
16 August 2024

Area-Minimizing Horizontal Graphs with Low Regularity in the Sub-Finsler Heisenberg Group H^1 /
Giovannardi, Gianmarco; Pozuelo, Julián; Ritoré, Manuel. - ELETTRONICO. - (2023), pp. 209-226.
[10.1007/978-3-031-39916-9_7]

Original Citation:

Area-Minimizing Horizontal Graphs with Low Regularity in the Sub-
Finsler Heisenberg Group H^1

Publisher:

Published version:
10.1007/978-3-031-39916-9_7

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1343291 since: 2024-04-30T13:54:47Z

Alarcón, A., Palmer, V., Rosales, C.

Questa è la versione Preprint (Submitted version) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



AREA-MINIMIZING HORIZONTAL GRAPHS WITH
LOW-REGULARITY IN THE SUB-FINSLER HEISENBERG GROUP H1

GIANMARCO GIOVANNARDI, JULIÁN POZUELO, AND MANUEL RITORÉ

Abstract. In the Heisenberg group H1, equipped with a left-invariant and not necessarily
symmetric norm in the horizontal distribution, we provide examples of entire area-
minimizing horizontal graphs which are locally Lipschitz in Euclidean sense. A large
number of them fail to have further regularity properties. The examples are obtained
by prescribing as singular set a horizontal line or a finite union of horizontal half-lines
extending from a given point. We also provide examples of families of area-minimizing
cones.

1. Introduction

The regularity of perimeter-minimizing sets in sub-Finsler geometry is currently one
of the most challenging problems in Calculus of Variations. A sub-Finsler structure in a
Carnot-Carathéodory manifold with a completely non-integrable distribution H is defined by
a smooth norm on H. The case of a Euclidean norm is that of sub-Riemannian geometry.
The notion of sub-Riemannian perimeter was introduced by Garofalo and Nhieu [17], while
sub-Finsler boundary measures in the first Heisenberg group H1 were considered by Sánchez
[30], and sub-Finsler perimeters in H1 by Pozuelo and Ritoré [26] and Franceschi et al. [10].

Fine properties of sets of finite perimeter in the Heisenberg groups Hn were obtained by
Franchi, Serapioni and Serra-Cassano [11]. Among others, they obtained a structure result
for the reduced boundary of a set of finite perimeter: except for a set of small spherical
Hausdorff dimension, it is the union of H-regular hypersurfaces (i.e., level sets of continuous
functions with continuous first derivatives in the horizontal directions), see the Main Theorem
in page 486 of [11].

The regularity of sub-Riemannian perimeter-minimizing sets has been investigated by a
large number of researchers [5, 28, 8, 1, 9, 21, 12, 29, 13, 27, 7, 6, 23, 2]. The boundaries of
the conjectured solutions to the isoperimetric problem are of class C2, see [4], although there
exist examples of area-minimizing horizontal graphs which are merely Euclidean Lipschitz,
see [6, 22, 27]. The sub-Riemannian Plateau problem was first considered by Pauls [24].
Afterwards, under given Dirichlet conditions on p-convex domains, Cheng, Hwang and Yang
[6] proved existence and uniqueness of t-graphs (horizontal graphs of the form t = u(x, y))
which are Lipschitz continuous weak solutions of the minimal surface equation in H1. Later,
Pinamonti, Serra Cassano, Treu and Vittone [25] obtained existence and uniqueness of
t-graphs on domains with boundary data satisfying a bounded slope condition, thus showing
that Lipschitz regularity is optimal at least in the first Heisenberg group H1. Capogna, Citti
and Manfredini [2] established that the intrinsic graph of a Lipschitz continuous function
which is, in addition, a viscosity solution of the sub-Riemannian minimal surface equation in
H1, is of class C1,α, with higher regularity in the case of Hn, n > 1, see [3]. It was shown in
[7] that the regular part of a t-graph of class C1 with continuous prescribed sub-Riemannian
mean curvature in H1 is foliated by C2 characteristic curves. Furthermore, in [16] the
authors generalized the previous result when the boundary S is a general C1 surface in a
three-dimensional contact sub-Riemannian manifold. Later, Galli in [14] improved the result
in [16] only assuming that the boundary S is Euclidean Lipschitz and H-regular. Recently,
in [18] the first and third authors extended the result in [14] to the sub-Finsler Heisenberg
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2 G. GIOVANNARDI, J. POZUELO, AND M. RITORÉ

groups. Up to now, determining the optimal regularity of perimeter-minimizing H-regular
hypersurfaces in the Heisenberg group remains an open problem.

