For b ∈ {1, ...,B}:

1. sample one dynamic xb from the stochastic model with input θ̂ , i.e. the MLE or the optimal

parameters retrieved via calibration;

2. obtain an estimate θ̂ b of θ , by alternatively:

a) computing the ML estimate, using xb as observed data;

b) implementing the EM algorithm, using as observed data only the dynamics that are

not missing, as derived from xb;

c) calibrating the model searching for θ̂ b minimizing the discrepancy function between

simulated and estimated dynamics ρ
(
xb, x̂(θ)

)
.

We use the percentiles of the bootstrap samples θ̂ 1, ..., θ̂ B to compute confidence intervals.

2.3.2 Bayesian approaches

In the statistical formulation of a compartmental model, observed data x are realizations of a

random variable X. In Bayesian statistics, the set of parameters that governs the probability

distribution of X is, in turn, modeled as a random variable θ ∈Θ with a prior distribution, here

denoted by π(·). Thus, given the observed data x, the object of interest for the inference is the

posterior distribution derived through Bayes’s formula:
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π(θ | x) = π(θ)L(θ | x)∫
Θ

π(θ)L(θ | x)dθ
, (2.7)

where the denominator is the marginal likelihood, which is a normalizing constant. Often, the

computation of this normalizing constant is infeasible and requires a numerical approximation.

When the model involves high dimensional latent variables, Z, they should be integrated out to

derive the posterior distribution:

π(θ | x) =
π(θ)

∫
Z

L(θ | x,z)dz∫
Θ

∫
Z

π(θ)L(θ | x,z)dzdθ
, (2.8)

This is also the case of the SIR model with incomplete data, which requires the solution of several

high-dimensional summations, as those in Equation (2.5). In the literature, several methods

for addressing these problems and conducting Bayesian inference via simulations are available

(see [5] for a comprehensive discussion of the use of these methods in the epidemiological

framework).

2.3.2.1 Monte Carlo methods

When the likelihood function is tractable and we observe complete data, the only hurdle is the

computation of the normalizing constant in Equation (2.7). A possible strategy to overcome this

problem is resorting to Monte Carlo methods, a class of algorithms aimed at solving inferential

or optimization problems through stochastic simulations [25]. In particular, here we consider

Importance Sampling (IS) [26], although other solutions are available (e.g., Accept-Reject and

Markov Chain Monte Carlo methods) – see [27] for a survey of these methods. The main idea

of this algorithm is to get samples of the model parameter from an easy-to-sample distribution,

and then convert them into a sample from the posterior distribution by assigning an importance

weight to each parameter proposal. The algorithm is summarized in Algorithm 2, where q(·)
denotes the easy-to-sample proposal distribution.

Algorithm 2 Importance Sampling

1: Draw θ (1:S) i.i.d. from q(·)
2: Assign to each θ (s) an importance weight ω(s) = π(θ (s))L(θ (s)|x)

q(θ (s))

3: Compute normalised weights ω̃(s) = ω(s)

S
∑

i=1
ω(i)
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The output is a weighted sample (θ (1), ω̃(1)), ...,(θ (S), ω̃(S)) drawn as a single batch. It can be

used to estimate posterior quantities through weighted averages or by introducing a resampling

step that uses normalized weights as probabilities. The final sample can be considered as an i.i.d.

sample from the exact posterior distribution but the variability of the posterior estimates depends

on the variability of the importance weights. This latter depends in turn on the choice of the

proposal distribution that should be as close as possible to the target.

2.3.2.2 Data Augmentation Markov Chain Monte Carlo methods

MC methods and Markov Chain Monte Carlo (MCMC) methods usually rely on point-wise

evaluations of the likelihood function. In the presence of missing data, the evaluation of the

likelihood function also requires the solution of high dimensional integrals/summations, as shown

in Equation (2.8). To avoid their computation, a possible solution is to provide a sample from a

posterior distribution defined on the augmented space Θ×Z :π(θ ,z | x).

To this aim, Data Augmentation Markov Chain Monte Carlo methods (DA-MCMC) can be

implemented [28, 29]. Usually, these algorithms rely on a Gibbs sampling scheme and require

the ability to get samples from the full conditional distributions π(θ | x,z) and p(z | x,θ), or

the collapsed distribution p(z | x). Sometimes, in compartmental models, their definition is not

straightforward. Different strategies may be the implementation of a Metropolis-within-Gibbs

algorithm, in which samples from unavailable full conditional distributions are obtained through

Metropolis steps in the Gibbs sampling scheme, or the implementation of a Metropolis-Hastings

(MH) algorithm to get samples directly on the joint space Θ×Z , as displayed in Algorithm 3

(see [30] for details on the above mentioned MCMC algorithms).

Algorithm 3 Metropolis-Hastings

1: Inizialize θ (0),z(0)

2: for s in 1 : S do
3: Propose missing data z∗ ∼ qz(· | z(s−1))

4: Propose θ ∗ ∼ qθ (· | θ (s−1))

5: Compute α = min

{
1,

π(θ ∗)L(θ ∗ | z∗,x)qz(z(s−1) | z∗)qθ (θ
(s−1) | θ ∗)

π(θ (s−1))L(θ (s−1) | z(s−1),x)qz(z∗ | z(s−1))qθ (θ ∗ | θ (s−1))

}
6: Sample u∼U(0,1)

7: if u < α then
8: Set θ (s) = θ ∗ and z(s) = z∗

9: else
10: set θ (s) = θ (s−1) and z(s) = z(s−1)

11: end if
12: end for
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The output of the algorithm is a realization of a Markov chain, (θ (0),z(0)), ...,(θ (S),z(S)). The

algorithm satisfies the detailed balance condition (see Section B.1 in Supplemental Materials)

thus the limiting distribution of the chain is π(θ ,z | y). This means that, as always in MCMC

methods, samples are only asymptotically distributed according to the joint posterior, and checks

for the convergence of the chain are needed.

The sampling scheme in Algorithm 3 is very general as it requires only the ability to evaluate the

prior probability and the complete likelihood, and samples from the target distribution π(θ | x)
can be easily retrieved by disregarding the sequence z(0), ...,z(S) from the final output. Problems

may be related to the autocorrelation of the chain and the choice of good proposal distributions

qθ (·) and qz(·). To accelerate the convergence and improve the efficiency of the algorithm, many

alternatives are available in the literature. Examples are algorithms that define adaptive proposal

distributions [31] or the Hamiltonian version of the MH algorithm [32], which is efficient in the

case of smooth density functions [33].

In the case of compartmental models, particular attention should be paid to the definition of the

proposal distribution for the missing data qz(·). A possible strategy is suggested in [10] (see

Section 2.4). To overcome this problem, in some specific cases, one can also resort to Particle

Marginal Metropolis-Hastings samplers which avoid the definition of a proposal distribution qz(·)
and approximate p(z | y) through a Sequential Monte Carlo algorithm [34].

2.3.2.3 Approximate Bayesian Computation

All the Bayesian methods described so far require at least an analytical form for the complete

likelihood function. In the case of complex models, the likelihood function may be unavailable

and its analytical form cannot be written down. Furthermore, even in the case of a simple

model with incomplete data, when the size of the latent variables is very large, DA-MCMC

is computationally demanding. In such cases, likelihood-free methods, such as Approximate

Bayesian Computation (ABC), result in being convenient due to their flexibility.

ABC is a broad class of methods allowing Bayesian inference on parameters governing complex

models with intractable likelihood functions. The original intuition can be traced back to an

explanation of the Bayes’ Theorem provided by Rubin in the 80s [35], but primal ABC algorithms

have been formalized by Pritchard et al. [36], Tavaré et al. [37]. ABC methods dispense with

exact likelihood computation and only require the ability to simulate pseudo-data by sampling

observations from the assumed statistical model employing a computer program that reproduces

the stochastic data generative mode, usually called a “simulator", here denoted by Pr(· | ·). The

underlying idea of ABC methods is to convert samples from the prior distribution into samples

from the posterior through three simple steps:
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1. draw S parameter proposals from the prior distribution π(·);

2. give each parameter θ (s) as an input to the simulator to sample pseudo-data x̂(θ (s));

3. retain only parameter proposals θ (s) such that x̂(θ (s)) = x.

The output is a sample from the exact posterior distribution. However, in practice, several sources

of approximation are introduced by replacing the equality constraint at the third step with a

“closeness" constraint: parameter proposals are retained when ρ(x̂(θ (s));x)≤ e, where ρ(·; ·) is

a distance function and e is positive tolerance threshold. Note that the output becomes an i.i.d.

sample from an approximate posterior distribution, the closeness of which to the true one depends

on the choice of ρ(·; ·) and the magnitude of e. In the literature, several advanced sampling

schemes have been proposed (we refer the reader to [38] for a comprehensive description of the

method). Most of them are sequential methods based on a decreasing sequence e1 ≥ e2 ≥ ...≥ eS

of thresholds, rather than a fixed tuning parameter. Usually, these algorithms rely on the definition

of a sequence of tempered target distributions based on the sequence of thresholds, and get

samples from each of them using an importance sampling step. Examples are the Population

Monte Carlo ABC presented in [39] and some adaptive versions inspired by it (see Algorithm 4).

Here, we relied on one of the strategies proposed in [40], where new thresholds are automatically

selected during the execution of the algorithm in a way that ensures a decreasing level of

approximation from the given iteration to the next one.

Algorithm 4 Adaptive Population Monte Carlo ABC
1: Initialize e1

2: for j in 1 : M do
3: Simulate θ

(1)
j ∼ π(·) and x̂(θ (1)

j )∼ Pr(· | θ (1)
j ) until ρ(x̂(θ (1)

j );x)< e1

4: Set ω
(1)
j = 1

M

5: end for
6: Select e2 using an adaptive strategy.

7: for s in 2 : S do
8: Set Σs to twice the empirical covariance matrix of θ

(s−1)
1 , ...,θ

(s−1)
M

9: for j in 1 : M do
10: Pick θ ∗j from (θ

(s−1)
1 , ...,θ

(s−1)
M ) with probabilities (ω(s−1)

1 , ...,ω
(s−1)
M )

11: Generate θ
(s)
j |θ ∗j ∼MV N(θ ∗j ,Σs) and x̂(θ (s)

j )∼ Pr(· | θ (s)
j )

12: Set ω
(s)
j ∝

π(θ
(s)
j )

M
∑

m=1
ω

(s−1)
m φ{τ−1

s (θ
(s)
m −θ

(s−1)
m )}

1{ρ(x̂(θ (s)
j );x)< es}

13: where φ represents the density of the Standard Normal distribution

14: end for
15: Select es+1 using an adaptive strategy.

16: end for
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Note that the ABC procedure is very similar in spirit to the calibration. However, ABC algorithms

use the statistical model and take into account two sources of uncertainty: the uncertainty on the

parameter and the one related to the sampling space.

2.4 Results

In this section, we show the results of the presented frequentist and Bayesian methods on the

working example presented in Section 2.2.2. Furthermore, we present the results of likelihood-

free methods in the case of a complex model whose likelihood is unavailable.

2.4.1 Working example: the SIR model

We applied all the methods described in Section 2.3 on simulated data obtained from the SIR

model, after setting T = 90, τ true = 14, Rtrue
0 = 3, S(0) = 9,990, I(0) = 10, and R(0) = 0. In

particular, we simulated the two-time series i∗1:T and r∗1:T , the knowledge of which is sufficient

to reconstruct compartment sizes S∗1:T , I∗1:T and R∗1:T , given S(0), I(0) and R(0). We focused on

the estimate of R0 and τ considering the initial size of the compartments as known. Regarding

Bayesian inference, it has been conducted using uniform prior distributions: τ ∼U [7,21] and

R0 ∼U(0,6]. We considered both the case of complete and incomplete data.

2.4.1.1 Complete data

Let us consider the case in which we observe the entire evolution of the compartment sizes,

equivalent to observing both i∗1:T and r∗1:T . We can compute MLE for R0 and τ and their posterior

distributions via IS, respectively from a frequentist and a Bayesian point of view.

Regarding MLE, the maximization of the complete likelihood in Equation (2.4) has been per-

formed using Nelder’s procedure implemented in the Optim package of JULIA software [19, 41].

Then, the bootstrap procedure described in Section 2.3.1 has been implemented with B = 1,000.

More precisely, to be consistent with the likelihood function in Equation (2.4), at each boot-

strap iteration b, we draw samples from two Binomial distributions:
(
Sb(t − 1)− Sb(t)

)
∼

Binom[Sb(t−1),1−exp(− R̂0
τ̂

Ib(t−1)
S(0) )] and

(
Rb(t)−Rb(t−1)

)
∼ Binom[Rb(t−1),1−exp(− 1

τ̂
)],

with R̂0 and τ̂ the maximum likelihood estimates of the model parameters. As regards the IS

implementation, we used the joint prior distribution of the parameters as proposal distribution.

Table 2.2 reports the results in terms of ML estimates with 90% bootstrap intervals, and Maximum

A Posteriori (MAP) estimates with 90% Highest Posterior Density (HPD) intervals. These results,
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as well as Figure 2.3, show that both methods provide point estimates very close to the true

parameters.

TABLE 2.2: Frequentist versus Bayesian inference on the parameters of the SIR model, in the
case of complete data. Results are reported in terms of point estimate and 90% confidence
interval in the frequentist case, and in terms of maximum a posteriori and 90% highest posterior

density in the Bayesian case.

Frequentist Bayesian

Complete Data Maximum likelihood Importance Sampling

τττ 14.00 (13.73 - 14.25) 13.96 (13.75 - 14.25)

RRR000 3.00 (2.92 - 3.08) 3.01 (2.93 - 3.08)

FIGURE 2.3: Marginal posterior distributions of SIR model parameters obtained through
Importance Sampling, with shaded areas representing the 90% highest posterior density interval.
Vertical lines indicate the true parameter value, along with its maximum likelihood estimate

(MLE).

2.4.1.2 Incomplete data

Let us consider the case in which we observe only the series i∗1:T , meaning that information about

newly resolved infections is not available. We can resort to EM and DA-MCMC algorithms,

respectively in the frequentist and Bayesian settings. In our implementation, computing the

expected value in the E-step would involve a complex summation over R, thus at each iteration

s we use an MC estimate based on m = 1,000 simulations from p(r1:T | i∗1:T ,θ
(s−1)) (see B.2

in Supplemental Materials). As regards the DA-MCMC proposal distributions, we resorted

to Gaussian multivariate proposal distributions for θ = (τ,R0), and to a mixture of proposal

distributions for r1:T . In particular, we sample from the mixture of the three proposal distributions

as described in [10]: at each iteration s of the DA-MCMC algorithm, we select at random one of

the following small perturbations:
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1. add a resolution: select at random t and propose a series in which r(s)(t) is set to r(s−1)(t)+

1;

2. subtract a resolution: select at random t and propose a series in which r(s)(t) is set to

r(s−1)(t)−1;

3. move a resolution: select at random (t1, t2) and propose a series in which r(s)(t1) is set to

r(s−1)(t1)−1 and r(s)(t2) is set to r(s−1)(t2)+1.

We evaluate the probability of this new proposal and use it in the computation of the MH

acceptance ratio.

Note that the longer is the observed series, the higher is the cardinality of the space of the latent

variables. This makes proposal distributions based on small perturbations inefficient and the

chain strongly autocorrelated. In such a case, likelihood-free algorithms should be implemented

to obtain more efficient posterior estimates.

This illustrative example provides the opportunity to compare the implementation of likelihood-

based and likelihood-free methods in the case of incomplete data, as both of these approaches are

feasible. Hence, we tested also calibration and ABC algorithms for inferring model parameters

when only i∗1:T is observed. In both the algorithms, we compared observed and simulated

trajectories through the Euclidean distance:

ρ(x̂(θ),x) =
1
T

T

∑
t=1

√(
i∗(t)− î(t;θ)

)2
, (2.9)

where î(1;θ), ..., î(T ;θ) denotes the series simulated through the mathematical or the statistical

SIR model, in the calibration and ABC procedure respectively, when the vector θ is given as an

input (for a description of the procedure for simulating data from the statistical model see B.2 in

Supplemental Materials).

The calibration procedure is performed using the optimization strategy implemented in the JULIA

package Optim [41]. To avoid the problem of getting stuck in local minima, we performed

several optimizations using different starting points, then we selected the solution that minimized

the distance function in Equation (2.9) [22, 23]. To consider sampling variability and compute

confidence intervals, we implement the parametric bootstrap procedure described in Section

2.3.1. Here, at each bootstrap iteration, the optimization algorithm has been initialized at random

starting values.
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As regards the ABC procedure, we implemented the Algorithm 4. At each iteration, we compared

the posterior distributions approximated by ABC with those provided by the DA-MCMC after

the assessment of the convergence of the chain (see Section B.3 in Supplemental Materials for

further details). Looking at the Kullback-Leibler divergence and the Hellinger distance between

these distributions, it turned out that after 80 iterations they are quite stable.

FIGURE 2.4: Marginal posterior distributions of SIR model parameters obtained through DA-
MCMC and ABC, with shaded areas representing the 90% highest posterior density intervals.
Vertical lines indicate the true parameter value, along with its estimates from EM and calibration

methods.

TABLE 2.3: Frequentist versus Bayesian inference on the parameters of the SIR model in the
case of incomplete data. Results are reported in terms of point estimate and 90% confidence
interval in the frequentist case and in terms of maximum a posteriori and 90% highest posterior

density intervals in the Bayesian case.

Frequentist Bayesian

Likelihood-based EM DA-MCMC

τττ 13.93 14.08 (13.18 - 15.09)

RRR000 2.99 3.00 (2.90 - 3.12)

Likelihood-free Calibration ABC

τττ 14.01 (13.61 - 14.40) 13.97 (12.93 - 15.15)

RRR000 3.00 (2.95 - 3.06) 3.02 (2.88 - 3.14)

Figure 2.4 and Table 2.3 show that all the results of the implemented methods are coherent with

Rtrue
0 and τ true. From a frequentist perspective, point estimates provided by EM and calibration

are very close to each other and to true values. It is worth noting that likelihood-based methods

are challenging when the shape of the likelihood function makes the optimization difficult. Figure

2.5 shows the contour plot of the log-likelihood function (a) and one of its expected values (b),

respectively in the case of complete and incomplete data. It is apparent that the function in panel
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(b) assumes approximately the same value whatever is τ when R0 is close to its true value. Thus,

the optimization algorithm solution strongly depends on the starting values. To overcome this

problem and get reliable point estimates, we run each M-step several times with different starting

values. This makes the EM algorithm inefficient and the bootstrap procedure infeasible, that is

the reason why we do not provide confidence intervals in Table 2.3.

From a Bayesian perspective, we can see that posterior distributions concentrate around the true

values of the parameters and that ABC can retrieve an approximate posterior distribution close

to the true posterior computed via DA-MCMC (see Section B.3 in Supplemental Materials for

further details). We can consider the negligible approximation introduced by likelihood-free

methods as the price to pay for having more general and flexible methods that avoid the definition

of the likelihood function, its evaluation, and the imputation of missing data. Further details

about the implementation of the algorithms are in Section B.3 in Supplemental Materials.

As a general comment, we can conclude that both from a frequentist and Bayesian point of

view, likelihood-free methods have some advantages. The bootstrap procedure appears more

feasible and fast using the calibration rather than the EM algorithm, while the ABC algorithm

overcomes problems related to the autocorrelation of the Markov chain and took only 9 minutes

to get posterior quantities very close to those based on the DA-MCMC, the running time of

which was equal to 11 minutes. Furthermore, likelihood-free methods allow a straightforward

evaluation of the predictive distributions through forward simulations, appropriately accounting

for all sources of uncertainty. Figure 2.6 shows the evolution of the compartment sizes over time

until T = 90, estimated via calibration and ABC. Solid lines are day-by-day punctual estimates of

the compartment sizes – i.e. the trajectories computed using MLE parameters (a) and Maximum

a Posteriori (MAP) day-by-day predictions. Their closeness to the observed data (dotted lines)

suggests a proper fit of the model when the inference is performed via likelihood-free approaches.

Confidence and credible bands are retrieved by calculating day-by-day the bootstrap quantiles

and the highest posterior density intervals of the predictive distributions, respectively.
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FIGURE 2.5: Contour plots of the loglikelihood for the SIR model parameters in the case of
complete data (a), and of its expected value with respect to the distribution of missing variables

in the case of incomplete data (b).
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a) b)

FIGURE 2.6: Trajectories of the SIR model in frequentist (a) versus Bayesian (b) inference
provided respectively via calibration and ABC. Results are reported in terms of point estimate
and 90% confidence interval in the frequentist case and in terms of posterior mean and 90%

highest posterior density intervals in the Bayesian case

Note that, in the case of complete data, the frequentist and Bayesian approaches provide similar

results also in terms of uncertainty – see confidence and credible intervals in Table 2.2. On the

contrary, when the inference is based on incomplete data, Bayesian credibility intervals of the

two model parameters are wider than the bootstrap confidence intervals (see Table 2.1), possibly

because in the Bayesian approach the imputation of missing data occurs from a distribution that

incorporates both the sampling variability and the uncertainty on the parameter space.

2.4.2 A real-world example: the SHC model

In this section, we consider the Smoking Habits Compartmental (SHC) model, developed by

Lachi and colleagues [42], as an example of a complex compartmental model where the analytical

form of the likelihood function is unavailable. The SHC model has been designed to describe the

evolution of smoking habits in a population over the years. Here it is implemented to estimate

smoking dynamics in Tuscany, a region of Central Italy, from 1993 to 2019, and forecasts them

until 2043.
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FIGURE 2.7: Smoking Habits Compartmental Model in its simplest form.

The model assumes that, at each point in time, the alive population is divided into the following

non-overlapping compartments: never (N), current (C), and former (F) smokers. The compart-

ments C and F are further divided into sub-compartments denoted by Ci and Fi, where i∈ {l,m,h}
indicates the level of smoking intensity, corresponding to low (<10 cigarettes/day), medium

(≥10 and <20 cigarettes/day), and high (≥20 cigarettes/day) smoking intensity, respectively.

