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A DIRICHLET BOUNDARY CONTROL PROBLEM
FOR THE STRONGLY DAMPED WAVE EQUATION*

FRANCESCA BUCCIJ

Abstract. A boundary control problem is considered for the strongly damped wave equation, and it is
solved by dynamic programming arguments.
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1. Introduction.
1.1. Statement of the problem and literature. Let c R be an open bounded set

with smooth boundary 01-1, and let T> 0 be fixed.
We are concerned with a boundary control problem for the strongly damped wave

equation

Ytt(t, x) Ay(t, x) + cAy,(t, x) (t,x)6 ]0, T[;

(1.1) y(0, x) yo(x), yt(0, x) Zo(X x ’,

y( t, x) u( t, x) (t, x) ]0, T[xof,

where c is a positive constant; Yo, Zoe L2(I)); and we take u in W1’2(0, T; L2(OI))).
Physical motivation for studying (1.1) arises from problems that may occur in the

study of flexible structures in a bounded domain, controlled on the boundary through
a Dirichlet boundary condition.

In recent years, boundary control problems have become of interest in optimal
control theory. Flandoli [2], [3] and Lasiecka and Triggiani [4] study a general abstract
class of dynamic that covers parabolic-like problems, namely, not only heat/diffusion
equations, but also wave or plate equations with structural damping. In their works,
they assume, as usual, that controls u belong to L2(0, T; L2(0")).

In [5] Lasiecka and Triggiani give several examples of partial differential equations,
with boundary or point control, which can be reduced to that abstract model. Neverthe-
less, to the knowledge of the author, (1.1) has not been explicitly treated in relation
to optimal contol problems.

In this paper, following the original idea of Balakrishnan for parabolic equations
(see [1]), we derive a solution formula for (1.1) in the product space H L2() L2(-).
This formula yields the couple (y, yt) in terms of the time derivative of the control ut.

Since we want to solve the control problem using dynamic programming tech-
niques, we must work in the product space H, and we would expect that (y, Yt) belongs
to L2(0, T; H). Therefore, due to the low regularity of the solutions to (1.1) under the
assumption u e L2(0, T; L(OO)), we take u e WI’-(0, T; LZ(0f)).

* Received by the editors August 15, 1990; accepted for publication (in revised form) June 26, 1991.
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A DIRICHLET BOUNDARY CONTROL PROBLEM 1093

Consistent with this choice, we consider the problem of minimizing the cost
functional

+ Ia {I(Fly( T,. ))(x)l + I(r2y,( T,. ))(x)l} dx

overall u in W1’2(0, T; L2(0-)), where Ci, Fi(L2(I))), i= 1,2, F are selfadjoint,
and y is subject to the partial differential equation (1.1).

The purpose of 2 of this paper is to show that it is possible to reformulate
problem (1.1), (1.2) into a standard quadratic control problem. This goal is achieved
by introducing suitable states and controls, namely, setting W= (y.y,, u), v u’.

Section 3 is devoted to showing that the theory developed in [3] can be applied
to the new control problem, provided that [’2 belong to (L2(f), H()) for some
t(1/4,).

1.2. Notation. Let X and Y be two Hilbert spaces. We denote norms and inner
products with[. ]and (.,.), respectively.

We represent with (X, Y)(ZY(X) if X Y), E(X), E+(X) the space of all
bounded linear operators from X to Y, the space of all bounded selfadjoint operators
in X, and the subset of E(X) of nonnegative definite operators, respectively.

If T is a linear operator (generally unbounded) from X to Y, we denote its domain
with D(T) and its adjoint by T*.

Moreover, we denote by p(T) the resolvent set of T, by or(T) the spectrum of T,
and by R(A, T)=(A-T)-1 the resolvent operator, respectively. We set wr
sup {Re A IA 6 or(T)}.

If T generates a Co-semigroup G(t) on X, we set G(t)- e t.
2. The abstract setting. Let fl c En be an open bounded set with smooth boundary

01), and let T>0 be fixed. We study in (0, T)12 the optimal control problem (1.1),
(1.2).

We consider the Dirichlet realization of the Laplace operator in L2(’), defined
by Ay Ay for any y D(A)= H2(12)f3 H(12), and we denote by D the Dirichlet
mapping from L2(OD) to L2(-), defined by Dv w, where

Aw=0 in ,
w(x)=v(x) xeoa.

As is proved in [6], D(L2(OD,), H1/2(-)).
Moreover, we introduce the Hilbert spaces H L2() L2(), U L(OD) and

define the linear operator in the product space H as

(2.1)

0 z) +

y+ cz D(A)}.
It is well known that is the infinitesimal generator of an analytic semigroup
on H of negative type.
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1094 FRANCESCA BUCCI

For simplicity, we first assume that u(0,.)=0 and consider the problem of
minimizing (1.2) over the class of controls

W’2(0, T; Lz(0f)) {u 6 W"2(0, T; L2(of))lu(O, 0}.

