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ABSTRACT
A series of 1,2,3-benzoxathiazine-2,2-dioxides possessing various substituents in the 5, 7, or 8 position was
obtained from corresponding 2-hydroxybenzaldehydes in their reaction with sulfamoyl chloride. 5-, 7-, and
8-aryl substituted 1,2,3-benzoxathiazine-2,2-dioxides were prepared from aryl substituted 2-hydroxybenzal-
dehydes obtained from 3-, 4-, or 6-bromo-2-hydroxybenzaldehydes via two-step protocol. 1,2,3-
Benzoxathiazine-2,2-dioxides were investigated for the inhibition of four human carbonic anhydrase (hCA,
EC 4.2.1.1) isoforms, cytosolic hCA I and II and tumour-associated transmembrane hCA IX and XII. Twenty
four derivatives of 1,2,3-benzoxathiazine 2,2-dioxide were obtained. Most of them act as nanomolar inhibi-
tors of hCA IX and XII. Almost all compounds except 2d and 5a-e also express nanomolar inhibitory activ-
ity for hCA II. hCA I is poorly inhibited or not inhibited by 1,2,3-benzoxathiazine 2,2-dioxides. Some of the
new derivatives exhibit promising selectivity towards CA IX/XII over hCA I, although none of the com-
pounds are selective towards CA IX/XII over both hCA I and II.
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Introduction

Human carbonic anhydrases (hCAs, EC 4.2.1.1) are a superfamily of
widespread metalloenzymes in most living organisms that catalyse
a reversible hydration of carbon dioxide (CO2) into bicarbonate
ion (HCO3

–) and proton (Hþ)1–5.
CAs are involved in such important physiological processes as res-

piration, metabolism, pH regulation, ion transport, bone resorption,
secretion of gastric, cerebrospinal fluid, and pancreatic juices, biosyn-
thetic reactions such as gluconeogenesis and ureagenesis, etc1–3.

Sixteen different CA isoforms have been identified and charac-
terised in mammals so far1,3.

Human CAs are considered as promising therapeutic targets
for a wide range of diseases, such as epilepsy, cerebral and retinal
oedema, glaucoma (hCA I and hCA II), haemolytic anaemia, obes-
ity, sterility, and cancer1,6.

Most efforts in the last few decades have been focussed on
the tumour-associated isoforms (hCA IX and XII) that were shown
to possess an important role in hypoxic tumour physiopathology
and thus validated as biomarkers and therapeutic targets for vari-
ous cancer types. Their inhibition has been related to the reduc-
tion of primary tumour growth, inhibition of invasion and
metastasis, and a reduction in the cancer stem cell population7–9.

hCA IX expression is associated with a bad prognosis in cancer,
whereas hCA XII is expressed in normal tissues and overexpressed
in a number of malignant tumors4,10.

hCA IX has been considered as a valuable marker for cancer,
and the development of hCA IX inhibitors with selectivity over

widely distributed isoforms hCA I/II is a potential strategy for
designing anticancer agents3.

During the last decade, a wide range of novel CA inhibitors
has been discovered, such as saccharin derivatives11–13, thiophene
moiety containing sulfonamides14, furagin derivatives15, and
many more.

Sulphonamide moiety is the most widespread zinc-binding
group (ZBG) of CA inhibitors. Non-classical CA inhibitors such as
coumarins, carboxylic acids, phenols, polyamines inhibit the cata-
lytic activity of CA by different mechanisms rather than coordinat-
ing to the zinc10.

Coumarin ring showed exceptional anticancer properties acting
through various mechanisms of action10,16,17. Coumarin derivatives
were introduced by Supuran’s group as a non-classical type
of CAIs18.

The mechanism of action of coumarin as CA inhibitor is based
on hydrolysis forming cis-2-hydroxy-cinnamic acid, instead of
binding the CA active site with its intact coumarin moiety10.

The ability of coumarin to inhibit CA triggered the investiga-
tion of coumarin derivatives and its bioisosteres as CA inhibitors.19

In 2013, coumarin bioisosteres 1,2-benzoxathiine 2,2-dioxides,
also referred as sulfocoumarins, were reported as a new class of
prodrug-type CA inhibitors, some of them showing low nanomolar
inhibitory activities.20 It was demonstrated that sulfocoumarins
(1,2-benzoxathiine 2,2-dioxides) possess a similar mechanism
of action as coumarins, acting as effective CA inhibitors.
The sulfocoumarins were hydrolysed by the esterase CA activity to
2-hydroxyphenyl-vinylsulfonic acids, which then bind to the
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enzyme in a region rarely occupied by other classes of inhibi-
tors.20 Later a wide range of sulfocoumarin derivatives has been
investigated and tested, showing significant isoform-selective CA
inhibition properties21–26.

In 2017, homologs of sulfocoumarin-3H-1,2-benzoxathiepine
2,2-dioxides, i.e. homo-sulfocoumarins, were introduced as CA
inhibitors for the first time. As the results of the biological screen-
ing show, homo-sulfocoumarins possess very high level of CA iso-
form selectivity as well27–30.

In 2020, one more novel isoform-selective class of compounds
– the bioisosteres of homo-sulfocoumarins, namely benzoxepi-
nones (Figure 1), were reported as CA inhibitors for the
first time.31

Taking into account that coumarin bioisosteres and their
homologs described above show excellent CA inhibitory proper-
ties along with significant selectivity for the inhibition of hCA IX
and hCA XII over hCA I and hCA II, we report here a series of
nitrogen-containing analogues of 1,2-benzoxathiine 2,2-dioxides,
namely derivatives of 1,2,3-benzoxathiazine 2,2-dioxide.

Materials and methods

Chemistry

Reagents, starting materials, and solvents were obtained from
commercial sources and used as received. Thin-layer chromatog-
raphy was performed on silica gel, spots were visualised with UV
light (254 and 365 nm). Melting points were determined on an
OptiMelt automated melting point system. IR spectra were
recorded on Shimadzu FTIR IR Prestige-21 spectrometer. NMR
spectra were recorded on Bruker Avance Neo (400MHz) spectrom-
eter with chemical shifts values (d) in ppm relative to TMS using
the residual DMSO-d6 signal (1H 2.50; 13C 39.52) or CDCl3 signal
(1H 7.26; 13C 77.16) as an internal standard. High-resolution mass
spectra (HRMS) were recorded on a mass spectrometer with a Q-
TOF micro mass analyser using the ESI technique. Elemental analy-
ses were performed on Carlo Erba CHNS-O EA-1108 apparatus.
GC-MS analyses were performed on Agilent Technologies 7890 A
gas chromatograph, column – HP-5HS (df ¼ 0.25 lm, ID ¼
0.25mm, length � 30 m) with Agilent Technologies 5975C masse-
lective detector.

Synthesis

Sulfamoyl chloride

Chlorosulfonylisocyanate (3.80ml, 43.3mmol) was cooled to þ5 �C.
Formic acid (1.67ml, 43.3mmol) was added dropwise in tempera-
ture range between þ5 - þ13 �C. Reaction mixture was stirred at
0 �C for additional 45min, and then allowed to warm to room
temperature. Toluene (30ml) was added to the reaction mixture,
precipitate was filtered, filtrate was evaporated. Obtained as yel-
low oily solid (6.58 g, 98%). Mp 36–37 �C.

General procedure for the preparation of 1,2,3-benzoxathiazine
2,2-dioxides 2a–k
The derivative of 2-hydroxybenzaldehyde (1 equiv) was dissolved
in dry DMA (6ml). Reaction mixture was cooled to 0 �C. Sulfamoyl
chloride (2.5 equiv) was slowly added to the reaction mixture. The
stirring was continued at room temperature under argon atmos-
phere for 24–72 h. Reaction mixture was then poured into ice-
water (25ml), extracted with DCM (3� 25ml), washed with satd.
NaHCO3 (3� 25ml) and brine (3� 25ml). Organic phase was dried
over Na2SO4, filtered, evaporated. The product was purified by col-
umn chromatography on silica gel with PE/EtOAc (2:1) followed
by recrystallisation from EtOH.

6-Methyl-1,2,3-benzoxathiazine 2,2-dioxide (2a)

Compound 2a was obtained from 2-hydroxy-4-methylbenzalde-
hyde (0.20 g, 1.47mmol) and sulfamoyl chloride (0.42 g,
3.68mmol). Reaction mixture was stirred for 48 h. Obtained as
white solid (0.19 g, 64%). Mp 94–95 �C.

