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Fig. 1. Our method (e) addresses the issue of excessive smoothing observed in denoising of Monte Carlo
estimates (b), even when using high-quality denoising algorithms such as Intel® Open Image Denoise (OIDN)
with albedo and normal auxiliary features (c). By leveraging convergence curve prediction, our approach
ensures numerical convergence independently of the denoising algorithm, eliminating the need for denoising
at every iteration. Our method yields results comparable to those achieved with learning-based progressive
denoising (PD) and, in some cases, even outperforms it, as demonstrated in (d).

Denoising Monte Carlo rendered images is a critical challenge in computer graphics, traditionally addressed
in post-processing phases. Recent advances have shifted focus towards integrating denoising directly into
progressive rendering. This approach not only blends denoised outputs with noisy inputs to enhance visual
quality but also guides adaptive sampling through variance estimation of denoised outputs. In this paper, we
introduce a novel method that predicts the blending weight of denoised images directly during progressive
rendering. Our technique adjusts the blending weight for each pixel based on error estimates, effectively
’skipping’ certain iterations of Monte Carlo Path Tracing (MCPT) and mimicking adaptive sampling a posteriori.
A key innovation of our approach is an analytical method that ensures the blended output converges accurately
to the reference image. Our method does not rely on deep-learning techniques, making it immediately
applicable to any denoising algorithm. We demonstrate that our method enhances visual quality and allows
for blending between noisy and denoised images, even those obtained at different MCPT iterations. This not
only streamlines the rendering process but also improves efficiency and output fidelity.
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1 Introduction
In 1986, Kajija [Kajiya 1986] introduced Monte Carlo Path Tracing (MCPT), a rendering technique
capable of generating images that closely resemble photographs when accurately modeling both
lighting and material properties. However, the inherent stochastic nature of Monte Carlo (MC)
simulations inevitably introduces noise, particularly in initial iterations and areas with insufficient
lighting, which stands as a primary drawback of this method [Cook 1986]. As scenes and lighting
configurations grow more complex, the number of iterations required to produce a clear, noise-free
image increases accordingly [Shirley and Morley 2008]. Employing noise reduction as a post-
processing step on the partially converged image can significantly reduce the time needed to
generate an acceptable, though not always perfectly accurate, result [Firmino et al. 2022]. In the
field of denoising, a common challenge arises when managing high-frequency elements within
rendered images. Denoising algorithms often struggle to differentiate these details from noise,
leading to unintended over-blurring even at very high sample counts. This loss of fine detail is
evident in the spectral analysis, where the lower amplitude of the higher frequencies indicates a
suppression of these crucial components within the denoised image (see Figure 1 of Supplementary).

However, preserving the details and ensuring that the denoised image accurately converges to the
reference can be crucial, particularly in fields like biomedical rendering, where three dimensional
representation has demonstrated its utility in quickly comprehending traumas in anatomically
complex areas, aiding in surgical planning, simulation, and training [Bueno et al. 2021; Ebert et al.
2017]. A recent advancement in this realm is the introduction of the Advanced Realistic Rendering
Technique (AR2T), inspired by MCPT and tailored for biomedical volumes [Denisova et al. 2023].

Recent studies advocate for blending denoised outputs with noisy inputs to enhance results [Gu
et al. 2022; Yang 2024] and ensure convergence to the ground truth [Firmino et al. 2022]. However,
these approaches rely on neural networks trained on denoised images, necessitating re-training
whenever the denoising algorithm changes.

In our work, we propose an analytical solution for blending unbiased (hypothetically noisy MC
estimate) and biased (denoised) images, independent of the denoising algorithm employed, whether
traditional or deep learning-based. Our method accommodates both progressive denoising, applied
iteratively after each MC iteration to refine accumulated estimates, and progressive rendering,
where denoising ceases after a predetermined number of iterations. In alternative, our method can
be used as a final step in the MCPT algorithm, helping to reconstruct details potentially lost during
denoising when the algorithm converges. In contrast to real-time rendering with minimal ray
budgets [Donnelly et al. 2024; Schied et al. 2017], our method is specifically designed for progressive
rendering, a method commonly used for generating photorealistic images in the movie industry
[Bako et al. 2017; Christensen et al. 2018] and medicine [Denisova et al. 2023; Hofmann et al. 2020].
Unlike previous works [Firmino et al. 2022; Gu et al. 2022; Yang 2024], our method does not

rely on deep learning techniques and therefore does not require re-training when the denoising
algorithm changes. In contrast to current algorithms, which rely on blending images from the same
iteration, ours allows for the blending of images acquired at varying sample counts. This eliminates
the trade-off between computational efficiency and visual quality, leading to improvements in both.

