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Abstract

In this article we consider a generalization of manifolds and orbifolds which we
call quasifolds; quasifolds of dimension k are locally isomorphic to the quotient of
the space R

k
by the action of a discrete group - typically they are not Hausdorff

topological spaces. The analogue of a torus in this geometry is a quasitorus. We
define Hamiltonian actions of quasitori on symplectic quasifolds and we show that
any simple convex polytope, rational or not, is the image of the moment mapping
for a family of effective Hamiltonian actions on symplectic quasifolds having twice
the dimension of the corresponding quasitorus.

Introduction

The convexity theorem of Atiyah [At] and Guillemin-Sternberg [GS] says that if T is a
torus acting in a Hamiltonian fashion on a compact, connected symplectic manifoldM ,
then the image of the corresponding moment mapping is a rational convex polytope.
One of the most interesting applications of this theorem is a classification theorem of
Delzant [D], which states that if dimM = 2dim T and the action is effective, then the
space is completely characterized by the image of the moment mapping, which is a
simple rational convex polytope satisfying a special integrality condition. One of the
features of Delzant’s result is that it provides an explicit construction for associating
to each polytope the corresponding space; this construction involves the technique of
symplectic reduction. The results of Atiyah, Guillemin-Sternberg and Delzant have
subsequently been extended by Lerman-Tolman [LT] to the case of torus actions on
symplectic orbifolds; the image of the moment mapping in this case is still a rational
polytope, and the extension of Delzant’s theorem involves simple rational polytopes.

However, it is very natural to ask oneself whether a simple convex polytope that
is not rational can also be viewed as the image of the moment mapping for a suitable
symplectic space. Answering affirmatively to this question amounts to being able to
perform symplectic reduction under rather general assumptions, thus allowing the re-
sulting space to be pathological. This has lead us to consider a new class of spaces
which we call quasifolds. Roughly speaking, a quasifold of dimension k is a space that
is locally modeled on orbit spaces of discrete group actions on open subsets of the space
Rk. Manifolds and orbifolds are special cases of quasifolds, but quasifolds in general are
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not Hausdorff topological spaces. Just as for orbifolds, geometric objects on quasifolds
may be thought of as collections of objects on the open sets of the space Rk that are
invariant under the discrete group actions, and that behave correctly under coordinate
changes. The natural analogue of a torus in this geometry is a quasitorus, which is the
quotient of a vector space by a quasilattice. It is then possible to define Hamiltonian
quasitorus actions on symplectic quasifolds and to extend the Delzant construction to
show that every simple convex polytope ∆ is the image of the moment mapping for
quasitorus actions on a family, M∆, of quasifolds.

We remark that the initial motivation for this article came from a discussion with
Traynor on the role of non-rational polytopes in the study of symplectic packings [MP,
T]. Orbit spaces of discrete group actions have been studied by Connes in the context of
noncommutative geometry [C, chapter II]; our approach is different and we do not fully
understand the connection. Quasitori of dimension one have been studied by Donato,
Iglesias and Lachaud [DI, I, IL] in the framework of the theory of diffeological spaces;
on this occasion Iglesias introduced the terminology irrational tori. On the other hand
Weinstein considered quasitori of dimension one to prequantize arbitrary symplectic
manifolds [W1, W2]; he introduced the term infracircles. The subject of this article is
also related to the geometry of quasicrystals [Ar, S]; for example the regular pentagon
is not only a celebrated quasicrystal but is also a simple non-rational convex polytope.
This is the reason underlying our choice of the terms quasifold and quasitorus; the term
quasilattice on the other hand had already been introduced by quasicrystallographers.

The article is structured as follows: in Section 1 we define quasifolds and the es-
sentials of their geometry, in Section 2 we define quasitori and Hamiltonian actions,
in Section 3 we prove a symplectic reduction theorem and the extension of Delzant’s
construction to this setting. A brief appendix recalls the definitions of rational and
simple convex polyhedral sets. All definitions and results are illustrated by examples.

The contents of this article have been announced in [P]. In the sequel we will
give a more thorough treatment of the convexity theorem and of the failure of the
uniqueness part of Delzant’s theorem. In an article in collaboration with Battaglia [BP]
we introduce complex and Kähler structures on quasifolds, and see how the spaces in
the family M∆ can be viewed as natural generalizations of the toric varieties that are
usually associated to those simple convex polytopes that are rational.

We wish to thank Ana Cannas da Silva, Patrick Iglesias, Reyer Sjamaar and the
Referee for their helpful remarks. We are also very grateful to Fiamma Battaglia for
her crucial help on several aspects of this work.

1 Quasifolds

We begin by introducing the local model for quasifolds.