From each compartment, subjects can transit to a deceased compartment denoted by the letter D

and a subscript corresponding to the compartment of origin. New births at time t, denoted by ν(t),

increase the size of the compartment N. Transitions of the individuals from a given compartment

to another one are governed by the probabilities of starting smoking (γi), stopping smoking (εi),

and relapsing into smoking after having stopped (ηi). Death happens with different probabilities

for never (δN), current (δCi), and former (δFi) smokers belonging to the smoking level category i.

In Figure 2.7 a simplified version of the SHC model, which does not consider subjects’ age, is

depicted. Considering discrete time on an annual scale, t ∈ {1, ...,T}, and introducing separate

compartments for each age, a ∈ {1, ...,100}, as well as stratification by years since smoking

cessation (c) for former smokers, the following system of difference equations arises:
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

N(t;a) = ν(t−1)
(

1−δN(a)
)

if a = 0

N(t;a) = N(t−1;a−1)
(

1−δN(a)
)(

1− γ(a)
)

if a > 0

Ci(t;a) = 0 if a = 0

Ci(t;a) =Ci(t−1;a−1)
(

1−δCi(a)
)(

1− ε(a)
)
+

N(t−1;a−1)
(

1−δN(a)
)

πiγ(a)+

∑
c>0

Fi(t−1;a−1,c−1)
(

1−δFi(a,c)
)

η(c) if a > 0

Fi(t;a,c) = 0 if a = 0, c≥ 0

Fi(t;a,c) =Ci(t−1;a−1)
(

1−δCi(a)
)

ε(a) if a > 0, c = 0

Fi(t;a,c) = Fi(t−1;a−1,c−1)
(

1−δFi(a,c)
)(

1−η(c)
)

if a > 0, c > 0

DN(t;a) = ν(t−1)δN(a) if a = 0

DN(t;a) = DN(t−1;a)+N(t−1;a−1)δN(a) if a > 0

DCi(t;a) = 0 if a = 0

DCi(t;a) = DCi(t−1;a)+Ci(t−1;a−1)δCi(a) if a > 0

DFi(t;a,c) = 0 if a = 0, c≥ 0

DFi(t;a,c) = 0 if a > 0, c = 0

DFi(t;a,c) = DFi(t−1;a,c)+Fi(t−1;a−1,c−1)δFi(a,c) if a > 0, c > 0

(2.10)

where πππ = (πCl ,πCm ,πCh) denotes the distribution of the level of smoking intensity among the

new current smokers. Note that the probability of starting smoking γ(a), as well as the risks of

dying δN(a) and δCi(a) depend on the age a, while the probability of relapsing into smoke η(c)

depends on the years from smoking cessation c and the risk of dying for former smokers δFi(a,c)

depends both on a and c. From these dependencies follows that also the number of compartments

in the model depends on the values of a and c.

More specifically, γ(a) and ε(a) are modeled through natural cubic regression splines of age with

2 equidistant internal knots, having parameters ψψψ = (ψ0,ψ1,ψ2,ψ3) and φφφ = (φ0,φ1,φ2,φ3),

respectively. Regarding the probability of relapsing into smoke η(c), it was assumed to vary

with time since cessation, according to a negative exponential function governed by positive

parameters ωωω = (ω0,ω1). Details on these functions are provided in Section B.4 in Supplemental

Materials.

Mortality risks are δCi(a) = RRCi×δN(a) and δFi(a,c) = RRFi(c)×δN(a), with RRCi and RRFi(c)

the relative risks of dying for current smokers belonging to the smoking level category i and for

people who stopped smoking since c years, belonging to the same smoking level category, versus

never smokers.
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The distribution of the level of smoking intensity among the new current smokers, πππ , is assumed

as fixed at values obtained from the National Institute of Statistics (ISTAT) Multipurpose Sur-

veys “Aspect of Daily Life” (www.istat.it/it/archivio/91926). Observed data are

assumed to be the prevalence of current, never, and former smokers in the observed age classes

a∗ (14-17, 18-19, 20-24, 25-34, 35-44, 45-54, 55-59, 60-64, 65-74, 75+), for the years in the

interval 1993-2019, denoted by pobs
C (t;a∗), pobs

N (t;a∗), pobs
F (t;a∗). Thus, the goal of the inference

is to estimate, using two separate models by sex, the vector of unknown model parameters

θθθ = (ψψψ,φφφ ,ωωω), given observed data and fixed quantities. Note that in our model formulation, the

age-specific risk of dying for never-smokers is unknown, but in this analysis, we treat it as an

ancillary quantity. Specifically, we preliminary computed δN(a) as described in [42]1.

The system of equations (2.10) formalizes the assumed mathematical model, but to perform

both Bayesian and frequentist analyses, we need to formalize the likelihood function that relates

unknown quantities, θθθ , to the observed prevalence. To this end, we must specify the stochastic

generative process associated with the SHC model. For the sake of a straightforward description

of the statistical model, let us denote by X the number of individuals who transit from a generic

compartment to another one. We assume X ∼ Binomial(nx,qx), where nx is the number of

individuals allowed to transition and qx is the probability of that transition, whatever is the

compartment. As an example, consider the number of smokers of age a with a low intensity that

quit smoking at time t: nx is the number of current smokers with low intensity and age a that do

not die during the year t, and qx is equal to ε(a). The same reasoning applies to the number of

individuals relapsing smoking and the number of deaths. While the number of individuals who

start smoking at age a is distributed according to a Multinomial distribution with the vector of

probabilities (γl(a),γm(a),γh(a)).

Despite the simplicity of the assumed distributions, it is apparent that the analytical form of

the likelihood function is infeasible to write down due to the complexity of the mathematical

model: the equations governing the SHC model (2.10) are complex and involve a high number of

compartments, the transition probabilities are complex functions of age and time from cessation.

Only the prevalence pobs
C (t;a∗), pobs

N (t;a∗), pobs
F (t;a∗) are observed and the number of transitions

that occur at each t, as well as the size of all compartments at each point in time, represent latent

variables. However, the simulation of the stochastic data generative process is straightforward,

thus likelihood-free methods such as calibration or ABC are the best solution to infer θθθ .
1If a ∈ a∗, we calculated

δN(a) =
1
T ∑

t

δpop(t;a)
pobs

N (t;a∗)+RRC pobs
C (t;a∗)+RRF pobs

F (t;a∗)
,

where δpop(t;a) is the mortality rate in the population of age a at time t, obtained from ISTAT (www.istat.it),
while RRC and RRF are the relative risks of dying for current smokers and former smokers versus never smokers
obtained from the literature [43].

www.istat.it/it/archivio/91926
www.istat.it
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2.4.2.1 SHC model results

Let p(t;a∗,θθθ) =
(

pC(t;a∗,θθθ), pN(t;a∗,θθθ), pF(t;a∗,θθθ)
)

be the vector of the prevalence of never,

current and former smokers belonging to the class of age a∗ at time t, predicted by the model in

Equation (2.10), given a specific value of the parameters θθθ . Within the frequentist framework,

we calibrate the model by searching for the value of θθθ that minimized the Hellinger distance

between the predicted trajectories and the observed ones, defined as follows [44]:

Ob j(θθθ) =
1

T ×A∗×
√

2∑
t,a∗

√√√√√ ∑
k∈{C,N,F}

(√
pk(t;a∗,θθθ)−

√
pobs

k (t;a∗)

)2

. (2.11)

We quantify sampling variability around point estimates by using the parametric bootstrap

procedure described in Section 2.3.1. As in the previous example, at each bootstrap iteration, we

initialized the optimization algorithm at random starting values. Within the Bayesian framework,

we implemented the ABC Algorithm 4 by using the same distance function in Equation (2.11),

and uniform prior distributions on the parameters. In particular, we specified uniform priors

U [−10,10] on the spline parameters and U(0,10] on the exponential function parameters. Details

on the implementation of the two algorithms are reported in Section B.4 in Supplemental

Materials.

Figure 2.8 presents the results of the inference on θθθ obtained via calibration and ABC. Figures

2.9 displays the corresponding estimates of the transition probabilities (γ(a), ε(a), and η(c)).

Confidence bands are obtained by evaluating point-wise the quantiles of the distributions re-

sulting from computing γ(a),ε(a), and η(c) using the bootstrap parameter samples. Credible

bands correspond to the HPD intervals computed point-wise using samples from the posterior

distributions of θθθ . Solid lines correspond to the values obtained by considering the MLE of θ

or the MAP evaluated year-by-year. The curves indicate that males are more likely to start and

quit smoking than females and that the probability of starting smoking has a peak around 19

and 20 years of age. The probability of stopping smoking increases after 50 years of age, while

the probability of smoking relapse becomes negligible after 2-3 years since cessation. In Figure

2.10, the estimated prevalences for never, current, and former smokers are reported together with

the observed ones. The model fit appears to be adequate, with the predicted values close to the

observed ones. The forecasts suggest that the smoking prevalence will decrease in the coming

years.

As in the SIR model, the uncertainty around the quantities of interest is greater in the Bayesian

framework than in the frequentist one, due to the incorporation of the uncertainty around parame-

ter values in the predictive distribution of the latent variables. From a comparison between the
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two methods, it is apparent that ABC avoids problems related to the optimization procedures,

such as the dependence on starting values, that could make the estimate unstable. Moreover, it

allows the computation of point estimates and the evaluation of all the sources of uncertainty in

a single procedure. However, in our implementation, ABC took a longer time with respect to

calibration and bootstrap (For further details see B.4 in Supplemental Materials).

a) b)

FIGURE 2.8: Estimates of SHC model parameters obtained through calibration (a) and ABC
(b), for males (blue) and females (pink). Results are reported in terms of point estimate and 90%
confidence intervals in the case of calibration and in terms of maximum a posteriori and 90%

highest posterior density intervals in the case of ABC.

a) b)

FIGURE 2.9: Probabilities of starting (γ(a)), quitting (ε(a)), and relapsing into smoke (η(c))
estimated via calibration (a) and ABC (b), for males (blue) and females (pink). 90% pointwise
confidence bands are reported in the case of calibration and 90% pointwise highest posterior

density bands in the case of ABC.
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a) b)

FIGURE 2.10: Prevalence of never (N), current (C), and former (F) smokers estimated through
calibration (a) and ABC (b), for males (blue) and females (pink), with projections up to 2043.
90% pointwise confidence bands are reported in the case of calibration and 90% pointwise
highest posterior density bands in the case of ABC. The estimates are compared with the

observed prevalences.

2.5 Discussion and conclusions

In this work, we described and compared several Bayesian and frequentist methods that can

be used for tasks of inference and prediction in compartmental models. This paper aims to

discuss compartmental models from a statistical point-of-view, to fill a gap between the statistical

literature and the state-of-the-art in applied fields, and to orient practitioners in the formulation

of a proper statistical model and the choice of adequate estimation methods. To the best of our

knowledge, few review articles on this topic have been published. In [6] the authors provided a

comprehensive review of frequentist and Bayesian methods. They focused on models for dealing

with data related to the SARS-CoV-2 epidemic, but most of the considered methods are suitable

only for very specific mathematical/statistical models. Furthermore, the review does not cover

likelihood-free methods.

Here, we aim to describe a possible way to introduce randomness in a given mathematical

compartmental model in a realistic manner, formulate the likelihood function, and provide a

description and a comparison among estimation methods. Particular attention has been paid to

problems that one may encounter in the evaluation of the likelihood function. We recognized

two main reasons for its intractability: the presence of high dimensional missing data and

the complexity of the compartmental model. This classification allowed us to identify proper

statistical methods for each of the considered cases, and to compare their performance.

We tested the methods at work both on a toy example based on simulated data and a real-world

example. From the simulation study, it turned out that all the considered methods can provide

point estimates, or posterior distributions, consistent with the “truth". Frequentist methods are all

based on optimization strategies that often suffer from problems of strong dependence on starting
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values and require repeating the procedure several times, each one initialized at different points.

However, this solution increases the computational cost and sometimes makes the bootstrap

procedure, needed to quantify sampling variability and compute confidence intervals, infeasible.

In this regard, we would like to stress that in the present work, we applied the bootstrap procedure

described in Chowell [22], but, to the best of our knowledge, theoretical results on the coverage

of the resulting bootstrap intervals are still missing in the statistical literature. As regards

Bayesian methods, problems are mainly related to the choice of proposal distributions and to

the computational cost of imputing missing data living in high dimensional spaces. DA-MCMC

methods often suffer from problems of slow convergence and strong chain autocorrelation.

In this work, a special focus has been placed on the flexibility and potentiality of likelihood-free

approaches: calibration and approximate Bayesian computation. They can be implemented

whatever the reason for the intractability of the likelihood function, indeed they only require the

ability to produce pseudo-data from the mathematical or statistical model and, in the Bayesian

framework, to sample from (or evaluate point-wise) the prior distribution. It is interesting to note

that, in these estimation methods, the inference procedure would remain largely unaffected even

if one assumes a different distribution, such as Poisson or negative binomial.

In our SIR example, both likelihood-based and likelihood-free methods were feasible. This

enabled a comparison between the results. In the Bayesian framework, DA-MCMC uses an

analytical form of the likelihood function and iterates a Markov chain whose limiting distribution

is the exact posterior distribution. At the same time, ABC methods rely on a simulation-based

approach that introduces some sources of approximations. However, from our simulation study,

it turned out that likelihood-free methods were able to provide good point estimates and that

the approximation could be considered negligible, in comparison with DA-MCMC results. It

is also worth noting that ABC methods produce i.i.d. samples from the approximate posterior

distribution, thus they are highly and straightforwardly parallelizable compared to DA-MCMC

algorithms. Finally, the computational cost of likelihood-free methods is less dependent on

the cardinality of the latent variable space since they avoid the imputation of missing data and

problems related to the mixing of the chain.

A comparison between ABC and MCMC techniques for Bayesian inference in ODE models

was also provided in [45]. There, the authors highlighted that the ABC methods that are usually

implemented in this framework often fail in quantifying the uncertainty since they do not include

adequately the sampling variability in the generative model. Furthermore, they observe that

even if ABC provides some computational advantages, they are minimal compared with MCMC

methods. However, their comparisons are different from ours. First of all, they consider an

observation model that simply adds a Gaussian random error to the numerical solution of the

ODE system, as in Equation (2.1). In such a case MCMC methods take advantage of the use

of an easy-to-evaluate likelihood function and the major computational burden is required by



Compartmental model in epidemiology 77

the resolution of the ODE system. This approach simplifies the MCMC strategy which is a

standard MH algorithm and does not require missing data imputation. However, more realistic

observation models, such as the one described in Section 2.4.1 prevent the use of that approach.

The second difference is given by the fact that our ABC algorithm uses a simulator that reproduces

a data-generative process whose underlying likelihood function is the same as the one involved

in the corresponding MCMC method. This means that the comparison among the methods is

based on the same observation model and ABC properly includes the sampling variability.

The real-world example fully highlights the great potential of likelihood-free methods, that can

retrieve estimates and forecasts even when dealing with very complex models that prevent the

use of whatever likelihood-based method. From a comparison between calibration and ABC, we

concluded that the results are coherent with each other, thus they give support to the reliability of

both methods.

As a general comment, we can note that the calibration and ABC are very similar in spirit. The

main difference between the two methods is that, in the point estimation phase, the calibration

uses the mathematical model, while ABC resorts only to the statistical model. The presented ABC

strategy allows us to consider two sources of variability in a single procedure: the uncertainty

over the parameter space described by prior distributions and the sampling variability reproduced

by the simulator. Instead, the calibration must be combined with an adequate bootstrap procedure

to quantify the sampling variability. Another strength of ABC methods, compared with the cali-

bration, is that they do not rely on optimization strategies, thus avoiding problems of dependence

on the starting values.

ABC is in some sense related to the Generalized Likelihood Uncertainty Estimation (GLUE)

approach, a very common technique in the hydrological literature that represents one of the first

attempts at overcoming standard calibration procedures by providing an uncertainty assessment

[46]. The connection between the two methods has been discussed in [47], where the authors

showed that the GLUE approach can be interpreted as a particular ABC algorithm, known as

Importance Sampling ABC. However, there are some relevant differences between the two

approaches. First of all, in GLUE techniques the use of a (uniform) prior distribution over the

parameter space must be intended as a way to introduce uncertainty in the estimation rather than

a formalization of prior belief in a fully Bayesian spirit. Moreover, GLUE procedures often

produce pseudo-data from the mathematical model. Thus, they can be seen as an implementation

of an ABC algorithm that uses a simulator that does not account for sampling variability but

is just a complex mathematical function of the parameters – see the discussion about model

misspecification in ABC methods in [45]. Thus, the output of the algorithm is a sample from a

distribution that should not be interpreted as a posterior distribution in a strict Bayesian sense,

since it includes only the variability induced by the prior distribution. That distribution may

be seen as a redefinition of the prior distribution over the subset of parameter values that are
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coherent with the observed data. It follows that, in the limit of the ABC threshold going to 0, this

distribution converges to a point of mass over parameter values that lead to pseudo-data equal

to observed data. Accordingly, GLUE/ABC results converge to that of a calibration procedure

and the GLUE/ABC can be interpreted as a “stochastic search" of the optimal parameters. This

conclusion suggests that, in a complex model with a high number of parameters, such as the SHC

model, ABC can help to find global minima by overcoming the difficulties related to optimization

algorithms. However, the efficiency in ABC strongly depends on the computational cost of the

simulator and the adequacy of the proposal distributions.

The present work has several limitations. First of all, we restricted ourselves to discrete-time

models, but models for continuous-time Markov processes can be implemented in this field. In

such cases, the formulation of the likelihood function is usually based on the assumption that the

waiting time between two events is exponentially distributed. Several algorithms for performing

Bayesian inference under this assumption have been proposed [48]. Other possible approaches

are based on state space models (e.g., [49]) for which posterior distribution can be inferred by

resorting to Particle Markov Chain Monte Carlo methods [50]. It is also worth noting that here

we considered simple and easy-to-reproduce sampling methods in the implementation of the

ABC method, as well as DA-MCMC methods. The state-of-the-art includes more sophisticated

gradient-based algorithms such as Metropolis Adjusted Langevin Algorithm (MALA) [51],

Hamiltonian Monte Carlo methods (HMC). Moreover, likelihood-free algorithms that exploit

some approximations of the generative model, or can cleverly orient the simulation procedure,

have been proposed (see [52] for a discussion). Many of them rely on neural networks or other

machine learning approaches such as normalizing flows – see [53, 54], among others. Finally, this

work does not claim to discuss exhaustively all the statistical methods that can be potentially used

in the described scenario. Further work should be done to investigate the applicability of methods

such as Indirect Inference [55] or Variational Bayes [56] and to compare their performance with

that of the considered methods.
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Abstract

Cigarette smoking has still a significant impact on population morbidity and mortality. This

study introduces an innovative approach to enhance the reliability of inferences and forecasts

produced by the Smoking Habits Compartmental (SHC) model, a compartmental model for

simulating smoking dynamics. While compartmental models like SHC offer a valuable framework

for understanding complex systems and projecting public health dynamics, they suffer from

limitations related to stringent model assumptions and parameter identifiability. The proposed

methodology aims to robustify inference, forecasting, and the assessment of tobacco control
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policies by systematically incorporating uncertainties present in model definition and data.

This involves a strategy of error propagation analysis and a variance-based Global Sensitivity

Analysis (GSA). The GSA provides insights into how the variance of model outputs can be

attributed to uncertainties in model inputs, utilizing sensitivity indexes. The study underscores

the importance of considering all sources of uncertainty in the modeling process, especially when

crafting forecasts under hypothetical scenarios for guiding public health policies. The proposed

robustification procedure, incorporating GSA, contributes to a more comprehensive assessment

of variability, aiding in the identification of influential data subsets and variables. The paper

confirms previous findings regarding model parameters but also highlights the dependence of

inference on the calibration window used, signaling potential issues with assumptions about

the constancy of transitions between compartments over time. The research concludes with

an evaluation of alternative tobacco control policies for Tuscany, emphasizing the substantial

impact of uncertainty on policy effectiveness. Overall, the study advocates for the integration of

uncertainty analysis and GSA in modeling processes, providing a more nuanced understanding

of the robustness of public health projections and guiding the development of intricate models.

Keywords - Compartmental Models, Smoking Dynamics, Tobacco Control Policies, Global

Sensitivity Analysis, Sobol Indexes

3.1 Introduction

Smoking is a substantial global health issue due to its impact on morbidity and mortality, and

the related economic burden [1]. As reported by the Global Burden of Disease Study 2019 [2],

tobacco smoking caused in 2019 more than 7 million deaths and 200 million disability-adjusted

life-years worldwide, and remains the leading mortality risk factor among males. The WHO

Framework Convention on Tobacco Control (WHO FCTC), which formally entered into force for

state parties in 2005 [3], contains guidelines and requirements for the implementation of tobacco

control policies (TCP), summarized by the MPOWER acronym (see Section C.1 in Supplemental

Materials): Monitoring tobacco use and prevention policies (M), Protecting people from tobacco

smoke (P), Offering help to quit tobacco use (O), Warning about the dangers of tobacco (health

warning labels (W-L) and mass media (W-MM)), Enforcing bans on tobacco advertising, pro-

motion, and sponsorship (E), and Raising taxes on tobacco (R) [4](www.drugsandalcohol.

ie/37050/1/WHO-TobaccoControl-Roadmap_of_actions_220592.pdf). Also

thanks to the implementation of WHO FCTC, tobacco use decreased across the European region

during the last decade. Still, the rate of this reduction has been relatively slow, and Europe

continues to have one of the highest rates of tobacco use globally (www.drugsandalcohol.

ie/37050/1/WHO-TobaccoControl-Roadmap_of_actions_220592.pdf).

www.drugsandalcohol.ie/37050/1/WHO-TobaccoControl-Roadmap_of_actions_220592.pdf
www.drugsandalcohol.ie/37050/1/WHO-TobaccoControl-Roadmap_of_actions_220592.pdf
www.drugsandalcohol.ie/37050/1/WHO-TobaccoControl-Roadmap_of_actions_220592.pdf
www.drugsandalcohol.ie/37050/1/WHO-TobaccoControl-Roadmap_of_actions_220592.pdf
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Understanding the complex dynamics of tobacco use and its effects on the population thus remains

paramount for crafting effective public health policies, and the development of models that

simulate smoking dynamics under different policy scenarios is useful for comparing hypothetical

future interventions. Among the approaches proposed in the literature for simulating smoke

dynamics, compartmental models offer a structured framework. The SimSmoke model is the

most used compartmental model in this field. Developed by Levy and Friend [5] to capture

smoking dynamics, it has been implemented in a wide number of countries including Italy

[6–9]. The SimSmoke model estimates the relevant parameters that govern the transitions

between compartments, such as age-specific probabilities of starting and stopping smoking,

makes projections, and explores short and long-term impacts on smoking dynamics and related

health outcomes of different hypothetical tobacco control policies (TCP), deriving their effects

from literature reviews conducted with the advice of an expert panel [5–7, 9–22].