We compute blending weights for each pixel channel using both the MC estimate and denoised
images. These weights correspond to effective or ’predicted’ iteration numbers – essentially, the
samples per pixel during MC simulations. This process mimics adaptive sampling a posteriori.
Similar to previous studies [Firmino et al. 2022; Li et al. 2012], we utilize the Stein Unbiased

Risk Estimate (SURE) for estimating the mean squared error (MSE) of denoised images against the
reference. It necessitates the input radiance values to adhere to a normal distribution, crucial for
SURE’s accuracy.
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Fig. 2. Plot of the mean variance of images generated with Mitsuba (right) in logarithmic scale.

We illustrate our approach using the Mitsuba framework [Nimier-David et al. 2019] for MCPT
rendering, employing two pre-trained denoising models: Intel® Open Image Denoise (OIDN) [Áfra
2023] with albedo and normal auxiliary features, and RT, a denoiser based on OIDN but operated
on albedo, normal, and input mean variances [Firmino et al. 2022]. Our results are comparable with
state-of-the-art deep-learning progressive denoising methods and even surpass them in some cases,
as illustrated by Figure 1.
We demonstrate the retrospective feasibility of our method and advocate for its application in

real-time scenarios, highlighting its potential to improve both rendering efficiency and quality.
Additionally, our approach can be effectively integrated with adaptive sampling techniques, wherein
weights assigned to each pixel guide the sampling process.

2 Methods
Our objective is to find the weights for unbiased (noisy) and biased (denoised) pixels at every MC
iteration, such that the blending result is as close as possible to the reference pixel value. Therefore,
we will solve the following optimization problem:

argmin
𝑊𝑖≥0

𝑟𝑖 (𝑁 ) − 𝐼𝑛𝑖 (𝐼 ) +𝑊𝑖𝑑𝑖 (𝐼 )
𝐼 +𝑊𝑖

 (1)

Here, 𝑟𝑖 (𝑁 ) denotes the 𝑖-th pixel of the reference obtained at iteration 𝑁 ; 𝑛𝑖 (𝐼 ) is the 𝑖-th pixel
of the noisy MC estimate obtained at iteration 𝐼 , which also represents the weight of 𝑛𝑖 ;𝑊𝑖 denotes
the unknown weight of the 𝑖-th pixel 𝑑𝑖 (𝐼 ) of the denoised image, obtained by applying a denoising
algorithm 𝑑 to 𝑛𝑖 (𝐼 ), i.e., 𝑑𝑖 (𝐼 ) = 𝑑 (𝑛𝑖 (𝐼 )). We emphasize that 𝑑𝑖 (𝐼 ) is the result of denoising the
MC estimate 𝑛𝑖 (𝐼 ), and not the result of blending obtained at iteration (𝐼 − 1). For brevity, we use
the term "pixel," but intend "pixel radiance". Furthermore, the reasoning presented throughout the
paper applies to every channel of the pixel: red, green, and blue.

On the one hand, the solution of Eq. 1 can be expressed as follows:

𝑟𝑖 (𝑁 ) = 𝐼𝑛𝑖 (𝐼 ) +𝑊𝑖𝑑𝑖 (𝐼 )
𝐼 +𝑊𝑖

(2)
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On the other hand, for the MC simulation [Kroese and Rubinstein 2012], an unbiased MC estimate
is calculated as the average of the samples 𝑠𝑖 (𝐽 ), and is given by:

𝑛𝑖 (𝐾) =
∑𝐾
𝐽 =1 𝑠𝑖 (𝐽 )
𝐾

=⇒ 𝑟𝑖 (𝑁 ) =
∑𝑁
𝐽 =1 𝑠𝑖 (𝐽 )
𝑁

(3)

Therefore, Eq. 2 is essentially a biased MC estimate of pixel 𝑖 at iteration 𝑁 = 𝐼 +𝑊𝑖 . This
estimate approaches an unbiased MC estimate given by Eq. 3 as the biased pixel 𝑑𝑖 (𝐼 ) approaches
the unbiased pixel 𝑛𝑖 (𝑊𝑖 ), obtained at iteration𝑊𝑖 .
In the following subsections, we will first discuss the outcome of "ideal" blending, where the

reference image is known, and the problem defined by Eq. 1 can be easily solved. Next, we will
analyze the approach using the convergence curves for the practical solution. Finally, we will delve
into how to compute these curves in real-time alongside the approach for estimating the denoised
image.

