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Abstract
In this paper we establish quaternionic and octonionic analogs of the classical Riemann sur-
faces. The construction of these manifolds has nice peculiarities and the scrutiny of Bernhard
Riemann approach to Riemann surfaces, mainly based on conformality, leads to the defini-
tion of slice conformal or slice isothermal parameterization of quaternionic or octonionic
Riemann manifolds. These new classes of manifolds include slice regular quaternionic and
octonionic curves, graphs of slice regular functions, the 4 and 8 dimensional spheres, the
helicoidal and catenoidal 4 and 8 dimensional manifolds. Using appropriate Riemann mani-
folds, we also give a unified definition of the quaternionic and octonionic logarithm and n-th
root function.
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1 Preface

The initial project originating this paper was giving a well structured and unifying definition
of the logarithm and n-th root functions in the quaternionic and octonionic settings. To this
purpose, our first aim was to construct the quaternionic and octonionic analogs of the well
known Riemann surface of the complex logarithm, which in the complex setting allows a
complete understanding of this function and of its branches.

Indeed, the manifolds constructed with this aim revealed new, interesting and peculiar
features, so that they captured the central position among the results of this paper.

We will illustrate how the project of this paper developed and, to begin with, point out
that for the case of the principal branch of the logarithm, definitions were already given in
the general setting of Clifford Algebras - see, e.g., [19, Definition 11.24, p. 231] - and also
specialized to the case of quaternions - see, e.g., [10, Definition 3.4].

Let K be either the division algebra of quaternions H or the division algebra of octonions
O; we denote by dimK the real dimension of K, namely dimH = 4 and dimO = 8. Let
SK ⊂ K be the 2-sphere or, respectively, the 6-sphere of imaginary units, i.e. the sets of
I ∈ K such that I 2 = −1. For the sake of simplicity, both in the case of quaternions and in
the case of octonions we will simply write S instead of SK since no confusion can arise. The
construction of the logarithm and its branches given in the complex case cannot be directly
replicated in the quaternionic and octonionic environments. This is mainly due to the fact
that the exponential function

exp q =
∞∑

n=1

qn

n!

is an entire function (i.e., its domain of definition isK), but cannot be used to define a covering
of K \ {0}. In fact, for all 0 �= x ∈ R, the preimage of x is not a discrete set but consists of
infinitely many 2 or 6 dimensional spheres. Indeed, for instance in the case x < 0, setting
S(2k + 1)π = {q(2k + 1)π : q ∈ S}, we have

(exp)−1(x) = {log |x | + S(2k + 1)π : k ∈ Z}.
It follows that, contrarily to what happens in the case of the complex logarithm, no continuous
branch of the quaternionic or octonionic logarithm can be defined on any open neighborhood
of any strictly negative x ∈ R. A similar phenomenon happens for all strictly positive
x ∈ R, except for the principal branch. To overcome this difficulty, we turn our attention
to the construction of a 4-dimensional, respectively 8-dimensional, manifold obtained by
blowing-up K along the real axis, and “adapting” it to become a domain of definition for
the quaternionic or octonionic logarithm. Our natural approach to perform this construction
passes through the recent theory of slice regular functions - see, e.g., the monograph [8]
and references therein - and leads to the quaternionic and octonionic helicoidal Riemann
manifolds (which are manifolds in the sense of [4]) inspired by the classical helicoidal
surface of the space R

3.
These manifolds, constructed with the purpose specified above, have new, interesting and

peculiar features that attracted the attention of the authors and encouraged them to go back to
the scrutiny of Bernhard Riemann approach to holomorphic functions and Riemann surfaces,
which was mainly based on conformality, as in [20]. All this led to a deeper appreciation
of the work of Riemann, to a nice surprise and to Definition 3.2 of slice conformal or slice
isothermal parameterization and of hypercomplex Riemann manifold.
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Slice conformality and Riemann manifolds on quaternions… 973

Indeed, the study of slice conformality and the investigation of quaternionic and octonionic
Riemann manifolds became the true main subject of this paper.

Let 〈 , 〉 denote the standard Euclidean scalar product in R
dimK ∼= K and, for any purely

imaginary unit I ∈ S, set

C
⊥
I = {q ∈ K : 〈q, x + I y〉 = 0,∀(x + I y) ∈ CI }

to be the orthogonal space to the sliceCI = R+ IR. AC1 injectiveR
N -valued immersion f

defined on a suitable domain � of K is called slice conformal or slice isothermal immersion
if, for any purely imaginary unit I ∈ K and any x, y ∈ R, the differential d f (x + I y) is such
that both

d f (x + I y)|CI

and

d f (x + I y)|C⊥
I

are conformal. If this is the case, f (�) is called a hypercomplex Riemann manifold.
The nice surprise was that the quaternionic and octonionic spheres, the helicoidal and

catenoidal manifolds, together with the natural quaternionic and octonionic curves, are all
hypercomplex Riemann manifolds.

The study performed in [13] by Ghiloni and Perotti shows that the Jacobian matrix J f of
a slice regular function f is such that det(J f ) ≥ 0, i.e that f is orientation preserving. Slice
conformality is indeed an extension of the definition of slice regularity, even in the case of
K-valued, orientation preserving immersions defined on a domain� ofK: for a fixed non real
quaternion a, the function f (q) = aq in not slice regular, but it is slice conformal (actually
conformal) and orientation preserving. The following remark is basic to help placing the
results of this paper in the right perspective.

Remark After recalling that the real differential d f of a slice regular function f : � → K is
conformal (if non singular) at all real points of the slice domain � (see, e.g., [8, Corollary
8.17.]), it is worthwhile noticing that to require that the differential d f is conformal at
all points of the domain of definition � may be too restrictive: by a classical result due to
Liouville, for n > 2 a conformal map from a domain ofR

n toR
n is a Möbius transformation.

In the paper a standard set of curves is applied to study the real differential of (smooth
enough) injective R

N -valued immersions f defined on suitable domains � of K (we point
out that similar techniques were already introduced in [13, 17, 19]). As a result, the paper can
exhibit a collection of quaternionic and octonionic Riemann manifolds, inspired by classical
Riemann surfaces, which testify the interest of the approach.

Sub-manifolds of the helicoidal hypercomplex manifolds, endowed with suitable atlases
which define different structures, provide a natural environment for the definition of the
quaternionic and octonionic logarithm, and for their possible branches. Once done this, the
construction of natural manifolds of definition for the n-th root quaternionic and octonionic
functions is an easily doable step.