Definition 1.1 (Model) Let Ũ be a connected, simply connected manifold of dimen-
sion k and let Γ be a discrete group acting smoothly on the manifold Ũ so that the set
of points, Ũ0, where the action is free, is connected and dense. Consider the space of
orbits, Ũ/Γ, of the action of the group Γ on the manifold Ũ , endowed with the quotient
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topology, and the canonical projection p : Ũ → Ũ/Γ. A model of dimension k is the
triple (Ũ/Γ, p, Ũ ), shortly Ũ/Γ. △

Remark 1.2 We remark that the assumption in Definition 1.1 that the manifold Ũ be
simply connected could be omitted, at the expense of the definitions of smooth mapping,
diffeomorphism, vector field and form, which would then become more complicated.
This assumption happens to be very natural in our setting and, in practice, is not as
strong as one may think. Assume in fact that the manifold Ũ is connected, but not
simply connected. Consider its universal cover, π : U# → Ũ , and its fundamental group,
Π; the manifold U# is connected and simply connected, the mapping π is smooth, the
discrete group Π acts smoothly, freely and properly on the manifold Ũ and Ũ = U#/Π.
Consider the extension of the group Γ by the group Π, 1 −→ Π −→ Λ −→ Γ −→ 1,
defined as follows

Λ =
{

λ ∈ Diff(U#) | ∃ γ ∈ Γ s. t. π(λ(u#)) = γ · π(u#) ∀ u# ∈ U#
}

.

It is easy to verify that Λ is a discrete group, that it acts on the manifold U# according
to the assumptions of Definition 1.1 and that Ũ/Γ = U#/Λ. ▽

Definition 1.3 (Tangent space) Consider a model (Ũ/Γ, p, Ũ ). The group Γũ =
Stab(ũ,Γ) acts on the vector space TũŨ for any point ũ in Ũ . We define the tangent
space of the model Ũ/Γ at the point u = p(ũ), denoted Tu(Ũ/Γ), to be the space of
orbits (TũŨ)/Γũ. △

Remark 1.4 We remark that Tu(Ũ/Γ) itself defines a model and that it is a true
vector space for all points u in p(Ũ0). ▽

Definition 1.5 (Smooth mapping, diffeomorphism of models) A smooth map-
ping of the models (Ũ/Γ, p, Ũ ) and (Ṽ /∆, q, Ṽ ) is a mapping f : Ũ/Γ −→ Ṽ /∆ having
the property that there exists a smooth mapping f̃ : Ũ −→ Ṽ such that q◦ f̃ = f ◦p; we
will say that f̃ is a lift of f . We will say that the smooth mapping f is a diffeomorphism
of models if it is bijective and if the lift f̃ is a diffeomorphism. △

If the mapping f̃ is a lift of a smooth mapping of models f : Ũ/Γ −→ Ṽ /∆ so are the
mappings f̃γ(−) = f̃(γ ·−), for all elements γ in Γ and δ f̃(−) = δ · f̃(−), for all elements
δ in ∆. We are about to show that if the mapping f is a diffeomorphism, then these
are the only other possible lifts.

Lemma 1.6 (The orange lemma) Consider two models, Ũ/Γ and Ṽ /∆, and let
f : Ũ/Γ −→ Ṽ /∆ be a diffeomorphism of models. For any two lifts, f̃ and f̄ , of the
diffeomorphism f there exists a unique element δ in ∆ such that f̄ = δ f̃ .
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Proof. Let Ṽ0 be the connected and dense set of points in the manifold Ṽ where the
action of the group ∆ is free, and consider a point ṽ in Ṽ0, and the corresponding point
ũ = f̃−1(ṽ). Then there is a unique element δ(ṽ) in ∆ such that f̄(ũ) = δ(ṽ) · f̃(ũ).
Since the group ∆ is discrete, and the set Ṽ0 is connected and dense, there exists a
unique element δ in ∆ such that f̄ = δf̃ . ✷

Lemma 1.7 (The green lemma) Consider two models, Ũ/Γ and Ṽ /∆, and a dif-
feomorphism f : Ũ/Γ −→ Ṽ /∆. Then, for a given lift, f̃ , of the diffeomorphism f ,
there exists a group isomorphism F : Γ −→ ∆ such that f̃γ = F (γ)f̃ , for all elements γ
in Γ.

Proof. Take an element γ in Γ. Apply the orange lemma to the lifts f̃ , f̄ = f̃γ , and
define F (γ) = δ. Repeat for all elements γ in Γ and check that F is an isomorphism
with the required property. ✷

Definition 1.8 (Vector field, h-form on a model) A vector field, X, [respectively
h-form, ω,] on a model Ũ/Γ is the assignment of a Γ-invariant vector field, X̃, [respec-
tively h-form, ω̃,] on the manifold Ũ . △

Definition 1.9 (Pushforward of a vector field) Consider two models, Ũ/Γ and
Ṽ /∆, and a diffeomorphism f : Ũ/Γ −→ Ṽ /∆. Let X be a smooth vector field on
the model Ũ/Γ; we define the pushforward of X via f , denoted f∗X, to be the vector
field on the model Ṽ /∆ that corresponds to the assignment of the ∆-invariant vector
field f̃∗X̃, for any lift f̃ of the diffeomorphism f . △

The notions of differential and pullback of a form, and the notion of interior product
of a form with a vector field are defined in an analogous way.

Definition 1.10 (Symplectic form on a model) A symplectic form, ω, on a model
Ũ/Γ is the assignment of a Γ-invariant symplectic form, ω̃, on the manifold Ũ . △

We are now ready to define quasifolds.

