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A R T I C L E I N F O A B S T R A C T

Editor: Francois Gelis We use a first-principle quantum-statistical method to derive the expression of the entropy production rate in 
relativistic spin hydrodynamics. We show that the entropy current is not uniquely defined and can be changed by 
means of entropy-gauge transformations, similarly as the stress-energy tensor and the spin tensor can be changed 
with pseudo-gauge transformations. We show that the local thermodynamic relations, which are admittedly 
educated guesses in relativistic spin hydrodynamics inspired by those at global thermodynamic equilibrium, do 
not hold in general and they are also non-invariant under entropy-gauge transformations. Notwithstanding, we 
show that the entropy production rate is independent of those transformations and we provide a universally 
applicable expression, extending that known in literature, from which the dissipative parts of the energy 
momentum and spin tensors can be inferred.
1. Introduction

Motivated by the evidence of spin polarization of particles produced 
in relativistic heavy ion collisions [1,2], there is a growing interest in 
the so-called relativistic spin hydrodynamics [3–19]. Relativistic spin 
hydrodynamics stipulates that the description of a relativistic fluid re-

quires the addition of a spin tensor, that is the mean value of a rank 3 
tensor operator ̂𝜆𝜇𝜈 (the last two indices anti-symmetric) contributing 
to the overall angular momentum current:

̂ 𝜆𝜇𝜈 = 𝑥𝜇𝑇 𝜆𝜈 − 𝑥𝜈𝑇 𝜆𝜇 + ̂𝜆𝜇𝜈 ,

where 𝑇 𝜇𝜈 is the stress-energy tensor operator. This current is con-

served, which implies that the spin tensor fulfils the continuity equa-

tion:

𝜕𝜆̂𝜆𝜇𝜈 = 𝑇 𝜈𝜇 − 𝑇 𝜇𝜈 . (1)

It is important to point out that the spin tensor - and the stress-

energy tensor as well - are not uniquely defined. Indeed, they can be 
changed with a so-called pseudo-gauge transformation [20–22] to a 
new couple of tensors fulfilling the same dynamical equations and pro-

viding the same integrated conserved charges. Since the spin tensor can 
be made vanishing with a suitable pseudo-gauge transformation, its dy-

namical meaning has been questioned, yet it was observed in ref. [23]
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that for a fluid not in global thermodynamic equilibrium (such as the 
QGP throughout its lifetime) the quantum state of the system (i.e. the 
density operator describing initial local equilibrium) is not invariant 
under pseudo-gauge transformations. Thus, in principle, the physical 
measurements depend on the pseudo-gauge if the initial quantum state 
is not invariant, and particularly on the intensive quantity which is 
thermodynamically conjugated to the spin tensor, the spin potential. 
For instance, if the spin tensor does not vanish, the spin polarization 
of final particles depends on the difference between spin potential and 
thermal vorticity [24]. The microscopic conditions underpinning spin 
hydrodynamics have been studied and elucidated in ref. [11], where it 
was made clear that spin hydrodynamics regime occurs under a specific 
hierarchy of the interaction time scales in the system.

A key problem in the relativistic hydrodynamics with spin is the 
derivation of the constitutive equations of the spin tensor as well as 
of the anti-symmetric part of the stress-energy tensor. This problem has 
drawn significant attention over the past few years, with several deriva-

tions of constitutive equations [7–13] based on the requirement of the 
positivity of local entropy production rate. However, like in the tradi-

tional approach to relativistic hydrodynamics, the entropy current is 
not really derived, but it is obtained from an educated guess of ther-

modynamic relations between the proper densities of entropy, energy, 
charge and “spin density” 𝑆𝜇𝜈 ≡ 𝑢𝜆𝜆,𝜇𝜈 as follows:
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𝑇 𝑠+ 𝜇𝑛 = 𝜌+ 𝑝− 1
2
𝜔𝜇𝜈𝑆

𝜇𝜈

d𝑝 = 𝑠d𝑇 + 𝑛d𝜇 + 1
2
𝑆𝜇𝜈d𝜔𝜇𝜈

(2)

where 𝑇 is temperature, 𝜇 a chemical potential, 𝜌 the proper energy 
density, 𝑝 the pressure, 𝑛 the charge density and 𝜔𝜇𝜈 is the spin poten-

tial.1

In this work, we apply the quantum-statistical approach to rela-

tivistic hydrodynamics [25–27] by including spin tensor. The quantum 
statistical method based on local equilibrium density operator has sev-

eral advantages over other approaches in that it makes it possible to 
derive from first principles a form of the entropy current and entropy 
production rate rather than constructing it assuming a particular form 
of the local thermodynamic relation such as the equation (2). We will 
use a recent result on the extensivity of the logarithm of the partition 
function to obtain an exact form of the entropy current [28]. We will 
be able to show that the relation (2) is incomplete and that the en-

tropy density has, in general, additional terms involving the spin tensor. 
Furthermore, we will extend the derivation of ref. [25] of the entropy 
production rate to include the spin tensor. Such general relation is the 
starting point to derive the constitutive relations for the anti-symmetric 
part of the stress-energy tensor and the spin tensor.

2. Entropy current and local equilibrium

In the quantum-statistical description of a relativistic fluid, the local 
equilibrium density operator denoted as 𝜌𝐿𝐸 is obtained by maximizing 
entropy 𝑆 = − Tr(𝜌 log𝜌) over some preset space-like hypersurface by 
constraining the mean values of the energy, momentum, charge and 
spin densities to be equal to their actual values [23]:

𝜌LE = 1
𝑍LE

exp
⎡⎢⎢⎣−∫

Σ

dΣ𝜇
(
𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈

)⎤⎥⎥⎦ , (3)

where dΣ𝜇 ≡ dΣ 𝑛𝜇 , 𝑛 being the unit vector perpendicular to the hyper-

surface Σ; the function 𝑍LE is the partition function, and the operators 
𝑇 𝜇𝜈 , ̂𝜇𝜆𝜈 are the energy-momentum and spin tensor operators, a par-

ticular couple amongst all the possible couples connected by pseudo-

gauge transformations. The constraints read:

𝑛𝜇𝑇
𝜇𝜈 = 𝑛𝜇𝑇

𝜇𝜈

LE , 𝑛𝜇𝑗
𝜇 = 𝑛𝜇𝑗

𝜇

LE , 𝑛𝜇𝜇𝜆𝜈 = 𝑛𝜇𝜇𝜆𝜈

LE , (4)

where the local equilibrium values are defined as:

𝑋LE ≡ Tr(𝜌LE𝑋) − ⟨0|𝑋 |0⟩ , (5)

with |0⟩ being the supposedly non-degenerate lowest lying eigenvector 
of the operator in the exponent of (3). In the equation (3), the fields 
𝛽𝜈 , 𝜁 and Ω𝜆𝜈 are the Lagrange multipliers related to this problem, and 
they are the thermal velocity four-vector, the chemical potential to tem-

perature ratio, and the spin potential to temperature ratio respectively, 
that is:

𝛽 = 𝑢

𝑇
, 𝜁 = 𝜇

𝑇
, Ω= 𝜔

𝑇
. (6)

It is worth pointing out that they can be obtained as solutions of the con-

straint equations (4) [27], if the exact values of the stress-energy tensor 
and other currents are known. In relativistic hydrodynamics, since they 
are not known a priori, they are solutions of the hydrodynamic partial 
differential equations with initial conditions expressed by the equations 
(4) over the initial Cauchy space-like hypersurface. It should also be 
stressed that 𝛽 thereby defines a so-called hydrodynamic frame in its 
own (the so-called thermodynamic or thermometric or 𝛽 frame), which 
does not coincide with the Landau or Eckart frames. At global equilib-

rium one has:
2

1 This is related to Ω defined in ref. [23] by the relation 𝜔 = 𝑇Ω.
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𝛽𝜇 = 𝑏𝜇 +𝜛𝜇𝜈𝑥
𝜈 , with 𝑏,𝜛 = const , Ω=𝜛 , 𝜁 = const , (7)

where 𝜛 is a constant anti-symmetric tensor, the thermal vorticity.