Bernstein type problems for surfaces in H1 have also received a special attention. The
nature of the sub-Riemannian Bernstein problem in the Heisenberg group is completely
different from the Euclidean one even for graphs. On the one hand the area functional for
t-graphs is convex as in the Euclidean setting. Therefore the critical points of the area are
automatically minimizers for the area functional. However, since t-graphs admit singular
points where the horizontal gradient vanishes their classification is not an easy task. Thanks
to a deep study of the singular set for C2 surfaces in H1, Cheng, Hwang, Malchiodi, and Yang
[5] showed that minimal t-graphs of class C2 are congruent to a family of surfaces including
the hyperbolic paraboloid u(x, y) = xy and the Euclidean planes. Under the hypothesis that
the surface is area-stationary, Ritoré and Rosales proved in [28] that the surface must be
congruent to a hyperbolic paraboloid or to a Euclidean plane. If we consider the class of
Euclidean Lipschitz t-graphs, the previous classification does not hold since there are several
examples of area-minimizing surfaces of low regularity, see [27]. The complete classification
for C2 surfaces was established by Hurtado, Ritoré and Rosales in [21], by showing that a
complete, orientable, connected, stable area-stationary surface is congruent either to the
hyperbolic paraboloid u(x, y) = xy or to a Euclidean plane. As in the Euclidean setting the
stability condition is crucial in order to discard some minimal surfaces such as helicoids and
catenoids.

On the other hand, the study of the regularity of intrinsic graphs (i. e., Riemannian graphs
over vertical planes) is a completely different problem since the area functional for such
graphs is not convex. Indeed, Danielli, Garofalo, Nhieu in [8] discovered that the family of
graphs

uα(x, t) = αxt

1 + 2αx2 , α > 0,

are area-stationary but unstable. In [22], Monti, Serra Cassano and Vittone provided an
example of an area-minimizing intrinsic graph of regularity C1/2(R2) that is an intrinsic cone.
Therefore the Euclidean threshold of dimension n = 8 fails in the sub-Riemannian setting. In
[1], Barone Adesi, Serra Cassano and Vittone classified complete C2 area-stationary intrinsic
graphs. Later Danielli, Garofalo, Nhieu and Pauls in [9] showed that a C2 complete stable
embedded minimal surface in H1 with empty characteristic set must be a plane. In [15]
Galli and Ritoré proved that a complete, oriented and stable area-stationary C1 surface
without singular points is a vertical plane. Later, Nicolussi Golo and Serra Cassano [23]
showed that Euclidean Lipschitz stable area-stationary intrinsic graphs are vertical planes.
Recently, Giovannardi and Ritoré [19] showed that in the Heisenberg group H1 with a
sub-Finsler structure, a complete, stable, Euclidean Lipschitz surface without singular points
is a vertical plane and Young [32] proved that a ruled area-minimizing entire intrinsic graph
in H1 is a vertical plane by introducing a family of deformations of graphical strips based on
variations of a vertical curve.

In this note, we provide examples of entire perimeter-minimizing t-graphs for a fixed but
arbitrary left-invariant sub-Finsler structure in the first Heisenberg group H1. Our examples
are inspired by the corresponding sub-Riemannian ones in [27]. Of particular interest are the
conical examples, invariant by the non-isotropic dilations of H1. In the sub-Riemannian case
these examples were investigated in [20] and [27].

The paper is organized the following way. In Section 2 we include some preliminaries.
In Theorem 3.1 of Section 3 we obtain a necessary and sufficient condition, inspired by
Theorem 3.1 in [26], for a surface to be a critical point of the sub-Finsler area. We assume
that the surface is piecewise C2, and composed of pieces meeting in a C1 way along C1

curves. This condition will allow us to construct area-minimizing examples in Proposition 4.3
of Section 4, and examples with low regularity in Proposition 4.4. The same construction,
keeping fixed the angle at one side (and hence at the other one) of the singular line, provides
examples of area-minimizing cones, see Corollary 4.5. Finally, in Section 5 we exhibit some
examples of area-minimizing cones in the spirit of [20]. These examples are obtained in
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Theorem 5.2 from circular sectors of the area-minimizing cones with one singular half-line
obtained in Corollary 4.5.