The paper is organized as follows. After a few preliminaries, which also subsume the
approach to slice regular functions based on stem functions, Sect. 3 is dedicated to the defini-
tion and construction of classes of hypercomplex Riemannmanifolds, including quaternionic
and octonionic slice regular curves. This construction is based on Theorem 3.6, which studies
slice conformal curves in terms of their stem functions, and calls into play the standard set
of curves. In Sect. 4 we present other explicit examples of quaternionic and octonionic regu-
lar curves, which comprise the hypercomplex Riemann sphere, the helicoidal hypercomplex
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974 G. Gentili et al.

manifold, the catenoidal hypercomplexmanifold and the study of the relations between them.
Section 5 contains the presentation of natural manifolds for the definition of the quaternionic
and octonionic logarithm. The same section contains the construction of the manifolds of the
n-th root quaternionic and octonionic functions.

The authors are grateful and indebted to the anonymous referee for her/his attentive and
accurate report, and for the precious comments and suggestions that helped much to put the
paper in the present improved form, and to formulate Theorem 3.6 at the right degree of
generality.

2 Preliminaries

Aswe said,K denotes eitherH orO, i.e., the algebras of quaternions or octonions, and S ⊂ K

denotes, respectively, the 2-sphere or 6-sphere of imaginary units, i.e. the set of I ∈ K such
that I 2 = −1. Given any non real q ∈ K, there exist (and are uniquely determined) an
imaginary unit of K, and two real numbers x and y > 0, such that q = x + I y. With this
notation, the conjugate of q will be q̄ := x − I y and |q|2 = qq̄ = q̄q = x2 + y2. In both
cases, each imaginary unit I generates (as a real algebra) a copy of the complex plane denoted
by CI . We call such a complex plane a slice.

Let � be a slice domain of K, i.e., an open and connected subset containing real points
and such �I = �∩CI is a domain of CI for all imaginary units I ∈ S ⊂ K. The set of slice
regular functions on � is defined using a family of Cauchy-Riemann operators (see e.g. [8,
9]).

Definition 2.1 Let � ⊆ K be a slice domain and let f : � → K be a function.
If, for an imaginary unit I ofK, the restriction f I := f|�I

has continuous partial derivatives
and

∂̄I f (x + y I ) := 1

2

(
∂

∂x
+ I

∂

∂ y

)
f I (x + y I ) ≡ 0 (2.1)

then f I is called holomorphic. If f I is holomorphic for all imaginary units of K, then the
function f is called slice regular.

If f is a slice regular function, then the Cullen or slice derivative of f is defined as

f ′
c(x + I y) = 1

2

(
∂

∂x
− I

∂

∂ y

)
f I (x + y I ).

It turns out that f ′
c is a slice regular function (see [8]) and from (2.1) one easily obtains

that f ′
c = ∂ f

∂x .
The property of being holomorphic along the slices �I for all imaginary units I of K,

forces slice regular functions to be affine along entire regions of each sphere of type x + Sy.
In fact, the local representation formula for quaternionic slice regular functions on slice

domains (see, e.g., [6, 7]), states that, if L, M, N ∈ S, with M �= N , are such that x+Ly, x+
My, x + Ny belong to a suitable open neighborhood U of x + I y in the 2-sphere x + Sy,
then the local representation formula

f (x + Ly) = (M − N )−1 [M f (x + My) − N f (x + Ny)]

+L(M − N )−1 [ f (x + My) − f (x + Ny)] (2.2)

holds and, for y �= 0, the spherical derivative of f is defined by

f ′
s (x + I y) := y−1(M − N )−1 [ f (x + My) − f (x + Ny)] . (2.3)
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Slice conformality and Riemann manifolds on quaternions… 975

Moreover, f ′
s is constant in the same neighborhood U of x + I y in x + Sy (see, e.g., [7,

Definition 3.1]). The analog of this representation formula holds for octonionic slice regular
functions as well (see, e.g., [11, Proposition6], [14, Formula (5)]). A subclass of the class
of slice regular functions on a slice domain � ⊆ K particularly resembles the class of
holomorphic functions of one complex variable. These functions are defined as follows: a
slice regular function f : � → K is said to be slice preserving if, and only if, for all imaginary
units I of S ⊂ K, we have that f (�I ) ⊆ CI , (see [9] for the case of octonions).

In a while we will make use of the notion of stem function, which was defined by Ghiloni–
Perotti in [11], on a class of subsets of the complex plane C.

Definition 2.2 A subset D of C = R + iR is said to be symmetric (in C) if D = {z : z ∈ D}
coincides with D. The (axial) symmetrization Ẽ of a subset E of K is defined by

Ẽ = {x + I y : x, y ∈ R, I ∈ S, (x + Sy) ∩ E �= ∅}.
A subset � of K is called (axially) symmetric (in K) if �̃ = �.

The following definition was given in [11] in the general case of a real alternative algebra
endowed with an anti-involution (or R). For the purpose of this paper, and for the sake of
simplicity, we will restrict to the cases R, H, O.

Definition 2.3 Let A denote either R or K and let AC := A⊗R C be the complexification of
A. Let us adopt the usual representation

AC = {x + ιy : x, y ∈ A}
where ι2 = −1. Consider a symmetric domain D of C.

If a function F : D → AC is complex intrinsic, that is if F(z) = F(z) for all z ∈ D, then
F is called an A-stem function (or stem function) on D.

If F : D → AC is a stem function expressed by

F(z) = F1(z) + ιF2(z)

then the function f : D̃ → A

f (x + I y) = F1(x + iy) + I F2(x + iy)

is called the slice function induced by F .

Slice regular functions on symmetric slice domains can all be induced by stem functions,
as the following result states (see, e.g., [11]).

Proposition 2.4 If a slice domain� inK is axially symmetric, then any slice regular function
f : � → K is induced by a holomorphic stem function F : D = �i → KC.

As we have seen, stem functions can be defined in symmetric open subsets E of C that do
not necessarily intersect the real axis. As a consequence, holomorphic stem functions induce
special slice functions, still called slice regular functions, defined on symmetric domains Ẽ
ofKwhich do not necessarily intersect the real axis, so generalizing the initial notion of slice
regularity to the class of so called product domains (see e.g. [15] for the terminology and the
seminal paper on stem functions [11]).

In this paper we will be mainly concerned with slice regular functions defined on slice
domains of K, which in principle can be dealt with avoiding reference to stem functions.
However, by admitting on the stage the point of view of stem functions, some results may
be easily extended to the case of product domains; moreover, the generation of slice regular
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976 G. Gentili et al.

functions through holomorphic stem functions is exactly the same for the case of quaternions
and octonions, and hence such an approach has the advantage to provide a natural unified
vision in the two different environments, thus simplifying technicalities and presentation.

Remark 2.5 With reference to the notations of Definition 2.3, the following facts have been
proven (see, e.g., [11]):

(a) If F : D → AC is expressed by F(z) = F1(z) + ιF2(z), with Fj : D → A for j = 1, 2,
then F is complex intrinsic if and only if

F1(z) = F1(z) and F2(z) = −F2(z) ∀z ∈ D. (2.4)

(b) If we take A = R then the slice function f induced by the stem function F is a slice
preserving function (i.e. f (D̃I ) ⊂ CI ∀I ∈ S).