2.1 Ideal blending
Analyzing images retrospectively with access to the reference image allows for the calculation of
ideal blending between biased and unbiased images.
Let 𝑅𝑀𝑆𝐸𝑛𝑖 and 𝑅𝑀𝑆𝐸𝑑𝑖 denote the root mean square error (RMSE) values of the MC estimate

and denoised pixels, respectively, compared to the reference image. Resolving Eq. 2 for𝑊𝑖 , we get:

𝑊𝑖 = 𝐼 ·
𝑟𝑖 (𝑁 ) − 𝑛𝑖 (𝐼 )
𝑑𝑖 (𝐼 ) − 𝑟𝑖 (𝑁 ) = ±𝐼 ·

𝑅𝑀𝑆𝐸𝑛𝑖

𝑅𝑀𝑆𝐸𝑑𝑖
(4)

Upon first inspection, one may decide to always choose the plus sign in Eq. 4, given that 𝐼 and
RMSE values are positive, and𝑊𝑖 should be positive by definition. However, this solution might
not be optimal, given that the RMSE considers only the distance to the reference, not the direction.
Thus, while the formula in Eq. 4 doesn’t necessitate values of the reference pixel directly, the
ambiguity in choosing the sign remains crucial, making this theoretical solution unsuitable for
practical evaluation.

2.2 Convergence curves
To find a practical solution to the problem posed by Eq. 1, we consider the following optimization
problem:

argmin
𝑊𝑖≥0

∥𝑑𝑖 (𝐼 ) − 𝑛𝑖 (𝑊𝑖 )∥ (5)

Indeed, according to the reasoning done for Eq. 2, where the biased estimate at sample count
of 𝑁 approaches an unbiased MC estimate at sample count of 𝑁 as long as the biased value at
sample count of 𝐼 approaches the unbiased value at sample count of𝑊𝑖 , the problems defined by
Eq. 1 and Eq. 5 are equivalent. It follows from the fact that if we find𝑊𝑖 such that the norm of the
difference between 𝑑𝑖 (𝐼 ) and 𝑛𝑖 (𝑊𝑖 ) is minimized, then this minimized norm value will directly
lead to minimizing the norm value in Eq. 1. Furthermore, for𝑊𝑖 that solves Eq. 5, the following is
true:

∥𝑑𝑖 (𝐼 ) − 𝑛𝑖 (𝑊𝑖 ) − 𝑟𝑖 (𝑁 ) + 𝑟𝑖 (𝑁 )∥ = 0 =⇒ ∥(𝑑𝑖 (𝐼 ) − 𝑟𝑖 (𝑁 )) − (𝑛𝑖 (𝑊𝑖 ) − 𝑟𝑖 (𝑁 ))∥ = 0
=⇒ ∥𝑟𝑖 (𝑁 ) − 𝑑𝑖 (𝐼 )∥ = ∥𝑟𝑖 (𝑁 ) − 𝑛𝑖 (𝑊𝑖 )∥ =⇒ 𝑀𝑆𝐸𝑑𝑖 (𝐼 ) = 𝑀𝑆𝐸𝑛𝑖 (𝑊𝑖 )

(6)

Here,𝑀𝑆𝐸𝑑𝑖 (𝐼 ) and𝑀𝑆𝐸𝑛𝑖 (𝑊𝑖 ) are the mean square errors of denoised pixel𝑑𝑖 (𝐼 ) andMC estimate
𝑛𝑖 (𝑊𝑖 ), respectively, compared to the reference pixel.
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Our approach is based on two observations. First, the mean square error of the MC estimate
compared to the reference can be estimated by its mean variance, as demostrated in [Firmino
et al. 2022]. Second, the mean variance of pixel values decreases as the iteration number increases,
eventually converging to zero. Consequently, each mean variance value corresponds to a specific
iteration. With knowledge of the convergence curve, we can determine the iteration at which
a particular mean variance value was achieved. Therefore, if we have the mean variance of the
denoised pixel, we can assign it the weight it merits in Eq. 2. It’s important to note that this practical
solution introduces a bias, because while Eq. 6 follows from Eq. 5, the reverse is not necessarily
true. However, we will demonstrate that despite this relaxation, the method does indeed perform
well in practice.

In a sense, our approach can be viewed as adaptive sampling a posteriori. After denoising, pixels
with higher variance improve and receive higher weight, as if they were estimated by more samples.

Figure 2 displays the mean variance curves in logarithmic scale for 10 different scenes generated
with Mitsuba. These curves offer valuable insights into the convergence behavior of the MC
rendering process across various scenes, shedding light on the relationship between iteration
count and variance reduction. Understanding these curves is crucial for informing our approach to
denoising and adaptive sampling.

Notably, all curves in the plot can be effectively approximated by lines of the form:

𝑙𝑜𝑔(𝑣𝐼 ) = 𝑎 · 𝑙𝑜𝑔(𝐼 ) + 𝑏 (7)

Here, 𝑣𝐼 represents the mean variance of the entire image obtained at the 𝐼 -th iteration, and 𝑎
and 𝑏 are the slope and intercept of the line, respectively. Note that this 𝐼 is the same as the one
used in Eq. 2, as the weight of an unbiased pixel corresponds to the iteration count.