1H NMR (400MHz, CDCl3): d 8.61 (1H, s), 7.55 (1H, dd,
J¼ 0.7 Hz, J¼ 2.2 Hz), 7.46 (1H, dd, J¼ 0.4 Hz, J¼ 1.6 Hz), 7.19 (1H,
d, J¼ 8.5 Hz), 2.44 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 167.9, 152.4, 138.6, 136.5, 130.7,
118.5, 115.3, 20.8 ppm.

Anal. Calcd. for C8H7NO3S: C, 48.72; H, 3.58; N 7.10. Found: C,
48.24; H, 3.57; N, 7.00.

GC-MS (m/z, %): 51 (21), 77 (27), 78 (53), 104 (40), 106 (20), 132
(87), 197 (100).

IR (KBr, cm�1), �max ¼ 1382 (S¼O), 1185 (S¼O).

6-Methoxy-1,2,3-benzoxathiazine 2,2-dioxide (2b)

Compound 2b was obtained from 2-hydroxy-5-methoxybenzalde-
hyde (0.16 ml, 1.32 mmol) and sulfamoyl chloride (0.38 g,
3.30 mmol). Reaction mixture was stirred for 72 h. Purified by col-
umn chromatography with PE/EtOAc (1:1). Obtained as light yel-
low solid (0.10 g, 36%). Mp 121–122 �C.Figure 1. Structure of CA inhibitors.
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1H NMR (400 MHz, CDCl3): d 8.67 (1H, s), 7.33 (1H, dd,
J¼ 2.9 Hz, J¼ 9.1 Hz), 7.29 (1H, d, J¼ 8.5 Hz), 7.14 (1H, d,
J¼ 2.9 Hz), 3.92 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 167.7, 157.3, 148.2, 124.6, 119.9,
115.8, 113.2, 56.3 ppm.

Anal. Calcd. for C8H7NO4S: C, 45.07; H, 3.31; N 6.57. Found: C,
45.04; H, 3.32; N, 6.50.

GC-MS (m/z, %): 79 (39), 107 (26), 134 (100), 149 (40), 213 (51).
IR (KBr, cm�1), �max ¼ 1375 (S¼O), 1362 (S¼O), 1183 (S¼O),

1168 (S¼O).

6-Fluoro-1,2,3-benzoxathiazine 2,2-dioxide (2c)

Compound 2c was obtained from 5-fluoro-2-hydroxybenzaldehyde
(0.20 g, 1.43 mmol) and sulfamoyl chloride (0.41 g, 3.58 mmol).
Reaction mixture was stirred for 72 h. Obtained as white solid
(0.14 g, 48%). Mp 142–143 �C.

1H NMR (400 MHz, CDCl3): d 8.64 (1H, s), 7.48 (1H, ddd,
J¼ 3.0 Hz, J¼ 7.6 Hz, J¼ 9.1 Hz), 7.39 (1H, dd, J¼ 3.3 Hz,
J¼ 6.9 Hz), 7.32 (1H, dd, J¼ 4.1 Hz, J¼ 9.1 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 166.7 (d, J¼ 2.3 Hz), 159.3 (d,
J¼ 249 Hz), 150.4 (d, J¼ 2.5 Hz), 125.0 (d, J¼ 24.0 Hz), 120.8 (d,
J¼ 7.9 Hz), 116.5 (d, J¼ 24.5 Hz), 116.0 (d, J¼ 8.1 Hz) ppm.

Anal. Calcd. for C7H4FNO3S: C, 41.79; H, 2.00; N 6.96. Found: C,
41.51; H, 2.18; N, 6.70.

GC-MS (m/z, %): 81 (31), 109 (92), 137 (54), 201 (100).
IR (KBr, cm�1), �max ¼ 1388 (S¼O), 1353 (S¼O), 1189 (S¼O),

1154 (S¼O).

6-Bromo-1,2,3-benzoxathiazine 2,2-dioxide (2d)

Compund 2d was obtained from 2-hydroxy-6-bromobenzaldehyde
(0.20 g, 1.00 mmol) and sulfamoyl chloride (0.29 g, 2.50 mmol).
Reaction mixture was stirred for 48 h. Obtained as white solid
(0.12 g, 47%). Mp 154–155 �C.

1H NMR (400 MHz, CDCl3): d 8.62 (1H, s), 7.85 (1H, dd,
J¼ 2.2 Hz, J¼ 8.7 Hz), 7.82 (1H, d, J¼ 2.2 Hz), 7.21 (1H, d,
J¼ 8.7 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 166.4, 153.3, 140.4, 133.1, 120.6,
118.9, 116.6 ppm.

Anal. Calcd. for C7H4BrNO3S: C, 32.08; H, 1.54; N 5.34. Found: C,
32.08; H, 1.40; N, 5.20.

GC-MS (m/z, %): 62 (30), 63 (100), 90 (27), 171 (56), 197 (53),
263 (83).

IR (KBr, cm�1), �max ¼ 1381 (S¼O), 1345 (S¼O), 1179 (S¼O).

7-Methyl-1,2,3-benzoxathiazine 2,2-dioxide (2e)

Compound 2e was obtained from 2-hydroxy-4-methylbenzalde-
hyde (0.20 g, 1.47 mmol) and sulfamoyl chloride (0.42 g,
3.68 mmol). Reaction mixture was stirred for 72 h. Purified by col-
umn chromatography with PE/EtOAc (1:1). Obtained as light yel-
low solid (0.20 g, 70%). Mp 79–80 �C.

1H NMR (400 MHz, CDCl3): d 8.60 (1H, s), 7.55 (1H, d,
J¼ 7.9 Hz), 7.20–7.24 (1H, m), 7.10 (1H, s), 2.50 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 167.6, 154.5, 150.5, 130.7, 127.3,
118.9, 113.3, 22.5 ppm.

Anal. Calcd. for C8H7NO3S: C, 48.72; H, 3.58; N 7.10. Found: C,
48.70; H, 3.67; N, 7.05.

GC-MS (m/z, %): 77 (22), 78 (49), 104 (50), 132 (55), 197 (100).
IR (KBr, cm�1), �max ¼ 1381 (S¼O), 1195 (S¼O).

7-Methoxy-1,2,3-benzoxathiazine 2,2-dioxide (2f)

Compound 2f was obtained from 2-hydroxy-4-methoxybenzalde-
hyde (0.20 g, 1.34 mmol) and sulfamoyl chloride (0.39 g,
3.35 mmol). Reaction mixture was stirred for 48 h. Obtained as
light brown solid (0.19 g, 67%). Mp 125–126 �C.

1H NMR (400 MHz, CDCl3): d 8.51 (1H, s), 7.56 (1H, d,
J¼ 8.7 Hz), 6.90 (1H, dd, J¼ 2.4 Hz, J¼ 8.7 Hz), 6.73 (1H, d,
J¼ 2.4 Hz), 3.94 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 167.4, 166.9, 157.0, 132.7, 113.7,
109.3, 103.0, 56.6 ppm.

Anal. Calcd. for C8H7NO4S: C, 45.07; H, 3.31; N 6.57. Found: C,
45.15; H, 3.27; N, 6.51.

GC-MS (m/z, %): 106 (44), 134 (49), 149 (18), 213 (100).
IR (KBr, cm�1), �max ¼ 1383 (S¼O), 1357 (S¼O), 1184 (S¼O),

1156 (S¼O).

7-Fluoro-1,2,3-benzoxathiazine 2,2-dioxide (2g)

Compund 2g was obtained from 2-hydroxy-4-fluorobenzaldehyde
(0.20 g, 1.43 mmol) and sulfamoyl chloride (0.41 g, 3.58 mmol).
Reaction mixture was stirred for 72 h. Purified by column chroma-
tography with PE/EtOAc (1:1). Obtained as light brown solid
(0.15 g, 51%). Mp 67–68 �C.

1H NMR (400 MHz, CDCl3): d 8.62 (1H, s), 7.72 (1H, dd,
J¼ 5.8 Hz, J¼ 8.5 Hz), 7.14 (1H, ddd, J¼ 2.4 Hz, J¼ 7.9 Hz,
J¼ 8.5 Hz), 7.03 (1H, dd, J¼ 2.4 Hz, J¼ 8.5 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 167.7 (d, J¼ 263.8 Hz), 166.8,
156.3 (d, J¼ 13.7 Hz), 133.4 (d, J¼ 11.4 Hz), 114.5 (d, J¼ 22.9 Hz),
112.4 (d, J¼ 3.1 Hz), 107.0 (d, J¼ 26.1 Hz) ppm.

Anal. Calcd. for C7H4FNO3S: C, 41.79; H, 2.00; N 6.96. Found: C,
41.75; H, 2.00; N, 6.90.

GC-MS (m/z, %): 81 (21), 82 (49), 109 (74), 110 (26), 137 (37),
201 (100).