However, despite the significant development and widespread use of this complex modeling

framework, formal procedures capable of accounting for all, or at least a significant portion, of

the sources of variability involved have not been proposed. Some authors introduced methods

to account for the variability around the model parameters in the SimSmoke model, including

Probabilistic Sensitivity Analysis and bootstrapping [15, 23, 24], but these are only partial

solutions that do not treat comprehensively uncertainties associated with model formulation,

inference procedure, and sampling variability in the data. This is a significant limitation, especially

when modeling is intended to generate forecasts under hypothetical future scenarios and aims to

serve as a tool for providing public health guidance.

In this paper, we propose a procedure aimed at robustifying inference, forecasting, and TCPs

assessment produced by the Smoking Habits Compartmental (SHC) model, which has been

developed by Lachi et al. [25] grounding on the SimSmoke model experience to model smoking

dynamics in the Tuscany region (Italy). This robustification procedure, which can also be

reproduced in different models and contexts, takes into account uncertainties involved in model

definition, inference, and forecasting, and consists of an uncertainty assessment and a variance-

based Global Sensitivity Analysis (GSA) [26, 27]. In statistical modeling, uncertainty assessment

is the process of quantifying the uncertainty associated with model assumptions, parameters, and

predictions. Uncertainty may arise from various sources, such as measurement errors, sampling

variability, model misspecification, and unobserved variables. Sensitivity analysis represents a

general statistical concept to evaluate the robustness of parameter estimates and the sensitivity of

the results to model assumptions [26]. Uncertainty assessment can be integrated with GSA, which

studies how the variance of results (outputs) can be decomposed into contributions from uncertain

model inputs, through the use of sensitivity indexes [28]. Especially when the overall uncertainty

around the output is high, performing GSA is paramount to understanding which factors mostly

influence the answer to our research question. This can help to identify model assumptions
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that are most critical and quantify the relative impact of different sources of uncertainty on the

research findings.

The main goal of this paper can be summarised in the following points:

• assessing the robustness of the inference parameters produced by the SHC model [25] as

the assumptions governing its functioning change;

• providing a forecast of smoking dynamics in the Tuscany population, both in terms of

smoking prevalence and Smoking-Attributable Deaths (SAD);

• comparing hypothetical TCPs and evaluating their relative effectiveness over time.

Through the inclusion inside the estimation and forecasting process of the variability induced

by the compartmental model’s assumptions, observed data used for calibration, and the effect

of different TCPs, we robustify the inference and produce predictions that take into account all

these sources of uncertainty in the modeling process.

3.2 Uncertainty Analysis and Global Sensitivity Analysis

In statistical modeling, uncertainty analysis is the process of quantifying all uncertainties that

intervene at each step of the study – including those associated with model assumptions, param-

eters definition and inference, and predictions – and assessing their impact on the results. Let

(X1,X2, ...,XKX ) be KX mutually independent inputs and f (·) a function which, given the inputs,

returns KY outputs (Y1,Y2, ...,YKY ). Here, we refer to the function f (·), as the Sensitivity Analysis

(SA) function. After eliciting a probability distribution on the inputs, Monte Carlo simulations

can be performed to propagate the uncertainty from the inputs to the outputs. In each of these

simulations, the value of each input factor is sampled from its distribution and the SA function is

used to calculate the corresponding outputs, obtaining a sample from their joint distribution, that

can be described and analyzed.

Sometimes in modeling studies, it is appropriate to consider multiple candidate models that differ

in their assumptions or specifications. In this case, we can perform Monte Carlo simulations, as

discussed in [29], by defining random “triggers" that determine the model to be followed in each

simulation. In this way, we account also for the uncertainty associated with the model choice,

considering the trigger as an additional input.

Uncertainty analysis works in tandem with GSA, which involves examining the relative impor-

tance of model inputs or assumptions in determining uncertainty in the model outputs. GSA aims

to provide sensitivity measures that are global in the sense that they are concerned with the whole
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space of variability of the inputs. GSA quantifies the relative importance of each input on the

outcomes by computing variance indices. The first-order index (S j) represents the main effect

contribution of each input factor to the variance of the output and it is defined as:

S j =
VX j(EX∼ j(Y |X j))

V (Y )
.

The first order index represents the expected reduction of the variance that would be achieved if

the factor X j could be fixed [28]. It does not account for the variance explained by the interaction

of X j with the other inputs. When we are interested in evaluating also iterations, we can focus on

the total variance index. For each input X j, the so-called total variance index (Stot
j ) measures the

overall effect of the j-th input on the output Y , including all the interactions of X j with the other

inputs. This index corresponds to the expected variance of Y that would be left on average when

all the parameters but X j, X∼ j, are fixed:

Stot
j =

EX∼ j(VarX j(Y |X∼ j))

Var(Y )
.

The total effect index accounts for the total contribution to the output variation due to factor

X j, i.e. its first-order effect expressed by the first-order index plus all higher-order effects due

to interactions. A total variance index close to zero indicates that the parameter X j does not

influence Y . Conversely, a large total variance index indicates that the parameter does have an

impact on the output. Note that, while ∑
j

S j ≤ 1, the sum of the total variance indexes over all

inputs can be larger than 1.

3.3 Model specification, inference procedure, and policy assessment

The SA function defines the analysis conducted and determines the inputs allowed to vary and

the outputs we are interested in. Our application, includes compartmental model specification,

inference on the unknown parameters of the model, forecasting of compartment sizes, and health

impact assessment under different TCP scenarios. In the upcoming sections, we detail the

components of the function f (·).

3.3.1 Smoking habits compartmental model

The SHC model proposed by Lachi et al. [25] attempts to describe the evolution of smoking

habits in Tuscany from 1993 to 2019 and forecast them until 2043.
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FIGURE 3.1: Smoking Habits Compartmental Model in its simplest form.

Figure 3.1 shows a simplified version of the SHC model, which does not account for the

subject’s age. At each time the alive population is divided into the following non-overlapping

compartments: never (N), current (C), and former (F) smokers. The compartments C and F

are further divided into sub-compartments denoted by Ci and Fi, where i ∈ {l,m,h} indicates

the level of smoking intensity, corresponding to low (<10 cigarettes/day), medium (≥10 and

<20 cigarettes/day), and high (≥20 cigarettes/day) smoking intensity, respectively. From each

compartment, subjects can transit to a deceased compartment denoted by D and a subscript

corresponding to the compartment of origin. New births, ν , increase the size of the compartment

N. Transitions of the individuals from a given compartment to another one are regulated by the

probabilities of starting smoking (γi), stopping smoking (εi), and relapsing into smoking after

having stopped (ηi). Death happens with different probabilities for never (δN), current (δCi), and

former (δFi) smokers.

Considering discrete time on an annual scale, t ∈ {1, ...,T}, and introducing separate compart-

ments for each discrete age, a ∈ {1, ...,100}, as well as stratification by years since smoking

cessation (c) for former smokers, the following system of difference equations arises:
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

N(t;a) = ν(t−1)
(

1−δN(a)
)

if a = 0

N(t;a) = N(t−1;a−1)
(

1−δN(a)
)(

1− γ(a)
)

if a > 0

Ci(t;a) = 0 if a = 0

Ci(t;a) =Ci(t−1;a−1)
(

1−δCi(a)
)(

1− ε(a)
)
+

N(t−1;a−1)
(

1−δN(a)
)

πiγ(a)+

∑
c>0

Fi(t−1;a−1,c−1)
(

1−δFi(a,c)
)

η(c) if a > 0

Fi(t;a,c) = 0 if a = 0, c≥ 0

Fi(t;a,c) =Ci(t−1;a−1)
(

1−δCi(a)
)

ε(a) if a > 0, c = 0

Fi(t;a,c) = Fi(t−1;a−1,c−1)
(

1−δFi(a,c)
)(

1−η(c)
)

if a > 0, c > 0

DN(t;a) = ν(t−1)δN(a) if a = 0

DN(t;a) = DN(t−1;a)+N(t−1;a−1)δN(a) if a > 0

DCi(t;a) = 0 if a = 0

DCi(t;a) = DCi(t−1;a)+Ci(t−1;a−1)δCi(a) if a > 0

DFi(t;a,c) = 0 if a = 0, c≥ 0

DFi(t;a,c) = 0 if a > 0, c = 0

DFi(t;a,c) = DFi(t−1;a,c)+Fi(t−1;a−1,c−1)δFi(a,c) if a > 0, c > 0

(3.1)

In the system 3.1, δN(a) represents the probability of dying for never smokers of age a, δCi(a)

the one for current smokers belonging to the smoking level category i, δFi(a,c) the probability of

dying for former smokers of age a belonging to the smoking level category i after c years from

smoking cessation, and πππ = (πCl ,πCm ,πCh) is the distribution of the level of smoking intensity

among the new current smokers. We assumed the following functions on the probabilities of

starting and stopping smoking:

γ(a) =

0 0≤ a≤ 13∪ a≥ 35
exp(s(a;ψψψ))

1+exp(s(a;ψψψ)) 14≤ a≤ 34
ε(a) =

0 0≤ a≤ 19
exp(s(a;φφφ))

1+exp(s(a;φφφ)) a≥ 20,

where s(a;ψψψ) and s(a;φφφ) are two natural cubic regression splines of age, with 2 equidistant

internal knots, governed by the parameter vectors ψψψ = (ψ0,ψ1,ψ2,ψ3) and φφφ = (φ0,φ1,φ2,φ3).

The relapsing probability, η(c), was modeled as a negative exponential function of time since

cessation, with parameters ωωω = (ω0,ω1):
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η(c) =


0 c = 0

1− exp(−ω0ω1 exp(−ω1c)) 1≤ c≤ 15

1− exp(−ω0ω1 exp(−ω115)) c≥ 16.

Note that ω0 governs the lifetime probability of no relapse and ω1 tunes how fast the probability of

smoking relapse declines with the time from cessation [13–15, 30]. Both ω0 and ω1 are assumed

to be positive so that η(c) is a positive and decreasing function of c. Regarding mortality risks, we

assumed δCi(a) = RRCi×δN(a) and δFi(a,c) = RRFi(c)×δN(a), with RRCi and RRFi(c) relative

risks of dying for current smokers belonging to the smoking level category i and for people

who stopped smoking since c years, belonging to the same smoking level category, versus never

smokers. More details about the assumptions governing the SHC model are reported in Lachi

et al. [25].

We assumed that the transition probabilities remain constant over calendar time except when

starting from a specific year, they are modified by TCP effects (see Section 3.3.4).

3.3.1.1 Stochastic version of the SHC model

To account for intrinsic uncertainty affecting the transitions between model compartments, we

consider a stochastic version of the SHC model. Let us denote by S the number of individuals

who transit from a generic compartment to another one. We assume S∼ Binomial(nS,qS), where

nS is the number of individuals allowed to transition and qS is the probability of that transition.

As an example, consider the number of smokers of age a with a low intensity that quit smoking at

time t: nS is the number of low-intensity smokers of age a that do not die during the year t, and

qS is equal to ε(a). The same reasoning applies to the number of individuals relapsing smoking

and to the number of deaths. We assume that the number of individuals who start smoking

at age a is distributed according to a Multinomial distribution with a vector of probabilities

(γl(a),γm(a),γh(a)).

3.3.2 Data and calibration

According to Lachi et al. [25], we focus the inference on δN(a) and θθθ = (ψψψ,φφφ ,ωωω). For the

strict purpose of inference, all other parameters involved in the system of difference equations

3.1 are assumed as given. Inference is based on demographic data from the National Institute

of Statistics (http://dati.istat.it) and smoking habit data obtained from two primary

sources: the Italian Multiscope Survey on Families (AVQ survey, https://www.istat.

it/it/archivio/91926), which gathers essential information related to the daily life of

http://dati.istat.it
https://www.istat.it/it/archivio/91926
https://www.istat.it/it/archivio/91926
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individuals and families, and the European Health Interview Survey (EHIS, https://www.

istat.it/it/archivio/167485). The smoking habit data consist of the prevalence of

never, current, and former smokers, categorized by year, age group (a∗ ∈ {14−17,18−19,20−
24,25−34,35−44,45−54,55−59,60−64,65−74,75+}), and smoking intensity category.

Observed data are denoted by ’obs’ at the apex. Inference is performed in two steps:

1. We estimate the age-specific risks of mortality for never smokers δN(a) as a combination

of observed values of prevalence and relative risks. In particular, we apply the following

formula:

δN(a) =
1
T

T

∑
t=0

δ obs(t;a)
pobs

N (t;a∗)+RRC pobs
C (t;a∗)+RRF pobs

F (t;a∗)
, (3.2)

where a∗ is the age class to which a belongs, and δpop(t;a) is the mortality rate in the

population of age a at time t (http://dati.istat.it), while RRC and RRF are the

relative risks of dying for current smokers and former smokers versus never smokers. A

similar procedure is proposed also in Ngalesoni et al. [23].

2. Let p(t;a∗,θθθ) =
(

pC(t;a∗,θθθ), pN(t;a∗,θθθ), pF(t;a∗,θθθ)
)

be the vector of the prevalence of

never, current and former smokers belonging to the class of age a∗ at time t, predicted by

the model in Equation (3.1), given a specific value of the parameters θθθ . We perform a

calibration procedure to find the value of θθθ that leads to predicted prevalence values as

close as possible to the observed ones derived from the AVQ survey. To compare observed

and simulated prevalence, we consider the following objective function, where H(·, ·)
denotes the Hellinger distance [31] between two discrete probability distributions:

Ob j(θθθ) =
1

T ×A∗∑
t,a∗

H

(
p(t;a∗,θθθ), pobs(t;a∗)

)

=
1

T ×A∗×
√

2∑
t,a∗

√√√√√ ∑
k∈{C,N,F}

(√
pk(t;a∗,θθθ)−

√
pobs

k (t;a∗)

)2

.

(3.3)

Calibration is conducted by comparing observed and predicted prevalence across three distinct

time frames: the entire period from 1993 to 2019, and the two sub-periods 1993-2004, and

2005-2019.

3.3.3 Bootstrap

The sampling variability around point estimates is quantified by using a parametric bootstrap

procedure [32, 33]. Let θ̂θθ be the vector of parameters minimizing the objective function in

Equation (3.3) and p(t;a∗, θ̂θθ) the corresponding estimated vector of prevalence for never, current

https://www.istat.it/it/archivio/167485
https://www.istat.it/it/archivio/167485
http://dati.istat.it
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and former smokers of age a∗ in the population at time t. Let n(t;a∗) be the number of subjects

belonging to the age class a∗, enrolled in the AVQ survey in the year t in Tuscany (i.e. the

denominator of the observed prevalence pobs(t;a∗)). The bootstrap procedure consists in:

1. Sampling, for each a∗ and t, a vector of prevalence from a Dirichlet distribution:

pb(t;a∗)∼ Dirichlet
(

pC(t;a∗, θ̂θθ)n(t;a∗), pN(t;a∗, θ̂θθ)n(t;a∗), pF(t;a∗, θ̂θθ)n(t;a∗)
)

;

2. Considering this sampled vector as the observed one, computing δδδ
b(a,c) and finding θθθ

b

that minimizes the objective function, as described in Section 3.3.2.

In [25], a sample of 1,000 bootstrap estimates has been used to calculate the 90% confidence

intervals around model parameters and other quantities of interest, including compartment size

trajectories.

3.3.4 Tobacco control policies assessment and forecasting

We assess and compare the impact of four TCPs, assuming their full implementation since 2023:

• TCP0, No policy implemented. We assume that in the absence of policies, smoking habit

dynamics would remain unchanged;

• TCP1, Tobacco-free generation. Smoking consumption is banned for children born

from 2009 onwards [34]. The policy effect depends on the parameter χTCP1
1 denoting the

percentage of individuals that circumvent the prohibition;

• TCP2, Tax policy. An annual 10% increase in cigarettes price is introduced for 10 years

[24]. The policy effect depends on the age-specific price elasticities for the probabilities of

starting and stopping smoking. The elasticities for the probability of stopping smoking

are denoted by the parameter vector χTCP2 = (χTCP2
<18 ,χTCP2

18−24,χ
TCP2
25−34,χ

TCP2
35−64,χ

TCP2
65+ ); the

elasticities for the probability of starting smoking by the vector −χTCP2;

• TCP3, Cessation treatment policies. Pharmaceutical treatments, quitlines, and brief

interventions for smoking cessation are made completely available and reimbursed. The

policy effect is described by the parameter vector χTCP3 = (χTCP3
1 ,χTCP3

2 ), where χTCP3
1

is the probability of stopping smoking induced by the pharmaceutical intervention, and

χTCP3
2 is the percentage of smokers, assumed to be constant over the years, that adheres to

the program;

• TCP4, Marketing restrictions. Bans on all forms of direct and indirect advertising are

enforced. The policy effect is described by the parameter vector χTCP4 = (χTCP4
1 ,χTCP4

2 ),

where χTCP4
1 is the reduction in the probability of starting smoking induce by the policy

and χTCP4
1 is the increase in the probability of smoking cessation.
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For each policy, we calculate the evolution of smoking prevalence and Smoking-Attributable

Deaths (SADs). SADs in the year t are defined as the difference between the number of

deaths we would observe under a counterfactual condition where current smokers and former

smokers in the year t were never smokers and the number of deaths occurring assuming the

policy implementation. We also calculate the number of avoided deaths expected from the

implementation of each policy with respect to TCP0, defined as the difference between the

number of deaths occurring under TCP0 and the one we would observe under the specific

counterfactual condition defined by the policy.

3.4 Robustification procedure

3.4.1 Probability distributions of inputs

Eliciting the inputs’ probability distributions is preliminary to uncertainty analysis and GSA. We

define the distribution on the basis of information from the epidemiological literature, substantive

knowledge of the topic, and national surveys, as reported in Table 3.1. Three different kinds of

inputs are identified: parameters of the model 3.1, parameters that define the TCPs, described in

Section 3.3.4, and two triggers introduced to assess the impact of the calibration period and of the

policy effect. Note that the distributions of mortality RRs for former smokers do not distinguish

among levels of smoking intensity. The Uniform distributions defined on the TCPs parameters

are centered around the effects and price elasticities used in a recent paper by Sánchez-Romero

et al. [21].
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TABLE 3.1: Distribution of the input parameters used in the GSA and related data sources.

Parameters Model Distribution Source

Parameters of compartmental model πππ = (πCl ,πCm ,πCh) males πππ ∼ Dirichlet(2051× (0.19,0.40,0.41)) AVQ survey

females πππ ∼ Dirichlet(2161× (0.19,0.40,0.41))

ν males ν ∼ Poisson(14,701) ISTAT

females ν ∼ Poisson(13,895)

RRRRRRC = (RRCl ,RRCm ,RRCh) males logRRCl ∼Ntrun(log1.91,0.03,0,∞) Thun et al. [35]

logRRCm | logRRCl = a∼Ntrun(log2.05,0.03,a,∞)

logRRCh | logRRCm = a∼Ntrun(log2.42,0.02,a,∞)

females logRRCl ∼Ntrun(log1.47,0.03,0,∞)

logRRCm | logRRCl = a∼Ntrun(log1.87,0.03,a,∞)

logRRCh | logRRCm = a∼Ntrun(log2.36,0.03,a,∞)

RRF = RRFl (c) = RRFm(c) = RRFh(c) = RRF(c) males logRRF(c)∼Ntrun(log2.53,0.03,0,∞), c = 1 Thun et al. [35]

logRRF(c)| logRRF(1) = a∼Ntrun(log2.35,0.03,0,a), c ∈ {2,3,4}
logRRF(c)| logRRF(2) = a∼Ntrun(log1.90,0.02,0,a), c ∈ {5, ...,9}

logRRF(c)| logRRF(5) = a∼Ntrun(log1.49,0.02,0,a), c≥ 10

females logRRF(c)∼Ntrun(log2.26,0.05,0,∞), c = 1 Thun et al. [35]

logRRF(c)| logRRF(1) = a∼Ntrun(log2.22,0.04,0,a), c ∈ {2,3,4}
logRRF(c)| logRRF(2) = a∼Ntrun(log1.58,0.03,0,a), c ∈ {5, ...,9}

logRRF(c)| logRRF(5) = a∼Ntrun(log1.29,0.03,0,a), c≥ 10

RRRRRRstatus = (RRC,RRF) males logRRC ∼Ntrun(log2.43,0.01,0,∞) Thun et al. [35]

logRRF | logRRC = a∼Ntrun(log1.43,0.01,0,a)

females logRRC ∼Ntrun(log2.08,0.01,0,∞) Thun et al. [35]

logRRF | logRRC = a∼Ntrun(log1.28,0.01,0,a)

Parameters of TCPs χTCP1 χTCP1 ∼U [0,0.10]

χχχTCP2 = (χTCP2
<18 ,χTCP2

18−24,χ
TCP2
25−34,χ

TCP2
35−64,χ

TCP2
65+ ) χTCP2

<18 ∼U [0.35,0.45] Sánchez-Romero et al. [21]

χTCP2
18−24 ∼U [0.25,0.35]

χTCP2
25−34 ∼U [0.15,0.25]

χTCP2
35−64 ∼U [0.05,0.15]

χTCP2
65+ ∼U [0.15,0.25]

χχχTCP3 = (χTCP3
1 ,χTCP3

2 ) χTCP3
1 ∼U [0.2744,0.3144] Sánchez-Romero et al. [21]

χTCP3
2 ∼U [0.20,0.50]

χχχTCP4 = (χTCP4
1 ,χTCP4

2 ) χTCP4
1 ∼U [0.06,0.10] Sánchez-Romero et al. [21]

χTCP4
2 ∼U [0.02,0.06]

Triggers τTCP τTCP ∼U {TCP0,TCP1,TCP2,TCP3,TCP4}
τwindow τwindow ∼U {1993−2004,2005−2019,1993−2019}

1Average sample size of the AVQ survey in the period from 1993 to 2019.