Therefore, it’s possible to construct the convergence curve by calculating the slope and intercept
of Eq. 7.

It is important to note that the curves in Figure 2 represent the average mean variance among all
image pixels. However, these curves are much more stable than those of a single pixel, as illustrated
in Figure 3 of Supplementary. The jumps at initial sample counts indicate the presence of outliers,
such as when a low probability path is found. This observation suggests that some filtering of the
variance might be necessary before applying the reasoning done for average mean variances to the
mean variance per pixel.

2.3 Easy blending
Before passing to the curves calculation, let’s consider a straightforward approach to blending
biased and unbiased values involving the following formula:

𝑟𝑖 =

{
𝑛𝑖 , if 𝑅𝑀𝑆𝐸𝑑𝑖 > 𝑅𝑀𝑆𝐸𝑛𝑖
𝑑𝑖 , otherwise.

(8)

The method, expressed in Eq. 8, does not directly rely on the reference pixel’s value. While
lacking the precision of Eq. 4, which requires knowledge of exact RMSE values, easy blending offers
simplicity in implementation.
Figure 3 presents the MSE of the MC estimate, its denoised counterpart, and the easy blending

solution under the assumption of knowing exact values of 𝑅𝑀𝑆𝐸𝑑𝑖 and 𝑅𝑀𝑆𝐸𝑛𝑖 . Based on the
findings from Figure 3, both quantitative and visual comparisons for the easy blending solution
show promise. Consequently, we will conduct a practical evaluation later on, comparing it with
our proposed approach.
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Fig. 3. Left: Plot of the mean squared error (MSE) for the Monte Carlo (MC) estimate (red), Open Image
Denoise (OIDN, green), and easy blend (EB, blue) according to Eq. 8, depicting a San Miguel outdoor scene.
Right: Crop of the San Miguel scene (refer to Fig. 2, middle at the bottom) showing the comparison between
128 samples per pixel (spp) MC estimate (red), OIDN (green), and EB (blue), with the 32K spp reference
(black).

Note that both methods discussed above do not require the MC estimate and the denoised image
to be obtained at the same iteration.

2.4 Retrospective curves calculation
Let’s consider a scenario where we have the mean variance values for all rendered images from
the initial iterations up to the reference image. In such cases, we can use least squares regression
[Stigler 1981] to determine the parameters of Eq. 7. However, due to the lower accuracy of mean
variance values in the earlier iterations, some filtering of the data is necessary (refer to Figure 3 of
Supplementary).
Eq. 7 suggests a linear relationship between the points, with the mean variance decreasing as

the number of samples increases. Therefore, to achieve the most accurate regression results, we
prioritize mean variance values that increase from the last one. This prioritization is based on the
statistical principle that the latest value is generally more accurate than previous ones. Additionally,
we exclude zero-values from consideration to accommodate logarithm.

Following this filtering process, a minimum of two values is sufficient to solve Eq. 7 for the
parameters 𝑎 and 𝑏. It’s anticipated that all pixels, except possibly completely black ones, will have
an associated curve calculated retrospectively.

In the case of completely black pixels, if denoising algorithms maintain zero-values, an arbitrary
weight can be assigned to denoised pixels. However, if zero-values are not maintained, denoised
pixels should be assigned a zero weight.
From now on, we consider the practical solution to the blending problem, such as deciding the

blending weights on-the-fly without access to the reference.

2.5 Curves calculation on-the-fly
In practice, we only have variance values for previous iterations rather than for all iterations until
the reference. Despite this limitation, we can still calculate curves using the available data, although
with reduced accuracy. Generally, curves calculated from earlier iterations are less accurate, with
accuracy improving as the iterations progress.

Operating with this reduced data, it’s possible that some pixels may not have enough information
to calculate the curve at the current iteration. In such cases, we accept only the last variance value
while filtering out all others. Consequently, we need to calculate the second point to enable curve
calculation.