2. Preliminaries

2.1. The Heisenberg group. We denote by H1 the first Heisenberg group: the 3-dimensional
Euclidean space R3 with coordinates (x, y, t), endowed with the product ∗ defined by

(x, y, t) ∗ (x̄, ȳ, t̄) = (x+ x̄, y + ȳ, t+ t̄+ x̄y − xȳ).
A frame of left-invariant vector fields is given by

X = ∂

∂x
+ y

∂

∂t
, Y = ∂

∂y
− x ∂

∂t
, T = ∂

∂t
.

For p ∈ H1, the left translation by p is the diffeomorphism Lp(q) = p ∗ q. The horizontal
distribution H is the planar non-integrable one generated by X and Y , which coincides with
the kernel of the contact one-form ω = dt− ydx+ xdy.

We shall consider on H1 the left-invariant Riemannian metric g = 〈·, ·〉, so that {X,Y, T}
is a global orthonormal frame, and let D be the Levi-Civita connection associated to the
Riemannian metric g. Setting J(U) = DUT for any vector field U in H1 we get J(X) = Y ,
J(Y ) = −X and J(T ) = 0. Therefore −J2 coincides with the identity when restricted to the
horizontal distribution. The Riemannian volume of a set E is, up to a constant, the Haar
measure of the group and is denoted by |E|. The integral of a function f with respect to the
Riemannian measure is denoted by

∫
f dH1.

2.2. Sub-Finsler norms and perimeter. Given a convex set K ⊂ R2 with 0 ∈ int(K)
and associated asymmetric norm || · || in R2, we define on H1 a left-invariant norm || · ||K on
the horizontal distribution by means of the equality

||fX + gY ||K(p) = ||(f(p), g(p))||,
for any p ∈ H1. Its dual norm is denoted by || · ||K,∗.

If the boundary of K is of class C`, for ` > 2, and the geodesic curvature of ∂K is
strictly positive, we say that K is of class C`+. When K is of class C2

+, the outer Gauss map
NK : ∂K → S1 is a diffeomorphism and the map

πK(fX + gY ) = N−1
K

(
(f, g)√
f2 + g2

)
,

defined for non-vanishing horizontal vector fields U = fX + gY , satisfies
||U ||K,∗ = 〈U, πK(U)〉,

where || · ||K,∗ is the dual norm of || · ||K . See §2.3 in [26].

Definition 2.1. Given a convex body K ⊂ R2 containing 0 in its interior, and a measurable
set E ⊂ H1, its horizontal K-perimeter in an open set Ω ⊂ H1 is

PK(E,Ω) = sup
{∫

E

div(U) dH1, U ∈ H1
0(Ω), ||U ||K,∞ 6 1

}
,

Here ||U ||K,∞ = supp∈H1 ||Up||K0 and H1
0(Ω) is the space of C1 horizontal vector fields with

compact support in Ω. If Ω = H1 we write PK(E) instead of PK(E,H1). When PK(E,Ω) is
finite we say that E has finite horizontal K-perimeter in Ω.

Remark 2.2. If E has C1 boundary ∂E, then its perimeter PK(E) is equal to the sub-Finsler
area AK of its boundary, defined by

AK(∂E) =
∫
∂E

||Nh||K,∗dσ.

where Nh is the projection on the horizontal distribution H of the Riemannian normal N
with respect to the metric g, and dσ is the Riemannian measure of ∂E. For more details see
§2.4 in [26].
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We will often omit the subscript K to simplify the notation.

3. The first variation formula and a stationary condition

In this section we present some consequences of the first variation formula. We assume
that the Heisenberg group H1 is endowed with the sub-Finsler structure associated to a
convex set K of class C2

+ with 0 ∈ int(K). Recall that, given a surface S ⊂ H1 of class C1,
its singular set S0 is composed of those points of S where the tangent plane is horizontal.
The regular part of S is S r S0.

Theorem 3.1 (Theorem 3.1 in [26]). Let S be an oriented surface of class C1 such that the
regular part S r S0 is of class C2. Consider a C2 vector field U with compact support on S,
normal component u = 〈U,N〉, and associated flow {ϕs}s∈R. Let η = π(νh), where νh is the
horizontal unit normal to S. Then we have

(3.1) d

ds

∣∣∣∣
s=0

AK(ϕs(S)) =
∫
S\S0

HKu dS −
∫
S\S0

divS(uη>) dS,

where divS is the Riemannian divergence on S and the superscript > indicates the projection
over the tangent plane to S. The quantity HK = 〈∇Zπ(νh), Z〉, for Z = −J(νh), is the
K-mean curvature of S.