Starting from the equation (3), it is possible to prove [28] that if the 
operator:

Υ̂ ≡ ∫
Σ

dΣ𝜇
(
𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈

)
is bounded from below and the lowest lying eigenvalue |0⟩ is non-

degenerate, the logarithm of 𝑍LE is extensive, namely it can be written 
as an integral over Σ:

log𝑍LE = ∫
Σ

dΣ𝜇 𝜙𝜇 − ⟨0| Υ̂ |0⟩
= ∫

Σ

dΣ𝜇
[
𝜙𝜇 − ⟨0| (𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈

)|0⟩] (8)

where

𝜙𝜇 =

∞

∫
1

d𝜆
(
𝑇
𝜇𝜈

LE (𝜆)𝛽𝜈 − 𝜁𝑗
𝜇

LE(𝜆) −
1
2
Ω𝜆𝜈𝜇𝜆𝜈

LE (𝜆)
)

(9)

is defined as the thermodynamic potential current. In the equation (9), 
the integration variable 𝜆 is a dimensionless parameter which multiplies 
the exponent of the local equilibrium density operator (3), that is:

𝜌LE(𝜆) =
1

𝑍LE(𝜆)
exp

⎡⎢⎢⎣−𝜆∫Σ dΣ𝜇
(
𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈

)⎤⎥⎥⎦ , (10)

and 𝑇 𝜇𝜈

LE (𝜆), 𝑗
𝜇

LE(𝜆), 𝜇𝜆𝜈

LE (𝜆) are calculated with the equation (5) with the 
modified density operator just defined in eq. (10). As 𝜆 multiplies 𝛽, 𝜁
and Ω, this coefficient plays the role of a rescaled inverse temperature, 
so it possible to change the integration variable in (9) from 𝜆 to 𝑇 ′(𝑥) =
𝑇 (𝑥)∕𝜆 and rewrite the thermodynamic potential current:

𝜙𝜇(𝑥) =

𝑇 (𝑥)

∫
0

d𝑇 ′

𝑇 ′2

(
𝑇
𝜇𝜈

LE (𝑥)[𝑇
′, 𝜇,𝜔]𝑢𝜈 (𝑥) − 𝜇(𝑥)𝑗𝜇LE(𝑥)[𝑇

′, 𝜇,𝜔]

− 1
2
𝜔𝜆𝜈(𝑥)𝜇𝜆𝜈

LE (𝑥)[𝑇 ′, 𝜇,𝜔]
)
, (11)

where we used eq. (6). The equation (11) shows that the thermody-

namic potential current can be calculated by integrating in temperature 
the mean values at local thermodynamic equilibrium of the various 
involved currents. It is important to stress the meaning of the square 
brackets, which denote a functional dependence on the arguments. In-

deed, the local equilibrium values of the currents at some point 𝑥
depend not just on the value of 𝑇 ′, 𝜇, 𝜔 at the same point 𝑥, but on 
the whole functions 𝑇 ′(𝑦), 𝜇(𝑦), 𝜔(𝑦); tantamount, assuming analyticity, 
on the value of the functions and all their gradients at the point 𝑥.

Once the thermodynamic potential current 𝜙𝜇 is determined, an 
entropy current can be defined. By using the definition (5) and the equa-

tions (3), (8) we have:

𝑆 = −Tr(𝜌LE log𝜌LE) = log𝑍LE

+ ∫
Σ

dΣ𝜇
(
Tr(𝜌LE𝑇 𝜇𝜈)𝛽𝜈 − 𝜁 Tr(𝜌LE𝑗𝜇) −

1
2
Ω𝜆𝜈 Tr(𝜌LÊ𝜇𝜆𝜈)

)
= ∫

Σ

dΣ𝜇
(
𝜙𝜇 + 𝑇

𝜇𝜈

LE𝛽𝜈 − 𝜁𝑗
𝜇

LE −
1
2
Ω𝜆𝜈𝜇𝜆𝜈

LE

)
, (12)

which implies that we can define an entropy current as:

1

𝑠𝜇 = 𝜙𝜇 + 𝑇

𝜇𝜈

LE𝛽𝜈 − 𝜁𝑗
𝜇

LE − 2
Ω𝜆𝜈𝜇𝜆𝜈

LE . (13)
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Fig. 1. An example of a family of 3D space-like hypersurfaces (solid lines) defin-

ing a foliation parametrized by the real variable 𝜏 , which is necessary to define 
local thermodynamic equilibrium. The 3D space-like hypersurface Σ does not 
belong to the foliation.

3. Entropy current: quasi-objective form and entropy-gauge 
transformations

The equations (11) and (13) define the fields 𝜙𝜇 and 𝑠𝜇 . How-

ever, they depend not just on 𝑥 but also on the space-like hypersurface 
employed to define the local equilibrium mean values of the currents 
through the density operator (3) 𝜌LE. More specifically, to each point 
𝑥 there must be a corresponding hypersurface Σ needed to define local 
thermodynamic equilibrium through the constraints (4). Altogether, to 
define the thermodynamic potential and entropy current at each point 𝑥
one needs to specify in advance a family of 3D space-like hypersurfaces, 
a so-called foliation of the space-time.

The dependence of the currents (11) and (13) on the foliation in-

volves a problem in that, if we are to calculate the total entropy by 
integrating the entropy current (13) on some Σ which does not belong 
to the foliation (see Fig. 1), the result is in general different from the to-

tal entropy which would be obtained from the Von Neumann formula 
imposing the constraints of local equilibrium (4) over this particular Σ. 
In symbols:

∫
Σ

dΣ𝜇 𝑠𝜇 ≠ −Tr(𝜌LE(Σ) log𝜌LE(Σ)) , (14)

with equality applying only if Σ belongs to the foliation. Such a situa-

tion is quite disturbing, as one of the requested features of the entropy 
current field is to provide the actual value of the total entropy.