Let’s consider the MC estimate formula:
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∑𝑁
𝑖=1 𝑆𝑖

𝑁
= 𝑅 (9)

Here, 𝑁 represents the number of iterations (samples) 𝑆𝑖 for the reference 𝑅 estimate. We can
show that:

∥𝑅 −𝐴𝐾 ∥ =
(
𝑁

𝐾
− 1

)
∥𝑅 −𝐴𝑁−𝐾 ∥, (10)

where

𝐴𝐾 =

∑𝐾
𝑖=1 𝑆𝑖

𝐾
, 𝐴𝑁−𝐾 =

∑𝑁
𝑖=𝐾+1 𝑆𝑖
𝑁 − 𝐾 , 1 ≤ 𝐾 ≤ 𝑁 − 1

Given that 𝑆𝑖 are independent, we have:

E [𝑉𝐾 ] =
(
𝑁

𝐾
− 1

)2
E [𝑉𝑁−𝐾 ] (11)

Here, 𝑉𝐾 and 𝑉𝑁−𝐾 represent the mean variances at iteration 𝐾 and 𝑁 − 𝐾 , respectively.
Therefore, if we have the mean variance 𝑉𝐾 at iteration 𝐾 , and we set 𝑁 to be sufficiently large

(e.g., 106), we can obtain 𝑉𝑁−𝐾 and use it for curve calculation without knowing the reference
value.

However, some non-black pixels may still have zero variance in earlier iterations, and the values
are generally not accurate (please refer to Figure 4 of Supplementary). To address these issues, the
values should be pre-processed.

To mitigate the noise in mean variance, we apply Gaussian blur [Gedraite and Hadad 2011].
Following [Firmino et al. 2022], we set 𝜎 = min(

√︁
𝑉 , 1) × 102, where 𝑉 is the mean variance of

the entire image. It is notable that the mean variance image exhibits high noise similar to the MC
estimate. Therefore, as an alternative to Gaussian blur, we attempt to apply OIDN.
We compared the MSE between the slope and intercept of the curves calculated on-the-fly and

those calculated retrospectively. These MSE values provide insights into the effectiveness of the
denoising methods in preserving the accuracy of the calculated curves. Interestingly, using just
two last points for curve calculation does not significantly alter the result. Moreover, the curves
appear stable starting from 64 spp (see plots of Figure 4 of Supplementary).

2.6 Denoising estimation
We adopted the Stein Unbiased Risk Estimator (SURE), as proposed by Li et al. (2012) [Li et al. 2012],
to assess the quality of the denoised image. [Firmino et al. 2023] demonstrated this method to be
more efficient compared to the double-buffer error estimate, which was introduced by [Rousselle
et al. 2012] in the context of adaptive sampling. For a single denoised pixel 𝑖 , SURE can be expressed
as:

𝑆𝑈𝑅𝐸 (𝑑𝑖 (𝐼 ))) = −𝜎2 + ∥𝑑𝑖 (𝐼 ) − 𝑛𝑖 (𝐼 )∥2 + 2𝜎2𝑑 ′ (𝑛𝑖 (𝐼 )) (12)
where 𝑛𝑖 (𝐼 ) is distributed normally with variance 𝜎2, and the denoised estimator 𝑑 is weakly
differentiable.
While most components of this equation are known, estimating the last term 𝑑 ′ (𝑛𝑖 (𝐼 )) poses a

challenge. Following [Ramani et al. 2008], we utilize the Monte Carlo SURE first-order approxima-
tion:
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Fig. 4. Two left plots depict the retrospective mean MSE for ten test scenes using easy blending (EB) and
blending based on Eq. 2 (Ours), contrasted with the MC estimate and the denoised counterpart (OIDN and
RT). The evaluation is conducted using both actual errors (ideal) and error estimates (real). Two right plots
present MSE results obtained by calculating the convergence curves on-the-fly using the last two points
without filtering error estimates [Ours (No Filter)], applying Gaussian blur [Ours (GB)], and with OIDN
[Ours (OIND)]. Additionally, the curves labeled as [Ours (GB, 128)] represent the scenario where denoising
stops at the sample count of 128, with error estimates filtered using Gaussian blur.

𝑑 ′ (𝑛𝑖 (𝐼 )) ≈
1
𝜖𝐾

𝐾∑︁
𝑘=1

𝑏𝑘 (𝑑 (𝑛𝑖 (𝐼 ) + 𝜖𝑏𝑘 ) − 𝑑𝑖 (𝐼 ))) (13)

Here, 𝑏𝑘 are normally distributed randoms with mean zero and covariance 1. Regarding 𝐾 value,
we experimentally found that setting it to 1 (for OIDN) or 4 (for RT) is sufficient. A higher count
for 𝐾 indicates lower stability of the denoising algorithm. As per Ramani [Ramani et al. 2008], the
selection of 𝜖 is stated to have no impact on the outcome but is recommended to be "quite small."
However, in practice, the choice of this parameter can be pivotal. Notably, the sensitivity to variance
of the OIDN denoiser is twice as high on CPU compared to GPU. Through experimentation, we
discovered that setting 𝜖 = 1 yields more stable outcomes.
Due to the high variance observed at low sample counts, SURE values may display instability.