(c) The local representation formula (2.2) holds, by definition, for slice functions.
(d) If F = F1 + ιF2 is a holomorphic stem function which induces the slice regular function

f , then its (complex) derivative F ′ = F ′
1 + ιF ′

2 is also a holomorphic stem function
which induces the slice derivative f ′

c of f .
(e) If f is a slice function generated by the stem function F , then for y �= 0,

f ′
s (x + I y) = y−1F2(x + iy). (2.5)

For most of the remaining properties of slice regular functions that will be directly used
in the sequel we will mainly refer the reader to [8, 9]. As for the main applications and
developments of this theory, the reader can consult [1–3, 5–7, 12, 18], and e.g. [16] for
generalizations.

3 Parameterized quaternionic and octonionic Riemannmanifolds

Following the case of classical parameterized surfaces and parameterized Riemann surfaces
in R

N , we will give new definitions, useful in the quaternionc and octonionic settings of
slice regular functions. As customary, a differentiable map will be called an immersion if its
differential is injective at all points of the domain of definition.

Definition 3.1 Let n, N be natural numbers with N ≥ n and let � be a domain in R
n . A C1

immersion

f : � → R
N

will be called a conformal or isothermalmap if thematrix of the differential of f is conformal,
i.e., if it satisfies

t d f (x)d f (x) = k(x)In

for a (never vanishing C0) function k : � → R.

Recall that, if 〈 , 〉 denotes the Euclidean scalar product in R
dimK ∼= K, then for I ∈ S

the symbol C
⊥
I will denote the orthogonal complement of the slice CI .

Definition 3.2 Let � be a slice domain in K ∼= R
dim K and let N ≥ dim K be a natural

number. Let f : � → R
N be a C1 map (immersion). If for all I ∈ S and all x, y ∈ R the

differential d f (x + I y) is such that both

d f (x + I y)|CI
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Slice conformality and Riemann manifolds on quaternions… 977

and

d f (x + I y)|C⊥
I

are conformal, then f will be called a slice conformal or slice isothermal map (immersion).
If f is an injective immersion, then it will be called a slice conformal or slice isothermal

parameterization and the parameterized manifold f (�) in R
N will be called a (parameter-

ized) hypercomplex Riemann manifold of R
N . In particular, when K = H we refer to it as a

quaternionic Riemann manifold and in the case K = O as a octonionic Riemann manifold.
In case f : � → R

N itself is a conformal parameterization, then the parameterized
hypercomplexRiemannmanifold f (�) inR

N will be called a special (parameterized) hyper-
complex Riemann manifold of R

N .

The notion of parameterized quaternionic or octonionic Riemann manifold turns out to be
quite natural, as the significant examples that wewill present show. To construct the examples
wewill need a direct and easymethod to compute the differential of aC1 immersion f defined
in a slice domain � of K ∼= R

dimK and with values in R
N .

3.1 The standard set of curves and the case of the differential of a slice regular
function

For I ∈ S, let us consider a point x + I y ∈ CI ⊂ K and choose L ∈ S orthogonal to I . In the
same spirit of [13, proof of Proposition 3.1] and [17, Proposition 3.1], and with a similar
purpose, we will use the following set of curves. For y �= 0 set

(1) the curve α(t) = (x + t) + I y, such that α(0) = x + I y and α′(0) = 1;
(2) the curve βI (t) = x + I (y + t), such that βI (0) = x + I y and β ′(0) = I ;
(3) the curve �L(t) = x + γ (t)y, where γ (t) is an arc of a maximum circle Cγ of S such

that γ (0) = I and that γ ′(0) = L
y ; hence �L(0) = x + I y and �′

L(0) = L;

Instead, when y = 0 and so x + I y = x , the first curve is

(1) α(t) = x + t , such that α(0) = x and α′(0) = 1;
and the second two coherently become:

(2)–(3) βI (t) = x + I t, βL (t) = x + Lt , such that βI (0) = βL(0) = x and β ′
I (0) =

I , β ′
L (0) = L.

In order to present the next definition we need to recall a well known fact: given any
I ∈ S ⊂ K, then both in the case of quaternions and in the case of octonions, it is possible
to complete {1, I } to an orthonormal positively oriented standard basis

{1, I , I2, . . . , IdimK−1}
of the divison algebra K (see, e.g., [9] for the case of octonions).

Definition 3.3 (Standard set of curves) For any I ∈ S, let us consider the point x + I y ∈
CI ⊂ K and an orthonormal positively oriented standard basis {1, I , I2, . . . , IdimK−1} of the
division algebra K. The standard set of curves at the point x + I y consists:

• for y �= 0, of the curves {α, βI , �Il , l = 2, . . . , dimK − 1};
• for y = 0, of the curves {α, βI , βIl , l = 2, . . . , dimK − 1}.
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978 G. Gentili et al.

We desire now to use the standard set of curves to calculate the differential d f of f and
to point out some of its features. Indeed, when naturally used with a slice regular function
f : � → K, defined on a slice domain � of K, this set of curves reveals an easy tool to
compute and directly interpret the real differential d f (x + I y) : R

dimK → R
dimK of the

function f . But its full use will be seen in the sequel of this paper, in more general situations.
To calculate d f , after fixing I ∈ S, a direct computation shows that

d f (x + I y)1 = d f (x + I y)α′(0) = d

dt |0
f (α(t)) = d

dt |0
f (x + t + I y)

= ∂ f

∂x
(x + I y) .

Analogously, and since f is slice regular,

d f (x + I y)I = d f (x + I y)β ′(0) = d

dt |0
f (β(t))

= d

dt |0
f (x + I (y + t)) = ∂ f

∂ y
(x + I y) = I

∂ f

∂x
(x + I y) .

In particular we have that I d f (x+I y)1= I ∂ f
∂x (x+I y)= ∂ f

∂ y (x+I y)=d f (x+I y)I and hence

d f (x + I y)|CI = [
f ′
c(x + I y), I f ′

c(x + I y)
]
.

Therefore, the real differential

d f (x + I y)|(R+IR) : R
2 → R

dimK

is a conformal matrix. Let us now continue. The local representation formulas (2.2) and (2.3)
yield, for any L ∈ S such that L ⊥ I

d f (x + I y)L = d f (x + I y)�′
L (0) = d

dt |0
f (�L(t))

= d

dt |0
(γ (t)(M − N )−1 [ f (x + My) − f (x + Ny)])

= Ly−1(M − N )−1 [ f (x + My) − f (x + Ny)]

= L f ′
s (x + I y)

hence we have that

d f (x + I y)|C⊥
I

= [
I2 f ′

s (x + I y), . . . , IdimK−1 f ′
s (x + I y)

]
.