To settle the issue, one can define the entropy current more in gen-

eral by using the actual values of the conserved currents instead of their 
values at local equilibrium, that is:

𝑠𝜇 = 𝜙𝜇 + 𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1
2
Ω𝜆𝜈𝜇𝜆𝜈 , (15)

with, accordingly (omitting most arguments to make the expression 
more compact):

𝜙𝜇 =

𝑇

∫
0

d𝑇 ′

𝑇 ′2

(
𝑇 𝜇𝜈[𝑇 ′]𝑢𝜈 − 𝜇𝑗𝜇[𝑇 ′] − 1

2
𝜔𝜆𝜈𝜇𝜆𝜈[𝑇 ′]

)
. (16)

Indeed, by using the actual values of the currents, whenever we inte-

grate them over some hypersurface Σ, not necessarily belonging to the 
original foliation, the result is the same that we would have obtained 
by enforcing the constraints (4) on Σ itself. Since:

∫
Σ

dΣ𝜇𝑠𝜇 = ∫
Σ

dΣ 𝑛𝜇
(
𝜙𝜇 + 𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈𝜇𝜆𝜈

)

= dΣ 𝑛𝜇

( 𝑇

d𝑇 ′ (
𝑇 𝜇𝜈[𝑇 ′]𝑢𝜈 − 𝜇𝑗𝜇[𝑇 ′] − 1

𝜔𝜆𝜈𝜇𝜆𝜈[𝑇 ′]
)

a l
Σ b

sio

∫
Σ

=

Sim

to 

∫

the

eq

en

cu

wh

tia

pre

mu

be

hy

eq

at 
de

als

on

be

req

say

ren

the

as 

en

tio

𝜙′𝜇

wh

𝑠′𝜇

wi

𝑆 =

inv

ten

an

ch

gau

aff

2

in 
3

∫
Σ

∫
0

𝑇 ′2 2
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+ 𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1
2
Ω𝜆𝜈𝜇𝜆𝜈

)
ocal equilibrium density operator like in equation (3) can be built on 
y enforcing the constraints (4) therein. Therefore, the above expres-

n becomes, by using eqs. (9) and (12):

dΣ 𝑛𝜇

( 𝑇

∫
0

d𝑇 ′

𝑇 ′2

(
𝑇
𝜇𝜈

LE [𝑇
′]𝑢𝜈 − 𝜇𝑗

𝜇

LE[𝑇
′] − 1

2
𝜔𝜆𝜈𝜇𝜆𝜈

LE [𝑇 ′]
)

+ 𝑇
𝜇𝜈

LE𝛽𝜈 − 𝜁𝑗
𝜇

LE −
1
2
Ω𝜆𝜈𝜇𝜆𝜈

LE

)
−Tr(𝜌LE(Σ) log𝜌LE(Σ)) .

ilarly, the equation (8) can be extended to a relation which applies 
any space-like hypersurface Σ:

dΣ𝜇𝜙𝜇 = log𝑍LE(Σ) + ⟨0| Υ̂ |0⟩ (17)

The two equations (15) and (16) are the final expressions defining 
 entropy current for a system which is close to local thermodynamic 

uilibrium. It is worth remarking that those equations imply that the 
tropy current depends on the actual mean values of the conserved 
rrents ensuing from the quantum field Lagrangian. The question is 
ether, with the definitions (16) and (15) the thermodynamic poten-

l and entropy current fields are objective, namely independent of a 
defined foliation. For this purpose, in the first place the Lagrange 
ltiplier fields 𝛽, 𝜁, Ω which also appear in those definitions should 

 independent thereof, a condition which is achieved in relativistic 
drodynamics if they are obtained as solutions of partial differential 
uations from given initial conditions.

Yet, a complete independence cannot be achieved. Looking carefully 
the thermodynamic potential current in eq. (16), it appears that its 
finition involves the knowledge of the conserved currents as function-

 of the temperature. However, such functionals can be constructed 
ly if the local equilibrium operator is introduced, hence a separation 
tween the local equilibrium term and the dissipative term, which does 
uire the introduction of a foliation. We can signify this limitation by 
ing that the thermodynamic potential current, and the entropy cur-

t as well, can be made quasi-objective. The quasi-objective nature of 
 entropy current also shows up in the entropy production rate (32), 
will be discussed in Section 5.

A further issue is that the thermodynamic potential current and the 
tropy current fields are not unique. It is quite clear that a transforma-

n of the thermodynamic potential current:

= 𝜙𝜇 +∇𝜆𝐴
𝜆𝜇 , (18)

ere 𝐴𝜆𝜇 is an arbitrary anti-symmetric tensor, implying:

= 𝑠𝜇 +∇𝜆𝐴
𝜆𝜇 (19)

ll leave the total entropy

∫
Σ

dΣ𝜇 𝑠𝜇

ariant because of the relativistic Stokes theorem, provided that the 
sor 𝐴 fulfils suitable boundary conditions. Therefore, just like 𝑇 𝜇𝜈

d 𝜇𝜆𝜈 , the entropy current 𝑠𝜇 is not uniquely defined and can be 
anged with transformations (19) [29],2 henceforth defined as entropy-

ge transformations. Such a freedom in defining the entropy current 
ects the local thermodynamic relations, as we will see. Nevertheless, 

Specific transformations of the entropy current were introduced in ref. [29]

the context of pseudo-gauge transformations of the stress-energy and spin 

tensor, see Section 6.
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the divergence of the entropy current is invariant under pseudo-gauge 
transformations because:

∇𝜇𝑠
′𝜇 =∇𝜇𝑠

𝜇 +∇𝜇∇𝜆𝐴
𝜆𝜇 =∇𝜇𝑠

𝜇 .

The entropy production rate will be discussed in Section 5.

4. Discussion on local thermodynamic relations

The local thermodynamic relation between proper densities can 
be obtained by contracting the entropy current with a suitable four-

velocity vector. For instance, one can contract the (15) with the four-

velocity defined by the direction of 𝛽 that is 𝑢𝜇 = 𝛽𝜇∕
√
𝛽2 = 𝑇 𝛽𝜇3:

𝑠 ≡ 𝑠𝜇𝑢𝜇 = 𝜙 ⋅𝑢+ 1
𝑇
𝜌−𝜁𝑛− 1

2
Ω𝜆𝜈𝑢𝜇𝜇𝜆𝜈 ≡ 𝜙 ⋅𝑢+ 1

𝑇
𝜌− 𝜇

𝑇
𝑛− 1

2
Ω𝜆𝜈𝑆

𝜆𝜈 ,

(21)

where 𝜌 = 𝑢𝜇𝑢𝜈𝑇
𝜇𝜈 and 𝑛 = 𝑢𝜇𝑗

𝜇 . Defining the pressure as:

𝑝 ≡ 𝑇𝜙 ⋅ 𝑢 ,

eq. (21) coincides with the first thermodynamic relation in eq. (2). It 
should be pointed out though, that only at global equilibrium with 
𝛽 = const this quantity coincides with the hydrostatic pressure, that is 
the diagonal spatial component of the mean value of the stress-energy 
tensor (see Appendix A); in all other cases, it does not need to. By con-

tracting eq. (16) with 𝑢 = 𝛽∕
√
𝛽2 we obtain:

𝑝 = 𝑇𝜙 ⋅ 𝑢 = 𝑇

𝑇

∫
0

d𝑇 ′

𝑇 ′2

(
𝑢𝜇𝑇

𝜇𝜈[𝑇 ′]𝑢𝜈 − 𝜇𝑢𝜇𝑗
𝜇[𝑇 ′] − 1

2
𝜔𝜆𝜈𝑢𝜇𝜇𝜆𝜈[𝑇 ′]

)

= 𝑇

𝑇

∫
0

d𝑇 ′

𝑇 ′2

(
𝜌[𝑇 ′] − 𝜇𝑛[𝑇 ′] − 1

2
𝜔𝜆𝜈𝑆

𝜆𝜈[𝑇 ′]
)
,

(22)

whence the following relation can be readily obtained:

𝜕𝑝

𝜕𝑇

|||𝜇,𝜔 = 𝑠 (23)

by using the (21). This equation is the first step in proving the second 
relation (2), but in fact the remaining two partial derivative of the pres-

sure function do not need to coincide with the charge density and the 
spin density and in general:

𝜕𝑝

𝜕𝜇

|||𝑇 ,𝜔 ≠ 𝑛 ,
𝜕𝑝

𝜕𝜔𝜆𝜈

|||𝑇 ,𝜇 ≠ 𝑆𝜆𝜈 .

