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ABSTRACT

Fibre Reinforced Cementitious Matrix (FRCM) proved effective for retrofitting

and strengthening unreinforced masonry structures, enabling capacity improve-

ment with negligible added masses, and overcoming the drawbacks of Fibre Re-

inforced Polymers. Although extensive research has been carried out in recent

years, a complete characterisation of the mechanical behaviour of such materials

is yet not available. In this framework, the present research is aimed at a better

understanding of the mechanical behaviour of FRCM. The general purpose of con-

tributing to the definition of procedures for the characterisation of FRCM systems

and the design of strengthening interventions is pursued through both experimen-

tal campaign and numerical modelling. In particular, within mode II fracture me-

chanics, a finite difference numerical model is developed for the description of

FRCM behaviour in the characterisation tests. The proposed model describes the

fundamental mechanism governing the response of these materials, i.e. the shear

transfer mechanism at the textile-matrix interface. The enforcement of adequate

loading conditions allows the model to correctly capture the FRCM behaviour in

direct shear test (DST) and in direct tensile test (DTT) with any set-up. The im-

v



plementation of a displacement-controlled loading procedure, simulating crack

widening, enables capturing all phases typically observed during experimental

trials. Relying on independent solutions which consider the system in different

phases since the beginning of the loading process, a new procedure for the con-

struction of the load slip diagram of DTT is implemented, allowing estimation of

load drops and stiffness degradation caused by cracks opening. A comprehensive

parametric analysis highlights the effects that the variation of the main mechanical

and geometrical parameters defining constituent materials have on the response

of the FRCM system; the effects of cracks opening at different locations in DTT are

also investigated through parametric analysis. The correlation between influenc-

ing parameters allows the description of the great variability of results obtained in

characterisation tests in terms of variation of the test set-up, and of mechanical and

geometrical parameters characterising constituent materials. The model proposed

is validated through comparison with experimental data available in the literature

and the outcomes of an experimental campaign specifically carried out on a set

of FRCM systems. It is shown that even with fixed geometrical features of the

specimen and gripping apparatus, great variability of results can be encountered,

due to the role of matrix tensile strength in determining the mechanical response

of DTT: the matrix tensile strength value and its random distribution along the

reinforcement can determine cracks to open at different positions, thus greatly af-

fecting the load and slip capacity of the system. Furthermore, it is suggested that

matrix tensile strength plays a relevant role, along with the CML properties, also

in determining the shape of the load slip diagram of DTT, so that bi-linear and

tri-linear diagrams can be found within the same test set-up.
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1

CHAPTER 1

Introduction

1.1 FRAMEWORK

In the construction field, fibre-reinforced cementitious matrix (FRCM) proved ef-

fective for retrofitting and strengthening purposes of masonry and reinforced con-

crete structures, enabling capacity improvement with negligible added masses,

and overcoming the drawbacks of fibre-reinforced polymers, (Kouris and Triantafil-

lou 2018; Koutas et al. 2019).

Made of a reinforcing fibre embedded as an open mesh textile in an inorganic

matrix, they efficaciously increase the tensile strength of the structural members

to which are applied. Through the interface with the textile, the matrix transfers

the external action from the substrate to the reinforcing textile, which finally bears

tensile axial stress. Experimental campaigns carried out also in the framework of

round-robin tests (Arboleda et al. 2016; Caggegi et al. 2017; Carozzi et al. 2017; De

Santis et al. 2017b; Lignola et al. 2017) highlight that the response of these materi-

als is mainly driven by the shear transfer mechanism activated at the textile-matrix

interface. The most frequent failure modes are due to textile slippage and reach-

ing of fibre tensile strength, as observed in adhesion tests, tensile tests, and fibre

pull-outs. Experimental campaigns carried out to investigate the influence on the

system response of test set-up, specimen preparation, textile geometry and me-

chanical parameters of constituent materials showed great variability of results.

Modelling of the mechanical behaviour of FRCM materials is usually tackled

assuming a pure mode II fracture, to describe the textile-matrix interface. In this

framework, the interaction at the textile-matrix interface is described by a cohe-
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sive material law (CML), which summarises the phenomena involved in the shear

transfer mechanism through a function or law relating relative slips and shear

stresses at the interface. The CML can be determined directly through specimen

instrumentation, or indirectly through the interpretation of the load slip diagram.

Given the difficulty of a direct calibration of the CML from experiments, the prob-

lem becomes twofold and comprises a primal (or direct) and a dual (or indirect)

problem: the primal problem implies the assumption of CML for the implemen-

tation of a model which describes the FRCM behaviour; in the dual problem, the

CML has to be calibrated from the interpretation of experimental outcomes (Naa-

man et al. 1991).

Although extensive research has been carried out in recent years, a complete

characterisation of the mechanical behaviour of such materials is yet not available

(Grande, Ghiassi, and Imbimbo 2019). Various numerical and analytical models

have been proposed for the description of characterisation tests of FRCM materials.

However, the interpretation and prediction of the mechanical behaviour of FRCM

systems call for further investigation. The great variability of results obtained in

characterisation tests in terms of set-up test, and variation of the mechanical and

geometrical parameters defining constituent materials, shape of the load-slip di-

agram, and calibration mode are hardly captured through a unique model. An

interesting issue concerns the change in the shape of the load slip curves in direct

tensile tests (i.e., bi-linear and tri-linear) that is attributed both to the quality of

bonding (CNR 2014; Arboleda et al. 2016; D’Antino and Papanicolaou 2018) and

to the test set-up, i.e. clamped or clevis grip, (De Santis et al. 2017a; De Santis

et al. 2018; Nerilli and Ferracuti 2022). In Focacci, D’Antino, and Carloni (2022b)

severe concerns have been posed on the reliability of tensile properties provided
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by DTT, due to the dependency of the test results on the length of the gripping

device, length of the specimen and the gauge length to which the strains are re-

ferred. These parameters, which are not uniquely prescribed by ACI 549.4 R-13

(2013) and CNR (2018), affect the measurements of the tensile capacity of the sys-

tem, preventing the determination of the intrinsic system properties. The research

presented was developed in relation to the pointed-out issues concerning a further

understanding of the mechanical behaviour of FRCM materials.

1.2 FRCM FOR HISTORICAL MASONRY STRENGTHENING

Historical buildings call for appropriate strengthening techniques suited to provid-

ing the required structural performances and complying with the restoration prin-

ciples stated by internationally acknowledged institutions (Venice Charter 1964;

Principles 2003). Especially in masonry buildings, structural features are mostly

merged with semantic and formal aspects, so that an adequate understanding of

the mechanical behaviour of built heritage is essential to fully protect the historical

evidence conveyed by the architectural heritage.

Seismic events, natural disasters and the ageing process highlight vulnerabil-

ities of masonry structures, which constitute a relevant portion of the worldwide

building stock. Such vulnerabilities are mainly related to the scarce tensile strength

of un-reinforced masonry. Unless stress concentrations are determined in struc-

tural members with reduced cross-sections, the stability of masonry structures is

usually not undermined by vertical loading conditions and self-weight. Tensile

stresses caused by thrusting elements, in-plane and out-of-plane loading condi-

tions determine the formation of cracks in the materials, which separates into a

series of macro-elements. Therefore the mechanical behaviour of masonry can be
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understood as an articulated series of in-plane and out-of-plane rigid displace-

ments, i.e. local damage mechanisms. Strengthening techniques adopted in the

last century often involved the introduction of inertial masses, such as reinforced

concrete ring beams and coating, which proved detrimental during earthquakes.

These interventions were meant to replace the structural capacity of buildings, but

due to the increased mass and incompatible stiffness, they became an additional

cause of vulnerability.

In this framework, FRCM materials disclose new perspectives for strengthen-

ing un-reinforced masonry thanks to continuous fibres embedded as open mesh

textiles in inorganic matrices, which offer high levels of structural efficiency. Pro-

viding tensile strength to the masonry substrate, they can effectively hinder the

activation of local damage mechanisms. Lime-based and cementitious matrices

selected also allow for the reversibility of interventions, and guarantee good com-

patibility with the substrate, making them appropriate for applications on build-

ings belonging to the cultural heritage. In FRCM systems, the failure occurs at the

fibre-to-matrix interface, which constitutes the weak interface of the system; the

typical failure mode of FRP, i.e. delamination of the substrate, which would not be

acceptable for interventions on the architectural heritage, is therefore avoided.

Technologies adopted for the strengthening of historical masonry should com-

ply with the basic principles of restoration, enshrined in fundamental documents

such as the Venice Charter and ICOMOS principles (Venice Charter 1964; Princi-

ples 2003): reversibility, compatibility and minimum intervention.

Although it is very often interpreted in an exclusively chemical sense, the con-

cept of compatibility also concerns the physical and mechanical performance of

strengthening techniques. Composite materials are compatible with historical ma-
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sonry architectures due to the use of inorganic matrices, which guarantee adhesion

to the substrate and good levels of breathability; also they do not modify the me-

chanical behaviour of the structure when subject to self-weight or vertical loads.

The preservation of the original mechanical behaviour is also compliant with the

demand for authenticity expressed by ICOMOS principles.

The concept of reversibility is related to the awareness of the progressive nature

of scientific knowledge, so that improved strengthening techniques available in the

future may replace those previously adopted. Such a possibility is guaranteed by

the inorganic nature of the matrix used in FRCM, which allows for the removal

of reinforcement from the substrate. The failure mode of these materials further

ensures reversibility, since the FRCM reinforcement is damaged during actions,

while the masonry substrate is preserved.

This fact, along with a proper understanding of the structural behaviour of

buildings, supports the principle of minimum intervention, which ensures safety

and durability with the least harm to heritage values. Since FRCM composites are

often installed under plasters, stone blocks or bricks and at vault extrados, they

also have a minimum (or null) visual impact on the strengthened building.

1.3 AIM AND SCOPE

The research here presented is aimed at contributing to a better understanding

of the mechanical behaviour of fibre-reinforced composite materials. The general

purpose of contributing to the definition of procedures for the characterisation of

FRCM systems and the design of strengthening interventions is pursued through

both an experimental campaign and numerical modelling. In particular, within

mode II fracture mechanics, a finite difference numerical model is developed for
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the description of FRCM behaviour in the characterisation tests: direct shear test

(DST) and direct tensile test (DTT). Fundamental mechanisms driving the FRCM

response under tensile loading conditions are identified and implemented in the

model along with appropriate boundary conditions, which account for different

loading procedures. Comparison with experimental data available in the literature

and the outcomes of a specifically carried out experimental campaign are meant

to provide validation to the proposed model. The model is intended to improve

understanding of the relation between the great variability of results obtained in

characterisation tests in terms of the test set-up, and variation of the mechanical

and geometrical parameters defining constituent materials, shape of the load-slip

diagram and failure mode.

1.4 RESEARCH OUTLINE

The research is organised as follows: in Chapter 2 an overview of FRCM systems,

main characterisation tests and models proposed in the literature for the prediction

of experimental results is reported; in Chapter 3 a finite difference model describ-

ing the mechanical behaviour of FRCM materials in direct shear tests and direct

tensile tests is presented; in Chapter 4 a parametric analysis is carried out on the

proposed model, to highlight the effects of the variation of the geometrical and

mechanical parameters influencing the response of the system in both tests; in

Chapter 5 an analysis of the combined variation of mortar tensile strength and

CML characteristics is performed on the DTT model, highlighting the influences

on the shape of the load slip diagrams; in Chapter 6, a specifically carried out ex-

perimental campaign is reported and the proposed model is also applied for the

estimation of DTT results; Finally, conclusions are drawn in Chapter 7, where the
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main achievement of the research are highlighted.
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CHAPTER 2

State of the art

2.1 IDENTIFICATION

Fibre-reinforced cementitious matrix (FRCM) is a class of recently developed com-

posite materials, consisting of continuous reinforcing fibres embedded in an inor-

ganic fine-grain matrix. Inorganic matrices can be cement, lime or gypsum based

and their properties are sometimes enhanced through the addition of short dis-

persed fibres and polymeric additives. To avoid negative effects on vapour per-

meability, fire resistance and durability, polymeric additives should be kept to a

maximum of 10% by weight of the inorganic binder, according to CNR (2018), or

to 5%, according to ACI 549.4 R-13 (2013). High-strength fibres, namely basalt, car-

bon, Polyparaphenylene Benzobisoxazole (PBO), Aramid and Kelvlar are typically

employed as reinforcement, although the use of natural materials was also inves-

tigated (Olivito, Cevallos, and Carrozzini 2014; Asprone et al. 2011). The selected

fibres are bundled in yarns comprising hundreds or thousands of single fibres, i.e.

filaments, which have a diameter of a few microns (Hartig et al. 2012). Yarns are

organised in bi-dimensional or tri-dimensional structures with a defined geometry

through proper textile fabrication technologies, such as weaving, knitting, tufting,

felting, braiding, or bonding, (ACI 549.4 R-13 2013). When fabrication techniques,

e.g. weaving, envisage that a series of parallel yarns are kept stationary and others

are introduced passing over and under them, a primary direction, called warp, and

a secondary direction, called weft or fill, can be identified in the textile. Differently

from polymers, inorganic matrices are unable to fully impregnate yarns, due to the

grain size and the reohological characteristics of the fresh paste, which prevent it
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from flowing among the inner fibres. Therefore two different areas can be identi-

fied in an embedded yarn: a sleeve or outer ring imbued with matrix, and a dry

core (Hartig et al. 2012). The presence of a dry core is considered, by definition,

a distinctive feature of FRCM (ACI 549.4 R-13 2013; Arboleda et al. 2016), distin-

guishing them from FRP. In fact, in case a polymeric coating is applied to the fibres

and completely imbues them, the reinforcement system is no longer considered an

FRCM, but an FRP embedded in mortar (Arboleda et al. 2016).

The textile geometry of the reinforcing fibres employed in FRCM is meant to

provide geometrical stability during casting and strength to the composite (Peled

and Bentur 2000; Peled, Bentur, and Yankelevsky 1998). Furthermore, since the

mortar matrix cannot fully impregnate fibres, the open mesh geometry of the tex-

tile allows effective bonding between mortar layers. In fact, the inability of the

inorganic matrix to penetrate among the inner filaments of yarns would generate

a plane of discontinuity in the composite material if continuous or tight mesh tex-

tiles were used, causing a lacking connection between the upper and lower mortar

layers, and negatively affecting the composite response (Fazzi, Misseri, and Rovero

2023). In ACI 549.4 R-13 (2013) it is specified that the coverage area of the textile

should be below 2/3, to allow for sufficient connection between the composite lay-

ers.

Regarding the geometrical configuration of the textile, spacing between yarns

should not exceed 25.4 mm, according to ACI 549.4 R-13 (2013) or 30 mm, accord-

ing to CNR (2018). The mortar matrix thickness should be 5 to 15 mm in case one

layer of textile is embedded and should be smaller than 30 mm, in case several

layers of reinforcement are embedded (CNR 2018).

The reinforcing fibre content of a textile is expressed through the equivalent
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thickness tf , defined as the ratio between the weight of the reinforcing fibres in the

textile and their specific weight (CNR 2018); tf provides the thickness the textile

would have if fibres were arranged without spacing in between.

In FRCM adhered to a substrate, the matrix transfers the external actions from

the support to the textile, which finally bears axial stresses through the fibre-matrix

interface. Experimental evidence provided by round-robin tests, shows that the

FRCM behaviour is based on the bond mechanism between the phases, causing

textile-matrix relative slippage and/or textile tensile failure, as observed in direct

shear tests (DST), (CNR 2014; CNR 2018; Ceroni and Salzano 2018; De Santis et

al. 2018; Alecci et al. 2016; Alecci et al. 2021), direct tensile tests (DTT),(ACI 549.4

R-13 2013; CNR 2014; CNR 2018; De Santis et al. 2017a; Dalalbashi, Ghiassi, and

Oliveira 2021a; Nerilli and Ferracuti 2022), independently of set-ups, and, at lower

scale, yarn pull-out tests (Ghiassi et al. 2016; Dalalbashi et al. 2018; Dalalbashi,

Ghiassi, and Oliveira 2021a).

The tensile behaviour of FRCM differs significantly from the one of FRP due to

characteristics of the inorganic matrix, which cannot undergo the same strain level

of the textile and therefore cracks before maximum load is attained. Due to the for-

mation of multiple cracks, FRCM materials in tension also show a pseudo-ductile

behaviour, which accommodates relatively large deformations before failure of the

system. The pseudo-ductility of the material plays a crucial role in energy dissi-

pation and structural safety (Barhum and Mechtcherine 2012). Another important

role in the response of the material is played by the tension stiffening, i.e. the

stiffening effect exerted on the textile by the uncracked portions of matrix com-

prised between consecutive cracks (Soranakom and Mobasher 2010a; Soranakom

and Mobasher 2010b; Nerilli and Ferracuti 2022).
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2.2 TESTING PROTOCOLS

2.2.1 Direct Tensile Test

Italian and American guidelines (CNR 2018; ACI 549.4 R-13 2013) envisage the per-

formance of direct tensile tests for the design of strengthening applications with

FRCMs and for certification of materials. DTTs are performed by tightening a

stand-alone lamina of the composite and are intended to provide a mechanical

characterisation of the material under tensile loading.

