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Abstract. These Notes are intended for graduate or undergraduate stu-
dents who have familiarity with Lebesgue measure theory, partial differential
equations, and functional analysis. The main topics covered in this work
are the study of the Cauchy problem and unique continuation properties
associated with partial differential equations. The primary objective is to
familiarize students with stability estimates in inverse problems and quan-
titative estimates of unique continuation. The treatment is presented in a
self-contained manner.

Mathematical Subject Classifications (2020) 35-01, 35-B60, 35-
R25, 35-R30.

Key words: PDE, Unique Continuation Properties, Stability Estimates,
Inverse Problems



Introduction

The main purpose of these Notes is to introduce the study of unique con-
tinuation properties and stability estimates for inverse problems for partial
differential equations (PDEs). The topics covered in these Notes are all cho-
sen with proximity to inverse problems in mind, but we believe that none of
the topics should be neglected in the training of those interested in PDEs, es-
pecially with regard to the study of unique continuation properties. Despite
the existence of excellent review articles and books on the subject, there
is a lack of a truly introductory book starting from minimum basics for a
graduate or undergraduate student, who should have some familiarity with
Lebesgue measure theory, basic elements of functional analysis, and a first
introductory course on PDEs.

To facilitate the achievement of this purpose, we have covered other basic
topics in the theory of PDEs, such as the theory of existence and regularity
for second-order elliptic equations with real coefficients in Part I, and the
classical theory of the Cauchy problem for equations with analytic coefficients
in Part II. Part III focuses on the study of unique continuation properties
for equations with non-analytic coefficients.

We provide a brief description of the present Notes in the remainder of
this Introduction, with more detailed descriptions of the topics covered in
the individual chapters provided in their introductions.

In Part I, in addition to Chapter 3 on Sobolev spaces, we have included
Chapter 2, which serves as a connection and complement to elementary analy-
sis topics. In Chapter 2, we recall the main definitions and theorems (without
proof) of measure theory and prove some important theorems of real analysis,
including the extension theorem in C0,α, the Lebesgue differentiation theo-
rem, the Rademacher theorem, and the divergence theorem over open sets
with Lipschitz boundary. Additionally, we study the distance function and
the Hausdorff distance between compact sets, which is useful for studying
the stability issue of inverse problems with unknown boundaries. In Chapter
4, we provide the definition and first properties of the Dirichlet-to-Neumann
map, in addition to the existence and regularity L2 theory for second-order

11
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elliptic equations. We also introduce the inverse problem of inclusion detec-
tion and, in particular, size estimates, which have an interesting connection
with the quantitative estimates of unique continuation developed in Part III.
The books that inspired us the most in writing Part I are [43], [65] (Chapter
2) and [12], [23], [24] (Chapter 3, Chapter 4).

In Part II, we provide, in Chapter 5, a concise discussion of the Cauchy
problem for first-order PDEs. In Chapter 6, we have given the basic proper-
ties of real analytic functions which we need in Chapter 7, where we give the
formulation of the Cauchy problem for PDEs and prove the classical Cauchy-
Kovalevskaya, Holmgren, and John theorems for (linear) PDEs with analytic
coefficients. In Chapter 8, we apply the Holmgren and John theorems and
the L2 regularity theory to prove a uniqueness theorem for an inverse prob-
lem for the Laplace equation with unknown boundary. In Chapter 9, we
introduce the concept of a well-posed problem in the sense of Hadamard,
and by means of the Lax-Mizohata Theorem, we highlight the important
connection between uniqueness, solvability, and continuous dependence on
the data in a Cauchy problem for equations with C∞ coefficients. In Chap-
ter 10, we give the definition of conditional stability (or “well-posed problem
in the sense of Tikhonov”) and some basic examples of conditional stability
estimates for the calculus of derivatives and for the analytic continuation
problem (in this area, the most famous theorem is the Hadamard three-circle
inequality). Chapter 10 is a kind of “laboratory” in which we build some
tools that should be kept in the toolbox of anyone who wants to study the
conditional stability of not-well-posed problems in the sense of Hadamard.
We conclude Part II with Chapter 11, in which we prove the John stability
Theorem for the Cauchy problem for PDEs with analytic coefficients and
discuss some of its consequences. The books that inspired us the most in
writing Part II are [18], [23], [21], [41], [62] (Chapter 5, Chapter 6, Chapter
7), [34, Ch. V], [36, Vol. II], [56] (Chapter 9), [48] [73] (Chapter 10).

In Part III, as we have already mentioned, we provide a gradual study of
Carleman estimates and the main problems of unique continuation for PDEs.
In Chapter 12, we extensively explain the Nirenberg Theorem [60] concerning
the Cauchy problem for constant operators in the principal part. From an
educational point of view, one of the merits of this theorem consists of its
simple proof and, conversely, in the powerful consequences that allow us to
solve the question of the uniqueness of solutions to the Cauchy problem for
the equation

∆u = b(x) · ∇u+ c(x)u,

where b = (b1, · · · , bn) ∈ L∞(Rn;Rn), c ∈ L∞(Rn). Furthermore, the Niren-
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berg Theorem allows for addressing some standard aspects involving Carle-
man estimates quite easily, especially with regard to how the aforementioned
estimates are used to infer the unique continuation property for PDEs. The
actual presentation of the Carleman estimates is carried out in chapters 13,
14, and 15. In Chapter 13, we follow, with slight simplifications, the general
and now classic approach developed by Hörmander [34], as it allows for a
broad and general view of the issues concerning Carleman estimates. The
main theorem of Chapter 13 is the Carleman estimate for general elliptic
operators, which corresponds to theorem 8.3.1 of [34, Ch. VIII]. Chapter 13
has its natural continuation in Chapter 14, in which we initially review the
proofs of Chapter 13 in the simple case of the Laplace operator. From there,
we move on to dealing with second-order operators that are not necessarily
elliptic. Unlike Chapter 13, where the integration by parts used to arrive at
a Carleman estimate is based on a careful study of the quadratic differential
forms, in Chapter 14, we adopt the Rellich identity and its natural gener-
alization. This approach makes it easy to handle the case of second-order
operators whose principal part has real Lipschitz continuous coefficients by
providing a “miniaturized” proof of the uniqueness Calder’on Theorem (here,
Theorem 14.4.2) for operators with simple characteristics. In Chapter 14, we
provide a hint to the notion of pseudoconvex functions, which is particularly
simplified in the case of second-order operators with real coefficients. Finally,
in Chapter 15, we prove some Carleman estimates with a singular weight for
the second-order elliptic operator

Lu =
n∑

i,j=1

∂xi
(
aij(x)∂xju

)
,

where {aij(x)}ni,j=1 is a symmetric matrix whose entries are real-valued Lipschitz-
continuous functions. We use the Carleman estimates to deduce the optimal
three sphere inequality, the doubling inequality, and the strong unique con-
tinuation property (corollaries 15.5.3 and 15.7.8) for the equation

Lu = b(x) · ∇u+ c(x)u,

where b ∈ L∞(Rn;Rn), c ∈ L∞(Rn). Of the various proofs in the literature
for such Carleman estimates, we present the proof given in [6], [7] which is
based on transforming the elliptic operator into polar coordinates (Euclidean
or Riemannian). We consider this elegant proof useful because it allows us to
discuss the transformation into polar coordinates with respect to a Rieman-
nian metric, which can be useful in other contexts of PDEs. In Chapter 16,
we provide some brief and simple comments on the methods of log-convexity
and the frequency function for studying the unique continuation property. In
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this chapter, we also mention some simple applications of Ap weights in the
stability and size estimates, and we conclude with the Runge property for
the Laplace operator. The books that inspired us the most in writing Part
III are [34] and [50].

I would like to conclude these Notes by thanking all those who provided
me with useful advice on how to carry on this work, especially my friends
Lorenzo Baldassari and Elisa Francini.
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Chapter 1

Main notation and basic formulas

1.1 Notation

Let us denote by N0 = N ∪ {0}. We call multi-index any n-uple of elements
of N0

α = (α1, α2, · · · , αn) , αj ∈ N0, j = 1, 2, · · · , n.

For any α ∈ Nn
0 we denote by

|α| = |α1|+ |α2| · · · , |αn| , and α! = α1!α2! · · ·αn! ,

the lenght (modulus) and the factorial of α, respectively. For any x ∈ Rn,
x = (x1, x2, · · · , xn), we set

xα = xα1
1 x

α2
2 · · · xαnn .

Let α, β ∈ Nn
0 we write α ≤ β provided αj ≤ βj for j = 1, 2, · · · , n and we

write α < β provided α ≤ β and there exists j0 ∈ {1, 2, · · · , n} such that
αj0 < βj0 . For any x = (x1, · · · , xn) ∈ Rn we denote, unless otherwise stated,
by x′ = (x1, · · · , xn−1) ∈ Rn−1 and we write x = (x′, xn). Similar convention
will be used for the multi-indices.

For any α, β ∈ N0 and α ≤ β, let us denote by (the binomial "β over α")(
β

α

)
=

β!

(β − α)!α!
..

Let us denote by ∂k the operator ∂
∂xk

, k = 1, 2, · · · , n and by

∂ = (∂1, ∂2, · · · , ∂n) (the gradient operator).

Hence, we set

17



18 Chapter 1. Main notation and basic formulas

∂α = ∂α1
1 ∂α2

2 · · · ∂αnn =
∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂xαnn

.

To denote the gradient operator we also use the notation ∇, however to
denote ∂α we will not write ∇α. Of course, we will continue to denote by
uxk (or by other standard symbols) the partial derivative of u with respect
to xk, k = 1, 2, · · · , n. The Hessian matrix of a smooth function u is denoted
by

∂2u =
{
∂2
jku
}n
j,k=1

We point out that some authors (and also in these notes in some con-
text) reserve the notation Dk to denote the operator 1

i
∂
∂xk

, where i =
√
−1,

consequently

Dα =

(
1

i

)|α|
∂α1

1 ∂α2
2 · · · ∂αnn .

The latter notation is useful especially when an extensive use of the Fourier
transform is done

û (ξ) =

∫
Rn
u(x)e−ix·ξdx.

Actually, we have
D̂αu (ξ) = ξαû (ξ) .

while, using the former notation, we have

∂̂αu (ξ) = (iξ)αû (ξ) .

Let ` ∈ Rn \ {0}, for any j ∈ N0 we set

∂j

∂`j
=
∑
|α|=j

`α∂α,

(we mean ∂0u
∂`0

= u). In particular

∂

∂`
= ` · ∂ = ` · ∇.

As a consequence of the notations introduced above, we denote a polynomial
P of degree m in the variables ξ1, ξ2 · · · , ξn

P (ξ) =
∑
|α|≤m

aαξ
α, (1.1.1)
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where aα ∈ R (or aα ∈ C) for any |α| ≤ m. We say that the homogeneous
polynomial

Pm(ξ) =
∑
|α|=m

aαξ
α,

is the principal part of a polynomial P provided that there exists α0 ∈ Nn
0

such that |α0| = m and aα0 6= 0.

1.2 Some useful formulas
In this Section we recall some basic and useful formulas.

(x+ y)α =
∑
β≤α

(
α

β

)
xβyα−β, ∀x, y ∈ Rn, ∀α ∈ Nn

0 . (1.2.1)

∂βxα =


α!

(α−β)!
xα−β, for α ≥ β,

0, otherwise.
(1.2.2)

(x1 + x2 + · · ·+ xn)m =
∑
|α|=m

m!

α!
xα, ∀m ∈ N0. (1.2.3)

α! ≤ |α|! ≤ n|α|α!, ∀α ∈ Nn
0 . (1.2.4)

Let us recall the following Stirling formula

lim
n→∞

n!

nne−n
√
n

=
√

2π . (1.2.5)

Let f be a smooth function and m ∈ N0, we have

dm

dtm
f(x+ty) =

(
(
n∑
j=1

yj∂j)
mf

)
(x+ty) =

∑
|α|=m

m!

α!
yα (∂αf) (x+ty). (1.2.6)

We recall the Taylor formula, centered at x0 ∈ Rn, of a polynomial P of
degree m

P (x) =
∑
|α|≤m

1

α!
∂αP (x0)(x− x0)α. (1.2.7)

Let f and g be two smooth functions and α ∈ Nn
0 , we have the Leibniz

formula for the α-th derivative of the product fg

∂α(fg) =
∑
β≤α

(
α

β

)
∂βf∂α−βg. (1.2.8)
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Now we check some formula.

Formula (1.2.1) easily follows by the Newton binomial formula. Actually,
we have

(x+ y)α = (x1 + y1)α1 · · · (xn + yn)αn =

=
∑
β1≤α1

(
α1

β1

)
xβ1

1 y
α1−β1

1 · · ·
∑
βn≤αn

(
αn
βn

)
xβnn y

αn−βn =

=
∑
β≤α

(
α

β

)
xβyα−β.

The proof of (1.2.2) is immediate. Before checking (1.2.3) let us notice
that if α and β are multi-indices such that α ≤ β and |α| = |β|, then α = β.
Let us denote

S(x) =
n∑
j=1

xj

and set
P (x) = (S(x))m .

Since P is a homogeneous polynomial of degree m we get

P (x) =
∑
|α|=m

cαx
α.

Let us show that cα = m!
α!

for every multi-indices α such that |α| = m. Let β
be a multi-index satisfying |β| = m. By what we notice above and by (1.2.2),
we get

∂βP (x) =
∑
|α|=m

cα∂
βxα = cββ! . (1.2.9)

On the other hand,

∂βP (x) = ∂βSm = ∂β1

1 · · · ∂βnn Sm =

= m · · · (m− βn + 1)∂β1

1 · · · ∂
βn−1

n−1 S
m−βn =

= m · · · (m− βn − βn−1 + 1)∂β1

1 · · · ∂
βn−2

n−2 S
m−βn−βn−1 = · · · = m! .

(1.2.10)

By (1.2.9) and (1.2.10) we get

cββ! = m! for every β ∈ Nn
0 such that |β| = m,
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from which we obtain (1.2.3). Of course, formula (1.2.3) can be proved more
elementarly. For instance, it can be proved by induction starting from the
Newton binomial formula.

Concerning the inequality α! ≤ |α|! in (1.2.4), recalling that h!k! ≤ (h+k)!
for every h, k ∈ N0 we get

α! = α1!α2! · · ·αn! ≤ (α1 +α2)!α3! · · ·αn! ≤ · · · ≤ (α1 +α2 + · · ·+αn)! = |α|! .

Regarding the inequality |α|! ≤ n|α|α! it suffices to use formula (1.2.3) and
we have

n|α| = (1 + 1 + · · ·+ 1︸ ︷︷ ︸)
n

|α| =
∑
|β|=|α|

|α|!
β!
≥ |α|!

α!
.

The first equality in (1.2.6) can be obtained by iterating the formula

d

dt
f(x+ ty) =

(
n∑
j=1

yj∂jf

)
(x+ ty).

The second equality in (1.2.6) can be obtained by a formal development of

(
n∑
j=1

yj∂j)
m

through (1.2.3).
Leibniz formula (1.2.8) can be easily obtained by the namesake formula

for the one variable functions

dk

dtk
(fg) =

k∑
h=0

(
k

h

)
dhf

dth
dk−hg

dtk−h
,

where f and g are two smooth functions in the variable t.

Let m ∈ N0 and let aα, |α| ≤ m, be some functions defined in an open
set Ω ⊂ Rn with values in R or in C. We say that the operator

P (x, ∂) =
∑
|α|≤m

aα(x)∂α (1.2.11)

is a linear differential operator of order m in Ω, provided that there
exists α ∈ Nn

0 , |α| = m such that aα does not vanish identically in Ω. We
say that the functions aα, |α| ≤ m, are the coefficients of the differential
operator (1.2.11).
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We define the symbol of operator (1.2.11) as the following polynomial
in the variable ξ

P (x, ξ) =
∑
|α|≤m

aα(x)(iξ)α. (1.2.12)

Notice that if we write P (x, ∂) as

P̃ (x,D) =
∑
|α|≤m

aα(x)(iD)α,

then the symbol (1.2.12) can be obtained by formally substituting D to ξ.
We have

e−ix·ξP̃ (x,D)eix·ξ = P (x, ξ). (1.2.13)

It might seem more natural to define the symbol of (1.2.11) as simply∑
|α|≤m aα(x)ξα, actually the contexts in which it is mostly used the definition

of the symbol of a differential operator, are often the same ones in which it is
convenient to use Dj = 1

i
∂j as derivative operator. It is therefore advisable

to stick to the standard definition of symbol for do not stray from the current
literature. For instance, the symbol of the Laplace operator

∆ =
n∑
j=1

∂2
j = −

n∑
j=1

D2
j

is given by

−
n∑
j=1

ξ2
j ,

the symbol of the heat operator

n∑
j=1

∂2
j − ∂t = −

n∑
j=1

D2
j − iDt,

is equal to

−
n∑
j=1

ξ2
j − iξn+1

and the symbol of the wave operator or d’Alembertian operator

� = ∆− ∂2
t =

n∑
j=1

∂2
j − ∂2

t = −
n∑
j=1

D2
j +D2

t
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is equal to

−
n∑
j=1

ξ2
j + ξ2

0 .

We will call the principal part of operator (1.2.11), the differential
operator

Pm(x, ∂) =
∑
|α|=m

aα(x)∂α. (1.2.14)

In the sequel, to simplify the notations, we will concentrate our attention
to the case in which the coefficients aα are real–valued functions. However,
we warn that what we will establish, in many cases, can easily be extended
to the case where the coefficients aα is a complex–valued function.

If all the coefficients of the operator P (x, ∂) are constants, we will say
that P (x, ∂) is an operator with constant coefficients. In these cases, to
denote the operator P (x, ∂), we will just write P (∂).

We notice that, by the above definition, the symbol of the principal part
of operator (1.2.11) is the homogeneous polynomial

Pm(x, ξ) = im
∑
|α|=m

aα(x)ξα. (1.2.15)

Conventions on the constants. In the sequel, to denote a positive con-
stant we will use very often the letter C. We notice right now that the value
of the constants will may change from line to line, but we will generally in-
dicate the dependence of the constants by the various parameters. However,
sometimes to be able to better follow the various steps, we will put an index
or a sign to C and we will write C0, C1, C, C̃ . . .. We will generally omit the
dependence of the various constants on the dimension of the space.





Chapter 2

Review of some function spaces
and measure theory

2.1 The space Ck

Let X be a subset of Rn. We will denote by C0(X) the vector space of
continuous functions defined in X with values in R. If u ∈ C0(X), we denote
the support of u by

supp u := {x ∈ X : u(x) 6= 0} (closure in Rn).

We will denote by C0
0(X) the space of continuous functions whose support is

a compact set of Rn contained in X.

Proposition 2.1.1. Let u ∈ C0(X). Let K ⊂ X be a compact set of Rn; for
any r > 0 we set

Kr = {x ∈ Rn : dist(x,K) ≤ r} ,
where dist(x,K) denotes the distance of x from K. Let us suppose that there
exists r0 > 0 such that Kr0 ⊂ X. Then

lim
r→0

max
Kr

u = max
K

u . (2.1.1)

Proof. SinceKr0 is a compact subset ofX and u ∈ C0(X), u is uniformly
continuous on Kr0 . Let ε > 0 and δ > 0 such that

|u(x)− u(y)| < ε, for all x, y ∈ Kr0 such that |x− y| ≤ δ;

we may assume that δ < r0. Let r ∈ (0, δ] and let x be any point of Kr.
Hence there exists y ∈ K such that |x− y| ≤ r. Therefore

u(x) < u(y) + ε ≤ max
K

u+ ε.

25
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By the arbitrariness of x in Kr we have

max
K

u ≤ max
Kr

u < max
K

u+ ε,

which concludes the proof of (2.1.1). �

Let u ∈ C0(X). We define the modulus of continuity of u in X

ω(δ) = sup {|u(x)− u(y)| : x, y ∈ X, |x− y| ≤ δ} , for δ > 0. (2.1.2)

ω is an increasing function, defined on [0,+∞) and satisfies ω(0) = 0. Of
course, ω may not be finite. It is easy to check that u is uniformly continuous
if and only if

lim
δ→0

ω(δ) = 0. (2.1.3)

If the function ω is bounded, it may be convenient to use the concave
modulus of continuity which is defined as

ω̃(δ) = inf {f(δ) : f concave, f ≥ ω, in [0,+∞)} , for δ > 0. (2.1.4)

Now we check that

lim
δ→0

ω̃(δ) = 0. (2.1.5)

Let us denote
M = sup

δ∈[0,+∞)

ω(δ) < +∞.

If M = 0, (2.1.5) is trivial. Let us suppose therefore M > 0. Let 0 < ε < M ,
from (2.1.3) it follows that there exists δ0 > 0 such that

0 ≤ ω(δ) <
ε

2
, ∀δ ∈ [0, δ0].

Set

gε(δ) =


ε
2

+ 2M−ε
2δ0

δ, for δ ∈ [0, δ0],

M, for δ ∈ (δ0,+∞).

It easy to check that gε is concave and that gε ≥ ω in [0,+∞). Furthermore,
set

δ1 =
εδ0

2M − ε
,
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it turns out

gε(δ) < ε, ∀δ ∈ [0, δ1).

Therefore

ω̃(δ) < ε, ∀δ ∈ [0, δ1),

which gives (2.1.5).

Remark 1. Let ω̃ be a concave modulus of continuity, then

0 < η1 < η2 =⇒ η1ω̃

(
1

η1

)
≤ η2ω̃

(
1

η2

)
. (2.1.6)

Let us check (2.1.6). From the concavity of ω̃ and recalling that ω̃(0) = 0 we
have, for 0 < η1 < η2,

η1ω̃

(
1

η1

)
=
ω̃
(

1
η1

)
− ω̃(0)

1
η1
− 0

≤
ω̃
(

1
η2

)
− ω̃(0)

1
η2
− 0

= η2ω̃

(
1

η2

)
.

�

Let us denote by C0
∗(X) the space of of the bounded functions of C0(X),

let us define the norm

‖u‖C0
∗(X) = sup

X
|u(x)|, ∀u ∈ C0

∗(X). (2.1.7)

As it is well–known, the space C0
∗(X) equipped with the norm (2.1.7), is a

Banach space.

The following Theorem holds true (see [46, Corollary 1.3, Ch. 3] for a
proof)

Theorem 2.1.2 (Weierstrass approximation). Let X be a compact subset
of Rn. For every u ∈ C0(X) and for every ε > 0 there exists a polynomial P
such that

‖u− P‖C0(X) < ε.