3.4.2 Sensitivity Analysis procedure

In this paragraph, we illustrate the procedure that transforms the inputs of the GSA function into

outputs of interest [26]. We denote with f (πππ,ν ,RRRRRR,τwindow,τTCP,χTCP1,χχχTCP2,χχχTCP3,χχχTCP4)

the GSA function, where RRRRRR = (RRCl ,RRCm ,RRCh ,RRFl ,RRFm ,RRFh ,RRC,RRF) is the vector of

the relative risks. Note that depending on the purpose of the analysis (assessing the global impact

of TCPs on the model output or establishing a ranking among TCPs), we sample a specific TCP

through the trigger τTCP or apply since 2023 all five policy scenarios. For simplicity we call the

first option procedure 1 and the second option procedure 2.

In detail, we perform, separately for males and females, the following Monte Carlo procedure,

following the philosophy of boot-strapping of the modeling process [36, 37]:

1. We independently sample the following model inputs from the distributions defined in

Table 3.1:

(a) values for πππ , ν , and RRRRRR;

(b) a trigger τwindow that selects the time window of the observed data on which the

calibration is performed;
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(c) a trigger τTCP that selects which TCP has to be implemented since 2023 (this step is

not performed in procedure 2);

(d) values for all the policy parameters χTCP1, χχχTCP2, χχχTCP3, χχχTCP4 (procedure 2) or

only for the parameters of the policy selected (procedure 1);

2. We make an inference on the unknown vector of parameters of the SHC model, θθθ , given

the sampled values for πππ , ν , and RRRRRR and given the selected calibration window;

3. Once we have found the optimal θθθ , we run a bootstrap step, according to the procedure

described in Section 3.3.3. We save the bootstrap estimate and use it in the upcoming step;

4. We get a realization from the stochastic SHC model, sampling from the appropriate

binomial and multinomial distributions described in Section 3.3.1.1, under the sampled

TCP (procedure 1) or under all TCPs (procedure 2).

We sample the different combinations of the model inputs adopting a quasi-random number

sampling which provides a more efficient exploration of the sample space [28, 38]. At the end

of this procedure, we obtain K realizations from the SHC model, as well as K estimates of the

curves γ(a), ε(a), η(c), that describe the transition probabilities between compartments, and of

the age-specific mortality rates δN(a). We summarized these quantities in terms of pointwise

median and 5th and 95th percentiles.

When the pathways of the compartmental model are generated under all TCPs, as in procedure2,

we also obtain a distribution of policy rankings, which we summarize in terms of the surface

under the cumulative ranking (SUCRA) curve. The SUCRA curve is commonly used in network

meta-analysis to numerically present the overall ranking of alternative treatments. It is a single

number ranging from 0 to 100. The higher the SUCRA value, the higher the likelihood that

a treatment is one of the top ranks; the closer to 0 the SUCRA value, the more likely that the

treatment is one of the bottom ranks. Rankings are defined based on the projected prevalence of

never and current smokers in 2053 and 2063, as well as on SADs for individuals over 35 years

old and 65 years old in the same years.

3.4.3 Outputs definition and Total Index calculation

We compute the total index defined for the following outputs:

• Hellinger distance;

• Maximum probabilities of starting and quitting smoking, and age at which the maxima are

reached;
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• Maximum probability of relapsing into smoke;

• Mean probability of starting, quitting, and relapsing smoking;

• Mean age of starting and quitting smoking;

• Mean time from smoking cessation to relapse;

• Expected prevalence of never, current, and former smokers, evaluated every ten years from

2013 to 2063;

• Expected minimum and maximum prevalence of current and never smokers over the study

period;

• Expected SAD for over 35 and 65 years old, evaluated every ten years from 2013 to 2063.

• Expected shifting in the absolute value between the TCPs ranking for a specific combination

of model inputs and a reference ranking (it serves as a summary output to capture the

impact of the inputs on the TCPs ranking).

Note that the calculation of the sensitivity indexes is based on the deterministic model, neglecting

the binomial or multinomial variability around model transitions. In this way, we capture the

impact of the inputs on the expected prevalence and SADs, instead of on the single realization

from the stochastic process generating the SHC model transitions.

From a computational standpoint, we calculate the Sobol’s indexes, starting from the 5′000

simulations, following the design matrices-based method proposed in [26]. According to this

design, we calculate the total effect indices relying on the results of 35,000 and 50,000 uncertainty

propagation procedures, respectively for procedure 1 and procedure 2.

3.5 Results

All the analyses conducted in this paper are performed with JULIA language https://

julialang.org. In particular, we use the package Optim.jl [39] for the calibration of

the SHC model and the package GlobalSensitivity.jl [40] for the Sobol’s total indices

calculation.

Firstly, we focus on the unknown vector of parameters θθθ = (ψψψ,φφφ ,ωωω) governing the SHC model.

In Figure 3.2 we provide a comparison of the model estimates obtained in Lachi et al. [25], where

the only source of uncertainty was the sampling variability, and the estimates obtained via the

SA procedure described in Section 3.4.2. Results highlight that central point estimates of the

classical inference coincide with the estimates produced by the uncertainty analysis. As expected,

https://julialang.org
https://julialang.org
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the SA uncertainty intervals are much larger than the confidence intervals found in Lachi et al.

[25].

a) b)

FIGURE 3.2: Results of estimation procedure for males in blue and females in red, with their
bootstrap 90% confidence intervals (light color) obtained in Lachi et al. [25] in comparison
to the same version obtained performing the procedure proposed in Section 3.2 (dark color):
parameters tuning the probabilities of starting (ψψψ) and stopping smoking (φφφ ), and the probability

of smoking relapse (ωωω) for male (a) and female (b).
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a) b)

c) d)

e) f)

FIGURE 3.3: Results of estimation procedure for males in blue and females in red, with their
bootstrap 90% confidence intervals (light color) obtained in Lachi et al. [25] in comparison
to the same version obtained performing the procedure proposed in Section 3.2 (dark color):
age-specific mortality for never smokers and the general population in (a-b), probabilities of
starting (γ(a)) and stopping smoking (ε(a)), and probability of smoking relapse (η(c)) for male

(c-d) and female (e-f).

In Figure 3.3, we compare the estimates of the transition probabilities of starting and quitting

smoking and smoking relapse obtained in [25] with the SA estimates. The error propagation

does not affect central point estimates of the transition probabilities but leads to larger confidence

bands.
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a) b)

FIGURE 3.4: Total variance indices that quantify the contribution of each input on the model
output, calculated for the model of males (a) and females (b), based on procedure 1 defined in

Section 3.2.

The heatmap in Figure 3.4 shows the total variance indexes deriving from procedure 1 (see

Section 3.4.2), separately for males (a) and females (b). For each output defined in Section 3.4.3,

we calculate as many indexes as there are inputs in the SA function. Note that the trigger for TCP

captures the global effect of the policies on the outputs. Looking at the Hellinger distance, all

the variability can be attributed to the choice of the calibration window. On the one hand, this

result indicates that inference is not affected by the values assigned to RRRRRR, ν , and πππ in the SHC

model. On the other hand, suggests that the inference results are very sensitive to the calibration

window. The calibration window is the most relevant input also for the outputs regarding the

probabilities of starting and quitting smoking and smoking relapse. However, for males, a certain

effect of other inputs is also observed. Focusing on the evolution of the prevalence of current

smokers from 2013 onward, most of the variability (almost all for females) can be attributed

to the choice of the calibration window and the TCPs. For the other prevalence, the calibration

window remains the most relevant model input. Regarding the evolution of SAD, in addition to

the calibration window, RRRRRR represents an important model input in particular for males before

2033. For numerical details see Section C.2 in Supplemental Materials.

Figure 3.5 compares the evolution of smoking habits among males (a) and females (b) under the

five alternative TCPs defined in Section 3.3.4. TCPs have no substantial effect on the prevalence

of never, former, and current smokers during the 10 years following their implementation in 2023.

After 2033, TCP1 has the largest impact in increasing and reducing respectively the prevalence

of never and current smokers, followed by TCP2. TCP3 has the largest impact on increasing the

prevalence of former smokers.
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a) b)

FIGURE 3.5: Estimated prevalence of never (N), current (C), and former (F) smokers under
different tobacco control policies (TCP) with their 90% uncertainty intervals, for males (a) and

females (b) based on a stochastic model.

Figure 3.6 reports the predicted number of attributable deaths for the age classes 35+ and 65+,

both for males (a) and females (b), under different TCPs from 2033 onward. The uncertainty

around the SADs is very high and the uncertainty bands largely overlap, indicating that within

the time window considered we cannot expect one policy to prevail over the other in terms of

reducing attributable mortality. Figure 3.7 reports the saved deaths under TCP1, TCP2, TCP3,

and TCP4, in reference to the no-policy scenario TCP0. Examining SADs among individuals

over 35 years old, it is evident that TCP1 leads to the prevention of a greater number of deaths

over the long term. Conversely, within the considered time window, TCP2 is the policy that, on

average, prevents more deaths. However, it is important to note that the uncertainty intervals are

very wide and encompass zero.

a) b)

FIGURE 3.6: Estimated Smoking Attributable Deaths (SAD) among people over 35 and 65
years old, with 90% uncertainty intervals, for males (a) and females (b) under different tobacco

control policies (TCP) based on a stochastic model.
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a) b)

FIGURE 3.7: Decrease of the number of Smoking Attributable Deaths (SAD) among people
over 35 and 65 years old, with 90% uncertainty intervals, for males (a) and females (b) under

different tobacco control policies (TCP) based on a stochastic model.

Adopting the procedure 2 described in Section 3.4.2, for each different combination of the other

inputs, we rank the policies from the most efficient (rank 1) to the least efficient (rank 4) based

on various outputs. Figures 3.8 and 3.9 show, for males and females respectively, the probability

that each policy has a rank≤ r, where r ∈ {1,2,3,4} represents all the possible ranking positions.

The corresponding SUCRA values are reported in the legend. Figure 3.8 and 3.9 show that TCP1

is always the best when we look at the prevalence of current smokers, while TCP2 is the best in

terms of SAD reduction, according to Figure 3.7.
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a) b)

c) d)

e) f)

g) h)

FIGURE 3.8: Ranking of Tobacco Control Policies (TCP) for the prevalence of never smokers
(a-b), current smokers (c-d), Smoking Attributable Deaths (SAD) among people over 35 years
old (e-f), and SAD among people over 65 years old (g-h), reached in 2053 and 2063 for males

based on a stochastic model.
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a) b)

c) d)

e) f)

g) h)

FIGURE 3.9: Ranking of Tobacco Control Policies (TCP) for the prevalence of never smokers
(a-b), current smokers (c-d), Smoking Attributable Deaths (SAD) among people over 35 years
old (e-f), and SAD among people over 65 years old (g-h), reached in 2053 and 2063 for females

based on a stochastic model.

The heatmaps in Figure 3.10 show, for males and females, the total variance indexes measuring

the impact of each input, including the policy parameters, on TCP rankings based on current and

never smokers prevalence and SADs in 2053 and 2063. The inputs do not affect the rankings

based on never smokers prevalence and SADs among individuals over 65 years old. Regarding
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the ranking based on the prevalence of current smokers, most of the variability is due to the

parameters governing TCP3 and TCP4. For males, the ranking based on SADs among individuals

over 35 years old, the variability is greatly due to the calibration window. For females, it is

also attributable to the parameters governing TCP4. For numerical details see Section C.2 in

Supplemental Materials.

a) b)

FIGURE 3.10: Total variance indices that quantify the contribution of each input on the model
output, calculated for the model of males (a) and females (b), based on procedure 2 defined in

Section 3.2.

3.6 Discussion and conclusion

Compartmental models provide a useful framework for understanding the behavior of complex

systems, helping to study the evolution of populations over time. Additionally, due to their

mechanistic nature, compartmental models are especially well-suited for projections. However,

they suffer from limitations associated with relying on sometimes strong structural assumptions

and being typically governed by numerous parameters, posing identification issues. Therefore,

while compartmental models are powerful tools for investigating complex phenomena and

generating projections to explore future public health dynamics, they may lack robustness when

assumptions are misspecified, resulting in highly uncertain outcomes. In this context, uncertainty

analysis and GSA can be used to propagate uncertainty, perform an overall assessment of the

impact of model assumptions on results and forecasting, as well as detect and quantify the

contribution of different sources of variability on outputs of interest [26, 41, 42].

In this paper, we provide a robustification of inference and projections produced by the SHC

model, a compartmental model that simulates the evolution of smoking dynamics in Tuscany, a

region of central Italy [25]. Note that the model exclusively focuses on the use of conventional
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cigarettes and does not take into account other tobacco products such as electronic cigarettes and

heated tobacco products.

In order to set up the sensitivity analysis, it is necessary to define the SA model, along with

its inputs and outputs. In our case, the SA model involves the compartmental model specified

in its stochastic form, calibration, and bootstrap procedures. Following the model taxonomy

introduced by [26], our model has both diagnostic and prognostic purposes because it is used

to understand a law, but also to predict the behavior of a system given a supposedly understood

law. Similarly, it can be considered both a data-driven and a law-driven model, because it uses

data to derive the system’s properties statistically, and it uses laws that have been attributed to the

system to predict its behavior.

Through Monte Carlo simulations, we propagate uncertainty from the analysis inputs to the

outputs obtaining a more comprehensive assessment of variability than what is achieved using

standard approaches. Then, we detect subsets of data and variables that seriously influence the

analysis results, by calculating the total variance indexes provided by GSA. This approach is

known in the literature under the name of “modeling of the modeling process", a radical version

of sensitivity analysis proposed by Piano and Benini [27]. The point is to make sure that a

model that is not meaningful is not eventually used to make a decision. It is crucial to emphasize

that these analyses may indicate that the model is unsuitable or unreliable to produce relevant

outcomes.

Our analysis substantially confirms the inference results on the model parameters obtained by

using a standard approach that considers sampling variability as the unique source of uncertainty

Lachi et al. [25]. However, it also highlights that the estimates of the probability of starting

and quitting smoking and the probability of smoking relapse, as well, albeit to a lesser extent,

the forecasts, strongly depend on the specific calibration window used, indicating that the

fundamental assumption that transitions between compartment do not change over time is not

correct. In fact, this assumption is not without issues. For example, a decreasing trend in the

probability of starting smoking has been reported for both males and females in Europe [43],

while evidence of a dependence between age and risk of smoking relapse has been found in the

US population [44]. However, if introducing multiple time-axes dependence in the transition

probabilities could lead to more realistic results, this would be at the price of further complicating

the model by introducing new unknown parameters to be estimated. Future work should try to

include multivariate splines to model the dependence of the transition probabilities from calendar

years.

Our analysis provides also an evaluation of alternative TCPs to be applied since 2023, as well as

their ranking based on mortality and prevalence projections for the upcoming years. In particular,

we focus on TCPs acting to promote tobacco demand-reduction, defined in light of Italy’s

MPOWER status in 2021 (https://cdn.who.int/media/docs/default-source/

https://cdn.who.int/media/docs/default-source/country-profiles/tobacco/who_rgte_2021_italy.pdf
https://cdn.who.int/media/docs/default-source/country-profiles/tobacco/who_rgte_2021_italy.pdf
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country-profiles/tobacco/who_rgte_2021_italy.pdf). We do not consider

policies aimed at protecting people from tobacco smoke, such as policies that mandate a very

low nicotine content standard for cigarettes, or policies that ban or phase out the retail supply

of tobacco. The sensitivity analysis results indicate that the TCP effects are influenced by

considerable variability when considering all sources of uncertainty in the modeling process.

However, it is possible to rank the TCPs based on specific outcomes, even though this ranking

is subject to variability related to process stochasticity. The ranking naturally varies depending

on the forecasting horizon. In particular, while the smoking-free generation policy is the most

effective on average in the long term, policies that also impact smoking cessation prove more

effective in the short term, especially when the focus is on reducing attributable deaths.

In conclusion, beyond the specific results related to the considered application, GSA represents

an important useful tool, that should be always used to guide the development of increasingly

complex models.
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The last half a century has seen spectacular progress in computing and modelling in a variety of

fields, applications, and methodologies. Over the same period, a cross-disciplinary field known

as sensitivity analysis has been making its first steps, evolving from the design of experiments

for laboratory or field studies, also called in vivo, to the so-called experiments in silico. Some

disciplines were quick to realize the importance of sensitivity analysis, whereas others are still

lagging behind. Major tensions within the evolution of this discipline arise from the interplay

between local versus global perspectives in the analysis as well as the juxtaposition of the

mathematical complexification and the desire for practical applicability. In this work, we retrace

these main steps with some attention to the methods and through a bibliometric survey to

assess the accomplishments of sensitivity analysis and to identify the potential for its future

advancement.

Keywords - Global Sensitivity Analysis, Local Sensitivity Analysis, Monte Carlo, History of

Sensitivity Analysis, Design of Experiments

4.1 Introduction

Models simulate the real world by synthesizing a multitude of input configurations in their

output, mapping potential present and future system states of interest. Their primary objective

is to extract valuable insights regarding the relationship between inputs and outputs. Defining

the nature of mathematical models is not easy, due to the variety of contexts and applications

(Page 2018). Various authors identified modelling as an art [1] or a craft [2], with models being

performative [3], and acting as mediators between theories and the world [4]. What remains

undisputed is the remarkable development realised in computing and modelling in recent decades.

Computer models are so widely used in a variety of fields, applications, and methodologies that

they are seemingly affecting any aspect of our lives [4].

Together with modelling, a new field of research called sensitivity analysis has come to life,

moving from the design of experiments for laboratory or field studies to experimental techniques

performed by computers, namely the experiments in silico. While uncertainty analysis studies

the uncertainty in the output, sensitivity analysis studies how the uncertainty in the output can

be allocated to the different sources of uncertainty in the input [5–7]. In other words, sensitivity

analysis elucidates the intimate relationship between the system output and its influential factors.

It is easy to recognize the strong bond between sensitivity analysis and modelling. For some,

sensitivity analysis, namely the drawing of the connection between model output and relevant

input, is the very raison d’être of models (www.theguardian.com/education/2020/

mar/06/uk-universities-face-cash-black-hole-coronavirus-crisis).

www.theguardian.com/education/2020/mar/06/uk-universities-face-cash-black-hole-coronavirus-crisis
www.theguardian.com/education/2020/mar/06/uk-universities-face-cash-black-hole-coronavirus-crisis
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Sensitivity analysis can effectively tackle a multitude of issues, serving a dual role in the model

development phase as well as during its utilization by users to enhance decision-making processes.

Sensitivity analysis serves various purposes, including model validation, dimensionality reduction,

prioritization of research efforts, pinpointing critical regions within the space of uncertainties

under investigation, and aiding decision-making by quantifying how input variations impact

outcome uncertainty [8–10].

At present, sensitivity analysis is evolving toward an independent discipline recognised also by

institutional guidelines [11, 12]. However, whilst some disciplines promptly embraced sensitivity

analysis, its potential has not yet been exploited in other fields, or its full adoption proceeds with

hesitation.

The present concise historical account of sensitivity analysis attempts to chart the evolution of

the field and gain insights into its contemporary challenges. In this study, we will prioritize

interpretations of sensitivity analysis that emphasize the global exploration of uncertain inputs.

This global understanding started in the 70s with the pioneering work of [13] who recognised

that simultaneous variation of the parameters over a wide range of uncertainty is necessary to

give reliable results.

As Global Sensitivity Analysis techniques have advanced in recent decades, becoming capable

of handling complex models alongside the growing computational power of computers, user-

friendly tools and software have been developed to broaden accessibility for a wide spectrum

of researchers and practitioners and contribute to the wider dissemination of the discipline.

Nevertheless, the sensitivity analysis panorama is still dominated in practically all disciplines by

the so-called local approaches. To make an example, in operation research, where the objective is

the optimal allocation of tasks and resources, sensitivity analysis is mostly pursued by looking at

factors one at a time [14], ignoring possible crucial interactions of factors that may change the

optimal solution only when changed jointly, but not one at a time.

4.2 Evolution of Sensitivity Analysis

Sensitivity analysis has undergone remarkable development over time, achieving several historical

milestones that have significantly shaped its evolution. These crucial advancements 4.1, show the

progressive journey of sensitivity analysis and highlight its growing importance as a fundamental

tool within various scientific disciplines.
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4.2.1 Early developments

Sensitivity analysis is, after all, finding things that have an effect on a certain phenomenon out of

many things that could potentially be causes. So, if we look at sensitivity analysis as to a science

of the causes, all the scientific revolution can be taken as anticipating sensitivity analysis. So, one

sensitivity author compares Leonardo’s experiment leading to laws of sliding friction to an early

sensitivity experiment [15]. If we remain instead to the realm of the causes that can be discovered

in mathematical constructs – rather than in the real, then perhaps a good date to set the start of

sensitivity analysis is 1905, when Karl Pearson, the founder of modern statistics, proposed the

idea of correlation ratio (known as the η2 index), to link two variables associated by a non-linear

relation.

A further milestone in the development of sensitivity analysis is the formalization of the exper-

imental design in the 1920s and 1930s by the statistician Ronald Fisher. Experimental design

is the process of planning and conducting experiments to test a hypothesis, answer a research

question, or optimize the use of resources, including measuring or manipulating variables, hence

the link with sensitivity analysis. The process whereby statistics managed to adjudicate the

authority to assess the realism of causes is well described in the classic book of Desrosières and

Desrosières [16].