Involving the definition of the load application method, the shape of the spec-

imen and the positioning of measuring instruments, the test set-up has a crucial

role in defining the information retrieved from the test (Hartig et al. 2012; Kim

2021; Focacci, D’Antino, and Carloni 2022b). Different shapes of the specimen and

gripping methods have been proposed in the literature. Regarding the specimen

shape, although the rectangular coupon with constant cross-section is the most

frequently employed geometry, (Arboleda et al. 2016; Lignola et al. 2017; Leone

et al. 2017; Carozzi et al. 2017), also bone-shaped (or dumbbell) specimens, char-

acterised by offsets in the plane of the reinforcement (D’Antino and Papanicolaou

2018), and waisted specimens, characterised by offsets in the plane perpendicular

to the one of the reinforcement (Hegger et al. 2006) were employed. The dumbbell

and waisted geometry are meant to reduce stress concentration in the transition

zone between the gripping area and the free length, where the failure of rectangu-

lar specimens was frequently observed. Gripping methods for load transfer can be

classified into clevis and clamping. In the clevis method, Figure 2.1a, also defined

as rigid load application (Hartig et al. 2012), the load is transferred through metal

plates adhered to the specimen so that the load transfer mechanism is driven by



12

Figure 2.1: Different gripping methods for DTT: (a) clevis, (b) clamping and (c)
fibre clamping.

adhesive tension and shear. In clamping, Figure 2.1b, also defined as soft clamp-

ing by Hartig et al. (2012), the load is transferred through Coulomb friction, which

can be obtained by inserting the specimen in the hydraulic wedges of the test-

ing machine (wedge clamping) or by tightening metal plates trough bolts (bolted

clamping). The transverse compression exerted by the gripping apparatus must

be carefully calibrated to avoid slipping between the matrix and the textile or ma-

trix crushing. Furthermore, an even tightening level of bolts must be ensured in

bolt clamping, while the specimen must be positioned into wedges with particular

care to avoid damages in wedge clamping. A more recently developed load ap-

plication method is fibre clamping, Figure 2.1c, which envisages that the gripping

area of the specimen is free from the matrix so that the load is transferred directly

to the fibre. Thereby, textile slippage in the gripping area is avoided and results

can be compared to the ones of direct shear tests with fixed far-end (Bertolli and

D’Antino 2022), due to the similar load application method (Ghiassi et al. 2016;
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Figure 2.2: Schematization of typical stress-strain diagrams obtained from DTT

Calabrese, Colombi, and D’Antino 2019).

In the literature, different mechanical response and failure modes have been

associated with different gripping methods, on the basis of observational evidence:

typically in clevis grip set-up, lower peak loads are recorded and tensile failure

of the fibre is not reached, since relative slips between matrix and fibre are not

inhibited by the gripping apparatus (Arboleda et al. 2016; De Santis et al. 2018;

Kim 2021); in wedge or bolted clamping set-ups, the specimen often fails due to

tensile failure of the fibre, since the transverse compression exerted by the gripping

apparatus prevents slippage of the textile within the matrix.
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Each test set-ups provide specific boundary conditions influencing the mechan-

ical response of the system. It has been suggested that, due to the different bound-

ary conditions provided, clevis grip can be employed to evaluate FRCM behaviour

in conditions of installation, while clamping can provide a complete characterisa-

tion of the composite, comprising failure of both constituent materials (Arboleda

et al. 2016).

The mechanical response of DTT comprises different stages (ACI 549.4 R-13

2013; Arboleda et al. 2016; De Santis et al. 2017a; CNR 2018; Truong and Kim 2021).

In the first phase, the material is uncracked and its behaviour is mainly governed

by the load capacity of the matrix, providing a linear branch in the load-slip or

stress-strain diagram, segment O-A in Figure 2.2. Then the first crack forms and

the load is transferred at the crack location through the fibre; cracks may continue

to open until saturation of the specimens is reached, point B in Figure 2.2. Once the

number of cracks stabilises, the existing cracks widen and, in clamping set-ups, the

response is mainly driven by the tensile strength and elastic modulus of the textile

(segment B-C in Figure 2.2), while in clevis set-up the response is mainly driven

by the CML properties (segment B-C’ in Figure 2.2). The cracked phase of DTT is

influenced by the tension-stiffening effect, which is the stiffening action exerted on

the textile by the mortar between consecutive cracks. Such effect along with crack-

ing of the mortar is governed by the mechanical properties of the mortar and by

the fibre-to-mortar bond behaviour (Ghiassi et al. 2016). Finally, failure of the sys-

tem occurs due to fibre slippage or tensile failure of the fibre (Arboleda et al. 2016;

D’Antino and Papanicolaou 2018) or due to a combination of both mechanisms

(Arboleda et al. 2016).

According to these phases, the response of DTT can be idealised as a load-slip
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diagram consisting of three consecutive segments with different slopes (Arboleda

et al. 2016; CNR 2018; Truong and Kim 2021; De Santis et al. 2017a): the uncracked

phase, characterised by the uncracked tensile modulus of elasticity, the crack de-

velopment phase, and the crack widening phase, characterised by the cracked ten-

sile modulus of elasticity (AC434 2013). According to (ACI 549.4 R-13 (2013)), the

diagram can be further reduced to a bi-linear with a bend-over point by elongating

and intersecting segments representing the uncracked and the cracked phases.

Experimental evidence showed that in some cases the crack development phase

and the cracked phase can be almost indistinguishable, having similar elastic mod-

ulus; therefore, a bi-linear diagram describes all stages of the trial. In the literature,

the obtainment of tri-linear or bi-linear diagrams in DTT is attributed to two main

factors: the quality of bonding at the textile-matrix interface and to test set-up.

Good bonding is associated with tri-linear diagrams, while poor bonding to bi-

linear diagrams. Regarding the quality of bonding, in D’Antino and Papanicolaou

(2018) and Truong, Lee, and Kim (2021) bi-linear and tri-linear diagrams are found

within the same gripping method, by applying a coating to the fibre in order to

improve bonding at the interface. In Arboleda et al. (2016) and De Santis et al.

(2018) the effect of different gripping methods is investigated, highlighting that

wedge clamping produces tri-linear diagrams, while clevis grip produces bi-linear

diagrams. Different results are ascribed to the effect of the clamping compression

which inhibits the sliding of textile within the matrix, allowing higher peak loads

( D’Antino and Papanicolaou 2018). In general, it can be noted that both explana-

tions attribute tri-linear diagrams to systems in which relative slips between matrix

and textile are limited due to good bonding or to the restraining mechanical effect

exerted by the gripping method.
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Although experimental campaigns showed that a great variability of results

can be obtained from the same FRCM system by simply changing the test set-up,

international guidelines do not provide a unique indication about it for DTT. The

clevis grip set-up, as described in Committee et al. (2013) is recommended by the

ACI 549.4 R-13 (2013), while the clamping grip is recommended by the CSLLPP

Servizio Tecnico (2019) and by RILEM (2016). The variability of results obtained by

changing boundary conditions provided by the gripping method and shape of the

specimen must be carefully taken into consideration, since parameters employed

for design purposes should be an intrinsic property of the material and not be

greatly affected by the set-up selected (Hartig et al. 2012). Focacci, D’Antino, and

Carloni (2022b) further highlighted that the length of the gripping devices, the

length of the specimen and the gauge length adopted to measure the deformation

of the specimen highly influence the results recorded during trials, arising concern

about the ability of DTT to provide reliable tensile properties.

2.2.2 Direct Shear Test

When applied as reinforcing materials to masonry or concrete structures, FRCM

materials are characterised by two interfaces: the textile matrix interface and the

matrix-support interface. The mechanical behaviour of these interfaces defines the

failure mode of FRCM systems, which can be caused by different mechanisms:

1. cohesive debonding in the substrate (Ascione, De Felice, and De Santis 2015;

De Felice et al. 2018; CNR 2018);

2. debonding at the matrix to substrate interface (Ascione, De Felice, and De

Santis 2015; De Felice et al. 2018; CNR 2018);
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3. debonding at the textile to matrix interface (Ascione, De Felice, and De Santis

2015; De Felice et al. 2018; CNR 2018);

4. sliding of the textile within the matrix (Ascione, De Felice, and De Santis

2015; De Felice et al. 2018);

5. tensile failure of the textile out of the matrix (Ascione, De Felice, and De

Santis 2015; De Felice et al. 2018; CNR 2018);

6. sliding of the textile and cracking of the outer layer of the matrix (CNR 2018);

7. tensile failure of the textile within the matrix (Ascione, De Felice, and De

Santis 2015; De Felice et al. 2018; CNR 2018).

Failure modes 1-3 are driven by debonding, which is defined as cohesive when

happening in the substrate, and adhesive when happening at the textile-support

or textile matrix interface (ACI 549.4 R-13 2013). Ascione, De Felice, and De San-

tis 2015 correlated failure modes with different shapes of the load-slip diagram:

failure modes 1, 2, and 3, which are driven by debonding taking place at differ-

ent interfaces, provide a diagram with a nearly flat post-linear branch, followed

by a brittle failure; sliding of the textile within the matrix induces strain softening

behaviour due to the progressive degradation of the bonding at the textile matrix

interface; tensile failure of the textile out of the matrix determines a sudden load

drop; tensile failure of the textile within the matrix, which is due to telescopic rup-

ture of fibres and consequent slippage of the textile out of the jacket, is related to a

diagram showing a sudden load reduction, followed by a further slight reduction

of the load.

The assessment of the typical failure mode characterising a specific FRCM sys-

tem can be obtained through direct shear tests (DST), in which the non-embedded
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length of a composite system adhered to a substrate is pulled out. Through DST,

Ceroni and Salzano (2018) highlighted that while, for concrete, substrate debond-

ing is the most frequent failure mode, being experienced by 87% of the analysed

dataset, tensile failure and slippage of the textile represent the prevalent failure

modes when the FRCM reinforcement is applied to a masonry substrate, repre-

senting the failure mode of 35% and 44% respectively. In DAmbrisi, Feo, and Fo-

cacci (2013a) the debonding at the textile matrix interface was observed on FRCM

adhered to concrete, and no substrate debonding occurred. Further experimental

evidence provided by round-robin tests (Caggegi et al. 2017,Carozzi et al. 2017; De

Santis et al. 2017b; Leone et al. 2017; Lignola et al. 2017) showed that the FRCM

behaviour is based on the bond mechanism between the phases, causing textile-

matrix relative slippage and/or textile tensile failure, as observed in direct shear

tests (CNR 2014; Alecci et al. 2016; CNR 2018; Ceroni and Salzano 2018; De Santis

et al. 2018; Alecci et al. 2021).

In Sueki et al. (2007), D’Antino et al. (2014), and D’Antino et al. (2018), an ide-

alised response for DST is proposed. The typical load-slip diagram of a pull-out

test on FRCM specimens shows an initial approximately linear behaviour of the

material, identified by a segment with constant slope until point A(δ1;PA), Figure

2.3. Afterwards, micro-crackings at the fibre-to-matrix interface begin to develop

and the response of the material becomes non-linear; the load value continues to

increase up to point B(δ2;PB), Figure 2.3, at which debonding at the matrix to fibre

interface begins. The load attained at point B is the maximum load transferable by

the interface before the initiation of debonding and is therefore called debonding

load or load-carrying capacity of the interface. For some FRCM typologies, there

is a further linear segment until the peak load is reached at point C(δ3;PC), Figure
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Figure 2.3: Relation between pointsA(δ1;P1),B(δ2;P2) and C(δ3;P3) of different
load-slip diagrams and the related Cohesive Material Laws.

2.3; such further load increase is attributed to the frictional forces arising among

fibre filaments and between the matrix and the fibres (D’Antino et al. 2014). It must

be observed that the maximum load, PC , is attained when the stress-transfer zone

(STZ), i.e. the portion of textile-matrix interface by which stresses are transferred

through bond only (no friction), reaches the free end of the specimen (D’Antino et

al. 2014). Afterwards, as the slip continues to increase, load values progressively

decrease until settled to a constant value, meaning that the whole textile-matrix

interface is subject to frictional forces only (D’Antino et al. 2014).

Changes in the shape of the response on the load slip-curve are related to dif-

ferent shear transfer mechanisms at the interface, i.e. the shape of the load-slip
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diagram depends on the mechanism activated by the slippage between the fibre

and the matrix, which is described by a bond-slip relation (BRS), also called co-

hesive material law (CML). The CML summarises the phenomena involved in the

shear transfer mechanism. Consequently, the slippage values registered at points

A, B, and C of the load slip diagram mark the passage between different shear

transfer mechanisms in the CML.

• δ1 end of the linear elastic branch

• δ2 end of softening branch

• δ3 end of the frictional branch.

Furthermore, each point of the interface is subject to a specific stress transfer

mechanism, depending on its slippage value, s:

• s < δ1 the point of the interface is in the linear elastic phase

• δ1 < s < δ2 the bonding begins to deteriorate, i.e. the point is in the softening

branch of the CML

• δ2 < s, the point of the interface is debonded and experiences friction only.

Given that different points of the reinforcement experience different stress mech-

anisms at the same time, an effective bond length can be defined leff as the min-

imum length of the specimen that is needed to fully establish the STZ and bond

mechanism (D’Antino et al. 2014). Consequently, for load equal to PC , leff = lSTZ ,

and conversely, PC can be reached only if the length of the specimen is at least

equal to leff . As shown by Focacci et al. (2017) and reported in Section 2.4.3, a re-

lation between the CML and the load-slip diagram can be established by equating
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the work done by the fibres during the elongation and the work done by the shear

stress due to fibre slip at the interface.

2.3 EFFECT OF FABRICATION TECHNIQUES

The effect of techniques adopted for the fabrication of reinforcing textiles and of

the composite can significantly influence the FRCM performances. The pullout

response of FRCM is indeed highly dependent on the fabric type, mixture design,

and processing methods (Sueki et al. 2007).

In Hegger et al. (2006) and Peled et al. (2008) is shown that yarns fabricated

with wider diameters allow better penetration of the matrix within filaments, en-

hancing the bond properties of the composite, while tight binding of filaments is

detrimental. Also, flat cross-sections enhance the performance of the composite

improving the bond between matrix and textile and a more homogeneous activa-

tion of the cross-section. Peled et al. (2008) found that the crimped and twisted

geometry of yarns significantly enhances the flexural strength of the composite,

compared to the straight yarn also leading to a hardening response. The crimped

geometry shows better performances compared to the twisted one, having higher

reinforcing efficiency in flexural testing that reflects effective bonding (Peled and

Bentur 2000), although excessively wavy textile can cause splitting failure of the

composite (Hartig et al. 2012).

Techniques adopted for textile fabrication, i.e. weaving, knitting, tufting, felt-

ing, braiding, or bonding (ACI 549.4 R-13 2013), determine different geometrical

configurations of the reinforcement, which can affect the mechanical properties of

the yarn, of the textile and the level of matrix impregnation. For instance, it was

shown that the pull-out strength of knitted fabrics is between 20% to 30% lower
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than the one of single yarns (Peled and Bentur 2000) since the loops generated

between warp and weft direction prevent deep penetration of the matrix among

filaments (Peled et al. 2008). Also, fabrics made of bundles with small diameters

and large loop sizes proved to be more efficient in developing a good bond with

the matrix. This is due to a good penetration of the matrix between the filaments of

the bundle into the fabric. On the other hand, the bonding strength is enhanced in

woven fabrics, compared to the one of the single yarn due to the crimped geometry

induced by the fabrication process.

Some studies also highlighted that some restraining effect on the fibre slippage

is provided by yarns orthogonal to the pull-out direction at junction points be-

tween weft and warp (Peled, Bentur, and Yankelevsky 1998; Peled and Bentur

2000; Peled et al. 2008; Soranakom and Mobasher 2009; D’Antino, Calabrese, and

Poggi 2020). The effectiveness of such anchoring effect is tightly dependant on the

textile typology. For instance, in woven textiles, the main role of transversal yarn

is in the maintenance of the crimped geometry, and the contribution of the junction

points is limited (Peled, Bentur, and Yankelevsky 1998).

Different fabrication techniques were investigated to understand the effect on

the textile-matrix bond quality (Peled, Sueki, and Mobasher 2006; Mobasher, Peled,

and Pahilajani 2006). Besides casting, which is the most commonly used technique,

pultrusion and vacuum fabrication methods were adopted to obtain better matrix

impregnation of the textile. In the casting technique, after the first layer of mortar

is cast, the textile is positioned and then another layer of mortar is cast to complete

the jacket. In the pultrusion technique, the textile is impregnated with matrix and

pressed through rotating cylinders which eliminate the excess paste, before be-

ing positioned onto the first layer of mortar. The vacuum process envisages that,
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once the mixing of the matrix is completed, the fresh paste is transferred to a vac-

uum chamber. The pultrusion induces better impregnation of interstitial spaces

between filaments in uncoated textiles, improving bond properties either in weft

intersection and woven fabrics, but does not affect the performances of systems

embedding coated textiles. The vacuum process is found to not be advantageous

for fabric reinforcements while providing better bonding when the reinforcement

is in the form of yarns.

The level of matrix penetration among fibres significantly influences the per-

formances of the system and can also determine telescopic failure of fibres under

tensile loading conditions (Peled and Bentur 1998; Banholzer 2004; Peled et al.

2008).

2.4 MODELLING

2.4.1 Analytical modelling of bond behaviour

The perfect interface and the cohesive interface approaches are the main analyti-

cal models based on equilibrium conditions employed for modelling the pull-out

problem. The perfect interface model envisages displacement continuity at the

interface, i.e. no relative slip between matrix and textile is allowed. Since the

constituent materials of the composite are considered perfectly adhered to each

other, the perfect interface model is suited for fibre-reinforced polymers, where

the textile-matrix interface does not represent the weak joint. In the cohesive inter-

face approach, a thin inter-phase, i.e. a transition zone with mechanical properties

different from the ones of the composite constituent materials is considered to exist

between the matrix and the fibre. The formation of such an inter-phase is caused

by the wall effect and local bleeding, which prevent appropriate packing of aggre-
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gates around the embedded fibre so that a porous transition zone forms (Bentur,

Gray, and Mindess 1986; Igarashi, Bentur, and Mindess 1996).