IR (KBr, cm�1), �max ¼ 1395 (S¼O), 1385 (S¼O), 1142 (S¼O).
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7-Bromo-1,2,3-benzoxathiazine 2,2-dioxide (2h)

Compound 2h was obtained from 4-bromo-2-hydroxybenzalde-
hyde (0.20 g 1.00 mmol) and sulfamoyl chloride (0.29 g,
2.50 mmol). Reaction mixture was stirred for 72 h. Obtained as
white solid (0.14 g, 55%). Mp 120–121 �C.

1H NMR (400 MHz, CDCl3): d 8.63 (1H, s), 7.58 (1H, dd, J¼ 1.6 Hz,
J¼ 8.2 Hz), 7.54 (1H, d, J¼ 8.2 Hz), 7.50 (1H, d, J¼ 1.6 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 167.0, 154.5, 132.6, 131.6, 129.9,
122.3, 114.2 ppm.

Anal. Calcd. for C7H4BrNO3S: C, 32.08; H, 1.54; N 5.34. Found: C,
32.28; H, 1.57; N, 5.17.

GC-MS (m/z, %): 62 (27), 63 (83), 90 (42), 169 (60), 197 (34),
263 (100).

IR (KBr, cm�1), �max ¼ 1384 (S¼O).

8-Methoxy-1,2,3-benzoxathiazine 2,2-dioxide (2i)

Compound 2i was obtained from 2-hydroxy-3-methoxybenzalde-
hyde (0.20 g, 1.34 mmol) and sulfamoyl chloride (0.39 g,
3.35 mmol). Reaction mixture was stirred for 24 h. Obtained as
white solid (0.09 g, 30%). Mp 140–141 �C.

1H NMR (400 MHz, CDCl3): d 8.57 (1H, s), 7.22–7.31 (2H, m),
7.15–7.20 (1H, m), 3.90 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 168.1, 148.5, 143.7, 126.2, 121.6,
120.0, 116.1, 56.8 ppm.

Anal. Calcd. for C8H7NO4S: C, 45.07; H, 3.31; N 6.57. Found: C,
44.97; H, 3.26; N, 6.42.

GC-MS (m/z, %): 51 (32), 106 (37), 107 (57), 119 (22), 134 (38),
149 (35), 213 (100).

IR (KBr, cm�1), �max ¼ 1383 (S¼O), 1359 (S¼O), 1185 (S¼O),
1171 (S¼O).

8-Fluoro-1,2,3-benzoxathiazine 2,2-dioxide (2j)

Compound 2j was obtained from 2-hydroxy-3-fluorobenzaldehyde
(0.20 g, 1.43 mmol) and sulfamoyl chloride (0.41 g, 3.58 mmol).
Reaction mixture was stirred for 72 h. Purified by column chroma-
tography with PE/EtOAc (1:1). Obtained as white solid (0.12 g,
42%). Mp 83–84 �C.

1H NMR (400 MHz, CDCl3): d 8.69 (1H, d, J¼ 1.2 Hz), 7.53–7.59
(1H, m), 7.47–7.51 (1H, m), 7.39 (1H, dq, J¼ 4.3 Hz,
J¼ 7.9 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 167.3 (d, J¼ 3.0 Hz), 150.3 (d,
J¼ 256.5 Hz), 142.5 (d, J¼ 13.7 Hz), 126.4 (d, J¼ 6.6 Hz), 125.9 (d,
J¼ 3.8 Hz), 124.6 (d, J¼ 17.6 Hz), 117.0 ppm.

Anal. Calcd. for C7H4FNO3S: C, 41.79; H, 2.00; N 6.96. Found: C,
41.80; H, 1.98; N, 6.73.

GC-MS (m/z, %): 81 (30), 82 (59), 109 (74), 137 (63), 201 (100).

IR (KBr, cm�1), �max ¼ 1399 (S¼O), 1363 (S¼O), 1191 (S¼O).

8-Bromo-1,2,3-benzoxathiazine 2,2-dioxide (2k)

Compound 2k was obtained from 3-bromo-2-hydroxybenzalde-
hyde (0.20 g, 1.00 mmol) and sulfamoyl chloride (0.29 g,
2.50 mmol). Reaction mixture was stirred for 72 h. Purified by col-
umn chromatography with PE/EtOAc (1:1). Obtained as white solid
(0.10 g, 39%). Mp 130–131 �C.

1H NMR (400 MHz, CDCl3): d 8.63 (1H, s), 7.96 (1H, dd,
J¼ 1.5 Hz, J¼ 8.1 Hz), 7.65 (1H, dd, J¼ 1.5 Hz, J¼ 7.7 Hz), 7.33 (1H,
t, J¼ 7.8 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 167.3, 151.5, 141.0, 129.9, 126.9,
116.7, 112.6 ppm.

Anal. Calcd. for C7H4BrNO3S: C, 32.08; H, 1.54; N 5.34. Found: C,
32.22; H, 1.58; N, 5.30.

GC-MS (m/z, %): 62 (33), 63 (100), 64 (27), 90 (54), 118 (57), 169
(36), 263 (99).

IR (KBr, cm�1), �max ¼ 1378 (S¼O), 1355 (S¼O), 1180 (S¼O).

General procedure for the preparation of 2-hydroxybenzaldehydes
4a-m
The derivative of 2-hydroxybenzaldehyde (1 equiv), the derivative
of benzeneboronic acid (1.3 equiv), K2CO3 (2.5 equiv), and
Pd(PPh3)4 (0.05 equiv) were suspended in toluene/water (5:1,
20 ml) mixture in pressure tube. Reaction mixture was heated to
90 �C and stirred for 24 h, then cooled to room temperature, fil-
tered through celite. EtOAc (30 ml) was added, reaction mixture
was washed with satd. NaHCO3 (3� 25 ml) and brine (2� 25 ml).
Organic phase was dried over Na2SO4, filtered, evaporated. The
product was purified by column chromatography with PE/EtOAc
(10:1) followed by recrystallisation from EtOH.

3-Hydroxy-1,1’-biphenyl-2-carbaldehyde (4a)

Compound 4a was obtained from 6-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), benzeneboronic acid (0.39 g, 3.23mmol),
K2CO3 (0.86 g, 6.22mmol), and Pd(PPh3)4 (0.14 g, 0.12 mmol).
Reaction mixture was stirred for 48 h, the product was purified by
column chromatography with PE/EtOAc (2:1) followed by EtOAc
(100%). Obtained as yellow solid (0.33 g, 67%). Mp 32–33 �C.

1H NMR (400 MHz, CDCl3): d 11.92 (1H, s), 9.84 (1H, d,
J¼ 0.6 Hz), 7.50–7.60 (1H, m), 7.43–7.49 (3H, m), 7.35–7.40 (2H, m),
6.98–7.02 (1H, m), 6.89 (1H, dd, J¼ 1.1 Hz, J¼ 7.5 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 197.3, 162.9, 147.6, 137.6, 136.7,
130.2, 128.5, 128.4, 121.6, 118.1, 117.1 ppm.

HRMS (ESI, m/z): calcd for C13H9O2 [M-H]- 197.0603, found 197.0606.
GC-MS (m/z, %): 115 (25), 141 (22), 152 (20), 197 (100).
IR (KBr, cm�1), �max ¼ 3058 (OH), 1656 (C¼O).

228 J. IVANOVA ET AL.



4’-Fluoro-3-hydroxy-1,1’-biphenyl-2-carbaldehyde (4b)

Compound 4b was obtained from 6-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49mmol), 4-fluorobenzeneboronic acid (0.45 g,
3.23mmol), K2CO3 (0.86 g, 6.22mmol), and Pd(PPh3)4 (0.14 g,
0.12 mmol). Obtained as white solid (0.49 g, 91%). Mp 72–73 �C.

1H NMR (400 MHz, CDCl3): d 11.89 (1H, s), 9.82 (1H, d,
J¼ 0.6 Hz), 7.53 (1H, dd, J¼ 7.7 Hz, J¼ 8.5 Hz), 7.31–7.38 (2H, m),
7.16 (2H, t, J¼ 8.6 Hz), 6.99–7.02 (1H, m), 6.86 (1H, dd, J¼ 1.1 Hz,
J¼ 7.5 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 197.0, 163.1, 163.0 (d,
J¼ 248.9 Hz), 146.5, 136.9, 133.7 (d, J¼ 3.5 Hz), 131.9 (d,
J¼ 8.3 Hz), 121.8, 118.3, 117.4, 115.8 (d, J¼ 21.5 Hz) ppm.