World War 2 provided a significant impetus for the expansion and application of sensitivity

analysis within the field of operational research [14, 17]. During this global conflict, nations

were faced with unprecedented challenges in terms of strategic planning, resource allocation,

and decision-making. The complexities of managing large-scale military operations, logistics,

and supply chains required innovative approaches to optimize resource utilization and maximize

efficiency.

Experimental design continued to develop with several important advancements in this field in the

1950s, including the widespread adoption of factorial designs. These designs allowed researchers

to investigate the effects of multiple factors or variables on an outcome of interest. In a factorial

design, each factor is varied at multiple levels, and the effects of each factor and their interactions

are examined, thus allowing us to identify the unique effects of each independent variable and to

test complex hypotheses.

Another important development in the 1950s was the introduction of the response surface

methodology, which provided a way to optimize a response variable influenced by several

input or process variables. The response surface methodology involves the use of mathematical

models to describe the relationships between the input variables and the response variable,

allowing researchers to identify the optimal values for each input variable to achieve the desired

response. Notably, the Polynomial Chaos Expansions (PCE) [18] and Kriging, also called

Gaussian Processes (GP) [19] got some traction.
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In the following decades, Cukier et al. [20] developed the Fourier amplitude sensitivity test

(FAST) in the early 1970s, one of the most elegant methods of sensitivity analysis. In FAST, the

sensitivity of model output is computed by using spectral analysis through Fourier transformation

of the input parameters. The method was primarily used in chemistry, but its applications

extended to engineering, finance, and environmental modelling.

4.2.2 Transition to computer experiments

In the 1980s, the advancement of computing resources revolutionized sensitivity analysis and

significantly expanded its capabilities. Prior to this period, sensitivity analysis was often limited

to manual and analytical techniques, which were practical only for simple models with a few

input parameters. However, with the increased computing power, researchers could now conduct

sensitivity analyses on complex models that involved numerous input parameters and interactions.

One of the key breakthroughs during this time was the adoption of random sampling techniques.

Instead of relying solely on analytical methods, researchers began to generate random samples

of input parameters within specified ranges and then execute the model for each combination

of these sampled inputs. This process allowed them to explore a vast range of possible input

combinations, covering a wide spectrum of parameter values and assumptions. As a result,

sensitivity analysis became more comprehensive, enabling the identification of critical factors

that significantly influenced the model’s behaviour. For a detailed overview of the progress made

over these decades, see Myers et al. [21].

As computing resources continued to advance throughout the 1990s, sensitivity analysis reached

another milestone with the pioneering work of the Russian mathematician Ilya M. Sobol’. In

1993, Sobol introduced an innovative approach to sensitivity analysis based on the decomposition

of the output variance [22]. This method, known as Sobol’s indices, allowed researchers to

quantify the contribution of each input parameter to the variance of the model’s output accurately.

The Sobol indices provided a deeper level of insight into the model’s behaviour by quantifying

the individual and combined effects of input parameters on the output variance. This method

not only allowed researchers to rank the importance of different inputs but also enabled them to

identify interactions and non-linearity between parameters, which were crucial for understanding

complex systems.

Over the years, Sobol’s sensitivity indices have become a widely used and well-established tool in

various scientific domains, including engineering and environmental sciences [23]. The method’s

versatility and reliability have contributed significantly to the robustness of sensitivity analysis,

making it an essential component in the study of models.
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4.2.3 The modern communities

Towards the end of the 1990s, a brand-new community of sensitivity-analysis practitioners

emerged, reflecting on the concept of Global Sensitivity Analysis. This approach involves

simultaneously varying model inputs across a wide range of values to uncover interactions

between parameters [23]. Supplemental Materials D synthetises this concept.

Concomitantly, the concept of uncertainty quantification gained traction in various scientific

fields like climate modelling [24], computational physics, and materials science [25], focusing

on propagating uncertainties through models to estimate prediction uncertainty.

The global approach to uncertainty quantification and sensitivity analysis garnered interest from

institutions and communities worldwide. Efforts from U.S. national laboratories such as Sandia

and Los Alamos [26, 27], along with the European Commission’s Joint Research Centre (JRC)

in Italy through the SAMO community (https://www.sensitivityanalysis.org/),

played a crucial role in advancing such techniques. The first software started to emerge, such as the

PREP (Preprocessor) and SPOP (Statistical Post-processor) codes for uncertainty and sensitivity

analysis developed in the context of nuclear waste management where modellers engaged in a

model intercomparison program, which included a benchmark on sensitivity analysis [28–31].

The growing enthusiasm led to the formation of new communities of practitioners, such as

the UK’s MUCM (Managing Uncertainty in Complex Models) community, which developed

Bayesian techniques for computer experiments [32].

The Society for Industrial and Applied Mathematics (SIAM) in the United States and the

CNRS (Centre national de la recherche scientifique) research group MASCOT-NUM (Methodes

d’Analyse Stochastique pour les Codes et Traitements NUMériques) in France further contributed

to spread uncertainty quantification and sensitivity analysis in their respective regions.

To support these efforts, software packages emerged from the early 1990s to 2010s, with a

notable boom in the 2010s 4.1. The inclusion of SA in notable software like SciPy (https:

//scipy.org) has proven to be challenging as SA is only starting to be seen as a fundamental

scientific tool by the scientific software community. Considering the reach of some of these

software, it is expected that SA will get lot of attention in these communities.

https://www.sensitivityanalysis.org/
https://scipy.org)
https://scipy.org)


Compartmental model in epidemiology 121

FIGURE 4.1: Introduction of software packages for sensitivity analysis.

Several handbooks on sensitivity analysis [9, 10, 27, 33], also contributed to the mainstreaming

of sensitivity analysis by emphasizing its application in various settings like factor prioritization,

factor fixing, and variance reduction [5]. These authors advocated for global methods other than

local approaches for analysing non-linear and non-additive models.

To foster collaboration and knowledge exchange, the JRC school began the organization of inter-

national conferences on Global Sensitivity Analysis in 1995 (www.sensitivityanalysis.

org/conferences/). Despite these advancements, local sensitivity analysis methods re-

mained prevalent across disciplines. Researchers investigated the underpinning reasons and the

practical implications of these trends in several contributions [34–37].

Recent key developments in sensitivity analysis include the introduction of moment-independent

methods [38], which do not rely on statistical distribution assumptions of input parameters. Other

important developments include a variogram-based method to determine sensitivities at different

spatial scales [39, 40], PAWN [41], and others.

Faithful to their own precepts, SA practitioners also started to compare the performance of

sensitivity analysis methods using SA itself [42, 43].

Furthermore, due to the increasing complexity of models, researchers focused on developing

methods for sensitivity analysis of computationally expensive models. These methods involved

constructing simpler surrogate models that could replace the original complex model for sensitiv-

ity analysis, with adaptive sampling strategies selecting the most informative input parameter

combinations [44].

www.sensitivityanalysis.org/conferences/
www.sensitivityanalysis.org/conferences/
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Moreover, a growing interest in integrating sensitivity analysis with machine learning methods

cuts across scientific communities. Both approaches are grounded on the exploration of the

parameter space to achieve both interpretable and highly predictive solutions, which is promising

towards a fruitful synergy [45–47].

The trend toward model complexification emphasized the importance of using sensitivity analysis

to ensure accurate and reliable model outputs. This trend tied back to the programmatic introduc-

tion of sensitivity analysis as a tool for model transparency within the framework of post-normal

science [48]. In this context, sensitivity auditing [49] and the modelling of the modelling process

[50] were introduced, urging modellers to retrace their assumptions and enhance transparency in

the modelling process.

In the modelling of the modelling process, it is often advisable to consider multiple candidate

models that differ in their assumptions or specifications. The process involves subjecting the

various stages of the model-building process to coordinated and simultaneous variation in the

modelling assumptions. This exploration can be carried out within a Monte Carlo framework, as

discussed by Kroese et al. [51], by introducing random triggers that determine the model to be

followed in each simulation. By combining the predictions from these models, we can account for

the uncertainty associated with each model’s parameter, assumptions and structural components.

4.2.4 The politics of sensitivity analysis

Recent years have seen an extra impetus to sensitivity analysis from policy studies. The COVID-

19 pandemic was partly instrumental in this development, leading several authors to question the

political use of models [52–54], ((www.youtube.com/watch?v=_cgCTK17ics)) with

sensitivity analysis being advocate as a tool to make models less opaque [54]. Impact assessment

is also a field where sensitivity analysis is seen as a useful lens to peers at models [55], also in

conjunction with sensitivity auditing just mentioned. A recent volume devoted to the politics of

modelling [56] also includes a relevant discussion of sensitivity analysis. Sensitivity analysis and

auditing have recently been proposed as tools to jointly match the double demand for technical

and normative quality in modelling [57], echoing a parallel discussion in the field of social

statistics [58, 59].

4.3 Bibliometric Survey

Bibliometric tools have recently emerged as valuable instruments for studying the evolutionary

dynamics within specific scientific domains [60]. These tools have previously been employed to

investigate the trajectories of sensitivity analysis and Global Sensitivity Analysis [35], as well as

www.youtube.com/watch?v=_cgCTK17ics
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the patterns of adoption and utilization of software for uncertainty management in the field of

environmental sciences [61, 62].

In this article, a bibliometric analysis was conducted with the explicit aim of exploring the

development of sensitivity analysis as a discipline in scholarly literature. The analysis leverages a

Scopus dataset containing 16,513 documents including books, book chapters, articles, conference

papers, and reviews. These documents were selected1 based on the presence of the term sensitivity

analysis (respectively Global Sensitivity Analysis), within their abstracts or keywords, coupled

with model and uncertainty as control fields anywhere in the text body. After data cleansing and

processing, leading to the creation of infographics and charts, several observations emerged.

Above all, consolidating the findings of Ferretti et al. [35], the corpus of literature has continued

its consistent growth since 2016, as shown in 4.2. As mentioned in the previous section, the

penetration of Global Sensitivity Analysis methods into the broader modelling community has

not reached its full potential and, to the present, still represents roughly a fifth of the total number

of published documents.

As noted in Saltelli et al. [36] the slower uptake of GSA methods might be partly due to

their intrinsic complexity. These often involve algorithms and computational processes which

can be daunting for researchers who are not well-versed in sensitivity analysis methodologies.

Additionally, there might be a reluctance among some practitioners to deviate from familiar and

established local sensitivity analysis approaches, even when global methods could offer more

comprehensive insights into complex models.

FIGURE 4.2: Publications per year that adopt any kind of sensitivity analysis (SA, solid line)
versus those that employ more sophisticated global methods (GSA, dashed line).

1Query specification: (ABS(sensitivity analysis) OR KEY (sensitivity analysis) AND ALL (model AND un-
certainty) AND REF (sensitivity analysis) AND PUBYEAR > 1900 AND PUBYEAR < 2023) AND (LIMIT-TO
(DOCTYPE, bk) OR LIMIT-TO (DOCTYPE, ch) OR LIMIT-TO (DOCTYPE, re) OR LIMIT-TO (DOCTYPE, cp)
OR LIMIT-TO (DOCTYPE, ar)). Retrieved on Scopus.com through API calls. June 2023
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Figure 4.3 provides insight into the distribution of documents across distinct subject areas,

highlighting a concentration of documents within engineering and environmental science.

Minimal disparity emerges between sensitivity analysis and Global Sensitivity Analysis and their

fields of application: the distribution of the various disciplines’ shares is essentially mirrored in

Global Sensitivity Analysis, albeit on a more modest scale.

This trend is further reinforced by Figure 4.4, showing the distribution based on publishing

sources. Notably absent fields include finance and economics, and, to a lesser extent, medicine

and related fields such as psychology and neuroscience. Considering the relevance of risk

within these disciplines, it is rather surprising to observe their substantial absence in the body of

literature on sensitivity analysis, a fundamental component in comprehending and managing risk.

A tentative explanation could come from the fact that these fields have traditionally been using

other statistical tools such as hypothesis testing. In some ways, these methods can be used to

answer similar questions.

FIGURE 4.3: Subject area segmentation, on the left SA, on the right GSA.
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FIGURE 4.4: Outlets that publish sensitivity analysis studies.

The geographical distribution of publishing countries is displayed in Figure 4.5, wherein the

United States and China jointly account for a significant proportion of all published material.

FIGURE 4.5: Geographical profile of sensitivity analysis publications.

Figure 4.6 attempts to reconstruct the methodological landmarks within the field. Specifically,

it focuses on documents that account for more than 500 citations, underscoring the pivotal role

played by these works in shaping the methodological landscape of Sensitivity Analysis.
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FIGURE 4.6: Most cited documents and total citations (dotted line).

4.4 A fragmented adoption of sensitivity analysis

The historical development of sensitivity analysis is driven by the need to understand the effects

of changes in model parameters on model outputs. However, the adoption of sensitivity analysis

across various disciplines remains fragmented, with no guarantee that approaches effective in

one field will be equally applicable in another. Factors that contribute to this divergence include:

• Research Culture and Tradition: Different scientific disciplines may have distinct research

cultures and traditions that influence the preferred methods and practices. If sensitivity

analysis has not been widely adopted or promoted within a particular discipline, researchers

might be less inclined to explore its potential benefits;

• Computational Resources: Some sensitivity analysis techniques require significant com-

putational resources, making them less feasible for fields with limited access to high-

performance computing facilities or where model evaluations are computationally expen-

sive;

• Expertise and Awareness: The level of expertise and awareness of sensitivity analysis

methods among researchers in different disciplines can affect their willingness to adopt

these techniques. Disciplines with a strong background in statistics might be more likely

to embrace sensitivity analysis compared to those less familiar with the concepts.

4.5 Conclusions

Sensitivity analysis has progressed from its origins in laboratory and field experiments to in-silico

research. Along its journey, it has grappled with crucial challenges, notably the balance between
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local and global analysis approaches. With the increasing sophistication of sensitivity analysis

methods, that emerged in order to address the intricacies of increasingly complex models, there

is a growing demand for user-friendly tools, aiming to broaden accessibility for researchers and

practitioners.

To assess the present landscape of sensitivity analysis, we conducted a bibliometric survey

spanning diverse academic disciplines. This analysis offered valuable insights into the spread of

documents among different subject areas, underscoring a notable concentration within the fields of

engineering and environmental science, whereas absent fields include finance and economics, and,

to a lesser extent, medicine and related fields, such as psychology and neuroscience. Interestingly,

there is minimal disparity between sensitivity analysis and Global Sensitivity Analysis in terms

of their respective applications. The distribution of document shares across various disciplines

essentially mirrors that of Global Sensitivity Analysis, albeit on a somewhat smaller scale.

This assessment pinpointed areas where further integration and adoption of sensitivity analysis

methods is required.

In our perspective, the fragmentation in the adoption of sensitivity analysis across diverse fields

can be attributed to a few factors, including:

• divergent research cultures and traditions in the different scientific disciplines;

• heterogeneous computational resources in the various research fields;

• varying degrees of proficiency and familiarity with sensitivity analysis methods among

researchers in the different disciplines.

In the future, sensitivity analysis is expected to play a pivotal role in guiding model development

and decision-making processes, especially as simulation models become increasingly bigger and

more complex. The ongoing innovation and collaboration among researchers and practitioners

are key to addressing the adoption challenges, fully harnessing the potential of sensitivity analysis,

and enhancing our grasp of complex systems and their uncertainties. This will eventually lead to

more dependable and informed decision-making amid the increasing complexity and uncertainty

in our world.
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CHAPTER 5

Other published articles

During the PhD period, we also worked on other projects related to the dissertation topic, which

resulted in the following published articles.

Burden of disease from second-hand tobacco smoke exposure at home
among adults from European Union countries in 2017: an analysis
using a review of recent meta-analyses

G. Carreras, A. Lachi, B. Cortini, S. Gallus, M.J. Lopez, A.N. Lopez, J.B. Soriano, E. Fernandez,

O. Tigova, G. Gorini, and TackSHS Project Investigators. Burden of disease from second-hand

tobacco smoke exposure at home among adults from european union countries in 2017: an

analysis using a review of recent meta-analyses. Preventive medicine, 145:106412, 2021. doi:

https://doi.org/10.1016/j.ypmed.2020.106412

Abstract: Smoke-free legislation reduced second-hand smoke (SHS) exposure in public places

and indirectly promoted private smoke-free settings. Nevertheless, a large proportion of adults

are still exposed to SHS at home. The aim of this paper is to quantify the burden of disease due

to home SHS exposure among adults in the 28 European Union (EU) countries for the year 2017.

The burdens by sex from lung cancer, chronic obstructive pulmonary disease (COPD), breast

cancer, ischemic heart disease (IHD), stroke, asthma, and diabetes were estimated in an original

research analysis using the comparative risk assessment method. Relative risks of death/diseases

by sex for adults exposed to SHS at home compared to those not exposed were estimated by

updating existing meta-analyses. The prevalence of home SHS exposure by sex was estimated

using a multiple imputation procedure based on Eurobarometer surveys. Data on mortality and

disability-adjusted life years (DALYs) were obtained from the Global Burden of Disease, Injuries

and Risk Factors Study. In 2017, 526,000 DALYs (0.36% of total DALYs) and 24,000 deaths
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(0.46% of total deaths) were attributable to home SHS exposure in the 28-EU countries, mainly

from COPD and IHD. South-Eastern EU countries showed the highest burden, with a proportion

of DALYs/deaths attributable to SHS exposure on a total higher than 0.50%/ 0.70%, whereas

northern EU countries showed the lowest burden, with proportions of DALYs/deaths lower than

0.25%/0.34%. The burden from SHS exposure is still significant in EU countries. More could be

done to raise awareness of the health risks associated with SHS exposure at home.

Burden of disease from exposure to secondhand smoke in children in
Europe

G. Carreras, A. Lachi, B. Cortini, S. Gallus, M.J. Lopez, A.N. Lopez, A. Lugo, M.T. Pastor, J.B.

Soriano, E. Fernandez, and TackSHS Project Investigators. Burden of disease from exposure

to secondhand smoke in children in europe. Pediatric research, 90(1):216–222, 2021. doi:

https://doi.org/10.1038/s41390-020-01223-6

Abstract: Secondhand smoke (SHS) exposure at home and fetal SHS exposure during preg-

nancy are major causes of disease among children. The aim of this study is to quantify the

burden of disease due to SHS exposure in children and in pregnancy in 2006–2017 for the 28

European Union (EU) countries. Exposure to SHS was estimated using a multiple imputation

procedure based on the Eurobarometer surveys, and SHS exposure burden was estimated with

the comparative risk assessment method using meta-analytical relative risks. Data on deaths

and disability-adjusted life years (DALYs) were collected from National statistics and from the

Global Burden of Disease Study. Exposure to SHS and its attributable burden stalled from 2006

to 2017; in pregnant women, SHS exposure was 19.8% in 2006, 19.1% in 2010, and 21.0% in

2017; in children, it was 10.1% in 2006, 9.6% in 2010, and 12.1% in 2017. In 2017, 35,633

DALYs among children were attributable to SHS exposure in the EU, mainly due to low birth

weight. Comprehensive smoking bans up to 2010 contributed to reducing SHS exposure and its

burden in children immediately after their implementation; however, SHS exposure still occurs,

and in 2017, its burden in children was still relevant.

Dose-risk relationships between cigarette smoking and cervical can-
cer: a systematic review and meta-analysis

M.C. Malevolti, A. Lugo, M. Scala, S. Gallus, G. Gorini, A. Lachi, and G. Carreras. Dose-

risk relationships between cigarette smoking and cervical cancer: a systematic review and

meta-analysis. European Journal of Cancer Prevention, 32(2):171–183, 2023. doi: https:

//doi.org/10.1097/cej.0000000000000773

https://doi.org/10.1038/s41390-020-01223-6
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Abstract: Cervical cancer (CC) is the fourth most frequent cancer worldwide. Cigarette smoking

has been shown to influence CC risk in conjunction with human papillomavirus (HPV) infection.

The aim of this study is to provide the most accurate and updated estimate of this association and

its dose-response relationship. Using an innovative approach for the identification of original

publications, we conducted a systematic review and meta-analysis of studies published up to

January 2021. Random effects models were used to provide pooled relative risks (RRs) of

CC for smoking status. Dose-response relationships were evaluated using one-stage random

effects models with linear or restricted cubic splines models. We included 109 studies providing

a pooled RR of invasive CC and preinvasive lesions, respectively, of 1.70 [95% confidence

interval (CI), 1.53–1.88] and 2.11 (95% CI, 1.85–2.39) for current versus never smokers, and,

respectively, 1.13 (95% CI, 1.02–1.24) and 1.29 (95% CI, 1.15–1.46) for former versus never

smokers. Considering HPV does not alter the positive association or its magnitude. Risks of

CC sharply increased with few cigarettes (for 10 cigarettes/day, RR = 1.72; 95% CI, 1.34–2.20

for invasive CC and RR = 2.13; 95% CI, 1.86–2.44 for precancerous lesions). The risk of CC

increased with pack years and smoking duration and decreased linearly with time since quitting,

reaching that of never-smokers about 15 years after quitting. This comprehensive review and

meta-analysis confirmed the association of smoking with CC, independently from HPV infection.

Such association rose sharply with smoking intensity and decreased after smoking cessation.