The mechanical behaviour of the inter-phase can be described as the difference

between the deformation in the fibre and in the matrix, on the basis of its different

stiffness from adjacent materials. Due to its negligible thickness, the inter-phase is

usually idealised as a zero-thickness surface, i.e. an interface, and is described by a

cohesive material law (CML), also called cohesive zone model (CZM) or bond-slip

relation (BSR), which relates fibre-matrix slips and shear stresses. The fictitious

reduction of the inter-phase to an interface introduces in the model the possibility

of displacement discontinuity between fibre and matrix. Within this framework,

the CML can be regarded either as a constitutive property of the inter-phase or as

a law summarising the shear transfer mechanism taking place at the textile-matrix

interface.

The shape of the CML depends on the resisting mechanisms activated at the

interface by fibre tightening (adhesion, debonding, friction, etc.) and any combi-

nation of matrix and textile can theoretically provide a specific CML: in Zastrau,

Richter, and Lepenies (2003) a tri-linear law, based on the assumption of adhesion,

failure and friction is considered; in Sueki et al. (2007) the bond behaviour is de-

scribed by a tri-linear function in terms of a linear elastic adhesion, static friction

and dynamic friction; in Banholzer, Brameshuber, and Jung (2005) a multi-linear

piecewise function is considered; in Colombi and D’Antino (2019) an elastic-brittle

bond behaviour, with frictional ending plateau is assumed; in Misseri, Rovero,

and Galassi (2021) four tri-linear cohesive material laws are selected and inves-

tigated to understand their suitability with different FRCM systems. Although

different shapes of the CML are assumed, in Zastrau, Richter, and Lepenies (2003),
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Sueki et al. (2007), Hartig, HäuSSler-Combe, and Schicktanz (2008), Soranakom

and Mobasher (2009), Colombi and D’Antino (2019), and Misseri, Rovero, and

Galassi (2021) a constant ending branch is assumed to describe a frictional resisting

mechanism, considered as a distinctive trait of FRCM pull-out behaviour.

Since the CML is unknown a priori, a calibration of parameters defining it has

to be carried out directly from measurements on experimental tests, or indirectly,

through interpretation of the experimental load slip diagram obtained. In the di-

rect calibration, considerable difficulties are encountered, since the shear trans-

fer mechanism takes place at the internal interfaces of the composite and the em-

bedding matrix prevents the recording of reliable measurements of fibre slippage

through strain gauges: strain gauges embedded in the composite with the textile

are subject to debonding due to shear stress concentrations caused by the matrix

interlocking effect (Carloni et al. 2015; Sneed, D’Antino, and Carloni 2014); when

strain gauges are applied to the fibre after casting, through slots into the matrix,

the concentration of stresses at the edges of the slot may affect the measurements

of fibre strain (Sneed, D’Antino, and Carloni 2014; D’Antino et al. 2014). Therefore

sufficient experimental evidence about the CML is not yet available. The indirect

calibration, also defined as back-calibration, represents a viable option to overcome

issues involved in the direct approach, through the analytical fitting of experimen-

tal curves.

Given the difficulties of direct calibration of the CML and that indirect calibra-

tion is pursued, the analytical problem of modelling the FRCM bond behaviour

becomes twofold, consisting of two complementary problems (Naaman et al. 1991;

Banholzer, Brameshuber, and Jung 2005; Banholzer, Brameshuber, and Jung 2006;

Focacci et al. 2017), since a CML is needed for the implementation of models and
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the same CML has to be back-calibrated from experimental results. The primal or

direct problem consists in the prediction of the load slip diagram (GLS), and im-

plies the assumption of a known relation CML: τ(s) → P . The dual or inverse

problem retrieves a CML through the analytical fitting of experimental results:

P → τ(s).

2.4.2 The direct problem: prediction of the load slip diagram

For the prediction of the load slip diagram, the assumptions on the constituent

materials of the composite system envisage that each yarn of the mesh textile is

equally tightened and that the fibre yarn is homogeneous and linear elastic. In this

framework, the effect of the mesh spacing and of transverse filaments is neglected,

hence, the textile mesh behaviour is ny times that of the yarn, with ny number

of yarns. Matrix is assumed rigid with limited tensile strength. Dimensionless

textile-matrix interface is assumed to follow a tri-linear CML with the initial branch

starting from zero slip at zero stress and ending frictional branch:

λ[s(x)] =






τ1
δ1
s(x) 0 ≤ s(x) ≤ δ1

τ1−τ2
δ1−δ2

(
s(x)− δ2

)
+ τ2 δ1 ≤ s(x) ≤ δ2

τ2 δ2 ≤ s(x) ≤ δ3

(2.1)

A mono-dimensional model is considered representative of the problem, and

the equilibrium of an infinitesimal portion of the composite between two cross-

sections spanning dx can be written as

dσf (x) A = 2τ [s(x)] ψ dx (2.2)
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where tf and bf are the textile equivalent thickness and width. Considering that

σ(x) = εf (x) Ef , the equilibrium equation becomes:

dεf (x) Ef bf tf = 2 bf τ [s(x)]dx (2.3)

For the compatibility relation, it is also known that s′(x) = εf (x). Therefore,

Equation 2.3 yields

s′′(x) Ef bf tf = 2 bfτ [s(x)]dx (2.4)

s′′(x) =
2

tf Ef
τ [s(x)] (2.5)

Equation 2.5 provides the values of the slip law s (x) along the reinforcement,

once a CML is given.

Since a tri-linear CML is here selected, the general solution of the interface

problem provided by Equation 2.5 must be specialized for each segment of the

load-slip diagram, enforcing appropriate boundary and continuity conditions.

For the linear elastic branch of the load-slip diagram, i.e. segment O-A in Figure

2.3, the equation of the linear elastic branch of the CML is inputted into the general

solution, yielding

s′′ (x) =
2

tf Ef

τ1
δ1

s1(x) (2.6)

Setting coefficient χ2 = 2 τ1
tf Ef δ1

, the above equation becomes

s′′ (x) = χ2 s1(x) (2.7)



28

The boundary conditions enforce that the deformations for s=0 are null and

that the displacement in L is equal to δ1:






s1′′(x) = ξ2

s′(0) = 0

s1(L) = δ1

(2.8)

providing the following solution

s1(x) = δ1sech(χL) cosh (χx) (2.9)

For sufficiently long embedded lengths, after the maximum shear stress τ1 is

attained, the loaded end begins to enter the softening phase of the CML; in this

phase part of the reinforcement, with legth 0-a is still in the elastic phase, while L-a

is in the softening stage. For the part in the elastic phase Equation 2.9 becomes:

s1(x) = δ1sech(χa) cosh (χx) (2.10)

For the part in the softening stage, boundary conditions enforce continuity of

slip and strains at point x = a and the solving system becomes






s′′2(x) + ξ2s2(x) = ζ

s2(a) = δ1

s′2(a) = s′1(a)

(2.11)

where, ζ = 2
Ef tf

δ2τ1−δ1τ2
δ2−δ1

and ξ =
√

2
Ef tf

τ1−τ2
δ2−δ1

and the solution yields:
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s2(x) =
1

ξ2
(ζ sec(a− x)ξ)− δ1ξχtan((a− x)ξ)tanh(aχ) + δ1ξ

2 − ζ) (2.12)

When the part of the reinforcement close to the applied load enters the fric-

tional phase, point c separates where the response of the material is driven by the

frictional and softening branch of the CML. Enforcing strain continuity and that

the slip for s = c is equal to δ2, the solving system becomes:






s′′3(x) = η

s′3(c) = δ2

s′3(c) = s′2(c)

(2.13)

where η = 2τ2
Ef tf

and the solution is provided by:

s3(x) =
η(c− x)2

2
− s′2(c)(c− x) + δ2 (2.14)

2.4.3 The inverse problem: indirect calibration of a tri-linear CML

The indirect calibration of a CML typically consists of three phases Zou, D’Antino,

and Sneed 2021: first, a CML with a pre-defined shape, which is described by a se-

ries of unknown parameters is assumed; then the solution for the bond behaviour

of the composite is found with the assumed CML; finally, the unknown parameters

defining the CML are calibrated by finding the best numerical fitting of experimen-

tal results. Different shapes of the CML can be considered, and the one providing

a closer estimation of experimental results is selected.

Although different procedures for the back-calibration of a CML have been pro-
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posed in the literature (Naaman et al. 1991; Banholzer, Brameshuber, and Jung

2006; Grande and Milani 2021), the procedure presented in Focacci et al. (2017),

and employed also in Rovero, Galassi, and Misseri (2020), is hereafter reported.

The calibration relies on the interpretation of load slip diagrams obtained from

direct shear tests.

In case a tri-linear CML is assumed, the typical load-slip diagram of a pull-out

test on FRCM specimens shows an initial linear behaviour, corresponding to the

phase in which all points of the domain are in the ascending branch of the CML,

identified by a segment with a constant slope, until point A(δ1;P1). Afterwards,

the response of the system becomes non-linear due to the onset of the debonding

process, causing a progressive stiffness decrease in the response, due to the fact

that some points of the domain are in the descending branch of the CML. In this

phase, load value continues to increase up to point B(δ2;P2). When the FRCM sys-

tem is sufficiently long, a further linear segment can be recorded before reaching

peak load at point C(δ3;P3). The debonding propagates after peak load until in-

volving the entire length of the specimen and causing the fibre to slip dynamically,

Fig.2.3.

Each point of the interface is subject to one of the resisting mechanism, depend-

ing on slippage value s:

1. for s < δ1, the point of the interface is in the linear elastic phase;

2. for δ1 < s < δ2, the bonding between the matrix and the interface begins to

deteriorate;

3. for δ2 < s < δ3, the interface is debonded, but its sliding is resisted by fric-

tional resisting forces.
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Since changes in the shape of the load slip diagram reflect the activation of

different shear transfer mechanisms that are described in the cohesive material

law, a relation between the CML and the load slip diagram can be established. The

slip values defining the branches of the CML can be retrieved from points A, B and

C so that δ1 marks the end of the linear elastic branch and the onset of debonding,

δ2 marks the end of debonding and the onset of friction, and δ3 marks the end of

the frictional branch. Provided that the area underneath the CML represents the

fracture energy needed for the crack to propagate, Gf , (Focacci et al. 2017), the

values of peak shear stress τ1 and frictional shear stress τ−2 are obtained equating

the work done by the fibres during the elongation and the work done by the shear

stress due to fibre slip at the interface:

n bf tf Ef

x∫

0





εf (x)∫

0

εfdεf



 dx = 2 n bf

x∫

0




s(x)∫

0

τ(s) ds



 dx (2.15)

where, n is the number of yarns in the fibre, bf is the width of each yarn, tf

is the equivalent thickness of the yarn, εf is the strain of the fibre, Ef is the fibre

elastic modulus and τ(s) = τ [s(x)] is the local bond-slip relation, i.e. CML. The

origin of the reference system is set at the free end of the composite. For x = L,

and given that the fracture energy that is equal to the area underneath the CML at

corresponding points is given by

s(x)∫

0

τ (s) ds = Gi (2.16)

Equation 2.15 becomes
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Ef bf tf

ε(x)∫

0

ε dε = 2 bf Gi (2.17)

Ef bf tf
ε2

2
= 2 bf Gi (2.18)

Ef tf
ε2

2
= 2 Gi (2.19)

ε2 = (4 Gi)/(Ef tf ) (2.20)

ε = 2

√
Gi

Ef tf
(2.21)

Substituting ε = Pi
bf tf Ef

in the former equation, the equation for the load at a

generic point is obtained:

Pi = 2 n bf
√
Ef Gi tf (2.22)

In the case of a tri-linear CML, the value of fracture energy expressed by Equa-

tion 2.16 for points A and B becomes:

GA =

δ1∫

0

(
τ1
δ1

)
s(x) ds (2.23)

GA =
τ1 δ1
2

(2.24)
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GB =

δ1∫

0

(

(
τ1 − τ2
δ1 − δ2

)
[s (x)− δ2] + τ2) ds (2.25)

GB =
1

2
(δ2 − δ1) (τ1 + τ2) +

τ1 δ1
2

(2.26)

Inputting GA and GB in Equation 2.16 and rearranging, the expressions provid-

ing the values of the shear stress at the matrix-fibre interface can be obtained:

τ1 =
P1

2n2b2f Ef tf δ1
(2.27)

τ2 =
δ2 τ1
δ1 − δ2

− P 2
B

2n2b2f Ef tf (δ1− δ2)
(2.28)

The slips, δ1 and δ2 and the shear stress values, τ1 and τ2, defining the CML are

therefore determined.

2.4.4 Direct shear test

As far as concerns analytical modelling of DST, several studies, e.g. DAmbrisi,

Feo, and Focacci (2013a), DAmbrisi, Feo, and Focacci (2013b), Carozzi et al. (2016),

Colombi and D’Antino (2019), and Rovero, Galassi, and Misseri (2020), are based

on the explicit solution of the differential problem based on the balance condition

of an infinitesimal portion of the composite and retrieve the load slip diagram as-

suming a rigid matrix and support, and a linear elastic textile. In Grande et al.

(2018) an analytical model for DST is developed relying on the balance equation

of an infinitesimal portion of the fibre and of the upper mortar layer. Assumptions

envisage that the lower mortar layer and the support are rigid, the upper matrix
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layer is only axially deformable, and the fibre-matrix interface has a zero thickness

and is only shear deformable. Displacements of the upper mortar layer and of the

textile are therefore expressed in terms of slip of the upper and lower interfaces.

Linear elastic consecutive laws are assumed for the fibre and the mortar matrix.

In Calabrese, Colombi, and D’Antino (2019), an analytical solution for the bond

behaviour of FRCM, using an energy approach is proposed, assuming a rigid soft-

ening CML. The snap-back phenomenon is also modelled, although it is clearly

stated that there is no experimental evidence from FRCM tests showing it. The ef-

fect of the CML shape variation on the response of DST is investigated in Misseri,

Rovero, and Galassi (2021), Colombi and D’Antino (2019), and Focacci et al. (2017).

In Zou, D’Antino, and Sneed (2021), the authors investigate different bond-slip re-

lations on single lap single shear tests, through a similar finite difference model. In

order to capture the snap-back phenomenon, an arc length iteration is carried out,

and the solution approach consists of two stages: a displacement control procedure

up to peak load, and a load-control procedure until failure. In Bilotta and Lignola

(2021) a finite difference model is developed to interpret the bond behaviour of a

single bundle embedded in mortar matrix and adhered to a support. A non-linear

constitutive law, showing delayed stiffness activation is assumed for the yarn in

order to account for possible uneven tightening levels of the reinforcement during

installation

Modelling DST through a finite element (FE) approach is found in Grande and

Milani (2018), where authors consider a 1D model composed of linear and non-

linear spring elements to account for the limited tensile strength of the mortar and

employ a bi-linear CML with no frictional plateau. Detailed bi-dimensional mod-

elling of DST through commercial FE codes has been proposed, e.g., Razavizadeh,
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Ghiassi, and Oliveira (2014). In Carozzi, Milani, and Poggi (2014) authors employ a

simplified 1D analytical model and a 3D rigid-elements with non-linear interfaces

FE model. A different approach, which considers the minimization of incremen-

tal energy and internal damage variables, is envisaged by Donnini, Lancioni, and

Corinaldesi (2018) within a 2D FE environment.

2.4.5 Direct tensile test

Concerning modelling of DTT, in HäuSSler-Combe and Hartig (2007) and Hartig,

HäuSSler-Combe, and Schicktanz (2008), a detailed mechanical model, which as-

sumes the fibre reinforcement as divided into a sleeve and a core zone and includes

also yarn waviness and defect effects, is implemented into a FE environment con-

sidering parametric investigations on the fibre stress distribution and global stress-

strain diagrams. In Hartig et al. (2012), the model is further improved regarding

the load application to the system through bar elements representing the grip-

ping device. All materials are assumed linear elastic and bond elements acting

as shear springs are used to define the interface between bar chains representing

steel tabs, matrix, external sleeve, and inner core of the fibre. The effect of perfect,

good or poor inner core is evaluated. In Mobasher, Pahilajani, and Peled (2006),

the composite laminate theory is employed in an incremental analytical procedure

to model the uniaxial tensile response. The FDM is employed in Soranakom and

Mobasher (2010a) and Soranakom and Mobasher (2010b) for DTT assuming de-

layed stiffness activation for the matrix textile and the presence of added axial

springs to simulate the presence of transverse filaments. The model developed in

Soranakom (2008) and presented in Soranakom and Mobasher (2010a) does not

address the uncracked phase and envisages a load control procedure. In Focacci,
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D’Antino, and Carloni (2020), the equilibrium problem of a continuous domain

assuming both mortar and textile deformability, is solved through a system of dif-

ferential equations. Mortar is assumed to have a linear elastic constitutive law and

an exponential traction-separation law. The assumptions foresee the formation

of cracks in a symmetric simultaneous development. Since boundary conditions

change between gripped areas and free gauge length, and after the formation of

each crack, the solution is found along sub-portions; the model is further improved

by including several textile layers and different DTT set-ups, including transverse

load distribution in the clamped set-up (Focacci, D’Antino, and Carloni 2022a; Fo-

cacci, D’Antino, and Carloni 2022b). In Focacci, D’Antino, and Carloni (2022b) it

is experimentally and numerically shown that the change in the reference length

for the definition of strains in DTT affects the result and hence should be care-

fully assumed for design purposes. In Fazzi et al. (2022) and Fazzi, Misseri, and

Rovero (2023) the authors present an advancement of the FDM of Soranakom and

Mobasher (2010a) concerning the condition of load application in the uncracked

state of the DTT. The finite element model presented in Nerilli, Marfia, and Sacco

(2020), as an advancement of Mobasher, Pahilajani, and Peled (2006) is aimed at

reproducing the mechanical behaviour in tensile tests of a representative unit cell

far from the clamped areas. To understand the shear behaviour of the compos-

ite, a three-layer laminate geometry is assumed, and the analysis is carried out in

the 2d small strain regime. Nerilli, Marfia, and Sacco (2021), considers also non-

local effects in the strains. In Grande and Milani (2020) a finite difference mono-

dimensional model, accounting for the mortar cracking and debonding at the in-

terface, is developed for the tensile behaviour of FRCM laminas. The domain is

subdivided into a mesh and each element is considered constituted by 6 nodes
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connected by two sets of springs, representing constituent materials and interface

behaviour. Linear springs are assumed for the matrix and textile, while non-linear

zero-length springs are assumed for the interfaces. The wide FEM investigation

reported in Bertolesi et al. (2014) accounts also for the non-perfect alignment of the

textile.
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CHAPTER 3

Proposed Model

3.1 PROBLEM STATEMENT

The literature review carried out in Chapter 2 highlighted that the mechanical re-

sponse of FRCM materials in direct shear tests (DST) and direct tensile test (DTT)

is mainly driven by the shear transfer mechanism at the textile-to-matrix interface:

the tensile load, applied at the textile free-end in case of DST, Figure 3.1a, or along

the gripped length of the specimen, in case of DTT, Figure 3.1b, induces relative

slips between the textile and the matrix which activate bond resisting stress at the

interface. It also emerged that modelling of the stress-transfer mechanism can be

achieved through an analytical framework by imposing the balance condition of

an infinitesimal segment of length dx, Figure 3.1d:

AE dε(x) = τ (s(x))ψ dx (3.1)

in which A and E are the fibre cross-sectional area and Young modulus of the

textile; τ (s(x)) is the shear bond stress, function of the slip, s (x); dε(x) is the strain

increment of the textile, and ψ is the yarn perimeter. Equation 3.1, for stress-strain

compatibility, i.e. ε(x) = ds(x)/dx becomes:

d2s(x)

dx2
= ψ/(AE) τ (s(x)) (3.2)

The non-linear 2nd order differential equation expressed by Equation 3.2, can

be solved once appropriate boundary conditions and a CML are provided, as seen

in the definition of the direct problem in Section 2.4.2.
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Figure 3.1: Conceptual model of: DST (a), uncracked DTT (b) and cracked DTT (c);
equilibrium of the reference infinitesimal portion (d).