Additionally, as indicated by Eq. 12, SURE values can potentially be negative, which lacks a physical
interpretation since SURE is intended to estimate the mean square distance. During our experiments,
we observed that setting negative SURE values to zero improves estimation accuracy at low sample
counts. However, this trend shifts at higher sample counts. Additionally, setting SURE to zero
at higher sample counts may result in assigning excessive weight to the denoised counterpart,
potentially leading to errors if denoising is halted from a certain sample count onwards.
Indeed, it makes practical sense. We calculated the weights by first setting SURE to zero and

then to its magnitude at every MC iteration. Then, we compared the blended values, according
to Eq. 2, with the reference. The plot in Figure 5 of Supplementary illustrates the percentage at
each sample count of how many blended values were closer to the reference by choosing zero or
magnitude for negative SURE. Notably, setting negative SURE values to zero results in significantly
better estimations at lower sample counts, but this tendency decreases as the sample count grows.
Although it may seem at first glance that zeroing the negative SURE values produces better results,
caution is needed when denoising stalls at certain iterations. In such cases, the zeroing approach
can result in assigning a very high weight to biased pixels, whose quality remains constant as
sample counts increase, while the quality of unbiased input improves. Therefore, it is safer to use
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Fig. 5. Visual comparisons of the MC estimate (a) against results generated by OIDN and RT denoisers (b),
and our method of curves (c) relative to the reference (d). In our method, Gaussian blur was applied for error
estimates filtering.

the magnitude strategy, allowing unbiased pixels to compete with biased ones. Consequently, we
switch from the zeroing strategy to the magnitude strategy when the mean variance of the MC
estimate becomes less than the mean SURE.

To enhance SURE stability, we apply Gaussian blur (𝑤 = 11, 𝜎 =𝑚𝑖𝑛(
√︁
𝑉 , 1) × 102) as we already

do for the mean variance. Additionally, as an alternative approach, we also apply OIDN.
Notably, the Gaussian blur effect is constrained by the choice of 𝜎 . Meanwhile, OIDN can

sometimes yield inferior results at higher sample counts compared to unfiltered values. Applying
the same principle applied for Gaussian blur, we halt the denoising of mean variance and SURE
when the mean variance of the entire image falls below the mean SURE.

With these components in place, we calculate the weight of the denoised pixel for blending
defined by Eq. 2 using:

𝑙𝑜𝑔(𝑊𝑖 ) =
𝑙𝑜𝑔(𝑆𝑈𝑅𝐸𝑖 ) − 𝑏

𝑎
, (14)

where 𝑎 and 𝑏 define the convergence curve given by Eq. 7.
The convergence of the blending result directly follows from the method’s properties. With

increasing sample count, the accuracy of the mean variances of MC estimates improves, leading to
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Fig. 6. Visual comparisons of the MC estimate (a) alongside results generated by our method of curves (d),
denoising algorithms (b), and PD (c). Difference is a visual representation of MSE relative to the reference (e).
The plots represent the MSE of entire image meanwhile MSE values under the crop represent the MSE of the
crop.

more reliable estimates for blending. Furthermore, the distribution of the sample mean approaches
a normal distribution [Li et al. 2012], which is a well-suited condition for applying SURE for
optimal weighting. Since SURE is an unbiased estimator, it minimizes the risk of the blended image,
ultimately leading to convergence of the blending process.
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Fig. 7. Visual comparison of results produced by our method applying Gaussian blur (GB, a) and OIDN (b)
to the error estimates. OIDN was employed for denoising MC estimate at a sample counts of 8. The plot
illustrates the quantitative comparison in terms of MSE.

3 Results
We present our findings based on ten scenes rendered at sample counts ranging from 2 to 65536
samples per pixel, as depicted in Figure 2. These scenes are sourced from publicly available pbrt
[Pharr et al. 2023] scenes and were rendered in Mitsuba [Nimier-David et al. 2019] by Firmino et al.
[Firmino et al. 2022].
All considerations are based on analyzing the scenes rendered at powers of 2, from 2 to 8192

samples per pixel, together with their corresponding albedo, normal, and mean variance. We do
not include the images rendered at 16384 spp as not all scenes are provided with the rendering at
this sample counts. The scenes rendered at 32K and 65K spp are used as references. The references
themselves are excluded from the analysis, as the metrics measurement would be meaningless for
these images. This is because the reference image is being compared to itself, yielding no difference.
We evaluated our method using two denoising algorithms: OIDN with albedo and normal, and

RT – a denoiser based on OIDN but operated on albedo, normal, and input mean variances [Firmino
et al. 2022].
Two left plots of figure 4 illustrates the mean MSE retrospectively calculated for all test scenes

using easy blending and blending according to Eq. 2, compared with the MC estimate and the
denoised counterpart. The "ideal" curves correspond to blended images obtained using retrospec-
tively calculated curves and estimating the denoised image with actual MSE with the reference
images. The "real" curves represent blended images obtained using mean variances and SURE.
Despite the easy blending curves being better than the curves according to Eq. 2 when calculated
retrospectively, the situation changes when blended using error estimates, demonstrating that the
curves approach outperforms easy blending for real scenarios.