School-based screening strategies to prevent the spread of COVID-19
in school: a systematic review of the literature

M. Marra, M. Baccini, G. Cereda, M. Culasso, M. De Sario, I. Eboli, A. Lachi, Z. Mitrova, R.

Saulle, and A. Bena. Strategie di screening per contenere la diffusione del covid-19 nella scuola:

una revisione sistematica della letteratura. Epidemiologia e Prevenzione, 47(3):152–171, 2023.

doi: https://doi.org/10.19191/EP23.3.A576.054.101

Abstract: To describe studies that evaluated the screening programs implemented in the school

during the COVID-19 pandemic. A systematic literature review was conducted according to

the PRISMA 2020 Guidelines. Studies published until December 2021 were included. The

methodological quality of the studies was assessed with validated scales. Study selection, data

extraction, and quality assessment were carried out by two authors independently. Teachers

and students belonging to schools of all levels, including universities. After having removed

duplicate articles, 2,822 records were retrieved. Thirty-six studies were included (15 used

an observational design and 21 modeling studies). Regarding the former, the methodological

quality has been rated as high in 2 studies, intermediate in 6, and low in 2; in the remaining

ones, it was not evaluated because only descriptive. Screenings were quite different in terms

of school study population, types of tests used, methods of submission and analysis, and level

https://doi.org/10.19191/EP23.3.A576.054.101


Compartmental model in epidemiology 140

of incidence in the community at the time of implementation. Outcome indicators were also

varied, a heterogeneity that, on the one hand, did not allow for meta-analysis of results and, on

the other, allowed for testing the performance of the screenings in very different settings. All of

the field studies claim that the screenings reduced SARS-CoV-2 exposure and infection among

children, adolescents, and college students, curbing at-school transmission and helping to reduce

the number of closing school days. Studies that evaluated the cost of the intervention emphasized

its cost-effectiveness, while those that focused on the acceptability of the instrument showed a

preference among children, adolescents, and parents for minimally invasive, self-administered

tests with high sensitivity and lower frequency of repetition. Simulation-based studies are mostly

based on compartmental and agent-based models. Their quality is quite high methodologically,

although uncertainty quantification and external validation, aimed at verifying the model’s ability

to reproduce observed data, are lacking in many cases. The contexts to which the simulations

refer are all school-based, although 7 studies consider residential situations, which are poorly

suited to the Italian context. All simulation-based models indicate the importance of planning

repeated testing on asymptomatic individuals to limit contagion. However, the costs of these

procedures can be high unless assessments are spaced out or pool testing procedures are used.

Obtaining high student adherence to the screening program is extremely important to maximize

results. School-based screenings, especially when combined with other preventive measures,

have been important public health tools to contain infections during COVID-19 waves to ensure

children’s and adolescents’ right to education and to prevent the fallout in physical and mental

health (with strong equity consequences) associated with school closures.



Conclusion

The focus of this dissertation is on the use of Compartmental models in epidemiology and the

associated quantification of uncertainty. The articles included in this work contribute to advancing

the understanding of the complex dynamics of smoking habits.

In Chapter 1, the paper entitled A compartmental model for smoking dynamics in Italy: A pipeline

for inference, validation, and forecasting under hypothetical scenarios illustrates the development

of a Compartmental model for simulating smoking dynamics. The model presented in this article

proposes an extremely versatile tool that can be easily adapted to different contexts other than the

Italian one. The incorporation of validation tools, such as cross-validation and Global Sensitivity

Analysis, enhances the robustness of the model and supports the credibility of its findings.

In Chapter 2, the paper entitled Frequentist and Bayesian inference on compartmental models

in epidemiology: A critical review with a focus on likelihood-free approaches highlights the

importance of likelihood-free approaches. Calibration and Approximate Bayesian Computation

represent powerful tools in the study of intractable likelihood functions. Their flexibility, requiring

only the generation of pseudo-data and sampling from the prior distribution, underscores their

easy applicability in various research fields.

Chapter 3, the paper entitled Smoking dynamics in Tuscany (Italy) under alternative tobacco

control policies: Robustifying inference and forecasting via uncertainty propagation and Global

Sensitivity Analysis emphasizes the importance of sensitivity analysis in complex models. Since

epidemiological models can be extremely complex, sensitivity analysis is destined to become a

cornerstone for navigating the intricate terrain of complex systems. Identifying paths that lead to

misleading results, is extremely important in a statistical analysis.

In Chapter 4, the paper entitled An Annotated Timeline of Sensitivity Analysis tries to explore

the evolution of sensitivity analysis over the years. The recognition of sensitivity analysis as a

pivotal tool for guiding model development and decision-making processes signals its growing

importance, particularly in the face of increasingly complex simulation models.

In conclusion, in Chapter 1 we developed an approach for modeling smoking dynamics in the

Tuscany population, that overcomes many of the limitations of previously proposed models. In
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Chapter 2, we highlight the great potential of likelihood-free methods, that can retrieve estimates

and forecasts even when dealing with very complex models, as in the case of the Smoking

Habits Compartmental (SHC) model introduced in Chapter 1, that prevent the use of whatever

likelihood-based method. In Chapter 3, we propose a procedure for robustifying the inference

produced by the SHC model via Global Sensitivity Analysis, which makes the estimates produced

in the model defined in Chapter 1 more robust. In Chapter 4, we emphasize the importance of

Global Sensitivity Analysis as a tool to guide the development of increasingly complex models.

Finally, in Chapter 5, we also highlight all other works published during the Ph.D. period.

This dissertation represents a significant stride in deepening our comprehension of smoking

dynamics and refining methodologies for modeling and inference in epidemiological research.

By introducing the Smoking Habits Compartmental (SHC) model and investigating various

estimation techniques, we have established a robust framework for analyzing smoking behav-

iors and evaluating the effectiveness of policy interventions. Furthermore, our examination

of uncertainty quantification and sensitivity analysis underscores the imperative of addressing

model uncertainties in decision-making processes. Looking forward, the methodologies and

insights presented herein hold immense potential to inform public health policies, not only in

Tuscany but also in regions grappling with similar smoking-related challenges. Through ongoing

refinement of our models and methodologies, we can enhance our capacity to forecast future

trends, assess the impact of policy interventions, and mitigate the detrimental health consequences

of smoking on individuals and communities. The methodological advancements delineated in

this dissertation align with the broader objective of fostering more reliable and informed decision-

making amidst the complexities and uncertainties of our world. The collaborative support from

the Tuscany region, particularly through the Attributable Cancer Burden in Tuscany (ACAB,

www.acab-toscana.it/#progetto) project funded by the 2018 Tuscany Health Re-

search Call (www.regione.toscana.it/-/bando-ricerca-salute-2018), has

played a pivotal role in shaping this research. I extend my heartfelt appreciation to all par-

ticipants involved in this collective endeavor for their invaluable contributions.

www.acab-toscana.it/#progetto
www.regione.toscana.it/-/bando-ricerca-salute-2018


APPENDIX A

Supplemental Materials Chapter 1

A.1 Model assumptions

The assumptions underlying the SHC model are summarized below:

• the probability of starting smoking γi(a) depends on age and smoking intensity;

• people can start smoking between the ages of 14 and 34;

• the probabilities of starting smoking γi(a) depend on the age through γ(a), while the

distribution of the level of smoking intensity πππ is assumed to be constant over time and

age;

• the distribution of the new smokers by smoking intensity does not depend on age and

calendar time;

• smokers do not change their smoking intensity during their entire life (this also implies

that if an ex-smoker goes back to smoking, her/his smoking intensity is the same as when

she/he first started smoking);

• the probability of stopping smoking ε(a) depends only on age;

• people can quit smoking only after 20 years of age;

• the probability of relapsing η(c) changes with time since smoking cessation, but does not

depend on age and smoking intensity;

• after 15 years since smoking cessation, the probability of smoking relapse becomes

constant;

• the rates of quitting depend on age but does not depend on the level of smoking intensity;
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• an ex-smoker who first relapses, then stops smoking again, becomes a 0-year former

smoker;

• the population is closed to immigration and emigration (but we considered new births and

deaths);

• the risk of death depends on the age for never smokers (δN(a)), both on smoking intensity

and age for current smokers (δCi(a)), and on time since smoking cessation and age for

former smokers (δF(a,c)). For the reason of simplicity, we do not consider the level of

smoking intensity in the definition of the mortality for former smokers: δFi(a,c) = δF(a,c)

for each i ∈ {l,m,h};

• the mortality rate of current smokers does not depend on the time from starting smoking;

• the mortality rate of former smokers does depend on the time from smoking cessation and

on age;

• for each individual, only one event among starting, quitting, relapsing, or dying occurs in

the year;

• at each time the probabilities of starting and quitting smoking and the probability of smok-

ing relapse are defined among those who do not die during the year (they are conditional

probabilities);

• all the transition rates do not change with t.

A.2 Details on the fixed parameters

The values assigned to the fixed parameters of the SHC model are detailed below:

• The vector of proportions πππ was set to the average proportions of low, medium, and heavy

smokers estimated for ages 34-44 from the ISTAT AVQ surveys (www.istat.it/it/

archivio/91926) carried out from 1993 to 2019. Specifically, we set (πCl ,πCm ,πCh) =

(0.19,0.40,0.41) for males and (πCl ,πCm ,πCh) = (0.36,0.44,0.20) for females (see Figure

A.1).

• ν(t) was assumed to be constant over time, being the new births quite stable over the

years 1993-2019. In particular, we set ν(t) to the average number of new births in

Tuscany from 1993 to 2019, ν(t) = 14,701 for males and ν(t) = 13,895 for females

(http://www.istat.it/);

www.istat.it/it/archivio/91926
www.istat.it/it/archivio/91926
http://www.istat.it/
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• The initial number of never, current, and former smokers, by age and gender, was obtained

applying to the resident population in Tuscany on the 1st of January 1993 (t = 0) (http:

//www.istat.it/) the prevalence of never, current, and former smokers estimated

from the 1993 ISTAT AVQ survey (www.istat.it/it/archivio/91926). For

details on these quantities, see Figures A.2 and A.3. Note that in the sensitivity analysis

described in Section 3.4 of the manuscript, we used also the same quantities referred to the

year 2005 (Figures A.4 and A.5).

• In order to quantify Ci(0;a), the initial number of current smokers in 1993, stratified by

age, obtained as described at the previous point, has been multiplied by the proportions of

low, medium and high-intensity smokers arising from the ISTAT AVQ survey carried out

from 1993 to 2019 (Figure A.1). This procedure has been applied separately for males and

females.

• in order to quantify Fi(0;a,c), first we multiplied the initial number of former smokers in

1993, stratified by age, by the proportions of low, medium, and high-intensity ex-smokers

arising from the ISTAT EHIS surveys (www.istat.it/it/archivio/167485)

carried out in 1994, 1999, 2004, and 2013. Then, we used the distribution of former

smokers by time from smoking cessation in 1993 to obtain the initial compartment sizes.

This procedure has been applied separately for males and females. For details, see Figures

A.6 and A.7.

• The relative risks for current and former smokers versus never smokers were obtained from

the literature. Specifically, we used the rates estimated from the US population within the

Cancer Prevention Study II [1]. For details see Tables A.1 and A.2.
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FIGURE A.1: Average prevalence of smoking intensity among current smokers evaluated over
the period 1993-2019 for males (a) and females (b). Source AVQ survey.

http://www.istat.it/
http://www.istat.it/
www.istat.it/it/archivio/91926
www.istat.it/it/archivio/167485
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FIGURE A.2: Size of the population in 1993 for males (a) and females (b). Source ISTAT.
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FIGURE A.3: Prevalence of smoking habits in 1993 for males (a) and females (b). Source AVQ
survey.
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FIGURE A.4: Size of the population in 2005 for males (a) and females (b). Source ISTAT.
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FIGURE A.5: Prevalence of smoking habits in 2005 for males (a) and females (b). Source AVQ
survey.
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FIGURE A.6: Average prevalence of smoking intensity among former smokers for males (a)
and females (b). Source EHIS survey.
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FIGURE A.7: Average prevalence of time since smoking cessation among former smokers for
males (a) and females (b). Source EHIS survey.
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TABLE A.1: Relative Risk of current smokers by smoking intensity (RRCi) for males and
females. Source Thun et al. [1].

Smoke intensity Male Female

all 2.43 2.08

low 1.91 1.47

medium 2.05 1.87

high 2.42 2.36

TABLE A.2: Relative Risk of former smokers by time since smoking cessation (RRFi(c)) for
males and females. Source Thun et al. [1].

Time from cessation Male Female

all 1.43 1.28

<2 2.53 2.26

2-4 2.35 2.22

5-9 1.90 1.58

10-19 1.49 1.29
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A.3 Additional details on Global Sensitivity Analysis

TABLE A.3: Distribution of the input parameters used in the GSA and related data sources.

Parameter Model Distribution Source

ψψψ = (ψ0,ψ1,ψ2,ψ3) all ψi ∼U (−10,10) independent non informative distr.

φφφ = (φ0,φ1,φ2,φ3) all φi ∼U (−10,10) independent non informative distr.

ωωω = (ω0,ω1) all ωi ∼U (0,10) independent non informative distr.

πππ = (πCl ,πCm ,πCh) males πππ ∼ Dirichlet(2051× (0.19,0.40,0.41)) AVQ survey

females πππ ∼ Dirichlet(2161× (0.19,0.40,0.41))

ν males ν ∼ Poisson(14,701) ISTAT

females ν ∼ Poisson(13,895)

RRRRRRC = (RRCl ,RRCm ,RRCh) males logRRCl ∼Ntrun(log1.91,0.03,0,∞) Thun et al. [1]

logRRCm | logRRCl = a∼Ntrun(log2.05,0.03,a,∞)

logRRCh | logRRCm = a∼Ntrun(log2.42,0.02,a,∞)

females logRRCl ∼Ntrun(log1.47,0.03,0,∞)

logRRCm | logRRCl = a∼Ntrun(log1.87,0.03,a,∞)

logRRCh | logRRCm = a∼Ntrun(log2.36,0.03,a,∞)

RRF = RRFl (c) = RRFm(c) = RRFh(c) = RRF(c) males logRRFi(c)∼Ntrun(log2.53,0.03,0,∞), c = 1 Thun et al. [1]

logRRFi(c)| logRRFi(1) = a∼Ntrun(log2.35,0.03,0,a), c ∈ {2,3,4}
logRRFi(c)| logRRFi(2) = a∼Ntrun(log1.90,0.02,0,a), c ∈ {5, ...,9}

logRRFi(c)| logRRFi(5) = a∼Ntrun(log1.49,0.02,0,a), c≥ 10

females logRRFi(c)∼Ntrun(log2.26,0.05,0,∞), c = 1 Thun et al. [1]

logRRFi(c)| logRRFi(1) = a∼Ntrun(log2.22,0.04,0,a), c ∈ {2,3,4}
logRRFi(c)| logRRFi(2) = a∼Ntrun(log1.58,0.03,0,a), c ∈ {5, ...,9}

logRRFi(c)| logRRFi(5) = a∼Ntrun(log1.29,0.03,0,a), c≥ 10

RRRRRRstatus = (RRC,RRF) males logRRC ∼Ntrun(log2.43,0.01,0,∞) Thun et al. [1]

logRRF | logRRC = a∼Ntrun(log1.43,0.01,0,a)

females logRRC ∼Ntrun(log2.08,0.01,0,∞) Thun et al. [1]

logRRF | logRRC = a∼Ntrun(log1.28,0.01,0,a)

1Average sample size of the AVQ survey in the period from 1993 to 2019.

A.4 Population Attributable Fraction computation

The Population Attributable Fraction for the class of age a at time t, PAF(t;a), is calculated as

the proportion of deaths that would be avoided if all current and former smokers of age a at time

t in the population were never smokers [2]:

PAF(t;a) =
SAD(t;a)

DN(t;a)−DN(t−1;a)+∑
i
(DCi(t;a)−DCi(t−1;a))+∑

i
∑
c
(DFi(t;a,c)−DFi(t;a,c))

.

Analogously, the overall PAF at time t is:

PAF(t) =
SAD(t)

∑
a
((DN(t;a)−DN(t−1;a))+∑

a
∑
i
(DCi(t;a)−DCi(t−1;a))+∑

a
∑
i

∑
c
(DFi(t;a,c)−DFi(t;a,c))

) .
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A.5 Additional results

TABLE A.4: Estimated prevalence (%) of never, current, and former smokers in the population
with 90% confidence intervals, evaluated every 10 years from 1993 to 2043 for males, by the

period of calibration.

Never Current Former
Year 1993 - 2004 2005 - 2019 1993 - 2004 2005 - 2019 1993 - 2004 2005 - 2019

1993 35.7 (33.8 - 37.7) - 33.7 (31.8 - 35.7) - 30.6 (28.6 - 32.5) -

2003 37.0 (35.4 - 38.5) - 28.7 (27.9 - 30.3) - 34.3 (32.7 - 35.3) -

2013 40.1 (38.3 - 41.7) 39.1 (37.0 - 41.4) 24.1 (23.0 - 26.9) 25.8 (24.2 - 26.8) 35.8 (33.0 - 37.1) 35.1 (33.8 - 36.8)

2023 43.5 (41.2 - 45.4) 43.4 (41.7 - 45.09 21.4 (20.0 - 24.9) 23.2 (21.0 - 24.1) 35.1 (31.6 - 36.7) 33.4 (32.0 - 35.4)

2033 46.8 (44.0 - 49.2) 47.9 (46.3 - 50.9) 20.0 (18.5 - 23.9) 21.4 (18.4 - 22.6) 33.2 (29.4 - 35.1) 30.7 (28.8 - 33.1)

2043 49.5 (45.8 - 52.7) 52.6 (50.8 - 56.2) 19.8 (18.2 - 23.19) 19.6 (16.2 - 21.3) 30.7 (26.7 - 33.0) 27.8 (25.3 - 30.3)

a) b)

FIGURE A.8: Results of the two-step estimation procedure for males by the period of calibration
(from 1993 to 2004 in a light color and from 2005 to 2019 in a dark color): Estimated Population
Attributable Fraction (PAF) and the number of Smoking Attributable Deaths (SAD), with 90%

confidence bands, for people over 35 years old (a) and over 65 years old (b).
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TABLE A.5: Estimated Population Attributable Fraction (PAF) (%) and number of Smoking
Attributable Deaths (SAD) in the years 1993, 2003, 2013, 2023, 2033, and 2043, with 90%

confidence intervals, among males aged over 35 and 65, by period of calibration.

PAF SAD
Age Year 1993 - 2004 2005 - 2019 1993 - 2004 2005 - 2019

35+ 1994 25.3 (23.2 - 27.4) - 4,351 (3,900 - 4,858) -

2003 21.4 (20.5 - 23.0) - 4,423 (4,214 - 4,811) -

2013 18.6 (17.4 - 20.9) 18.7 (17.6 - 20.2) 4,195 (3,907 - 4,793) 3,659 (3,423 - 3,992)

2023 16.3 (15.0 - 19.3) 16.6 (15.7 - 18.0) 3,764 (3,476 - 4,507) 3,740 (3,521 - 4,087)

2033 14.1 (13.1 - 17.2) 15.3 (14.1 - 16.7) 3,229 (2,965 - 3,956) 3,579 (3,291 - 3,922)

2043 11.6 (10.6 - 14.8) 13.8 (12.5 - 15.3) 2,616 (2,396 - 3,329) 3,337 (2,983 - 3,701)

65+ 1994 23.2 (20.8 - 25.9) - 3,352 (2,901 - 3,873) -

2003 19.6 (18.5 - 21.3) - 3,500 (3,299 - 3,855) -

2013 17.2 (16.0 - 19.7) 17.6 (16.4 - 19.3) 3,459 (3,200 - 4,000) 3,096 (2,859 - 3,427)

2023 15.3 (14.0 - 18.3) 15.6 (14.6 - 17.2) 3,168 (2,895 - 3,823) 3,188 (2,969 - 3,526)

2033 13.4 (12.2 - 16.5) 14.1 (12.9 - 15.6) 2,790 (2,557 - 3,436) 3,049 (2,783 - 3,383)

2043 10.8 (9.8 - 13.9) 13.2 (11.8 - 14.7) 2,281 (2,071 - 2,921) 3,011 (2,684 - 3,374)

TABLE A.6: Estimated prevalence (%) of never, current, and former smokers in the population
with 90% confidence intervals, evaluated every 10 years from 1993 to 2043 for females, by the

period of calibration.

Never Current Former
Year 1993 - 2004 2005 - 2019 1993 - 2004 2005 - 2019 1993 - 2004 2005 - 2019

1993 66.9 (65.0 - 68.7) - 20.3 (18.6 - 21.9) - 12.8 (11.4 - 14.2) -

2003 63.4 (61.8 - 64.9) - 20.0 (18.9 - 21.0) - 16.6 (15.7 - 17.7) -

2013 60.5 (58.7 - 62.0) 63.5 (61.6 - 65.4) 20.2 (18.4 - 22.0) 17.2 (16.1 - 18.2) 19.3 (17.8 - 21.1) 19.3 (18.1 - 20.6)

2023 58.9 (56.5 - 60.7) 62.9 (61.1 - 65.0) 19.9 (17.5 - 22.4) 16.0 (15.0 - 17.8) 21.2 (19.2 - 23.9) 21.1 (19.1 - 22.1)

2033 59.0 (55.8 - 61.4) 62.9 (61.0 - 65.3) 19.3 (16.5 - 22.2) 14.6 (13.6 - 17.3) 21.7 (19.2 - 24.9) 22.4 (19.5 - 23.4)

2043 60.1 (55.9 - 63.4) 64.4 (62.1 - 67.2) 18.8 (15.8 - 22.0) 13.2 (12.2 - 16.6) 21.1 (18.4 - 24.5) 22.5 (18.8 - 23.3)
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a) b)

FIGURE A.9: Results of the two-step estimation procedure for females by periods of calibration
(from 1993 to 2004 in a light color and from 2005 to 2019 in a dark color): Estimated Population
Attributable Fraction (PAF) and the number of Smoking Attributable Deaths (SAD), with 90%

confidence bands, for people over 35 years old (a) and over 65 years old (b).

TABLE A.7: Estimated Population Attributable Fraction (PAF) (%) and number of Smoking
Attributable Deaths (SAD) in the years 1993, 2003, 2013, 2023, 2033, and 2043, with 90%

confidence intervals, among females aged over 35 and 65, by period of calibration.