We notice that by approximating the polynomial P given in the previous
Theorem, by a polynomial with rational coefficients, we derive that C0(X),
with compact X, is a separable space . Let us recall that a topological
space S is said to be separable if there exists a countable set D ⊂ S such
that D = S.

The following Proposition holds true
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Proposition 2.1.3. Let S be a metric space with distance d. If there exists
Y, uncountable subset of S, and δ > 0 such that

d(x, y) > δ, ∀x, y ∈ Y , x 6= y, (2.1.8)

then S is not a separable space.

Proof. We argue by contradiction and we assume that S is separable.
Hence there exists D = {un}n∈N such that D = S. Consequently, for every
x ∈ Y there exists unx such that

d (x, unx) <
δ

3
.

Therefore, if x, y ∈ Y , x 6= y, the triangle inequality gives

d
(
unx , uny

)
≥ d(x, y)− d (x, unx)− d

(
y, uny

)
>
δ

3
.

In particular, if x, y ∈ Y , x 6= y, then unx 6= uny . Consequently, the map

Y 3 x→ unx ∈ D,

is injective, but this fact contradicts that Y is an uncountable set. Therefore
S is not separable. �

Remark 2. Let us note that the compactness assumption of X cannot
be dropped for C0

∗(X) to be separable. We show, for instance, that C0
∗(R) is

not separable.
For any A ∈ P(Z) \ {∅} (where P(Z) denotes the power set of Z) and

any ε ∈
(
0, 1

2

)
, define

uA =
∑
g∈A

ug,

where

ug(t) =


1− ε−1|t− g|, for t ∈ [g − ε, g + ε],

0, for t ∈ R \ [g − ε, g + ε].

We have

‖uA − uB‖C0
∗(R) = 1, ∀A,B ∈ P(Z) \ {∅} , A 6= B.

Since P(Z) \ {∅} is uncountable, Proposition 2.1.3 implies that C0
∗ (R) is not

separable. ♠
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Generally we will be interested in the case when X is an open or the
closure of an open set Ω of Rn. If Ω is a bounded open set then we may
consider

C0
(
Ω
)

as a subspace of C0
∗(Ω) and we will denote the norm of C0

(
Ω
)
by

‖u‖C0(Ω) = sup
Ω

|u|, ∀u ∈ C0
(
Ω
)
. (2.1.9)

�

In the sequel we will use the following classical theorems on relatively
compact sets.

Theorem 2.1.4. Let (X, d) be a complete metric space and let Y ⊂ X.
Then Y is a relatively compact set (i.e., Y = X) if and only if it is totally
bounded that is, for every δ > 0 there exists a finite set {x1, · · · , xN} ⊂ X
such that

d (y, xj) < δ, ∀y ∈ Y, j = 1, · · ·N

or, equivalently,

Y ⊂
N⋃
j=1

Bδ(xj).

Theorem 2.1.5 (Arzelà–Ascoli). Let Ω a bounded open set of Rn and let
{uk} be a a sequence of functions belonging to C0

(
Ω
)
such that:

(i) {uk} is equibounded, i.e., there exists M > 0 such that

‖uk‖C0(Ω) ≤M, ∀k ∈ N;

(ii) {uk} is equicontinuous, i.e., for every η > 0 there exists δ > 0 such
that if |x− y| < δ and x, y ∈ Ω, then

|uk(x)− uk(y)| ≤ η, ∀k ∈ N.

Then there exists a subsequence
{
ukj
}

of {uk} and a function u ∈ C0
(
Ω
)

such that
lim
j→∞

∥∥ukj − u∥∥C0(Ω) = 0.



30 Chapter 2. Review of some function spaces and measure theory

Let k ∈ N and let Ω be an open set of Rn, we will denote by Ck(Ω) the
space of functions which satisfy ∂αu ∈ C0(Ω) for every α ∈ Nn

0 , |α| ≤ k.
Further, we will denote by Ck

(
Ω
)
the space of the functions u ∈ Ck(Ω) such

that, for every α ∈ Nn
0 , |α| ≤ k, ∂αu is extensible to a function Uα ∈ C0

(
Ω
)
.

Of course, if such an extension exists it is unique and we will write ∂αu
instead of Uα. If Ω is a bounded open set of Rn, we define the norm on
Ck
(
Ω
)
as follows

‖u‖Ck(Ω) =
∑
|α|≤k

sup
Ω

|∂αu|, ∀u ∈ Ck
(
Ω
)
. (2.1.10)

As it is well–known, the space Ck
(
Ω
)
, equipped with the norm (2.1.10) is a

Banach space. In some contexts it turns out to be convenient to consider,
instead of norm (2.1.10), an equivalent "dimensionless" norm, e.g.∑

|α|≤k

d
|α|
0 sup

Ω

|∂αu|, ∀u ∈ Ck
(
Ω
)
, (2.1.11)

where d0 is the diameter of Ω.

Proposition 2.1.6. Let Ω be a bounded open set of Rn and k ∈ N0, then the
space Ck

(
Ω
)
, with norm (2.1.10) is a separable space.

Proof. Recall that if a topological space is separable, then every subset
of it is a separable space [16, Ch. 3, Sec. 6].

We have already noticed (after Theorem 2.1.2) that C0
(
Ω
)
is separable.

We consider the case k = 1 (the case k > 1 can be treated similarly). Let Ψ
be the map

Ψ : C1
(
Ω
)
→ X ,

where

X = C0
(
Ω
)
× · · · × C0

(
Ω
)︸ ︷︷ ︸

(n+1) - times

,

Ψ(u) = (u, ∂1u, · · · ∂nu), ∀u ∈ C1
(
Ω
)
.

if we equip X with the norm

‖v‖X =
n∑
j=0

‖vj‖C0(Ω) , ∀v = (v0, v1, · · · , vn) ∈ X ,
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Ψ is an isometry.
On the other hand, X is a separable space as a cartesian product of

separable spaces. Thus Ψ
(
C1(Ω)

)
is separable as a subspace of X and, since

Ψ is an isometry, also C1
(
Ω
)
is separable. �

It is evident that if k,m ∈ N0 and k < m then Cm
(
Ω
)
⊂ Ck

(
Ω
)
. We set

Ck
0 (Ω) =

{
u ∈ Ck(Ω) : supp u is a compact set contained in Ω

}
,

C∞(Ω) =
∞⋂
k=0

Ck(Ω), C∞
(
Ω
)

=
∞⋂
k=0

Ck
(
Ω
)
, C∞0 (Ω) =

∞⋂
k=0

Ck
0 (Ω).

Let k ∈ N or k = ∞ and Ω̃ ⊃ Ω, we will often adopt the convention
of identifying Ck

0 (Ω) with the space of functions u belonging to Ck
0

(
Ω̃
)
and

such that supp u is a compact set contained in Ω.

2.2 The space Ck,α

Let X be a subset of Rn and α ∈ (0, 1], we will denote by C0,α (X) the space
of the functions u ∈ C0 (X) which satisfy

[u]C0,α(X) = sup

{
|u(x)− u(y)|
|x− y|α

: x, y ∈ X, x 6= y

}
< +∞.

If u is a function of C0,α (X) it is also said that u is a Hölder function
of order α. The number α is said the Hölder exponent of the space
C0,α (X). For any u ∈ C0,α (X), the number [u]C0,α(X) is called the Hölder
constant of u. If α = 1 we will also say that u is a Lipschitz function in
X and we call Lipschitz constant the number [u]C0,1(X). We observe that
if α > 1 and X is a connected open set, then the space C0,α (X) consists of
only the constant functions (as a matter of fact, if α > 1 then any function of
C0,α (X) is differentiable with zero gradient in X). It can be easily checked
that if X is bounded, and the space C0,α (X) is equipped with the norm

‖u‖C0,α(X) = ‖u‖C0(X) + [u]C0,α(X) , (2.2.1)

then C0,α (X) is a Banach space. Sometimes it is convenient to consider,
instead of the norm (2.2.1), an equivalent "dimensionless" norm, e.g.



32 Chapter 2. Review of some function spaces and measure theory

‖u‖C0(X) + dα0 [u]C0,α(X) ,

where d0 is the diameter of X.
Let m ∈ N, we denote by C0,α (X;Rm) the space of the functions

u ∈ C0 (X;Rm) satisfying uj ∈ C0,α (X), j = 1, · · · ,m. We set

‖u‖C0,α(X;Rm) = ‖u‖C0(X;Rn) + [u]C0,α(X;Rm) ,

where

[u]C0,α(X;Rm) = sup

{
|u(x)− u(y)|Rm
|x− y|αRn

: x, y ∈ X, x 6= y

}
< +∞,

where | · |Rm is the Euclidean norm in Rm (in the sequel we will often omit
the subscript Rm from this norm).

The following Proposition holds true.

Proposition 2.2.1. Let X be a bounded set of Rn and 0 < β < α ≤ 1 then

[u]C0,β(X) ≤ dα−β0 [u]C0,α(X) , (2.2.2)

where d0 is the diameter of X;

[u]C0,β(X) ≤
(

2 ‖u‖C0(X)

)1− β
α
(

[u]C0,α(X)

) β
α
. (2.2.3)

In particular we have

C0,α (X) ⊂ C0,β (X) . (2.2.4)

Proof. It suffices to observe that for x, y ∈ X, x 6= y, by (2.2.2), we have

|u(x)− u(y)|
|x− y|β

=
|u(x)− u(y)|
|x− y|α

|x− y|α−β ≤ [u]C0,α(X) d
α−β
0 .

Regarding (2.2.3), we first note that the case

[u]C0,α(X) = 0

is trivial. Let us assume, then,

[u]C0,α(X) 6= 0

and let r > 0 be chosen later. Let x, y ∈ X, x 6= y. If

|x− y| ≤ r,
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then

|u(x)− u(y)|
|x− y|β

≤ [u]C0,α(X) r
α−β.

If

|x− y| > r,

then

|u(x)− u(y)|
|x− y|β

≤ 2r−β ‖u‖C0(X) .

In any case, we have

[u]C0,β(X) ≤ r−β max
{
rα [u]C0,α(X) , 2 ‖u‖C0(X)

}
and, choosing

r =

(
2 ‖u‖C0(X)

[u]C0,α(X)

)1/α

,

we obtain (2.2.3). �

Remark 1. By using the Mean Value Theorem, it is easily shown that
if Ω is a bounded, convex open set of Rn then

C1
(
Ω
)
⊂ C0,β

(
Ω
)

(2.2.5)

and

[u]0,1,Ω ≤ ‖∇u‖C0(Ω) ,

where
‖∇u‖C0(Ω) = ‖|∇u|‖C0(Ω) .

Nevertheless, for a bounded open set Ω it is not necessarily the case
that the inclusion (2.2.5) holds. Let us consider, for instance, the following
example. Let

Ω =
{

(x, y) ∈ R2 : x ≤
√
|y|, x2 + y2 < 1

}
,

1 < β < 2,
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u(x, y) =


xβsgn(y), if x ∈ Ω, x > 0,

0, if x ∈ Ω, x ≤ 0.

We have u ∈ C1
(
Ω
)
, however if α ssatisfies β

2
< α ≤ 1 then

u /∈ C0,α
(
Ω
)
.

As a matter of fact, if x =
√
|y|, we get

|u (x, y)− u (x,−y)|
(2|y|)α

= 21−α|y|
β
2
−α → +∞, as y → 0.

�

Remark 2. The space C0,α
(
Ω
)
, where α ∈ (0, 1] and Ω is a bounded

open set, is not separable. Let us consider the case n = 1 and Ω = (0, 1) and
for any a ∈ (0, 1), let us define

ua(t) =


0, for t ∈ [0, a),

(t− a)α, for t ∈ [a, 1].

We have
‖ua − ub‖C0,α([0,1]) ≥ 1, ∀a, b ∈ [0, 1] a 6= b. (2.2.6)

We check (2.2.6). Let a, b ∈ [0, 1], a < b and let us denote

va,b = ua − ub.

We have
va,b(b) = ua(b)− ub(b) = ua(b) = (b− a)α

and
va,b(a) = ua(a)− ub(a) = 0.

Therefore

[ua − ub]C0,α([0,1]) = [va,b]C0,α([0,1] ≥
|va,b(b)− va,b(a)|
|b− a|α

= 1,

which implies (2.2.6). Finally, from the latter and from Proposition 2.1.3 it
follows that C0,α ([0, 1]) is not separable. �
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Theorem 2.2.2 (extension in C0,α). Let X be a bounded set of Rn and
u ∈ C0,α(X), α ∈ (0, 1], then there exists U ∈ C0,α (Rn) such that

U(x) = u(x), ∀x ∈ X, (2.2.7)

‖U‖C0(Rn) = ‖u‖C0(X) , (2.2.8)

[U ]C0,α(Rn) = [u]C0,α(X) . (2.2.9)

Proof. Let us denote

M = ‖u‖C0(X) , m = [u]C0,α(X)

and let us define the function

v(x) = sup
y∈X
{u(y)−m|x− y|α} , for x ∈ Rn.

We have

v(x) = u(x), ∀x ∈ X. (2.2.10)

We check (2.2.10). First note that we have trivially

u(x) ≤ v(x), ∀x ∈ X. (2.2.11)

On the other hand we have

u(y)− u(x) ≤ m|x− y|α, ∀x, y ∈ X ∀x ∈ X,

hence
u(y)−m|x− y|α ≤ u(x), ∀x, y ∈ X ∀x ∈ X.

Consequently
v(x) ≤ u(x), ∀x ∈ X.

By the latter and by (2.2.11) we get (2.2.10).
We also notice that

v(x) ≤M, ∀x ∈ Rn. (2.2.12)

Now, for any x ∈ Rn let us define

U(x) =


v(x), for |v(x)| ≤M,

−M, for v(x) < −M.
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Let us note that, by (2.2.12), U is defined throughout Rn. Let us note also
that if x ∈ X, then (2.2.10) gives (2.2.7) and

sup
X
|U(x)| = M.

We also have
sup
Rn
|U(x)| = M,

Concerning the latter, notice that, if |v(x)| ≤ M then U(x) = v(x), hence
|U(x)| ≤M and if v(x) < −M then |U(x)| = M .

It only remains to prove that U ∈ C0,α (Rn) and that (2.2.9) holds. Let,
then, x, y ∈ Rn be such that x 6= y and otherwise arbitrary. Let us suppose
that U(x) 6= U(y). For instance, let us assume

U(x) > U(y). (2.2.13)

Let us check that
0 < U(x)− U(y) ≤ v(x)− v(y). (2.2.14)

The following cases occur.
(a) v(x) < −M and |v(y)| ≤M ,
(b) v(x) < −M and v(y) < −M ,
(c) |v(x)| ≤M and |v(y)| ≤M ,
(d) |v(x)| ≤M and v(y) < −M .

Cases (a) and (b) cannot occur. As a matter of fact, in case (a) we would
have

U(x)− U(y) = −M − v(y) ≤ −M +M = 0,

that contradicts (2.2.13). In case (b) we would have

U(x)− U(y) = −M − (−M) = 0,

that contradicts (2.2.13).
In case (c) we have

U(x)− U(y) = v(x)− v(y).

Finally, in case (d) we have

U(x)− U(y) = v(x)− (−M) = v(x) +M < v(x)− v(y).

Therefore (2.2.14) holds true.
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We have

v(x)− v(y) = sup
z∈X
{u(z)−m|x− z|α} − sup

z∈X
{u(z)−m|y − z|α} ≤

≤ m sup
z∈X
{|y − z|α − |x− z|α} ≤

≤ m sup
ζ∈X
{(|y − x|+ |ζ|)α − |ζ|α} .

(2.2.15)

Now, let us denote by

ω(t) = tα, if t ∈ [0,+∞).

Since ω is concave, we have

ω(t+ h)− ω(t) ≤ ω(h)− ω(0) = ω(h), ∀t, h ∈ [0,+∞),

by the just obtained inequality, by (2.2.14) and (2.2.15) we get

|U(x)− U(y)| ≤ m|y − x|α (2.2.16)

and since we have proved (2.2.7), we get (2.2.9).
�

A more general version of Theorem 2.2.2, valid for uniformly continuous
functions, can be found in [65, Chapter 4].

Let us notice that if
u : X → Rm

is a Lipschitz continuous function, then, Theorem 2.2.2 implies that there
exists an extension

U : Rn → Rm,

such that

[U ]C0,1(Rn;Rm) ≤
√
m[u]C0,1(X;Rm).

Actually, this result can be improved. As a matter of fact, the following
Theorem of Kirszbraun holds true, for the proof of which we refer to [51,
cap. 7].

Theorem 2.2.3 (Kirszbraun). Let u : X → Rm be a Lipschitz continuous
function, where X ⊂ Rn, then there exists U ∈ C0,1 (Rn;Rm) such that

U = u, in X

and
[U ]C0,1(Rn;Rm) = [u]C0,1(X;Rm).
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Let Ω be a bounded open set of Rn, k ∈ N0 and α ∈ (0, 1], we denote by
Ck,α

(
Ω
)
the space of the functions u ∈ Ck

(
Ω
)
, satisfying[

∂βu
]
C0,α(Ω) < +∞, ∀β ∈ Nn

0 , |β| = k.

It is easily proven that Ck,α
(
Ω
)
, equipped with the norm

‖u‖Ck,α(Ω) = ‖u‖Ck(Ω) + [u]Ck,α(Ω) ∀u ∈ Ck
(
Ω
)
, (2.2.17)

is a Banach space, where

[u]Ck,α(Ω) =
∑
|β|=k

[
∂βu

]
C0,α(Ω) .

Sometimes, instead of the norm (2.2.17) we will consider the dimensionless
norm

‖u‖Ck,α(Ω) =
∑
|β|≤k

d
|β|
0 sup

Ω

|∂βu|+ dk+α
0 [u]Ck,α(Ω) .

where d0 is the diameter of Ω.
We define the space Ck,α

loc (Ω), k ∈ N0, 0 < α ≤ 1, as the space of functions
u ∈ C0(Ω) such that for every bounded open set ω b Ω (i.e. ω compact and
ω ⊂ Ω ) we have

u|ω ∈ Ck,α (ω) .

2.3 Review of measure theory and Lp spaces

In this Section, we give, for the convenience of the reader, the main definitions
and statements of the main theorems of the Measure Theory and of Lp spaces.
Some reference texts are [65], [68] (see also lecture notes [52] and [53]).

2.3.1 Measurable sets, measurable functions, positive
measures

Definition 2.3.1. Let X be a set andM be a family of subsets of X with
the following properties:

(i)X ∈M,
(ii) E ∈M =⇒ CE := X \ E ∈M,
(iii) Ej ∈M, j ∈ N =⇒

⋃
j∈NEj ∈M.

M is called a σ–algebra and the couple (X,M) is called a measurable
space.
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We will be interested almost exclusively in the case where X = Rn and
M consists of the Lebesgue measurable subsets of Rn.

Definition 2.3.2. Let (X,M) be a measurable spoce and Y be a topologic
space. We say that the function

f : X → Y,

is a measurable function, provided we have

f−1(A) ∈M, for every open subset A of Y.

Let us recall that if (X,M) is a measurable space, Y , Z two topological
spaces, f : X → Y is a measurable function and g : Y → Z is a continuous
function, then g ◦ f : X → Z is a measurable function.

We denote by R = R∪{−∞,+∞}, the extended real line equipped with
its usual topology.

The following theorems hold true.

Theorem 2.3.3. Let (X,M) be a measurable space and f : X → R. Then
f is a measurable function if and only if for any t ∈ R one of the following
level sets

f−1((t,+∞]), f−1([t,+∞]), f−1([−∞, t)), f−1([−∞, ])),

is a measurable set.

Theorem 2.3.4. Let (X,M) be a measurable space. Then we have
(i) If f, g : X → R are two measurable functions and f + g is well

defined, then f + g e λf are measurable functions (we use the convention
that 0 · (±∞) = 0).

(ii) Let {fk} be a sequence of measurable functions, then

sup
k∈N

fk, inf
k∈N

fk, lim inf
k→∞

fk, lim sup
k→∞

fk,

are measurable functions.

We define as simple function on the measurable space X a function

s : X → R

that assumes a finite set of values.
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Theorem 2.3.5. Let (X,M) be a measurable space and f : X → R be a
measurable function, then there exists a sequence {sk} of simple functions
such that

lim
k→∞

sk(x) = f(x), ∀x ∈ X.

If f is bounded then {sk} uniformly converges to f .

Definition 2.3.6. Let (X,M) a measurable space. We say that

µ :M→ [0,∞],

is a positive measure provided that we have
(i) µ(∅) = 0;
(ii) if {Ej}j∈N is a countable family of measurable sets such that

Ei ∩ Ej = ∅, for i 6= j,

then we have

µ

(
∞⋃
j=1

Ej

)
=
∞∑
j=1

µ (Ej) .

The tern (X,M, µ) is called a measure space .

If E is a Lebesgue measurable set of Rn, we will denote by |E| its measure.

The following theorems hold true.

Theorem 2.3.7. Let (X,M, µ) be a measure space. The following properties
hold true.

(i) if {Ej}1≤j≤N is a finite family of measurable sets such that Ei∩Ej = ∅,
for i 6= j, then

µ

(
N⋃
j=1

Ej

)
=

N∑
j=1

µ (Ej) ;

(ii) if E ⊂ F and E,F ∈M, then µ(E) ≤ µ(F );
(iii) if {Ej}j∈N is a countable family of measurable sets such that Ej ⊂

Ej+1, for every j ∈ N, then

lim
j→∞

µ (Ej) = µ

(
∞⋃
j=1

Ej

)
;
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(iv) if {Ej}j∈N is a countable family of measurable sets such that

Ej+1 ⊂ Ej,

for every j ∈ N, then

lim
j→∞

µ (Ej) = µ

(
∞⋂
j=1

Ej

)
.

Theorem 2.3.8. Let E be a Lebesgue measurable subset of Rn whose measure
be finite. Let {fj} be a sequence of measurable functions such that there exists
the limit

lim
j→∞

fj(x)

and it is finite almost everywhere. Then, for every ε > 0 there exists a
compact set K ⊂ E which satisfies |E \K| < ε and

fj → f, as j →∞, uniformly on K.

Theorem 2.3.9 (Lusin). Let E be a Lebesgue mesurable subset of Rn which
has finite measure, and let f : E → R such that

|f(x)| < +∞, a.e. x ∈ E.

Then f is a measurable function in E if and only if for each ε > 0 there exists
K ⊂ E, K closed, such that |E \K| < ε and f|K is a continuous function.