Two right plots of Figure 4 showcases the results achieved by calculating the convergence curves
on-the-fly using only the last two points, with variances both unfiltered and filtered through
Gaussian blur, as well as with OIDN. Similarly, SURE values were examined without any filtering,
filtered with Gaussian blur, and processed with OIDN. Additionally, the plots depict the scenario
where denoising halts at the sample count of 128, with both mean variance and SURE values filtered
using Gaussian blur. Evidently, the filtering substantially enhances the results, and even in cases
where denoising terminates at a lower sample count, the curve smoothly aligns with the reference
alongside the MC estimate.
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Fig. 8. Visual comparison of OIDN (b) and our method (c), evidenced by difference (e) and (f). The presented
images are 20x20 crops of the exact center of Mitsuba scenes: (1) bathroom2, (2) bistro-cafe, (3) coffee, (4)
crown, (5) glass-of-water, (6) kitchen, (7) landscape, (8) living-room-3, (9) sanmiguel, (10) spaceship. Inputs (a)
are rendered at randomly assigned sample per pixel (spp). References (d) are rendered at 32K or 64K spp.

We performed a spectral analysis for the Crown scene, including our method with the curves
calculated on-the-fly and the estimates filtered with Gaussian blur. As Figure 2 of Supplementary
demonstrates, our method successfully reduces noise at the lower sample counts while maintaining
the amplitudes of the higher frequencies at the higher sample counts, in contrast to the OIDN,
which denoises too aggressively.

Figure 5 provides a comprehensive visual comparison of the effectiveness of our method in
contrast to OIDN and RT denoisers. The visual comparison showcases how our method excels in
enhancing the level of detail while effectively preserving denoising in areas where it is necessary.
For additional examples, readers are encouraged to refer to Supplementary Figure 7.
Furthermore, we delve deeper into the comparative analysis of the results obtained from our

method, denoising algorithms, and progressive denoising (PD) technique [Firmino et al. 2022].
Figure 6 gives a visual comparison of our method with OIDN, RT, and PD. Through a graphical
representation of MSE concerning the reference image, the plots illustrate the quantitative differ-
ences between the methods. We observe comparable results when using OIDN for image denoising,
while our method outperforms progressive denoising when using RT, particularly starting from 64
samples per pixel. The comparison scene by scene can be found in Supplementary Figure 8.
On our Nvidia RTX A4000, denoising an image of 1920x1080 using OIDN takes approximately

15 ms, while SURE calculation takes about 16 ms for 𝐾 = 1 for the pre-generated randoms 𝑏𝑘 used
in Eq. 13. Curves calculation using two points and eventual Gaussian blur takes less than 1 ms. In
total, producing the blending result takes about 35 ms.
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Fig. 9. Visual comparisons of the MC estimate inputs obtained at 512 spp against results generated by OIDN
and OptiX, and our method relative to the reference at 32K spp. In our method, Gaussian blur was applied for
error estimates filtering. Scenes were generated with AR2T framework.

4 Discussion, Limitations, and Future Work
The results showcase that leveraging denoising of the mean variance and SURE yields quantitative
outcomes comparable to, or even superior to, those achieved by the PD network, as evidenced in
Fig. 6. However, our method requires a reasonable number of iterations of MCPT for computation.
First, because the input radiance values of MC images should adhere to a normal distribution,
crucial for SURE’s accuracy, and the accuracy of the estimate increases with the sample count
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[Li et al. 2012]. Second, because of the accuracy of mean variances needed for curves calculation.
Theoretically, our method can be applied at any iteration but it starts excelling from sample counts
16 in our experiments. Applying Gaussian blur to mean variance and SURE proves advantageous
for reducing estimation errors at lower sample counts. Denoising SURE with OIDN yields inferior
quantitative results, although visually, the blended images appear more natural and aesthetically
pleasing, exhibiting less artificiality [Jung et al. 2015], as illustrated on Fig. 7. This misleading result
may be explained by the fact that the MSE metric is too basic to capture visual perception. To
address this gap, we considered HDR- FLIP – an error metric designed to evaluate the perceptual
quality of rendered high dynamic range images [Andersson et al. 2021].
As Figure 10 of Supplementary shows, the FLIP scores are generally lower for OIDN at lower