Therefore, the real differential

d f (x + I y)|(R+IR)⊥ : R
dimK−2 → R

dimK

is a conformal matrix as well. Notice that even if both d f (x + I y)|CI and d f (x + I y)|C⊥
I
are

conformal, the full differential d f (x + I y) may not be conformal in general.

3.2 The differential of a smooth slice function

In this subsection we exhibit the connection between conformality properties of a slice
function defined in a symmetric slice domain f : � = D̃ → K and its stem function
F : D → K. Since the local representation formula (2.2) holds for slice functions, then for
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y �= 0 we obtain, as seen above, the identity d f (x+ I y)L = L f ′
s (x+ I y) = Ly−1F2(x+ iy)

for every imaginary unit L⊥ I ; therefore, for y �= 0, the restriction of the differential to the
orthogonal complement of the slice CI is conformal (if nonzero).

Assume now that F ∈ C3(D). By Proposition 7(2) in [11], f is C1 and hence we can
calculate the differential d f (x + I y)|CI :

d f (x + I y)1 = ∂x F(x + iy) = ∂x (F1(x + iy) + I F2(x + iy)),

d f (x + I y)I = ∂y F(x + iy) = ∂y(F1(x + iy) + I F2(x + iy)).

Therefore, in terms of the stem function F , for y �= 0 by formula (2.5), the differential d f
may be written as

d f (x + I y) =
[
∂x F(x + iy) ∂y F(x + iy) I2F2(x+iy)

y . . .
IdimK−1F2(x+iy)

y

]
.

Passing to the limit as y → 0, then F2(x+I y)
y tends to ∂y F2(x) and so

d f (x) = [
∂x F(x) ∂y F(x) I2∂y F2(x) . . . IdimK−1∂y F2(x)

]
.

Therefore, for y �= 0, d f (x+ I y)|C⊥
I
is conformal if and only if F2(x+iy) �= 0 and d f (x)|C⊥

I
is conformal if and only if ∂y F2(x) �= 0.

In the case F is holomorphic and y �= 0, the corresponding formula becomes

d f = [
f ′
c I f ′

c I2 f ′
s . . . IdimK−1 f ′

s

]

and, when y = 0, we have f ′
s = f ′

c and so

d f = [
f ′
c I f ′

c I2 f ′
c . . . IdimK−1 f ′

c

]

which implies that d f (x) is conformal if f ′
c(x) �= 0.

Let’s sum up these observations in the following

Proposition 3.4 Let A denote eitherR orK, and let f : D̃ → A be a slice function generated
by a C3 stem function F defined on a symmetric domain D ⊂ C = R + iR. Then d f (x +
I y)|C⊥

I
is conformal if nondegenerate. Moreover,

(a) if dF is conformal on D, then f is slice conformal on D̃. In particular, if F is holomorphic,
then f is slice regular and hence a slice conformal immersion if d f has full rank;

(b) if A = R, dF is conformal, ∂y F2 �= 0 on R ∩ D and if F2 �= 0 on D \ R, then f is slice
preserving and slice conformal on D̃.

Proof We are left to consider only the case A = R. Since f is slice preserving, then d f
written with respect to the decomposition K = CI ⊕ CI

⊥ is of the form
[
d f (x + I y)|CI 0

0 d f (x + I y)|C⊥
I

]
.

��
Remark 3.5 Notice that if a stem function F is conformal, it is not necessarily holomorphic.
In the case A = R, the stem function F : D → AC is conformal if and only if F is either
holomorphic or antiholomorphic or, to put it differently, if and only if d f (x + I y)|CI is
conformal on D̃. Furthermore, notice that conformality of both d f (x + I y)|CI and d f (x +
I y)|C⊥

I
does not imply that d f has full rank.
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3.3 Slice conformal curves

Using Proposition 3.4, we can state the following result.

Theorem 3.6 Let A denote either R or K. Let D be a symmetric domain in C = R + iR and
G, H : D → AC be stem functionswithG, H ∈ C3(D).WriteG = G1+ιG2, H = H1+ιH2

and let F1 = (G1, H1), F2 = (G2, H2). Let

f : D̃ → K × K

be the slice curve induced by the map F = (G, H) = F1 + ιF2 : D → A2
C
in the following

way

f (x + I y) = (G1(x + iy) + IG2(x + iy), H1(x + iy) + I H2(x + iy))

=: (g(x + I y), h(x + I y)).

Assume that:

(a) the differential dF is conformal on D;
(b) the partial derivative ∂y F2 �= 0 on R ∩ D and F2 �= 0 on D \ R.

Then d f (x + I y)||CI and d f (x + I y)||C⊥
I
are both conformal. If, in addition, f is an

injective immersion, then f is a slice conformal parameterization of f (D̃).

In the case A = R, if F is injective, then F2 �= 0 on D \ R is automatically fulfilled;
hence if we assume that F is injective, dF is conformal on D and ∂y F2 �= 0 on R ∩ D, then
f is an injective immersion, and hence a slice conformal parameterization of f (D̃).

Proof To prove the first part of the theorem, notice that by Remark 3.5 the conformality of dF
implies d f|CI conformal. The assumption (b) and Proposition 3.4 imply that d f (x + I y)|C⊥

I
is conformal.

We are left to prove that, if A = R and F is injective, then f is injective and d f has
full rank. Notice that the non vanishing of F2 off the real axis follows from the injectivity of
F : indeed, at least one of the values G2(x + iy) or H2(x + iy) must be nonzero, otherwise
F(x + iy) = F(x − iy).

Let us first show that injectivity of F implies the injectivity of f . To this aim, consider
z = x + iy, w = u + iv ∈ D and assume that f (x + I y) = f (u + Jv). Then

G1(x + iy) + IG2(x + iy) = G1(u + iv) + JG2(u + iv),

H1(x + iy) + I H2(x + iy) = H1(u + iv) + J H2(u + iv).

By assumption Gl and Hl , l = 1, 2 are real valued and by (2.4) the functions G2, H2 vanish
at real points, so we have the following:

G1(x + iy) = G1(u + iv) = G1(u − iv),

H1(x + iy) = H1(u + iv) = H1(u − iv),

J = I : G2(x + iy) = G2(u + iv), H2(x + iy) = H2(u + iv),

J = −I : G2(x + iy) = −G2(u + iv), H2(x + iy) = −H2(u + iv),

J �= ±I : G2(x + iy) = G2(u + iv) = H2(x + iy) = H2(u + iv) = 0.

The injectivity of F excludes the last possibility unless y = v = 0. In this case F(x) = F(u),

so x = u. If J = I then F(x + iy) = F(u + iv) so x + I y = u + Iv. If J = −I then
G2(x+iy) = −G2(u+iv) = G2(u−iv), H2(x+iy) = −H2(u+iv) = H2(u−iv).Because

123



Slice conformality and Riemann manifolds on quaternions… 981

G2, H2 are even in y we have F(x + iy) = F(u − iv) which implies that x + iy = u − iv
and hence x + I y = x + (−I )(−y), so f is injective.