Indeed, for the equality to apply, one would need the following thermo-

dynamic relation to hold:

𝑇 d𝑠 = d𝜌− 𝜇 d𝑛− 1
2
𝜔𝜆𝜈d𝑆𝜆𝜈 , (24)

and yet this cannot be obtained from the definitions (21) and (16).

Furthermore, the relation (23) is not invariant under entropy-gauge 
transformations. The thermodynamic potential current can be redefined 
according to the (18) and, contracting with the four-velocity we get:

3 Note that if one contracts the (15) with the normalized time-like eigenvec-

tor of the stress-energy tensor 𝑢𝐿 , which defines with the Landau frame, the 
obtained local thermodynamic relations reads:

𝑠𝐿 = 𝑠𝜇𝑢𝐿𝜇 = 𝜙 ⋅ 𝑢𝐿 + 𝑢𝐿 ⋅ 𝛽𝜌𝐿 − 𝜁𝑛𝐿 − 1
2
Ω𝜆𝜈𝑢𝐿𝜇𝜇𝜆𝜈

≡ 𝜙 ⋅ 𝑢𝐿 + 𝑢𝐿 ⋅ 𝛽𝜌𝐿 − 𝜁𝑛𝐿 − 1
2
Ω𝜆𝜈𝑆

𝜆𝜈
𝐿

(20)

Since 𝑢𝐿 ⋅ 𝛽 ≠√
𝛽2 = 1∕𝑇 , it turns out that, even if the entropy current was 

quasi-objective, the local thermodynamic relation is frame-dependent [27] and 
4

much care should be taken when using it to derive constitutive equations.
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Fig. 2. The hypersurface Σ is mapped to Σ𝜖 by an infinitesimal diffeomorphism 
𝜖. The vector field 𝛿(𝑥) is defined as d𝑥′(𝑥, 𝜖)∕d𝜖|𝜖=0.
𝑝′ = 𝑇𝜙′ ⋅ 𝑢 = 𝑝+ 𝑇 𝑢𝜇∇𝜆𝐴

𝜆𝜇 ,

where the transformed quantities are denoted with a prime. It is then 
easy to show that:

𝜕𝑝′

𝜕𝑇

|||𝜇𝜔 = 𝑠′ + 𝑢𝜇𝑇
𝜕

𝜕𝑇
∇𝜆𝐴

𝜆𝜇|||𝜇𝜔 . (25)

If the second term on the right hand side is non-vanishing, even the 
relation (23) is broken. An example of an entropy-gauge transformation 
which breaks the (23) is shown in Appendix C for the global equilibrium 
with rotation.

In conclusion, the local thermodynamic relations (2) are not fully 
appropriate in the derivation of the divergence of the entropy current. 
On one hand, it turns out that the differential relation in (2) cannot be 
proved in general and on the other hand, perhaps most importantly, 
because they are both non-invariant under entropy-gauge transforma-

tions, even for the case of a global equilibrium with 𝜛 ≠ 0.

5. Entropy production rate

The entropy production rate, which is important to obtain the consti-

tutive equations of relativistic hydrodynamics, is determined by taking 
the divergence of the equation (15). By using the continuity equations 
of the stress-energy tensor, the number current and the spin tensor, that 
is:

∇𝜇𝑇
𝜇𝜈 = 0 , ∇𝜇𝑗

𝜇 = 0 , ∇𝜇𝜇𝜆𝜈 = 𝑇 𝜈𝜆 − 𝑇 𝜆𝜈 , (26)

we obtain:

∇𝜇𝑠
𝜇 =∇𝜇𝜙

𝜇 + 𝑇 𝜇𝜈∇𝜇𝛽𝜈 − 𝑗𝜇∇𝜇𝜁 −
1
2
𝜇𝜆𝜈∇𝜇Ω𝜆𝜈 −

1
2
Ω𝜆𝜈∇𝜇𝜇𝜆𝜈

=∇𝜇𝜙
𝜇 + 𝑇

𝜇𝜈

𝑆
𝜉𝜇𝜈 − 𝑗𝜇∇𝜇𝜁 + 𝑇

𝜇𝜈

𝐴
(Ω𝜇𝜈 −𝜛𝜇𝜈) −

1
2
𝜇𝜆𝜈∇𝜇Ω𝜆𝜈 ,

(27)

where 𝑇𝑆 and 𝑇𝐴 are the symmetric and anti-symmetric parts of the 
stress-energy tensor and

𝜉𝜇𝜈 =
1
2
(
∇𝜇𝛽𝜈 +∇𝜈𝛽𝜇

)
, 𝜛𝜇𝜈 =

1
2
(
∇𝜈𝛽𝜇 −∇𝜇𝛽𝜈

)
are the thermal shear and thermal vorticity tensor respectively.

The next step, as it appears from the equation (27), is the calcula-

tion of the divergence of the thermodynamic potential current, ∇𝜇𝜙
𝜇 . 

To derive it, it is convenient to study the change of log𝑍LE under an 
infinitesimal change of the integration 3D hypersurface (see Fig. 2). An 
infinitesimal change of hypersurface may be seen, in simple terms, as 
the result of locally moving every point 𝑥 ∈ Σ to a point 𝑥′(𝑥, 𝜖) ∈ Σ𝜖 , 𝜖
being a finite real parameter. Setting 𝑥′(𝑥, 0) = 𝑥, we define:

d𝑥′𝜇(𝑥, 𝜖)
d𝜖

|||𝜖=0 = 𝛿𝜇(𝑥) .

For a small 𝜖, the vector field 𝛿 loosely represents the direction in which 

the hypersurface is locally modified and the parameter 𝜖 describes how 
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far along the vector field 𝛿 we move the hypersurface. Formally, these 
definitions are those of a one-parameter group of diffeomorphisms, 
which are a prerequisite to define the Lie derivative. For the special 
case of the integration of a vector field 𝑉 𝜇 over a 3D-hypersurface, one 
has (see Appendix B):

lim
𝜖→ 0

1
𝜖

⎛⎜⎜⎜⎝∫Σ𝜖 dΣ𝜇𝑉 𝜇 − ∫
Σ

dΣ𝜇 𝑉 𝜇

⎞⎟⎟⎟⎠ = ∫
𝜕Σ

d�̃�𝜇𝜈 𝛿𝜇𝑉 𝜈 + ∫
Σ

dΣ ⋅ 𝛿∇𝜇𝑉
𝜇 ,

(28)

where 𝜕Σ is the 2-D boundary surface. We can apply this equation to 
the (17) to obtain the infinitesimal change of log𝑍LE by a change of 
the hypersurface:

lim
𝜖→ 0

1
𝜖

[
log𝑍LE(Σ𝜖) − log𝑍LE(Σ)