Using Theorem 3.1 we can prove the following necessary and sufficient condition for a
surface S to be AK -stationary. When a surface S of class C1 is divided into two parts S+, S−

by a singular curve S0 so that S+, S− are of class C2 up to the boundary, the tangent vectors
Z+, Z− can be chosen so that they parameterize the characteristic curves (i. e., horizontal
curves en the regular part of S) as curves leaving from S0, see Corollary 3.6 in [5] . In this
case η+ = π(νh) = π(J(Z+)) and η− = π(J(Z−)).

Corollary 3.2. Let S be an oriented surface of class C1 such that the singular set S0 is a
C1 curve. Assume that SrS0 is the union of two surfaces S+, S− of class C2 meeting along
S0. Let η+, η− the restrictions of η to S+ and S−, respectively. Then S is area-stationary if
and only if

1. HK = 0, and
2. η+ − η− is tangent to S0.

In particular, condition HK = 0 implies that S r S0 is foliated by horizontal straight lines.

Proof. We may apply the divergence theorem to the second term in (3.1) to get
d

ds

∣∣∣∣
s=0

AK(ϕs(S)) =
∫
S\S0

HKu dS −
∫
S0

u 〈ξ, (η+ − η−)>〉 dS,

where ξ is the outer unit normal to S+ along S0. Hence the stationary condition is equivalent
to H = 0 on S rS0 and 〈ξ, η+ − η−〉 = 0. The latter condition is equivalent to that η+ − η−
be tangent to S0.

That HK = 0 implies that S r S0 is foliated by horizontal straight lines was proven in
Theorem 3.14 in [26]. �

Since ν+ = J(Z+), ν− = J(Z−), where Z+ and Z− are the extensions of the horizontal
tangent vectors in S+, S−, we have that the second condition in Corollary 3.2 is equivalent to
(3.2) π(J(Z+))− π(J(Z−)) is tangent to S0.

So a natural question is, given a C2
+ convex body K containing 0 in its interior, and a unit

vector v ∈ S1, can we find a pair of unit vectors Z+, Z− such that (3.2) is satisfied? If such
vectors exist, how many pairs can we get? The answer follows from the next result.

Lemma 3.3. Let K be a convex body of class C2
+ such that 0 ∈ int(K). Given v ∈ R2 r {0},

let L ⊂ R2 be the vector line generated by v. Then, for any u ∈ ∂K, we have the following
possibilities

1. The only w ∈ ∂K such that w − u ∈ L is w = u, or
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2. There is only one w ∈ ∂K, w 6= u such that w − u ∈ L.

The first case happens if and only if L is parallel to the support line of K at u.

Proof. Let T be the translation in R2 of vector u. Then T (L) is a line that meets ∂K at u.
The line T (L) intersects ∂K only once when L is the supporting line of T (K) at 0; otherwise
L intersects ∂K just at another point w 6= u so that w − u ∈ L. �

Remark 3.4. We use Lemma 3.3 to understand the behavior of characteristic curves meeting
at a singular point p ∈ S0. Let Z+, Z− be the tangent vectors to the characteristic lines
starting from p. Let ν+, ν− be the vectors J(Z+), J(Z−), and L the line generated by the
tangent vector to S0 at p. The condition that S is stationary implies that η+ − η− ∈ L. If
w = η+ and u = η− are equal then ν+ = ν− are orthogonal to L, which implies that Z+, Z−

lie in L. This is not possible since characteristic lines meet tranversaly the singular line,
again by Corollary 3.6 in [5].

Hence η+ 6= η− and η+ is uniquely determined from η− by Lemma 3.3. Obviously the
roles of η+ and η− are interchangeable.

L

T (L) = L+ u

0

w = η+

ν+

Z+
u = η−

ν−Z−

∂K
u = w

ν+ = ν−

Figure 1. Geometric construction to obtain w = η+ from u = η− so that
the stationary condition is satisfied. The case ν+ = ν− cannot hold.

4. Examples of entire K-perimeter minimizing horizontal graphs with one
singular line

Remark 3.4 implies that Z− can be uniquely determined from Z+ when S is a stationary
surface. Let us see that this result can be refined to provide a smooth dependence of the
oriented angle ∠(v, Z−) in terms of ∠(v, Z+). We use complex notation for horizontal vectors
assuming that the horizontal distribution is positively oriented by v, J(v) for any v ∈ Hr{0}.