Definition 1.11 (Quasifold) A dimension k quasifold structure on a topological space
M is the assignment of an atlas, or collection of charts, A = { (Uα, φα, Ũα/Γα) | α ∈ A }
having the following properties:

1. The collection { Uα | α ∈ A } is a cover of M .

2. For each index α in A, the set Uα is open, the space Ũα/Γα defines a model,
where the set Ũα is an open, connected and simply connected subset of the space
Rk, and the mapping φα is a homeomorphism of the space Ũα/Γα onto the set
Uα.
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3. For all indices α, β in A such that Uα ∩ Uβ 6= ∅, the sets φ−1
α (Uα ∩ Uβ) and

φ−1
β (Uα ∩ Uβ) define models and the mapping

gαβ = φ−1
β ◦ φα :φ−1

α (Uα ∩ Uβ) −→ φ−1
β (Uα ∩ Uβ)

is a diffeomorphism. We will then say that the mapping gαβ is a change of charts
and that the corresponding charts are compatible.

4. The atlas A is maximal, that is: if the triple (U, φ, Ũ/Γ) satisfies property 2. and
is compatible with all the charts in A, then (U, φ, Ũ/Γ) belongs to A.

We will say that a space M with a quasifold structure is a quasifold. △

Remark 1.12 A quasifold where all the groups Γα are trivial is a manifold, one where
all the groups Γα are finite is an orbifold. ▽

Example 1.13 (The quasisphere) Let s, t be two positive real numbers such that
s/t /∈ Q. Consider the space C2 with the standard symplectic form ω0 =

1
2πi (dz1∧dz̄1+

dz2 ∧ dz̄2) and with the R-action: (θ, (z1, z2)) = (e2πiθz1, e
2πiθ s

t z2) of moment mapping

Ψ : C2 −→ R

(z1, z2) 7−→ |z1|2 +
s

t
|z2|2 − s.

Consider the level set Ψ−1(0); this space is an ellipsoid of dimension 3 with center
the origin and radii (

√
s,
√
t). Consider now the space of orbits M = Ψ−1(0)/R. We

want to show that it is a quasifold of dimension 2. We cover it with two open sets,
US = { [z1 : z2] ∈M | z2 6= 0 } and UN = { [z1 : z2] ∈M | z1 6= 0 }. Denote by B(r), for
any r > 0, the open ball in the space C of center the origin and radius

√
r. Then the

discrete group ΓS = Z acts on the open set ŨS = B(s) by the rule (k, z) 7→ e2πik
t

s · z;
this action is free on the connected, dense subset ŨS − {0} and the mapping

φS : ŨS/ΓS −→ US

[z] 7−→
[

z :

√

t− t

s
|z|2

]

is a homeomorphism. Similarly the group ΓN = Z acts on the open set ŨN = B(t) by
the rule (m,w) 7→ e2πim

s

t ·w; this action is free on the connected, dense subset ŨN−{0}
and the mapping

φN : ŨN/ΓN −→ UN

[w] 7−→
[
√

s− s

t
|w|2 : w

]

is a homeomorphism. Let us check that these two charts are compatible. The set
φ−1
S (US ∩UN ) defines a model: it is the quotient of R× (0,

√
s) by the following action
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of Z2: ((h, k) , (σ, ρ)) 7→ (

σ + h+ k t
s
, ρ

)

. Similarly the set φ−1
N (US ∩UN ) is the quotient

of R× (0,
√
t) by the following action of Z2: ((l,m) , (τ, υ)) 7→ (

τ + l +m s
t
, υ

)

. Remark
that

gSN = φ−1
N ◦ φS :φ−1

S (US ∩ UN ) −→ φ−1
N (US ∩ UN )

[

z = e2πiσρ
]

7−→
[

w = e−2πiσ s

t

√

t− t

s
ρ2

]

is a diffeomorphism of models: its lift is given by (σ, ρ) 7−→
(

−σ s
t
,
√

t− t
s
ρ2

)

. Now

complete this collection with all other compatible charts. ✸

We now proceed to give quasifolds all the necessary geometrical structure.

Definition 1.14 (Smooth mapping, diffeomorphism of quasifolds) Let M and
N be two quasifolds. A continuous mapping f : M → N is said to be a smooth mapping
of quasifolds if there exists a chart (Uα, φα, Ũα/Γα) around each point m in the space
M , a chart (Vα, ψα, Ṽα/∆α) around the point f(m), and a smooth mapping of models
fα : Ũα/Γα → Ṽα/∆α such that ψα ◦ fα = f ◦φα. If the smooth mapping f is bijective,
and if its inverse is smooth, we will say that it is a diffeomorphism of quasifolds.

Let us say a word about the definition of smooth mapping. Consider Definition 1.14
and denote by f̃α a lift of the smooth mapping of models fα, by pα the canonical
projection Ũα → Ũα/Γα, and by qα the canonical projection Ṽα → Ṽα/∆α. Then, by
combining Definitions 1.5 and 1.14, we get that the following diagram commutes

Ũα
f̃α−→ Ṽα

pα↓ ↓ qα

Ũα/Γα
fα−→ Ṽα/∆α

φα↓ ↓ ψα

Uα
f−→ Vα.