To see that the rank of d f is full, notice that on the real axis ∂y F2 does not vanish by
assumption, and F2 does not vanish off the real axis. Since both d f|CI and d f|C⊥

I
are conformal

and d f has the following block structure

d f =
[
d f|CI d f|C⊥

I

]
=

⎡

⎢⎢⎣

dg|CI 0
0 dg|C⊥

I

dh|CI 0
0 dh|C⊥

I

⎤

⎥⎥⎦ ,

the rank of d f is full. ��
Remark 3.7 With reference to the preceding statement and proof, notice that conformality of
F does not imply conformality of G and H .

Remark 3.8 Astatement analogous to the one of Theorem3.6 holds in a “n-vectorial” version,
i.e., for maps F : D → An

C
defined by n-tuples of stem functions.

3.4 Quaternionic and octonionic slice regular curves

We will use the standard notion of curve in the quaternionic and octonionic setting.

Definition 3.9 Let � ⊆ K be a slice domain, and let

f : � → K
2

f (q) = (g(q), h(q))

be a map whose components g, h : � → K are slice regular functions. If f is an immersion,
then f will be called a slice regular curve (in K

2).

Let us now consider a slice regular curve f : � → K
2, with slice regular components

g, h : � → K, and choose any I ∈ S. Using the standard set of curves defined in Sect. 3.1,
we get that the differential

d f : R
dimK → K

2

assumes the form

d f =
[
g′
c Ig′

c I2g′
s . . . IdimK−1g′

s
h′
c I h′

c I2h′
s . . . IdimK−1h′

s

]
.

The first 2 columns of this (2 dimK)×dimK real matrix, and separately the last (dimK−2)
columns of the samematrix, are orthogonal to each other and with the same norms, and hence
F is slice isothermal. In conclusion we have proved

Proposition 3.10 Let � ⊆ K be a slice domain, and let f : � → K
2 be a slice regular

curve. If f is injective, then f (�) is a parameterized hypercomplex Riemann manifold in
K

2, and the map f : � → f (�) is a slice conformal parameterization. In particular, graphs
of slice regular curves are parameterized hypercomplex Riemann manifolds in K

2.

As we already pointed out, in general f is (a slice conformal but) not a conformal parme-
terization. It is well known in fact that the slice regular functions f , g are in general not
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conformal at non real points of � (see, e.g., [8]), and hence f cannot be a conformal param-
eterization in general.

We end this section with a natural question, on how the quaternionic or octonionic param-
eter can be changed between slice regular quaternionic or octonionic curves having the same
image. Indeed, let us consider �,�′ ⊆ K slice domains, f = ( f1, f2) : � → K

2 and
g = (g1, g2) : �′ → K

2 injective, slice regular curves with the same image f (�) = g(�′).
In this situation, we may assume that locally g1 is injective. Then the local equalities
f1(q) = g1(q ′) and f2(q) = g2(q ′) imply

f2 = g2 ◦ (g−1
1 ◦ f1)

and since f2, g2 : �′ → K are slice regular functions, this functional equation is in general
not valid. Nevertheless, we know that it holds if, for instance, g−1

1 ◦ f1 : � → �′ is a slice
preserving regular function. Hence, we can make the following

Remark 3.11 Let f and g be injective immersions having the same image� ⊆ K
2. If a change

of quaternionic or octonionic parameter between f and g is a slice preserving invertible
function, then f is a slice conformal parameterization if, and only if, g is a slice conformal
parameterization.

What established in this section can be directly reformulated for the case of slice regular
curves f : � → K

n defined on slice domains � ⊆ K. To conclude, we point out that
Remark 3.11 is valid in a more general setting, as explained in the next remark.

Remark 3.12 Let f be a slice isothermal parameterization having the hypercomplex Riemann
manifold � ⊆ R

N as its image. Then, for every regular slice preserving invertible change of
parameter φ between slice domains, the map f ◦ φ is a slice isothermal parameterization for
the hypercomplex Riemann manifold �.

The following remark should better explain the definition of slice conformal immersion
that has been adopted.

Remark 3.13 Let {1, i, j, k} be the standard basis of H, and let f : H → H
2 be the function

f (x + I y) = (x + I y, x + ψ(I )y)

where ψ : S → S is the odd C∞ function defined by

ψ(αi + β j + γ k) = α3i + β j + γ 3k√
α6 + β2 + γ 6

,

i.e., when 〈 , 〉 denotes the Euclidean scalar product of R
4 ∼= H, by

ψ(I ) = 〈I , i〉3i + 〈I , j〉 j + 〈I , k〉3k√〈I , i〉6 + 〈I , j〉2 + 〈I , k〉6 .

While applying the standard set of curves, take the point x + I y = x + iy (i.e., I = i) with
y �= 0, choose J = j and use the curves

� j (t) = i cos(t/y) + j sin(t/y) = i exp(−k(t/y)),

�k(t) = i cos(t/y) + k sin(t/y) = i exp( j(t/y)) .
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Direct computations show that

d f (x + iy)1 =(1, 1), d f (x + iy)i = (i, ψ(i)) = (i, i) ,

d f (x + iy) j = d

dt |0

(
x + i exp(−k(t/y))y, x + i cos3(t/y) + j sin(t/y)√

cos6(t/y) + sin2(t/y)
y

)

=( j, j) ,

d f (x + iy)k = d

dt |0

(
x + i exp( j(t/y))y, x + i cos3(t/y) + j sin3(t/y)√

cos6(t/y) + sin6(t/y)
y

)

=(k, 0) .

Thus:

d f (x + iy) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and hence the last two columns have different norms. In conclusion such an f is not a slice
isothermal parameterization.

4 Other examples of hypercomplex Riemannmanifolds

4.1 The Riemann sphere

This example generalizes to real dimensions 4 and 8 the case of the Riemann sphere in the
complex setting.

Proposition 4.1 Let us set m = dimK ∈ {4, 8}. Consider the unit sphere Sm ⊂ R
m+1 ∼=

K×R and the inverse of the stereographic projection from the north pole N = (0, . . . , 0, 1)
of Sm onto the equatorial plane K ∼= R

m, namely

f : R
m ∼= K → Sm \ {N } ⊂ K × R ∼= R

m+1, (4.6)

defined by

f (x + I y) =
(

2(x + I y)

1 + x2 + y2
,
−1 + x2 + y2

1 + x2 + y2

)
. (4.7)

Then Sm \ {N } is a special parameterized hypercomplex Riemann manifold and the map f
is a conformal parameterization. Analogous statement can be proved for the stereographic
projection from the south pole S.

Proof It is well known that the inverse of stereographic projection is conformal, the rest
follows. ��
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We can now conclude by exhibiting the “Riemann” structures of 1-dimensional quater-
nionic manifolds of the spheres S4 ⊂ R

5 and S8 ⊂ R
9. In the case of S4, this structure

corresponds to that of slice quaternionic manifold, as defined in [4]. In the case of S8, it
corresponds to a natural generalization to the case of octonions.