Lemma 4.1. Let K be a convex body of class C2
+ with 0 ∈ int(K). Consider a unit vector

v ∈ R2 and let L ⊂ R2 be the vector line generated by v. Then, for any α ∈ (0, π) there exists
a unique β ∈ (π, 2π) such that if Z+ = veiα, Z− = veiβ, then π(J(Z+))− π(J(Z+)) belongs
to L.

Moreover the function β : (0, π)→ (π, 2π) is of class C1 with negative derivative.
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Proof. We change coordinates so that L is the line y = 0. We observe that Z+ = veiα implies
that J(Z+) = vei(α+π/2). We define (x, y) : S1 → ∂K by

(x(α), y(α)) = N−1
K (vei(α+π/2)),

where NK : ∂K → S1 is the (outer) Gauss map of ∂K. The functions x, y are C1 since NK
is C1. The point (x(α), y(α)) is the only one in ∂K such that the clockwise oriented tangent
vector to ∂K makes an angle α with the positive direction of the line L. A line parallel
to L meets ∂K at a single point only when α+ π/2 = π/2 or α+ π/2 = 3π/2. Hence, for
α ∈ (0, π), there is a unique β ∈ (π, 2π) such that

(x(β), y(β))− (x(α), y(α)) ∈ L.

Observe that, for α ∈ (0, π), we have dy/dα > 0 and, for β ∈ (π, 2π), we get dy/dβ < 0. We
can use the implicit function theorem (applied to y(β)− y(α)) to conclude that β is a C1

function of α. Moreover

dβ

dα
= dy/dα

dy/dβ
< 0,

as desired. �

Now we give the main construction in this section.
We fix a vector v ∈ R2 r{0} and the line Lv = {λv : λ ∈ R}. For every λ ∈ R, we consider

two half-lines, r+
λ , r

−
λ ⊂ R2, extending from the point p = λv ∈ Lv with angles α(λ) and β(λ)

respectively. Here α : R→ (0, π) is a non-increasing function and β(λ) is the composition
of α(λ) with the function obtained in Lemma 4.1. Hence β(λ) is a non-decreasing function.
The line Lv can be lifted to the horizontal straight line Rv = Lv ×{0} ⊂ H1 passing through
the point (0, 0, 0), and the half-lines r±λ can be lifted to horizontal half-lines R±λ starting
from the point (λv, 0) in the line Rv.

The surface obtained as the union of the half-lines R+
λ and R−λ , for λ ∈ R, is denoted by

Σv,α. Since any R±λ is a graph over r±λ and
⋃
λ∈R(r+

λ ∪ r
−
λ ) covers the xy-plane, we can write

the surface Σv,α as the graph of a continuous function uα : R2 → R. Writing v = eiα0 , the
surface Σv,α can be parametrized by Ψ : R2 → R3 as follows

(4.1) Ψ(λ, µ) =
{(
λeiα0 + µei(α0+α(λ)),−µλ sinα(λ)

)
, µ > 0,(

λeiα0 + |µ|ei(α0+β(λ)),−|µ|λ sin β(λ)
)
, µ 6 0.
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Lv
α

2π − β(α)

Figure 2. The planar configuration to obtain the surface Σv,α. Here α is
a constant function and K is the unit disk D. Such surfaces were called
herringbone surfaces by Young [31] as they are the union of horizontal rays
that branch out of a horizontal line.

Example 4.2. A special example to be considered is the sub-Riemannian cone Σα, where
α ∈ (0, π). The projection of Σα to the horizontal plane t = 0 is composed of the line y = 0
and the half-lines starting from points in y = 0 with angles α and −α. This cone can be
parametrized, for s ∈ R, t > 0, by

(u, v) 7→ (u+ v cosα, v sinα,−uv sinα)

when y > 0, and by

(u+ v cosα,−v sinα, uv sinα)

when y 6 0. A straigthforward computation implies that Σα is the t-graph of the function

(4.2) uα(x, y) = −xy + cotα y|y|.

Observe that

(4.3) lim
α→0

uα(x, y) =


+∞, y > 0,
0, y = 0,
−∞, y < 0,

so that the subgraph of Σα converges pointwise locally when α→ 0 to a vertical half-space.

The following rsult provides some properties of uα when α(λ) is a smooth function of λ.