HRMS (ESI, m/z): calcd for C13H8O2F [M-H]- 215.0508,
found 215.0510.

GC-MS (m/z, %): 120 (22), 133 (24), 159 (20), 170 (25), 215 (78),
216 (100).

IR (KBr, cm�1), �max ¼ 3044 (OH), 1653 (C¼O).

4’-Methoxy-3-hydroxy-1,1’-biphenyl-2-carbaldehyde (4c)

Compound 4c was obtained from 6-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), 4-methoxybenzeneboronic acid (0.49 g,
3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4 (0.14 g,
0.12 mmol). Obtained as yellow solid (0.53 g, 93%). Mp 99–100 �C.

1H NMR (400 MHz, CDCl3): d 11.91 (1H, s), 9.85 (1H, d,
J¼ 0.5 Hz), 7.51 (1H, dd, J¼ 7.7 Hz, J¼ 8.3 Hz), 7.29 (2H, d,
J¼ 8.8 Hz), 6.99 (2H, d, J¼ 8.8 Hz), 6.94–6.98 (1H, m), 6.87 (1H, dd,
J¼ 1.1 Hz, J¼ 7.5 Hz), 3.87 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 197.4, 163.0, 159.9, 147.4, 136.7,
131.4, 129.8, 121.7, 118.3, 116.6, 114.1, 55.5 ppm.

HRMS (ESI, m/z): calcd for C14H13O3 [Mþ H]þ 229.0865,
found 229.0863.

GC-MS (m/z, %): 128 (22), 157 (26), 185 (21), 213 (23), 227 (37),
228 (100).

IR (KBr, cm�1), �max ¼ 3007 (OH), 1652 (C¼O).

3’,4’-Dichloro-3-hydroxy-1,1’-biphenyl-2-carbaldehyde (4d)

Compound 4d was obtained from 6-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), 3,4-dichlorobenzeneboronic acid
(0.62 g, 3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4
(0.14 g, 0.12 mmol). Obtained as white solid (0.58 g, 88%).
Mp 144–145 �C.

1H NMR (400 MHz, CDCl3): d 11.87 (1H, s), 9.82 (1H, d,
J¼ 0.5 Hz), 7.52–7.58 (2H, m), 7.49 (1H, d, J¼ 2.1 Hz), 7.21 (1H, dd,
J¼ 2.1 Hz, J¼ 8.3 Hz), 7.01–7.05 (1H, m), 6.85 (1H, dd, J¼ 1.1 Hz,
J¼ 7.5 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 196.3, 163.1, 144.7, 137.5, 137.0,
133.1, 133.0, 131.8, 130.5, 129.4, 121.5, 118.1, 117.9 ppm.

HRMS (ESI, m/z): calcd for C13H7O2Cl2 [M-H]- 264.9823,
found 254.9820.

GC-MS (m/z, %): 92 (24), 120 (57), 139 (57), 168 (24), 202 (24),
230 (21), 231 (88), 233 (28), 266 (100), 267 (59), 268 (71).

IR (KBr, cm�1), �max ¼ 3072 (OH), 1652 (C¼O).

Ethyl 2’-formyl-3’-hydroxy-1,1’-biphenyl-4-carboxylate (4e)

Compound 4e was obtained from 6-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), 4-(ethoxycarbonyl)benzeneboronic acid
(0.63 g, 3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4
(0.14 g, 0.12 mmol). Obtained as yellow solid (0.52 g, 78%).
Mp 92–93 �C.

1H NMR (400 MHz, CDCl3): d 11.89 (1H, s), 9.80 (1H, d,
J¼ 0.5 Hz), 8.14 (2H, d, J¼ 8.5 Hz), 7.55 (1H, dd, J¼ 7.6 Hz,
J¼ 8.3 Hz), 7.45 (2H, d, J¼ 8.5 Hz), 7.02–7.06 (1H, m), 6.89 (1H, dd,
J¼ 1.1 Hz, J¼ 7.5 Hz), 4.43 (2H, q, J¼ 7.1 Hz), 1.42 (3H, t,
J¼ 7.1 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 196.6, 166.2, 163.1, 146.4, 142.1,
136.8, 130.6, 130.2, 129.8, 121.5, 118.0, 117.8, 61.4, 14.5 ppm.

HRMS (ESI, m/z): calcd for C16H13O4 [M-H]- 269.0814,
found 269.0816.

GC-MS (m/z, %): 115 (22), 139 (32), 197 (100), 225 (46), 241
(46), 270 (91).

IR (KBr, cm�1), �max ¼ 3056 (OH), 1716 (C¼O), 1651 (C¼O).

3-Hydroxy-1,1’-biphenyl-4-carbaldehyde (4f)

Compound 4f was obtained from 4-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), benzeneboronic acid (0.39 g,
3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4 (0.14 g,
0.12 mmol). Obtained as white solid (0.45 g, 92%). Mp 81–82 �C.

1H NMR (400 MHz, CDCl3): d 11.05 (1H, s), 9.86 (1H, d,
J¼ 0.6 Hz), 7.53–7.58 (3H, m), 7.33–7.44 (3H, m), 7.19 (1H, dd,
J¼ 1.6 Hz, J¼ 8.0 Hz), 7.14–7.16 (1H, m) ppm.

13C NMR (100 MHz, CDCl3): d 196.2, 162.1, 150.0, 139.5, 134.2,
129.1, 129.0, 127.5, 119.7, 119.1, 116.0 ppm.

HRMS (ESI, m/z): calcd for C13H9O2 [M-H]- 197.0603,
found 197.0603.

GC-MS (m/z, %): 115 (22), 197 (100).
IR (KBr, cm�1), �max ¼ 3057 (OH), 1683 (C¼O).
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4’-Fluoro-3-hydroxy-1,1’-biphenyl-4-carbaldehyde (4g)

Compound 4g was obtained from 4-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), 4-fluorobenzeneboronic acid (0.45 g,
3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4 (0.14 g,
0.12 mmol). Obtained as light yellow solid (0.48 g, 90%).
Mp 108–109 �C.

1H NMR (400 MHz, CDCl3): d 11.12 (1H, s), 9.92 (1H, d,
J¼ 0.6 Hz), 7.57–7.63 (3H, m), 7.13–7.23 (4H, m) ppm.

13C NMR (100 MHz, CDCl3): d 196.1, 163.5 (d, J¼ 248.6 Hz),
162.1, 148.9, 135.6 (d, J¼ 3.2 Hz), 134.3, 129.2 (d, J¼ 8.3 Hz),
119.7, 118.8, 116.1 (d, J¼ 21.5 Hz), 115.8 ppm.

HRMS (ESI, m/z): calcd for C13H8O2F [M-H]- 215.0508,
found 215.0513.

GC-MS (m/z, %): 133 (19), 215 (100).
IR (KBr, cm�1), �max ¼ 3057 (OH), 1652 (C¼O).

3-Hydroxy-4’-methoxy-1,1’-biphenyl-4-carbaldehyde (4h)

Compound 4h was obtained from 4-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), 4-methoxybenzeneboronic acid (0.49 g,
3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4 (0.14 g,
0.12 mmol). Obtained as white solid (0.43 g, 75%). Mp 129–130 �C.

1H NMR (400 MHz, CDCl3): d 11.12 (1H, s), 9.89 (1H, d,
J¼ 0.4 Hz), 7.56–7.61 (3H, m), 7.22 (1H, dd, J¼ 1.7 Hz, J¼ 8.1 Hz),
7.18 (1H, d, J¼ 1.7 Hz), 7.00 (2H, d, J¼ 8.9 Hz), 3.87 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 195.8, 162.1, 160.6, 149.6, 134.2,
131.7, 128.7, 119.3, 118.5, 115.1, 114.6, 55.5 ppm.

HRMS (ESI, m/z): calcd for C14H13O3 [Mþ H]þ 229.0865,
found 229.0868.

IR (KBr, cm�1), �max ¼ 3453 (OH), 1671 (C¼O).
GC-MS (m/z, %): 227 (53), 228 (100).

Ethyl 4’-formyl-3’-hydroxy-1,1’-biphenyl-4-carboxylate (4i)

Compound 4i was obtained from 4-bromo-2-hydroxybenzalde-
hyde (0.50 g, v2.49 mmol), 4-(ethoxycarbonyl)benzeneboronic acid
(0.63 g, 3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4
(0.14 g, 0.12 mmol). Obtained as white solid (0.52 g, 78%).
Mp 110–111 �C.