The slip value s(x) in Equation 3.1 and 3.2 is given as the difference of relative

displacements between matrix and textile:

s(x) = uf (x)− um(x) (3.3)

where uf and um are the displacements of textile and matrix respectively. For most

FRCM materials in which one or two layers of textile are embedded, the axial stiff-

ness of the matrix is several orders of magnitude higher than the one of the fi-

bre (Focacci, D’Antino, and Carloni 2022b). Therefore, unless in the case of high

reinforcing ratios, matrix rigidity can be reasonably assumed, implying that the

fibre-matrix displacement coincides with the one of the fibre, i.e.

s(x) = uf (x) (3.4)

The problem of the shear stress transfer mechanism can be approached numeri-

cally by approximating the involved derivative through the Finite Difference Method.
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3.2 THE FINITE DIFFERENCE METHOD

The finite difference method (FDM) allows the numerical solution of differential

problems through the approximation of function derivatives with finite differ-

ences. FDM relies on the discretisation of a continuum spatial domain in a finite

number of elements, in which the solution is assumed to have constant values. The

derivative of a function in a generic point internal to its domain is defined as the

limit of the difference quotient of the function when the increment tends to zero.

f ′(xi) = lim
x→0

f(xi+1)− f(xi)

∆x
(3.5)

Equation 3.5 geometrically represents the slope of the secant line intersecting a

function when the distance between the points of intersection tends to zero. In a

domain discretised with constant steps of length h, if h is sufficiently small, it can

be assumed ∆x ≈ h, and the derivative is approximated as

f ′(xi) ≈
f(xi+h)− f(xi)

h
(3.6)

A better approximation is also obtained if the difference quotient is centred to the

point of derivative.

f ′(xi) ≈
f(xi+h)− f(xi−h)

2h
(3.7)

This procedure allows moving from an analytical problem, governed by a sys-

tem of differential equations to a numerical one governed by a system of linear

equations which can be solved through straightforward matrix algebra methods.

The solution provided by the FDM is in the form
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Ax = b (3.8)

where A is a sparse square coefficient matrix, which is related to the number of

variables involved in the problem, and b is the known terms vector.

From the modelling point of view, the application of the FDM consists in im-

plementing a model with parameters referred to each element of the discretisation:

while in the analytical approach, the equilibrium conditions are written with refer-

ence to an infinitesimal portion of the composite, in the finite difference approach

they are written for each element of the discretised domain.

3.3 MODEL IMPLEMENTATION

The problem stated by Equation 3.1 is addressed numerically through the FDM.

To this aim, the 1D domain defined as the interval [0, L], equal to the embedded

length, is discretised by a series of N nodes, at constant spacing h

xi+1 − xi = h (3.9)

so that each Nith node corresponds to xi coordinate, with 1 ≤ i ≤ N and

xN = L (3.10)

as shown in Figure 3.2a.

The domain discretization allows converting the continuum analytical prob-

lem, where the equilibrium is referred to an infinitesimal portion of the specimen

of length dx, to a numerical one, where the equilibrium can be written for a dis-

cretised element of length h. The balance condition is written with reference to the
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±h/2 length preceding and following the i-th node, where bond stresses τ [s(x)] are

assumed to have a constant value. The bond force B(xi) is associated with the xi

coordinate and depends on the slip value at that node, through the CML. Strains

are constant along each step of the discretisation, i.e., in the interval between two

xi coordinates. Consistently with the shift from infinitesimal to finite length, Equa-

tion 3.1 becomes

AE ∆ε = τ [s(xi)]ψ h (3.11)

where ∆ε is the difference of strain values at ±h/2, which is provided by

∆ε = εi+h/2 − εi−h/2 (3.12)

The strain function is therefore approximated through the finite difference method

εi+h/2 =
si+1−si

h

εi−h/2 =
si−si−1

h

(3.13)

and the equilibrium of a finite element becomes:

AE
si+1 − 2si + si−1

h
= τ [s(xi)]ψh (3.14)

Having expressed the first derivative of the slip through the finite difference

centred at i±h/2, the forces F (xi−h/2) and F (xi+h/2) arising in the fibre at the xi±h/2

coordinates (see Figure 3.2b) appear in Equation 3.14, being:

F (xi+h/2) = AE(s(xi+1)−s(xi)
h

F (xi−h/2) = AE(s(xi)−s(xi−1)
h

(3.15)
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Figure 3.2: Discretization of the domain (a) and balance of the representative el-
ement (b); loading condition in displacement terms for DST (c), internal forces at
loaded domain extremity (d), uncracked DTT at the p-th step of the incremental
procedure (e).

The presence of eventual external applied forces, Q(xi), provides the following

general balance condition:

F (xi+h/2)− F (xi−h/2)− B(xi) = Q(xi) (3.16)

Equation 3.16 in displacement terms becomes:

AE

h
s(xi−1)−

(
2AE

h
+ ψhτ

(
s(xi)

)
)

s(xi) +
AE

h
s(xi+1) = Q(xi) (3.17)

which provides a system of non-linear equilibrium equations constituted by N

equations, with N, number of nodes, in N unknowns, s(xi), node slips:

M s = q (3.18)

where, MN×N is a square, tri-diagonal matrix, and sN×1 and qN×1 are the vectors

containing the unknowns and the known terms, respectively. The non-vanishing
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mi,j coefficients corresponding to the equilibrium equations are:

mi,j = −2AE − ψτ(s(xi))h2 2 ≤ i = j ≤ N − 1

mi−1,j = mi+1,j = AE 2 ≤ i = j ≤ N − 1

mi,j = −EA− 1
2ψ τ(s(xi))h2 i = j = 1 ∧ i = j = N

(3.19)

i.e. in matrix form:





−EA− 1
2ψ τ(s(x1))h2 AE 0 · · · 0

AE −2AE − ψτ(s(x2))h2 AE · · · 0

· · · · · · · · · · · · 0

0 0 AE −2AE − ψτ(s(xn−1))h2 AE

0 0 0 AE −EA− 1
2ψ τ(s(xn))h2





The different forms of the first and last coefficient of the principal diagonal of

matrix M is connected to the length of the element, which is h/2 instead of h. The

elements of the known terms vector, q, corresponding to the equilibrium of the

node are qi = 0, if the node is free, and qi &= 0 if the node is loaded.

For loading conditions in displacement terms, the applied force Q(xi), in Equa-

tions 3.17 and 3.16, is not assigned a priori, so it must be determined as an addi-

tional unknown. The displacement-based loading procedure envisages that one

or both end nodes of the domain, e.g., node at coordinate xN , undergo a known

imposed slip, s∗ = s(xN), which constitutes the loading parameter, Figure 3.2c.

Hence, in the balance condition of the contiguous node, e.g., at coordinate xN−1, a

known part appears in the term F (xi+h/2) = F (xN−1+h/2) = F (xN−h/2) =
EA
h (s∗ −

s(xN−1)), see Equation 3.17 and Figure 3.2d. Therefore, the effective unknown slips

become N − 1, s(N−1)×1, and the known part EA
h s∗ appears in q(N−1)×1 as the last
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element of the known terms vector:

AE

h
s(xN−2)−

(
2AE

h
+ ψhτ

(
s(xi)

)
)

s(x(N−1)) =
AE

h
s∗ (3.20)

Simulation of characterisation tests can be obtained through an incremental

procedure, which iteratively increases the applied load.

3.3.1 Problem linearization

For each p-th load increment, Equation 3.18 constitutes a non-linear system with

as many equations as unknowns. The system non-linearity is due to the M matrix

coefficients containing bond stress, τ [s(xi))], which depends on the unknown slip

at the current, p-th, load increment, s(xi)p. The solution of Equation 3.18 must be

run iteratively with incremental steps, to achieve an estimation of the load slip

diagram and, to linearize the system, it is assumed that bond stress at the p-th step

of the iteration, p, with the value obtained at the previous step, p− 1.

τ [s(xi)]
p = k(xi)

p−1 · s(xi)
p (3.21)

where, k(xi)p−1 is the secant modulus of the CLM computed at the end of the p-1

step:

k(xi)
p−1 = τ [s(xi)]

p−1/s(xi)
p−1 (3.22)

The accuracy of this approximation clearly relies on the dimension of the pre-

scribed increment; smaller increments provide better approximation and an opti-

mum increment can be defined.
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3.3.2 Direct shear test

In modelling DST, the tensile capacity of the matrix is neglected because only in

rare cases fibre textile debonding and slippage occur along with cracking of the ex-

ternal layer of the matrix (CNR 2014). The DST set-up envisages a free-end and a

loaded-end, see Figure 3.2c. For a displacement-driven loading, the control param-

eter to be increased is the slip at an external node, e.g., N , s(xN) = s∗, Equations

3.17 is employed to build the matrix, M(N−1)×(N−1), and the known terms vector,

q(N−1)×1. The non vanishing mi,j coefficients are those of Equation 3.19 and the

only non-zero element of q is qN−1 = EAs∗, providing





−EA− 1
2ψ τ(s(x1))h2 AE 0 · · ·

AE −2AE − ψτ(s(x2))h2 AE · · ·

· · · · · · · · · · · ·

0 0 AE −2AE − ψτ(s(xn−1))h2





=





0

0

· · ·

AE





For the construction of the load slip diagram, the value of s∗, increased at

each step, is plotted over the internal tensile force at the loaded node, e.g., N ,

F (xN−1+h/2) = F (xN−h/2), multiplied as many times as the number of yarns, ny.

3.3.3 Direct tensile test

3.3.3.1 Uncracked phase

The different experimental set-ups of the DTT correspond to different loading lay-

outs of the domain, i.e., on the matrix along the gripped length in the clevis and

clamped grip, and at fibre ends in the fibre grip set-up (Truong and Kim 2021;
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Truong, Lee, and Kim 2021; Focacci, D’Antino, and Carloni 2022a; Dalalbashi, Ghi-

assi, and Oliveira 2021a). For clevis and clamped grip layouts, the model envisages

prescribed slips at the two end nodes and unknown loads along the gripped nodes

to be determined according to the prescribed slips. For the clamped-grip layout,

modification of the CML for the elements of the gripped part can efficaciously rep-

resent the added transversal forces along the clamped length (Fazzi et al. 2022). In

particular, the effect of the transverse compression exerted by the clamping device

can be considered by increasing the value of the bond force of the CML, evaluating

such effect through a proper friction coefficient. In fibre clamping, prescribed slips

are defined at both end nodes and the model can be considered a composition of

two mirrored DST with fixed free-end nodes.

For the clevis grip, and according to the displacement-driven loading, a pre-

scribed slip, s∗, is imposed at the free-end nodes with an opposite sign, Figure

3.2e. The solution in terms of slip is found together with the values of the grip-

ping forces, added as further unknowns, depending on the value s∗ prescribed.

The unknown gripping forces, G(xi), are defined at coordinates xi with 1 ≤ i ≤

NG/2∧N−NG/2 ≤ i ≤ N , NG, number of gripped nodes, and NG ⊂ N , Figure 3.2e.

The problem so posed shows N − 2 unknown slips (since s(x1) = −s(xN) = s∗),

NG unknown gripping forces, N equilibrium equations (including nodes 1 and N ),

and NG − 2 equations to define the gripping forces. The equilibrium condition of

the first, second and generic gripped nodes, respectively, are:

AE

h
s(x2) +G(x1) =

(
AE

h
+
ψh

2

(
τ(s∗)

)
)

s∗ (3.23)

−
(
2AE

h
+ ψhτ

[
s(x2)

]
)

s(x2) +
AE

h
s(x3) +G(x2) = s∗

AE

h
(3.24)
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Figure 3.3: Matrix M

AE

h
s(xi−1)−

(
2AE

h
+ ψhτ

[
(s(xi)

]
)

s(xi) +
AE

h
s(xi+1) +G(xi) = 0 (3.25)

A uniform distribution of the gripping forces requires that G(xi) = G(xi+1) for 2 ≤

i ≤ NG/2∧N−NG/2 ≤ n ≤ N−1, and 2G(xi) = G(xi+1) for ny = 1, N , since the last

node is preceded or followed by an h/2 length element. Any other distribution of

gripping forces can be implemented with appropriate relations among contiguous

forces.

In view of Equation 3.18, and being the unknowns vector, sK×1, with K = (N +

NG − 2), composed as follows (see Figure 3.2e)

s =
{
G(xNG/2); ...;G(x1); s(x2); ...; s(xN−1);G(xN−NG/2); ...;G(xN)

}
(3.26)

the non-vanishing coefficients of the matrix MK×K constitute a sparse array com-



49

posed of five sub-matrices organised as shown in Figure 3.3. Appropriate compo-

sition of matrices BNG/2×NG/2, DNG/2×NG/2 and CN×N−2 provides equilibrium equa-

tions of the N nodes. Then, inclusion of matrices ANG/2−1×NG/2, ENG/2−1×NG/2 in the

K ×K space according to Figure 3.3 provides information on the gripping forces

profiles. For the case of a constant load profile, the following values are assumed

in the MK×K :

ai,j = 1 1 ≤ i = j ≤ NG/2− 2

ai,j = 1/2 i = j = NG/2− 1

ai,j+1 = −1 1 ≤ i = j ≤ NG/2− 1

bi,j = −1 NG/2 ≤ i ≤ NG − 1 ; NG/2 ≥ j ≥ 1

ci,j = −2AE − ψτ(s(xi))h2 NG/2 + 1 ≤ i = j ≤ N +NG/2− 2

ci,j+1 = ci,j−1 = AE NG/2 + 1 ≤ i = j ≤ N +NG/2− 2

di,j = 1 N ≤ i ≤ N +NG/2− 1;

N +NG − 2 ≥ j ≥ N +NG/2− 1

ei,j−1 = −1 N +NG/2 ≤ i = j ≤ K

ei,j = 1/2 i = j = N +NG/2

ei,j = 1 N +NG/2 + 1 ≤ i = j ≤ K

(3.27)

Then, in the known terms vector qK×1, the non-vanishing elements are:

qNG/2 = −qN+NG/2−1 = s∗ · (2AE + ψτ(s∗)h2)

qNG/2+1 = −qN+NG/2−2 = −s∗AE
(3.28)

The load-slip diagram for the DTT in the uncracked phase is built considering

twice the value of s∗, i.e the slip at the extremity of the system, plotted over the



50

resultant of the gripping forces at each step of the iteration, i.e. the load transferred

to the system. To determine the load level at which the first crack, c1, forms it is

assumed that the matrix force at coordinate xi,Fm(xi), is evaluated as the difference

between the external load, and the value of the force in the fibre at coordinate xi,

i.e.

Fm(xi) =
NG/2∑

i=1

G(xi)− F (xi) (3.29)

When the tensile strength of the matrix, ftm is reached, the system is considered

to crack.

3.3.3.2 Cracked phase

In the cracked phase of DTT, the domain is represented through a series of crack-

separated portions, hence, new boundaries form sub-dividing the initial domain.

Portions of the domain are linked by the un-bonded yarn, which must undergo

the same tightening level at each crack location, corresponding to the resultant

of forces transmitted at the grips. Hence, strain continuity and the same strain

value must be ensured at all the internal ends of each portion. Cracks can open

in any position of the domain with the exception of the gripped areas. If a ho-

mogeneous strength along the domain is assumed, cracks necessarily form sym-

metrically, first at grips, then, in the middle, and following, in the middle of the

further sub-portions formed. Cracks can form anywhere if a random distribution

of the tensile strength capacity is envisaged. The crack opens without any mode-I

fracture energy dissipation and the CML does not deteriorate.