sample counts. The curves representing our method with Gaussian blur on estimates overlap with
that of PD (up to spp 128), becoming better at higher sample counts (from spp 256). However, our
method with OIDN on estimates performs worse than the one with Gaussian blur, even in terms of
average FLIP scores. We believe this discrepancy may also be due to the inherent limitations of
the metrics we considered: these metrics evaluate a single image and not the temporal sequence
experienced during progressive rendering.
As demonstrated on Figure 8, our method is not deprived of artifacts similar to deep-learning

based approach [Firmino et al. 2022]. It is most obvious at low sample counts and on homogeneous
areas as exemplified by scene crops (3) and (9). Instead, in highly detailed areas like exemplified by
crops (2) and (7), our approach performs particularly well. However, considering the presence of
artifacts at lower sample counts and the MSE/ FLIP score results, it may be prudent to start applying
blending techniques from a sample count determined empirically. Alternatively, blending could be
applied when the mean variance of the MC estimate becomes less than the mean SURE, though the
practical benefit of this approach needs to be proven.
The successful on-the-fly calculation of curves is evident, with the primary challenge lying in

precise SURE calculation – better precision leading to superior results. The denoising estimation
proposed in [Firmino et al. 2023] is expected to further enhance outcomes. Given OIDN’s promising
performance in variance and SURE denoising, a dedicated denoising algorithm for the estimators
could be explored.
We demonstrated our results using OIDN and OIDN-derived denoisers. While this might seem

like a limitation, our method is not dependent on the choice of the denoising algorithm, except
for the requirement that the denoising operator should be weakly differentiable, as imposed by
SURE. For those interested in further comparisons, we provide quantitative results of our method
applied to the OptiX denoiser [Parker et al. 2010] in Figure 11 of Supplementary. Despite OptiX
having different characteristics from OIDN, the results are congruent with those obtained for
OIDN and RT. Applying our method to non-deep-learning-based denoisers, such as Spatiotemporal
Variance-Guided Filtering [Schied et al. 2017] or its derivatives [Zhdan 2021], would undoubtedly
be interesting investigation.

While our results are promising, we acknowledge that we primarily demonstrated the method on
scenes generated with the Mitsuba framework. However, our approach is not limited to the specific
MCPT framework. In fact, it only requires the samples to follow a normal distribution. To showcase
this broader applicability, we also successfully applied our method to two scenes generated with
the AR2T framework [Denisova et al. 2023] from computed tomography (CT) scans: a cone beam
CT of Rocky dog torso available on Kaggle https://www.kaggle.com/datasets/imaginar2t/cbctdata,
and a spiral CT of a Manix head available at https://public.sethealth.app/manix.raw.gz. The trend
of improved visual quality with comparable or better MSE and FLIP scores observed in the Mitsuba
framework is maintained when applied to the AR2T scenes, as shown in Figure 9 (qualitative) and
Supplementary Figure 9 (quantitative).
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While our results are demonstrated on pre-generated scenes, considerations for real-time MC
rendering are crucial. Firstly, determining the optimal number of mean variance buffers for curve
calculation is essential. Although our experiments utilized mean variances at various sample counts,
practical applications may necessitate different steps and intervals for curve updates. Secondly,
exploring indicators for denoising cessation, such as themean variance of the entire image becoming
lower than the mean of SURE, could be insightful.
Additionally, our approach, applied to adaptive sampling techniques where weights assigned

to each pixel can guide the process, needs practical implementation. Moreover, many sampling
algorithms (not necessarily denoising algorithms) need to determine if their estimates are sufficient,
not only for adaptively selecting new samples but also for combining two estimates with different
amounts of variance using an appropriate weight. For example, in Reservoir-based Spatio-Temporal
Importance Resampling (ReSTIR) [Bitterli et al. 2020], calculating blending weights based on
variance estimation can enhance the process by providing a more robust mechanism for importance
resampling. We believe that our method could find applications in these areas.

5 Conclusion
In this study, we presented a method to predict the weight of denoised images during progressive
rendering. This process involves ’skipping’ a specific number of MCPT iterations, determined
through denoising. We dynamically adjust these weights for each pixel based on denoised variance,
effectively simulating adaptive sampling a posteriori. A notable innovation of our approach is
an analytical method ensuring precise convergence of the blended output to the reference image.
Importantly, our method stands out for its independence from deep-learning techniques, enabling
effortless integration with any denoising algorithm. We illustrate that our method can be seamlessly
incorporated into pre-trained or analytical denoisers, enhancing visual quality and allowing for
blending between noisy and denoised images, even those obtained at different MCPT iterations.
This dual advantage not only streamlines the rendering process but also enhances efficiency and
output fidelity.
The source code of our implementation is available on GitHub https://github.com/kruunua/

MCPTBlender for further exploration and use.
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