]
= ∫

Σ

dΣ ⋅ 𝛿∇𝜇

(
𝜙𝜇 − ⟨0|𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈 |0⟩)

= ∫
Σ

dΣ ⋅ 𝛿∇𝜇𝜙
𝜇 − ∫

Σ

dΣ ⋅ 𝛿 ⟨0|𝑇 𝜇𝜈

𝑆
𝜉𝜇𝜈 − 𝑗𝜇∇𝜇𝜁 + 𝑇

𝜇𝜈

𝐴
(Ω𝜇𝜈 −𝜛𝜇𝜈)

− 1
2
̂𝜇𝜆𝜈∇𝜇Ω𝜆𝜈 |0⟩ , (29)

where, in the last step, we have used the continuity equations (26), 
holding at operator level. On the other hand, the logarithm of the par-

tition function can be calculated by means of its definition as a trace. 
For an infinitesimal 𝜖 one has:

𝑍LE(Σ𝜖) = Tr
⎛⎜⎜⎜⎝exp

⎡⎢⎢⎢⎣−∫
Σ𝜖

dΣ𝜇
(
𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈

)⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

≃ Tr

(
exp

[
−∫

Σ

dΣ𝜇
(
𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈

)

− 𝜖 ∫
Σ

dΣ ⋅ 𝛿∇𝜇

(
𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈

)])

= Tr
⎛⎜⎜⎝exp

⎡⎢⎢⎣−∫
Σ

dΣ𝜇
(
𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1

2
Ω𝜆𝜈 ̂𝜇𝜆𝜈

)

− 𝜖 ∫
Σ

dΣ ⋅ 𝛿
(
𝑇
𝜇𝜈

𝑆
𝜉𝜇𝜈 − 𝑗𝜇∇𝜇𝜁 + 𝑇

𝜇𝜈

𝐴
(Ω𝜇𝜈 −𝜛𝜇𝜈) −

1
2
̂𝜇𝜆𝜈∇𝜇Ω𝜆𝜈

)⎤⎥⎥⎦
⎞⎟⎟⎠ ,

where we have used the equation (28) - assuming that the boundary 
term vanishes - and, again, the continuity equations (26) at operator 
level. By expanding the trace in the small parameter 𝜖, and keeping in 
mind the equation (3), we obtain:

𝑍LE(Σ𝜖) ≃𝑍LE(Σ) − 𝜖𝑍LE(Σ)

× ∫
Σ

dΣ ⋅ 𝛿
(
Tr(𝜌LE𝑇

𝜇𝜈

𝑆
)𝜉𝜇𝜈 − Tr(𝜌LE𝑗𝜇)∇𝜇𝜁

+ Tr(𝜌LE𝑇
𝜇𝜈

𝐴
)(Ω𝜇𝜈 −𝜛𝜇𝜈) −

1
2
Tr(𝜌LÊ𝜇𝜆𝜈)∇𝜇Ω𝜆𝜈

)
,

whence:

lim
𝜖→ 0

1
𝜖

[
log𝑍LE(Σ𝜖) − log𝑍LE(Σ)

]
(30)

= −∫
Σ

dΣ ⋅ 𝛿
(
Tr(𝜌LE𝑇

𝜇𝜈

𝑆
)𝜉𝜇𝜈 −Tr(𝜌LE𝑗𝜇)∇𝜇𝜁

+ Tr(𝜌 𝑇
𝜇𝜈)(Ω −𝜛 ) − 1 Tr(𝜌 ̂𝜇𝜆𝜈)∇ Ω

)
.

Th

ing

tha

∇𝜇

wh

val

tio

∇𝜇

Th

poi

nam

and

enc
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a g
wit

spi

pro

to 
diff

neo

las

in 
vio

cou

pli

6. 

the

ma

Int

𝑇 ′𝜇

̂ ′𝜇

wh

las

If t
un

ass

𝜙′𝜇
5

LE 𝐴 𝜇𝜈 𝜇𝜈 2 LE 𝜇 𝜆𝜈
Physics Letters B 850 (2024) 138533

erefore, by comparing the equation (29) with the equation (30), tak-

 into account that both Σ and the field 𝛿 are arbitrary, we can infer 
t:

𝜙𝜇 = −
[(

Tr(𝜌LE𝑇
𝜇𝜈

𝑆
) − ⟨0|𝑇 𝜇𝜈

𝑆
|0⟩) 𝜉𝜇𝜈

−
(
Tr(𝜌LE𝑗𝜇) − ⟨0| 𝑗𝜇 |0⟩)∇𝜇𝜁

+
(
Tr(𝜌LE𝑇

𝜇𝜈

𝐴
) − ⟨0|𝑇 𝜇𝜈

𝐴
|0⟩) (Ω𝜇𝜈 −𝜛𝜇𝜈)

− 1
2

(
Tr(𝜌LÊ𝜇𝜆𝜈) − ⟨0| ̂𝜇,𝜆𝜈 |0⟩)∇𝜇Ω𝜆𝜈

]
= −

(
𝑇
𝜇𝜈

𝑆(LE)𝜉𝜇𝜈 − 𝑗
𝜇

LE∇𝜇𝜁 + 𝑇
𝜇𝜈

𝐴(LE)(Ω𝜇𝜈 −𝜛𝜇𝜈) −
1
2
𝜇𝜆𝜈

LE ∇𝜇Ω𝜆𝜈

)
,

(31)

ere, in the last step, we have used the definition of local equilibrium 
ues equation (5).

Now, substituting back eq. (31) into eq. (27), we obtain the evolu-

n of entropy current:

𝑠𝜇 =
(
𝑇
𝜇𝜈

𝑆
− 𝑇

𝜇𝜈

𝑆(LE)

)
𝜉𝜇𝜈 −

(
𝑗𝜇 − 𝑗

𝜇

LE
)
∇𝜇𝜁

+
(
𝑇
𝜇𝜈

𝐴
− 𝑇

𝜇𝜈

𝐴(LE)

)
(Ω𝜇𝜈 −𝜛𝜇𝜈)

− 1
2

(𝜇𝜆𝜈 − 𝜇𝜆𝜈

LE

)
∇𝜇Ω𝜆𝜈 . (32)

e equation (32) is the main result of this work and it is the starting 
nt to derive the constitutive equations of dissipative spin hydrody-

ics, which relate the anti-symmetric part of the stress-energy tensor 
 the spin tensor to the gradients of the spin potential and the differ-

e between spin potential and thermal vorticity, besides the (thermal) 
ar tensor and the gradient of 𝜁 = 𝜇∕𝑇 . In the above form, it is in fact 
eneralization of the one found by Van Weert and Zubarev [25,26], 
h the addition of the last two terms involving spin tensor and the 
n potential. We stress that the formula (32) is exact and not an ap-

ximation at some order of a gradient expansion. Indeed, with respect 
all previous assessments of dissipative spin hydrodynamics based on 
erent approaches [7–13], a novel feature is apparently the simulta-

us appearance of the last two terms of the right hand side. While the 
t term is neglected in almost all derivations, it was actually obtained 
ref. [10]. However, it should be pointed out that some terms in pre-

us derivations may have been omitted because of a gradient power 
nting method. A complete analysis of the constitutive equations im-

ed by the (32) will be presented in a forthcoming study.