Let us look at the special case N = V , a vector space (this includes all moment maps;
see Definition 2.8). The space V is a smooth quasifold of one chart so a mapping
f : M −→ V is smooth if, and only if, there exists a chart φα : Ũα/Γα −→ Uα around
each point m in the space M , such that the mapping f̃α = f ◦ φα ◦ pα : Ũα −→ V is
smooth (here pα still denotes the canonical projection Ũα → Ũα/Γα).

Definition 1.15 (Vector field, h-form on a quasifold) A vector field, X, [respec-
tively h-form, ω], on a quasifoldM is the assignment of a chart (Uα, φα, Ũα/Γα) around
each point m in the space M and of a vector field, Xα, [respectively h-form, ωα,] on the
model Ũα/Γα. We require that whenever we have two such charts, (Uα, φα, Ũα/Γα) and
(Uβ , φβ , Ũβ/Γβ), with the property that Uα∩Uβ 6= ∅, then (gαβ)∗Xα = Xβ [respectively
(gαβ)

∗ωβ = ωα] for the corresponding change of charts gαβ . △
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Definition 1.16 (Pushforward of a vector field) LetM and N be two quasifolds,
let X be a vector field on the quasifold M , and let f : M → N be a diffeomorphism;
then there exists a chart (Uα, φα, Ũα/Γα) around any given point m in the space M ,
a chart (Vα, ψα, Ṽα/∆α) around the point n = f(m), a vector field Xα on the model
Ũα/Γα, and a smooth mapping fα : Uα → Vα such that ψα ◦ fα = f ◦φα. We define the
pushforward of X via f , denoted f∗X, to be the vector field on the quasifold N given
by the assignment of the chart (Vα, ψα, Ṽα/∆α) around the point n and of the vector
field fα∗Xα on the model Ṽα/∆α. △

Completely analogous definitions hold for the notions of differential and pullback of a
form, and for the notion of interior product of a form with a vector field.

Definition 1.17 (Symplectic form-structure-quasifold, symplectomorphism)
A symplectic form on a quasifold M is a 2-form, ω, such that each form ωα (see Defi-
nition 1.15) is symplectic. A symplectic structure on a quasifold M is the assignment
of a symplectic form ω, and we will say that (M,ω), or shortly M , is a symplectic
quasifold. A symplectomorphism between two symplectic quasifolds (M,ω) and (N,σ)
is a diffeomorphism f : M −→ N such that f∗σ = ω. △

Example 1.18 (Quasilinear model) Let V be a symplectic vector space with a lin-
ear, effective and symplectic action of a torus T . Take any discrete subgroup Γ ⊂ T ,
and consider its induced action on the space V . The group Γ acts freely on a connected,
dense subset of the space V , thus the space of orbits VΓ = V/Γ is a symplectic quasifold
of dimension 2l = dimV . ✸

The quasisphere in Example 1.13 can also be endowed with a symplectic structure.

Example 1.19 (Quasisphere) Consider the quasisphere of Example 1.13 and define
a symplectic form by assigning the ΓS-invariant symplectic form ω̃S = 1

2πi dz ∧ dz̄ to

the set ŨS and the ΓN -invariant symplectic form ω̃N = 1
2πi dw ∧ dw̄ to the set ŨN . ✸

2 Quasitori and their actions on quasifolds

We devote this section to quasitori and their Hamiltonian actions on symplectic quasi-
folds. We start with a number of definitions and properties and we end with some
crucial examples.

Definition 2.1 (Quasilattice, quasitorus) Let d be a vector space of dimension n.
A quasilattice in d is the Z-span, Q, of a set of R-spanning vectors X1, . . . ,Xd in d. We
call quasitorus of dimension n the group and quasifold of one chart D = d/Q. △

Notice that in the previous definition d ≥ n and that if d = n, then the quasilattice Q is
a lattice and the quasitorusD is a honest torus. A quasitorus is compact, connected and
abelian, and the group operations of multiplication and inversion are smooth quasifold
mappings.
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Example 2.2 (A quasicircle) The first example of a (non-smooth) quasitorus is the
quasitorus of dimension 1 (quasicircle) D1 = R/Q, where Q = sZ + tZ, s/t /∈ Q. To
discover everything about this innocuous-looking group we refer the reader to [DI, I,
IL]. ✸

The quasifold tangent space at the identity of a quasitorus D = d/Q is always the
vector space d. By analogy with the smooth case we make the following

Definition 2.3 (Quasi-Lie algebra, exponential mapping) Let D = d/Q be a
quasitorus. We define the quasi-Lie algebra of D to be the vector space d. The natural
projection of d onto D is called exponential mapping, denoted expD, or simply exp. △

Definition 2.4 (Quasitorus homomorphism, isomorphism and epimorphism)
A group homomorphism [respectively epimorphism and isomorphism] between quasitori
that is a smooth quasifold map is called quasitorus homomorphism [respectively epi-
morphism and isomorphism]. △

Given two quasitori, D1 = d1/Q1 and D2 = d2/Q2, and a quasitorus homomorphism
f : D1 → D2, it is easy to check that the unique lift, f̃ , of the homomorphism f
satisfying f̃(0) = 0 is a linear mapping f̃ : (d1, Q1) → (d2, Q2), and is an epimorphism,
respectively isomorphism, whenever the homomorphism f is. Again by analogy with
honest tori, we will call this lift the quasi-Lie algebra homomorphism associated to the
quasitorus homomorphism f . The following proposition explains why we are interested
in quasitori.