Now, let us define the integral over the measure space (X,M, µ).
Let s be a nonnegative simple function

s(x) =
N∑
i=1

cjχEj ,

where {Ej}1≤j≤N is a finite family of measurable set pairwise disjonts and
cj ≥ 0, j = 1, · · · , N . If E ∈M, we set by definition∫

E

s(x)dµ =
N∑
i=j

cjµ (E ∩ Ej) ,
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in which the convention 0 ·∞ = 0 occurs. We call
∫
E
s(x)dµ "the integral of

s over E".

Let us consider the measurable function

f : X → [0,+∞].

We call the Lebesgue integral of f with respect to the measure µ the
following element of R∫

E

f(x)dµ := sup

{∫
E

s(x)dµ : s simple function, 0 ≤ s ≤ f in E
}
.

We say that f a summable function over E if∫
E

f(x)dµ < +∞.

Theorem 2.3.10. Let (X,M, µ) be a measure space and let f, g : X →
[0,+∞] E,F ∈M. The following properties hold true:

(i)
∫
E
fdµ =

∫
X
fχEdµ;

(ii) if f ≤ g in E then
∫
E
fdµ ≤

∫
E
gdµ;

(iii) if E ⊂ F then
∫
E
fdµ ≤

∫
F
fdµ;

(iv) if f = 0 in E then
∫
E
fdµ = 0;

(v) if µ(E) = 0 then
∫
E
fdµ = 0.

Theorem 2.3.11 (Monotone Convergence). Let (X,M, µ) be a measure
space. Let {fj} be a sequence of nonnegative measurable functions which
satisfy

fj(x) ≤ fj+1(x), ∀x ∈ X, ∀j ∈ N.
Then ∫

X

lim
j→∞

fj(x)dµ = lim
j→∞

∫
X

fj(x)dµ.

Theorem 2.3.12 (Fatou). Let (X,M, µ) be a measure space. Let {fj} be
a sequence of nonnegative measurable functions, then we have∫

X

lim inf
j→∞

fj(x)dµ ≤ lim inf
j→∞

∫
X

fj(x)dµ.
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Theorem 2.3.13. Let (X,M, µ) be a measure space and let

f, g : X → [0,+∞]

be two measurable functions, then∫
X

(f + g)dµ =

∫
X

fdµ+

∫
X

gdµ;∫
X

λfdµ = λ

∫
X

fdµ, ∀λ ∈ R,

with the convention 0 ·
∫
X
fdµ = 0.

Theorem 2.3.14. Let (X,M, µ) be a measure space and let {fj} be a se-
quence of nonnegative measurable functions, then we have∫

X

∞∑
j=1

fjdµ =
∞∑
j=1

∫
X

fjdµ.

Furthermore, recall that if

f : X → [0,+∞],

is a measurable function and defining

ν(E) =

∫
E

fdµ, ∀E ∈M,

ν turns out to be a measure on X.

Definition 2.3.15. Let (X,M, µ) be a measure space and let

f : X → R.

We say that f is summable over X provided∫
X

|f |dµ < +∞.

In such a case we set ∫
X

fdµ =

∫
X

f+dµ−
∫
X

f−dµ,

where f+ = max{f, 0}, f+ = −min{f, 0}. We denote by L1(X) the class of
summable functions over X.
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Theorem 2.3.16. Let (X,M, µ) be a measure space and let f ∈ L1(X),
then

µ ({x ∈ X : |f(x)| = +∞}) = 0.

Theorem 2.3.17. L1(X) is a vector space and

L1(X) 3 f →
∫
X

fdµ ∈ R,

is a linear map. Furthermore, if f, g ∈ L1(X) then

max{f, g} ∈ L1(X)

and ∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

|f |dµ, ∀f ∈ L1(X).

Theorem 2.3.18. If f ∈ L1(X) then

∀ε > 0 ∃δ > 0 such that ∀E ∈M and µ(E) < δ we have
∫
E

|f |dµ < ε.

Theorem 2.3.19 (Dominated Convergence). Let {fj} be a sequence of
measurable functions in L1(X). Let us assume

(i)
lim
j→∞

fj(x) = f(x), a.e. x ∈ X,

(ii) there exists g ∈ L1(X) such that

|fj(x)| ≤ g(x), a.e. x ∈ X, j ∈ N.

Then f ∈ L1(X) and

lim
j→∞

∫
X

|fj − f | dµ = 0,

lim
j→∞

∫
X

fjdµ =

∫
X

fdµ.
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The Monotone Convergence Theorem and the Dominated Convergence
Theorem give that if {fj} is a sequence of measurable functions in L1(X)
satisfying

∞∑
j=1

∫
X

|fj| dµ < +∞,

then
∑∞

j=1 fj converges almost everywhere to a function of L1(X) and

∞∑
j=1

∫
X

fjdµ =

∫
X

∞∑
j=1

fjdµ.

Theorem 2.3.20 (derivation under the integral sign). Let (X,M, µ)
be a measure space and let A be an open set of Rn . Let

F : A×X → R

satisfy
(i) F (x, ·) ∈ L1(X) for every x ∈ A,
(ii) F (·, y) ∈ C1(A) for almost every y ∈ X.
If, for any k = 1, · · · , n, there exist gk ∈ L1(X), gk ≥ 0 such that

|∂xkF (x, y)| ≤ gk(y), ∀y ∈ X, ∀x ∈ A,

then the function

G(x) :=

∫
X

F (x, y)dµ(y), x ∈ A

is of C1(A) class and we have

∂xkG(x) =

∫
X

∂xkF (x, y)dµ(y), ∀x ∈ A, k = 1, · · · , n.

Theorem 2.3.21 (Fubini–Tonelli). Let

f : Rn × Rm → R

be a measurable function. We have
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(i) If f ≥ 0 then: f(x, ·) is measurable for almost every x ∈ Rn, in
addition the function

Rn 3 x→
∫
Rm

f(x, y)dy ∈ [0,+∞],

is measurable over Rn and we have∫
Rn

(∫
Rm

f(x, y)dy

)
dx =

∫
Rn+m

f(x, y)dxdy. (2.3.1)

(ii) If f ∈ L1(Rn+m) then f(x, ·) ∈ L1(Rm) for almost every x ∈ Rn,
furthermore ∫

Rm
f(·, y)dy ∈ L1(Rn)

and (2.3.1) holds true.

2.3.2 The Lp spaces

Let p ∈ [1,+∞) and (X,M, µ) be a measurable space. We say that f ∈
Lp(X) if f is measurable and |f |p ∈ L1(X). Lp(X) is a vector space. We
define Lp(X) as the quotient space (Lp(X)/ ∼) where "∼" is the equivalence
relation on Lp(X) defined as follows: f ∼ g if and only if f = g almost
everywhere. We equip Lp(X) with the norm

‖f‖Lp(X) =

(∫
X

|f |pdµ
)1/p

.

We say that f ∈ L∞(X) provided

ess sup |f | = inf {t ∈ R : µ({|f(x)| > t}) = 0} < +∞.

We define L∞(X) similarly as we have previously defined Lp(X), p < +∞.
We equip L∞(X) with the norm

‖f‖L∞(X) = ess sup |f |.

Minkowski inequality. If p ∈ [1,+∞], f, g ∈ Lp(X) then

‖f + g‖Lp(X) ≤ ‖f‖Lp(X) + ‖g‖Lp(X) .
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Hölder inequality. Let p ∈ [1,+∞], let us denote by p′ (the conjugate of
p) the element of [1,+∞] satisfying

1

p
+

1

p′
= 1.

If f ∈ Lp(X) and g ∈ Lp′(X) then fg ∈ L1(X) and

‖fg‖L1(X) ≤ ‖f‖Lp(X) ‖g‖Lp′ (X) .

If µ(X) < +∞, we have

p2 ≥ p1 =⇒ Lp2(X) ⊂ Lp1(X)

and the function

p→
(

1

µ(X)

∫
X

|f |pdµ
)1/p

,

turns out to be an increasing function (just apply Hölder inequality).
Moreover

lim
p→∞
‖f‖Lp(X) = ‖f‖L∞(X) .

Theorem 2.3.22. Let (X,M, µ) be a measure space and let p ∈ [1,+∞].
Then Lp(X) is a Banach space. If p = 2, L2(X) is a Hilbert space
equipped with the scalar product

(f, g)L2(X) =

∫
X

fgdµ, ∀f, g ∈ L2(X).

We say that the measure space (X,M, µ) is σ–finite, if there exists a
countable family {Xj}j∈N ⊂M such that

X =
⋃
j∈N

Xj, and µ(Xj) < +∞.

Theorem 2.3.23. Let (X,M, µ) be a σ–finite measure space and let
p ∈ [1,+∞), then F is a bounded linear functional from Lp(X) to R if and
only if there exists g ∈ Lp′(X) which satisfies

F (f) =

∫
X

gfdµ, ∀f ∈ Lp(X).
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Density and separability in Lp. Let E ⊂ Rn be a Lebesgue measurable
set.

The following theorems hold true.

Theorem 2.3.24 (density of simple functions in Lp(E), 1 ≤ p ≤ ∞).
If f ∈ Lp(E) and p ∈ [1,+∞], then for every ε > 0 there exists a simple
function s such that

‖f − s‖Lp(E) < ε.

Theorem 2.3.25 (density of C0
0(E) in Lp(X), 1 ≤ p <∞). If f ∈ Lp(E)

and p ∈ [1,+∞), then for every ε > 0 there exists g ∈ C0
0 (E), such that

‖f − g‖Lp(E) < ε.

Theorem 2.3.26. If p ∈ [1,+∞), then Lp(X) is a separable space. L∞(X)
is not a separable space.

Theorem 2.3.27. If p ∈ [1,+∞) and f ∈ Lp(Rn) then

lim
δ→0

(
sup
|h|<δ

∫
Rn
|f(x− h)− f(x)|pdx

)
= 0.

Reflexivity.
Let X be a normed space, let us denote by X ′ the space of the bounded

linear functionals from X to R. As it is well–known, X ′ is called the dual of
X and X ′ turns out a Banach space (whether or not X is a Banach space)
equipped with the norm

‖f‖X′ = sup {〈f, u〉 : ‖u‖X ≤ 1} , ∀f ∈ X ′,
where

〈f, u〉 = f(u), ∀u ∈ X,
〈·, ·〉 is said the "duality bracket of of X ′ and X".

Definition 2.3.28. Let X be a Banach space. We say that X is a riflexive
space provided

∀v ∈ (X ′)′ ∃u ∈ X, such that 〈v, f〉 = 〈f, u〉 ∀f ∈ X ′.



2.3. Review of measure theory and Lp spaces 49

Keep in mind that if u ∈ X then the map

X ′ 3 f → ju(f) := 〈f, u〉,

is a bounded linear functional, hence ju ∈ (X ′)′ ju ∈ (X ′)′ and it can prove
(by the Hanh–Banach Theorem [12]) that

‖ju‖(X′)′ = ‖u‖X , ∀u ∈ X. (2.3.2)

Therefore, it is defined the map j

X 3 u→ ju ∈ (X ′)′.

The map j is injective (applying, again, Hanh–Banach Theorem ). Conse-
quently, j is an embedding and, by (2.3.2) it is an isometry. If X is a reflexive
space then j is also suriective and, by the Open Map Theorem, j−1 is con-
tinuous too. Ultimately, if X is a reflexive space, we can identify (X ′)′ with
X by means of j. Recall that the Hilbert spaces are reflexive.

Definition 2.3.29. Let X be a Banach space and let {uk} be a sequence of
X. We say tat {uk} weakly converges to u ∈ X and we write

uk ⇀ u, as k →∞, (or {uk}⇀ u, ),

provided
〈f, uk〉 → 〈f, u〉, as k →∞, ∀f ∈ X ′.

If a weak limit exists, then it is unique (it can be again proved by Hanh–
Banach Theorem).

Proposition 2.3.30. Let X be a Banach space and {uk} be a sequence of
X.

We have
(i) if {uk} weakly converges then it is bounded;
(ii) if {uk} weakly converges to u then

‖u‖X ≤ lim inf
k→∞

‖uk‖X .

Proof. Let us prove (i), since for every f ∈ X ′, {〈f, uk〉} is a converging
sequence of R, it is bounded, that is

sup
k∈N
|〈f, uk〉| ≤ C(f) < +∞, ∀f ∈ X ′.
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Now, applying the Banach–Steinhauss Theorem (see [53]) to the map

X ′ 3 f → Tk(f) := 〈f, uk〉 ∈ R, k ∈ N

we have
sup
k∈N
‖uk‖X = sup

k∈N
‖Tk‖(X′)′ < +∞.

Let us prove (ii). Since {uk}⇀ u, k →∞,, by (i) we get

sup
k∈N
‖uk‖X < +∞.

Moreover, for every f ∈ X ′, we have

〈f, u〉 = lim
k→∞
〈f, uk〉 = lim inf

k→∞
〈f, uk〉 ≤

≤ lim inf
k→∞

‖f‖X′ ‖uk‖X =

= ‖f‖X′ lim inf
k→∞

‖uk‖X .

Therefore

‖u‖X ≤ lim inf
k→∞

‖uk‖X .

�

We recall

Theorem 2.3.31 (Banach–Alaoglu). Let X be a reflexive Banach and let
{uk} be a bounded sequence of X. Then there exists a subsequence

{
ukj
}

which weakly converges.

Theorem 2.3.32. Let E be a measurable subset of Rn. Then, Lp(E) is a
reflexive space, for every p ∈ (1,+∞).

Convolution.
Let f, g be two measurable functions defined in Rn with values in R. Let

x ∈ Rn, if the function of the variable y, f(x− y)g(y) is summable, we set

(f ? g)(x) =

∫
Rn
f(x− y)g(y)dy.

If the function (f ? g)(x) is defined for almost every x ∈ Rn, we will call it
the convolution product (or, simply, the convolution) of f and g.
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Theorem 2.3.33 (the Young inequality). Let f ∈ Lp(Rn) and g ∈
Lq(Rn), where

1

p
+

1

q
≥ 1,

then f ? g ∈ Lr(Rn) where

r =
1

p
+

1

q
− 1

and we have

‖f ? g‖Lr(Rn) ≤ ‖f‖Lp(Rn) ‖g‖Lq(Rn) .

Let η ∈ C∞0 (Rn) satisfy
(i) supp η ⊂ B1,
(ii) η ≥ 0

(iii)
∫
Rn η(x)dx = 1.

η is named a mollifier . For instance, let

η̃(s) =


cn exp

{
− 1

1−4s2

}
, for s ∈ [0, 1/2),

0, otherwise,

where

cn =

(∫ 1/2

0

sn−1 exp

{
− 1

1− 4s2

}
ds

)−1

,

then
η(x) = η̃(|x|),

is a mollifier.

Here and in the sequel we set, for ε > 0,

ηε(x) = ε−nη
(
ε−1x

)
.

Theorem 2.3.34. (i) if f ∈ Lp(Rn), p ∈ [1,+∞), then

ηε ? f → f, as ε→ 0, in Lp(Rn).

(ii) If f is uniformly continuous and bounde in Rn, then

ηε ? f → f, as ε→ 0 uniformly in Rn.
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Remark. Let E be a measurable set of Rn, f ∈ Lp(E), where p ∈
[1,+∞), then

‖ηε ? (fχE)− f‖Lp(E) → 0, as ε→ 0,

where

ηε ? f = ηε ? (fχE) =

∫
E

ηε(x− y)f(y)dy.

�

Theorem 2.3.35. Let Ω be an open set of Rn, f ∈ Lp(Ω), where p ∈ [1,+∞),
then

ηε ? f ∈ C∞(Ω),

∂α (ηε ? f) = (∂αηε) ? f

and
ηε ? f → f, in Lp(Ω), as ε→ 0.

Hence C∞(Ω) is dense in Lp(Ω).

We also have

Theorem 2.3.36 (density of C∞0 (Ω) in Lp(Ω), 1 ≤ p < +∞). Let Ω be
an open set of Rn, p ∈ [1,+∞), then C∞0 (Ω) is dense in Lp(Ω).

Let Ω be an open set of Rn and p ∈ [1,+∞]. We denote by Lploc(Ω) the
space of measurable functions defined on Ω such that for every compact set
K we have f|K ∈ Lp(K). Let {uk} be a sequence of Lploc(Ω), we write

uk → u, as k →∞, in Lploc(Ω),

provided u ∈ Lploc(Ω) and for every compact K ⊂ Ω, we have

(uk)|K → uK , as k →∞, in Lp(K).

Let us define, for any ε > 0,

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} .

If f ∈ L1
loc(Ω), then (ηε ? f) (x) is defined for every x ∈ Ωε, and we may

rephrase theorems 2.3.34 and 2.3.35 as follows.
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Theorem 2.3.37. Let Ω be an open set of Rn and f ∈ L1
loc(Ω). Then

(i) ηε ? f ∈ C∞(Ωε);
(ii) if f ∈ C0(Ω) then ηε ? f → f , uniformly on the compact sets of Ω as

ε→ 0;
(iii) if p ∈ [1,+∞) and f ∈ Lploc(Ω) then

ηε ? f → f, as ε→ 0, in Lploc(Ω).

Let f be a measurable function defined on Rn and let

O = {A ⊂ Rn : A open and f = 0 in A a.e. } ,
the set

suppf = Rn \
⋃
A∈O

A

is named the essential support of f . Hereafter, if there is no ambiguity,
instead of "essential support of f" we will simply say "support of f". We
recall that then the essential support of a function if u ∈ C0 (Rn) is equal to
the support defined in Section 2.1.

2.4 Partition of unity
Let us start by the following

Lemma 2.4.1. Let Ω be an open set of Rn and K be a compact set contained
in Ω, then there exists ϕ ∈ C∞0 (Rn) such that supp ϕ ⊂ Ω, 0 ≤ ϕ ≤ 1 and
ϕ = 1 in a neighborhood of K.

Proof. For any ε > 0, let us denote by

K(ε) = {x ∈ Rn : dist(x,K) ≤ ε} .

Let ε0 and ε1 satisfy

0 < ε0 < ε1 < ε0 + ε1 < dist (K,Rn \ Ω) .

Let us define

ϕ(x) =

∫
K(ε1)

ηε0(x− y)dy.

It can be easily checked that ϕ ∈ C∞0 (Rn),

supp ϕ ⊂ K(ε0+ε1) ⊂ Ω
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and
ϕ(x) = 1, ∀x ∈ K(ε0).

�

Lemma 2.4.2. Let K be a compact set of Rn and let V1, V2, · · · , Vl be some
open sets of Rn satisfying

K ⊂
l⋃

j=1

Vj.

Then there exist the functions ζ1, · · · , ζl ∈ C∞0 (Rn) which satisfy

supp ζj ⊂ Vj, j = 1, · · · , l,

0 ≤ ζj, j = 1 · · · , l;
l∑

j=1

ζj ≤ 1, on Rn

l∑
j=1

ζj = 1, in a neighborhood of K.

Proof. Let us denote, for any ε > 0 and V ⊂ Rn,

Vε = {x ∈ V : dist (x, ∂V ) > ε} .

We have

K ⊂
⋃
ε>0

l⋃
j=1

Vε,j

and by the compactness of K it follows that there exists ε0 > 0 such that

K ⊂
l⋃

j=1

Vε0,j ⊂
l⋃

j=1

Vε0,j ⊂
l⋃

j=1

Vj,

(because V ε0,j ⊂ Vj). Hence, denoting

Kj = K ∩ Vε0.j , j = 1, · · · , l

we have immediately that Kj is a compact set, Kj ⊂ Vj, for any j = 1, · · · , l
and

K ⊂
l⋃

j=1

Kj.
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By Lemma 2.4.1, we derive that for every j ∈ {1, · · · , l} there exist
ϕj ∈ C∞0 (Vj) satisfying

0 ≤ ϕj ≤ 1, ϕj = 1, in a neighborhood, Wj, of Kj.

Now, definining

ζ1 = ϕ1, ζ2 = ϕ2 (1− ϕ1) , · · · , ζj = ϕj (1− ϕ1) · · · (1− ϕj−1) ,

we get

l∑
j=0

ζj = ϕ1 + ϕ2 (1− ϕ1) + · · ·+ ϕl (1− ϕ1) · · · (1− ϕl−1) =

= 1− (1− ϕ1) + ϕ2 (1− ϕ1) + · · ·+ ϕl (1− ϕ1) · · · (1− ϕl−1) =

= 1− (1− ϕ1) (1− ϕ2) + ϕ3 (1− ϕ1) (1− ϕ2) + · · ·+ ϕl (1− ϕ1) · · · (1− ϕl−1) =

= 1− (1− ϕ1) (1− ϕ2) · · · (1− ϕl) .

Therefore, if

x ∈
l⋃

j=1

Wj,

there exists j ∈ {1, · · · , l} such that x ∈ Wj, hence ϕj(x) = 1 and

l∑
j=0

ζj(x) = 1, ∀x ∈
l⋃

j=1

Wj.

Since
⋃l
j=1Wj is a neighborhood of K, the Lemma is proved. �

In what follows, we will say that the set of functions ϕ1, · · · , ϕl is a
partition of the unity subordinate to the covering {Vj}1≤j≤l.

Theorem 2.4.3 (partition of unity). Let Ω be an open set of Rn and let
V1, V2, · · · , Vl be open sets of Rn satisfying

∂Ω ⊂
l⋃

j=1

Vj.

Then there exist the functions ζ0, ζ1, · · · , ζl ∈ C∞(Rn) such that

(ζ0)|Ω ∈ C∞0 (Ω),
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supp ζ0 ⊂ Rn \ ∂Ω; supp ζj ⊂ Vj, j = 1, · · · , l,

l∑
j=0

ζj = 1, on Rn; 0 ≤ ζj ≤ 1, j = 0, 1 · · · , l.

Proof. Let us consider a partition of unity subordinate to the covering,
{Vj}1≤j≤l, of ∂Ω. Let us denote by

Oj = suppϕj, j = 1, · · · , l

and set

V0 = Rn \
l⋃

j=1

Oj.

Let

ζ0 = 1−
l∑

j=1

ζj.

We get trivially ζ0 ∈ C∞0 (Rn) and

l∑
j=0

ζj(x) = 1, ∀x ∈ Rn,

supp ζ0 ⊂ Rn \ ∂Ω.

Moreover, by Lemma 2.4.2 there exists an open neighborhood, U , of ∂Ω such
that

l∑
j=1

ζj(x) = 1, ∀x ∈ U .

Hence
ζ0(x) = 0, ∀x ∈ U .