At the coordinate at which a crack forms, xc1, slips at the left and right crack

edges, s(xL
c ) and s(xR

c ), respectively, show opposite sign, and the sum of their abso-
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lute value defines the crack width, w1, which is assumed as the loading parameter

and is increased at each step of the incremental procedure, Figure 3.5a.

w1 = |s(xL
c1)|+ |s(xR

c1)| (3.30)

If one or more cracks divide the domain symmetrically, the slip at the left and

right crack edges are equal, i.e. |s(xL
c1)| = |s(xR

c1)|. If a crack opens in a generic

position of the domain, the parameter ρ1 ∈ [0, 1] (Figure 3.5a) is introduced as an

unknown combination coefficient of the crack width:






s(xL
c ) = w1ρ1

s(xR
c ) = −w1(1− ρ1)

(3.31)

Strain continuity, requiring that the forces in the fibre at the right and left edge

of a generic crack are equal, offers:

EA
h

(
s(xc+1) + w(1− ρ1)

)
= EA

h

(
wρ1 − s(xc−1)

)
(3.32)

For an N nodes domain, and a crack forming at coordinate xc1, with NG < c1 ≤

N −NG, there are N − 1 unknown slips, one unknown combination coefficient, ρ1,

N −1 equilibrium conditions on the nodes (of the kind of Equations 3.16 and 3.17),

and the strain continuity condition (Equation 3.32).

The elements of the unknowns vector s in Equation 3.18 for the one-crack DTT

are therefore:

s =

{
s(x1); ...; s(xc1−1); ρ1; s(xc1+1); ...; s(xN)

}
(3.33)

and the following coefficients of matrix MN×N must be substituted to the values
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appearing in Equation 3.19 at the appropriate positions:

mc1,c1 = −2EAw

mc1−1,c1 = EAw mc1+1,c1 = EAw
(3.34)

In Equation 3.32, the term EA
h w is known since depends directly on w, which is

the prescribed loading parameter; therefore, vector qN×1 is assembled with the

following non-zero elements:

qc = −EAw qc+1 = EAw (3.35)

Equations 3.18 and 3.19, in view of Equations 3.31, 3.32, 3.33, 3.34 and 3.35, provide

the solution at each p− th increasing value assumed by wp.

To determine the load level at which further cracks form, the matrix tensile

force at coordinate xi is evaluated as the difference between the tensile force in the

un-bonded yarn at the left or right of the existing crack, F (xci±h/2), and the tensile

force at xi. This value coincides with the sum of all bond forces comprised between

xci and xi.

If two cracks, c1 and c2, open at coordinate xc2 > xc1 , Figure 3.5b, a further

unknown combination coefficient, ρ2, must be introduced:






s(xL
c2) = w1(1− ρ1)

s(xR
c2) = w1ρ2

(3.36)

where, crack widths are w1 and w2 = |s(xL
c2)|+|s(xR

c2)| = w1(1−ρ1−ρ2). The problem

so posed shows N − 2 unknown slips, two unknown combination coefficients, ρ1

and ρ2, N − 2 equilibrium equations (of the kind of Equations 3.16 and 3.17), and
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two strain continuity conditions of the type of Equation 3.32.

Assuming the presence of two cracks at the generic nodes c1 and c2, with xc2 >

xc1 and, as previously soecified, Ngrip < c1; c2 ≤ N −Ngrip, the following elements

of matrix M in Equation 3.18 must be replaced:

mc1,c1 = −2EAw

mc1−1,c1 = EAw mc1+1,c1 = EAw

mc2,c2 = −EAw

mc2−1,c2 = 0 mc2+1,c2 = EAw

(3.37)

And the following non-vanishing elements of matrix M must be introduced:

mc2−1,c1 = −EAw

mc2,c1 = EAw
(3.38)

Also, vector q is assembled with the following non-zero elements:

qc1 = −EAw qc1+1 = EAw

qc2−1 = −EAw qc2 = EAw
(3.39)

Equations 3.18 and 3.19, considering also 3.36, 3.37, 3.38 and 3.39, provides the

solution at each increasing value assumed by wp.

In case xc2 < xc1, slips of nodes facing each crack are:






s(xL
c2) = wρ2

s(xR
c2) = −w(1− ρ1)

s(xL
c1) = w(1− ρ1)

s(xR
c1) = −wρ1

(3.40)
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Accordingly, the following elements of matrix M must be replaced:

mc2,c2 = −EAw

mc2−1,c2 = EAw mc2+1,c2 = 0

mc1,c1 = 2EAw

mc1−1,c1 = −EAw mc1+1,c1 = −EAw

(3.41)

Then, the following elements of matrix M must be introduced:

mc2,c1 = −EAw

mc2+1,c1 = EAw
(3.42)

Vector q is assembled with the following non-zero elements:

qc2 = −EAw qc2+1 = EAw

qc1−1 = −EAw qc1 = EAw
(3.43)

Iteration of the solution to Equations 3.18, in view of Equations 3.19, 3.36, 3.37, 3.38

and 3.39, provides the solution at each increasing value assumed by w.

The solution to system configuration envisaging a higher number of cracks can

be found accordingly.

3.3.4 Construction of the load-slip diagram for DTT

As seen in the previous section, the solving system of equations expressed in ma-

trix form by Equation 3.18 must be specified to the uncracked and cracked phases

of DTT through the enforcement of appropriate boundary and continuity condi-

tions. Consequently, for a given number of cracks envisaged by the system equal

to Nrc, Nrc + 1 solving systems are identified.
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Figure 3.4: Reference load-slip diagram and related independent diagrams with
cracks opening at slip values SA, SB and SD (a); and corresponding slips distribu-
tion along the domain before and after each load drop (b).

Each solving system can be run independently, assuming that the model un-

dergoes a generic phase of the cracking process from the beginning of the loading

procedure, without changing configuration, i.e. neglecting the tensile strength of

the matrix. The set of independent load-slip diagrams thus obtained, shown as

gray dashed lines in Figure 3.4a, provide information on the stiffness of e of the

system, so that the estimation of the load-slip diagram of DTT can be obtained.

The brittle fracture opening triggers load drops that reconnect the independent

load-slip diagrams, red continuous line in Figure 3.4a, and is bounded by the load

registered at the previous phase, e.g., uncracked PA1 , and the load registered for

the same slip value, SA, in the independent load-slip diagram of the following

phase, PA2 , Figure 3.4a.

From the numerical point of view, such result is obtained as follows: the so-

lution specific to the uncracked phase is run by increments of the applied load

until the attainment of matrix tensile strength, point A1 in Figure 3.4, triggering
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Figure 3.5: Use of distribution coefficients ρ1 and ρ2 for the definition of slips at
the right and left tips of each crack. Slip distribution along the domain and crack
width measuring: in the one-crack phase (a), at x(c1); and in the two crack phase,
at x(c1) and x(c2) ( b).

the opening of the first crack, c1. The crack formed is assumed to show an initial

width coinciding with the last attained global slip w1 = sA, and due to the reduced

stiffness of the cracked system compared to the uncracked one, a load drop is regis-

tered. Crack width w1 is incremented until matrix tensile strength is reached again

for sB and PB1 at a generic xc2 coordinate. The crack formed at xc2 is assumed to

show an initial width coinciding with the last attained global slip w1 = w1 + w2,

(B1 − B2 in Figure3.4); since the values of distribution coefficients ρ1 and ρ2 at slip

sB are unknown a priori, they are retrieved by the algorithm from the independent

solution of the two-crack phase and inputted in the iteration. For the phases in-

cluding further cracks, the global slip value is similarly assumed as the sum of the

crack widths and the load slip diagram is built according to the same procedure.

The obtained local distribution of slip, strain and bond stress attained at the

end of the uncracked, one-crack, two-crack and three-crack phases are shown in

Figure 3.6.

Since each crack-separated portion is subject to the same axial force, when a

crack forms at the end of the gripped length, the load capacity of the system equals
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Figure 3.6: Local distribution of slip, strain, and bond stress at the end of the un-
cracked (c0), one-crack (c1), two-crack (c2) and three-crack (c3) phases.
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the sum of bond forces along the gripped length (Focacci, D’Antino, and Carloni

2022a). In general, for cracks opening at random coordinates, the load capacity of

the system in DTT equals the maximum bond force transferable by the shortest ex-

ternal sub-portion, regardless of the number of cracks formed. This issue is further

deepened in Section 4.3.3.

In this framework, and recalling rigidity assumptions for matrix and support,

the extremity portions of the cracked DTT can be considered as two DST loaded at

nodes facing the crack, while central portions can be considered as DTTs with fibre

grip configuration, i.e. loaded at the extremity nodes only. Each half of the central

portions of DTT can be further conceived as a DST with fixed end extremity, see

Figure 3.1.
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CHAPTER 4

Parametric analysis

4.1 MODEL SET-UP AND SETTING

A parametric study is conducted to verify the consistency of model response for

both DTT and DST systems. Parameters defining the geometrical and mechani-

cal characteristics of constituent materials and bond properties are considered in

the analysis of both DST and DTT systems: elastic modulus of the fibre (E); yarn

perimeter (ψ) for fixed cross-section (A); bond stresses (τ1, τ2) and slip values (δ1,

δ2) defining the CML; tensile strength of the mortar matrix (ftm), where relevant.

The effect of test set-up and cracks opening at different positions is also assessed

for the DTT system.

Each fibre yarn of the textile is assumed to have an elliptical cross-section, A =

πa · b, with a and b, major and minor ellipse semi-axes, respectively and perimeter:

ψ = ny

√

2π
A(1 + χ2)

χ
(4.1)

defined as a function of the ratio between semi-axes, χ = b/a, to account for dif-

ferent yarn layouts for a given cross section. Where not differently specified, crack

positions in DTT systems, of total length L=500mm, are fixed as follows: xc1 = 100

mm, xc2 = 250 mm, and xc3 = 400 mm. To account for the difference in clamping

and clevis set-up, it is assumed that the bond stress in the gripped areas is magni-

fied by the added frictional forces that arise due to the applied compression.

Geometrical characteristics of the DST system are: system length is L=200 mm,

thickness including matrix, tm=10 mm , width, b=95 mm, equivalent thickness of

the textile, tf=0.01 mm. The area of each yarn is, A = (b · tf )/ny, where, ny is the
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number of the embedded bundles. For the DTT system, length is L=500mm, width,

b=60 mm, and gripping length, Lg=40mm, thickness and fibre characteristics are

the same as for DST. Mesh discretisation is set at 1-mm spacing.

Table 4.1: Parameters for the analysis: textile elastic modulus E, single yarn
perimeter ψ, number of yarns embedded in the matrix, ny; values defining the
tri-linear CML: shear stress at the end of the ascending branch, τ1, shear stress at
the end of the linear softening branch, τ2, slip at the end of the ascending branch,δ1,
slip at the end of the linear softening branch, δ2; mortar tensile strength, ftm. Pa-
rameters are increased or decreased by the coefficients reported at the beginning
of each column.

x 0.5 x 1 x 1.5 x 2

E [GPa] 125 250 375 -
ψ · ny [mm] - 3.55 5.17 7.14
τ1 [MPa] 1.06 2.12 3.18 -
τ2 [MPa] 0.35 0.7 1.05 -
δ1 [mm] 0.075 0.15 0.225 -
δ2 [mm] 0.175 0.35 0.525 -
ftm [MPa] 0.5 1 1.5 2

Reference values of the parameters are considered, and in turn decremented

and incremented by shifts of fifty per cent of their value, as reported in Table 4.1.

Results of the variation of each parameter are shown in Figure 4.1 and Figure 4.7.

Load-slip diagrams are reported with values normalised to the load and slip at-

tained at the end of the linear phase, for DST, and at the formation of the first crack

for DTT, by the base system, i.e. the diagram obtained with reference values of the

parameter. Therefore, the reference diagram indicated with a x1 label, is common

to all figures of DST and to all sub-figures referred to the same test set-up of DTT.
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Figure 4.1: Parametric analysis of DST to the variation of the elastic modulus of
the fibre E; values of the normalised load (N load) plotted against the normalised
slip (N slip).

4.2 DIRECT SHEAR TEST

4.2.1 Effect of textile characteristics

As shown in the following, the parametric analysis on DTT highlights that the vari-

ation of the textile Young’s modulus, induces parallel shifts of the pre-peak branch

of the load-slip diagram, while variations of ψ, cause different tangent stiffnesses

of the pre-peak branch.

Each 50% increase of the fibre elastic modulus E, Figure 4.1, determines ap-

proximately a 30% increase in the stiffness of the linear ascending branch of the

load slip diagram. For the lowest value of E, a 68% higher displacement capacity

and a 12% decrease in load capacity are recorded at peak, compared to the refer-

ence value; for the highest value of E, a 25% lower displacement capacity and an

8% increase in load capacity are recorded at peak compared to the middle value.

For a constant cross-section of the fibre, the increase in the value of perimeter,

ψ · n, Figure 4.2, i.e., greater χ = b/a, see Equation 4.1, implies a wider fibre to

matrix interface on which the stress transfer mechanism can be activated, thus
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Figure 4.2: Parametric analysis of DST to the variation of the perimeter of the fibre
ψ ·n. values of the normalised load (N load) plotted against the normalised slip (N
slip).

producing a stiffer branch in the linear phase, higher peak load and displacement

capacity of the system. For each increase of ψ value, the load and displacement

capacity at the peak load are both increased by approximately 30%. It must be

noted that longer perimeters determine proportionally higher ending plateaus.

4.2.2 Effect of CML properties

Variations of the CML properties are not all equally relevant to the load-slip re-

sponse. The variation of the slip defining the end of the linear ascending branch of

the CML, δ1, Figure 4.3, slightly affects the stiffness of the pre-peak phase and the

peak load of the diagram.

Compared to the diagram provided by the middle δ2 value, Figure 4.4, the peak

load and corresponding slip are increased by approximately 10% for the highest δ2

and are decreased by approximately 17% for the lowest δ2.

The variation of τ1 is firstly performed by keeping constant the slope of the

branches in the CML, Figure 4.5. Higher τ1 values produce longer linear ascend-

ing branches of the load-slip diagram and lead to higher load and displacement
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Figure 4.3: Parametric analysis of DST to the variation of slip value δ1 defining the
end of the linear ascending branch of the tri-linear CML. values of the normalised
load (N load) plotted against the normalised slip (N slip).

Figure 4.4: Parametric analysis of DST to the variation of slip value δ2 defining the
end of the softening branch of the tri-linear CML. values of the normalised load (N
load) plotted against the normalised slip (N slip)
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Figure 4.5: Parametric analysis of DST to the variation of peak shear stress, τ1
with fixed ascending stiffness (varying δ1). Values of the normalised load (N load)
plotted against the normalised slip (N slip).

capacity. Compared to the middle value, the increase or decrease of τ1 respectively

induces a 31% higher or lower peak load and a 37% corresponding slip.

Changes in the value of parameter τ1 with constant δ1, cause different slopes

of the linear ascending branch and of the softening branch of the CML, Figure 4.6.

The load-slip diagram associated with the lowest τ1 exhibits a 37% lower stiffness

in the linear ascending branch, and reaches a 27% lower peak load at a 29% lower

slip, compared to the middle τ1 value. The highest τ1 determines a 20% higher

stiffness in the linear phase, while peak load and corresponding slip are 17% and

20% higher, respectively, if compared to the middle value.

Each 50% shift of the τ2 value determines a 50% variation in the load attained

in the ending plateau phase, Figure 4.7 and Figure 4.8. If τ2 is varied without

changing the slope of the softening branch in the CML, and consequently changing

the δ2 value, the highest and lowest τ2 are associated respectively with a 21% peak

load increase or decrease and a 13% slip increase or decrease. If τ2 is varied by

changing the slope of the softening branch of the CML, Figure 4.7, the highest and

lowest τ2 are associated respectively to an approximately 20% peak load increase
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Figure 4.6: Parametric analysis of DST to the variation peak shear stress, τ1 with
changing stiffness (fixed δ1). Values of the normalised load (N load) plotted against
the normalised slip (N slip).

or decrease and 10% slip increase or decrease.

4.3 DIRECT TENSILE TEST

4.3.1 Effect of textile and mortar characteristics

Results of the parametric analysis with respect to textile and mortar characteristics

are reported in Figure 4.9 and Figure 4.17, where load-slip diagrams obtained from

base value parameters, red line, and their variations, gray continuous or dashed

lines, are compared both for the clevis and clamped configurations. Load and slip

values in all the diagrams are normalised to the values of load and slip at the end of

the uncracked phase obtained for the reference curve (the red continuous curve).

Hence, the reference is the same for all diagrams of the same configuration, i.e.

clevis or clamping.

The increase of the elastic modulus, E, of the fibre only slightly affects the

uncracked phase of the load-slip diagram, but significantly influences the crack

opening process, the slope of the diagram in the cracked phase, and the peak load
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Figure 4.7: Parametric analysis of DST proposed model to the variation of the
frictional stress value τ2, with fixed softening stiffness (varing δ2). Values of the
normalised load (N load) plotted against the normalised slip (N slip).

Figure 4.8: Parametric analysis of DST proposed model to the variation of the
frictional stress value τ2, with changing softening stiffness (fixed δ2).
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Figure 4.9: Parametric analysis of the proposed model to the variation of the elastic
modulus of the fibre, E. Values of the normalised load (N load) plotted against the
normalised slip (N slip).

reached, Figure 4.9. The lowest elastic modulus, provides more than 70% slip in-

crease at peak load, both in clevis and clamping set-ups, compared to the base

value, grey continuous curve, and peak load reduces up to 13%.