Proposition 2.5 Let T be a torus and N a Lie subgroup 1. Then T/N is a quasitorus
of dimension n = dimT − dimN .

Proof. Choose a complement, d, of the vector subspace n = Lie(N) in the vector
space t = Lie(T ); consider the surjective mapping pd = Π ◦ expT |d : d −→ T/N
where Π : T −→ T/N denotes the canonical projection. Then the set Q = ker pd is
a quasilattice (a lattice if the group N is compact) and the mapping pd induces a
group isomorphism d/Q ≃ T/N . Notice that two different choices of a complement
d yield isomorphic quasitori; the group T/N thus inherits a well defined structure of
quasitorus. ✷

We remark that the subspace d of the preceding proof is the quasi-Lie algebra of the
quasitorus D ≃ T/N and that pd = expD. One important special case is the quotient
of a torus T by any of its discrete subgroups, Γ. In this case we have T/Γ = d/Q, where
d ≃ t. Another example is the quotient of a two-dimensional torus by an immersed line
of slope s/t /∈ Q (Kronecker foliation); the corresponding quasitorus is the quasicircle
of Example 2.2.

Definition 2.6 (Smooth action) A smooth action of a quasitorus D on a quasifold
M is a smooth mapping τ : D×M −→M such that τ(d1 ·d2,m) = τ(d1, τ(d2,m)) and
τ(1D,m) = m for all elements d1, d2 in the quasitorus D and for each point m in the
space M . △

1We allow and actually prefer immersed subgroups.
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According to this definition, there exist charts (Uα, φα, Ũα/Γα) and (Vα, ψα, Ṽα/∆α)
around each point m in the space M , and smooth mappings τ̃α, τα such that the fol-
lowing diagram commutes

d× Ũα
τ̃α−→ Ṽα

↓ ↓
D × (Ũα/Γα)

τα−→ Ṽα/∆α

↓ ↓
D × Uα

τ−→ Vα

Notice that, since τ(1D, p) = p for each point p in the space M , we have that the set
Uα is contained in the set Vα; it is therefore possible to assume that τ̃α(0, ũ) = ũ for
each point ũ in the set Ũα, and that the set Ũα is contained in the set Ṽα. Now fix an
element X in the space d; then, for small enough real numbers t, the points τ̃α(tX, ũ)
belong to the set Ũα whenever the point ũ does. These data allow us to define the
fundamental vector field of the smooth action τ .

Definition 2.7 (Fundamental vector field) Consider a smooth action, τ , of a qua-
sitorus D = d/Q on a quasifoldM . For any element X in the space d we define a vector
field XM on the space M , called fundamental vector field of the action corresponding
to X, which is given by the assignment, for each point m in the space M , of the chart
(Uα, φα, Ũα/Γα) (see discussion above) and of the Γα-invariant vector field on the set
Ũα given by

X̃M (ũ) =
d

dt
|0 τ̃α(tX, ũ), ũ ∈ Ũα.

△

Notice that, for a fixed element d in the quasitorus D, the mapping τd(−) = τ(d,−) is
a diffeomorphism of the quasifold M .

Definition 2.8 (Hamiltonian action, moment mapping) A smooth action, τ , of
a quasitorus D = d/Q on a symplectic quasifold (M,ω) is Hamiltonian if it preserves
the symplectic form (τ∗dω = ω for all d in the quasitorus D) and if there exists a
smooth D-invariant mapping Φ : M → d

∗, which we call moment mapping, such that
ı(XM )ω = d < Φ,X >, for each element X in the space d. △

Example 2.9 (The quasilinear model) Consider the quasilinear model VΓ of Ex-
ample 1.18. The linear, effective and symplectic action of the torus T on the space V
is Hamiltonian and it can be described as follows. Write T = t/L, where t denotes the
Lie algebra of the torus T and L is the lattice ker expT , and consider the corresponding
weight lattice

L∗ = { µ ∈ t
∗ | µ(X) ∈ Z ∀X ∈ L }.
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The space V decomposes into l complex 1-dimensional T -invariant subspaces Vj and
there exist weights αj in the lattice L∗, j = 1, . . . , l, such that the action is given by

τ̂ : T × V −→ V

(expT (X) , v) 7−→ (e2πiα1(X)v1, . . . , e
2πiαl(X)vl),

and the moment mapping is given by

Φ̂ : V −→ t
∗

v 7−→ ∑l
j=1 |vj |2αj .