Therefore
supp(ζ0)|Ω ⊂ Ω \ U ⊂ Ω,

this implies
(ζ0)|Ω ∈ C∞0 (Ω)

concluding the proof. �

Remark. By Theorem 2.4.3 it is evident that V0 ∩ Ω, V1, · · · , Vl is a
covering of Ω and (ζ0)|Ω, ζ1, · · · , ζl is a partition of the unity subordinate to
that covering. �
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2.5 The Lebesgue differentiation Theorem
In this Section we prove the following

Theorem 2.5.1 (Lebesgue differentiation). If f ∈ L1
loc (Rn) then

lim
r→0
−
∫
Br(x)

f(y)dy = f(x), a.e. x ∈ Rn, (2.5.1)

where
−
∫
Br(x)

f(y)dy =
1

|Br(x)|

∫
Br(x)

f(y)dy.

In order to prove Theorem 2.5.1 we need some preliminary lemmas and
propositions. We start by

Lemma 2.5.2 (Covering). Let E be a Lebesgue measurable subset of Rn

and let B be a family of balls of Rn satisfying

E ⊂
⋃
B∈B

B.

and,
sup
B∈B

d(B) < +∞,

where d(B) is the diameter of B. Then there exists a countable (or finite)
family, {Bk}k∈Λ ⊂ B which satisfies

Bj ∩Bk = ∅, for j 6= k, j, k ∈ Λ

and ∑
k∈Λ

|Bk| ≥ 5−n|E|.

Proof of the Lemma. Firstly we construct the family B0 := {Bk}k∈Λ.
Let B1 ∈ B satisfy

d (B1) ≥ 1

2
sup {d(B) : B ∈ B}

and set

d1 = sup {d(B) : B ∈ B, B ∩B1 = ∅} < +∞.

Let us consider the set
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F1 =

{
B ∈ B : B ∩B1 = ∅, d(B) ≥ 1

2
d1

}
.

If F1 = ∅, then we choose B0 := {B1}; otherwise, if F1 6= ∅, we choose B2 ∈
F1 and we continue the process. Let us suppose we have chosen B1, · · · , Bi,
let us consider the family

Fi =

{
B ∈ B : B ∩

i⋃
j=1

Bj = ∅, d(B) ≥ 1

2
di

}
,

where

di = sup

{
d(B) : B ∈ B, B ∩

i⋃
j=1

Bj = ∅

}
.

If Fi = ∅, then we choose B0 := {B1, · · · , Bi}; otherwise, if Fi 6= ∅, then we
choose Bi+1 ∈ Fi as above and continue the process. All in all, we construct
a finite or infinite, countable family, {Bi}i∈Λ ⊂ B such that

Bj ∩Bk = ∅, for j 6= k, j, k ∈ Λ

and

d (Bi) ≥
1

2
sup

{
d(B) : B ∈ B, B ∩

i−1⋃
j=1

Bj = ∅

}
, for i ≥ 2.

Let us consider the case in which B0 is finite. Let

B0 = {B1, · · · , Bk} . (2.5.2)

Let us denote by

A =

{
B ∈ B : B ∩

k⋃
j=1

Bj = ∅

}
,

C = B \ A =

{
B ∈ B : B ∩

k⋃
j=1

Bj 6= ∅

}
,

A =
⋃
B∈A

B,

C =
⋃
B∈C

B.
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We have
E ⊂

⋃
B∈B

B = A ∪ C. (2.5.3)

Claim. We have
A = ∅.

Proof of Claim. We argue by contradiction. Let us assume that A 6= ∅.
Let us first observe that it cannot occur that

d(B) <
1

2
sup

{
d(B) : B ∈ B, B ∩

k⋃
j=1

Bj = ∅

}
, ∀B ∈ A

otherwise we would have

0 < sup

{
d(B) : B ∈ B, B ∩

k⋃
j=1

Bj = ∅

}
≤

≤ 1

2
sup

{
d(B) : B ∈ B, B ∩

k⋃
j=1

Bj = ∅

}
,

(2.5.4)

Which is evidently absurd.
Therefore, there exists B̃ ∈ A such that

d
(
B̃
)
≥ 1

2
sup

{
d(B) : B ∈ B, B ∩

k⋃
j=1

Bj = ∅

}
.

In particular, we have B̃ /∈ {B1, · · · , Bk} and, consequently, the process of
construction of B0 does not stop, but we had assumed the opposite (i.e., B0

finite family consisting of k elements) and thus we have a contradiction.

By what is proved in the Claim and by (2.5.3), we have

E ⊂ C. (2.5.5)

Now, let us prove

E ⊂
k⋃
j=1

B∗j , (2.5.6)

where B∗j denotes the ball having the same center as Bj with radius equal to
5 times the radius of Bj. Let x ∈ E, then (2.5.5) implies that there exists
B̂ ∈ B satisfy

B̂ ∩
k⋃
j=1

Bj 6= ∅.
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Let j0 ∈ {1, · · · , k} such that

x ∈ B̂,

B̂ ∩Bj0 6= ∅

and

B̂ ∩
j0−1⋃
j=1

Bj = ∅,

(if j0 = 1,
⋃j0−1
j=1 Bj is the empty set). By the third relationship we have

d (Bj0) ≥ 1

2
d
(
B̂
)
.

By the latter and by B̂ ∩Bj0 6= ∅ we easily obtain

B̂ ⊂ B∗j0 .

Hence

x ∈
k⋃
j=1

B∗j ,

and (2.5.6) is proved. Moreover we have

|E| ≤
k∑
j=1

∣∣B∗j ∣∣ = 5n
k∑
j=1

|Bj| .

Now let us consider the case where B0 is infinite. Hence, in such a case
we have B0 = {Bk}k∈N. If

∞∑
k=1

|Bk| = +∞,

there is nothing to prove. Let us assume that

∞∑
k=1

|Bk| < +∞,

which implies
lim
k→∞

d (Bk) = 0.

If B̃ ∈ B and
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k0 = min

{
j ∈ N : d (Bj+1) <

1

2
d
(
B̃
)}

, (2.5.7)

then

B̃ ∩
k0⋃
i=1

Bi 6= ∅. (2.5.8)

To prove (2.5.8) it suffices to notice that if it were

B̃ ∩
k0⋃
i=1

Bi = ∅,

we would have

d (Bk0+1) ≥ 1

2
sup

{
d(B) : B ∈ B, B ∩

k0⋃
j=1

Bj = ∅

}
≥ 1

2
d
(
B̃
)
,

which contradicts (2.5.7).
Since (2.5.8) holds true, we set

j0 = min
{
j ∈ {1, · · · , k0} : Bj ∩ B̃ 6= ∅

}
(2.5.9)

obtaining

B̃ ∩
j0−1⋃
j=1

Bj = ∅.

Hence (by (2.5.9) and by the definition of B0)
B̃ ∩Bj0 6= ∅,

d (Bj0) ≥ 1
2
d
(
B̃
)
.

From which it follows that for every B ∈ B there exists Bj0 ∈ B0 such that
B ⊂ B∗j0 . Therefore, arguing as in the finite case, we have

E ⊂
⋃
B∈B

B =
∞⋃
j=1

B∗j

and by the latter the thesis follows. �
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Now we introduce the notion of maximal function. Let f ∈ L1 (Rn),
the following function is called the maximal function associated to f

M(f)(x) = sup
r>0

1

|Br(x)|

∫
Br(x)

|f(y)|dy, ∀x ∈ Rn. (2.5.10)

Let us observe that M(f) is a measurable function. More precisely, the
following Proposition holds true

Proposition 2.5.3. If f ∈ L1 (Rn) then M(f) is a lower semicontinuous
function.

Proof. If f is identically 0, we have M(f) ≡ 0. Let us assume that f is
not identically 0. Hence

M(f)(x) > 0, ∀x ∈ Rn. (2.5.11)

Fix t ≥ 0 and let us prove that

A = {x ∈ Rn : M(f)(x) > t}

is an open set.
In the case where t = 0, we have A = Rn. In the case where t > 0, let

x0 ∈ A and 0 < ε < M(f)(x0) − t. By the definition of M(f), there exists
rε > 0 such that

1

|Brε(x0)|

∫
Brε (x0)

|f(y)|dy > M(f)(x0)− ε > t.

Now, let 0 < η < M(f)(x0) − t − ε. Since f ∈ L1 (Rn), there exists δ > 0
such that if |x0 − x| < δ then∣∣∣∣∫

Brε (x0)

|f(y)|dy −
∫
Brε (x)

|f(y)|dy
∣∣∣∣ < η |Brε| .

Hence

M(f)(x) ≥ 1

|Brε(x)|

∫
Brε (x)

|f(y)|dy >

>
1

|Brε(x0)|

∫
Brε (x0)

|f(y)|dy − η >

> M(f)(x0)− ε− η > t,

which implies
Bδ(x0) ⊂ A.
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Therefore A is open. �

Lemma 2.5.4. Let f ∈ L1 (Rn) and M(f) its maximal function, then

|{x ∈ Rn : M(f)(x) > t}| ≤ 5n

t

∫
Rn
|f(y)|dy, (2.5.12)

Proof. Set
Et = {x ∈ Rn : M(f)(x) > t} .

If x ∈ Et, then M(f)(x) > t. Hence there exists rx > 0 such that∫
Brx (x)

|f(y)|dy > t |Brx(x)| .

For the sake of brevity, set Bx = Brx(x) so that we have

1

t

∫
Bx

|f(y)|dy > |Bx| . (2.5.13)

Now, we have trivially that {Bx}x∈Et is a covering of Et; moreover (2.5.13)
and f ∈ L1 (Rn) give

sup
x∈Et
|Bx| < +∞.

Thus, the assumptions of Lemma 2.5.2 are satisfied and therefore there exists
a finite or countable, pairwise disjoint family of balls, {Bk}k∈Λ , such that∑

k∈Λ

|Bk| ≥ 5−n|Et|.

Now, recalling that Bk ∩Bj = ∅, for any j 6= k, we obtain∫
Rn
|f(y)|dy ≥

∫
⋃
k∈ΛBk

|f(y)|dy =

=
∑
k∈Λ

∫
Bk

|f(y)|dy ≥

≥ t
∑
k∈Λ

|Bk| ≥

≥ 5−nt|Et|.
Therefore (2.5.12) is proved. �

Remark 1. The function M(f) may take the value +∞, however it is
almost everywhere finite. As a matter of fact, by Lemma 2.5.4 we get
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|{x ∈ Rn : M(f)(x) = +∞}| ≤ |{x ∈ Rn : M(f)(x) > t}| ≤

≤ 5n

t

∫
Rn
|f(y)|dy, ∀t > 0

hence, passing to the limit as t that goes to +∞, we have

|{x ∈ Rn : M(f)(x) = +∞}| = 0.

�

Remark 2. Inequality (2.5.12), apart from the value of the constant 5n,
cannot be improved. To show this it suffices to consider functions
f ∈ L1 (Rn) which approximate the Dirac measure concentrated at 0. For
instance

fε =
χBε
|Bε|

.

Proceeding formally (the reader takes care of the details), we consider f =
δ(x) (the Dirac delta). For this choice, we have

M(f)(x) =
1

cn|x|n
,

where cn is the measure of unit ball of Rn. Therefore

|{x ∈ Rn : M(f)(x) > t}| = 1

t
=

1

t

∫
Rn
|f(y)|dy.

�

Remark 3. Let us observe that, unless in the trivial case where f is
identically equal to 0, we have

M(f) /∈ L1 (Rn) .

In this respect, we prove

M(f)(x) ≥ C

|x|n
, for |x| ≥ 1. (2.5.14)

Indeed, since f does not vanish identically, there exists t0 > 0 such that

0 < |E| < +∞;
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where
E = {x ∈ Rn : |f(x)| > t0} .

Let r0 > 0 satisfy

|E ∩Br0| ≥
1

2
|E|.

For any x ∈ Rn, we have (since Br0 ⊂ Br0+|x|(x))

M(f)(x) ≥ 1∣∣Br0+|x|(x)
∣∣ ∫

Br0+|x|(x)

|f(y)|dy ≥

≥ 1

cn (|x|+ r0)n

∫
Br0

|f(y)|dy ≥

≥ t0|E|
2cn (|x|+ r0)n

,

from which we have (2.5.14) with C = t0|E|
2cn(1+r0)n

.
It can be proved that if f ∈ Lp (Rn), where 1 < p ≤ +∞, then M(f) ∈

Lp (Rn) and

‖M(f)‖Lp(Rn) ≤ C ‖f‖Lp(Rn) , ∀f ∈ Lp (Rn) . (2.5.15)

For more insights into the maximal function, we refer to [71, Ch. 1]. �

Proof of Theorem 2.5.1. Provided that f is replaced by fχBR with
arbitrary R, we may assume f ∈ L1 (Rn). Let us denote

fr(x) =
1

|Br(x)|

∫
Br(x)

f(y)dy, x ∈ Rn

and notice that

fr = ϕr ? f,

where
ϕr(x) = r−nϕ1

(
r−1x

)
,

ϕ1 =
1

|B1|
χB1 .

Hence

lim
r→0
‖fr − f‖L1(Rn) = 0.
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Consequently, there exists a sequence {rk} such that

{rk} → 0+

and

lim
k→∞

frk(x) = f(x), a.e. x ∈ Rn. (2.5.16)

Now, let us denote

Ωf(x) = lim sup
r→0

fr(x)− lim inf
r→0

fr(x).

By Remark 1 we get that lim supr→0+ fr(x), lim infr→0+ fr(x) are finite almost
everywhere. As a matter of fact, we have

∣∣∣∣lim sup
r→0

fr(x)

∣∣∣∣ , ∣∣∣lim inf
r→0

fr(x)
∣∣∣ ≤M(f)(x) < +∞, a.e. x ∈ Rn. (2.5.17)

Let us now prove that

Ωf(x) = 0, a.e. x ∈ Rn. (2.5.18)

Claim. If g ∈ C0
0 (Rn), then

gr → g, uniformly as r → 0,

hence

Ωg(x) = 0, ∀x ∈ Rn. (2.5.19)

Proof of Claim. Since g is an uniformly continuous function, for any
ε > 0 there exists δ > 0 such that if |x− y| < δ then

|g(x)− g(y)| < ε.

Now

gr(x)− g(x) =

∫
Rn
ϕ1(z) (g(x− rz)− g(x)) dz.

Hence, if 0 < r < δ, we get

|gr(x)− g(x)| ≤
∫
Rn
ϕ1(z) |g(x− rz)− g(x)| dz ≤ ε, ∀x ∈ Rn.
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Claim is proved.

Now, let f ∈ L1 (Rn). Since C0
0 (Rn) is dense in L1 (Rn) (Theorem 2.3.25)

it follows that for any σ > 0 there exists g ∈ C0
0 (Rn) such that

‖f − g‖L1(Rn) < σ.

Let h = f − g, we have trivially f = g+ h, ‖h‖L1(Rn) < σ and by (2.5.19) we
get

Ωf(x) ≤ Ωg(x) + Ωh(x) = Ωh(x), ∀x ∈ Rn.

Hence, for any η > 0, we have

|{x ∈ Rn : Ωf(x) > η}| ≤ |{x ∈ Rn : Ωh(x) > η}| . (2.5.20)

On the other hand, we have trivially

Ωh(x) ≤ 2M(h)(x), ∀x ∈ Rn,

this inequality and (2.5.20) imply

|{x ∈ Rn : Ωf(x) > η}| ≤
∣∣∣{x ∈ Rn : M(h)(x) >

η

2

}∣∣∣ .
By the latter, by (2.5.20) and by Lemma 2.5.4 we have

|{x ∈ Rn : Ωf(x) > η}| ≤ 2C

η
‖h‖L1(Rn) ≤

2Cσ

η
,

where C = 5n. Hence, by choosing

σ = η2,

we obtain

|{x ∈ Rn : Ωf(x) > η}| ≤ 2Cη, (2.5.21)

which yields

|{x ∈ Rn : Ωf(x) > 0}| = lim
j→∞

∣∣∣∣{x ∈ Rn : Ωf(x) >
1

j

}∣∣∣∣ = 0

hence, (2.5.18) follows. Taking into account (2.5.17), we have that the limit

lim
r→0

fr(x)

there exists almost everywhere. Therefore, (2.5.16) implies
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lim
r→0

fr(x) = lim
k→∞

frk(x) = f(x), a.e. x ∈ Rn.

�

Corollary 2.5.5. Let p ∈ [1,+∞). If f ∈ Lploc (Rn), then

lim
r→0
−
∫
Br(x)

|f(y)− f(x)|pdy = 0, a.e. x ∈ Rn. (2.5.22)

Proof. For any c ∈ R let us denote by Dc the subset of Rn of the points
x satisfying

lim
r→0

(
−
∫
Br(x)

|f(y)− c|pdy
)1/p

= |f(x)− c|.

Set

Ec = Rn \Dc.

Theorem 2.5.1 implies
|Ec| = 0.

Consequently, setting

E =
⋃
q∈Q

Eq,

we obtain
|E| = 0.

Now, let us prove that

lim
r→0

(
−
∫
Br(x)

|f(y)− c|pdy
)1/p

= |f(x)− c|, ∀x ∈ Rn \E, ∀c ∈ R. (2.5.23)

Let c ∈ R and x ∈ Rn \ E and let δ > 0 and q ∈ Q satisfy

|q − c| < δ. (2.5.24)

The triangle inequality gives

(
−
∫
Br(x)

|f(y)− q|pdy
)1/p

− δ <
(
−
∫
Br(x)

|f(y)− c|pdy
)1/p

<

<

(
−
∫
Br(x)

|f(y)− q|pdy
)1/p

+ δ.

(2.5.25)
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Now, let us denote

Λ′(x) = lim inf
r→0

(
−
∫
Br(x)

|f(y)− c|pdy
)1/p

,

Λ′′(x) = lim sup
r→0

(
−
∫
Br(x)

|f(y)− c|pdy
)1/p

.

Passing to the limit as r → 0, by (2.5.25) we obtain

|f(x)− q| − δ ≤ Λ′(x) ≤ Λ′′(x) ≤ |f(x)− q|+ δ. (2.5.26)

Passing again to the limit as δ → 0 in (2.5.26) and taking into account
(2.5.24), we obtain

Λ′(x) = Λ′′(x) = |f(x)− c|, ∀x ∈ Rn \ E.

Therefore (2.5.23) holds true. Set therein c = f(x) and we obtain (2.5.22).
�

2.6 The Rademacher Theorem
Let us recall the definition of absolutely continuous function over the
interval [a, b], where a, b ∈ R and a < b.

We say that the function

f : [a, b] → R,

is absolutely continuous provided that for every ε > 0 there exists δ > 0 such
that, chosen anyway a finite family of pairwise disjoint intervals (aj, bj) ⊂
[a, b], j = 1, · · · , N satisfying

N∑
j=1

(bj − aj) < δ,

we have

N∑
j=1

|f (bj)− f (aj)| < ε.

We will denote by AC ([a, b]) the class of the absolutely continuous functions
on [a, b] and we will denote by ACloc (R) the class of functions f : R → R
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such that for every interval [a, b] we have f|[a,b] ∈ AC ([a, b]). Let us recall
that if f ∈ ACloc (R), then f is a differentiable function almost everywhere
in R.

If f is a Lipschitz continuous function in R, then f ∈ ACloc (R), hence
f is a differentiable almost every everywhere. The main purpose of the
present Section is to extend this result to several variable Lipschitz continuous
functions. Precisely we want to prove

Theorem 2.6.1 (Rademacher). If f ∈ C0,1 (Rn), then f is a differentiable
function almost everywhere.

Proof. Let v ∈ Rn satisfy |v| = 1. Set

∂vf(x) = lim
t→0

f(x+ tv)− f(x)

t
, provided the limit exists;

notice that, since f is Lipschitz continuous, if the limit above exists it is
finite.

Claim 1.
∂vf(x), exists a.e. x ∈ Rn.

Proof of Claim 1. Let us denote

∂vf(x) := lim sup
t→0

f(x+ tv)− f(x)

t

∂vf(x) := lim inf
t→0

f(x+ tv)− f(x)

t
.

Since f is a continuous function, we have

∂vf(x) = lim
k→∞

sup
0<|t|<1/k, t∈Q

f(x+ tv)− f(x)

t

and
∂vf(x) = lim

k→∞
inf

0<|t|<1/k, t∈Q

f(x+ tv)− f(x)

t
.

hence ∂vf and ∂vf are measurable functions. Consequently

Av :=
{
x ∈ Rn : ∂vf(x) < ∂vf(x)

}
,

`v := {tv : t ∈ R}
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are Lebesgue measurable sets.
Let us first consider the case v = en. The Fubini–Tonelli Theorem gives

|Aen| =
∫
Rn
χAen (x)dx =

=

∫
Rn−1

dx′
∫
R

χAen (x′, xn) dxn =

=

∫
Rn−1

|(x′ + `en) ∩ Aen|1 dx
′,

(2.6.1)

where |(x′ + `en) ∩ Aen|1 is the Lebesgue measure on R of (x′ + `en) ∩ Aen .
For any fixed x′ ∈ Rn−1, we have

(x′ + `en) ∩ Aen = {x′} ×
{
t ∈ R : ∂nf(x′, t) < ∂nf(x′, t)

}
.

Now, by denoting
ϕ(t) = f (x′, t) ,

since f is Lipschitz continuous, we have ϕ ∈ ACloc (R). In particular, the
function ϕ is almost everywhere differentiable, hence

|(x′ + `en) ∩ Aen|1 = 0.

Therefore, by (2.6.1), we get

|Aen| = 0.

Whenever v 6= en, let us consider a rotation R of Rn such that

v = R (en) .

By setting

f̃ = f ◦ R,
we get (due to the invariance of the Lebesgue measure with respect to rota-
tions)

|Av| =
∣∣R−1 (Av)

∣∣ .
Moreover, it is easily checked that

R−1 (Av) =
{
y ∈ Rn : ∂nf̃(y) < ∂nf̃(y)

}
.

Consequently, since f̃ is Lipschitz continuous, from what we have previously
proved, we derive
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|Av| =
∣∣R−1 (Av)

∣∣ =
∣∣∣{y ∈ Rn : ∂nf̃(y) < ∂nf̃(y)

}∣∣∣ = 0

that concludes the proof of Claim 1.

Set

∇f(x) = (∂1f(x), · · · , ∂nf(x)) , a.e. x ∈ Rn.