Following a standard technique introduced by Balakrishnan (see [1]), we can
reduce problem (1.1) to a homogeneous boundary problem. Then it is easy to check
that the solution Y (y, y,) to (1.1) satisfies

(2.2) y(t)=e, Yo -M e(’-s)CFu’(s) ds+Eu(t),
\ Zo/

where Y(t)= Y(t,.), u(t)= u(t,.), and E, F are the linear operators in (U, H),
defined by

Eu= Fu=
Du

respectively.
Remark 2.1. If we apply _

( c A-

to (2.2) and integrate by pas in t, we obtain that

-cY(t)+A-lY’(/) =- e, Y0
_

e(’-Fu(s) ds-cu(t),
y(t) zo

which easily yields regularity of solutions to (1.1) in terms of the regularity of the
control u. We stress that, if uL(O, T; L(O)), then we only have A-y’(t)
L:(0, T; H).

Therefore, because we want to use dynamic programming arguments, we cannot
weaken the assumption u WI’(0, T; L:(9)).

The cost functional can be written as

(.) (u) ([cr() +() +]u’()]:) d+(Por(T), r(T)),

where

0 C Po F

and it is clear that Ce(H), Po+(H).
Now note the control u as an auxiliary component of the state and define u’ as

a new control. More precisely, set

and introduce a new states space H H x U, while we set U U.
From (2.2), (2.4) it is rather easy to derive a semigroup formula to be satisfied by

W in H. To do that, we need the following lemma.
LMMa 2.2. Let G’[0, +)(H) be defined by

(e’ (I-e’)E)(.5)
0 I

with given by (2.1).
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A DIRICHLET BOUNDARY CONTROL PROBLEM 1095

Then G is an analytic semigroup on H of type 0, and its generator Y3 is defined by

Moreover, p(N)= {A eCIA p(), I 0}, and, for all p(N), we have that

(2.7) R(A, )= (R(A,0 (1/A)I

Proof We can easily check that G is a strongly continuous semigroup on H. We
now characterize the generator of G(t).

Let () , > 0. We write

((,-I(7 =7 0 0

o
Therefore the limit lim,o (1/ t)( G( t)- I)(Y) exists if and only if there exists
lim,o(1/t)(e’-I)(Y-Eu), that is, by definition, if Y-Eu D(M).

In conclusion,

and, for all (v) D(N),

and (2.6) holds true.
Also, formula (2.7) can be easily verified.
To show that G(t) e’ is an analytic semigroup on , we observe that, if co > 0,

we have that

and, since e’ is an analytic semigroup of negative type, from (2.7) we easily deduce
the bound

M
[R(A, Re A> co.

Remark 2.3. By using (2.6) and definition (2.1) of s4, we can write more explicitly

D()= ffI y+cz-DuD(A)

A(y+cz-Du)
0
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1096 FRANCESCA BUCCI

By using the operators defined in Lemma 2.2, we can finally obtain the following
theorem.

THEOREM 2.4. Let Y be as in (2.2), W and v defined by (2.4). Then W( t) satisfies

(2.8) W(t)=e’Wo+(I-l) e(’-s)cv(s) ds,

where et, Y3 are given by (2.5), (2.6), respectively’, c is the linear bounded operatorfrom
U to H defined by

(2.9) Cgv= ( Ev- sd(I- sd)-lFv)
and Wo (Yo, Zo, O) 7‘

Proof Formula (2.8) is proved by a short verification substituting (2.9) and

Wo (Yo, Zo, 0) 7- into the second member of (2.8) and considering (2.5) and (2.6).
In conclusion, the control problem (2.2), (2.3) can be reduced, in the abstract

spaces H, U, to the problem of minimizing the quadratic functional

Io(2.10) J(v)= <l W(s)12/lv<s)12> ds/<PoW(r),

over all v L2(0, T; /Q), where

t C1C= 0

0

and W is subject to (2.8).

po= 0

0 0 0

Suppose now that 3, 3, C, Po satisfy all conditions assumed by Flandoli in [3]
to show the existence and uniqueness of the solutions to Riccati equation associated
with problem (2.8)-(2.10). Obviously, once we have obtained the optimal control
V*G L2(0, T; (_) for problem (2.8)-(2.10), the optimal control u* for the original
problem (1.1), (1.2) is given by u*(t)= to v*(s) ds.

Remark 2.5. Until now, we have supposed that u(0) 0. Otherwise, we can proceed
as follows. We first assume that u(0)= Uoe U is fixed, and we derive the solution
formula for (1.1) in H as follows"

(2.11) y(t)=e, yo-Duo
-sl e(t-’)CFu’(s) ds+Eu(t).

Zo /

By using the same method described in the case where Uo=0, we reduce the
problem of minimizing (2.3) over the class of controls u W’2(0, T; U) such that
u(0) uo (where Y is subject to (2.11)) to problem (2.8)-(2.10), with Wo (Yo, zo, Uo).

If the theory developed in [3] applies to (2.8)-(2.10), then the Riccati feedback
synthesis yields the optimal value J(v*)=(P(T)Wo, Wo), where P is the solution to
the Riccati equation associated with (2.8)-(2.10). This is a quadratic form with respect
to uo. Thus, to solve the original control problem in WI’e(0, T; U), it remains to
minimize J(v*) with respect to uo.