Entropy current and pseudo-gauge transformations

A question that may arise at this point is whether the change in 
 entropy current (15) induced by a so-called pseudo-gauge transfor-

tions of the stress-energy and spin tensor (see the discussion in the 
roduction section):

𝜈 = 𝑇 𝜇𝜈 + 1
2
∇𝜆

(
Φ̂𝜆𝜇𝜈 − Φ̂𝜇𝜆𝜈 − Φ̂𝜈𝜆𝜇

)
, (33)

𝜆𝜈 = ̂𝜇𝜆𝜈 − Φ̂𝜇𝜆𝜈 ,

ere Φ̂𝜇𝜆𝜈 is an arbitrary rank-3 tensor operator anti-symmetric in the 
t two indices, comes down to an entropy-gauge transformation (19). 
his was the case, the entropy production rate would be invariant 

der a pseudo-gauge transformation.

By plugging the equations (33) in (15) (16) and with the simplifying 
umption Ω =𝜛 we get (see Appendix D for the full derivation):

= 𝜙𝜇 +

𝑇

d𝑇 ′ [
∇𝜆𝐴

𝜆𝜇 −Φ𝜆𝜇𝜈𝜉𝜆𝜈
]
, (34)
∫

0
𝑇 ′
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𝑠′𝜇 = 𝑠𝜇 +

𝑇

∫
0

d𝑇 ′

𝑇 ′
[
∇𝜆𝐴

𝜆𝜇 −Φ𝜆𝜇𝜈𝜉𝜆𝜈
]
+∇𝜆𝐴

𝜆𝜇 −Φ𝜆𝜇𝜈𝜉𝜆𝜈 , (35)

where 𝐴𝜆𝜇 = (1∕2)𝛽𝜈
(
Φ𝜆𝜇𝜈 −Φ𝜈𝜆𝜇 +Φ𝜇𝜈𝜆

)
is an anti-symmetric rank 2 

tensor and 𝜉𝜆𝜈 is the thermal shear tensor:

𝜉𝜆𝜈 =
1
2
(
∇𝜆𝛽𝜈 +∇𝜈𝛽𝜆

)
The last term on the right-hand side of equations (34), (35) cannot be 
written as a total derivative of an anti-symmetric tensor. In essence, 
the equations (34) and (35) show that a general pseudo-gauge trans-

formation of stress-energy and spin tensor (33) does not lead to an 
entropy-gauge transformation. Therefore, the divergence of the entropy 
current is not invariant under a pseudo-gauge transformation and a si-
multaneous entropy-gauge transformation cannot be used to restore the 
relation:

𝑠𝜇 = 𝜙𝜇 + 𝑇 𝜇𝜈𝛽𝜈 − 𝜁𝑗𝜇 − 1
2
𝜛𝜆𝜈𝜇𝜆𝜈 ;

for the new quantities; in this respect, our conclusion differs from that 
of ref. [29].

This conclusion holds provided that the intensive thermodynam-

ics fields 𝛽 and 𝜁 (and, in the most general case Ω) are left un-

changed by the pseudo-gauge transformations. In virtually all known 
non-equilibrium cases, including the one discussed in the Section 2, 
their definition is based on stress-energy and spin tensors, so they 
also get changed under pseudo-gauge transformations. Nevertheless, 
at global equilibrium with rotation, or, more in general, with 𝜛 ≠ 0, 
Ω =𝜛 and 𝛽, 𝜁 are invariant as 𝛽 is a Killing vector and 𝜁 a constant.

7. Discussion and conclusions

The formula (32) shows that entropy production rate, in general, is 
non-vanishing whenever there is a difference between the actual value 
of the conserved (or conserved-related) currents and the corresponding 
values at local thermodynamic equilibrium, such as 𝑇𝑆(LE), 𝑗LE, etc. 
As we have emphasized in this paper, local equilibrium depends on 
the choice of a family of 3D space-like hypersurfaces, i.e. a foliation. 
In relativistic hydrodynamics, this freedom ultimately corresponds to 
the choice of a four-velocity vector, so-called hydrodynamic frame. The 
dependence on the foliation shows up in the divergence of the entropy 
current (32), which is manifestly dependent on local equilibrium values 
(see the discussion at the end of Section 3).

We emphasize that the formula (32) is exact, not an approximation 
at some order of a gradient expansion. In other words, fixing the order 
in a gradient expansion of hydrodynamic quantities is not required to 
obtain it. However, for future work, once constitutive equations are 
determined, a gradient ordering can be made based on the involved 
scales in the physical problem.

In conclusion, in this work we have employed a quantum-statistical 
approach to derive the entropy current and entropy production rate 
without assuming the traditional local thermodynamic relations (2). In 
fact, we have shown that the local thermodynamic relations do not hold 
in general and that they are also non-invariant under allowed transfor-

mations of the entropy current, that we have defined as entropy-gauge 
transformations. We have obtained an expression of the entropy produc-

tion rate (32) which extends to spin hydrodynamics previous expression 
obtained in refs. [25,26]. This form is especially well-suited to derive 
the constitutive equations of dissipative spin hydrodynamics, what will 
be the subject of a forthcoming work.
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Appendix A. Thermodynamic potential current at homogeneous 
global equilibrium

Homogeneous global equilibrium is defined by the condition 𝛽 =
const i.e. vanishing thermal vorticity in the equation (7). Plugging this 
form in the equation (3), the density operator takes on the familiar form 
(for simplicity, we assume there are no charges in the system):

𝜌GE = 1
𝑍

exp
[
−𝛽 ⋅ 𝑃

]
. (A.1)

Due to the symmetries of the above operator, the mean value of the 
stress-energy tensor operator has the ideal form:

𝑇 𝜇𝜈 = Tr(𝜌GE𝑇 𝜇𝜈) − ⟨0|𝑇 𝜇𝜈 |0⟩ = (𝜌+ 𝑝)𝑢𝜇𝑢𝜈 − 𝑝𝑔𝜇𝜈 , (A.2)

where 𝑢 ≡ 𝛽∕
√
𝛽2. According to eq. (16), the thermodynamic potential 

current is:

𝜙𝜇 =

𝑇

∫
0

d𝑇 ′

𝑇 ′2 𝑇 𝜇𝜈[𝑇 ′]𝑢𝜈 =

𝑇

∫
0

d𝑇 ′

𝑇 ′2 𝜌[𝑇 ′]𝑢𝜇 , (A.3)

where 𝑇 = 1∕
√
𝛽2. The above expression confirms the expectation that, 

at the homogeneous global equilibrium, any vector field should be 
parallel to 𝛽 with a coefficient depending on 𝛽2 or, equivalently, the 
temperature 𝑇 . Therefore:

𝜙𝜇 = 𝛽𝜇𝜙(𝛽2) (A.4)

and the goal is now to show that such scalar coefficient 𝜙(𝛽2) is just the 
pressure, as defined by the equation (A.2).