For a constant cross-section of the fibre, the variation of the perimeter, ψ, by

variation of the ellipse major and minor semi-axes of length a and b, respectively,

determines different responses in all phases of the load-slip diagram, see Figure

4.10. Longer perimeters, i.e. higher eccentricity of the ellipse, imply a wider fibre

to matrix interface on which the stress transfer mechanism can be activated, thus

producing a stiffer branch in the uncracked phase and higher loads in the post-

cracked phase. For each increase of ψ value, the load and displacement capacity

at the peak are both increased by approximately 30% in clevis set-up and 35% in

camping set-up. Conversely, the displacement capacity corresponding to the for-

mation of any new crack decreases with the increase of the perimeter, see zoomed

diagrams of Figure 4.10. In fact, a larger contact surface allows for higher loads to

be transferred at a given slip. Consequently, for each increase of ψ value, the end

of the cracking process is registered at smaller slips and the crack-opening process
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Figure 4.10: Parametric analysis of the proposed model to the variation of perime-
ter of the fibre, ψ · n. Values of the normalised load (N load) plotted against the
normalised slip (N slip).

is 8% and 15% shorter in clevis and clamping set-up respectively.

the variation of matrix tensile strength, ftm, affects the cracking response of the

specimen, determining both the load at which each crack forms, and the number

of cracks developed. Matrix tensile strength increase, see Figure 4.11 delays the

formation of the first crack providing proportionally longer linear elastic phases.

Furthermore, the matrix tensile strength increase reduces the number of cracks

and the displacement capacity at peak load for the clamped set-up. For decreasing

matrix tensile strength, cracks form at slip values closer to each other. In particular,

for the lowest value of ftm=0.5 MPa, the crack opening process in the clevis set-

up develops in the range 0.48-1.34 of the normalised slips, i.e. 10% of the slip at

maximum load; for ftm=1.5 MPa, slips are in the range 1.56-5.76 (49% of the slip

at maximum load). In the clamping set-up, for the lowest values of ftm=0.5 MPa,

the crack opening process develops in the range 0.42-1.5 of the normalised slips

range (9% of the slip at maximum load); for ftm=1.5 MPa, slips are in the range

0.97-6.7 (47.8% of the slip at maximum load). For ftm=2 MPa, no crack forms in

the clevis grip set-up, and for the clamp-grip set-up, the load reached after the
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Figure 4.11: Parametric analysis of the proposed model to the variation of matrix
tensile strength, ftm. Values of the normalised load (N load) plotted against the
normalised slip (N slip).

crack has formed is lower than the load reached at the end of the uncracked phase.

For the considered parameter values, the shape of the load-slip diagrams changes

noticeably.

4.3.2 Effect of CML properties

Concernig variation of the CML parameters, Equation 2.1, the variation of param-

eter δ1 with constant τ1 values, see Figure 4.12, only slightly affects the load-slip

response: smaller δ1 values produce a stiffer branch in the diagrams of the un-

cracked phase, a shorter crack-opening phase and a slightly higher load capacity.

The variation of parameter δ2, see Figure 4.13, shows that steeper softening

branches of the CML cause shorter post-cracking branches and lower peak loads

in the load-slip diagram. For the highest value of δ1, a 13% and a 10% peak load

increase, with respect to the middle value, occurs in clevis set-up and in clamping

respectively. For both set-ups, a 20% load decrease, with respect to the middle

values, occurs instead when the lowest value of δ1 is considered.

In Figure 4.14, the shear stress defining the end of the linear elastic branch of
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Figure 4.12: Parametric analysis of the proposed model to slip value defining the
end of the linear ascending branch of the tri-linear CML, δ1. Values of the nor-
malised load (N load) plotted against the normalised slip (N slip).

Figure 4.13: Parametric analysis of the proposed model to slip value defining the
end of the softening branch of the tri-linear CML, δ2. Values of the normalised load
(N load) plotted against the normalised slip (N slip).
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Figure 4.14: Parametric analysis of DTT to the variation of peak shear stress, τ1
with fixed ascending stiffness (varying δ1). Values of the normalised load (N load)
plotted against the normalised slip (N slip).

the CML, τ1, is varied without changing the slope of the linear elastic and soft-

ening branches of the CML, i.e. accordingly varying the associated slips δ1 and δ2.

Higher τ1 values lead to higher load and displacement capacity either in clevis and

clamping: approximately, a 40% peak load and a 60% slip decrease are evaluated

for the lowest value of the τ1 compared to the middle value. For the increment of

τ1 from the base value to the highest, a 40% load and slip increase is determined.

The lowest τ1 value also determines the formation of only one crack in the clevis

set-up and two cracks in the clamping one, due to the fact that the system early

enters in the softening branch of CML.

The variation of τ1 was also performed changing the values and consistently

the slope of the linear elastic and softening branches of the CML, Figure 4.15. Re-

markable differences are noticeable in the extent of the cracking phase. Compared

to the middle τ1 value, the smallest τ1 value, black dashed diagrams, causes a 50%

longer cracking phase in clamping and a 40% longer in clevis, gray continuous

diagrams. The τ1 variation also considerably affects the peak load, determining

shifts between -32% and +22% for the lowest and highest values of τ1, respectively,
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Figure 4.15: Parametric analysis of the DTT proposed model to the variation peak
shear stress, τ1 with changing stiffness (fixed δ1). Values of the normalised load (N
load) plotted against the normalised slip (N slip).

compared to the middle one in the clamping set-up, and between -45% and +25%

in the clevis.

The τ2 value is first varied along with δ2, to avoid the change in the slope of

softening branch of the CML, Figure 4.16. Such τ2 variation yields slight effects on

the peak load and displacement capacity, which both are increased or decreased by

approximately 9% for each τ2 shift. The variation of τ2 is also performed by chang-

ing the value and the slope of the softening branch of the CML, Figure 4.17. Such a

change leads to slightly more accentuated variations both in slip (-12% and +15%)

and load (-11% and +12%) for the clevis set-up; similar variations are recorded for

the clamped set-up.

4.3.3 Effect of crack position

The effect of cracks opening at different positions is investigated in the one-crack

and two-crack conditions of the model, assuming a clevis grip configuration. Re-

sults are reported in Figures 4.18 and 4.19 where the load-displacement diagrams

are normalised with respect to the values of load and slip attained at the end of



73

Figure 4.16: Parametric analysis of the DTT proposed model to the variation of the
frictional shear stress, τ2 with fixed softening stiffness (varying δ2). Values of the
normalised load (N load) plotted against the normalised slip (N slip).

Figure 4.17: Paramrtic analysis of the DTT proposed model to the variation of
the frictional shear stress, τ2, with changing stiffness (fixed δ2). Values of the nor-
malised load (N load) plotted against the normalised slip (N slip).
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Table 4.2: Parametric analysis for DTT: mechanical and geometrical parameters

Param. var. Elin Pmax sPmax Lc

clevis clamp clevis clamp clevis clamp clevis clamp

each x 1 1 1.50 1.58 1.80 8.42 11.87 1.61 -

E x 0.5 0.80 1.31 1.35 1.58 14.53 20.68 3.70 5.09
x 1.5 1.34 1.70 1.73 1.93 6.32 8.67 1.13 1.83

ψny x 1.5 1.37 2.07 2.10 2.43 11.30 16.25 1.50 2.12
x 2 1.60 2.63 2.71 3.17 14.56 20.92 1.44 1.81

ftm x 0.5 - - 1.057 - - - 0.86 1.08
x 1.5 - - 1.057 - - - 4.20 2.41

δ1 x 0.5 1.61 2.76 1.65 1.88 8.73 12.24 1.36 2.23
x 1.5 0.73 - - 1.72 8.37 11.68 1.52 2.78

δ2 x 0.5 - - 1.29 1.48 7.11 10.09 1.91 2.86
x 1.5 - - 1.77 1.98 9.43 12.81 1.05 -

τ1(and δ1) x 0.5 - - - 1.06 3.74 4.99 - 1.74
x 1.5 - – 2.22 2.57 11.68 16.86 1.05 -

τ1 x 0.5 1.35 0.90 1.087 1.15 6.18 6.59 2.25 1.42
x 1.5 0.64 2.16 1.93 2.30 10.17 14.04 1.43 2.06

τ2(and δ2) x 0.5 - 1.48 1.69 7.69 11.21 1.05 -
x 1.5 - - 1.72 1.93 9.32 12.62 1.05 -

τ2 x 0.5 - - 1.40 1.62 7.33 10.98 1.56 -
x 1.5 - - 1.77 1.98 9.56 9.98 1.05 -
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the uncracked phase, showing that for the same FRCM system remarkable differ-

ences are caused by different crack patterns. Normalised values of the stiffness of

the pre-peak branch of the load-slip diagram Ec, maximum load value Pmax and

corresponding slip sP and length of the cracking phase Lc are reported in Table 4.2.

Table 4.3: Paraemetric analysis for DTT: crack position

Crack pos. Ec Pmax sP Lc

C1=0.5L 2.65 2.14 19.6 -

C1=0.08L 2.89 1.61 0.57 -

C1=0.1L, C2=0.5L 2.91 0.81 2.65 -

C1=0.2L C2=0.5L 4.97 1.32 8.56 0.99

C1=0.2L, C2=0.7L 5.15 1.32 9.50 0.83

C1=0.4L, C2=0.5L 3.81 1.87 15.98 0.86

For the one-crack condition, two opposite settings are considered: a crack open-

ing in the middle of the domain, i.e. at xc1 = L/2 (Figure 4.18a), or at the end of

the left gripping area, i.e. xc1 = Lg (Figure 4.18b). The system cracked at the mid-

dle shows a 62% and a 89% higher load and displacement capacity respectively,

compared to the system cracked at 0.08L. Also, the stiffness of the load-slip dia-

gram of the system cracked at 0.5L is 10% higher compared to the system cracked

at 0.08L, being the shorter portion of Figure 4.18a, 6.25 times longer than that of

Figure 4.18b.

For the two-crack condition, cracks generate three portions named A, B, and

C, Figure 4.19a, b, c, d. In each combination of cracks, portion A is the shortest

of the two extremity portions. Cracks are first set to open at c1=0.1L and c2=0.5L,

Figures 4.19a, then their positions are varied as follows: first increasing portion A,

reducing middle portion B and keeping fixed the longer extremity (C), by shifting

c1 to 0.2L, Figures 4.19a, b; then, keeping fixed extremity A with c1=0.2L, and re-
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Figure 4.18: Effect of one crack opening at different locations assuming one crack
at 0.5L (a), and 0.08L (b).
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ducing extremity C, Figures 4.19b, c, hence, increasing middle portion B by setting

c2=0.7L; and finally moving cracks closer to the centre, i.e. c1 =0.4L and c2=0.5L,

reducing middle portion B (Figures 4.19d).

In the load-slip diagram of the first scenario (first crack at the end of the grip-

ping length), Figure 4.19a, after the formation of the first crack (first crack formed

at 0.1L), the bond force transmitted from part A to the others is not high enough to

induce the attainment of matrix tensile strength and the second crack cannot form

at 0.5L. The slip and load capacity of the system is therefore limited.

In the second scenario, Figure 4.19b, portion A shows double the length of the

previous configuration (Figure 4.19a). The stiffness of the one-crack independent

diagram (Figure 4.19d) is 17% higher compared to the previous configuration, and

both cracks develop. The displacement capacity at the peak load of the system is

nearly four times higher.

For a decreasing length of the longest extremity portion C, Figure 4.19b, c, and

a fixed length of portion A equal to 0.2L, the independent load-displacement di-

agram of the one-crack phase is the same, while the stiffness of the independent

diagram of the two-crack phase (grey dashed curve) is 8% lower for c2 forming at

0.7L (Figure 4.19c). As a result, the peak loads reached are equal, but a 10% slip ca-

pacity increase is recorded for a decreasing length of the longest extremity portion

C, Figure 4.19c, passing from 8.4 to 9.5.

For cracks closer to the middle, case of Figure 4.19d, both the one-crack and

two-crack independent diagrams (dashed curves) show higher stiffness compared

to Figure 4.19c and the load slip diagram exhibits the highest load and slip capacity

of the whole set.

From the analysis emerges that the length of the shortest extremity portion, i.e.
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Figure 4.19: Effect of two cracks opening at different locations: 0.1L and 0.5L (a);
0.2L and 0.5L (b); 0.2L and 0.7L (c); and 0.4L and 0.5L (d)
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A, is the driving parameter affecting the response quality and maximum load ca-

pacity. In particular, if the bond force transferred by the shortest extremity portion

is lower than the maximum tensile force that the mortar can bear, any further crack

cannot open. Also, increasing the length of portion A induces a stiffer branch of

the load-slip diagram in the cracked phases and a higher load capacity, regardless

of the length of the other segments. For a fixed-length segment A, capable of trig-

gering a two-crack phase, and an increasing length of segment C, equal peak loads

are reached, but for longer segment C, lower global displacement capacity at the

peak is recorded. Also, stiffer branches in the cracking phases determine smaller

load drop at crack formation. Therefore, for the same FRCM system, i.e., fixed

CML, test set-up and specimen geometry, it is shown that the number of cracks

and their position provide remarkable variations both quantitatively in terms of

the recorded parameters and on the shape of the global response diagram.
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CHAPTER 5

Discussion and model validation

5.1 DISCUSSION ON THE DTT SYSTEM

5.1.1 Effect of the relationship between mortar and CML characteristics

The parametric analysis carried out in Chapter 4 allowed the identification of the

parameters, which mostly affect the response of FRCM system under tensile load-

ing conditions. Among others, it was found that matrix tensile strength signifi-

cantly influences the cracking behaviour of the specimen, determining both the

load at which each crack forms, and the number of cracks developed; furthermore

it was highlighted that the load and slip capacity of the system are affected by

stress and slip values defining the CML.

Relying on such findings, an analysis of the combined variation of mortar ten-

sile strength and CML characteristics was undertaken. Fifteen cases relevant to

the quality of the load slip diagram were compared, assuming three values for

τ1, four values for τ2, and three classes of mortar tensile strength, ftm. The cases

are displayed in Figure 5.1 and Figure 5.2, where each row corresponds to a CML

defined by a τ1 value (increased as in Figure 4.15b), while columns correspond to

three classes of mortar tensile strength, ftm; the value of τ2 is set equal to 0.7 MPa

in Figure 5.1, and to τ1/3 in Figure 5.2; the values of the maximum bond force per

unit length per yarn are also indicated to ease identification and comparison with

experimental results.

The combinations of parameters defining the selected cases provide different

load slip diagrams (Figure 5.1 - 5.2), which are analysed according to the following

featuring elements:
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Figure 5.1: Load-slip diagrams for variations of the shear value defining the CML,
τ1, and matrix tensile strength, ftm, assuming τ2 = 0.7MPa; a), b) and c) diagrams
for τ1=4MPa and ftm=1MPa, 1.5 MPa and 2MPa, respectively; d), e) and f) dia-
grams for τ1=3MPa and ftm=1MPa, 1.5 MPa and 2MPa, respectively; g), h) and i)
diagrams for τ1=2MPa and ftm=1MPa, 1.5 MPa and 2MPa, respectively. The DTT
system has a total length L=500mm, crack positions at xc1 = 100 mm, xc2 = 250 mm,
xc3 = 400 mm, and ny=4.
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Figure 5.2: Load-slip diagrams for variations of the shear value defining the CML,
τ1, and matrix tensile strength, ftm, assuming τ1/τ2=3; a), b) and c) diagrams for
τ1=4MPa and ftm=1MPa, 1.5 MPa and 2MPa, respectively; d), e) and f) diagrams
for τ1=3MPa and ftm=1MPa, 1.5 MPa and 2MPa, respectively; g), h) and i) dia-
grams for τ1=2MPa and ftm=1MPa, 1.5 MPa and 2MPa, respectively. The DTT
system has total length L=500mm, crack positions at xc1 = 100 mm, xc2 = 250 mm,
xc3 = 400 mm, and ny=4.
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• load and slip at the first crack

• length of the cracking phase

• post-cracking maximum load and related slip

For each given CML (rows of Figures 5.1 - 5.2), mortar tensile strength increase

determines an increase of the first-crack load, a progressive stretching of the crack-

ing phase, and does not affect the peak load. Hence, the fist-crack load and the

peak load become closer for higher mortar strength values, affecting the overall

shape of the diagram. These trends become more evident where the τ2 value is

kept constant (Figure 5.1).

For each tensile strength value (columns of Figures 5.1 - 5.2), the τ1 increase de-

termines an increase in the values of the post-cracking maximum load and related

slip, with no effect on the first cracking load and slip, and a shrinkage of the crack-

ing phase, markedly noticeable for the middle value of ftm, see b, e, h in Figures

5.1 - 5.2. Also, for low values of τ1 and high values of ftm, (see f, h, i in Figures 5.1 -

5.2), non-linear pre-peak branches can develop. Limit cases of these trends are ob-

served for one-crack conditions with peak load comparable to crack load (Figure

5.1f), or no crack due to high tensile strength and low τ1 (Figure 5.1i and Figure

5.2i).

For the investigated systems, it is observed that the shapes of the load slip

diagram are related to classes of τ1/ftm and τ1/τ2 ratios. Diagrams characterised

by a high τ1/ftm ratio, show a shorter cracking phase and a load recovery branch,

that can be idealised as a tri-linear diagram, see a, b and d in Figures 5.1 - 5.2.

For decreasing values of the τ1/ftm ratio (Figures 5.1c, f, h and Figures 5.2f, h) a

longer cracking phase is determined and a load recovery branch cannot be clearly
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recognised; in this case, the global response can therefore be idealised as a bi-linear

diagram. For fixed τ1/τ2 ratios (Figure 5.2), similar τ1/ftm ratios, found along the

diagonals, produce self-similar diagrams with scaled values, as shown by Figures

5.2b, d in which τ1/ftm=2.6 and τ1/ftm=3 respectively; Figures 5.2c, e, g, in which

τ1/ftm=2; and Figures 5.2f, h, in which τ1/ftm=1.5 and τ1/ftm=1.33 respectively.