3. Solution of the control problem. We want to check hypotheses assumed in [3]
to solve problem (2.8)-(2.10). We can immediately see that ( (),/5o E+(/). As
a consequence of Lemma 2.2, we also know that 3 generates an analytic semigroup
of type less than 1.
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A DIRICHLET BOUNDARY CONTROL PROBLEM 1097

(3.1)

Therefore it remains to show that

::10 < a < such that ( U, D((I )))

and that, under suitable assumptions on

(3.2) EI/3(1/2-c,1/2) such that (I-*)X/o().
To prove the validity of (3.1), we give a characterization of the interpolation

spaces D(0, 2), for any 0 (0, 1). (As to relations between interpolation spaces and
domains of fractional powers of linear operators, see [7, 1.13-1.15], and the referen-
ces contained therein.)

We start by showing the following lemma.
LEMMA 3.1. For any 0 (0, 1)

(3.3)

and the norm

Y- Eu D( 0, 2) }

Therefore

if and only if

tNR(t, ) L.(a,

t- IltR(t, s)(Y-Eu)ll L2.(a,
and (3.3) holds true. The equivalence of the norms (3.4), (3.5) is again a consequence
of (3.6).

Arguing as in Lemma 3.1, by means of the representation of the resolvent R(t, s)
in terms of R(t2/(ct+ 1); A), we can easily deduce the next lemma.

LEMMA 3.2. For any 0 (0, 1),

is equivalent to the norm ofD( O, 2).
Proof We use the well-known characterization [7, 1.14], below:

D(O, p)= {We I" t IltNR(t, ) wll L(a, +c)}

with norm

(3.5) IlWll,co,-IlWllc,+lltR(t, )Wllc,/,
where a max (1, m), and fe L(a, +) if

If(t) p dt

Let 0(0, 1), (S) , ta. By representation (2.7) of the resolvent R(t,) in
terms of R(t, M), it follows that
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1098 FRANCESCA BUCCI

and the norm

is equivalent to the norm ofD( O, 2).
COROLLARY 3.3. For any 0 (0, 1), we have that

D(0,2)= ffI y+cz-DuDA(0,2)

and the norm

+ Ily+ cz-

is equivalent to the norm of D(0, 2).
We are now able to verify condition (3.1).
PROPOSITION 3.4. Let be as in (2.9). Then there exists 0 (0, 1/4) such that

( U, D((I- I))).
Proof As a consequence of the inclusion

(3.7) D(O+e, 2) D((I-I)),
which holds for any 0 (0, 1), e > 0, it is sufficient to show that there exists 0 (0, -)
such that ( U, D(0, 2)).

Let v U. From Lemma 3.1, cvD(0,2) for some 0(0,1) if and only if
R(1, sd)Fv-Fv D(0, 2) for the same 0.

Since D(U, DA(0,2)) for any 0(0,1/4) [6], conclusion follows easily from
Lemma 3.2.

It remains to check (3.2).
Let 0 be as in Proposition 3.4. It is sufficient to show the existence of/3 e (1/2- 0, 1/2)

such that

(3.8) x/-o IYI, D fl, 2)),

where * is the adjoint of N. After that, again as a consequence of (3.7)--which also
holds true for N*--and by the closed graph theorem, we obtain that

::1/3 e (1/2- 0, 1/2) such that (I- N*)ov0e ().
By using the same arguments as in Lemmas 3.1 and 3.2, we can easily deduce the

next lemma.
LEMMA 3.5. For any 0 (0, 1),

(3.9) D.(0, 2) e H: z G DA(O, 2)

and the norm

u /

is equivalent to the norm of D.( O, 2).
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A DIRICHLET BOUNDARY CONTROL PROBLEM 1099

Assume now that

(3.10) :!/3 (1/2- 0, 1/2) such that F2 5f(L2(O), DA(, 2)).

Then we have the following proposition.
PROPOSITION 3.6. There exists (1/2- O, 1/2) such that

Then

Proof Let

By hypothesis (3.10) on F2, and from (3.9), there exists/3 (1/2-0, 1/2) such that

Moreover, as a consequence of Lemma 3.5, we can write

Voo z

D.(/3,2)

and, again by (3.10), we deduce the bound

Thus (3.8) holds true, and Proposition 3.6 is proved.
Now, following [3], we can solve the Riccati equation associated with (2.8)-(2.10)

and conclude by using dynamic programming that, for every Yo, z0 L(), there exists
a unique feedback optimal control v* for (2.8)-(2.10).

At this point, we can interpret the Riccati feedback synthesis of problem .(2.8)-
(2.10) in terms of the original control problem (1.1), (1.2).

Therefore we can finally state the following theorem.
TogM 3.7. If Ci (L(a)), Fi E(L(a)), i= 1, 2, F

for some (, ), then, for every Yo, Zo L(), there exists a unique feedback optimal
control u* for problem (1.1), (1.2) in W’(O, T; L(O)).
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