Theorem 4.2 Let us set m = dimK ∈ {4, 8}. Let f and h be the following maps

f : R
m ∼= K → Sm \ {N } ⊂ K × R ∼= R

m+1

f (x + I y) =
(

2(x + I y)

1 + x2 + y2
,
−1 + x2 + y2

1 + x2 + y2

)

and

h : R
m ∼= K → Sm \ {S} ⊂ K × R ∼= R

m+1

h(x + I y) =
(

2(x − I y)

1 + x2 + y2
,
1 − x2 − y2

1 + x2 + y2

)
.

Then the differentiable conformal atlas {(K, f ), (K, h)} endows Sm ⊂ R
m+1 with a structure

of slice quaternionic or slice octonionic manifold.

Proof A direct computation shows that the transition map

h−1 ◦ f = g−1 ◦ f : K \ {0} → K \ {0}
has the form

(h−1 ◦ f )(q) = (g−1 ◦ f )(q) = q̄

q2
= 1

q

and hence it is a slice regular and slice preserving function. ��

4.2 The helicoidal hypercomplexmanifold

This further example generalizes to quaternions and octonions the case of the helicoid in
the complex setting, whose classical slice isothermal parameterization is given by g : C ∼=
R
2 → R

3 ∼= C × R defined as g(x + iy) = (sinh x cos y + i sinh x sin y, y).

Proposition 4.3 Let the map

f : K → K × Im(K)

be defined by

f (x + I y) = (sinh x cos y + I sinh x sin y, I y)

for I ∈ S, x, y ∈ R. Then f (K) is a parameterized hypercomplex Riemann manifold (dif-
feomorphic to K) and f is a slice isothermal parameterization. This manifold will be called
quaternionic helicoidal manifold if K = H or octonionic helicoidal manifold if K = O, and
denoted by E .

Proof The map f is induced by the stem map

F = (G, H) : C → (R + ιR)2,

G(x + iy) = sinh x(cos y + ι sin y), H(x + iy) = ιy
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whose components are those of the classical conformal parametrization of the helicoid. We
need to check that the assumptions of Theorem 3.6 hold. The injectivity of F is obvious since
the last component is injective in y and thefirst is injective in x;moreover, H2(x+iy) = y �= 0
on C \ R and ∂y H2(x) = 1 �= 0 on R. Now, since as we said dF is conformal, then by
Theorem 3.6, the map f is a slice conformal parameterization, and the proof is complete. ��

It may be interesting to see how the use of the standard set of curves leads to the explicit
calculation of the differential of the slice isothermal parameterization of the helicoidal man-
ifold

f (x + I y) = (sinh x cos y + I sinh x sin y, I y).

For a fixed x + I y ∈ CI , let us compute d f (x + I y)1 and d f (x + I y)I :

d f (x + I y)1 = d

dt |0
(sinh(x + t) cos y + I sinh(x + t) sin y, I y)

= (cosh x cos y + I cosh x sin y, 0)

d f (x + I y)I = d

dt |0
(sinh x cos(y + t) + I sinh x sin(y + t), I (y + t))

= (− sinh x sin y + I sinh x cos y, I ).

Moreover, from Proposition 3.4 we know that for l = 2, . . . , dimK − 1

d f (x + I y)Il =
(
Il
sinh x sin y

y
, Il

)
.

In the case K = H, if we set

H � x1 + x2 I + x3 J + x4K ∼= (x1, x2, x3, x4) ∈ R
4

and

H × Im(H) � (x1 + x2 I + x3 J + x4K , y2 I + y3 J + y4K )

∼= (x1, x2, x3, x4, y2, y3, y4) ∈ R
7,

then, for y �= 0, we get

d f (x + I y) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh x cos y − sinh x sin y 0 0
cosh x sin y sinh x cos y 0 0

0 0 sinh x sin y
y 0

0 0 0 sinh x sin y
y

0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and for y = 0, we have, taking the limit (and coherently with the use of the standard curves):

d f (x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh x 0 0 0
0 sinh x 0 0
0 0 sinh x 0
0 0 0 sinh x
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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As expected, d f (x + I y) is slice conformal and d f (x) is conformal. The case K = O is
completely analogous.

4.3 The catenoidal hypercomplexmanifold

The case of the catenoid in the complex setting, parameterized by the conformal map

g : C ∼= R
2 → R

3 ∼= C × R

defined by

g(x + iy) = (cosh x cos y + i cosh x sin y, x)

generalizes to quaternions and octonions as well.

Proposition 4.4 Let the map

f : R × S(−π, π) → K × R ∼= R
dimK+1

be defined by

f (x + I y) = (cosh x cos y + I cosh x sin y, x)

Then f (R×S(−π, π)) is a parameterized hypercomplex Riemann manifold and f is a slice
isothermal parameterization. This manifold will be called quaternionic catenoidal manifold
if K = H or octonionic catenoidal manifold if K = O.

Proof The map f is induced by the stem map

F = (G, H) : R × (−iπ, iπ) → (R + ιR)2,

G(x + iy) = cosh x(cos y + ι sin y), H(x + iy) = x,

whose components are those of the classical conformal parametrization of the catenoid.
Obviously the map F is injective on R × (−iπ, iπ), and G2(x, y) �= 0 outside the real

axis; moreover the derivative ∂yG2(x, 0) = cosh x never vanishes. Since dF is conformal,
then by Theorem 3.6, the map f is a slice conformal parameterization. This completes the
proof. ��

Again, it may be interesting to explicitly present the differential of the slice isothermal
parameterization of the catenoidal manifold

f (x + I y) = (cosh x cos y + I cosh x sin y, x)

which may be computed by means of the standard set of curves. In the case K = H, if we
set

H � x1 + x2 I + x3 J + x4K ∼= (x1, x2, x3, x4) ∈ R
4

and

H × R � (x1 + x2 I + x3 J + x4K , y1) ∼= (x1, x2, x3, x4, y1) ∈ R
5

123



Slice conformality and Riemann manifolds on quaternions… 987

then, for y �= 0, we have

d f (x + I y) =

⎡

⎢⎢⎢⎢⎢⎣

sinh x cos y − cosh x sin y 0 0
sinh x sin y cosh x cos y 0 0

0 0 cosh x sin y
y 0

0 0 0 cosh x sin y
y

1 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
.

Moreover, for y = 0, we coherently obtain:

d f (x) =

⎡

⎢⎢⎢⎢⎣

sinh x 0 0 0
0 cosh x 0 0
0 0 cosh x 0
0 0 0 cosh x
1 0 0 0

⎤

⎥⎥⎥⎥⎦
.

Again, d f (x + I y) is slice conformal and d f (x) is conformal. In the case of octonions we
obtain similar matrices.