1H NMR (400 MHz, CDCl3): d 11.11 (1H, s), 9.95 (1H, d,
J¼ 0.6 Hz), 8.14 (2H, d, J¼ 8.6 Hz), 7.68 (2H, d, J¼ 8.6 Hz), 7.65
(1H, d, J¼ 8.0 Hz), 7.28 (1H, d, J¼ 1.7 Hz, J¼ 8.0 Hz), 7.24 (1H, d,
J¼ 1.7 Hz), 4.41 (2H, q, J¼ 7.2 Hz), 1.42 (3H, t, J¼ 7.2 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 196.2, 166.3, 162.0, 148.7, 143.7,
134.3, 130.8, 130.3, 127.5, 120.1, 119.1, 116.4, 61.3, 14.5 ppm.

HRMS (ESI, m/z): calcd for C16H15O4 [Mþ H]þ 271.0970,
found 271.0975.

GC-MS (m/z, %): 225 (100), 242 (25), 270 (64).
IR (KBr, cm�1), �max ¼ 3421 (OH), 1711 (C¼O), 1665 (C¼O).

2-Hydroxy-1,1’-biphenyl-3-carbaldehyde (4j)

Compound 4j was obtained from 3-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), benzeneboronic acid (0.39 g,
3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4 (0.14 g,
0.12 mmol). Purified by column chromatography with PE/EtOAc
(10:1) ! (5:1). Obtained as light yellow solid (0.39 g, 80%).
Mp 46–47 �C.

1H NMR (400 MHz, CDCl3): d 11.54 (1H, d, J¼ 0.5 Hz), 9.96 (1H,
s), 7.55–7.65 (4H, m), 7.43–7.52 (2H, m), 7.34–7.41 (1H, m), 7.11
(1H, t, J¼ 7.6 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 197.0, 159.0, 138.0, 136.4, 133.3,
130.6, 129.4, 128.4, 127.8, 121.0, 120.0 ppm.

HRMS (ESI, m/z): calcd for C13H11O2 [Mþ H]þ 199.0759,
found 199.0759.

GC-MS (m/z, %): 115 (28), 141 (22), 152 (42), 169 (24), 197 (62),
198 (100).

IR (KBr, cm�1), �max ¼ 3051 (OH), 1656 (C¼O).

4’-Fluoro-2-hydroxy-1,1’-biphenyl-3-carbaldehyde (4k)

Compound 4k was obtained from 3-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), 4-fluorobenzeneboronic acid (0.45 g,
3.23 mmol), K2CO3 (0.86 g, 6.22 mmol), and Pd(PPh3)4 (0.14 g,
0.12 mmol). Obtained as light yellow solid (0.42 g, 78%).
Mp 95–96 �C.

1H NMR (400 MHz, CDCl3): d 11.55 (1H, d, J¼ 0.5 Hz), 9.96 (1H,
s), 7.54–7.61 (4H, m), 7.08–7.18 (3H, m) ppm.

13C NMR (100 MHz, CDCl3): d 196.9, 162.5 (d, J¼ 247.3 Hz),
158.9, 137.8, 133.4, 132.3 (d, J¼ 3.8 Hz), 131.1 (d, J¼ 7.9 Hz),
129.6, 121.0, 120.1, 115.4 (d, J¼ 21.3 Hz) ppm.

HRMS (ESI, m/z): calcd for C13H8O2F [M-H]- 215.0508,
found 215.0509.

GC-MS (m/z, %): 138 (25), 159 (24), 170 (33), 215 (60),
216 (100).

IR (KBr, cm�1), �max ¼ 3039 (OH), 1658 (C¼O).
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2-Hydroxy-4’-methoxy-1,1’-biphenyl-3-carbaldehyde (4l)

Compound 4l was obtained from 3-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), 4-methoxybenzeneboronic acid (0.49 g,
3.23 mmol), K2CO3 (0.86 g, 6.22 mmol) and Pd(PPh3)4 (0.14 g,
0.12 mmol). Obtained as light yellow solid (0.47 g, 83%).
Mp 81–82 �C.

1H NMR (400 MHz, CDCl3): d 11.53 (1H, d, J¼ 0.6 Hz), 9.95 (1H,
s), 7.60 (1H, ddd, J¼ 0.6 Hz, J¼ 1.7 Hz, J¼ 7.6 Hz), 7.54 (2H, d,
J¼ 8.8 Hz), 7.53 (1H, dd, J¼ 1.7 Hz, J¼ 7.6 Hz), 7.09 (1H, t,
J¼ 7.6 Hz), 6.99 (2H, d, J¼ 8.8 Hz), 3.86 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 197.0, 159.3, 159.0, 137.6, 132.9,
130.5, 130.3, 128.8, 121.0, 120.0, 113.9, 55.5 ppm.

HRMS (ESI, m/z): calcd for C14H13O3 [Mþ H]þ 229.0865,
found 229.0870.

GC-MS (m/z, %): 128 (22), 228 (100).
IR (KBr, cm�1), �max ¼ 3037 (OH), 1658 (C¼O).

3’,4’-Dichloro-2-hydroxy-1,1’-biphenyl-3-carbaldehyde (4m)

Compound 4m was obtained from 3-bromo-2-hydroxybenzalde-
hyde (0.50 g, 2.49 mmol), 3,4-dichlorobenzeneboronic acid (0.62 g,
3.23 mmol), K2CO3 (0.86 g, 6.22 mmol), and Pd(PPh3)4 (0.14 g,
0.12 mmol). Purified by column chromatography with PE/EtOAc
(10:1) ! (5:1). Obtained as white solid (0.57 g, 85%).
Mp 143–144 �C.

1H NMR (400 MHz, CDCl3): d 11.59 (1H, d, J¼ 0.5 Hz), 9.96 (1H,
s), 7.71 (1H, d, J¼ 2.1 Hz), 7.57–7.63 (2H, m), 7.51 (1H, d,
J¼ 8.3 Hz), 7.45 (1H, dd, J¼ 2.1 Hz, J¼ 8.3 Hz), 7.12 (1H, t,
J¼ 7.7 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 196.9, 158.9, 137.5, 136.3, 134.1,
132.5, 131.9, 131.3, 130.3, 128.7, 128.1, 121.1, 120.2 ppm.

HRMS (ESI, m/z): calcd for C13H7O2Cl2 [M-H]- 264.9823,
found 264.9823.

GC-MS (m/z, %): 139 (31), 168 (23), 202 (23), 220 (18), 265 (43),
266 (100), 268 (63).

IR (KBr, cm�1), �max ¼ 3045 (OH), 1657 (C¼O).

General procedure for the preparation of 1,2,3-benzoxathiazine
2,2-dioxides 5a-m
The derivative of 2-hydroxybenzaldehyde 4a–m (1 equiv) was dis-
solved in dry DMA (6 ml). Reaction mixture was cooled to 0 �C.
Sulfamoyl chloride (2.5 equiv) was slowly added to the reaction

mixture. The stirring was continued at room temperature under
argon atmosphere for 24 h. Reaction mixture was then poured
into ice-water (25 ml), extracted with DCM (3� 25 ml), washed
with satd. NaHCO3 (3� 25 ml) and brine (3� 25 ml). Organic
phase was dried over Na2SO4, filtered and evaporated. The prod-
uct was purified by column chromatography with PE/EtOAc (2:1)
followed by recrystallisation from EtOH.

5-Phenyl-1,2,3-benzoxathiazine 2,2-dioxide (5a)

Compound 5a was obtained from 3-hydroxy-1,10-biphenyl-2-car-
baldehyde (4a) (0.20 g, 1.01 mmol) and sulfamoyl chloride (0.29 g,
2.53 mmol). Obtained as white solid (0.12 g, 46%). Mp 156–157 �C.

1H NMR (400 MHz, CDCl3): d 8.59 (1H, d, J¼ 0.4 Hz), 7.77 (1H,
dd, J¼ 7.8 Hz, J¼ 8.3 Hz), 7.51–7.57 (3H, m), 7.37–7.43 (3H, m),
7.28–7.32 (1H, m) ppm.

13C NMR (100 MHz, CDCl3): d 167.7, 155.0, 145.7, 137.0, 135.7,
130.2, 129.6, 129.3, 127.4, 117.5, 114.1 ppm.

HRMS (ESI, m/z): calcd for C13H10NO3S [Mþ H]þ 260.0381,
found 260.0381.

GC-MS (m/z, %): 139 (42), 166 (39), 167 (80), 195 (30),
259 (100).

IR (KBr, cm�1), �max ¼ 1389 (S¼O), 1193 (S¼O), 1183 (S¼O).

5-(4-Fluorophenyl)-1,2,3-benzoxathiazine 2,2-dioxide (5b)

Compound 5b was obtained from 40-fluoro-3-hydroxy-1,10-
biphenyl-2-carbaldehyde (4b) (0.28 g, 1.28 mmol) and sulfamoyl
chloride (0.37 g, 3.20 mmol). Reaction mixture was stirred for
48 h. Obtained as white solid (0.14 g, 42%). Mp 186–187 �C.