Proposition 4.3. Let α ∈ Ck(R), k > 2, be a non-decreasing function. Then

i) uα is a Ck function in R2 \ Lv,
ii) uα is merely C1,1 near Lv when β 6= α+ π.

iii) uα is C∞ in any open set I of values of λ when β = α+ π on I.
iv) Σv,α is K-perimeter-minimizing when β = β(α).
v) The projection of the singular set of Σv,α to the xy-plane is Lv.
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Proof. i), ii), iii) and v) are proven in Lemma 3.1 in [27].
We prove iv) by a calibration argument. We shall drop the subscript α to simplify the

notation. Let E be the subgraph of u and F ⊆ H1 such that F = E outside a Euclidean
ball centered at the origin. Let P = {(z, t) : 〈z, v〉 = 0}, P 1 = {(z, t) : 〈z, v〉 > 0} and
P 2 = {(z, t) : 〈z, v〉 < 0}. We define two vector fields U1, U2 on P 1, P 2 respectively by
vertical translations of the vectors π(νE)|P 1 = η+ and π(νE)|P 2 = η−. They are C2 in the
interior of the half-spaces and extend continuously to the boundary plane P . As div(U j)(z,t)
coincides with the sub-Finsler mean curvature of the translation of Σv,α passing through
(z, t) as defined in [26], and these surfaces are foliated by horizontal straight lines in the
interior of the half-spaces, by Theorem 3.14 in [26] we get

divU j = 0 j = 1, 2.

Here divU is the Riemannian divergence of the vector field U . We apply the divergence
theorem (Theorem 2.1 in [27]) to get

0 =
∫
F∩P j∩B

divU j =
∫
F

〈U j , νP j∩B〉|∂(P j ∩B)|+
∫
P j∩B

〈U j , νF 〉|∂F |.

Let C = P ∩ B̄. Then, for every p ∈ C, we have νP 1∩B = J(v) is a normal vector to the
plane P and νP 2∩B = −J(v), U1 = η+ and U2 = η−. Hence, by Lemma 4.1, we get

〈U1, νP 1∩B〉+ 〈U2, νP 2∩B〉 = 〈η+ − η−, J(v)〉 = 0 p ∈ C.

Adding the above integrals we obtain

(4.4) 0 =
∑
j=1,2

∫
F

〈U j , νB〉d|∂B|+
∫
B∩int(Hj)

〈U j , νF 〉d|∂F |.

From the Cauchy-Schwarz inequality and the fact that |∂F | is a positive measure, we get
that

(4.5)
∑
j=1,2

∫
B∩P j

〈U j , νF 〉d|∂F | 6 PK(F,B).

In particular, if we apply the same reasoning to E, equality holds and

(4.6) 0 =
∑
j=1,2

∫
E

〈U j , νB〉d|∂B|+ PK(E,B).

From (4.4), (4.5), (4.6) and the fact that F = E in the boundary of B, we get

PK(E,B) 6 PK(F,B),

as desired. �

The general properties of Σv,α when α is only continuous are given in the following result.

Proposition 4.4. Let α : R→ R be a continuous and non-decreasing function. Then
i) uα is locally Lipschitz in Euclidean sense,

ii) Eα is a set of locally finite perimeter in H1, and
iii) Σv,α is K-perimeter-minimizing in H1.

Proof. i) and ii) are proven in [27], Proposition 3.2. Let

αε(x) =
∫
R
α(y)δε(x− y)dy

the usual convolution, where δ is a Dirac function and δε = δ(x/ε)
ε . Then αε is a C∞

non-decreasing function and αε converges uniformly to α on compact sets of R. By Lemma
4.1, βε = β(αε) is a C1 non-decreasing function. Since β is C1 with respect to α it follows
the uniform convergence on compact sets of βε to a function β̄.
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Take F ⊂ H1 so that F = E outside a Euclidean ball centered at the origin. We follow the
arguments of the proof of iv) in Proposition 4.3 and define vector fields div(U jε ) translating
vertically π(νEε), where Eε is the subgraph of Σαε , to obtain by the divergence theorem∑

j=1,2

∫
B∩int(P i)

〈U jε , νEε
〉|∂Eε| =

∑
j=1,2

∫
B∩int(P i)

〈U jε , νF 〉|∂F |,

the left hand side is the K-perimeter of Eε, while the right hand side is trivially bounded by
the K-perimeter of F . Therefore

PK(Eε, B) 6 PK(F,B).

Since Eε converges uniformly in compact sets to E, we obtain the result. �

We study now with some detail the case when Σv,α is a C∞ surface.

Corollary 4.5. When α is constant, the surface Σv,α is a K-perimeter-minimizing cone in
H1 of class C1,1. The singular set is a horizontal straight line and the regular part of Σv,α is
a C∞ surface.

The following extends the already known result that in the sub-Riemannian setting the
surfaces Σv,π/2 are C∞.