By taking the derivative with respect to 𝛽 of the partition function, 
we have:

−
𝜕 log𝑍
𝜕𝛽𝜈

= Tr(𝜌GE𝑃 𝜈) = ∫
Σ

dΣ𝜇 Tr(𝜌GE𝑇 𝜇𝜈) . (A.5)

Since:

log𝑍 = ∫ dΣ𝜇 𝜙𝜇 − 𝛽𝜈 ⟨0|𝑃 𝜈 |0⟩

from the (8), from the (A.5) we can obtain the following equality
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∫
Σ

dΣ𝜇
(
𝜕𝜙𝜇

𝜕𝛽𝜈

)
= −∫

Σ

dΣ𝜇𝑇 𝜇𝜈 , (A.6)

where we have used the (A.2). Since the integration hypersurface Σ
is arbitrary, being at global equilibrium, we can infer the following 
relation:

𝑇 𝜇𝜈 = − 𝜕𝜙
𝜇

𝜕𝛽𝜈
+ 𝜕𝜆𝐴

𝜆𝜇𝜈 ,

where the rank 3 tensor 𝐴𝜆𝜇𝜈 is anti-symmetric in the indices 𝜆𝜇. 
Such a gradient term is allowed by the Stokes theorem in Minkowski 
space-time if suitable boundary conditions are fulfilled. Yet, since the 
equilibrium is homogeneous, it must vanish due to translational invari-

ance as all mean values ought to be constant and uniform. This implies 
that, by using the equation (A.4):

𝑇 𝜇𝜈 = − 𝜕𝜙
𝜇

𝜕𝛽𝜈
= − 𝜕

𝜕𝛽𝜈
𝜙𝛽𝜇 = −𝜙𝑔𝜇𝜈 + 𝑇

𝜕𝜙

𝜕𝑇
𝑢𝜇𝑢𝜈 . (A.7)

We can now compare (A.2) with (A.7) and infer that 𝜙 = 𝑝 and con-

sequently 𝜙𝜇 = 𝑝𝛽𝜇 . By plugging the latter equation in the (A.3) and 
taking the derivative with respect to 𝑇 we obtain:

𝑇
𝜕𝑝

𝜕𝑇
= 𝜌+ 𝑝 ,

which makes also the second term on the right hand side of equation 
(A.7) consistent with the identification 𝜙 = 𝑝.

Appendix B. Lie derivatives and integration

Suppose we have a one-parameter group of diffeomorphisms 𝑥′(𝑥, 𝜖)
with 𝜖 a real number. Let 𝜔 be a rank 3 differential form which is to be 
integrated over a 3D hypersurface embedded in the 4D space-time. We 
denote with 𝜔′

𝜖 the differential form which is obtained from 𝜔 through 
the diffeomorphism, that is:

𝜔′
𝜖(𝑥)𝜇1𝜇2𝜇3 = 𝐽

𝜈1
𝜇1
𝐽
𝜈2
𝜇2
𝐽
𝜈3
𝜇3
𝜔(𝑥′(𝑥, 𝜖))𝜈1𝜈2𝜈3

where 𝐽𝜈𝜇 = 𝜕𝑥′(𝑥, 𝜖)𝜈∕𝜕𝑥𝜇 is the jacobian matrix element of the dif-

feomorphism. Let Σ𝜖 be the image of the hypersurface Σ through the 
diffeomorphism. Then we have:

∫
Σ𝜖

𝜔 = ∫
Σ

𝜔′
𝜖

whence:

lim
𝜖→0

1
𝜖

⎛⎜⎜⎜⎝∫Σ𝜖 𝜔(𝑥) − ∫
Σ

𝜔(𝑥)
⎞⎟⎟⎟⎠ = lim

𝜖→0
1
𝜖 ∫

Σ

𝜔′
𝜖(𝑥) −𝜔(𝑥) = ∫

Σ

𝛿(𝜔(𝑥)) ,

where 𝛿 stands for the Lie derivative along the vector field 𝛿(𝑥) =
d𝑥′(𝑥, 𝜖)∕d𝜖|𝜖=0.

The so-called Cartan magic formula can now be used in the last 
expression, leading to:

∫
Σ

𝛿(𝜔) = ∫
Σ

𝑖𝛿d𝜔+ d(𝑖𝛿𝜔) = ∫
Σ

𝑖𝛿d𝜔+ ∫
𝜕Σ

𝑖𝛿𝜔 , (B.1)

where 𝑖𝛿 stands for the interior product of the form with the vector 
field 𝛿 and d stands for the exterior derivative. The second term on the 
right hand side of (B.1) is an integral of an exterior derivative and it has 
been turned into a 2D boundary integral of 𝑖𝛿𝜔 by using the generalized 
Stokes theorem for differential forms.

We can apply the above formulae to the differential form which is 
the dual of a vector field 𝑉 in a 4D space-time, namely:

𝜔𝜇𝜈𝜌 =
1
6
𝐸𝜇𝜈𝜌𝜎𝑉

𝜎 = 1
6
√|𝑔|𝜖𝜇𝜈𝜌𝜎𝑉 𝜎 . (B.2)
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With this form, it can be shown that:
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∫
Σ

𝜔(𝑥) = ∫
Σ

dΣ𝜇𝑉 𝜇 . (B.3)

The exterior derivative can be readily worked out by using the defini-

tion:

(d𝜔)𝜆𝜇𝜈𝜌 = − 1
24
𝐸𝜆𝜇𝜈𝜌∇ ⋅ 𝑉 ,

which leads, by using the definition of interior product, to:

(𝑖𝛿d𝜔)𝜇𝜈𝜌 =
1
6
𝐸𝜇𝜈𝜌𝜎𝛿

𝜎∇ ⋅ 𝑉 .

Therefore, by using the above expression and the (B.3) we get:

∫
Σ

𝑖𝛿d𝜔 = ∫
Σ

dΣ𝜇 𝛿𝜇∇ ⋅ 𝑉 .

The second integral in the (B.1) can be similarly worked out and one 
eventually obtains the equation (28).

Appendix C. Non-invariance of the local thermodynamic 
relations: an example

We are going to show that the local thermodynamic relation (23) is 
not invariant under entropy-gauge transformation (18), namely that the 
equation (25) applies with a non-trivial second term in the right hand 
side.

We consider, as specific example, global equilibrium with non-

vanishing thermal vorticity in the equation (7). Let:

𝐴𝜆𝜇 = 𝑓 (𝜅2)𝜛𝜆𝜇 ,

where 𝜅𝜇 =𝜛𝜇𝜈𝛽𝜈 and 𝑓 (𝜅2) = 𝑔(𝜅2)∕𝜅2 with 𝑔(𝜅2) an adimensional 
differentiable function (this form of 𝑓 (𝜅2) ensures that 𝐴𝜆𝜇 has the 
correct dimension for the entropy gauge transformation (18)). One has, 
in Cartesian coordinates:

∇𝜆𝐴
𝜆𝜇 = 𝜕𝜆𝐴

𝜆𝜇 = 𝑓 ′(𝜅2)𝜛𝜆𝜇𝜕𝜆𝜅
2 = 𝑓 ′(𝜅2)𝜛𝜆𝜇2𝜅𝜈𝜕𝜆𝜅𝜈

= 𝑓 ′(𝜅2)𝜛𝜆𝜇2𝜅𝜈𝜕𝜆(𝜛𝜈𝜌𝛽
𝜌) = 𝑓 ′(𝜅2)𝜛𝜆𝜇2𝜅𝜈𝜛𝜈𝜌𝜛

𝜌

𝜆
,

where, in the last step, we have used the relation 𝜛𝜇𝜈 = 𝜕𝜈𝛽𝜇 which 
applies at global equilibrium where 𝜕𝜇𝛽𝜈 + 𝜕𝜈𝛽𝜇 = 0.