1H NMR (400 MHz, CDCl3): d 8.56 (1H, d, J¼ 0.4 Hz), 7.77 (1H,
dd, J¼ 7.8 Hz, J¼ 8.3 Hz), 7.35–7.42 (3H, m), 7.29–7.33 (1H, m),
7.21–7.28 (2H, m) ppm.

13C NMR (100 MHz, CDCl3): d 167.3, 163.7 (d, J¼ 250.8 Hz),
155.1, 144.5, 137.1, 132.0 (d, J¼ 8.4 Hz), 131.8 (d, J¼ 3.1 H), 127.4,
117.7, 116.5 (d, J¼ 22.1 Hz), 114.1 ppm.

HRMS (ESI, m/z): calcd for C13H9NO3SF [Mþ H]þ 278.0287,
found 278.0283.

GC-MS (m/z, %): 157 (41), 184 (37), 185 (72), 213 (31),
277 (100).

IR (KBr, cm�1), �max ¼ 1388 (S¼O), 1191 (S¼O).
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5–(4-Methoxyphenyl)-1,2,3-benzoxathiazine 2,2-dioxide (5c)

Compound 5c was obtained from 40-methoxy-3-hydroxy-1,10-
biphenyl-2-carbaldehyde (4c) (0.30 g, 1.31 mmol) and sulfamoyl
chloride (0.38 g, 3.28 mmol). Obtained as yellow solid (0.10 g,
26%). Mp 177–178 �C.

1H NMR (400 MHz, CDCl3): d 8.59 (1H, d, J¼ 0.5 Hz), 7.74 (1H,
dd, J¼ 7.8 Hz, J¼ 8.3 Hz), 7.38 (1H, dd, J¼ 1.1 Hz, J¼ 7.8 Hz), 7.31
(2H, d, J¼ 8.8 Hz), 7.23–7.27 (1H, m), 7.06 (2H, d, J¼ 8.8 Hz), 3.89
(3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 168.0, 160.9, 155.1, 145.6, 137.0,
131.6, 128.0, 127.2, 116.9, 114.8, 114.1, 55.7 ppm.

HRMS (ESI, m/z): calcd for C14H12NO4S [Mþ H]þ 290.0487,
found 290.0494.

GC-MS (m/z, %): 127 (22), 154 (28), 182 (23), 289 (100).
IR (KBr, cm�1), �max ¼ 1378 (S¼O), 1376 (S¼O), 1184 (S¼O).

5-(3,4-Dichlorophenyl)-1,2,3-benzoxathiazine 2,2-dioxide (5d)

Compound 5d was obtained from 30,40-dichloro-3-hydroxy-1,10-
biphenyl-2-carbaldehyde (4d) (0.30 g, 1.12 mmol) and sulfamoyl
chloride (0.32 g, 2.8 mmol). Obtained as white solid (0.12 g, 32%).
Mp 230–231 �C.

1H NMR (400 MHz, CDCl3): d 8.56 (1H, d, J¼ 0.5 Hz), 7.79 (1H,
dd, J¼ 7.8 Hz, J¼ 8.3 Hz), 7.63 (1H, d, J¼ 8.3 Hz), 7.52 (1H, d,
J¼ 2.2 Hz), 7.33–7.39 (2H, m), 7.22 (1H, dd, J¼ 2.2 Hz,
J¼ 8.2 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 166.7, 155.1, 142.7, 137.3, 135.5,
134.6, 133.9, 131.7, 131.3, 129.4, 127.3, 118.5, 113.9 ppm.

HRMS (ESI, m/z): calcd for C13H8NO3SCl2 [Mþ H]þ 327.9602,
found 327.9605.

IR (KBr, cm�1), �max ¼ 1384 (S¼O), 1190 (S¼O), 1166 (S¼O).

Ethyl 4-(2,2-dioxido-1,2,3-benzoxathiazin-5-yl)benzoate (5e)

Compound 5e was obtained from ethyl 20-formyl-30-hydroxy-1,10-
biphenyl-4-carboxylate (4e) (0.20 g, 0.74 mmol) and sulfamoyl
chloride (0.21 g, 1.85 mmol). Reaction mixture was stirred for
48 h. Obtained as white solid (0.08 g, 34%). Mp 135–136 �C.

1H NMR (400 MHz, CDCl3): d 8.55 (1H, d, J¼ 0.5 Hz), 8.21 (2H,
d, J¼ 8.4 Hz), 7.80 (1H, dd, J¼ 7.8 Hz, J¼ 8.4 Hz), 7.48 (2H, d,
J¼ 8.4 Hz), 7.41 (1H, dd, J¼ 1.1 Hz, J¼ 7.7 Hz), 7.33–7.36 (1H, m),
4.42 (2H, q, J¼ 7.1 Hz), 1.44 (3H, t, J¼ 7.1 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 167.0, 165.9, 155.1, 144.4, 139.9,
137.2, 131.7, 130.4, 130.2, 127.3, 118.2, 114.0, 61.6, 14.5 ppm.

HRMS (ESI, m/z): calcd for C16H14NO5S [Mþ H]þ 332.0593,
found 332.0590.

GC-MS (m/z, %): 216 (20), 253 (100), 254 (23), 331 (40).
IR (KBr, cm�1), �max ¼ 1715 (C¼O), 1383 (S¼ O), 1197 (S¼ O).

7-Phenyl-1,2,3-benzoxathiazine 2,2-dioxide (5f)

Compound 5f was obtained from ethyl 3-hydroxy-1,10-biphenyl-4-
carbaldehyde (4f) (0.20 g, 1.01 mmol) and sulfamoyl chloride
(0.29 g, 2.52 mmol). Obtained as white solid (0.14 g, 55%).
Mp 171–172 �C.

1H NMR (400 MHz, CDCl3): d 8.68 (1H, d, J¼ 0.4 Hz), 7.73 (1H,
d, J¼ 8.1 Hz), 7.61–7.66 (3H, m), 7.48–7.55 (4H, m) ppm.

13C NMR (100 MHz, CDCl3): d 167.4, 154.9, 151.2, 137.9, 131.3,
130.0, 129.5, 127.5, 124.8, 116.8, 114.1 ppm.

HRMS (ESI, m/z): calcd for C13H10NO3S [Mþ H]þ 260.0381,
found 260.0382.

GC-MS (m/z, %): 139 (50), 167 (24), 195 (57), 259 (100).
IR (KBr, cm�1), �max ¼ 1379 (S¼ O), 1193 (S¼ O).

7-(4-Fluorophenyl)-1,2,3-benzoxathiazine 2,2-dioxide (5g)

Compound 5g was obtained from 40-fluoro-3-hydroxy-1,10-
biphenyl-4-carbaldehyde (4g) (0.20 g, 0.93 mmol) and sulfamoyl
chloride (0.27 g, 2.31 mmol). The product was purified by column
chromatography with PE/EtOAc (1:1). Obtained as white solid
(0.11 g, 43%). Mp 164–165 �C.

1H NMR (400 MHz, CDCl3): d 8.68 (1H, d, J¼ 0.4 Hz), 7.72 (1H,
d, J¼ 8.1 Hz), 7.57–7.65 (3H, m), 7.45 (1H, d, J¼ 1.6 Hz), 7.22 (2H,
t, J¼ 8.6 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 167.3, 164.0 (d, J¼ 251.1 Hz),
154.9, 150.0, 134.1 (d, J¼ 3.4 Hz), 131.3, 129.4 (d, J¼ 8.6 Hz),
124.7, 116.6, 116.7 (d, J¼ 21.4 Hz), 114.1 ppm.

HRMS (ESI, m/z): calcd for C13H9NO3SF [Mþ H]þ 278.0287,
found 278.0288.

GC-MS (m/z, %): 157 (57), 158 (21), 185 (28), 213 (36),
277 (100).

IR (KBr, cm�1), �max ¼ 1381 (S¼O), 1195 (S¼O), 1162 (S¼O).

232 J. IVANOVA ET AL.



7-(4-Methoxyphenyl)-1,2,3-benzoxathiazine 2,2-dioxide (5h)

Compound 5h was obtained from 3-hydroxy-40-methoxy-1,10-
biphenyl-4-carbaldehyde (4h) (0.20 g, 0.88 mmol) and sulfamoyl
chloride (0.25 g, 2.19 mmol). The product was purified by column
chromatography with PE/EtOAc (1:1). Obtained as light yellow
solid (0.07 g, 25%). Mp 181–182 �C.