The image of Φ̂ is the rational convex polyhedral cone Ĉ of vertex O and spanned by the
weights αj. Denote by p the projection V → VΓ, by D the quasitorus d/Q ≃ T/Γ, by
Π the projection T → D, and by π : (t, L) → (d, Q) the corresponding quasi-Lie algebra
isomorphism. The action of the torus T on the vector space V induces an action, τ , of
the quasitorus D on the space VΓ as follows

T × V
τ̂−→ V

Π×p↓ ↓ p

D × VΓ
τ−→ VΓ.

This action is Hamiltonian and the corresponding moment mapping Φ is given by

V
Φ̂−→ t

∗

p↓ ↑ π∗

VΓ
Φ−→ d

∗.

Notice that the image of the mapping Φ is the convex polyhedral cone C = (π∗)−1(Ĉ),
which is spanned by the elements βj = (π∗)−1(αj) in the space d∗. ✸

Example 2.10 (The quasisphere) Let us go back to the quasisphere M of Exam-
ples 1.13 and 1.19. Consider now the quasilattice Q = sZ + tZ and the quasicircle
D1 = R/Q. The mapping

τ : D1 ×M −→ M

([θ], [z : w]) 7−→ [e
2πiθ

s z : w]

defines a Hamiltonian action of the quasicircle D1 (a quasirotation) on the quasifold
M , with moment mapping

Φ : M −→ R∗

[z : w] 7−→ |z|2
s

= 1− |w|2
t
.

Notice finally that Φ(M) = [0, 1] just like for truly rotating spheres, teardrops, or rugby
balls. ✸
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We conclude with an example of a honest torus acting on a quasifold. This example
has a different flavor than all the others that we treat.

Example 2.11 (The horocycle foliation) Let us consider the upper half-planeH =
{ (x, y) ∈ R2 | s.t. y > 0} with the standard symplectic form dx∧dy. We let the group
Z act on the space H as follows: (k, (x, y)) 7−→ (x + ky, y). This action is free and
symplectic. We now consider the following free and Hamiltonian S1-action on the
quotient space H/Z: (e2πiθ, [x : y]) 7−→ [x + θy : y]; the moment mapping is given by
[x : y] 7−→ 1

2y
2. ✸

3 From simple polytopes to symplectic quasifolds

The aim of this section is to extend Delzant’s construction and to show that any
simple convex polytope is the image of the moment mapping for a family of effective
Hamiltonian quasitorus actions on symplectic quasifolds of the appropriate dimension.
This is a consequence of the following symplectic reduction theorem.

Theorem 3.1 Let T be a torus of Lie algebra t, let T × X −→ X be a Hamiltonian
action of the torus T on a symplectic manifold X and assume that the moment mapping
J : X −→ t

∗ is proper. Consider the induced action of any Lie subgroup N of T and
suppose that 0 is a regular value of the corresponding moment mapping Ψ : X −→ n

∗

(n denotes the Lie algebra of N). Then M = Ψ−1(0)/N is a symplectic quasifold
of dimension dimX − 2 dimN and the induced (T/N)-action on the quasifold M is
Hamiltonian.

Proof. The slice theorem (see [K]) applied to the T -action on the manifold Ψ−1(0)
gives invariant neighborhoods of the orbits T · x that are of the form T ×Tx Bx, where
Tx = Stab(x, T ), and Bx is an open ball in the space Tx(ψ

−1(0))/Tx(T · x). The
quotient (T ×Tx Bx)/N is a (T/N)-invariant neighborhood of the orbit (T/N) · [x] in
the space M . Let us check that this neighborhood is a quasifold chart; the argument
is quite similar to the one in the proof of Proposition 2.5. Denote by tx the Lie
algebra of the group Tx. Since the value 0 is regular for the mapping Ψ, we have
that tx ∩ n = {0}; choose a complement dx of the vector subspace tx ⊕ n in the
space t. Denote by Πx the projection T ×Tx Bx −→ (T ×Tx Bx)/N and define a
surjective mapping px : dx × Bx −→ (T ×Tx Bx)/N according to the following rule:
px(Y, b) = Πx([expT Y : b]), (Y, b) ∈ dx × Bx. Now consider the quasilattice Q of the
proof of Proposition 2.5 chosen relatively to the complement d = dx⊕tx of the subspace
n in the space t. It is easy to check that the discrete group

Λx = { (YQ, expT TQ) ∈ dx × Tx | YQ + TQ ∈ Q }

acts on the connected, simply connected open set dx ×Bx as follows

Λx × (dx ×Bx) −→ dx ×Bx
((YQ, expT TQ) , (Y, b)) 7−→ (Y + YQ, expT TQ · b),
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and that the mapping px induces a homeomorphism (dx × Bx)/Λx ≃ (T ×Tx Bx)/N .
The remainder of the proof proceeds like the proof of the classical symplectic reduction
theorem. The symplectic form on the manifold X induces a Λx-invariant symplectic
form on the open set dx × Bx, thus a symplectic form on each chart (T ×Tx Bx)/N ;
similarly the action of the torus T on the manifold X induces a Hamiltonian action of
the quasitorus T/N on each chart, the corresponding moment mapping being induced
by the one for the T -action on the manifold X. The required compatibility properties
are satisfied. ✷