5.1.2 Analysis of literature data

Trends highlighted in Section 5.1.1 suggest that in DTT, the relation between bond

properties and matrix tensile strength deeply affects the load slip diagram so that

either bi-linear or tri-linear diagrams can be obtained for the same value of the

bond force. In the literature, good bonding at the fibre-to-matrix interface is related

to a tri-linear load-slip diagram, while poor bonding to a bi-linear diagram (Truong

and Kim 2021; Arboleda et al. 2016; D’Antino and Papanicolaou 2018). Observa-

tional evidence shows that both bi-linear and tri-linear behaviour can be found

within the same test method, depending on the quality of bonding (D’Antino and

Papanicolaou 2018) and FRCM tested typology (Arboleda et al. 2016; De Santis et

al. 2018). A comparison with experimental data available in Caggegi et al. (2017)

and Barhum and Mechtcherine (2012) is carried out to benchmark the results pre-

sented in Figures 5.1 - 5.2. In Caggegi et al. (2017), the same PBO-based system

was tested by several research units, employing clevis and clamping set-ups. To al-

low comparison, the maximum bond stress of each system, τ1, was back-calibrated

from SST diagrams shown in Figure 10 of Caggegi et al. (2017) and is reported in

Table 5.1, along with the main geometrical and mechanical characteristics. Since

mortar tensile strength values were very close in all tests (see values reported in

Figure 5.1), a comparison can be established with the right column of Figures 5.1 -
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Figure 5.3: Comparison between (a) the load slip diagrams of PoliMi DST results
reported in (Caggegi et al. 2017) and the load slip diagrams of (b) Figure 5.1f and
(c) Figure 5.2f.

5.2. It must be noted that tests performed by CUT and UniRo3 are not considered,

since failure in DST was induced by tensile rupture of the fibre.

Table 5.1: Parameters for the calibration of maximum shear stress value τ1 of the
round robin tests reported in Caggegi et al. (2017)

tf b ny ftm δ1 τ1 τ1 · ψ
[mm] [mm] [-] [mm] [mm] [MPa] [N/mm]

PoliMi 0.014 45 3 2.58 0.75 3.25 2.38
UnieC 0.014 115 8 2.45 0.25 5.73 4.19
UniLy 0.014 45 3 2.8 0.6 2.59 1.89

The PoliMi DTT results, obtained with clamping set-up (Figure 11 in Caggegi

et al. 2017), show one main crack followed by one or two more cracks and peak

stress slightly higher than the cracking stress. This behaviour can be compared

with Figures 5.1f - 5.2f, where the τ1, as per calibrated from bond tests, falls into,

see Figure 5.3.

The UnieC DTT results, obtained with clamping set-up (Figure 11 in Caggegi
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Figure 5.4: Comparison between (a) the load slip diagrams of UnieC DST results
reported in (Caggegi et al. 2017) and the load slip diagrams of (b) Figure 5.2c and
(c) Figure 5.1c.

et al. 2017), show a tighter series of cracks, a longer cracking phase and a higher

number of cracks. The recorded peak stress is noticeably higher than the cracking

stress. This behaviour can be compared to Figures 5.2c - 5.1c, where the closer τ1

value in the table can be found, see Figure 5.4. The results of UniLy on DTT, ob-

tained with the clevis grip set-up (Figure 12 in Caggegi et al. 2017), show a unique

crack followed by a tension recovery up to post-cracking maximum stress equal or

lower than the cracking stress, Figure 12 in Caggegi et al. (2017). According to the

τ1 value determined from bond tests, this FRCM system can be compared to the

results showed in Figures 5.1f,i - 5.2i, see Figure 5.5.

Experimental results reported in Barhum and Mechtcherine (2012) show that

increasing matrix tensile capacity, by adding short dispersed fibres to the same

mortar, determines an increase in the load at which the first crack forms and the

elongation of the crack development phase, (Figures 8 and 9 in Barhum and Mechtcher-

ine 2012), while the load capacity of the system remains almost unchanged, hence,

i.e. the bond capacity of the system can be considered unchanged.
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Figure 5.5: Comparison between the load slip diagrams of (a) UniLy DST results
reported in (Caggegi et al. 2017) and the load slip diagrams of (b) Figure 5.2i and
(c) Figure 5.1f, i.

Diagrams similar to Figure 5.1f are found in Dalalbashi, Ghiassi, and Oliveira

(2021b) and Soranakom and Mobasher (2010a). The same shape of the diagram

is also found in Soranakom and Mobasher (2010a), but the load drop right before

the initiation of the softening phase is attributed to the effect of junction points

between the weft and warp direction of the reinforcing textile.
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CHAPTER 6

Experimental campaign

An experimental campaign was carried out on a set of four commercially available

FRCM systems to benchmark the ability of the proposed model to correctly predict

the global behaviour of different FRCM systems. The experimental campaign was

aimed at providing sets of data from FRCM systems with various geometrical and

mechanical properties to feed into the model. Characterization of the tested com-

posite materials for application purposes would have required a higher number of

samples in most trials and is beyond the scope of this study.

The FRCM systems selected for the experimental campaign comprised a lime-

based and two cement-based mortar matrices:

• a cement-based mortar matrix, named MXCAR in the following, constituted

by portland cement clinker, flue dust, crystalline silica, and polymer addi-

tives, reinforced with short dispersed fibres (material not specified by the

producer), and with an M20 resistance class (EN 998-2), according to the

data-sheet;

• a cement-based mortar matrix, named MXPBO, also constituted by portland

cement clinker, flue dust, crystalline silica, and polymer additives, reinforced

with short dispersed fibres (material not specified by the producer), but with

an M15 resistance class, according to the data-sheet;

• a lime-based matrix, named MXBAS, made of natural NHL and geo-binder,

siliceous washed natural river sand, Dolomitic limestone and pure fine white

Carrara marble, with an M15 resistance class, according to the data-sheet.

The main characteristics of matrices are reported in Table 6.1.
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Table 6.1: Characteristics of the mortar matrices employed in the experimental
campaign; the compressive strength class is as indicated in the producer data-
sheet. The constituting material of the short fibres is not provided in the datasheet

Name binder class water per Kg short fibres
[l/Kg]

MXCAR Portland cement M20 0.26 x
MXPBO Portland cement M15 0.280 x
MXBAS natural NHL M15 0.212 -

Four balanced bi-directional open mesh textiles, constituted by three different

reinforcing materials were coupled with the mortars:

• a carbon mesh textile, named CAR hereafter, with an equivalent thickness of

tf = 0.023mm, 42g/m2 of reinforcing fibres in the weft and warp directions,

coupled with a tighter mesh of PE filaments, providing geometrical stability;

• a PBO textile, named PBO10 hereafter, with tf=0.014 mm, 22 g/m2 of rein-

forcing fibres in the weft and warp directions;

• a PBO textile, named PBO22 hereafter, with tf=0.0064 mm, 10 g/m2 of re-

inforcing fibres in the weft and warp directions, coupled with coated glass

yarns and dry polypropylene yarns;

• a basalt textile, named BAS hereafter, with tf=0.032 mm, 200 g/m2 of rein-

forcing fibres in the weft and warp directions, coupled with AISI304 steel

micro-rovings.

All textiles were fabricated with a woven technique, i.e. through the alternate over-

lapping of yarns in the weft and warp directions so that no mechanical anchorage

was provided at the intersection points; only for the basalt textile, a light bond-

ing apparently due to thermal forming between yarns belonging to weft and warp
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directions was observed. The main characteristics of the selected textile are sum-

marised in Table 6.2, where surface density, yarn spacing and equivalent thickness

are reported.

Table 6.2: Characteristics of the bi-directional reinforcing textiles employed in the
experimental campaign; the surface density provided by the reinforcing fibre is
reported in brackets, when the information is made available by the producer.

Name main material surface density yarn spacing eq. thickness
[g/m2] [mm] [mm]

CAR carbon 137 (84) 19 0.023
PBO 22 PBO 72 (44) 15 0.014
PBO 10 PBO 104 (20) 30 0.0064
BAS basalt 200 17 0.032

6.1 MATERIAL TESTING

6.1.1 Three-point bending tests

The mechanical characterization of the mortar matrix consisted of three-point bend-

ing tests and compression tests.

Parallelepipedal specimens were fabricated for the three-point bending tests,

by casting mortar in 160x40x40 mm specific steel formworks as follows. Each

mortar was prepared according to directions provided in the producer data-sheet,

adopting the water to cement ratio indicated in Table 6.1. A release agent was ap-

plied to the surfaces of the formworks and the formation of an oil film was awaited.

Mortar was cast in the formworks, which were manually vibrated to enhance air

expulsion. Specimens were cured for 28 days at ambient temperature and 50%

relative humidity.

In the test set-up, each obtained specimen was placed above two supporting
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Figure 6.1: Three-point bending tests on the cement and lime based matrices: con-
figuration of MXCAR (a), MXPBO (b) and MXBAS (c) before the beginning of the
trial; configuration of MXCAR (d), MXPBO (e) and MXBAS (f) after failure.

steel cylinders with a 10 mm diameter, which were positioned at 30 mm from the

right and left ends, thus leaving a 100 mm free length. A third cylinder was placed

on the top surface of the specimens at middle section (80 mm from the right and

left ends). The load was transferred to the upper cylinder through a steel plate in

contact with the load cell; tests were carried out in a TC 5000N load cell at a 0.135

mm/min load rate. Results obtained are reported in 6.3, where the maximum

attained load Pmax and indirect tensile strength ft for each specimen are listed.

It can be observed the MXCAR and MXPBO performed similarly providing

Pmax equal to 2039 N and 3022 N respectively, i.e. ft equal to 6.65 N/mm2 and 7.08

N/mm2. MXBAS showed instead lower mechanical properties reaching a maxi-

mum load equal to 2497N , i.e. a tensile strength equal to 5.85N/mm2. The short

fibres dispersed in MXCAR and MXPBO bridged the crack after the failure of the
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Table 6.3: Results of three-point bending and compression tests carried out on the
cement-based MXCAR matrix.

Three-point bending Compression

specimen Pmax ft specimen Pmax fc
- [N] [N/mm2] - [N] [N/mm2]

MXCAR-01 2847.4 6.67 MXC-01a 27556 17.22
MXCAR-01b 26596 16.62

MXCAR-02 2937.5 6.89 MXCAR-02a 29915 18.69
MXCAR-02b 31373 19.61

MXC-03 2748.7 6.44 MXCAR-03a 28193 17.62
MXCAR-03b 29315 18.32

MXCAR-04 2773.2 6.49 MXCAR-04a 24441 15.27
MXCAR-04b 18386 11.49

MXCAR-05 2704.3 6.34 MXCAR-05a 24742 15.46
MXCAR-05b 26975 16.86

MXCAR-06 3024.7 7.09 MXCAR-06a 29120 18.20
MXCAR-06b 26469 16.54

Av. 2839.3 6.65 Av. 26923 16.83
St. Dev. 122.38 0.289 St. Dev. 3376.79 2.11
CV 4.34% 4.34 CV 12.5% 12.5%

specimen causing energy dissipation.

6.1.2 Compression tests

The two halves obtained from the failure of parallelepipedal specimens in three-

point bending tests were tested in compression according to CEN (1999). Each

specimen half was subjected to axial compression transferred through 40x40 mm

steel plates. Tests were carried out with a 0.5 mm/min loading rate. Results ob-

tained, reported in Tables 6.3-6.5, highlight a 16.83N/mm2 compressive strength for

the MXCAR, a 19.50N/mm2 compressive strength for the MXPBO, and a 23.41N/mm2

compressive strength for the MXBAS.
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Figure 6.2: Results of three-point bending tests on the cement-based matrices MX-
CAR (a), MXPBO (b), and the lime-based matrix, MXBAS (c).
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Table 6.4: Results of three-point bending and compression tests carried out on the
cement-based MXPBO matrix.

Three point bending Compression

specimen Pmax ft specimen Pmax fc
- [N] [N/mm2] - [N] [N/mm2]

MXPBO-01 4045.5 9.48 MXPBO-01a 16024 10.02
MXPBO-01b 27561 17.23

MXPBO-02 2638.2 6.18 MXPBO-02a 33762 21.10
MXPBO-02b 39568 24.73

MXPBO-03 2805.2 6.57 MXPBO-03a 16024 10.01
MXPBO-03b 40387 25.24

MXPBO-04 2714.5 6.36 MXPBO-04a 37980 23.74
MXPBO-04b 39331 24.58

MXPBO-05 2980.9 6.99 MXPBO-05a 35453 22.16
MXPBO-05b 30139 18.84

MXPBO-06 2948.7 6.91 MXPBO-06a 30668 19.17
MXPBO-06b 27525 17.20

Av. 3022.17 7.08 Av. 31201 19.50
St. Dev. 518.35 1.21 St. Dev. 8420 5.26
CV 17.15% 17.15% CV 26.98% 26.98%
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Table 6.5: Results of three-point bending and compression tests carried out on the
lime-based MXBAS matrix.

Three point bending Compression

specimen Pmax ft specimen Pmax fc
- [N] [N/mm2] - [N] [N/mm2]

MXBAS-01 2968.8 6.95 MXBAS-01a 37396 23.37
MXBAS-01b 37989 23.74

MXBAS-02 2586.4 6.06 MXBAS-02a 35679 22.30
MXBAS-02b 38734 24.21

MXBAS-03 2893.1 6.78 MXBAS-03a 36801 23.00
MXBAS-03b 40517 25.32

MXBAS-04 2504.1 5.87 MXBAS-04a 36387 22.74
MXBAS-04b 38768 24.23

MXBAS-05 1804.8 4.23 MXBAS-05a 36571 22.86
MXBAS-05b 38762 24.23

MXBAS-06 2226.3 5.21 MXBAS-06a 37977 23.73
MXBAS-06b 33974 21.23

Av. 2497.25 5.85 Av. 37462 23.41
St. Dev. 433.57 1.015 St. Dev. 1722.2 1.076
CV 17.36% 17.36% CV 4.5% 4.5%
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Figure 6.3: Resukts of compression tests on the cement-based matrices MXC (a),
and MXPBO, (b), and the lime-based matrix, MXBAS (c).
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Figure 6.4: Specimens for direct tensile tests on the CAR (a), PBO10 (b), PBO22 (c),
and BAS (d) textile; test set-up and instrumentation employed (d).

6.1.3 Fibre Direct tensile test

Fibre tensile tests were carried out for the mechanical characterization of the tex-

tile reinforcement. Specimens were fabricated by cutting 60x300 mm rectangular

portions of the textiles. Each specimen comprised a specific number of yarns, ac-

cording to yarn spacing reported in Table 6.2: three yarns of the CAR and of the

BAS textile, four yarns of the PBO22 textile and two yarns of the PBO10 textile.

After 70x100 mm FRP tabs were applied to the extremities to provide gripping,

specimens were inserted in a TC 5000N load cell and tested in displacement con-

trol with a 0.5mm/min load rate.

All specimens showed a linear elastic behaviour until tensile failure of the fi-

bre, see Figure 6.5. Results, reported in Table 6.6, and shown in Figure6.5, allowed

the evaluation of the average elastic modulus, E, and tensile strength ft of all

reinforcing textiles: ft=1185 N/mm2 and a E=78061 N/mm2 were found for the
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Figure 6.5: Stress-strain diagrams obtained from results of the direct tensile tests
on the CAR (a), PBO10 (b), PBO22 (c), and BAS (d) textile.

basalt textile; ft=1756 N/mm2 and E=193740 N/mm2 were found for the carbon

textile; ft = 1020N/mm2 and E=119487 N/mm2 were found for the PBO22 textile;

a ft=2385 N/mm2 and E=300250 N/mm2 were found for the PBO10 textile.

6.1.4 Direct Shear Tests

Direct Shear Tests were performed on 220x95x8 mm composite jackets adhered to a

brick substrate. Two 95x220 mm timber moulds were fabricated for each DST spec-

imen, with 4x4 mm square section slats. Bricks were cleaned with a dry medium

bristle brush and saturated with water. A wooden mould was fixed to the upper

surface keeping its sides parallel to the brick edges. A 95x350 mm portion of each
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Figure 6.6: Load-slip diagrams obtained from results of the direct tensile tests on
the CAR (a), PBO10 (b), PBO22 (c), and BAS (d) textile.
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Table 6.6: Results of tensile tests on the reinforcing textiles.

specimen εu ft Ey

[-] [N/mm2] [N/mm2]
CAR-01 0.014 1239 136348
CAR-02 0.015 1783 148639
CAR-03 0.018 2245 150927
Average 0.016 1756 145302
St. Dev. 0.0013 503.74 7840.59
CV 11% 29% 5.4%

PBO10-01 - - -
PBO10-02 0.015 2373 226404
PBO10-03 0.014 2712 299306
Average 0.015 2542 262855
St. Dev. - - -
CV - - -

PBO22-01 0.009 1592 89845
PBO22-02 0.012 2051 88159
PBO22-03 0.015 2477 90842
Average 0.012 2041 89615
St. Dev. 0.003 221.50 1355
CV 25% 22% 1.5%

BAS-01 0.022 1223 59419
BAS-02 0.022 1210 61478
BAS-03 0.023 1246 60797
Av. 0.022 1226 60564
St. Dev. 0.0001 18.26 1048.79
CV 1.1% 1.5% 1.7%
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reinforcing textile was cut. The matrix paste was cast in the mould and levelled

with a spatula, so that an even thickness of 4 mm was ensured; then the reinforc-

ing textile was applied to the surface, taking care of its alignment, and slightly

pressed. The second mould was positioned over the first and fixed to it. Another

layer of cement paste was cast and levelled, reaching a total thickness of 8mm,

Figure 6.7. Specimens were cured for 28 days at 20°C and 50% relative humidity.

After curing, the extremity of the free length of the textile was wrapped around

a steel cylinder and then fixed through an epoxy resin, which was also applied to

the non-embedded length.