As in the real case, once both naturally embedded in K
2, the catenoidal hypercomplex

manifold can be transformed to a part of an helicoidal hypercomplex manifold through a
family of parameterized hypercomplex Riemann manifolds.

Let the part of the helicoidal manifold embedded in K
2 be parameterized by h : R ×

S(−π, π) → K
2, induced by the stem map

H(x + iy) := (sinh x(cos y + ι sin y), ιy)

and the embedded catenoidal manifold parameterized by c : R × S(−π, π) → K
2, induced

by the stem map

C(x + iy) := (cosh x(cos y + ι sin y), x).

We claim that

Hθ := H cos θ + C sin θ, θ ∈ [0, π/2]
defines a family of conformal injective immersions with H0 = H , Hπ/2 = C .

The differential dHθ : C → K × K ∼= R
2 dimK is given by

dHθ (x + iy) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A cos y −B sin y
A sin y B cos y

0 0
...

...

0 0
sin θ 0
0 cos θ

0 0
...

...

0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where A = (cosh x cos θ + sinh x sin θ) and B = (cosh x sin θ + sinh x cos θ). It is obvious
that the columns are orthogonal to each other, and a direct computation shows that their
norms are equal. If we write Hθ = (Fθ ,Gθ ), then Gθ (x + iy) = x sin θ + ιy cos θ. If
x sin θ + ιy cos θ = u sin θ + ιv cos θ, either θ = 0 (and then we have the stem function
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for the helicoidal manifold, for which the injectivity has already been proved), or x = u.

Then either θ = π/2 (in which case we have the stem map for the catenoidal surface) or
else ιy = ιv so x + iy = u + iv. As a consequence, Gθ,2 is injective for all θ ∈ (0, π/2).
Because ∂yGθ,2(x) = cos θ �= 0 on the real axis for all θ ∈ (0, π/2), all the conditions
of Theorem 3.6 are fulfilled and hence Hθ induces a family of slice conformal injective
immersions.

5 The hypercomplex logarithm and n-th root

5.1 The hypercomplex logarithm

To define the complex logarithm one usually uses either the helicoid or the graph of the
exponential function. Since we have shown that the latter in case of K is a hypercomplex
manifold, the logarithmcanbedefinedusing the projectionon the second coordinate (compare
Remark 5.7).

We will show here how the helicoidal hypercomplex manifold defined in the previous
section can be adapted to be the natural domain for the definition of a quaternionic logarithm.
Compared to the logarithm defined by the graph of exponential function, this definition
facilitates the identification of the argument and is therefore easier to use in the constructions
which include continuations of the logarithm.

Proposition 5.1 Let f : K → K × Im(K) be the map defined by

f (x + I y) = (sinh x cos y + I sinh x sin y, I y)

for I ∈ S, x, y ∈ R. Let K
+ = {q ∈ K : Re q > 0}, and set E+

K
:= f (K+).

The E+
K
-exponential map

E : K → E+
K

⊂ K × Im(K)

defined by:

E(x + I y) = (exp(x + I y), I y) = (exp x cos y + I exp x sin y, I y)

is an immersion and a diffeomorphism between K and E+
K

. In the case of quaternions, it
endows E+

H
with a structure of slice quaternionic manifold (see, e.g., [4]), which is different

from the structure of hypercomplex Riemann manifold defined in Proposition 4.3. However,
this manifold will be denoted simply by E+

K
, and called the logarithm manifold.

Proof The proof replicates part of the one of Proposition 4.3. ��
Remark 5.2 (a) If π : K × Im(K) → K denotes the projection on the first factor, then by

definition the following equality holds

(π ◦ E)(q) = exp(q)

for all q ∈ K.
(b) Unlike what happens in the complex setting, the map π : E+

K
→ K is not a covering. It

is not an open map as well, due to the fact that exp : K → K is not an open map (it has
a non–empty degenerate set consisting of spheres).

We will now define the E+
K
-logarithm on E+

K
and exhibit some of its properties.
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Definition 5.3 Let E+
K

be the logarithm manifold. The E+
K
-logarithm

L : E+
K

⊂ K × Im(K) → K

is defined as follows, in terms of the real logarithm log,

L(q, p) := log |q| + p,

where p is called the argument of q , and denoted by Arg(q): hence

L(q, p) := log |q| + Arg(q).

Indeed, if (q, p) ∈ E+
K
, then q = r exp p for r = |q| and L can be rewritten as

L(r exp p, p) = log r + p.

The following result and definition explainwhy the logarithmmanifold is a natural domain
of definition for the E+

K
-logarithm. Indeed, this hypercomplex manifold plays the role of an

“adapted" blow-up of K at points x ∈ R with x �= 0.

Proposition 5.4 The map

L : E+
K

→ K

is the inverse of the E+
K
-exponential E, and a diffeomorphism from E+

K
to K.

Proof Let us read the E+
K
-logarithm through the parameterization

E(x + I y) = (exp x cos y + I exp x sin y, I y)

of E+
K
. By composition we get that L ◦ E becomes the identity map of K

x + I y �→ (exp x(cos y + I sin y), I y) �→ log(exp x) + I y = x + I y .

Analogously, E ◦ L becomes the identity map of E+
K

(r exp p, p) �→ log r + p �→ (exp(log r) exp p, p) �→ (r exp p, p).

The assertion is now proved. ��
As a consequence, in the case of quaternions, the map L is a slice regular map from the

logarithm manifold E+
H

to H, with respect to the structure of slice regular manifold induced
by E on E+

H
(see, e.g., [4]). We point out that the definition of the E+

K
-logarithm L is not

referred to the structure of helicoidal Riemann manifold defined on EK in Proposition 4.3.

Definition 5.5 Let π : E+
K

⊂ K × Im(K) → K \ {0} denote the natural projection
(q, p) �→ q

and let � ⊂ E+
K

be a path connected subset such that π|� is injective. Then, the map

logK : π(�) → K

defined by

logK q = L(π−1
|� (q))

is called a branch or a determination of the hypercomplex logarithm on π(�).
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Notice that, as expected, with the notations of Definition 5.5 we have that

exp(logK q) = π(E(L(π−1
|� (q)))) = π(π−1

|� (q)) = q

for all q in π(�).

Remark 5.6 It is important to notice that, unlike what happens in the case of the complex
logarithm, and with the exception of the principal branch (see, e.g., [10, Definition 3.4]), no
continuous branch of the hypercomplex logarithm can be defined on any open set A ⊂ K\{0}
which contains a strictly positive real point x0, and hence a small segment (x0 − ε, x0 + ε) ⊂
R

+. Indeed, for any I ∈ S, on each slice AI , the branches of the hypercomplex logarithm
coincide with those of the complex logarithm of the slice CI . As a consequence, there is no
choice of J ∈ S along (x0 − ε, x0 + ε) ⊂ R

+ which can make a (non principal) branch of
the hypercomplex logarithm a continuous function.