Claim 2. We have

∂vf(x) = v · ∇f(x), a.e. x ∈ Rn (2.6.2)

and
|∇f(x)| ≤ L, a.e. x ∈ Rn, (2.6.3)

where
L = [f ]0,1,Rn ,

Proof of Claim 2. Let ζ ∈ C∞0 (Rn) be arbitrary. We easily get∫
Rn

f(x+ tv)− f(x)

t
ζ(x)dx = −

∫
Rn
f(x)

ζ(x)− ζ(x− tv)

t
dx. (2.6.4)

Now, since

lim
t→0

f(x+ tv)− f(x)

t
= ∂vf(x), a.e. x ∈ Rn

and

∣∣∣∣f(x+ tv)− f(x)

t
ζ(x)

∣∣∣∣ ≤ L|ζ(x)|, ∀x ∈ Rn, ∀t ∈ R \ {0},

we have by Dominated Convergence Theorem and by (2.6.4),

∫
Rn
∂vf(x)ζ(x)dx = lim

t→0

∫
Rn

f(x+ tv)− f(x)

t
ζ(x)dx =

= − lim
t→0

∫
Rn
f(x)

ζ(x)− ζ(x− tv)

t
dx =

= −
n∑
j=1

vj

∫
Rn
f(x)∂jζ(x)dx =

=
n∑
j=1

vj

∫
Rn
∂jf(x)ζ(x)dx.

(2.6.5)
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Let us justify the last equality. For any j ∈ {1, · · · , n} we have that the
function

xj → f(x1, · · · , xj−1, xj, xj+1, · · · , xn),

belongs to ACloc(R). Therefore, by considering, for instance, the case j = n
(the other cases are similar), we have by Fubini–Tonelli Theorem

−
∫
Rn
f(x)∂nζ(x)dx = −

∫
Rn−1

dx′
∫
R
f(x′, xn)∂nζ(x′, xn)dxn =

= −
∫
Rn−1

dx′
∫
R

(∂n (f(x′, xn)z(x′, xn))− ∂nf(x′, xn)ζ(x′, xn)) dxn =

=

∫
Rn−1

dx′
∫
R
∂nf(x′, xn)ζ(x′, xn)dxn =

=

∫
Rn
∂nf(x)ζ(x)dx.

Consequently, (2.6.5) gives∫
Rn
∂vf(x)ζ(x)dx =

∫
Rn

(v · ∇f(x)) ζ(x)dx, ∀ζ ∈ C∞0 (Rn)

which yields (2.6.2). Concerning (2.6.3), it is an immediate consequence
of (2.6.2) and of the Cauchy–Schwarz inequality. The proof of Claim 2 is
concluded.

Let D = {vk}k∈N be such that

|vk| = 1, ∀k ∈ N

and
D = ∂B1.

Moreover, let

x ∈ Rn \
∞⋃
k=1

Avk .

Let us prove that f is differentiable in x whereby we will conclude the proof
of Thheorem, because ∣∣∣∣∣

∞⋃
k=1

Avk

∣∣∣∣∣ ≤
∞∑
k=1

|Avk | = 0.
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Let y ∈ Rn \ {x} and set

w =
y − x
|y − x|

, t = |y − x|,

we have trivially
y = x+ tw.

Moreover, for any k ∈ N we have

|f(y)− f(x)−∇f(x) · (y − x)| =
= |f(x+ tw)− f(x)− t∇f(x) · w| ≤
≤ |f(x+ tvk)− f(x)− t∇f(x) · w|+
+ |f(x+ tw)− f(x+ tvk)| ≤
≤ |f(x+ tvk)− f(x)− t∇f(x) · vk|+
+ t |∇f(x)| |vk − w|+
+ |f(x+ tw)− f(x+ tvk)| ≤

≤ t

∣∣∣∣f(x+ tvk)− f(x)− t∇f(x) · vk
t

∣∣∣∣+
+ 2L |w − vk| t.

(2.6.6)

Let ε > 0, since D is dense in ∂B1, there exists kε such that

|w − vkε| <
ε

2 (2L+ 1)
.

Since

x ∈ Rn \
∞⋃
k=1

Avk ,

we have

lim
τ→0

f(x+ τvkε)− f(x)

τ
= ∇f(x) · vkε .

Therefore, there exists δ > 0 such that, if 0 < |τ | < δ then∣∣∣∣f(x+ τvkε)− f(x)− τ∇f(x) · vkε
τ

∣∣∣∣ < ε

2
.

Now taking into account (2.6.6) (and t = |x− y|), we have

|f(y)− f(x)−∇f(x) · (y − x)| < ε|x− y|, ∀y ∈ Bδ(x) \ {x},

which gives the differentiability of f in x. �
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2.7 Description of the boundary of an open set
of Rn

Let r > 0, x ∈ Rn and x′ ∈ Rn−1, we denote by Br(x) and B′r(x′), the open
ball of Rn centered in x with radius r and open ball of Rn−1 centered in x′
with radius r > 0 respectively. We will also write Br (B′r) instead of Br(0)
(B′r(0)). For any r,M > 0 and any x ∈ Rn, here and in the sequel, we denote
by

Qr,M(x) = B′r(x
′)× (−Mr + xn,Mr + xn).

We will write also Qr,M instead of Qr,M(0).

Definition 2.7.1. Let Ω be an open set of Rn. Let r0,M0 be positive num-
bers and m ∈ N0.

(a) We say that Ω has the boundary of Cm class with constants r0,M0

(or, briefly, Ω is of class Cm with constants r0,M0), if for every P ∈ ∂Ω there
exists an isometry

ΦP : Rn → Rn,

such that
ΦP (0) = P

and
Φ−1
P (Ω) ∩Qr0,2M0 = {x ∈ Qr0,2M0 : xn > gP (x′)} , (2.7.1)

where gP ∈ Cm
(
B′r0
)
,

gP (0) = 0, |∇gP (0)| = 0, for m ≥ 1

and
‖gP‖Cm(B′r0) ≤M0r0,

where
‖gP‖Cm(B′r0) =

∑
|γ|≤m

r
|γ|
0 ‖∂γgP‖L∞(B′r0) .

(b) Let α ∈ (0, 1]. We say that Ω has the boundary of Cm,α class with
constants r0,M0 (or, briefly, Ω is of class Cm,α with constants r0,M0) if for
every P ∈ ∂Ω there exists an isometry

ΦP : Rn → Rn,

such that
ΦP (0) = P,
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and
Φ−1
P (Ω) ∩Qr0,2M0 = {x ∈ Qr0,2M0 : xn > gP (x′)} , (2.7.2)

where gP ∈ Cm
(
B′r0
)
,

gP (0) = 0, |∇gP (0)| = 0 (for m ≥ 1)

and
‖gP‖Cm,α(B′r0) ≤M0r0

where

‖gP‖Cm,α(B′r0) = ‖gP‖Cm(B′r0) + rm0
∑
|γ|=m

r
|α|
0 [∂γu]C0,α(B′r0) .

(c) If there exists r0 > 0 e M0 > 0 such that ∂Ω has the boundary of class
Cm (Cm,α) with constants r0 > 0 e M0 > 0, then we say that ∂Ω has the
boundary of class Cm (Cm,α) .

Exercise. Prove that if Ω is an open set of class C0 then
◦
Ω = Ω. ♣

Let us note that the graph of the function gP that occurs in the definition
above is contained in Qr0,M0 (see Figure 2.1).
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Figure 2.1:
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2.8 The spaces Lp(∂Ω)

We now provide a brief review of the definition of Lp(∂Ω) spaces, where Ω is
a bounded open set of Rn of class C0,1. For any P ∈ ∂Ω let us denote by ΦP

an isometry which satisfies (2.7.2). Let

f : ∂Ω→ R.

We have that U =
{

ΦPj (Qr0,2M0)
}

1≤j≤l is a finite open covering of ∂Ω. Let
us denote

gj = gPj , j = 1, · · · , l,

and let ζ1, · · · , ζl be a partition of unity subordinate to the covering U . we
say that f ∈ L1(∂Ω) provided that we have, for any 1 ≤ j ≤ l,

fj ∈ L1
(
B′r0
)
,

where

fj(x
′) =

(
f ◦ ΦPj

)
(x′, gj(x

′)) , ∀x′ ∈ B′r0 .

Let us denote

∫
∂Ω

fdS =
l∑

j=1

∫
∂Ω

fζjdS, (2.8.1)

where

∫
∂Ω

fζjdS =

∫
B′r0

fj (x′) ζ̃j(x
′)
√

1 + |∇gj(x′)|2dx′, (2.8.2)

ζ̃j(x
′) = ζj

(
ΦPj (x′, gj(x

′))
)
.

Concerning the last integral in (2.8.2), take into account that it is well
defined, because g ∈ C0,1

(
B′r0
)
is differentiable almost everywhere and its

gradient belongs to L∞
(
B′r0 ;Rn

)
. Let us observe that integral in (2.8.1) does

not depend on the particular partition of unity that we use. As a matter of
fact, if η1, · · · , ηm is another partition of unity, then we have
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l∑
j=1

∫
∂Ω

fζjdS =
l∑

j=1

∫
∂Ω

(
m∑
k=1

ηkf

)
ζjdS =

=
l∑

j=1

m∑
k=1

∫
∂Ω

ζjηkfdS =

=
m∑
k=1

∫
∂Ω

(
l∑

j=1

ζjf

)
ηkdS =

=
m∑
k=1

∫
∂Ω

fηkdS.

Let us denote

‖u‖L1(∂Ω) =

∫
∂Ω

|f |dS.

Likewise, we define Lp(∂Ω) for 1 ≤ p < +∞ and we set

‖u‖Lp(∂Ω) =

(∫
∂Ω

|f |pdS
)1/p

. (2.8.3)

The space Lp(∂Ω) is a separable Banach space, and if p = 2, L2(∂Ω) is a
Hilbert space.

Let g ∈ C0,1
(
B′r0
)
such that

‖g‖C0,1(B′r0) ≤M0r0.

Let us consider the set

W = {y ∈ Qr0,2M0 : yn > g(y′)} ;

We define the field of unit outward normal to the graph of g as follows

ν(g)(y′, g(y′)) =
(∇y′g(y′),−1)√
1 + |∇y′g(y′)|2

, a.e. y′ ∈ B′r0 . (2.8.4)

Let Ω be a bounded open set of Rn of C0,1 class; let U =
{

ΦPj (Qr0,2M0)
}

1≤j≤l
the open covering defined above. We define the field of unit outward normal
on ∂Ω ∩ ΦPj (Qr0,2M0), j = 1, · · · , l, as

ν(x) =
(
ΦPj − Pj

) (
ν(gj)(y′, gj(y

′))
)
, x = Φj (y′, gj(y

′)) . (2.8.5)
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If f ∈ L1(∂Ω), we define, by (2.8.2),

∫
∂Ω

fνdS =
l∑

j=1

∫
∂Ω

fζjνdS. (2.8.6)

2.9 The divergence Theorem

The purpose of this Section is to prove the following

Theorem 2.9.1 (divergence). Let Ω be a bounded open set of Rn of class
C0,1 and let f ∈ C0,1

(
Ω
)
, then we have∫

Ω

∇fdx =

∫
∂Ω

fνdS. (2.9.1)

In order to prove Theorem 2.9.1 we need some lemmas.

Lemma 2.9.2. Let Ω be a bounded open set of Rn and let f ∈ C0,1
(
Ω
)
.

Then there exists a sequence {fm} in C∞ (Rn) satisfying

lim
m→∞

‖fm − f‖C0(Ω) = 0, (2.9.2)

lim
m→∞

‖∇fm −∇f‖L2(Ω) = 0. (2.9.3)

Proof. Set

L = [f ]0,1,Ω .

Let f̃ ∈ C0,1 (Rn) an extension of f which satisfies (see Theorem 2.2.2)[
f̃
]

0,1,Rn
= L.

For any ε > 0, let us denote

fε(x) =

∫
Rn
ηε(x− y)f̃(y)dy,
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where η is a mollifier. We have that fε ∈ C∞ (Rn). Moreover, if x ∈ Ω, we
get

|fε(x)− f(x)| =
∣∣∣∣∫

Rn
ηε(y)

(
f̃(x− y)− f̃(x)

)
dy

∣∣∣∣ ≤
≤
∫
Rn
ηε(y)

∣∣∣f̃(x− y)− f̃(x)
∣∣∣ dy ≤

≤ L

∫
Rn
ηε(y)|y|dy ≤

≤ Lε.

Therefore

lim
ε→0
‖fε − f‖C0(Ω) = 0,

which gives (2.9.2).

Let us prove (2.9.3). Let 1 ≤ k ≤ n. Theorem 2.6.1 gives

∂xkfε(x) =

∫
Rn
∂xk (ηε(x− y)) f̃(y)dy =

= −
∫
Rn
∂yk (ηε(x− y)) f̃(y)dy =

=

∫
Rn
ηε(x− y)∂yk f̃(y)dy.

Now, for any x ∈ Ω we get

|∂xkfε(x)− ∂xkf(x)| ≤
∫
Rn
ηε(y)

∣∣∣(∂xk f̃) (x− y)− ∂xk f̃(x)
∣∣∣ dy ≤

≤
(∫

Rn
ηε(y)

∣∣∣(∂xk f̃) (x− y)− ∂xk f̃(x)
∣∣∣2 dy)1/2

.

From which we derive∫
Ω

|∂xkfε(x)− ∂xkf(x)|2 dx ≤
∫

Ω

dx

∫
Bε

ηε(y)
∣∣∣(∂xk f̃) (x− y)− ∂xk f̃(x)

∣∣∣2 dy =

=

∫
Bε

ηε(y)

∫
Ω

∣∣∣(∂xk f̃) (x− y)− ∂xk f̃(x)
∣∣∣2 dx ≤

≤ sup
|y|<ε

∫
Ω

∣∣∣(∂xk f̃) (x− y)− ∂xk f̃(x)
∣∣∣2 dx.
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By the just proved inequality and by Theorem 2.3.27 we have

lim
ε→0
‖∇fε −∇f‖L2(Ω) = 0,

that gives (2.9.2). �

For any f ∈ C0,1
(
Ω
)
we say that a sequence {fm} which satisfies (2.9.2)

and (2.9.3) is a smooth approximating sequence of f .

Lemma 2.9.3. Let r, h be positive numbers. Let g ∈ C∞
(
B′r
)
satisfy

−h < g(x′) < h, ∀x′ ∈ B′r.

Let f ∈ C∞0 (Qr,h), where Qr,h = B′r × (−h, h). Denoting

W = {x ∈ Qr,h : xn > g(x′)} ,

we have ∫
W

∂nfdx = −
∫
B′r

f (x′, g(x′)) dx′, (2.9.4a)

∫
W

∂kfdx =

∫
B′r

f (x′, g(x′)) ∂kg(x′)dx′, k = 1, · · · , n− 1. (2.9.4b)

Proof. Let 1 ≤ k ≤ n. If k = n, then we have∫ h

g(x′)

∂nf (x′, xn) dxn = −f (x′, g(x′)) , x′ ∈ B′r.

Hence ∫
W

∂nfdx =

∫
B′r

dx′
∫ h

g(x′)

∂nf(x′, xn)dxn =

= −
∫
B′r

f (x′, g(x′)) dx′.

(2.9.5)

If 1 ≤ k ≤ n− 1, then we have

∂k

∫ h

g(x′)

f (x′, xn) dxn =

∫ h

g(x′)

∂kf (x′, xn) dxn − f (x′, g(x′)) ∂kg(x′),

from which we get
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∫
W

∂kfdx =

∫
B′r

dx′
∫ h

g(x′)

∂kf(x′, xn)dxn =

=

∫
B′r

dx′
(
∂k

∫ h

g(x′)

f (x′, xn) dxn

)
+

+

∫
B′r

f (x′, g(x′)) ∂kg(x′)dx′ =

=

∫
B′r

f (x′, g(x′)) ∂kg(x′)dx,

(2.9.6)

where in the fourth step we used the fact that the function

x′ →
∫ h

g(x′)

f (x′, xn) dxn,

has the support contained in B′r. From what was obtained in (2.9.5) and by
(2.9.6) we derive (2.9.4). �

Remark. Under the same assumptions of Lemma 2.9.3, taking into
account (2.8.4), we have∫

W

∂sfdx =

∫
Γ(g)

fν(g)
s dS, s = 1, · · · , n. (2.9.7)

�

Proof Theorem 2.9.1. Let us begin by considering the case where
f ∈ C∞ (Rn).

Since ∂Ω is of class C0,1, we may assume that there exist positive numbers
r0,M0, such that for every P ∈ ∂Ω there is an isometry

ΦP : Rn → Rn,

satisfying
ΦP (0) = P

and
Φ−1
P (Ω) ∩Qr0,2M0 = WP ,

where
WP = {x ∈ Qr0,2M0 : xn > gP (x′)} ,

gP ∈ C0,1
(
B′r0
)
,
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gP (0) = 0,

and
‖gP‖C0,1(B′r0) ≤M0r0.

Since ∂Ω is compact, there exist P1, · · · , Pl ∈ ∂Ω such that the family of
sets

{
ΦPj (Qr0,2M0)

}
1≤j≤l is a finite covering of ∂Ω. Set

Vj = ΦPj (Qr0,2M0) , j = 1, · · · , l.

By Theorem 2.4.3 there exist ζ0, ζ1, · · · , ζl ∈ C∞0 (Rn) satisfying

(ζ0)|Ω ∈ C∞0 (Ω),

supp ζ0 ⊂ Rn \ ∂Ω; supp ζj ⊂ Vj, j = 1, · · · , l,

l∑
j=0

ζj = 1, su Rn; 0 ≤ ζj ≤ 1, j = 0, 1 · · · , l.

We have ∫
Ω

∇ (fζ0) dx = 0.

Hence ∫
Ω

∇fdx =
l∑

j=0

∫
Ω

∇ (fζj) dx =
l∑

j=1

∫
Ω

∇ (fζj) dx. (2.9.8)

Now, let us fix j ∈ {1 · · · , l} and let us denote by W := WPj , g := gPj and

F := fζj. (2.9.9)

Let {gm} be a sequence of smooth approximating of g. Set

Φj = ΦPj , j = 1, · · · l

and denoting
U = Φj (W ) ,

Wm = {x ∈ Qr0,2M0 : xn > gm(x′)} ,

Um = Φj (Wm) ,

we have



2.9. The divergence Theorem 85

∫
Ω

∇ (fζj) dx =

∫
U

∇Fdx = lim
m→∞

∫
Um

∇Fdx (2.9.10)

(as a matter of fact, we have |Um \ U | → 0 as m→∞).
Now let us deal with the last integral in (2.9.10). Since Φj is an isometry,

there exists a matrix A = {aqs}1≤q,s≤n such that

Φ(y) = Ay + Pj, ATA = In,

where In is the the identity matrix n× n. For the sake of brevity let us set
P := Pj, Φ := Φj. We have∫

Um

∇Fdx =

∫
Wm

(∇xF ) (Φ(y)) dy. (2.9.11)

By setting
F = F ◦ Φ, (2.9.12)

we have
(∂yΦ(y))T (∇xF ) (Φ(y)) = ∇yF (y)

and, recalling that A = (∂yΦ(y)), ATA = In, we get

(∇xF ) (Φ(y)) = A∇yF (y), ∀y ∈ Qr0,2M0 . (2.9.13)

Now, since F ∈ C∞0 (Qr0,2M0) and, for m large enough, the graph of gm is
contained in Qr0,2M0 (recall that {gm} is a smooth approximating sequence
of g), we obtain, by Lemma 2.9.3 and by (2.9.13)(∫

Wm

(∇xF ) (Φ(y)) dy

)
q

=

(∫
Wm

A∇yF (y)dy

)
q

=

=
n∑
s=1

∫
Wm

aqs∂sF (y)dy =

= −
∫
B′r

aqnF (y′, gm(y′)) dy′+

+
n−1∑
s=1

∫
B′r

aqsF (y′, gm(y′)) ∂sgm(y′)dy′.

(2.9.14)

Since {gm} is a smooth approximating sequence of g, we have

F (y′, gm(y′))→ F (y′, g(y′)) , as m→∞ in L∞ (B′r)
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and, for any s = 1, · · · , n− 1,

F (y′, gm(y′)) ∂sgm(y′)→ F (y′, g(y′)) ∂sg(y′), as m→∞, in L2 (B′r) .

Hence

lim
m→∞

∫
B′r

F (y′, gm(y′)) dy′ =

∫
B′r

F (y′, g(y′)) dy′ (2.9.15)

and, for any s = 1, · · · , n− 1,

lim
m→∞

∫
B′r

F (y′, gm(y′)) ∂sgm(y′)dy′ =

∫
B′r

F (y′, g(y′)) ∂sg(y′)dy′. (2.9.16)

By (2.9.10), (2.9.14), (2.9.15) and (2.9.16), denoting by ν(g) the unit outward
normal to Γ(g) (recall (2.9.9) and (2.9.12)) we have∫

Ω

∇ (fζj) dx = lim
m→∞

∫
Um

∇Fdx =

= lim
m→∞

∫
Wm

∇xF (Φ(y)) dy =

=

∫
Γ(g)

FAν(g)dS =

=

∫
∂Ω

fζjνdS.

By what has just been obtained and by (2.9.8) we derive that if f ∈ C∞ (Rn),
then ∫

Ω

∇fdx =

∫
∂Ω

fνdS.

Finally, let us consider the case where f ∈ C0,1
(
Ω
)
. If {fm} is a smooth

approximating sequence of f given by Lemma 2.9.2, then we have∫
Ω

∇fdx = lim
m→∞

∫
Ω

∇fmdx =

= lim
m→∞

∫
∂Ω

fmνdS =

=

∫
∂Ω

fνdS.

�
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2.10 The Hausdorff distance
Let (X, d) be a metric space. Let us recall that the distance of a point x ∈ X
from a subset A of X, A 6= ∅, is given by

d(x,A) = inf {d(x, y) : y ∈ A} . (2.10.1)

Proposition 2.10.1. If A ⊂ X, A 6= ∅, then we have

|d(x,A)− d(y, A)| ≤ d(x, y), ∀x, y ∈ A. (2.10.2)

In particular, the map
X 3 x→ d(x,A) ∈ R,

is Lipschitz continuous.

Proof. Let x, y ∈ X. By triangle inequality we have

d(x,A) ≤ d(x, z) ≤ d(x, y) + d(y, z), ∀z ∈ A,

from which we derive

d(x,A) ≤ d(x, y) + d(y, A).

Hence
d(x,A)− d(y, A) ≤ d(x, y)

and interchanging x and y, we obtain (2.10.2). �

We denote by K(X) the family of nonempty compact sets of X.
If K ∈ K(X) and x ∈ X we have

d(x,K) = min {d(x, y) : y ∈ K} .

Let K ∈ K(X). Let us denote by S(K) the set of the points x ∈ X such
that

{y ∈ K : d(x, y) = d(x,K)} , has only one point.

Trivially, we have K ⊂ S(K) and it is well–defined map

pK : S(K)→ K, such that d(x, pK(x)) = d(x,K). (2.10.3)

If x ∈ S(K), we call pK(x) the point of minimum distance of x from K
or also the projection of x on K.