Lemma 4.6. Let v ∈ R2 r {0} and α ∈ (0, π) be fixed. If K is centrally symmetric with
respect to O = 1

2η
+ + 1

2η
− then β(α) = α+ π, where η+ = π(J(veiα)) and η− = π(J(veiβ)).

Proof. Let K be centrally symmetric with respect to O. Then η− is the symmetric point
of η+. On the other hand, the convex body K −O is symmetric with respect to the origin.
Then the dual norm is even and, in particular, πK−O(−ν+) = −πK−O(ν+). Now, since a
translation takes symmetric points of K −O with respect to the origin to symmetric points
of K with respect to O, we get ν− = −ν+. This implies that β(α) = α+ π. �

The existence of a convex body K of class C2
+ such that 0 ∈ int(K) for which Σv,α is C∞

is studied in Corollary 4.7 and Proposition 4.8.

Corollary 4.7. Let v ∈ R2 r {0} and α ∈ (0, π) be fixed. Then there exists a convex body
K of class C2

+ with 0 ∈ int(K) such that Σv,α is C∞.

Proof. To construct the convex body K, fix a point p ∈ {(x, y) : 〈(x, y), veiα〉 > 0} and
O ∈ J(L)+p∩L, where L is the vector line generated by v. Then any K of class C2

+ centrally
symmetric with respect to O containing the origin such that p ∈ ∂K and veiα⊥Tp∂K satisfies
the hypothesis of Lemma 4.6, where η+ = p and η− is the symmetric of η+ with respect to
O. Thus, by (iii) in Proposition 4.3 we get that Σv,α is C∞. �

Proposition 4.8. Given a convex body K of class C2
+ with 0 ∈ int(K), there exists v ∈ R2

such that Σv,π/2 is C∞.

Proof. Let p and q be points in K at maximal distance. Then the lines through p and q
orthogonal to q − p are support lines to K. Taking v = q − p and setting p = η+ we have
q = η−, while the vectors ν+ and ν− are over the line L(v), that is, Z+ Z− make angles π/2
and 3π/2 with L(v). �

For fixed v ∈ R2, we define the surface Σ+
v,α as the one composed of all the horizontal

half-lines R+
λ and R−λ ⊆ R2 extending from the lifting of the point p = λv ∈ Lv, λ > 0, to

H1. The surface Σ+
v,α has a boundary composed of two horizontal lines and its singular set is

the ray L+
v = {λv : λ > 0}. We present some pictures of such surfaces.
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Figure 3. The surface Σ+
π/3,π/6 associated to the norm || · ||D, where D is

the unit disk. The singular set corresponds to the purple ray of angle eiπ/3.
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Figure 4. The surface Σ+
π/3,π/6 associated to the p-norm with p = 1.5. The

left part of the figure coincides with the left part of Figure 3, while the angle
β is bigger. Notice that also the height has increased.

Figure 5. The surface Σ+
π/3,π/6 with β = α+ π. There existence of K is

granted by Corollary 4.7.

5. Area-Minimizing Cones in H1

We proceed now to construct examples of K-perimeter minimizing cones in H1 with an
arbitrary finite number of horizontal half-lines meeting at the origin. The building blocks for
this construction are liftings of circular sectors of the cones considered in Corollary 4.5.

We first prove the following result.

Lemma 5.1. Let K be a convex body of class C2
+ such that 0 ∈ int(K). Let u,w ∈ S1,

θ = ∠(u,w) > 0. Then there exists v ∈ S1 such that the vector line Lv generated by v splits
the sector determined by u and w into two sectors of oriented angles α and β such that
α+ β = θ. Moreover, the stationary condition π(J(u))− πK(J(w)) ∈ Lv is satisfied.

Proof. Let νu = J(u), νw = J(w) and ηu = π(νu), ηw = π(νw), ηu 6= ηw since π is a C1

diffeomorphism. Thus there exists a unique line L̃ passing through ηu and ηw and L = L̃−ηu
is a straight line passing though the origin. Notice that L̃ splits ∂K in two connect open
components ∂K1 and ∂K2. There exist two points η1 ∈ ∂K1 and η2 ∈ ∂K2 such that L+ η1
(resp. L+ η2) is the support line at η1 (resp. η2). Setting v1 = N∂K(η1) and v2 = N∂K(η2)
we gain that vi for i = 1, 2 is perpendicular to L. Without loss of generality we set that
−J(v1) belongs to the portion of plane identified by the θ and −J(v2) belongs to the portion
of plane identified by the 2π − θ. Then we set v = −J(v1). Notice that v splits θ in two
angles β = ∠(u, v), α = ∠(v, w) with θ = α+ β and L = Lv. �
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Now we proceed with the construction inspired by the sub-Riemannian construction in
[20]. For k > 3 consider a fixed angle θ0 and family of positive oriented angles θ1, . . . , θk
such that θ1 + · · ·+ θk = 2π. Consider the planar vectors u0 = (cos(θ0), sin(θ0)) and