1H NMR (400 MHz, CDCl3): d 8.65 (1H, d, J¼ 0.5 Hz), 7.68 (1H,
d, J¼ 8.0 Hz), 7.57–7.62 (3H, m), 7.45 (1H, d, J¼ 1.7 Hz), 7.03 (2H,
d, J¼ 8.8 Hz), 3.88 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 167.3, 161.4, 155.0, 150.8, 131.2,
130.1, 128.9, 124.1, 115.9, 115.0, 113.6, 55.6 ppm.

HRMS (ESI, m/z): calcd for C14H12NO4S [Mþ H]þ 290.0487,
found 290.0498.

IR (KBr, cm�1), �max ¼ 1377 (S¼ O), 1363 (S¼ O), 1188 (S¼ O).

Ethyl 4-(2,2-dioxido-1,2,3-benzoxathiazin-7-yl)benzoate (5i)

Compound 5i was obtained from ethyl 40-formyl-30-hydroxy-1,10-
biphenyl-4-carboxylate (4i) (0.20 g, 0.74 mmol) and sulfamoyl
chloride (0.21 g, 1.85 mmol). The product was purified by column
chromatography with PE/EtOAc (1:1). Obtained as white solid
(0.16 g, 64%). Mp 204–205 �C.

1H NMR (400 MHz, CDCl3): d 8.71 (1H, d, J¼ 0.4 Hz), 8.18 (2H,
d, J¼ 8.6 Hz), 7.76 (1H, d, J¼ 8.0 Hz), 7.69 (2H, d, J¼ 8.6 Hz), 7.66
(1H, dd, J¼ 1.6 Hz, J¼ 8.0 Hz), 7.53 (1H, d, J¼ 1.6 Hz), 4.43 (2H, q,
J¼ 7.1 Hz), 1.43 (3H, t, J¼ 7.1 Hz) ppm.

13C NMR (100 MHz, CDCl3): d 167.3, 166.0, 154.9, 149.8, 142.0,
131.7, 131.3, 130.6, 127.5, 125.0, 117.2, 114.7, 61.5, 14.5 ppm.

HRMS (ESI, m/z): calcd for C16H14NO5S [Mþ H]þ 332.0593,
found 332.0611.

IR (KBr, cm�1), �max ¼ 1701 (C¼O), 1377 (S¼ O), 1194 (S¼ O).

8-Phenyl-1,2,3-benzoxathiazine 2,2-dioxide (5j)

Compound 5j was obtained from 2-hydroxy-1,10-biphenyl-3-carbal-
dehyde (4j) (0.20 g, 1.01 mmol) and sulfamoyl chloride (0.29 g,
2.52 mmol). The product was purified by column chromatography
with PE/EtOAc (1:1). Obtained as white solid (0.12 g, 44%).
Mp 164–165 �C.

1H NMR (400 MHz, CDCl3): d 8.71 (1H, s), 7.80 (1H, dd,
J¼ 1.6 Hz, J¼ 7.7 Hz), 7.66 (1H, dd, J¼ 1.6 Hz, J¼ 7.7 Hz),
7.42–7.56 (6H, m) ppm.

13C NMR (100 MHz, CDCl3): d 168.1, 151.1, 138.8, 133.4, 132.8,
130.0, 129.5, 129.0, 128.9, 126.3, 116.1 ppm.

HRMS (ESI, m/z): calcd for C13H10NO3S [Mþ H]þ 260.0381,
found 260.0379.

GC-MS (m/z, %): 139 (64), 140 (21), 168 (42), 194 (74), 195 (53),
259 (100).

IR (KBr, cm�1), �max ¼ 1387 (S¼ O), 1174 (S¼ O).

8-(4-Fluorophenyl)-1,2,3-benzoxathiazine 2,2-dioxide (5k)

Compound 5k was obtained from 40-fluoro-2-hydroxy-1,10-
biphenyl-3-carbaldehyde (4k) (0.20 g, 0.93 mmol) and sulfamoyl
chloride (0.27 g, 2.31 mmol). The product was purified by column
chromatography with PE/EtOAc (1:1). Obtained as white solid
(0.14 g, 54%). Mp 123–124 �C.

1H NMR (400 MHz, DMSO-d6): d 9.29 (1H, s), 8.04 (1H, dd,
J¼ 1.6 Hz, J¼ 7.7 Hz), 7.98 (1H, dd, J¼ 1.6 Hz, J¼ 7.7 Hz), 7.65 (1H,
t, J¼ 7.7 Hz), 7.57–7.63 (2H, m), 7.41 (2H, t, J¼ 8.9 Hz) ppm.

13C NMR (100 MHz, DMSO-d6): d 171.3, 162.4 (d, J¼ 246.2 Hz),
149.7, 138.9, 131.8, 131.4 (d, J¼ 8.3 Hz), 129.8, 129.6 (d,
J¼ 3.1 Hz), 126.7 ppm.

HRMS (ESI, m/z): calcd for C13H9NO3SF [Mþ H]þ 278.0287,
found 278.0294.

GC-MS (m/z, %): 157 (66), 158 (21), 184 (20), 186 (31), 213 (64),
277 (100).

IR (KBr, cm�1), �max ¼ 1383 (S¼ O), 1171 (S¼ O).

8-(4-Methoxyphenyl)-1,2,3-benzoxathiazine 2,2-dioxide (5l)

Compound 5l was obtained from 2-hydroxy-40-methoxy-1,10-
biphenyl-3-carbaldehyde (4l) (0.20 g, 0.88 mmol) and sulfamoyl
chloride (0.25 g, 2.19 mmol). The product was purified by column
chromatography with PE/EtOAc (1:1). Obtained as yellow solid
(0.11 g, 44%). Mp 133–134 �C.

1H NMR (400 MHz, CDCl3): d 8.70 (1H, s), 7.77 (1H, dd,
J¼ 1.7 Hz, J¼ 7.7 Hz), 7.61 (1H, dd, J¼ 1.7 Hz, J¼ 7.7 Hz),
7.44–7.51 (3H, m), 7.02 (2H, d, J¼ 9.0 Hz), 3.87 (3H, s) ppm.

13C NMR (100 MHz, CDCl3): d 168.2, 160.3, 151.0, 138.5, 132.4,
130.7, 129.4, 126.2, 125.6, 116.2, 114.5, 55.5 ppm.

HRMS (ESI, m/z): calcd for C14H12NO4S [Mþ H]þ 290.0487,
found 290.0488.

GC-MS (m/z, %): 177 (49), 155 (21), 183 (23), 198 (23), 210 (39),
225 (31), 289 (100).

IR (KBr, cm�1), �max ¼ 1373 (S¼O), 1370 (S¼O), 1180 (S¼O).
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8-(3,4-Dichlorophenyl)-1,2,3-benzoxathiazine 2,2-dioxide (5m)

Compound 5m was obtained from 30,40-dichloro-2-hydroxy-1,10-
biphenyl-3-carbaldehyde (4m) (0.20 g, 0.75 mmol) and sulfamoyl
chloride (0.22 g, 1.88 mmol). The product was purified by column
chromatography with PE/EtOAc (1:2). Obtained as white solid
(0.16 g, 65%). Mp 165–166 �C.

1H NMR (400 MHz, DMSO-d6): d 9.31 (1H, s), 8.08 (1H, d,
J¼ 1.6 Hz, J¼ 7.7 Hz), 8.04 (1H, d, J¼ 1.6 Hz, J¼ 7.7 Hz), 7.82–7.87
(2H, m), 7.67 (1H, t, J¼ 7.8 Hz), 7.55 (1H, dd, J¼ 2.1 Hz,
J¼ 8.3 Hz) ppm.

13C NMR (100 MHz, DMSO-d6): d 171.3, 149.7, 138.9, 133.7,
132.5, 131.8, 131.6, 131.0, 129.5, 128.2, 126.8, 115.8 ppm.

HRMS (ESI, m/z): calcd for C13H8NO3SCl2 [Mþ H]þ 327.9602,
found 327.9609.

IR (KBr, cm�1), �max ¼ 1393 (S¼O), 1180 (S¼O).