Each specimen, labelled according to the name of the embedded textile fol-

lowed by an identification number, was placed in a steel frame fixed to the testing

machine, as suggested in Carloni et al. (2015), obtaining a pull-push configuration;

the steel cylinder was inserted in a U-shaped steel device connected to the test-

ing machine through hinges and shackles, which prevented the misalignment of

the fibre during load application. Two cantilever displacement transducers were

positioned at the end of the jacket, and a third one on the side of the brick. Tests

were carried out at 0.2 mm/min displacement rate using a 50-kN load cell (type

TCLP5B, Tokyo Sokki Kenkyujo Co. Ltd).

Results of specimens CAR 02 and CAR 03, Figure 6.9a, of the carbon-based

system showed a linear behaviour followed by decreasing stiffness, reached peak

loads of 2491 N and 2912 N respectively, and failed due to tensile rupture of the tex-

tile out of the matrix. Specimen CAR01, Figure 6.9a, described an anomalous load

slip diagram, due to rotation of the brick substrate, which led to misalignment of

the embedded and non-embedded textile: after a delayed stiffness activation fol-

lowed by a linear elastic phase up to 1857 N load value, the specimen experienced
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Figure 6.7: Fabrication process of SST specimens.
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Figure 6.8: SST testing set-up (a); impregnation of the un-embedded textile with
epoxy resin (b); cantilever displacement transducers at the edge of the embedded
length (c); cantilever displacement transducer positioned on the side of the support
(d).
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Figure 6.9: Load-slip diagrams obtained through direct shear tests on the FRCM
system reinforced with: CAR (a), PBO10 (b), PBO22 (c), and BAS (d) textiles.

a strain hardening behaviour and failed due to rupture of the fibre at 2540 N.

The PBO10-01 and PBO10-02, Figure 6.9b, specimens provided a linear ascend-

ing branch followed by a non-linear branch reaching up to an average peak load of

1262 N and followed by a short descending branch. Specimens PBO10-03, Figure

6.9b, after reaching the load value of 936 N, showed a short descending branch and

a load recovery which led to a peak load value of 1055 N, i.e. the frictional plateau.

All specimens of the PBO10 system failed due to textile slippage.

The PBO22-01 specimen, Figure 6.9c, provided a linear behaviour followed by

a non-linear ascending branch, which reached 2549 N, before failing due to tensile
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rupture of the textile out of the matrix. Specimens PBO10-02, Figure 6.9c, shared

the same load path as PBO22-01, but failed prematurely due to rupture of the non-

embedded textile wrapped around the steel cylinder at 1611 N; the same failure

mode was also observed in specimen PBO22-03, which also showed an initial de-

layed stiffness activation probably caused by different tightening levels of the em-

bedded yarns, Figure 6.9c.

The basalt-based textile, Figure 6.9d, showed an almost linear elastic behaviour

until failure, which was recorded prematurely at 2667 N load and 1.32 mm slip for

BAS 01 and at 1571 N and 0.57 load for BAS 02.

6.1.5 Direct Tensile Tests with clamped set-up

Direct tensile tests were performed on 500x60x8 mm composite laminas, that were

fabricated according to the following procedure: two 500x60 mm moulds were as-

sembled for each DTT specimen with 4x4 mm timber slats and one of them was

secured to a flat surface. The matrix paste was cast in the mould reaching 4 mm

thickness; the reinforcing textile was cut in stripes of the same dimension of the

mould and positioned on the mortar, taking care of fibre alignment and slightly

pressed. The second timber mould was positioned over the previous one and the

second layer of mortar was cast reaching 8 mm total thickness. Specimens were

cured for 28 days at 20°C and 50% relative humidity and tests were performed ac-

cording to a bolted clamping set-up: after glueing aluminium plates to the gripped

areas, the coupon specimen was inserted into steel plates coated with a neoprene

layer to enhance adhesion and prevent mortar failure within the gripping, leaving

a 260 mm free length. The steel plates were secured by fastening six bolts with a

dynamometer key, assessing 11 Nm, which corresponded to 4.7 MPa of transverse
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Figure 6.10: Set-up for DTT: specimens placed in the testing machine with steel
frame (a); front view of the specimen with the 50 mm extensometer at middle
section (b); rear view of the specimen where the linear variable transducers placed
on the steel plates of the gripping are visible (c).

compression on the gripped areas. Two cantilever displacement transducers were

positioned on the steel plates, and two on the specimen jacket, measuring 310 mm

and 240 mm gauge length. A 50 mm gauge length extensometer was also placed in

the middle section of the specimen. The slip values plotted in load-slip diagrams

correspond to the relative displacement of the cantilever displacement transduc-

ers placed on the jacket close to the gripping apparatus and therefore comprise

textile-matrix slips and strains of the composite constituent materials.

A 50-KN (type TCLP5B, Tokyo Sokki Kenkyujo Co. Ltd) load cell was placed

above the upper jaw to register the global displacement, in addition to the load

cell embedded in the actuator. Tests were carried out in displacement control at a

0.2mm/min load rate.

Results of the carbon-based FRCM system reached an average peak load of

2206 N, before the onset of the cracking process, which involved the formation of
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Figure 6.11: Load-slip diagram obtained through direct tensile tests on the FRCM
system reinforced with CAR (a), PBO10 (b), PBO22 (c) and BAS (d) textiles.

one crack for CAR-02 and two cracks for CAR-01 and CAR-03. Specimens failed

due to textile slippage of the fibre within the matrix and described a frictional

ending plateau around 1900 N load value, Figure 6.11a.

The specimens of the PBO10 system, Figure 6.11b, behaved linearly in the un-

cracked phase, which ended at an average load value of 913 N; the cracking pro-

cess, which envisaged the formation of one main crack close to the gripping area,

and other minor cracks, was followed by a load recovery phase which leads to 1288

N, 1168 N and 1541 N peak loads for PBO-01, PBO-02 and PBO-03 respectively.

Specimens of the PBO22 FRCM system showed a first linear elastic branch up
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to an average load value of 949 N, see Figure 6.11c. After crack formation a load

recovery phase with reduced stiffness was observed up to reaching an average

peak load of 1704 N. Specimens failed prematurely PBO-03 underwent premature

rupture of the fibre.

For the basalt-based system, Figure 6.11d, after a short linear branch ending

between 0.04 and 0.06 mm slip, all specimens showed reduced stiffness and ex-

hibited a non-linear behaviour before the formation of the first crack. An average

peak load of 1647 N was recorded and all specimens failed for tensile rupture of

the fibre.

6.2 BACK-CALIBRATION OF THE COHESIVE MATERIAL LAW

The Cohesive Material Laws characterising the investigated FRCM systems were

back-calibrated from experimental results provided by direct shear tests. The cali-

bration was performed on the experimental results of the presented campaign for

the carbon-based and both PBO-based FRCM systems; for the basalt-based sys-

tem, data from Misseri et al. (2019) were employed as well, to overcome difficul-

ties caused by the premature failure of the SST specimens highlighted in Section

6.1.5. The back calibration was performed according to the procedure presented

by Focacci et al. (2017) and previously recalled in Chapter 2.

For modelling purposes, a tri-linear shape of the CML, with an initial branch

starting from zero slip at zero stress and an ending frictional branch described

by Equation 2.1, was assumed. The selected shape of the CML was defined by

the following parameters: τ1 and s1, shear stress and slip values at the end of the

linear elastic branch; τ2 and s2 shear stress and slip values at the end of the soft-

ening branch. The back calibration was performed through the interpretation of
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Table 6.7: Parameters employed for the estimation of DTT mechanical response
through the proposed model.

CAR PBO10 PBO22 Basalt
ψ · n [mm] 7.03 3.7 5.03 7.84
ftm [MPa] 3.5 1.9 1.9 1.5
τ1 [MPa] 3.88 2.51 1.49 2.14
τ2 [MPa] 2.56 1.18 0.89 0.66
δ1 [mm] 0.33 0.17 0.060 0.29
δ2 [mm] 0.44 0.32 0.807 0.61

the experimental curves. Points A(δ1;P1), B(δ2;P2) and C(δ3;P3) which defines

changes in the quality of the response of the specimen were manually located on

the envelope of the experimental curves for each FRCM system. Values of δ1 and

δ2 were directly obtained from the slips corresponding to points A and B. Values

of the shear stresses τ1 and τ2 were obtained through Equation 2.27 and Equation

2.28. The predictive analytical curves of DST, based on such CML values were

then retrieved through the integration of the differential equation of equilibrium

implemented in the software Mathematica, with a code previously developed by

Giulia Misseri, Department of Architecture, University of Florence. On the basis of

visual comparison between predictive curves and experimental envelopes, the cal-

ibration of CML parameters was repeated until the prediction of analytical curves

was deemed satisfactory, see analytical curves in Figure 6.12. The obtained stress

values τ1 and τ2 and slip values, δ1 and δ1, defining the CML are reported in Table

6.7.

6.3 MODELLING OF DTT RESULTS

Results of the direct tensile tests of the experimental campaign were estimated

through the proposed finite difference model, here specifically implemented in
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Mathematica. Tests for the characterisation of the FRCM systems constituents en-

abled the definition of the mechanical parameters employed, which are reported

in Table 6.7. Values of matrix tensile strength, ftm were instead selected through

fitting of experimental load slip diagrams of DTT. Values of ftm inducing crack for-

mation, were between 1/4 and 1/2 of the indirect tensile strength obtained through

three-point bending tests, Table 6.6. Such framework is compliant with interpre-

tation models (Soranakom and Mobasher 2010a; Grande et al. 2018) accounting

for the effect of random defects and the slender ratio of the cross-section, which

can ease crack formation in specimens subject to tightening. The predictive curve

of DST, based on the calibrated CML and obtained through the integration of the

differential equation of equilibrium implemented in Mathematica and through the

proposed model are reported in Figure 6.12 superposed to the envelopes of exper-

imental outcomes. For the PBO10, PBO22 and BAS systems, after the attainment

of peak load a sudden decrease of the slip, i.e., a snap-back, is described by the

solution provided by the system of differential equations. Such behaviour is not

observed in the FDM estimation which is obtained through a displacement-driven

loading procedure. For the CAR system, the predictive curves do not fully repro-

duce the behaviour of the composite, since the early tensile failure of the textile did

not allow a correct calibration of the CML; as shown in Fazzi, Misseri, and Rovero

(2023), a satisfactory estimation can be found considering textile tensile strength.

For the prediction of DTT results, the effect of clamping compression was con-

sidered through a modified CML for the nodes in the gripping areas; a 0.4 fric-

tion coefficient was assumed to model the restraining effect on slip exerted by the

clamping set-up. Therefore, the values of τ1 and τ2 stress referring to clamped

nodes were increased by 1.88 MPa, obtained considering the clamping compres-
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Figure 6.12: Predictive curve of DST based on the calibrated CML obtained
through the proposed finite difference model without (FDM) and with tensile
strength (FDM tensile strength) and through analytical model (AN). Curves are
printed over the envelopes of experimental results of FRCM systems reinforced
with (a) CAR, (B) PBO10, (C) PBO22 and (d) BAS textiles.
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Figure 6.13: Prediction through the proposed finite difference model (FDM) of the
load-slip diagrams of the FRCM systems reinforced with (a) CAR, (b) PBO10, (c)
PBO22 and (d) BAS textiles.

sion, 4.7MPa, derived from the torque assigned to the bolts.

The model estimations correctly capture the main features highlighted by ex-

perimental tests. The load slip diagram prediction for the carbon-based system

shows a linear elastic branch reaching up to a 2178 N peak load at 0.49 mm slip.

After the formation of one crack, the predicted diagrams reach up to a load value of

2113 N and, after a short descending branch, provide a frictional plateau at 1780N.

For the PBO10-based system, the model provides a linear ascending branch up

to a peak load equal to 1182 N, followed by a crack and a non-linear load recovery

phase reaching tensile failure of the textile at 974 N and 1.44 mm slip value. Since

textile strength was provided by only two direct tensile tests, see Section 6.1.3,
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the predictive curve obtained without setting tensile strength for the textile is also

reported with a dashed line in Figure 6.11b: a load and slip capacity of 1550 N

and 5.75 mm are obtained respectively, showing a behaviour closer to specimen

PBO10-03.

For the PBO22 system a linear elastic branch ending at load value 1171 MPa and

a peak load equal to 1959 MPa are provided, Figure 6.13c. The cracking phase ex-

tends between 0.48 mm and 1.96 mm slip. No tensile failure of the fibre is reached.

For the basalt-based system, the model estimation provides an uncracked phase

showing the same stiffness as the initial part of the experimental diagrams and a

cracking phase extending between 0.14 mm and 1.38 mm slip, Figure 6.13d. A 1711

N peak load and a failure mode due to reaching fibre tensile strength are estimated

by the model.

The application to experimental data proved that the model can provide good

estimations of the mechanical behaviour of FRCM subject to DTT; in particular, a

good prediction of the load reached at the end of the uncracked phase, the peak

load, the stiffness of the uncracked phase, the degradation caused by crack open-

ings and the failure mode experienced by different systems. The main discrep-

ancies between model estimations and experimental outcomes are encountered in

the load drop caused by crack openings. Relying on non deformable matrix as-

sumptions, the model envisages brittle crack formation only, and fracture energy

dissipated in the crack opening process is not accounted for. The load drop pre-

dicted by the model can be greater than the one recorded experimentally also due

to the presence of short dispersed fibres bridging cracks. Nonetheless, the stiffness

of the cracked phases experienced by the specimen during trials is satisfactory and

close to experimental curves.
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CHAPTER 7

Conclusions

7.1 CONCLUDING REMARKS

The present study was aimed at contributing to a better understanding of the me-

chanical behaviour of FRCM materials. In particular, the research pursued an im-

proved understanding of the relationship between the great variability of results

obtained in characterization tests in terms of test set-ups, variation of mechanical

and geometrical parameters defining constituent materials, shape of the load-slip

diagram, and failure mode.

Such issues were addressed through the implementation of a finite difference

model, which accounts for the shear transfer mechanism at the fibre-to-matrix in-

terface. The enforcement of appropriate boundary and continuity conditions al-

lowed modelling of FRCM composite systems in direct shear (DST) and tensile

(DTT) tests. It was shown that different loading conditions determined by set-up

can also be considered in the model.

A specific displacement-driven procedure was developed for the DTT, over-

coming the problem of a non-unique solution, stated in Soranakom (2008), through

the introduction of combination coefficients, also taking into account Focacci,

D’Antino, and Carloni (2020). Therefore the maximum load attainable by the sys-

tem could be found and cracks opening in random positions of the domain could

be considered.

Based on independent solutions which consider the system in different phases

since the beginning of the loading process, a new procedure was also developed

for the construction of the load slip diagram of DTT, allowing estimation of load
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drops and stiffness degradation caused by cracks opening.

Application to experimental data proved that the model can provide good es-

timations of the mechanical behaviour of different FRCM systems in DTT. Some

divergences between model estimations and experimental outcomes were encoun-

tered in the load drop caused by crack openings: relying on a minimal number of

assumptions, the model envisages brittle crack formation only, and fracture energy

dissipated in the crack opening process is not considered. Stronger validation of

the implemented procedure could be achieved through comparison with a wider

number of experimental outcomes.

A parametric analysis also highlighted that matrix tensile property and its dis-

tribution along the reinforcement play a relevant role in determining the response

of FRCM systems. In particular the random distribution of matrix tensile strength,

accounting for the presence of defects, induces crack-separated portions of the do-

main with different lengths, which greatly influence the load and slip capacity of

the system:

• Longer extremity portions (cracks closer to the central part of the domain)

induce a stiffer cracking phase and smaller load drops.

• The length of the shortest extremity portion is the driving parameter affect-

ing the response quality in displacement terms and maximum load capacity,

which coincides with the maximum bond force of the shortest extremity por-

tion. While the dimension of the longest extremity portion does not affect

the peak load reached by the system, it influences the slip capacity: longer

portions decrease global displacement capacity. Since crack location is deter-

mined by the random distribution of the tensile strength, through the DTT,

different strain capacities can be recorded for the same mechanical system.
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The quality of the response of DTT does not rely on the bond properties of the

composite system only; also the relation with matrix tensile strength deeply affects

the shape of the load slip diagram:

• For the same maximum bond stress, τ1, the increase in matrix tensile strength

lengthens the cracking phase and determines the modification of the global

diagram shape from tri-linear to bi-linear.

• For the same mortar tensile strength, the τ1 increase increases the post-

cracking maximum load and related slip and decreases the span of the crack-

ing phase modifying the global diagram shape from bi-linear to tri-linear.

• For CMLs with the same geometrical ratios, similar relationships between

bond stresses, τ1, and tensile strength, ftm, produce self-similar diagrams

with scaled values.

The analysis hitherto carried out highlights the role of matrix tensile strength

in the definition of the tensile behaviour of FRCM systems. In fact, the random

distribution of matrix tensile strength along the specimen length can induce cracks

to open at equally random positions and therefore determines:

• the load at the end of the uncracked phase.

• the stiffness of the uncracked phase.

• the peak load attainable by the system (in case of no premature failure of the

textile) that is equal to the load transferred at the matrix to fibre interface of

the shortest crack-separated segments.

• the strain capacity of the system.
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• the possibility of the formation of further cracks: if the maximum load trans-

ferable by the shortest extremity portion does not allow reaching again ma-

trix tensile strength, the cracking process is inhibited.

The ability of the proposed model to assess the variation of matrix tensile

strength, CML properties and crack pattern implies that a wide range of FRCM

systems can be modelled within it. The assessed parameters allow accounting for

the specific properties of both the inorganic matrix and the reinforcement, which

define the mechanical behaviour of the composite and are engineered to achieve

desired structural performances in applications. From this perspective, the pro-

posed model can be considered an effective tool for the development and opti-

mization of FRCM systems.
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