Proposition 2.10.2. Let K ∈ K(X). Then pK, defined by (2.10.3), is a
continuous map.
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Proof. Let us argue by contradiction. Let us assume that pK is not
continuous. Consequently, there exists a point x0 ∈ S(K) and a sequence
{xn} of S(K) satisfying

{xn} → x0 (2.10.4)

and
{pK (xn)}9 pK (x0) . (2.10.5)

The latter implies that there exists ε > 0 and a subsequence {x∗n} of {xn}
satisfying

d (pK (x∗n) , pK(x0)) ≥ ε, ∀n ∈ N. (2.10.6)

Since for every n ∈ N we have pK (x∗n) ∈ K, and K is compact, there
exists a subsequence {x∗∗n } of {x∗n} such that {pK (x∗∗n )} converges to a point
z ∈ K. On the other hand, by (2.10.4) we get

{x∗∗n } → x0.

Hence

d(x0, K) = lim
n→∞

d (x∗∗n , K) = lim
n→∞

d (x∗∗n , pK (x∗∗n )) = d(x0, z).

Consequently
d(x0, K) = d(x0, z)

and by the definition of S(K) we have

z = pK(x0).

On the other hand, (2.10.6) gives

d(x0, z) = lim
n→

d (pK(x0), pk (x∗∗n )) ≥ ε.

We have actually reached a contradiction. Therefore the map x → pK(x) is
continuous. �

Definition 2.10.3. For any K1, K2 ∈ K(X) we denote

δ (K1, K2) = max {d(x,K2) : x ∈ K1} . (2.10.7)
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Proposition 2.10.4. If K1, K2 ∈ K(X), then we have

K1 ⊂ K2 ⇔ δ (K1, K2) = 0. (2.10.8)

Proof. If K1 ⊂ K2, then

d(x,K2) = 0, ∀x ∈ K1,

hence
δ (K1, K2) = 0.

Conversely, if δ (K1, K2) = 0 then

d(x,K2) = 0, ∀x ∈ K1.

Since K1 is a closed set of X, we obtain

x ∈ K2, ∀x ∈ K1

that is K1 ⊂ K2. �

Let us notice that δ(·, ·) does not define a distance on K(X). Actually,
by (2.10.8) we have that δ(·, ·) is not symmetric and

δ (K1, K2) = 0 ; K1 = K2.

For any K1, K2 ∈ K(X), let us denote by

dH (K1, K2) = max {δ (K1, K2) , δ (K2, K1)} . (2.10.9)

Proposition 2.10.5. dH (·, ·), defined by (2.10.9), is a distance on K(X).

Proof. It is obvious that dH (K1, K2) = dH (K2, K1) and that
dH (K1, K2) ≥ 0 for every K1, K2 ∈ K(X). Furthermore, if

dH (K1, K2) = 0,

then δ (K1, K2) = 0 and δ (K2, K1) = 0 which imply, respectively, K1 ⊂ K2

e K2 ⊂ K1, hence K1 = K2.
It only remains to prove the triangular inequality. We begin by proving

that if K1, K2 ∈ K(X) then for any L ∈ K(X) we have

δ (K1, K2) ≤ δ (K1, L) + δ (L,K2) . (2.10.10)
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Let x ∈ K1. For any y ∈ K2 and for any z ∈ L we have

d (x,K2) ≤ d (x, y) ≤ d (x, z) + d (z, y) ,

from which we have

d (x,K2) ≤ d (x, z) + d (z,K2) ≤
≤ d (x, z) + δ (L,K2) .

Therefore

d (x,K2) ≤ d (x, L) + δ (L,K2) ≤
≤ δ (K1, L) + δ (L,K2) .

By the latter we obtain (2.10.10) and similarly

δ (K2, K1) ≤ δ (K2, L) + δ (L,K1) . (2.10.11)

Now, let us assume, for instance, that dH (K1, K2) = δ (K1, K2). We have,
by (2.10.10) and (2.10.11),

dH (K1, K2) = δ (K1, K2) ≤
≤ δ (K1, L) + δ (L,K2) ≤
≤ dH (K1, L) + dH (L,K2) .

�

Definition 2.10.6. Let K1, K2 ∈ K(X), we call dH (K1, K2), defined by
(2.10.9), the Hausdorff distance between K1 and K2.

In Proposition 2.10.8 below we give an useful characterization of the Haus-
dorff distance. For this purpose we introduce the following notation. Let
r ≥ 0 and K ∈ K(X), set

[K]r = {u ∈ K : d(x,K) ≤ r} ,

Let us call [K]r the r–dilation of r of the set K .

Proposition 2.10.7. If K ∈ K(X) and r ≥ 0 then [K]r is a closed set of
X.

Proof. Let {xn} be any sequence in [K]r which satisfies

lim
n→∞

xn = x0.
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Since

d (xn, K) ≤ r, ∀n ∈ N,

passing to the limit as n→∞ and taking into account that x→ d (x,K) is
continuous, we have

d (x0, K) = lim
n→∞

d (xn, K) ≤ r.

Hence x0 ∈ [K]r. Therefore [K]r is closed set of X. �

Remark. It generally does not occur that [K]r is compact. For instance,
let X be a infinite dimensional Hilbert space, and let K = {a}, where a ∈ X,
then we have [K]r = Br(a) and from Functional Analysis we know that Br(a)
is not compact. �

Proposition 2.10.8. Let K1, K2 ∈ K(X) and r ≥ 0. Then we have

dH (K1, K2) ≤ r ⇐⇒


K1 ⊂ [K2]r ,

K2 ⊂ [K1]r .

(2.10.12)

dH (K1, K2) = min {r ≥ 0 : K1 ⊂ [K2]r , K2 ⊂ [K1]r} . (2.10.13)

Proof. The condition

dH (K1, K2) ≤ r

is equivalent to δ (K1, K2) ≤ r and δ (K2, K1) ≤ r. On the other hand

δ (K1, K2) ≤ r ⇐⇒ (d (x,K2) ≤ r, ∀x ∈ K1)⇐⇒ K1 ⊂ [K2]r .

Similarly,

δ (K2, K1) ≤ r ⇐⇒ K2 ⊂ [K1]r .

From what was obtained (2.10.12) follows.
Now, we prove (2.10.13). Let us denote

d = dH (K1, K2)

and
ρ = inf {r ≥ 0 : K1 ⊂ [K2]r , K2 ⊂ [K1]r} .
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(2.10.12) implies ("=⇒")
ρ ≤ d. (2.10.14)

On the other hand, for any ε > 0, we have

K1 ⊂ [K2]ρ+ε , and K2 ⊂ [K1]ρ+ε

and (2.10.12) implies ("⇐=")

d = dH (K1, K2) ≤ ρ+ ε.

Therefore, since ε is arbitrary, we obtain

d ≤ ρ.

By the latter and by (2.10.14) we get

d = ρ,

from which (2.10.13) follows. �

Example. Let us consider

K1 = B1 \Bε, K2 = B1,

in Rn, where ε ∈ (0, 1).
We have

K1 ⊂ K2 ⊂ [K2]ε

and

K2 ⊂ [K1]r , ∀r ≥ ε.

Hence
dH (K1, K2) = ε.

Let us see what happens with regard to

dH (∂K1, ∂K2) .

We have
∂K2 ⊂ ∂K1

and
∂K1 ⊂ [∂K2]r , ∀r ≥ 1− ε.

Hence
dH (∂K1, ∂K2) = 1− ε.
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Therefore, neither of the two relationships holds true

dH (K1, K2) ≤ dH (∂K1, ∂K2) , (2.10.15)

dH (∂K1, ∂K2) ≤ dH (K1, K2) . (2.10.16)

As a matter of fact (2.10.15) is false for 1
2
≤ ε < 1, and (2.10.16) is false for

0 < ε < 1
2
. ♠

Proposition 2.10.9.

[K1]r ∪ [K2]r = [K1 ∪K2]r , ∀K1, K2 ∈ K(X), ∀r ≥ 0.

Proof. Let K1, K2 ∈ K(X). Let us begin to prove

[K1]r ∪ [K2]r ⊂ [K1 ∪K2]r . (2.10.17)

Let x ∈ [K1]r ∪ [K2]r and, for instance, let x ∈ [K1]r, then

d (x,K1 ∪K2) ≤ d (x,K1) ≤ r,

which implies x ∈ [K1 ∪K2]r. (2.10.17) is proved.
Now, let us prove

[K1 ∪K2]r ⊂ [K1]r ∪ [K2]r . (2.10.18)

Let x ∈ [K1 ∪K2]r. We have

d (x,K1 ∪K2) ≤ r.

Let y ∈ K1 ∪K2 satisfy d(x, y) = d (x,K1 ∪K2). Now, if y ∈ K1, we have

d (x,K1) ≤ d(x, y) ≤ r,

hence x ∈ [K1]r. Similarly, if y ∈ K2 then x ∈ [K2]r. In any case
x ∈ [K1]r ∪ [K2]r. Hence (2.10.18) is proved. �

The following Theorem has been proved in Kuratowski, [44, §15, VIII].

Theorem 2.10.10. Let x0 ∈ X. Let us define, for any K ∈ K(X), the
function

fK(x) = d(x,K)− d(x, x0). (2.10.19)

We have:
(i) fK is bounded,

(ii)

dH (K1, K2) = sup
x∈X
|fK2(x)− fK1(x)| , ∀K1, K2 ∈ K(X).
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Proof.
Let us prove (i). Let x ∈ X. We have, by the triangle inequality,

d(x,K) ≤ d(x, y) ≤ d(y, x0) + d(x0, x), ∀y ∈ K.

Hence
d(x,K) ≤ d(x0, K) + d(x, x0). (2.10.20)

By using again the triangle inequality we have, for any y, z ∈ K

d(x, x0) ≤ d(x, y) + d(y, z) + d(z, x0) ≤ d(x, y) + d(z, x0) + d(K),

where d(K) is the diameter of K, by the last inequality we have

d(x, x0) ≤ d(x,K) + d(x0, K) + d(K). (2.10.21)

Now, (2.10.20) gives

fK(x) = d(x,K)− d(x, x0) ≤ d(x0, K)

and (2.10.21) gives

fK(x) ≥ d(x,K)− (d(x,K) + d(x0, K) + d(K)) = −d(x0, K)− d(K).

Therefore we have

|fK(x)| ≤ d(x0, K) + d(K), ∀x ∈ X.

Let us now prove (ii). Let K1, K2 ∈ K(X). It is not restrictive to assume

dH (K1, K2) = δ (K1, K2) = max
x∈K1

d (x,K2) .

Let x ∈ K1 satisfy
d (x,K2) = dH (K1, K2) .

Since we have trivially d (x,K1) = 0, we get

dH (K1, K2) = d (x,K2)− d (x,K1) =

= d (x,K2)− d (x, x0)− (d (x,K1)− d (x, x0)) =

= fK2(x)− fK1(x) ≤ sup
x∈X
|fK1(x)− fK1(x)| .

(2.10.22)
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Now, for any x ∈ X let y ∈ K1 satisfy

d(x, y) = d (x,K1) .

We have

d (x,K2) ≤ d(x, y) + d (y,K2) = d (x,K1) + d (y,K2) .

Hence

d (x,K2)− d (x,K1) ≤ d (y,K2) ≤ dH (K1, K2)

and, by interchanging K1 with K2, we have.

d (x,K1)− d (x,K2) ≤ dH (K1, K2) .

Hence

|fK1(x)− fK2(x)| = |d (x,K1)− d (x,K2)| ≤ dH (K1, K2) , ∀x ∈ X,

which implies

sup
x∈X
|fK1(x)− fK1(x)| ≤ dH (K1, K2) . (2.10.23)

Finally, (2.10.22) and (2.10.23) imply (ii). �

2.10.1 Completeness and compactness of (K(X), dH)

The Main Theorem that we prove in the present Section is the following one.

Theorem 2.10.11 (completeness). If (X, d) is a complete metric space,
then (K(X), dH) is complete.

In order to prove Theorem 2.10.11 we need the following Lemma.

Lemma 2.10.12. Let (X, d) be a metric space and let {Kn} be a Cauchy
sequence in (K(X), dH). Let {nj} be a strictly increasing sequence in N and
let
{
xnj
}
be a Cauchy sequence in (X, d) satisfying

xnj ∈ Knj , ∀j ∈ N.

Then there exists a Cauchy sequence {xn} in (X, d) such that

xnj = xnj , ∀j ∈ N, and xn ∈ Kn, ∀n ∈ N. (2.10.24)
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Proof. Let us define {xn} as follows: if 1 ≤ n ≤ n1 − 1, then we choose
xn satisfying

d (xn1 , xn) = d (xn1 , Kn) ,

if nj + 1 ≤ n ≤ nj+1 − 1, j ∈ N, then we choose xn satisfying

d
(
xnj , xn

)
= d

(
xnj , Kn

)
,

finally, if n = nj, j ∈ N, then we choose

xn = xnj .

Notice that (2.10.24) is satisfied by construction, so we are left to prove that
{xn} is a Cauchy sequence.

Let us fix any ε > 0 and let ν ∈ N satisfy

d
(
xnj , xnh

)
<
ε

3
, ∀j, h ≥ ν (2.10.25)

and

dH (Kn, Km) <
ε

3
, ∀n,m ≥ nν . (2.10.26)

Let n,m ≥ nν and let j and h be such that

nj ≤ n ≤ nj+1, nh ≤ m ≤ nh+1.

By the triangle inequality we have

d (xn, xm) ≤ d
(
xn, xnj

)
+ d

(
xnj , xnh

)
+ d (xm, xnh) . (2.10.27)

Now, (2.10.26) implies

d
(
xnj , xn

)
= d

(
xnj , Kn

)
≤ dH

(
Knj , Kn

)
<
ε

3
.

Similarly, we have
d (xnh , xm) <

ε

3
.

By these latter inequalities and by (2.10.25), (2.10.27) we get

d (xn, xm) < ε

and thereby we have also proved that {xn} is a Cauchy sequence. �

In what follows, for any sequence {Kn} in K(X) and any sequence {xn}
in X, we will write simply {xn ∈ Kn} to denote that

xn ∈ Kn, ∀n ∈ N.
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Proof of Theorem 2.10.11. Let {Kn} be a Cauchy sequence in K(X).
Let us denote

K =
{
x ∈ X : there exists a sequence {xn ∈ Kn} such that lim

n→∞
xn = x

}
.

Let us prove the following:
(a) K 6= ∅;
(b) K is closed;
(c)

∀ε > 0 ∃nε ∈ N such that ∀n ≥ nε K ⊂ [Kn]ε ;

(d) K is compact;

and
{Kn} → K, in (K(X), dH) .

Proof of (a). Since {Kn} is a Cauchy sequence in (K(X), dH), we have
that, for any ε > 0, there exists nε ∈ N, such that

dH (Kn, Km) < ε, ∀n,m ≥ nε. (2.10.28)

We may assume nε ∈ N be strictly increasing w.r.t. ε. For any j ∈ N let

εj =
1

2j

and set nj = nεj .
Let xn1 ∈ Kn1 be chosen arbitrarily. Since

d (xn1 , Kn2) ≤ dH (Kn1 , Kn2) ,

we may choose xn2 ∈ Kn2 such that

d (xn1 , xn2) = d (xn1 , Kn2) .

Similarly, after choosing xn1 , · · · , xnj−1
, we choose

xnj ∈ Knj . More precisely, let us suppose to have already chosen xn1 , · · · , xnj−1
,

then we choose xnj ∈ Knj so that

d
(
xnj−1

, xnj
)

= d
(
xnj−1

, Knj

)
≤ dH

(
Knj−1

, Knj

)
<

1

2j−1
.

Now, let us prove that
{
xnj
}
is a Cauchy sequence. For any h > j the

triangle inequality gives



98 Chapter 2. Review of some function spaces and measure theory

d
(
xnj , xnh

)
≤

h−1∑
l=j

d
(
xnl , xnl+1

)
<

h−1∑
l=j

1

2l
<

1

2j−1
.

On the other hand
xnj ∈ Knj , ∀j ∈ N.

Hence, Lemma 2.10.12 implies that there exists a Cauchy sequence in (X, d),
{xn ∈ Kn}, which satisfies

xnj = xnj , ∀j ∈ N.

Since (X, d) is a complete metric space, there exists x ∈ X such that

lim
n→∞

xn = x.

Hence, x belongs to K (as we have defined K). Therefore K 6= ∅.

Proof of (b). We prove that if {xn} is a sequence in K, which converges
to x0, then x0 ∈ K. By the definition of K, we have that for every n ∈ N
there exists a sequence

{
y

(n)
j

}
j∈N

which satisfies

y
(n)
j ∈ Kj, ∀j ∈ N (2.10.29)

and
y

(n)
j → xn, as j →∞, ∀n ∈ N.

Since {xn} converges to x0, there exists a stricly increasing sequence in N,
{nh}h∈N, which satisfies

d (xnh , x0) <
1

h
, ∀h ∈ N. (2.10.30)

In addition, since

y
(nh)
j → xnh , as j →∞, ∀h ∈ N,

there exists a stricly increasing sequence in N, {mh}h∈N, which satisfies

d
(
y(nh)
mh

, xnh
)
<

2

h
, ∀h ∈ N. (2.10.31)

By (2.10.30) and (2.10.31) we have

d
(
y(nh)
mh

, x0

)
<

1

h
∀h ∈ N. (2.10.32)
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Now, let us consider the sequence
{
y

(nh)
mh

}
h∈N

. Since it is convergent, it is a
Cauchy sequence and, by (2.10.29), we have

y(nh)
mh
∈ Kmh , ∀h ∈ N.

Therefore by Lemma 2.10.12, there exists a Cauchy sequence, {yn} which
satisfies

ymh = y(nh)
mh

, ∀h ∈ N

and
yn ∈ Kn, ∀n ∈ N.

Since X is a complete space and {yn} is a Cauchy sequence, it converges.
On the other hand, (2.10.32) implies that the subsequence

{
y

(nh)
mh

}
h∈N

con-
verges to x0. Therefore the whole sequence {yn} converges to x0 and by the
definition of K we have x0 ∈ K.

Proof of (c). Let ε > 0 and let nε satisfy

dH (Kn, Km) < ε, ∀n,m ≥ nε.

Proposition 2.10.8 gives

Km ⊂ [Kn]ε , ∀n,m ≥ nε. (2.10.33)

Let x ∈ K. Let us prove that x ∈ [Kn]ε for every n ≥ nε. Fix n ≥ nε. By
the definition of K, there exists {xm ∈ Km} such that

xm → x, as m→∞.

Now, since xm ∈ Km ⊂ [Kn]ε (by (2.10.33)), for everym ≥ nε and taking into
account that [Kn]ε is a closed set (Proposition 2.10.7), we have x ∈ [Kn]ε.

Proof of (d). Since X is a complete metric space and K is a closed set
(by (b)), by Theorem 2.1.4, it suffices to prove that K is totally bounded.
Let us argue by contradiction. Let us assume that K is not totally bounded.
Hence, let us assume that there exists δ > 0 and there exists a sequence {xn}
in K so that

d (xn, xm) ≥ δ.

Now, by (c), there exists ν ∈ N such that, if n 6= m,

K ⊂ [Kν ] δ
4
.
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From which we have that for every n ∈ N there exists yn ∈ Kν such that

d (yn, xn) <
δ

4
.

On the other hand, since Kν is compact, there exists a subsequence of {yn},{
ynj
}
, which converges, consequently there exists ν ′ ≥ ν such that

d
(
ynj , ynh

)
<
δ

4
, ∀j, h ≥ ν ′.

Therefore, by the triangle inequality we have, if j 6= h,

δ ≤ d
(
xnj , xnh

)
≤ d

(
xnj , ynj

)
+ d

(
ynj , ynh

)
+ d (ynh , xnh) <

3δ

4
,

for j, h ≥ ν ′, j 6= h. This is clearly a contradiction.

Proof of (e). Since we have proved (c), it suffices to prove

∀ε > 0 ∃νε ∈ N such that ∀n ≥ νε Kn ⊂ [K]ε . (2.10.34)

Since {Kn} is a Cauchy sequence we have that, for any ε > 0 there exists
νε ∈ N such that

dH (Kn, Km) <
ε

2
, ∀n,m ≥ νε. (2.10.35)

Hence

Km ⊂ [Kn] ε
2
, ∀n,m ≥ νε.

Let us fix n ≥ νε. Inequality (2.10.35) implies that there exists a strictly
increasing sequence {nj} in N such that nj ≥ νε, for every j ∈ N, and

dH
(
Knj−1

, Knj

)
<

ε

2j
.

Since n1, n ≥ νε, we get by (2.10.35)

dH (Kn, Kn1) <
ε

2
.

Hence
Kn ⊂ [Kn1 ] ε

2
. (2.10.36)

Now, let us fix y ∈ Kn and let us prove that y ∈ [K]ε. By (2.10.36) we have

y ∈ [Kn1 ] ε
2
,
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hence there exists xn1 ∈ Kn1 such that

d (xn1 , y) <
ε

2
. (2.10.37)

Generally speaking, since

Knj−1
⊂
[
Knj

]
ε

2j
, ∀j ≥ 2,

there exists a sequence
{
xnj
}
which satisfies xnj ∈ Knj , for every j ∈ N and

d
(
xnj−1

, xnj
)
<

ε

2j
, ∀j ∈ N.

By the latter and by (2.10.37) we get

d
(
y, xnj

)
≤ d (y, xn1) + d (xn1 , xn2) + · · ·+ d

(
xnj−1

, xnj
)
< ε (2.10.38)

and

d
(
xnj , xnh

)
≤

h−1∑
l=j

d
(
xnl , xnl+1

)
<

ε

2j
, ∀h > j ≥ νε ∈ N.

In particular, the just obtained inequality implies that for every δ > 0 there
exists nδ such that

d
(
xnj , xnh

)
< δ, ∀j, h ≥ nδ.

Hence
{
xnj
}
is a Cauchy sequance and it satisfies

xnj ∈ Knj , ∀j ∈ N.

Now, Lemma 2.10.12 implies that there exists a Cauchy sequence {xn ∈ Kn}
which satisfies

xnj = xnj , ∀j ∈ N.
Consequently {xn ∈ Kn} converges to a point x and such a point x, by the
definition of K, belongs to K. In addition, since

{
xnj
}
is a subsequence of

{xn}, we have {
xnj
}
→ x.

Hence, by (2.10.38), we have

d(x, y) = lim
j→∞

d
(
y, xnj

)
≤ ε.

Therefore
y ∈ [K]ε.