Remark 3.2 (Quasi-universal covers) We like to think of the manifolds U# in Re-
mark 1.2, d in the proof of Proposition 2.5, and dx×Bx in the proof of Theorem 3.1, as
the quasi-universal covers of the quasifolds Ũ/Γ, T/N and (T ×Tx Bx)/N , respectively;
the discrete groups Λ, Q and Λx would then be the corresponding fundamental groups.
If the group Γ were finite and the group N were compact this would be in agreement
with Thurston’s notion of orbifold universal cover. ▽

Let us now apply Theorem 3.1 to extend Delzant’s construction. Let d be a vector
space of dimension n. The key idea is the observation that any simple convex polytope
in the dual space d∗ can be obtained by slicing a translate of the positive ortant of the
space (Rd)∗ with an appropriate subspace.

Theorem 3.3 Let d be a vector space of dimension n. For any simple convex poly-
tope ∆ ⊂ d

∗ there exists an n-dimensional quasitorus D of quasi-Lie algebra d, a 2n-
dimensional compact symplectic quasifold M , and an effective Hamiltonian action of
the quasitorus D on the quasifold M such that the image of the corresponding moment
mapping is the polytope ∆.

Proof. Consider the space Cd endowed with the standard symplectic form ω0 =
1

2πi

∑d
j=1 dzj ∧ dz̄j and the standard action of the torus T d = Rd/Zd:

τ : T d × Cd −→ Cd

((e2πiθ1 , . . . , e2πiθd) , z) 7−→ (e2πiθ1z1, . . . , e
2πiθdzd).

This action is effective and Hamiltonian and its moment mapping is given by

J : Cd −→ (Rd)∗

z 7−→ ∑d
j=1 |zj |2e∗j + λ, λ ∈ (Rd)∗ constant.

The mapping J is proper and its image is the cone Cλ = λ + C0, where C0 denotes
the positive ortant in the space (Rd)∗. Write the polytope ∆ as in the appendix,
formula (A.1) and consider the surjective linear mapping

π : Rd −→ d,

ej 7−→ Xj .

Let Q be any quasilattice in the vector space d containing the vectors X1, . . . ,Xd (for
example Q =

∑d
j=1XjZ), and consider the dimension n quasitorus D = d/Q. Then
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the linear mapping π induces a quasitorus epimorphism Π : T d −→ D. Define now N
to be the kernel of the mapping Π and choose λ =

∑d
j=1 λje

∗
j . Then, according to

Theorem 3.1, the quasitorus T d/N acts in a Hamiltonian fashion on the symplectic
quasifold M = Ψ−1(0)/N . Denote by i the Lie algebra inclusion Lie(N) → Rd. If we
identify the quasitori D and T d/N using the epimorphism Π, we get a Hamiltonian
action of the quasitorus D whose moment mapping has image equal to (π∗)−1(Cλ ∩
ker i∗) = (π∗)−1(Cλ ∩ im π∗) = (π∗)−1(π∗(∆)) = ∆. This action is effective since the
level set Ψ−1(0) contains points of the form z ∈ Cd, zj 6= 0, j = 1, . . . , d, where the
T d-action is free. Notice finally that dimM = 2d − 2 dimN = 2d − 2(d − n) = 2n =
2dimD. ✷

Remark 3.4 (Uniqueness?) Notice that we had many choices in this construction.
To begin with, the pairs (Xj , λj) in (A.1) are far from being unique; moreover there
are infinitely many quasilattices that contain a fixed choice of the vectors Xj. As
a consequence, the quasitorus, quasifold and action are far from being unique (see
Example 3.5 below), but we will return to this matter in future work. For the moment
we just point out that if the polytope ∆ is rational relatively to a lattice L, by choosing
the elements Xj to be in the lattice L, and the quasilattice Q to be equal to the lattice
L itself, we distinguish among our spaces a family of orbifolds, in accordance with [LT];
if the polytope ∆ also satisfies Delzant’s integrality condition, by taking the elements
Xj to be primitive in the lattice L, we obtain a manifold, in accordance with [D]. ▽

We conclude this section with three telling examples, where we apply the construction
described in Theorem 3.3 to three different polytopes.

Example 3.5 (The unit interval) As a first example we consider the unit interval
[0, 1] ⊂ R∗. We apply the construction with the choice of vectors X1 = s,X2 = −t,
s, t ∈ R∗

+, and with the corresponding quasilattice Q = X1Z+X2Z. We leave it as an
exercise to show that if s/t /∈ Q we obtain the quasisphere of Examples 1.19 and 2.10,
while in the remaining cases we get the standard sphere, and its orbifold cousins, the
teardrop and rugby ball. ✸

Example 3.6 (The right triangle) As a second example we consider the right tri-
angle in (R2)∗ of vertices (0, 0), (s, 0) and (0, t), where s, t are two positive real numbers
such that s/t /∈ Q. We apply the construction with the choice of vectors X1 = (1, 0),
X2 = (0, 1), X3 = (−t,−s) and with the corresponding quasilattice Q = X1Z+X2Z+
X3Z. Then we have λ1 = λ2 = 0, λ3 = −st and a linear mapping

π : (R3,Z3) −→ (R2, Q)

(x, y, z) 7−→ (x− tz, y − sz)

that induces a quasitorus homomorphism Π : T 3 → D2 = R2/Q whose kernel is given
by

N = { (e2πiσt, e2πiσs, e2πiσ) | σ ∈ R }.
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Consider now the standard action τ : T 3 × C3 −→ C3 with moment mapping given by

J : C3 −→ (R3)∗,
z 7−→ (|z1|2, |z2|2, |z3|2 − st).