PAF SAD
Age Year 1993 - 2004 2005 - 2019 1993 - 2004 2005 - 2019

35+ 1994 5.0 (4.1 - 6.2) - 902 (732 - 1,134) -

2003 6.5 (5.6 - 8.2) - 1,455 (1,257 - 1,862) -

2013 8.6 (7.3 - 10.8) 6.6 (6.2 - 9.4) 2,147 (1,796 - 2,708) 1,487 (1,387 - 2,146)

2023 11.2 (9.0 - 13.8) 7.7 (7.4 - 10.8) 2,844 (2,264 - 3,534) 1,914 (1,822 - 2,685)

2033 12.6 (9.6 - 15.8) 9.2 (8.7 - 12.7) 3,029 (2,307 - 3,821) 2,292 (2,153 - 3,187)

2043 12.0 (8.9 - 15.3) 9.8 (9.1 - 14.1) 2,786 (2,057 - 3,549) 2,389 (2,231 - 3,477)

65+ 1994 3.7 (2.7 - 4.9) - 606 (437 - 828) -

2003 5.2 (4.3 - 7.0) - 1,079 (884 - 1,464) -

2013 7.8 (6.5 - 9.9) 5.8 (5.4 - 8.7) 1,812 (1,479 - 2,327) 1,232 (1,134 - 1,869)

2023 10.6 (8.4 - 13.2) 7.2 (6.8 - 10.3) 2,525 (1,998 - 3,177) 1,696 (1,602 - 2,426)

2033 12.3 (9.3 - 15.5) 8.9 (8.3 - 12.3) 2,824 (2,124 - 3,584) 2,112 (1,978 - 2,953)

2043 11.8 (8.6 - 15.1) 9.7 (9.10 - 14.1) 2,635 (1,927 - 3,383) 2,302 (2,144 - 3,372)
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a) b)

FIGURE A.10: Estimated Population Attributable Fraction (PAF) and number of Smoking
Attributable Deaths (SAD) among people over 35 years of age, with 90% confidence bands, for

males (a) and females (b) under different tobacco control policies (TCP).

a) b)

FIGURE A.11: Estimated Population Attributable Fraction (PAF) and number of Smoking
Attributable Deaths (SAD) among people over 65 years of age, with 90% confidence bands, for

males (a) and females (b) under different tobacco control policies (TCP).

TABLE A.8: Estimated Population Attributable Fraction (PAF) (%) under different tobacco
control policies (TCP), in the years 2023, 2033, and 2043, with 90% confidence intervals, among

males and females aged over 35 and over 65.

Male Female
Age Year TCP0 TCP1 TCP2 TCP3 TCP0 TCP1 TCP2 TCP3

35+ 2023 17.5 (16.5 - 18.2) 17.5 (16.5 - 18.2) 17.5 (16.5 - 18.2) 17.5 (16.5 - 18.2) 8.5 (7.7 - 9.1) 8.5 (7.7 - 9.1) 8.5 (7.7 - 9.1) 8.5 (7.7 - 9.1)

2033 15.7 (14.6 - 16.3) 15.7 (14.6 - 16.3) 15.5 (14.4 - 16.2) 15.7 (14.6 - 16.3) 9.3 (8.3 - 9.9) 9.3 (8.3 - 9.9) 9.2 (8.2 - 9.8) 9.3 (8.3 - 9.9)

2043 15.3 (12.2 - 14.0) 13.3 (12.2 - 14.0) 12.7 (11.6 - 13.3) 13.3 (12.2 - 14.0) 8.4 (7.6 - 9.0) 8.4 (7.6 - 9.0) 8.0 (7.1 - 8.6) 8.4 (7.6 - 9.0)

64+ 2023 16.6 (15.5 - 17.3) 16.6 (15.5 - 17.3) 16.6 (15.5 - 17.3) 16.6 (15.5 - 17.3) 8.0 (7.2 - 8.6) 8.0 (7.2 - 8.6) 8.0 (7.2 - 8.6) 8.0 (7.2 - 8.6)

2033 14.9 (13.8 - 15.6) 14.9 (13.8 - 15.6) 14.7 (13.6 - 15.4) 14.9 (13.8 - 15.6) 9.1 (8.1 - 9.7) 9.1 (8.1 - 9.7) 9.0 (7.9 - 9.6) 9.1 (8.1 - 9.7)

2043 12.6 (11.5 - 13.2) 12.6 (11.5 - 13.2) 11.9 (10.9 - 12.6) 12.6 (11.5 - 13.2) 8.2 (7.3 - 8.8) 8.2 (7.3 - 8.8) 7.8 (6.9 - 8.4) 8.2 (7.3 - 8.8)
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APPENDIX B

Supplemental Materials Chapter 2

B.1 DA-MCMC and detailed balance condition

Let us denote by π(θ ,z | x) the target distribution, and by q(θ ,z | θ (s−1),z(s−1)) the proposal

distribution at the iteration s that, under the assumption of independence, factorizes as fol-

lows: q(θ ,z | θ (s−1),z(s−1)) = qθ (θ | θ (s−1))qz(z | z(s−1)). Thus, for a given pair (θ ∗,z∗), the

Metropolis-Hastings acceptance ratio becomes:

r
(
(θ (s−1),z(s−1)),(θ ∗,z∗)

)
=

π(θ ∗,z∗ | x)q(θ (s−1),z(s−1) | θ ∗,z∗)
π(θ (s−1),z(s−1) | x)q(θ ∗,z∗ | θ (s−1),z(s−1))

=
π(θ ∗)p(z∗,x | θ ∗)p(x)

p(x)π(θ (s−1))p(z(s−1),x | θ (s−1))

qθ (θ
(s−1) | θ ∗)qz(z(s−1) | z∗)

qθ (θ ∗ | θ (s−1))qz(z∗ | z(s−1))
,

which requires the evaluation of the complete likelihood function and avoids the intractable

probability of incomplete data. Furthermore, it is straightforward to show that the detailed

balance condition is satisfied since

π(θ (s−1),z(s−1) | x)qθ (θ
∗ | θ (s−1))qz(z∗ | z(s−1))min

{
1,

π(θ ∗,z∗ | x)qθ (θ
(s−1) | θ ∗)qz(z(s−1) | z∗)

π(θ (s−1),z(s−1) | x)qθ (θ ∗ | θ (s−1))qz(z∗ | z(s−1))

}

is equal to

π(θ ∗,z∗ | x)qθ (θ
(s−1) | θ ∗)qz(z(s−1) | z∗)min

{
1,

π(θ (s−1),z(s−1) | x)qθ (θ
∗ | θ (s−1))qz(z∗ | z(s−1))

π(θ ∗,z∗ | x)qθ (θ (s−1) | θ ∗)qz(z(s−1) | z∗)

}
.
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B.2 SIR model: sampling missing data and pseudo-data

In the implementation of the EM algorithm, at each iteration s, we impute missing data drawing

samples from the distribution p(r1:T | i∗1:T ,θ
(s−1)), as follows:

• Set initial conditions I(0),S(0),r(0), i(0) and consider observed data i∗1:T

• For t ∈ {1, ...,T}

1. Compute I(t) = I(t−1)+ i∗(t−1)− r(t−1);

2. Draw r(t)∼ Binom
(
I(t);1− exp(−γ(s))

)
In ABC algorithms pseudo-data are drawn from using a simulator that reproduces the stochastic

data generative process, given θ (s), as follows:

• Set initial conditions I(0),S(0),r(0), i(0).

• For t ∈ {1, ...,T}

1. Compute S(t) = S(t−1)− i(t−1);

2. Compute I(t) = I(t−1)+ i(t−1)− r(t−1);

3. Compute π
(s)
SI (t) = 1− exp

(
−β (s) I(t)

S(0)

)
;

4. Draw i(t)∼ Binom
(
S(t);π

(s)
SI (t))

5. Draw r(t)∼ Binom
(
I(t);1− exp(−γ(s))

)
.

B.3 SIR model: further details on the algorithm implementations

B.3.1 Frequentist algorithms: MLE, EM, Calibration

To obtain the ML estimates, we optimized the likelihood function based on complete data. At

each iteration i of the optimization, the algorithm checks the convergence. In particular, if√
i

∑
j=1

(ℓ j−ℓ̄)2

i ≤ 1.0e−08, where ℓ j is the the log-likelihood value reached at iteration j and ℓ̄ is the

mean of the likelihood values until iteration i, the algorithm stops. This optimization outputted a

minimum log-likelihood value equal to -507.44. The bootstrap sample size is equal to 1,000 and

the whole procedure (optimization and bootstrap) took 6 seconds.

The EM algorithm has been implemented as displayed in Algorithm 1 with S = 15,430 iterations

touching 1 hour and a half. The E-step uses an MC estimate based on m = 1,000 simulations
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at each iteration. The optimization algorithm at each M-step has been stopped as for the ML

estimation procedure. The threshold e for the convergence of the EM algorithm has been set at

10−10.

The minimization of the distance function has been performed using the same algorithm as in

the MLE procedure and the same assessment of the convergence. The procedure got a minimum

distance equal to 0.35. The bootstrap sample size is equal to 1,000 and the whole procedure

(calibration and bootstrap) took 9 seconds.

B.3.2 Bayesian algorithms: IS, DA-MCMC, ABC

The IS algorithm has been implemented with S = 2,000,000 iterations. The procedure has been

run in parallel on 7 cores and took 3 minutes. The final Effective Sample Size (ESS) is greater

than 15,000, thus ensuring stable estimates.

The DA-MCMC has been run with S = 10,000,000 with a running time of 11 minutes. After a

burn-in of 6,000,000 and a thinning of 100 iterations we tested the convergence of the chains

using the R-hat statistic [1] (1.023 for τ and 1.005 for R0) and the Geweke test [2] (p-value equal

to 0.372 for τ and 0.263 for R0). The final ESS is 101, probably due to the strong autocorrelation

of the chain. The MH acceptance ratio is 0.48.

The ABC algorithm has been run following the scheme proposed by Lenormand et al. [3]. The

algorithm has been run in parallel on 7 cores with a running time of 9 minutes. We ran S = 149

iterations by sampling M = 5,000 particles per iteration. Furthermore, we computed the Kullback-

Leibler [4] and Hellinger [5] divergences between the posterior distributions approximated via

DA-MCMC and those approximated at each iteration s of the PMC-ABC. It turned out that these

divergences are stable after 80 iterations, suggesting that this number of iterations is enough to

get results comparable with those of the DA-MCMC algorithm. The Kullback-Leibler divergence

is equal to 0.2 for τ and 0.3 for R0. The final ESS is 419.

B.4 SHC model

B.4.1 Transition probabilities

Considering that the age a takes values from 0 to 100. The probability of starting γ(a) and

quitting ε(a) smoking are defined as follow:

γ(a) =

0 0≤ a≤ 13∪ a≥ 35
exp(s(a;ψψψ))

1+exp(s(a;ψψψ)) 14≤ a≤ 34
ε(a) =

0 0≤ a≤ 19
exp(s(a;φφφ))

1+exp(s(a;φφφ)) a≥ 20,
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where ψψψ = (ψ0,ψ1,ψ2,ψ3) and φφφ = (φ0,φ1,φ2,φ3) are vectors of unknown parameters governing

the probabilities of starting and quitting smoking, respectively.

Instead, the relapsing probabilities, η(c), were modeled as a negative exponential function of the

time since cessation, with parameters ωωω = (ω0,ω1):

η
∗(c) =


0 c = 0

1− exp(−ω0ω1 exp(−ω1c)) 1≤ c≤ 15

1− exp(−ω0ω1 exp(−ω115)) c≥ 16,

where ω0 governs the lifetime probability of no relapse and ω1 tunes how fast the probabilities of

smoking relapse declines with the time from cessation [6–9]. Both ω0 and ω1 are assumed to be

positive, so η∗(c) is a positive and decreasing function of c.

B.4.2 Further details of the algorithm implementations

The calibration procedure, along with the bootstrap, took 2 hours. The bootstrap sample has

a size equal to 1,000. The check of the convergence of the optimization algorithm has been

implemented as described for the SIR model. The final minimum values of the Hellinger distance

are 0.070 and 0.077 in the model for males.

The ABC algorithm uses the stopping rule described by Lenormand et al. [3]. In particular we

set pacc = 0, meaning that the algorithm stops when a further decrease of the tolerance threshold

would lead to reject the whole sample. Figure B.1 shows the history of the tolerance threshold e

(a) and the ESS (b) over the time of the simulation. Looking at (a) we can see that after about 3

hours of simulations the e values are stable and we noted that the approximation of the posterior

quantities does not change in a substantial way, suggesting that this is an adequate running time

for ABC in this application. Thus, the results reported in the paper, as long as the posterior

distributions in Figure B.2 are those obtained after 3 hours.

Both the algorithms have been run in parallel on 50 cores.
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a) b)

FIGURE B.1: Evolution of e (a) and ESS (b) in ABC over the time.

a) b)

FIGURE B.2: Posterior density of θθθ in SHC for male (a) and female (b).
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C.1 MPOWER

TABLE C.1: Italy’s MPOWER status in 2021.

MPOWER measure Status in Italy (2021) Level of the measure

Monitor tobacco use and prevention policies Recent, representative, Complete

and periodic data for both adults and youth

Protect people from tobacco smoke Complete absence of ban, Weak

or up to two public places completely smoke-free

Offer help to quit tobacco smoke Nicotine replacement therapy Moderate

and/or some cessation services

(at least one of which is cost-covered)

Warn about the dangers of tobacco Large warnings with all appropriate characteristics; Complete

No national campaign conducted between July 2018, Weak

and June 2020 with a duration of at least three weeks

Enforce bans on tobacco advertising, Ban on national TV, radio, and print media as well as Moderate

promotion, and sponsorship on some but not all other forms of direct and/or

indirect advertising

Raise taxes on tobacco 76.6% of retail price is taxes; Complete

Reduced affordability between 2010 and 20201 Yes
1Per capita GDP needed to buy cigarettes increased on average.

C.2 Total index

The total indexes are calculated according to the matrix-based trick proposed by Saltelli et al. [1].
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TABLE C.2: Total variance indices quantifying the contribution of each input on the model
outputs in GSA function following procedure 1, for males and females.

ν RRRRRR πππ τTCP τwindow

Male Female Male Female Male Female Male Female Male Female

Hellinger distance < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.94 0.94

Prevalence of never-smokers in 2013 0.09 0.06 0.1 0.05 0.09 0.05 0.1 0.05 0.4 0.82

Prevalence of never-smokers in 2023 0.26 0.08 0.26 0.07 0.26 0.07 0.27 0.07 0.58 0.9

Prevalence of never-smokers in 2033 0.3 0.13 0.3 0.13 0.3 0.12 0.34 0.14 0.79 0.89

Prevalence of never-smokers in 2043 0.23 0.15 0.22 0.15 0.22 0.14 0.32 0.2 0.85 0.88

Prevalence of never-smokers in 2053 0.17 0.13 0.16 0.13 0.16 0.13 0.27 0.21 0.87 0.89

Prevalence of never-smokers in 2063 0.13 0.11 0.12 0.11 0.12 0.11 0.24 0.21 0.86 0.88

Prevalence of current-smokers in 2013 0.39 0.08 0.36 0.09 0.36 0.09 0.34 0.09 0.78 0.98

Prevalence of current-smokers in 2023 0.54 0.09 0.51 0.09 0.51 0.1 0.49 0.1 0.84 1.0

Prevalence of current-smokers in 2033 0.5 0.09 0.48 0.09 0.48 0.1 0.58 0.12 0.71 0.99

Prevalence of current-smokers in 2043 0.34 0.08 0.32 0.08 0.33 0.08 0.57 0.13 0.63 0.96

Prevalence of current-smokers in 2053 0.22 0.06 0.21 0.06 0.21 0.07 0.47 0.14 0.65 0.95

Prevalence of current-smokers in 2063 0.18 0.05 0.17 0.05 0.17 0.06 0.47 0.14 0.63 0.93

Prevalence of former-smokers in 2013 0.32 0.32 0.29 0.32 0.3 0.29 0.27 0.31 0.66 0.68

Prevalence of former-smokers in 2023 0.32 0.42 0.29 0.43 0.3 0.38 0.27 0.41 0.77 0.69

Prevalence of former-smokers in 2033 0.26 0.39 0.25 0.39 0.25 0.36 0.25 0.41 0.77 0.71

Prevalence of former-smokers in 2043 0.25 0.43 0.24 0.42 0.24 0.38 0.25 0.44 0.77 0.72

Prevalence of former-smokers in 2053 0.22 0.5 0.21 0.49 0.21 0.44 0.23 0.52 0.84 0.69

Prevalence of former-smokers in 2063 0.15 0.47 0.14 0.47 0.15 0.42 0.16 0.53 0.91 0.68

SAD over 35 years old in 2013 0.09 0.07 0.49 0.13 0.08 0.07 0.08 0.07 0.5 0.88

SAD over 35 years old in 2023 0.21 0.08 0.85 0.12 0.19 0.09 0.18 0.09 0.27 0.96

SAD over 35 years old in 2033 0.18 0.15 0.71 0.21 0.16 0.16 0.15 0.16 0.37 0.94

SAD over 35 years old in 2043 0.12 0.29 0.42 0.39 0.1 0.31 0.11 0.3 0.61 0.8

SAD over 35 years old in 2053 0.09 0.35 0.28 0.46 0.08 0.37 0.09 0.37 0.71 0.72

SAD over 35 years old in 2063 0.13 0.39 0.38 0.51 0.12 0.41 0.14 0.41 0.61 0.64

SAD over 64 years old in 2013 0.1 0.07 0.6 0.14 0.1 0.07 0.09 0.07 0.37 0.86

SAD over 64 years old in 2023 0.19 0.09 0.84 0.13 0.18 0.1 0.16 0.09 0.25 0.95

SAD over 64 years old in 2033 0.17 0.16 0.76 0.21 0.15 0.16 0.14 0.16 0.31 0.94

SAD over 64 years old in 2043 0.1 0.31 0.39 0.42 0.09 0.33 0.09 0.33 0.63 0.78

SAD over 64 years old in 2053 0.07 0.38 0.23 0.51 0.06 0.41 0.07 0.4 0.75 0.69

SAD over 64 years old in 2063 0.09 0.39 0.29 0.52 0.08 0.42 0.09 0.41 0.69 0.63

Minimum prevalence of current-smokers 0.23 0.05 0.22 0.05 0.22 0.05 0.52 0.14 0.62 0.94

Maximum prevalence of never-smokers 0.13 0.17 0.12 0.19 0.12 0.16 0.24 0.36 0.86 0.84

Maximum probability of starting smoking 0.51 0.23 0.49 0.21 0.49 0.2 0.54 0.21 0.82 0.93

Maximum probability of relapsing smoking 0.64 0.63 0.61 0.66 0.59 0.62 0.59 0.58 0.82 0.89

Age at maximum probability of starting smoking 0.06 0.4 0.06 0.4 0.06 0.37 0.06 0.4 0.99 0.76

Age at maximum probability of quitting smoking 0.53 0.01 0.66 0.01 0.66 0.01 0.47 0.01 0.69 1.0

Mean probability of starting smoking 0.08 0.08 0.08 0.07 0.08 0.07 0.08 0.08 0.96 1.0

Mean probability of quitting smoking 0.62 0.04 0.58 0.03 0.58 0.03 0.61 0.03 0.76 0.99

Mean probability of relapsing smoking 0.58 0.14 0.52 0.15 0.53 0.14 0.53 0.14 0.88 0.98

Mean age of starting smoking 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.04 0.99 0.98

Mean age of quitting smoking 0.12 0.0 0.14 0.0 0.13 0.0 0.11 0.0 0.87 0.99

Mean time of relapsing smoking 0.27 0.31 0.25 0.32 0.25 0.32 0.25 0.31 0.96 0.9
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TABLE C.3: Total variance indices quantifying the contribution of each input on the model
outputs in GSA function following procedure 2, for males and females.

ν RRRRRR πππ χTCP1 χχχTCP2 χχχTCP3 χχχTCP4 τwindow

Male Female Male Female Male Female Male Female Male Female Male Female Male Female Male Female

Prevalence of never smokers in 2053 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Prevalence of never smokers in 2063 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Prevalence of current smokers in 2053 0.15 0.03 0.14 0.03 0.14 0.04 0.15 0.04 0.14 0.04 0.74 0.8 0.63 0.41 0.14 0.22

Prevalence of current smokers in 2063 0.22 0.1 0.2 0.08 0.18 0.06 0.23 0.08 0.27 0.06 0.76 0.69 0.66 0.56 0.36 0.29

SAD above 35+ in 2053 0.08 0.15 0.14 0.17 0.08 0.14 0.11 0.19 0.09 0.18 0.11 0.2 0.31 0.93 0.83 0.7

SAD above 35+ in 2063 0.09 0.07 0.15 0.09 0.1 0.07 0.14 0.07 0.2 0.07 0.32 0.1 0.16 0.35 0.76 0.79

SAD above 65+ in 2053 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SAD above 65+ in 2063 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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D.1 Global Sensitivity Analysis

While sensitivity analysis theory and techniques rapidly developed, a new community of prac-

titioners also embarked on an epistemological journey, delving into the concept of Global

Sensitivity Analysis. Traditionally, sensitivity analysis in various disciplines had been dominated

by “local" approaches, involving small perturbations around a reference value while keeping

other input parameters fixed. Although this method provided computationally efficient results, it

proved inadequate for non-linear and non-additive models or when interactions between inputs

played a significant role [1].

In contrast, Global Sensitivity Analysis offered a more comprehensive perspective by simultane-

ously varying model inputs across a wide range of uncertainty, capturing possible nonlinearities

and interactions among parameters. This approach resulted in a broader understanding of input-

output dependencies and mitigated the risk of type II errors (nonidentification of influential

factors) associated with the traditional one-at-a-time or derivative-based SA.

From the early 1990s, the focus shifted towards exploring and applying new GSA methods across

diverse domains, quickly gaining prominence in modeling. Among the early global approaches

were variance-based methods [2], screening methods [3], non-parametric or regression-based

approaches [4, 5], and density-based analysis [6]. Over time, Global Sensitivity Analysis

continued to evolve and expand, with numerous avenues explored by researchers and practitioners

alike [7–11].