Hence (2.10.34) is proved. �
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Theorem 2.10.13 (compactness). If (X, d) is a compact metric space,
then (K(X), dH) is a compact metric space.

Proof. Since (X, d) is a compact space it is complete and totally bounded.
On the other hand, by Theorem 2.10.11, (K(X), dH) is complete, hence for
proving that it is compact, it suffices to prove that (K(X), dH) is totally
bounded.

Let ε be any positive number, since X is totally bounded, there exists a
finite set Fε which satisfies

d (x, Fε) < ε, ∀x ∈ X. (2.10.39)
Let Gε be the family of all subsets of Fε (Gε is finite because Fε is finite). Let
K ∈ K(X). Let us consider the set

G = {p ∈ Fε : d(p,K) < ε} .

We have G 6= ∅. As a matter of fact, (2.10.39) implies that if x ∈ K then
there exists y ∈ Fε such that

d(x, y) < ε,

hence
d(y,K) ≤ d(x, y) < ε,

therefore y ∈ G. Notice, that we have trivially G ∈ Gε and

δ(G,K) = max
p∈G

d(p,K) < ε. (2.10.40)

Now, let us prove
δ(K,G) = max

x∈K
d(x,G) < ε. (2.10.41)

Let x ∈ K. Relationship (2.10.39) implies that there exists y ∈ Fε such that

d(x, y) < ε,

consequently
d(y,K) ≤ d(y, x) < ε.

Therefore y ∈ G which yields

d(x,G) ≤ d(x, y) < ε,

and (2.10.41) follows. Hence

dH(K,G) = max {δ(K,G), δ(G,K)} < ε.

All in all, we have proved

∀K ∈ K(X) ∃G ∈ Gε such that dH(K,G) < ε,

which, since ε is arbitrary, implies that K(X) is a compact metric space. �
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2.11 The distance function
In this Section we will give some properties of the function

Rn 3 x→ d∂Ω(x) := d(x, ∂Ω),

where Ω is a bounded open set of Rn whose boundary is of class C1,1. When
there is no risk of ambiguity, we simply write d(x). In Proposition 2.10.1
we have proved that d∂Ω(x) is a Lipschitz continuous function, because it
satisfies the inequality

|d∂Ω(x)− d∂Ω(y)| ≤ |x− y| , ∀x, y ∈ Rn. (2.11.1)

We say that an open set A of Rn enjoys the interior ball property , if
for every point P ∈ ∂A there exists P ′ ∈ A and r > 0 such that

Br(P ′) ∩ Ω = {P}.

We say that A enjoys the exterior ball property if Rn \ Ω enjoys the
property of the interior ball.

The following Proposition holds true.

Proposition 2.11.1. Let Ω be a bounded open set of Rn whose boundary is
of class C1,1 whith constants r0,M0. Then Ω enjoys the interior ball property
and the exterior ball property. More precisely we have what follows. Denoting
by

µ0 = min

{
1

M0

,M0

}
, (2.11.2)

for any P ∈ ∂Ω and for any r ∈ (0, µ0r0), we have

Br(P − rν(P )) ∩ Ω = {P} (2.11.3)

and
Br(P + rν(P )) ∩ Rn \ Ω = {P}, (2.11.4)

where ν(P ) is the unit outward normal to ∂Ω in P

Proof. Let P ∈ ∂Ω. Let us consider a local representation of ∂Ω. Hence,
let us assume P = 0 and let us assume, up to a isometry,

Ω ∩Qr0,2M0 = {x ∈ Qr0,2M0 : xn > g(x′)} ,
where g ∈ C1,1

(
B′r0

)
satisfies

g(0) = |∇g(0)| = 0
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and
‖g‖C1,1(B′r0) ≤M0r0.

We have
ν(0) = −en.

Now, notice that

g (x′) =

∫ 1

0

(1− s)∂2g (sx′)x′ · x′ds.

Hence

g (x′) ≤ M0 |x′|2

2r0

.

Therefore, in order to satisfy (2.11.3) it suffices that, besides the condition
r ≤ r0, the following conditions are satisfied

M0 |x′|2

2r0

< r −
√
r2 − |x′|2, ∀x′ ∈ B′r \ {0}

and
r +

√
r2 − |x′|2 < 2M0r0, ∀x′ ∈ B′r.

It is easy to check that if r ∈ (0, µ0r0), the above conditions are satisfied. In
a similar way we proceed for the property of the exterior ball. �

For any ρ ∈ (0, µ0r0), set

Sρ = {x ∈ Ω : d∂Ω(x) < ρ} . (2.11.5)

We observe that for every x ∈ Sρ there exists a unique point p(x) ∈ ∂Ω such
that

|x− p(x)| = d∂Ω(x).

As a matter of fact, let x ∈ Sρ and let p ∈ ∂Ω a point which satisfies

d∂Ω (x) = |x− p| .

Wemay assume that y belongs to the graph, Γ(g), of a function g ∈ C1,1
(
B′r0

)
such that

Ω ∩Qr0,2M0 = {x ∈ Qr0,2M0 : xn > g(x′)} ,

and g(0) = |∇g(0)| = 0. Since p is a minimum point on Γ(g) of the function

y → 1

2
|x− y|2 .
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By The Lagrange Multiplier Theorem, the following conditions need to be
fulfilled 

pj − xj + λ∂jg (p′) = 0, 1 ≤ j ≤ n− 1,

pn − xn − λ = 0,

g (p′)− pn = 0.

Hence
p− x = (p′ − x′, pn − xn) = λ (−∇p′g (p′) , 1) ,

which implies
p− x = |p− x| ν(y). (2.11.6)

This relation, in turn, implies that p is the unique point of ∂Ω that achieves
the minimum distance. Indeed, let Bρ(z) be the interior ball tangent in y to
∂Ω (such a ball exists by Proposition 2.11.4), the equality (2.11.6) ensures
us that x lies on the segment of extremes z and p. Consequently, by setting
ρ1 = |x− p| we have Bρ1 (x) ⊂ Bρ (z). It is, therefore, evident that the
distance of x from ∂Bρ (z) is greater than or equal to ρ1 and, recalling that
Bρ (y) is an interior ball to Ω, tangent to ∂Ω at the unique point y, we obtain
that

|x− p| = ρ1 ≤ ρ < |x− ξ| , ∀ξ ∈ ∂Ω \ {y}.

Therefore we have proved

Proposition 2.11.2. If ρ ∈ (0, µ0r0), then for any x ∈ Sρ there exists an
unique point p(x) ∈ ∂Ω which attains the minimum of distance from x to
∂Ω. Moreover we have

x = p(x)− d∂Ω(x)ν(p(x)). (2.11.7)

The following Proposition holds true

Proposition 2.11.3. If ρ ∈ (0, µ0r0), then

Sρ = {y − tν(y) : y ∈ ∂Ω, 0 ≤ t < ρ} . (2.11.8)

Proof. Proposition 2.11.2 implies

Sρ ⊂ {y − tν(y) : y ∈ ∂Ω, 0 ≤ t < ρ} .
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Now, let x = y − tν(y), where y ∈ ∂Ω e 0 ≤ t < ρ. We have

d∂Ω(x) ≤ |x− y| = t < ρ.

Hence x ∈ Sρ. Therefore

{y − tν(y) : y ∈ ∂Ω, 0 ≤ t < ρ} ⊂ Sρ.

Therefore (2.11.8) is proved. �

Let us prove the following

Lemma 2.11.4. There exists µ1 ≤ µ0 such that if ρ ∈ (0, µ1r0) then the
maps

Sρ 3 x→ p(x) ∈ ∂Ω, and Sρ 3 x→ ν(p(x)) ∈ Sn−1 (2.11.9)

are Lipschitz continuous, where p(x) is the point that realizes the minimum
distance of x ∈ Sρ from ∂Ω.

Proof. We begin by proving that the map

∂Ω 3 y → ν(y) ∈ Sn−1, (2.11.10)

is Lipschitz continuous. To prove this, let y1, y2 ∈ ∂Ω and distinguish two
cases

(a) |y1 − y2| ≥ r0,
(b) |y1 − y2| < r0.

In case (a), we have trivially

|ν (y1)− ν (y2)| ≤ 2 ≤ 2
|y1 − y2|

r0

. (2.11.11)

In case (b), we may employ a local representation of ∂Ω assuming that
y2 = 0 and y1 = g (x′) where g ∈ C1,1

(
B′r0

)
and g(0) = |∇g(0)| = 0. Hence

ν (y2) = −en

and

ν (y1) =

 ∇x′g(x′)√
1 + |∇x′g(x′)|2

,
−1√

1 + |∇x′g(x′)|2

 .

Now it is easy to check that
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|ν (y1)− ν (y2)| ≤
√

2M0

r0

|x′| =
√

2M0

r0

|y1 − y2| . (2.11.12)

Therefore, by (2.11.11) and (2.11.12) we get

|ν (y1)− ν (y2)| ≤ M1

r0

|y1 − y2| , (2.11.13)

where

M1 = max
{

2,
√

2M0

}
.

Now, let us prove that x→ p(x) is Lipschitz continuous. By (2.11.7) we
have (we omit subscript in d∂Ω)

p(x) = x+ d(x)ν(p(x)).

Therefore, recalling (2.11.1) and (2.11.13), we get

|p(x)− p(y)| ≤ |x− y|+ d(x)|ν(p(x))− ν(p(y))|+ |d(x)− d(y)||ν(p(y))| ≤

≤ 2|x− y|+ ρ
M1

r0

|p(x)− p(y)|.

Hence (
1− ρM1

r0

)
|p(x)− p(y)| ≤ 2|x− y|.

Moreover for any

ρ < min

{
1

2M1

,M0,
1

M0

}
we have

|p(x)− p(y)| ≤ 4|x− y|, ∀x, y ∈ Sρ. (2.11.14)

The above inequality proves that the map x → p(x) is Lipschitz continuous
provided

µ1 = min

{
1

2M1

,M0,
1

M0

}
.

Therefore (2.11.13) and (2.11.14) imply that ν(p(x)) is Lipschitz continuous.
�
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Lemma 2.11.5. Let A be on open set of Rn and let f ∈ C0,1
loc (A). If there

exists a function g ∈ C0(A;Rn) which satisfies

∇f(x) = g(x), a.e. x ∈ A, (2.11.15)

then f ∈ C1(A) and
∇f(x) = g(x), ∀x ∈ A. (2.11.16)

Proof. Let x0 ∈ A and δ = 1
4
d(x, ∂A). For any ε ∈ (0, δ) let us consider

the function

fε(x) =

∫
A

f(y)ηε(x− y)dy, ∀x ∈ Bδ(x0),

where η is a mollifier. It turns out that fε ∈ C∞
(
Bδ(x0)

)
and, moreover,

the divergence Theorem gives

∂jfε(x) = −
∫
A

f(y)∂yjηε(x− y)dy =

= −
∫
Bε(x)

[
∂yj (f(y)ηε(x− y))− ∂yjf(y)ηε(x− y)

]
dy =

=

∫
Bε(x)

∂yjf(y)ηε(x− y)dy =

=

∫
A

∂yjf(y)ηε(x− y)dy, j = 1, · · ·n, ∀x ∈ Bδ(x0).

By what has just been obtained and by (2.11.15) we have

∇fε(x) = gε(x) :=

∫
A

g(y)ηε(x− y)dy, ∀x ∈ Bδ(x0). (2.11.17)

Let v be a versor of Rn. By (2.11.17) we get

fε(x0 + tv)− fε(x0) =

∫ t

0

gε(x0 + sv) · vds, ∀t ∈ [−δ, δ]. (2.11.18)

Now, Theorem 2.3.34 implies that fε and gε uniformly converge in Bδ(x0).
Therefore passing to the limit in (2.11.18) as ε→ 0, we obtain

f(x0 + tv)− f(x0) =

∫ t

0

g(x0 + sv) · vds, ∀t ∈ [−δ, δ].

On the other hand, since g is continuous, we have
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lim
t→0

f(x0 + tv)− f(x0)

t
= lim

t→0

1

t

∫ t

0

g(x0 + sv) · vds = g(x0) · v.

Therefore
∂f(x0)

∂v
= g(x0) · v, ∀v ∈ Rn, |v| = 1.

which implies
∇f(x0) = g(x0)

so that, since x0 is arbitrary in A, we have ∇f = g in A. That, in turn, by
the continuity of g implies f ∈ C1(A). �

Theorem 2.11.6. Let µ1 be the same of Proposition 2.11.4, then we have

d∂Ω ∈ C1,1
(
Sµ1r0

)
and

∇d∂Ω(x) = −ν(p(x)), ∀x ∈ Sµ1r0 . (2.11.19)

Proof. For the sake of brevity, we omit the subscript in d∂Ω. Inequality
(2.11.1) implies that d is almost everywhere differentiable, in addition in the
points where it is differentiable we have

|∇d| ≤ 1. (2.11.20)

Let x ∈ Sµ1r0 \ ∂Ω be a point in which d is differentiable. Let t ∈ (0, d(x)).
Since x+ tν(p(x)) lies on the segment of endpoints x and p(x), we have

d(x+ tν(p(x))) = d(x)− t.

Hence
∇d(x) · ν(p(x)) = lim

t→0+

d(x+ tν(p(x)))− d(x)

t
= −1.

Therefore
∇d(x) · ν(p(x)) = −1. (2.11.21)

Consequently we get

1 = |∇d(x) · ν(p(x))| ≤ |∇d(x)||ν(p(x))| ≤ 1.

Hence, there exits λ ∈ R such that ∇d(x) = λν(p(x)) and by (2.11.21) we
have λ = −1. This implies
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∇d(x) = −ν(p(x)), a.e. x ∈ Sµ1r0 \ ∂Ω. (2.11.22)

Now, by Lemma 2.11.4 we know that ν(p(x)) is Lipschitz continuous, there-
fore by Lemma 2.11.5 we obtain d ∈ C1 (Sµ1r0 \ ∂Ω)). Finally, exploit again
(2.11.22), we have d ∈ C1,1

(
Sµ1r0

)
. �

Corollary 2.11.7. For any ρ ∈ (0, µ1r0) the boundary of the open set

(Ω)ρ = {x ∈ Ω : d∂Ω(x) > ρ} (2.11.23)

is of class C1,1 and we have

∂(Ω)ρ = Γρ, (2.11.24)

where
Γρ = {x ∈ Ω : d∂Ω(x) = ρ} . (2.11.25)

Moreover
Γρ = {y − ρν(ρ) : y ∈ ∂Ω} . (2.11.26)

Proof. We first prove (2.11.24). To prove that Γρ ⊂ ∂(Ω)ρ we argue
by contradiction. Let us assume that there exists x ∈ ∂(Ω)ρ sucht that
d∂Ω(x) > ρ. Consequently, x would be an interior point of (Ω)ρ. If d∂Ω(x) < ρ
then x would be exterior to (Ω)ρ. Therefore, x ∈ Γρ and we have ∂(Ω)ρ ⊂ Γρ.
Now, let x ∈ Γρ, since ρ ∈ (0, µ1r0) (and µ1 ≤ µ0), Proposition 2.11.2 implies
that there is an unique point p(x) ∈ ∂Ω which attains the minimum of
distance of x from ∂Ω, moreover

x = p(x)− ρν(p(x)).

For any ε > 0 small enough, we have

x− εν(p(x) = p(x)− (ρ+ ε)ν(p(x)) ∈ (Ω)ρ

and
x+ εν(p(x) = p(x)− (ρ− ε)ν(p(x)) /∈ (Ω)ρ.

Hence x ∈ ∂(Ω)ρ. Therefore Γρ ⊂ ∂(Ω)ρ.
In order to prove that ∂(Ω)ρ is of class C1,1, we exploit (2.11.24). By

Theorem 2.11.6 we derive |∇d∂Ω(x)| = 1, for every x ∈ Γρ, and by applying
Implicit Function Theorem we easily reach the assertion.

Concerning (2.11.26), let us note that if x = y−ρν(y), taking into account
ρ < µ1r0 ≤ µ0r0, then d∂Ω(x) = ρ. Conversely, if x ∈ Γρ Proposition 2.11.2
gives

x = p(x)− d∂Ω(x)ν(p(x)) = (x)− ρν(p(x))
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so that, since p(x) ∈ ∂Ω we have x ∈ {y − ρν(ρ) : y ∈ ∂Ω}. �

We now provide a few words about the map

Φ : ∂Ω× (0, µ1r0)→ Rn,

such that

Φ(y, t) = y − tν(y), ∀(y, t) ∈ ∂Ω× (0, µ1r0) . (2.11.27)

The following Proposition holds true

Proposition 2.11.8. If Ω is a bounded open set of Rn of class C1,1 then we
have:

(a) Φ (∂Ω× (0, µ1r0)) = Sµ1r0,
(b) Φ ∈ C0,1 (∂Ω× [0, µ1r0]),
(c) Φ is injective on ∂Ω× (0, µ1r0) and it inverse is Lipschitz continuous

map.

Proof. (a) is a consequence of Proposition 2.11.3. (b) is a consequence
of Lemma 2.11.4. Now let us prove (c). Let x ∈ Sµ1r0 satisfy

x = Φ(y, t) = y − tν(y), (y, t) ∈ ∂Ω× (0, µ1r0) .

By Proposition 2.11.2 and by the interior ball property we get

y = p(x), t = d∂Ω(x).

Hence
Φ−1(x) = p(x)− d∂Ω(x)ν(p(x)).

By the latter and by Lemma 2.11.4 it follows that Φ−1 is Lipschitz continuous.
�

If Ω is of class Ck, k ≥ 2, other properties of the distance function and
the map Φ can be proved. For instance, one can prove that d∂Ω ∈ Ck and
Φ ∈ Ck−1. For further details, we refer to [28, Ch. 14, Sect. 6].

We say that a continuous map

γ : [0, 1]→ A,

is a continuous path in a set A ⊂ Rn continuous path. Let B ⊂ A and
x, y ∈ B, if γ([0, 1]) ⊂ B and γ(0) = x, γ(1) = y, we say that the path γ
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joins x and y in B. If γ1 e γ2 are two continuous paths in A which satisfy
γ1(1) = γ2(0), we denote by γ1 ∨ γ2 the following continuous path

(γ1 ∨ γ2) (t) =


γ1(2t), for t ∈

[
0, 1

2

)
,

γ2(2t− 1), for t ∈
[

1
2
, 1
]
.

(2.11.28)

If γ1, · · · γk are k ≥ 2 continuous paths in A such that γj−1(1) = γj(0),
j = 2, · · · k, we set

γ1 ∨ · · · ∨ γk := (γ1 ∨ · · · ∨ γk−1) ∨ γk.

We say that γ1 ∨ · · · ∨ γk is the γ1, · · · γk.

Proposition 2.11.9. Let us assume that Ω and ∂Ω are connected. If ρ ∈
(0, µ1r0), then the (Ω)ρ, defined by (2.11.23), is connected.

Proof. Let z, w ∈ (Ω)ρ and let ε > 0 such that

ρ+ ε < min {µ1r0, d∂Ω(z), d∂Ω(w)} .

Then
z, w ∈ (Ω)ρ+ε,

Γρ+ε ⊂ (Ω)ρ, (2.11.29)

and Γρ+ε is connected, as it is the image by Φ, defined in Proposition 2.11.8,
of the connected set ∂Ω× {ρ+ ε}.

Now, since Ω is connected, Ω is also connected (path connected, because
∂Ω è of class C1,1). Be, therefore, x ∈ ∂Ω and be

γ1 : [0, 1]→ Ω and γ2 : [0, 1]→ Ω

two continuous paths such that

γ1(0) = z, γ1(1) = x, γ2(0) = x, γ2(1) = w.

Let
t1 = inf {t ∈ [0, 1] : d (γ1(t), ∂Ω) < ρ+ ε} ,

we have (because d (γ1(·), ∂Ω) is continuous)

y′ := γ1(t1) ∈ Γρ+ε.
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Similarly, let

t2 = sup {t ∈ [0, 1] : d (γ2(t), ∂Ω) < ρ+ ε} ,

we have
y′′ := γ2(t2) ∈ Γρ+ε.

Since Γρ+ε is connected, there exists a continuous path γ̃ : [0, 1]→ Γρ+ε, such
that

γ̃(0) = y′, γ̃(1) = y′′.

It is now evident that the path

γ := γ1 ∨ γ̃ ∨ γ2,

is continuous and it joins z e w in (Ω)ρ. �

Remark. In Proposition 2.11.9, the assumption that ∂Ω is connected is
not necessary. The proof of this assertion may follow arguing likewise the
proof of Proposition 2.11.9, taking into account that due to the boundedness
of Ω and the C1,1 character of ∂Ω, the connected components of ∂Ω are finite
in number. We invite the reader to develop the details. �





Chapter 3

The Sobolev spaces

3.1 Weak derivatives
Let us give the definition of weak derivative.

Definition 3.1.1. Let Ω be an open set of Rn and α ∈ Nn
0 . Let u, v ∈ L1

loc(Ω).
We say that v is the α–th weak derivative of u and we write

∂αu = v,

if ∫
Ω

u∂αφdx = (−1)α
∫

Ω

vφdx, ∀φ ∈ C∞0 (Ω). (3.1.1)

Definition 3.1.1 is justified by the integration by parts formula that, in
the case of u ∈ C |α|(Ω), gives precisely the derivative ∂αu in the classical
sense. For instance, if u ∈ C1(Ω), we have

∫
Ω

u∂jφdx =

∫
Ω

[∂j (uφ)− φ∂ju] dx = −
∫

Ω

φ∂judx, ∀φ ∈ C∞0 (Ω).

Proposition 3.1.2. If u ∈ L1
loc(Ω) admits the α–th weak derivative, it is

unique (up to a set of measure zero).

Proof. Let us assume that v1, v2 ∈ L1
loc(Ω) are two α–th weak derivative

of u, then

(−1)α
∫

Ω

v1φdx =

∫
Ω

u∂αφdx = (−1)α
∫

Ω

v2φdx, ∀φ ∈ C∞0 (Ω),

115
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which implies ∫
Ω

(v1 − v2)φdx = 0, ∀φ ∈ C∞0 (Ω),

however, v1 − v2 ∈ L1
loc(Ω), so

v1 = v2, a.e. in Ω.

�

Example 1. Let Ω = (−1, 1), u(x) = |x|; let us show that

u′ = sgn(x) :=



1, for x > 0,

0, for x = 0,

−1, for x < 0,

, in the weak sense.