Then the N -moment mapping is given by

Ψ : C3 −→ R∗

z 7−→ t|z1|2 + s|z2|2 + |z3|2 − st,

and
Ψ−1(0) = { z ∈ C3 | t|z1|2 + s|z2|2 + |z3|2 = st }

is the dimension 5 ellipsoid of center the origin and of radii (
√
s,
√
t,
√
st). The qua-

sitorus D2 acts on the quasifold M = Ψ−1(0)/N with moment mapping

Φ : M −→ (R2)∗

[z] 7−→ (|z1|2, |z2|2),

and Φ(M) = ∆. We call the quasifold M projective quasispace, by analogy with the
case of the rational right triangle (s/t ∈ Q), which gives either a weighted or an ordinary
projective space. ✸

The unit interval and the right triangle are actually rational (with respect to the ap-
propriate choice of lattices). Here comes finally an example of a polytope that is not.

Example 3.7 (The regular pentagon) Let us take the regular pentagon in (R2)∗.
We choose the vectors X1 = (1, 0),X2 = (a, b), X3 = (c, d), X4 = (c,−d), X5 = (a,−b)
and the corresponding quasilattice Q =

∑5
j=1XjZ, where a = cos 2π

5 , b = sin 2π
5 ,

c = cos 4π
5 , d = sin 4π

5 . Then we have λ1 = λ2 = λ3 = λ4 = λ5 = c and a linear
mapping

π : (R5,Z5) −→ (R2, Q)

(x1, x2, x3, x4, x5) 7−→ (x1 + a(x2 + x5) + c(x3 + x4), b(x2 − x5) + d(x3 − x4)).

that induces a quasitorus homomorphism Π : T 5 → D2 = R2/Q whose kernel is given
by

N = { (e2πiφ, e2πiθ, e2πiσ , e2πi[2a(θ−σ)+φ)], e2πi[2a(θ−φ)+σ)]) | (φ, θ, σ) ∈ R3 }.

Consider now the standard action τ : T 5 × C5 −→ C5 with moment mapping given by

J : C5 −→ (R5)∗,
z 7−→ (|z1|2 + c, |z2|2 + c, |z3|2 + c, |z4|2 + c, |z5|2 + c).

Then the N -moment mapping is given, for z ∈ C5, by Ψ(z) = −
(√

5
2 ,

√
5c,

√
5
2

)

+

(

|z1|2 + |z4|2 − 2a|z5|2, |z2|2 + 2a(|z4|2 + |z5|2), |z3|2 + |z5|2 − 2a|z4|2
)

,
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and Ψ−1(0) =

{

|z1|2 + |z4|2 − 2a|z5|2 = |z3|2 + |z5|2 − 2a|z4|2 =
√
5

2
, |z2|2 + 2a(|z4|2 + |z5|2) =

√
5c

}

.

The quasitorus D2 acts on the quasifold M = Ψ−1(0)/N and Φ(M) = ∆. ✸

A A few generalities on convex polyhedral sets

In this appendix we just recall the few definitions that we need from the theory of
convex polyhedral sets. Let d be a vector space of dimension n.

Definition A.1 (Convex polyhedral set) We call convex polyhedral set in the dual
space d

∗ the intersection of a finite number of half-spaces, that is, a set ∆ ⊂ d
∗ for

which there exist elements X1, . . . ,Xd in d and λ1, . . . , λd in R such that

∆ =
d
⋂

j=1

{ µ ∈ d
∗ | 〈µ,Xj〉 ≥ λj }. (A.1)

△

We will always assume that our convex polyhedral sets have dimension2 n. Convex
polytopes and convex polyhedral cones are the examples of convex polyhedral sets that
we are mostly concerned with.

Definition A.2 (Rational convex polyhedral set) A convex polyhedral set ∆ ⊂
d
∗ is said to be rational if there exists a lattice L ⊂ d such that the elements Xj in

(A.1) can be taken in the lattice L. △

For example, the regular pentagon is not a rational polytope, or, in the words of a
quasicrystal geometer, the group of symmetries of a regular pentagon is not a lattice-
preserving group. We conclude with the definition of simple convex polyhedral set.

Definition A.3 (Simple convex polyhedral set) A convex polyhedral set ∆ ⊂ d
∗

is said to be simple if there are exactly n edges stemming from each vertex. △

For example, among the platonic solids the cube, the dodecahedron and the tetrahedron
are simple polytopes, while the icosahedron and the octahedron are not.

2i.e. the dimension of the affine subspace that they generate
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