Ca inhibitory assay

An applied photophysics stopped-flow instrument has been used
for assaying the CA catalysed CO2 hydration activity.32

Phenol red (at a concentration of 0.2 mM) was used as indica-
tor, working at the absorbance maximum of 557 nm, with 20 mM
Hepes (pH 7.5), and 20 mM Na2SO4 (for maintaining constant the
ionic strength), following the initial rates of the CA-catalysed CO2

hydration reaction for a period of 10� 100 s. The CO2 concentra-
tions ranged from 1.7 to 17 mM for the determination of the kin-
etic parameters and inhibition constants. For each inhibitor, at
least six traces of the initial 5� 10% of the reaction have been
used for determining the initial rate. The uncatalysed rates were
determined in the same manner and subtracted from the total
observed rates. Stock solutions of inhibitor (0.1 mM) were pre-
pared in distilled – deionised water, and dilutions up to 0.01 nM
were done thereafter with the assay buffer. Inhibitor and enzyme
solutions were preincubated together for 15 min at room tem-
perature prior to assay in order to allow for the formation of the E
– I complex. Data from Table 1 were obtained after 6 h incubation
of enzyme and inhibitor. The inhibition constants were obtained
by nonlinear least-squares methods using PRISM 3 and the Cheng
– Prusoff equation, as reported earlier15,33–37, and represent the
mean from at least three different determinations. All CA isoforms
were recombinant ones obtained in-house as reported
earlier12,18,38–45.

Results and discussion

Chemistry

Benzo[1,2,3]oxathiazine-2,2-dioxides 2a–-k were obtained from
corresponding 2-hydroxybenzaldehydes 1a–k in their reaction
with sulfamoyl chloride that was prepared from chlorosulfonyl iso-
cyanate (Scheme 1).46

Eleven target compounds were obtained with moderate yields
(Table 1).

5-, 7-, and 8-aryl substituted benzo[1,2,3]oxathiazine-2,2-diox-
ides 5a–m were obtained from aryl substituted 2-hydroxybenzal-
dehydes 4a–m (Scheme 2) prepared from 3-, 4-, or 6-bromo-2-
hydroxybenzaldehydes 3. The first step was Suzuki-Miyaura
coupling of aldehydes 3 with various boronic acids followed by
cyclisation using sulfamoyl chloride. The yields of intermediates
4a–m were from moderate to high, but the yields of the products
5a–m were lower due to the loss during purification process. All
inhibitors obtained exceeded 95% purity according HPLC analysis.

Carbonic anhydrase inhibition

Twenty four derivatives of 1,2,3-benzoxathiazine 2,2-dioxide were
screened for the inhibition of four human CA isoforms – the cyto-
solic off-targets hCA I and II as well as transmembrane, tumour-
associated hCA IX and XII that are anticancer drug targets18,47–52.

Inhibition data of 1,2,3-benzoxathiazine 2,2-dioxides 2a–k and
5a–m (as well as acetazolamide AAZ as standard) against hCA I, II,
IX, and XII after 15 min of incubation period of the enzyme and
inhibitor solutions are presented in Table 1 32.

Data obtained show that some derivatives of 1,2,3-benzoxathia-
zine 2,2-dioxide (2 b, 2d, 5a–e) did not inhibit cytosolic isoform
hCA I at all while other ones showed micromolar inhibitory activ-
ity in a quite wide range (0.36� 46 mM).

hCA II, which is off-target in this case, was not inhibited only
by two compounds, 5d and 5e. In case of 1,2,3-benzoxathiazine
2,2-dioxide derivatives 2a–k with small substituents like Me, MeO,
Br, F, inhibition constants in nanomolar range (39� 169 nM) were
obtained, except compound 2d with Br in position 6 which has Ki
¼ 8.3 mM. 5-Aryl substituted 1,2,3-benzoxathiazine 2,2-dioxide
derivatives 5a–e poorly inhibited hCA II or did not inhibit it at all,
whereas 7- and 8-aryl derivatives showed nanomolar inhibitory
activity towards hCA II.

Scheme 1. Reagents and conditions: (i) HCOOH, 0 �C, 15 min, then RT, 45 min;
(ii) ClSO2NH2, DMA, RT, 24–72 h.
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The transmembrane isoform hCA IX was effectively inhibited
by 1,2,3-benzoxathiazine 2,2-dioxides 2a–k and 5f–m with Ki in
the range of 22� 74 nM, although 5-aryl substituted derivatives

showed micromolar inhibitory activity (5a–c, Ki ¼ 4.1� 10.9 mM),
but 5d-e did not show any inhibitory activity towards hCA IX.

Another transmembrane tumour-associated isoform hCA XII
was also effectively inhibited by most of investigated compounds
with Ki in the range of 5.7� 186.4 nM. 5-Aryl derivatives 5a–d
showed lower inhibitory activity while compound 5e did not
exhibit any inhibitory properties towards hCA XII.

It may be seen that some of the new derivatives exhibit prom-
ising selectivity towards hCA IX/XII over hCA I, although none of
the compounds are selective towards hCA IX/XII over both hCA I
and II. The most promising tendence to selectivity towards hCA
IX/XII over both hCA I and II is observed in case of compound 2d
which has Br in position 6.

Conclusions

We report here a series of novel 1,2,3-benzoxathiazine-2,2-dioxide
derivatives 2a–k with small substituents (Me, MeO, F, Br) in 6, 7,
or 8 position prepared by straightforward synthesis from corre-
sponding 2-hydroxybenzaldehydes in their reaction with sulfamoyl
chloride. A series of 5-, 7-, or 8-aryl substituted 1,2,3-benzoxathia-
zine-2,2-dioxides 5a–m were obtained by two-step protocol from
aryl substituted 2-hydroxybenzaldehydes in Suzuki-Miyaura reac-
tion with selected boronic acids followed by cyclisation using sul-
famoyl chloride.

The new derivatives were assayed as inhibitors of four hCA iso-
forms, the cytosolic hCA I and II, and the transmembrane, tumour-
associated hCA IX and XII.

1,2,3-Benzoxathiazine-2,2-dioxides generally do not inhibit or
show low inhibitory activity towards cytosolic widespread hCA I.

Ubiquitous hCA II was inhibited by the new derivatives in
nanomolar and micromolar range whereas two 5-aryl derivatives
did not show any hCA II inhibitory activity.

Transmembrane isoforms hCA IX and XII were inhibited in
nanomolar range by most of 1,2,3-benzoxathiazine-2,2-dioxides
although 5-aryl derivatives showed lower inhibitory activity or did
not inhibit these two isoenzymes.

Table 1. Inhibition data of human CA isoforms hCA I, II, IX, XII with compounds
JI reported here and the standard inhibitor acetazolamide (AAZ) by a stopped
flow CO2 hydrase assay.

cmp R

KI (nM)
a,b

hCA I hCA II hCA IX hCA XII

2a 6-Me 25690 115.6 72.0 98.2
2b 6-MeO >100,000 168.5 62.8 75.1
2c 6-F 3324 71.8 58.3 120.8
2d 6-Br >100,000 8315 27.4 186.4
2e 7-Me 657.1 78.9 53.1 58.0
2f 7-MeO 986.5 55.2 39.7 83.1
2g 7-F 447.6 86.7 55.4 111.7
2h 7-Br 46520 45.1 22.3 70.1
2i 8-MeO 1523 39.0 73.6 63.4
2j 8-F 465.8 89.2 65.9 34.7
2k 8-Br 788.1 112.8 41.8 86.3
5a 5-Ph >100,000 9865 5247 12630
5b 5-(4-F-C6H4) >100,000 14,830 4139 7465
5c 5-(4-OMe-C6H4) >100,000 36,870 10,870 17,960
5d 5-(3,4-Cl2-C6H3) >100,000 >100,000 >100,000 45,320
5e 5-(4-CO2Et-C6H4) >100,000 >100,000 >100,000 >100,000
5f 7-Ph 5682 7.7 28.6 78.3
5g 7-(4-F-C6H4) 15,230 2.1 69.8 8.2
5h 7-(4-OMe-C6H4) 30,310 14.3 45.2 36.4
5i 7-(4-CO2Et-C6H4) 356.3 0.8 38.0 90.5
5j 8-Ph 668.4 0.5 49.1 61.8
5k 8-(4-F-C6H4) 1852 5.6 32.3 12.4
5l 8-(4-OMe-C6H4) 4259 12.3 62.7 7.3
5m 8-(3,4-Cl2-C6H3) 6708 9.5 40.8 4.8
AAZ – 250.0 12.5 25.0 5.7
aMean from three different assays, by a stopped flow technique (errors were in
the range of ± 5–10% of the reported values); b15 min incubation.

Scheme 2. Reagents and conditions: (i) K2CO3, Pd(PPh3)4, toluene/H2O (5:1), 90 �C, 24–48 h; (ii) ClSO2NH2, DMA, RT, 24–48 h.
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Some 1,2,3-benzoxathiazine-2,2-dioxides exhibit promising
selectivity towards hCA IX/XII over hCA I, although none of the
compounds are selective towards hCA IX/XII over both hCA I
and II.
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