ui = (cos(θ0 + θ1 + · · ·+ θi), sin(θ0 + θ1 + · · ·+ θi)), i = 1, . . . , k.
Observe that uk = u0. For every i ∈ {1, . . . , k} consider the vectors ui−1, ui and apply
Lemma 5.1 to obtain a family of k vectors vi in S1 between ui−1 and ui. We lift the half-lines
Li = {λvi : λ > 0} to horizontal straight lines passing through (0, 0, 0) ∈ H1, and we also lift
the half-lines

λvi + {ρui−1 : ρ > 0}, λvi + {ρui : ρ > 0},
to horizontal straight lines starting from (λvi, 0). This way we obtain a surface

CK(θ0, θ1, . . . , θk)
with the following properties

Theorem 5.2. The surface CK(θ0, θ1, . . . , θk) is K-perimeter-minimizing cone which is the
graph of a C1 function.

Proof. CK(θ0, θ1, . . . , θk) is a cone by construction. It is an entire graph since it is composed
of horizontal lifting of straight half-lines in the xy-plane that covered the whole plane without
intersecting themselves transversally. The K-perimeter-minimizing property follows in a
similar way to from Proposition 2.4 in [20]. That it is the graph of a C1 function is proven
like in Proposition 3.2(4) in [20]. �

A particular example of area-minimizing cones are those who uses the sub-Riemannian
cones Cα restricted to the circular sector with θ ∈ (−α, α) as as model piece of the cone.
Taking K = D, k > 3, and the angle α = π/k, we define

C(k) = CD
(π
k
,

2π
k
, . . . ,

2π
k

)
.

Let us denote by uk the functions in R2 whose graph is C(k). The behavior when k tends to
infinity of uk in a disk is analyzed in the following result.

Proposition 5.3. The sequence uk converge to 0 uniformly on compact subsets of R2.
Moreover, the sub-Riemannian area of uk converges locally to the sub-Riemannian area of
the plane t = 0. Moreover the sub-Riemannian area of uk converges to the one of the plane
t = 0.

Proof. Since uk is obtained by collating some rotated copies of uα, where α = π/k, we can
estimate the height of uk by the height of uα. By (4.2), using polar coordinates (r, θ), where
θ ∈ [−α, α] and r < r0, we get

|uα| 6 2r2
0| sin(π/k)|

on D(r0) = B(0, r0). The claim follows since limk→∞ sin(π/k) = 0.
The sub-Riemannian area of the graph of uk over D(r0) is given by

AD(uk, r0) =
∫
D(r0)

‖∇uk + (−y, x)‖dxdy.

Since the sub-Riemannian perimeter is rotationally invariant, we can decompose the above
integral as k times the area of the cone Cα in the circular sector with θ ∈ (−α, α) and r < r0.
By (4.2), it is immediate that

‖∇uk(x, y) + (−y, x)‖ = 2|y| sin−1(α).
A direct computation shows that

AD(uk, r0) = 4πr3
0

3
1− cosπ/k

(π/k) sin π/k .

Then AD(uk, r0) tends to 2πr3
0

3 as k → +∞. �
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Figure 6. The cone C(4). The singular set is composed of the red rays of
angle 0, π/2, π, (3π)/2, while the rays of angles π/4, (3π)/4, (5π)/4), (7π)/4,
where two pieces of the construction meet, are depicted in cyan.

Figure 7. The cones C(8) and C(16). They are depicted at the same in
this Figure and the previous one. As the number of angles increases, the
cone produces more oscilations of smaller height.
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Departamento de Geometŕıa y Topoloǵıa & Research Unit MNat, Universidad de Granada,
E–18071 Granada, Spain

Email address: ritore@ugr.es


	1. Introduction
	2. Preliminaries
	2.1. The Heisenberg group
	2.2. Sub-Finsler norms and perimeter

	3. The first variation formula and a stationary condition
	4. Examples of entire K-perimeter minimizing horizontal graphs with one singular line
	5. Area-Minimizing Cones in H1
	References