Despite the extensive activity in the field, Global Sensitivity Analysis remains relatively underrec-

ognized as a crucial component of the modeling process, and its applications are not widespread

across many fields. The journey of sensitivity-analysis practitioners and the development of

Global Sensitivity Analysis techniques have been lengthy, aiming to achieve more comprehensive
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insights and enhanced reliability in scientific research and decision-making processes. There

is still work to be done to fully integrate Global Sensitivity Analysis into various domains and

realize its potential as a powerful tool for improving model evaluation and understanding complex

systems.

FIGURE D.1: Milestones of sensitivity analysis: publications, projects and scientific meetings.

D.1.1 Using of GSA in compartmental model

Compartmental models are a class of models used to understand and describe the dynamic

evolution of a phenomenon of interest in a population. Due to their simple mechanistic nature,

they are widely used for modeling infectious diseases. An important issue in compartmental

models concerns parameter identifiability [12]. Complex models with many compartments have

many parameters governing the admitted transitions, but unfortunately observed data are often

insufficient to estimate all of them. To overcome this problem we fixed some of the parameters to

values from the literature or external data.

If we consider a forward perspective, GSA allows us to better understand how the parameters

affect the total variance of such model output. We considered as model parameters all the model

inputs, known or unknown, that predict epidemic dynamics. With GSA, different parameters

are combined to obtain, for instance, a prediction of the number of infections or the date of

an epidemic peak. In this way, GSA propagates uncertainty from the inputs to the outputs and

returns a probability distribution for each uncertain input. If we consider as model output the

discrepancy measure used for the estimation procedure of unknown model parameters, GSA

allows us to better understand who are the parameters affected by identifiable problems.

A different perspective of the use of GSA considers the calibration procedure as the model

function. The parameters that are not being estimated and the observed data represent the inputs

of the model. The estimates of the model parameters assumed as unknown and other quantities of
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interest represent the outputs of the model. The goal is to assess the robustness of the estimates

to changes in the inputs. This procedure takes the name of modeling of the modeling process,

introduced by Piano et al. [13].

D.2 Variance based decomposition

D.2.1 Sobol decomposition

Let us defined a model Y = f (X), where X represent the vector of k factor X1, ...,Xk. Thanks to

the Sobol decomposition [2], we can write Y = f0 +
k
∑

i=1
fi +

k
∑

i< j
fi j + ...+ f123...k where f0 = E(Y )

is the expected value of Y and fS1S2...S j = fS1S2...S j(XS1 ,XS2 , ...,XS j) is a general function of j

factor.

For the reason of simplicity, let us consider the case of Xi ∼U [0,1] where P(X j) = 1. In this way,

we can write

1∫
0

1∫
0

...

1∫
0

fS1S2...S j dXS1 ,dXS2 , ...,dXS j

instead of

∫ ∫
...
∫

fS1S2...S j pS1(XS1)pS2(XS2)...pS j(XS j)dXS1 ,dXS2 , ...,dXS j .

A condition for the unicity of the Sobol variance decomposition is that

1∫
0

1∫
0

...

1∫
0

fS1S2...S j dXS1 ,dXS2 , ...,dXS j = 0.

In this case, all the terms of the functional decomposition are independent and this leads to

definitions of the terms of the functional decomposition in terms of conditional expected values.

Let us defining fi(Xi) = EX∼i(Y |Xi)− f0 as the effect of varying Xi, fi j(Xi,X j) = EX∼i j(Y |Xi,X j)−
fi− f j− f0 as the effect of varying Xi and X j simultaneously, and so on. If we assume that f (X)

is square-integrable, the functional decomposition may be squared and integrated to give

V (Y ) = E[Y 2]−E[Y ]2 =
∫

f 2(X)dX︸ ︷︷ ︸
E(Y 2)

− f 2
0︸︷︷︸

E(Y )2

=
k

∑
i=1

k

∑
S1<...<S j

fS1,...,S j dXS j .
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This finally leads to the decomposition of variance expression V (Y ) =
k
∑

i=1
Vi+

k
∑

i< j
Vi j+ ...+V123...k

where Vi = VXi(EX∼i(Y |Xi)) is the first order effect or top marginal variance, that represents

the expected reduction of the variance that would be achieved if the factor Xi could be fixed,

VXi j(EX∼i j(Y |Xi j)) =Vi+Vj+Vi j is the second order effect, that represents the expected reduction

of the variance that would be achieved if the factors Xi and X j could be fixed, and so on. Note

that, when the factors are independent the total variance can be decomposed into main effects

and interaction effects up to the order k.

If we consider the first-order effect, we can decompose V (Y ) as:

V (Y ) =VXi(EX∼i(Y |Xi))+EXi(VX∼i(Y |Xi)),

where VXi(EX∼i(Y |Xi)), the first order effect, is the main effect and EXi(VX∼i(Y |Xi)) is the residuals

effect.

Instead, if we consider VX∼i(EXi(Y |X∼i)), that represents the effect not due to Xi, we can decom-

pose V (Y ) as:

V (Y ) =VX∼i(EXi(Y |X∼i))+EX∼i(VXi(Y |X∼i)),

where VX∼i(EXi(Y |X∼i)) is the main effect, and the residual is given byEX∼i(VXi(Y |X∼i)) that

represent the total order effect, or bottom marginal variance, that is the expected variance that

would be left if all the factors excluded Xi could be fixed.

Finally, if we normalize the sensitivities effect we obtain the sensitivities index:

• the first order index is given by Si =
VXi (EX∼i(Y |Xi))

V (Y ) ;

• the second order index is given by Si j =
VXi j (EX∼i j(Y |Xi j))

V (Y ) ;

• the second order total order index STi =
EX∼i(VXi (Y |X∼i))

V (Y ) = 1− VX∼i (EXi (Y |X∼i))

V (Y ) .

In general:

• STi = 0 means that Xi is a non-influential factor;

• STi ≈ Si means that the interaction between Xi and the other factors does not affect the

variability of the output;

• ∑
i

Si = 1 if the model is additive and in general ∑
i

STi ≥ 1.
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Proof. of V (Y ) = E(Y 2)−E(Y )2

V (Y ) =E((Y −E(Y ))2) = E(Y 2−2Y E(Y )+E(Y )2) =

=E(Y 2)−2E(Y )E(Y )+E(Y )2 = E(Y 2)−2E(Y )2 +E(Y )2 = E(Y 2)−E(Y )2

Proof. of E(E(Y |X)) = E(Y ) (more in general E(E(Y k|X)) = E(Y k))

E(E(Y |X)) =

∞∫
−∞

E(Y |X = x) fx(x)dx =
∞∫
−∞

∞∫
−∞

y fY |X(y|x) fX(x)dydx =

=

∞∫
−∞

∞∫
−∞

y fY,X(y,x)dydx =
∞∫
−∞

∞∫
−∞

y fY,X(y,x)dxdy =
∞∫
−∞

y fY (y)dy = E(Y )

Proof. of E(Y 2|X) =V (Y |X)+E(Y |X)2

Define V (Y |X) = E(Y 2|X)−E(Y |X)2

Adding to either member E(Y |X)2 and simplify

V (Y |X)+E(Y |X)2 = E(Y 2|X)�����−E(Y |X)2
�����
+E(Y |X)2

Proof. of V (Y ) = E(V (Y |X))+V (E(Y |X))

Define E(Y 2) = E(E(Y 2|X)) = E(V (Y |X)+E(Y |X)2)

Now E(Y 2)−E(Y )2 = E(V (Y |X)+E(Y |X)2)−E(E(Y |X))2

Since the expectation of a sum is the sum of expectations, the terms can be regrouped

E(V (Y |X))+(E(E(Y |X)2)−E(E(Y |X))2)

The second term is V (E(Y |X)) and finally we obtain

V (E(Y |X))+E(V (Y |X))
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D.2.2 Computation of sensitivities index

Let us apply the relation V (Y ) = E(Y 2)−E(Y )2 to VXi(EX∼i(Y |Xi)). We obtain that:

∫
E2

X∼i
(Y |Xi)dXi︸ ︷︷ ︸

E(Y 2)

−(
∫

EX∼i(Y |Xi)dXi)
2︸ ︷︷ ︸

E(Y )2

.

We note that the second term, E(Y )2, is equal to f 2
0 . Instead, E2

X∼i
(Y |Xi)dXi can be expressed as

the product between EX∼i(Y |Xi) and EX ′∼i
(Y ′|Xi):

E2
X∼i

(Y |Xi)dXi =EX∼i(Y |Xi)EX ′∼i
(Y ′|Xi) =

=
∫ ∫

...
∫

f (X1, ...,Xk) f (X ′1, ...,X
′
i−1,Xi,X ′i+1, ...,X

′
k)dX∼i,dX ′∼i.

Now, integrates over Xi the previous expected value E2
X∼i

(Y |Xi)dXi considering the previous

integral:

∫
E2

X∼i
(Y |Xi)dXi =

∫ ∫
...
∫

f (X1, ...,Xk) f (X ′1, ...,X
′
i−1,Xi,X ′i+1, ...,X

′
k)dX∼i,dX ′∼i,dXi =

=
∫ ∫

...
∫

f (X1, ...,Xk) f (X ′1, ...,X
′
i−1,Xi,X ′i+1, ...,X

′
k)dX ,dX ′∼i.

This integral represents the expectation in the k+k−1 dimension of two function values, wherein

in the second one all is re-sampled excluding the factor Xi:

f (X1, ...,Xk)︸ ︷︷ ︸
f

f (X ′1, ...,X
′
i−1,Xi,X ′i+1, ...,X

′
k)︸ ︷︷ ︸

f ′

.

Wrapping all together we obtain that VXi(EX∼i(Y |Xi)) = EXX ′∼i
( f f ′)− f 2

0 .

We can reproduce this scheme via Monte Carlo simulation [2, 14, 15]:

1. Sample AB=


X1,1 X1,2 ... X1,2k

X2,1 X2,2 ... X2,2k

... ... ... ...

XN,1 XN,2 ... XN,2k


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2. Split in A=


X1,1 X1,2 ... X1,k

X2,1 X2,2 ... X2,k

... ... ... ...

XN,1 XN,2 ... XN,k

 and B=


X1,k+1 X1,k+2 ... X1,2k

X2,k+1 X2,k+2 ... X2,2k

... ... ... ...

XN,k+1 XN,k+2 ... XN,2k



3. Define AB
i =


X1,1 X1,2 ... X1,k+i ... X1,k

X2,1 X2,2 ... X2,k+i ... X2,k

... ... ... ... ... ...

XN,1 XN,2 ... XN,k+i ... XN,k


Finally, as resume in Saltelli et al. [8], calculate First and Total sensitivities indexes:

• Si =
1
N

N
∑
n

f (B)n( f (AB
i )n− f (A)n)

V (Y ) ;

• STi =
1
N

N
∑
n

f (A)n( f (A)n− f (AB
i )n)

V (Y ) ,

Where V (Y ) = 1
N

N
∑
n
( f (A)n− f0)

2 and f0 =
1
N

N
∑
n

f (A)n. Note that in Si, f (B)n× f (AB
i )n = EXX ′∼i

and f (B)n× f (A)n = f 2
0 .

Example of Monte Carlo matrix sampling scheme:

• AB=


0.5 0.5 0.5 0.5 0.5 0.5

0.25 0.75 0.25 0.75 0.25 0.75

0.75 0.25 0.75 0.25 0.75 0.25

0.125 0.625 0.875 0.875 0.625 0.125



• A=


0.5 0.5 0.5

0.25 0.75 0.25

0.75 0.25 0.75

0.125 0.625 0.875

 B=


0.5 0.5 0.5

0.75 0.25 0.75

0.25 0.75 0.25

0.875 0.625 0.125



• AB
1 =


0.5 0.5 0.5

0.75 0.75 0.25

0.25 0.25 0.75

0.875 0.625 0.875

 AB
2 =


0.5 0.5 0.5

0.25 0.25 0.25

0.75 0.75 0.75

0.125 0.625 0.875

 AB
3 =


0.5 0.5 0.5

0.25 0.75 0.75

0.75 0.25 0.25

0.125 0.625 0.125


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[2] I.M. Soboĺ. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput.

Exp., 1:407, 1993.

[3] M.D. Morris. Factorial Sampling Plans for Preliminary Computational Experiments.

Technometrics, 33(2):161–174, 1991. ISSN 0040-1706, 1537-2723. doi: 10.1080/

00401706.1991.10484804. URL http://www.tandfonline.com/doi/abs/10.

1080/00401706.1991.10484804.

[4] A. Saltelli and J. Marivoet. Non-parametric statistics in sensitivity analysis for model

output: A comparison of selected techniques. Reliability Engineering & System Safety, 28

(2):229–253, 1990. ISSN 09518320. doi: 10.1016/0951-8320(90)90065-U. URL https:

//linkinghub.elsevier.com/retrieve/pii/095183209090065U.

[5] J.C. Helton. Uncertainty and sensitivity analysis techniques for use in performance as-

sessment for radioactive waste disposal. Reliability Engineering & System Safety, 42(2-3):

327–367, 1993. ISSN 09518320. doi: 10.1016/0951-8320(93)90097-I. URL https:

//linkinghub.elsevier.com/retrieve/pii/095183209390097I.

[6] C.K. Park and K. Ahn. A new approach for measuring uncertainty importance and distribu-

tional sensitivity in probabilistic safety assessment. Reliability Engineering & System Safety,

46(3):253–261, 1994. ISSN 09518320. doi: 10.1016/0951-8320(94)90119-8. URL https:

//linkinghub.elsevier.com/retrieve/pii/0951832094901198.

[7] E. Borgonovo. A new uncertainty importance measure. Reliability Engineering

& System Safety, 92(6):771–784, 2007. ISSN 09518320. doi: 10.1016/j.ress.

2006.04.015. URL https://linkinghub.elsevier.com/retrieve/pii/

S0951832006000883.

179

https://linkinghub.elsevier.com/retrieve/pii/S1364815210001180
https://linkinghub.elsevier.com/retrieve/pii/S1364815210001180
http://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804
http://www.tandfonline.com/doi/abs/10.1080/00401706.1991.10484804
https://linkinghub.elsevier.com/retrieve/pii/095183209090065U
https://linkinghub.elsevier.com/retrieve/pii/095183209090065U
https://linkinghub.elsevier.com/retrieve/pii/095183209390097I
https://linkinghub.elsevier.com/retrieve/pii/095183209390097I
https://linkinghub.elsevier.com/retrieve/pii/0951832094901198
https://linkinghub.elsevier.com/retrieve/pii/0951832094901198
https://linkinghub.elsevier.com/retrieve/pii/S0951832006000883
https://linkinghub.elsevier.com/retrieve/pii/S0951832006000883


Compartmental model in epidemiology 180

[8] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola. Variance

based sensitivity analysis of model output. Design and estimator for the total sensitivity

index. Computer Physics Communications, 181(2):259–270, 2010. ISSN 00104655.

doi: 10.1016/j.cpc.2009.09.018. URL https://linkinghub.elsevier.com/

retrieve/pii/S0010465509003087.

[9] T.A. Mara and S. Tarantola. Variance-based sensitivity indices for models with dependent

inputs. Reliability Engineering & System Safety, 107:115–121, 2012. ISSN 09518320.

doi: 10.1016/j.ress.2011.08.008. URL https://linkinghub.elsevier.com/

retrieve/pii/S0951832011001724.

[10] S. Kucherenko, S. Tarantola, and P. Annoni. Estimation of global sensitivity indices for

models with dependent variables. Computer Physics Communications, 183(4):937–946,

2012. ISSN 00104655. doi: 10.1016/j.cpc.2011.12.020. URL https://linkinghub.

elsevier.com/retrieve/pii/S0010465511004085.

[11] E. Plischke, E. Borgonovo, and C.L. Smith. Global sensitivity measures from given data.

European Journal of Operational Research, 226(3):536–550, 2013. ISSN 03772217.

doi: 10.1016/j.ejor.2012.11.047. URL https://linkinghub.elsevier.com/

retrieve/pii/S0377221712008995.

[12] G. Chowell. Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A

primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling,

2(3):379–398, 2017. ISSN 24680427. doi: 10.1016/j.idm.2017.08.001. URL https:

//linkinghub.elsevier.com/retrieve/pii/S2468042717300234.

[13] S. Lo Piano, R. Sheikholeslami, A. Puy, and A. Saltelli. Unpacking the modelling process

via sensitivity auditing. Futures, 144:103041, 2022. ISSN 00163287. doi: 10.1016/j.

futures.2022.103041. URL https://linkinghub.elsevier.com/retrieve/

pii/S0016328722001410.

[14] I.M. Sobol. A primer for the Monte Carlo method. CRC Press, Boca Raton, 1994. ISBN

978-0-8493-8673-2.

[15] A. Saltelli, S. Tarantola, and K.P.S. Chan. A Quantitative Model-Independent Method for

Global Sensitivity Analysis of Model Output. Technometrics, 41(1):39–56, 1999. ISSN

0040-1706, 1537-2723. doi: 10.1080/00401706.1999.10485594. URL http://www.

tandfonline.com/doi/abs/10.1080/00401706.1999.10485594.

https://linkinghub.elsevier.com/retrieve/pii/S0010465509003087
https://linkinghub.elsevier.com/retrieve/pii/S0010465509003087
https://linkinghub.elsevier.com/retrieve/pii/S0951832011001724
https://linkinghub.elsevier.com/retrieve/pii/S0951832011001724
https://linkinghub.elsevier.com/retrieve/pii/S0010465511004085
https://linkinghub.elsevier.com/retrieve/pii/S0010465511004085
https://linkinghub.elsevier.com/retrieve/pii/S0377221712008995
https://linkinghub.elsevier.com/retrieve/pii/S0377221712008995
https://linkinghub.elsevier.com/retrieve/pii/S2468042717300234
https://linkinghub.elsevier.com/retrieve/pii/S2468042717300234
https://linkinghub.elsevier.com/retrieve/pii/S0016328722001410
https://linkinghub.elsevier.com/retrieve/pii/S0016328722001410
http://www.tandfonline.com/doi/abs/10.1080/00401706.1999.10485594
http://www.tandfonline.com/doi/abs/10.1080/00401706.1999.10485594

	Abstract
	Acknowledgements
	List of Figures
	Preface
	1 A compartmental model for smoking dynamics in Italy: A pipeline for inference, validation, and forecasting under hypothetical scenarios
	1.1 Background
	1.2 Methods
	1.2.1 Data
	1.2.2 Model specification
	1.2.3 Estimation strategy
	1.2.3.1 Two-step estimation
	1.2.3.2 Parametric bootstrap procedure

	1.2.4 Model validation
	1.2.5 Sensitivity analysis
	1.2.6 Health impact assessment
	1.2.6.1 Impact of future hypothetical policies


	1.3 Results
	1.4 Discussion
	1.5 Conclusions
	Bibliography

	2 Frequentist and Bayesian inference on compartmental models in epidemiology: A critical review with a focus on likelihood-free approaches
	2.1 Introduction
	2.2 Compartmental models
	2.2.1 From mathematical to statistical models
	2.2.2 Working example: the SIR model

	2.3 Estimation methods
	2.3.1 Frequentist approaches
	2.3.1.1 Maximum likelihood estimation
	2.3.1.2 Expectation-Maximization algorithm
	2.3.1.3 Calibration
	2.3.1.4 Bootstrap procedure

	2.3.2 Bayesian approaches
	2.3.2.1 Monte Carlo methods
	2.3.2.2 Data Augmentation Markov Chain Monte Carlo methods
	2.3.2.3 Approximate Bayesian Computation


	2.4 Results
	2.4.1 Working example: the SIR model
	2.4.1.1 Complete data
	2.4.1.2 Incomplete data

	2.4.2 A real-world example: the SHC model
	2.4.2.1 SHC model results


	2.5 Discussion and conclusions
	Bibliography

	3 Smoking dynamics in Tuscany (Italy) under alternative tobacco control policies: Robustifying inference and forecasting via uncertainty propagation and Global Sensitivity Analysis
	3.1 Introduction
	3.2 Uncertainty Analysis and Global Sensitivity Analysis
	3.3 Model specification, inference procedure, and policy assessment
	3.3.1 Smoking habits compartmental model
	3.3.1.1 Stochastic version of the SHC model

	3.3.2 Data and calibration
	3.3.3 Bootstrap
	3.3.4 Tobacco control policies assessment and forecasting

	3.4 Robustification procedure
	3.4.1 Probability distributions of inputs
	3.4.2 Sensitivity Analysis procedure
	3.4.3 Outputs definition and Total Index calculation

	3.5 Results
	3.6 Discussion and conclusion
	Bibliography

	4 An Annotated Timeline of Sensitivity Analysis
	4.1 Introduction
	4.2 Evolution of Sensitivity Analysis
	4.2.1 Early developments
	4.2.2 Transition to computer experiments
	4.2.3 The modern communities
	4.2.4 The politics of sensitivity analysis

	4.3 Bibliometric Survey
	4.4 A fragmented adoption of sensitivity analysis
	4.5 Conclusions
	Bibliography

	5 Other published articles
	Conclusion
	A Supplemental Materials Chapter 1
	A.1 Model assumptions
	A.2 Details on the fixed parameters
	A.3 Additional details on Global Sensitivity Analysis
	A.4 Population Attributable Fraction computation
	A.5 Additional results
	Bibliography

	B Supplemental Materials Chapter 2
	B.1 DA-MCMC and detailed balance condition
	B.2 SIR model: sampling missing data and pseudo-data
	B.3 SIR model: further details on the algorithm implementations
	B.3.1 Frequentist algorithms: MLE, EM, Calibration
	B.3.2 Bayesian algorithms: IS, DA-MCMC, ABC

	B.4 SHC model
	B.4.1 Transition probabilities
	B.4.2 Further details of the algorithm implementations

	Bibliography

	C Supplemental Materials Chapter 3
	C.1 MPOWER
	C.2 Total index
	Bibliography

	D Supplemental Materials Chapter 4
	D.1 Global Sensitivity Analysis
	D.1.1 Using of GSA in compartmental model

	D.2 Variance based decomposition
	D.2.1 Sobol decomposition
	D.2.2 Computation of sensitivities index

	Bibliography