Now let 𝛾𝜌 =𝜛𝜌𝜈𝜅𝜈 so that:

𝜕𝜆𝐴
𝜆𝜇 = −2𝑓 ′(𝜅2)𝛾𝜌𝜛𝜌𝜆𝜛

𝜆𝜇 . (C.1)

Contracting the equation (C.1) with 𝑢𝜇 we get:

𝑢𝜇𝜕𝜆𝐴
𝜆𝜇 = 𝑇 𝛽𝜇𝜕𝜆𝐴

𝜆𝜇 = −2𝑓 ′(𝜅2)𝑇 𝛾𝜌𝜛𝜌𝜆𝜛
𝜆𝜇𝛽𝜇

= −2𝑓 ′(𝜅2)𝑇 𝛾𝜌𝜛𝜌𝜆𝜅
𝜆 = −2𝑓 ′(𝜅2)𝑇 𝛾2 . (C.2)

The derivative in (25) must be taken by keeping 𝜔 = 𝑇𝜛 constant. 
Therefore, being:

𝜅𝜇 =𝜛𝜇𝜈𝛽𝜈 =
1
𝑇 2𝜔

𝜇𝜈𝑢𝜈 , 𝛾𝜌 =𝜛𝜌𝜈𝜅𝜈 =
1
𝑇 3𝜔

𝜌𝜈𝜔𝜈𝛼𝑢
𝛼 ,

and choosing 𝑔(𝜅2) = 1, we have that the expression in the equation 
(C.2) is proportional to 𝑇 3,

𝑇
𝜕

𝜕𝑇

(
𝑢𝜇𝜕𝜆𝐴

𝜆𝜇
)
= 𝑇

2
(𝜅2)2

𝛾2 , (C.3)

which is non-vanishing. Therefore, using the (C.3) in the equation (25)

we get:

𝜕𝑝′

𝜕𝑇

|||𝜇𝜔 = 𝑠′ + 𝑇
2

(𝜅2)2
𝛾2 ,
which proves the non-invariance of the local thermodynamic relation.
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Appendix D. Pseudo-gauge transformation of the thermodynamic 
potential and the entropy current

We study here the effect of a pseudo-gauge transformation (33) on 
the

𝑇 𝜇𝜈𝛽𝜈 −
1
2
𝜛𝜆𝜈𝜇𝜆𝜈

i.e. a part of the entropy current (15) with Ω𝜆𝜈 =𝜛𝜆𝜈 =
1
2 (𝜕𝜈𝛽𝜆 − 𝜕𝜆𝛽𝜈). 

By plugging the (33) for the mean values, we get:

𝑇 ′𝜇𝜈𝛽𝜈 −
1
2
𝜛𝜆𝜈 ′𝜇𝜆𝜈 = 𝑇 𝜇𝜈𝛽𝜈 −

1
2
𝜛𝜆𝜈𝜇𝜆𝜈

+ 1
2
∇𝜆(Φ𝜆𝜇𝜈 −Φ𝜇𝜆𝜈 −Φ𝜈𝜆𝜇)𝛽𝜈

+ 1
2
𝜛𝜆𝜈Φ𝜇𝜆𝜈 (D.1)

The last two terms can be transformed as follows:

1
2
∇𝜆(Φ𝜆𝜇𝜈 −Φ𝜇𝜆𝜈 −Φ𝜈𝜆𝜇)𝛽𝜈 +

1
2
𝜛𝜆𝜈Φ𝜇𝜆𝜈

=1
2
∇𝜆(Φ𝜆𝜇𝜈 −Φ𝜇𝜆𝜈 −Φ𝜈𝜆𝜇)𝛽𝜈 +

1
2
∇𝜈𝛽𝜆Φ𝜇𝜆𝜈 ,

=1
2
∇𝜆(Φ𝜆𝜇𝜈 −Φ𝜇𝜆𝜈 −Φ𝜈𝜆𝜇)𝛽𝜈 +

1
2
∇𝜈(𝛽𝜆Φ𝜇𝜆𝜈) − 1

2
𝛽𝜆∇𝜈Φ𝜇𝜆𝜈

=1
2
(∇𝜆Φ𝜆𝜇𝜈 −∇𝜆Φ𝜈𝜆𝜇)𝛽𝜈 +

1
2
∇𝜆(𝛽𝜈Φ𝜇𝜈𝜆), (D.2)

where we have used the definition of thermal vorticity, the Leibniz rule, 
the antisymmetry of Φ𝜇𝜈𝜆 in the last two indices, and, in the last step, 
the saturated indices 𝜆-𝜈 of the last two terms have been swapped. Us-

ing again the same methods, the equation (D.2) can be turned into:

1
2
(∇𝜆Φ𝜆𝜇𝜈 −∇𝜆Φ𝜈𝜆𝜇)𝛽𝜈 +

1
2
∇𝜆(𝛽𝜈Φ𝜇𝜈𝜆)

=1
2
∇𝜆

(
𝛽𝜈Φ𝜆𝜇𝜈 −Φ𝜈𝜆𝜇𝛽𝜈 + 𝛽𝜈Φ𝜇𝜈𝜆

)
− 1

2
Φ𝜆𝜇𝜈∇𝜆𝛽𝜈 +

1
2
Φ𝜈𝜆𝜇∇𝜆𝛽𝜈

=1
2
∇𝜆

(
𝛽𝜈Φ𝜆𝜇𝜈 −Φ𝜈𝜆𝜇𝛽𝜈 + 𝛽𝜈Φ𝜇𝜈𝜆

)
− 1

2
Φ𝜆𝜇𝜈∇𝜆𝛽𝜈 −

1
2
Φ𝜆𝜇𝜈∇𝜈𝛽𝜆

=1
2
∇𝜆

(
𝛽𝜈Φ𝜆𝜇𝜈 −Φ𝜈𝜆𝜇𝛽𝜈 + 𝛽𝜈Φ𝜇𝜈𝜆

)
−Φ𝜆𝜇𝜈𝜉𝜆𝜈 (D.3)

Defining the anti-symmetric tensor:

𝐴𝜆𝜇 = 1
2
(
𝛽𝜈Φ𝜆𝜇𝜈 −Φ𝜈𝜆𝜇𝛽𝜈 + 𝛽𝜈Φ𝜇𝜈𝜆

)
the equations (D.1), (D.2) and (D.3) imply:

𝑇 ′𝜇𝜈𝛽𝜈 −
1
2
𝜛𝜆𝜈 ′𝜇𝜆𝜈 = 𝑇 𝜇𝜈𝛽𝜈 −

1
2
𝜛𝜆𝜈𝜇𝜆𝜈 +∇𝜆𝐴

𝜆𝜇 −Φ𝜆𝜇𝜈𝜉𝜆𝜈 (D.4)

By using the definitions (16) and (15) with Ω = 𝜛 and the above 
equation (D.4), it is straightforward to obtain the transformed thermo-

dynamic potential current and entropy current in eqs. (34) and (35).
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