On the other hand, if A ⊂ CI \ {0} ⊂ K \ {0} is simply connected, any continuous branch
of the hypercomplex logarithm along A coincides with the appropriate branch of the complex
logarithm along A. In particular, this happens when α : [−a, a] → CI \ {0} ⊂ K \ {0} is a
continuous curve having its image in a small disc � centered at a non zero real point x with
� ⊂ CI \ {0}, and such that α(0) = x . We will address this issue in a forthcoming paper.

We conclude this section by pointing out a different possible definition of the hypercom-
plex Riemann manifold on which to define the hypercomplex logarithm.

Remark 5.7 The definition of a hypercomplex logarithm could be given, alternatively, using
the graph of the exponential function

�(exp) = {(q, exp q) : q ∈ K}
which has a natural structure of hypercomplex Riemann manifold (see Sect. 3.4), with the
function f (q) = (q, exp q) as a slice isothermal parameterization. Indeed the logarithmcould
be defined as the slice regular function from the “reversed” graph �(exp) = {(expw,w) :
w ∈ K} onto K, coinciding with the projection onto the second factor. The advantage of
the approach that we actually adopted in this paper stays also in that it calls into scenery
the helicoidal and logarithm manifolds, which more closely follow the path of the complex
setting.

5.2 The hypercomplex n-th root

To give a proper definition of the n-th root function over the quaternions and octonions, we
will first of all define a suitable hypercomplex Riemann manifold, which will be useful to
find a possible domain for such a function.

Proposition 5.8 Let n ∈ N, with n > 1, and let the map

f : R × S(−πn, πn) → K × K ∼= R
2 dimK

be defined by

f (x + I y) =
(
sinh x cos y + I sinh x sin y, n exp

(
I
y

n

))

for I ∈ S, x, y ∈ R. Then f (R × S(−πn, πn)) is a parameterized Riemann hypercomplex
manifold (diffeomorphic to R × S(−πn, πn)) and f is a slice isothermal parameterization.
This manifold will be denoted by QK(n).
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Proof The map f = (g, h) is induced by the stem map

F = (G, H) : R × (−iπn, iπn) → (R + ιR)2,

G(x + iy) = sinh x cos y + ι sinh x sin y, H(x + iy) = n exp
(
ι
y

n

)
)

whose components are those of the classical conformal parameterization of the Riemann
surface of the n-th root. The map F is C∞ and injective: indeed H(x + iy) = H(u + iv)

implies

exp
(
ι
y

n

)
= exp

(
ι
v

n

)

whence y−v
n = 2πm for some integer m. Hence y − v = 2πnm implies y = v. Since

G is injective in x, we now deduce x = u. The injectivity of F is then proved. Because
H2(x + iy) = n sin y

n , we have ∂y H2(x) = 1 �= 0.
Since, as we said, dF is conformal, then by Theorem 3.6 the map f is a slice conformal

parameterization, and the proof is complete. ��
Again, it is of interest to explicitly compute the differential of the slice conformal param-

eterization

f (x + I y) =
(
sinh x cos y + I sinh x sin y, n exp

(
I
y

n

))
.

Since the first component of f has already been analyzed in Sect. 4.2, we will only compute
the differential of the function n exp(I y

n ) :

dh(x + I y)1 = d

dt |0

(
n exp

(
I
y

n

))
= 0 ,

dh(x + I y)I = d

dt |0
n exp

(
I
y + t

n

)

= − sin
( y

n

)
+ I cos

( y

n

)
.

In the case K = H, if we set

H � x1 + x2 I + x3 J + x4K ∼= (x1, x2, x3, x4) ∈ R
4

and

H × H � (x1 + x2 I + x3 J + x4K , y1 + y2 I + y3 J + y4K )

∼= (x1, x2, x3, x4, y1, y2, y3, y4) ∈ R
8

then, for y �= 0, we have

d f (x + I y) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh x cos y − sinh x sin y 0 0
cosh x sin y sinh x cos y 0 0

0 0 sinh x sin y
y 0

0 0 0 sinh x sin y
y

0 − sin( yn ) 0 0
0 cos( yn ) 0 0
0 0 n sin(y/n)

y 0

0 0 0 n sin(y/n)
y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and for y = 0, we coherently obtain:
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d f (x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosh x 0 0 0
0 sinh x 0 0
0 0 sinh x 0
0 0 0 sinh x
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As expected, d f (x + I y) is slice conformal and d f (x) is conformal. The situation in the case
K = O is totally analogous.

Wewill now see how to useQK(n) to construct an appropriate domain for the quaternionic
or octonionic n-th root function.

Proposition 5.9 Let f (x + I y) = (sinh x cos y + I sinh x sin y, n exp(I y
n )) be as in Propo-

sition 5.8, and let us set

Q+
K

(n) := f (R+ × S(−πn, πn)).

The map

φn : R
+ × S(−πn, πn)) → Q+

K
(n)

defined by

φn(x + I y) =
(
exp(x + I y), n exp

(
I
y

n

))

is an injective immersion and a diffeomorphism between R
+ × S(−πn, πn) and Q+

K
(n).

Indeed, in the case of quaternions, φn defines onQ
+
H

(n) a structure of slice regular manifold
(see [4]) different from the one induced by the contruction of Proposition 5.8. However, this
manifold will be denoted simply by Q+

K
(n), and called the n-th root manifold.

Proof The proof replicates the one used to establish Proposition 5.8 ��
We will now define the hypercomplex n-th root on the n-th root manifold, and establish

some of its properties.

Definition 5.10 Let n ∈ N, with n > 1 and let Q+
K

(n) be the n-th root manifold. The n-th
root

Rn : K × K ⊃ Q+
K

(n) → K

is defined as follows, for all r ∈ R
+ and p ∈ S(−πn, πn):

Rn

(
r exp p, n exp

( p

n

))
= n

√
r exp

( p

n

)

or directly (and equivalently), for all (q, s) ∈ Q+
K

(n), by

Rn(q, s) = n
√|q| s

n
.

Indeed, this last formulation of the definition extends in a natural fashion, to Q+
K

(n)

= f ((R+ ∪ {0}) × S[−πn, πn]) as
Rn(0, s) = 0

and
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Rn(r ,−n) = − n
√
r

for all s ∈ nS3 and all r ≥ 0.

As stated in Proposition 5.9, and analogously to what happens in the case of the logaritm,
the definition of the n-th root function is not referred to the structure of hypercomplex
Riemannmanifold defined onQK(n) in Proposition 5.8. Indeed, the structure that is naturally
involved with the n-th root functions is the one defined in Proposition 5.9.

As it clearly appears, there is natural space and interest for the study of differential geom-
etry of hypercomplex Riemann manifolds and, in particular, for the study of their curvature,
of their mean curvature and minimality. This will be the subject of a forthcoming paper.
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