As a matter of fact we have sgn(·)∈ L1(−1, 1) and

∫ 1

−1

|x|φ′(x)dx =

∫ 1

0

xφ′(x)dx−
∫ 0

−1

xφ′(x)dx =

= [xφ(x)]10 −
∫ 1

0

φ(x)dx− [xφ(x)]0−1 +

∫ 0

−1

φ(x)dx =

= −
∫ 1

−1

sgn(x)φ(x)dx, ∀φ ∈ C∞0 (−1, 1).

♠

Example 2. Let Ω = (−1, 1), u(x) =sgn(x). Let us prove that u has
not the weak derivative. Let us assume the contrary and be v ∈ L1

loc(−1, 1)
such that

∫ 1

−1

u(x)φ′(x)dx = −
∫ 1

−1

v(x)φ(x)dx, ∀φ ∈ C∞0 (−1, 1). (3.1.2)

Let φ ∈ C∞0 (−1, 1) arbitrary. We have∫ 1

−1

u(x)φ′(x)dx =

∫ 1

0

φ′(x)dx−
∫ 0

−1

φ(x)dx = −2φ(0).
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Taking into account (3.1.2), we get∫ 1

−1

v(x)φ(x)dx = 2φ(0), ∀φ ∈ C∞0 (−1, 1). (3.1.3)

Let now {φk}k≥2 be the following sequence of functions

φk(x) =


e
k2− k2

1−k2x2 , for |x| < 1
k
,

0, for 1
k
≤ |x| < 1.

we have φk ∈ C∞0 (−1, 1), supp φk ⊂
[
−1

2
, 1

2

]
for every k ≥ 2. Moreover

φk(0) = 1, and lim
k→∞

φk(x) = 0, for x 6= 0.

On the other hand, by (3.1.3) we have

2 = 2φk(0) =

∫ 1

−1

v(x)φk(x)dx, ∀k ≥ 2, (3.1.4)

but v ∈ L1
loc(−1, 1), hence the Dominated Convergence Theorem implies

lim
k→∞

∫ 1

−1

v(x)φk(x)dx = 0.

By the latter and by (3.1.4) we reach a contradiction. ♠

3.2 Definition of the Sobolev spaces

Let us give the following

Definition 3.2.1. Let 1 ≤ p ≤ ∞, k ∈ N0 and let Ω be an open set of Rn,
n ≥ 1. If k = 0, set

W 0,p(Ω) = Lp(Ω).

If k ≥ 1, W k,p(Ω) is the set of functions u ∈ L1
loc(Ω) satisfying

∂αu ∈ Lp(Ω), for |α| ≤ k, (3.2.1)

where ∂αu is the α–th weak derivative of u.
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It is easy to check that W k,p(Ω) is a vector space. Furthermore we define
the following norms. If 1 ≤ p < +∞, we set

‖u‖Wk,p(Ω) =

∑
|α|≤k

∫
Ω

|∂αu|p dx

1/p

. (3.2.2)

If p = +∞, we set

‖u‖W∞,p(Ω) =
∑
|α|≤k

‖∂αu‖L∞(Ω) . (3.2.3)

If p = 2, we also set
Hk(Ω) = W k,2(Ω).

Let us observe that Hk(Ω) is a pre–Hilbertian space equipped with the scalar
product

(u, v)Hk(Ω) =

∫
Ω

∑
|α|≤k

∂αu∂αvdx, ∀u, v ∈ Hk(Ω). (3.2.4)

Here and in the sequel, for any k ∈ N, p ∈ [1,∞], we denote by W k,p
loc (Ω),

(Hk
loc(Ω)) the subspace of Lploc(Ω) (L2

loc(Ω)) of the functions u such that for
every open set ω b Ω (i.e. ω ⊂ Ω) we have u|ω ∈ W k,p(ω) (u|ω ∈ Hk(ω)).
Let {um} be a sequence in W k,p

loc (Ω) and u ∈ W k,p
loc (Ω), we say that

um → u, as m→∞, in W k,p
loc (Ω),

if

(um)|ω → u|ω, as m→∞, in W k,p(ω), ∀ω b Ω.

Exercise 1. Check that, if 1 ≤ p ≤ ∞, k ∈ N0, then W k,p(Ω) is a vector
subspace of Lp(Ω) and ‖·‖Wk,p(Ω) defines a norm on W k,p(Ω). ♣

Proposition 3.2.2. If u ∈ W k,p(Ω), then we have
(i) ∂αu ∈ W k−|α|,p(Ω) for |α| ≤ k and ∂β∂αu = ∂α∂βu = ∂α+βu for |α|+|β| ≤
k,
(ii) for any ζ ∈ C∞

(
Ω
)
we have ζu ∈ W k,p(Ω) and

∂α(ζu) =
∑
β≤α

(
α

β

)
∂βζ∂α−βu.
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Proof. (i) Let u ∈ W k,p(Ω), |α| ≤ k, and let β satisfy |β| ≤ k − |α|. For
any φ ∈ C∞0 (Ω), we have∫

Ω

∂αu∂βφdx = (−1)|α|
∫

Ω

u∂α+βφdx =

= (−1)|α|(−1)|α|+|β|
∫

Ω

∂α+βuφdx =

= (−1)|β|
∫

Ω

∂α+βuφdx.

Hence ∫
Ω

∂αu∂βφdx = (−1)|β|
∫

Ω

∂α+βuφdx, ∀φ ∈ C∞0 (Ω),

consequently
∂β∂αu = ∂α+βu.

The latter implies
∂αu ∈ W k−|α|,p(Ω),

for any |α| ≤ k.

(ii) Let us consider the case |α| = 1. Let α = ej, for j = 1, · · · , n. We have,
for any φ ∈ C∞0 (Ω),∫

Ω

ζu∂jφdx =

∫
Ω

u [∂j(ζφ)− (∂jζ)φ] dx =

= −
∫

Ω

(∂ju)ζφdx−
∫

Ω

u(∂jζ)φdx =

= −
∫

Ω

[(∂ju)ζ + u∂jζ]φdx.

Now, let us notice that

(∂ju)ζ + u∂jζ ∈ Lp(Ω),

hence
∂j(ζu) = (∂ju)ζ + u∂jζ, in the weak sense.

If |α| > 1, one proceeds by induction, and we leave the details to the reader.
�

Theorem 3.2.3 (completeness of W k,p(Ω)). The space W k,p(Ω), k ∈ N0,
1 ≤ p ≤ ∞, equipped with the norm (3.2.2), (3.2.3), is a Banach space. If
p = 2, Hk(Ω) is a Hilbert space.
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Proof. We limit ourselves to the case k = 1. Similarly it can be handle
the case k > 1. Let {um} be a Cauchy sequence in W 1,p(Ω). From the
definition of norm of W 1,p(Ω) we have that

{um} and {∂jum} , j = 1, · · · , n,

are Cauchy sequences in Lp(Ω). On the other hand, Lp(Ω) is complete; hence
there exist u, v1, · · · , vn ∈ Lp(Ω) such that

um → u, as m→∞, in Lp(Ω), (3.2.5a)

∂jum → vj, as m→∞, in Lp(Ω), j = 1, · · · , n. (3.2.5b)

Now, (3.2.5a) and (3.2.5b) imply that, for any φ ∈ C∞0 (Ω), we have∫
Ω

u∂jφdx = lim
m→∞

∫
Ω

um∂jφdx =

= − lim
m→∞

∫
Ω

∂jumφdx =

= −
∫

Ω

vjφdx.

Hence
∂ju = vj, for j = 1, · · · , n.

Therefore by (3.2.5a) e (3.2.5b) we have

um → u, as m→∞, in W 1,p(Ω).

�

Proposition 3.2.4. The space W k,p(Ω), k ∈ N0, 1 ≤ p <∞, equipped with
the norm (3.2.2) is a separable space.

Proof. The proof is similar to the one of Proposition 2.1.6. Let us
consider the case k = 1. Let

Φ : W 1,p(Ω)→ Lp(Ω)× Lp(Ω;Rn),

Φ(u) = (u,∇u), ∀u ∈ W 1,p(Ω).

Φ turns out to be an isometry, provided that we equip Lp(Ω)×Lp(Ω;Rn) by
the norm
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(∫
Ω

|v0|pdx+
n∑
j=1

∫
Ω

|vj|p dx

)1/p

,

for every v = (v0, v1, · · · , vn) ∈ Lp(Ω) × Lp(Ω;Rn). Now, since p < +∞,
Lp(Ω)×Lp(Ω;Rn) is separable because it is the cartesian product of separable
spaces. Hence Φ (W 1,p(Ω)) is separable as a subspace of Lp(Ω) × Lp(Ω;Rn)
and, since Φ is an isometry, W 1,p(Ω) is separable too. �

It can be proved that if 1 < p <∞, then W 1,p(Ω) is a reflexive space. In
the sequel we will not make explicitly use this property, however for a proof
we refer to [12, Proposizione IX.1].

Example 1. Let α > 0. Let us consider

u(x) =
1

|x|α
.

We prove that u ∈ W 1,p(B1) if and only if p < n and α < n
p
− 1.

We begin by assuming that u ∈ W 1,p(B1). Then u ∈ Lp(B1) and con-
sequently αp < n, therefore p < ∞. Moreover, for any j = 1, · · · , n there
exists vj ∈ Lp(B1) such that∫

B1

1

|x|α
∂jφdx = −

∫
B1

vjφdx, ∀φ ∈ C∞0 (B1).

In particular we have, for any φ ∈ C∞0 (B1 \ {0}),

−
∫
B1

vjφdx =

∫
B1

1

|x|α
∂jφdx =

∫
B1

αxj
|x|α+2

φdx.

Hence, for any j = 1, · · · , n,

vj(x) = − αxj
|x|α+2

, a.e. in B1.

Now, vj ∈ Lp(B1), therefore

n∑
j=1

∫
B1

∣∣∣∣ αxj|x|α+2

∣∣∣∣p dx <∞. (3.2.6)

Let us observe that if a = (a1, · · · , an) ∈ Rn, then

1

np−1
|a|p ≤

n∑
j=1

|aj|p ≤ n |a|p , (3.2.7)
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(the first inequality is just a consequence of Hölder inequality, yje second is
trivial). Hence (3.2.6) is satisfied if and only if∫

B1

dx

|x|(α+1)p
=

∫
B1

∣∣∣∣ x

|x|α+2

∣∣∣∣p dx <∞,
from which we derive

α <
n

p
− 1. (3.2.8)

Conversely, let us assume that (3.2.8) holds true and that p < n. Let
us show that u ∈ W 1,p(B1). Inequality (3.2.8) implies α < n

p
that, in turn

implies u ∈ Lp(B1). Now, let φ ∈ C∞0 (B1) be arbitrary. We have, for any
j = 1, · · · , n,∫

B1

u∂jφdx = lim
ε→0

∫
B1\Bε

u∂jφdx =

= lim
ε→0

∫
B1\Bε

(∂j(uφ)− φ∂ju) dx =

= lim
ε→0

{∫
∂Bε

uφνjdS −
∫
B1\Bε

φ∂judx

}
.

(3.2.9)

On the other hand we have∣∣∣∣∫
∂Bε

uφνjdS

∣∣∣∣ ≤ ωn ‖φ‖L∞(B1) ε
−α+n−1,

where ωn is the measure of |∂B1|. Now, by (3.2.8) and p ≥ 1 we have
α < n− 1. Hence

lim
ε→0

∣∣∣∣∫
∂Bε

uφνjdS

∣∣∣∣ = 0;

coming back to (3.2.9) and keeping in mind that (by (3.2.8))

αxj
|x|α+2

∈ Lp(B1) ⊂ L1(B1),

we get ∫
B1

u∂jφdx = lim
ε→0

∫
B1\Bε

αxj
|x|α+2

φdx =

∫
B1

αxj
|x|α+2

φdx.

All in all we have

∂ju = − αxj
|x|α+2

∈ Lp(B1),
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therefore u ∈ W 1,p(B1). ♠

Remark. Similarly to in Example 1, it can be proved that if

u ∈ C0
(
B1

)
∩ C1

(
B1 \ {0}

)
then we have

u ∈ W 1,p(B1)⇐⇒ ∇u ∈ Lp(B1),

here ∇u is the gradient of u in B1 \ {0} in the classic sense, Let us consider
the case n = 1 only, because the case n > 1 can be treated in precisely the
same way as Example 1 (the proof is left to the reader). Let φ ∈ C∞0 (−1, 1),
we have

∫ 1

−1

uφ′dx = lim
ε→0

∫
(−1,1)\[−ε,ε]

uφ′dx =

= lim
ε→0

{
−u(ε)φ(ε) + u(−ε)φ(−ε)−

∫
(−1,1)\[−ε,ε]

u′φdx

}
,

but u ∈ C0([−1, 1]), hence

lim
ε→0

(−u(ε)φ(ε) + u(−ε)φ(−ε)) = 0

and u′ ∈ Lp(−1, 1), implies∫ 1

−1

uφ′dx = −
∫ 1

−1

u′φdx.

Therefore, u′ is the weak derivative of u and u ∈ W 1,p(−1, 1). �

3.2.1 The spaces W k,p
0 (Ω)

We give the following

Definition 3.2.5. Let 1 ≤ p ≤ ∞, k ∈ N0 and Ω be an open set of Rn,
n ≥ 1. Let us denote by

W k,p
0 (Ω),

the closure of C∞0 (Ω) in W k,p(Ω). We write

Hk
0 (Ω) = W k,2

0 (Ω).

Let us notice that W 0,p
0 (Ω) = Lp(Ω). Moreover W k,p

0 (Ω), equipped with
the norm ‖·‖Wk,p(Ω), as it is a closed subspace of W k,p(Ω), is a Banach space.
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3.3 Approximation and density theorems

Let η be a mollifier, namely η ∈ C∞0 (Rn) satisfies (i) supp η ⊂ B1,
(ii) η ≥ 0, (iii)

∫
Rn η(x)dx = 1. Set, for any ε > 0,

ηε(x) = ε−nη
(
ε−1x

)
.

Let Ω be an open set of Rn. Set

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε} .

The following Theorem holds true

Theorem 3.3.1 (local approximation by C∞ functions). Let k ∈ N0,
p ∈ [1,+∞). Let us assume that u ∈ W k,p (Ω). Let us denote by

uε = ηε ? u, in Ωε.

Then we have
uε ∈ C∞ (Ωε) ∩W k,p

loc (Ωε) , ∀ε > 0

and
uε → u, as ε→ 0, in W k,p

loc (Ω) .

Proof. The fact that uε ∈ C∞ (Ωε) is an immediate consequence of
Theorem 2.3.37. Concernig uε ∈ W k,p

loc (Ωε), we have by Theorem 2.3.35

∂αuε = (∂αηε) ? u, ∀α ∈ Nn
0 .

Now, if |α| ≤ k, we have, for any x ∈ Ωε,

(∂αηε) ? u =

∫
Ω

(∂αx ηε) (x− y)u(y)dy =

= (−1)|α|
∫

Ω

∂αy (ηε(x− y))u(y)dy =

=

∫
Ω

ηε(x− y)∂αy u(y)dy =

= (ηε ? ∂
αu) (x).

Let ω b Ω, since ∂αu ∈ Lp(ω) we have, for any |α| ≤ k,

ηε ? ∂
αu→ ∂αu, as ε→ 0, in Lp(ω).

Therefore
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u→ uε, as ε→ 0, in W k,p(ω).

�

Theorem 3.3.2 (Meyers – Serrin). Let Ω be an bounded open set of Rn.
Let k ∈ N0, p ∈ [1,+∞). If u ∈ W k,p (Ω) then there exists a sequence {um}
in W k,p (Ω) ∩ C∞ (Ω) which satisfies

um → u, as m→∞, in W k,p (Ω) .

Proof. Let

Ωj =

{
x ∈ Ω : dist(x, ∂Ω) >

1

j

}
, j ∈ N,

It is not restrictive to assume Ωj 6= ∅, for every j ∈ N. We have

Ωj ⊂ Ωj+1, ∀j ∈ N,
∞⋃
j=1

Ωj = Ω. (3.3.1)

Let φj ∈ C∞ (Rn), j ∈ N, satisfy supp φj ⊂ Ωj+1; φj(x) = 1 for every x ∈ Ωj;
0 ≤ φj(x) ≤ 1, for every x ∈ Rn.

For any j ∈ N we get

x ∈ Rn \ Ωj+1 =⇒ φj(x) = 0 ≤ φj+1(x)

and

x ∈ Ωj+1 =⇒ φj(x) ≤ 1 = φj+1(x).

Hence

φj ≤ φj+1, ∀j ∈ N, in Rn.

Set
ζ0 = φ2, ζj = φj+1 − φj, ∀j ∈ N

and
V0 = Ω2, Vj = Ωj+3 \ Ωj, ∀j ∈ N.

We have

ζj ∈ C∞0 (Rn) , supp ζj ⊂ Vj, ∀j ∈ N0.
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Moreover
0 ≤ ζj ≤ 1, ∀x ∈ Rn, ∀j ∈ N0

and

∞∑
j=0

ζj(x) = 1, ∀x ∈ Ω. (3.3.2)

Let us check (3.3.2). Let x ∈ Ω, by (3.3.1) we have that there exists m ∈ N
such that x ∈ Ωj, for every j ≥ m. Let m ≥ m, we have x ∈ Ωm, hence
φm+1(x) = 1. Consequently, we have

m∑
j=0

ζj(x) = ζ0(x) + ζ1(x) + · · ·+ ζm(x) =

= φ2(x) + (φ3(x)− φ2(x)) + · · ·+ (φm+1(x)− φm(x)) =

= φm+1(x) = 1.

Therefore we have checked (3.3.2).
Now, let u ∈ W k,p(Ω) and let us consider the functions ζju, j ∈ N0.

Proposition gives 3.2.2 we get ζju ∈ W k,p(Ω), in addition

ζju = 0, in Ω \ V j.

Let us denote by W0 = Ω4, W1 = Ω5, Wj = Ωj+4 \Ωj−1, j ≥ 2. Let δ > 0 be
fixed and let 0 < εj <

1
j+4
− 1

j+3
satisfy

uj = ηεj ? (ζju) ∈ C∞(Ω) ∩W k,p(Ω),

we have

uj = 0, in Ω \W j.

Theorem 3.3.1 implies that for every j ∈ N0 there exists εj > 0 such that

∥∥uj − ζju∥∥Wk,p(Ω)
=
∥∥uj − ζju∥∥Wk,p(Wj)

≤ δ

2j+1
, j ∈ N0. (3.3.3)

We now set

v(x) =
∞∑
j=0

uj(x). (3.3.4)
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Notice that, for any x ∈ Ω, only a finite number of terms of series (3.3.4) is
different from 0. Moreover, as uj ∈ C∞(Ω) ∩W k,p(Ω), for every j ∈ N0, we
have v ∈ C∞(Ω) ∩W k,p(Ω).

Now, taking into account that

u =
∞∑
j=0

ζju,

for any h ∈ N, (3.3.3) and (3.3.4) give

‖v − u‖Wk,p(Ωh) =

∥∥∥∥∥
∞∑
j=0

uj −
∞∑
j=0

ζju

∥∥∥∥∥
Wk,p(Ωh)

≤

≤
∞∑
j=0

∥∥uj − ζju∥∥Wk,p(Ωh)
≤

≤
∞∑
j=0

∥∥uj − ζju∥∥Wk,p(Ω)
≤

≤
∞∑
j=0

δ

2j+1
= δ.

All in all, we have

‖v − u‖Wk,p(Ωh) ≤ δ, ∀h ∈ N.

Hence

‖v − u‖Wk,p(Ω) = lim
h→∞
‖v − u‖Wk,p(Ωh) ≤ δ.

Therefore, the sequence

um =
m∑
j=0

uj(x), m ∈ N,

satisfies the thesis. �

Exercise. Prove Theorem 3.3.2 without the assumption that Ω is bounded.
[Hint: consider Ωj ∩Bj(x0), x0 fixed point, instead of Ωj.] ♣

The following Theorem holds true
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Theorem 3.3.3 (C∞ approximation to the boundary). Let Ω be a
bounded open set of Rn whose boundary is of class C0,1 with constants r0,M0.
Let u ∈ W k,p(Ω), 1 ≤ p < +∞. Then there exists a sequence of functions
{uj} ⊂ C∞

(
Ω
)
such that

uj → u, as j →∞, in W k,p(Ω).

To preparare the proof of Theorem 3.3.3, we introduce some notations
and we prove a Proposition,

Let Ω be a bounded open set of Rn whose boundary is of class C0,1 with
constants r0,M0. Let x0 ∈ ∂Ω. We may assume (up to isometry) that x0 = 0
and

Ω ∩Qr0,2M0 = {x ∈ Qr0,2M0 : xn > ϕ(x′)} ,

where ϕ ∈ C0,1
(
B′r0
)
satisfies

ϕ(0) = 0

and
‖ϕ‖C0,1(B′r0) ≤M0r0.

Set
V = Ω ∩Q r0

2
,
M0
2
.

Let y be any point of V , we look for what λ > 0 and ε > 0 we have (see
Figure 3.2)

Bε (yε) ⊂ Ω ∩Qr0,M0 , (3.3.5)

where
yε = y + ελen,

1. Let us check that if ε and λ satisfy

ε <
r0

2
, ε(1 + λ) <

M0r0

2
, (3.3.6)

then we have

Bε (yε) ⊂ Qr0,M0 . (3.3.7)

Since Bε (yε) ⊂ B′ε ((yε)′) × [yεn − ε, yεn + ε], we have that the first condition
of (3.3.6) implies

B′ε ((yε)′) ⊂ B′r0 (3.3.8)
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Figure 3.1:
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and second condition of (3.3.6) implies

yεn + ε ≤ M0r0

2
+ ελ+ ε < M0r0

and, similarly,

yεn − ε ≥ −
M0r0

2
+ ελ− ε > −M0r0.

Hence
[yεn − ε, yεn + ε] ⊂ [−M0r0,M0r0] ,

which gives (3.3.7).
2. In order that Bε (yε) ⊂ Ω ∩ Qr0,M0 , it is suffices that, besides conditions
(3.3.6), yε have a distance greater or equal to ε from the cone

xn = M0 |x′ − y′|+ ϕ(y′).

Now, denoting by dε this distance, we have

dε =
|yn + ελ− ϕ(y′)|√

1 +M2
0

=

=
yn + ελ− ϕ(y′)√

1 +M2
0

≥

≥ ελ√
1 +M2

0

.

Hence, in order that dε > ε it suffices that λ >
√

1 +M2
0 . Therefore, by

choosing

λ = λ0 := 2
√

1 +M2
0

and by requiring that

ε < ε0 := min

{
r0

2
,
M0r0

2
,

M0r0

2
√

1 +M2
0

}

we obtain (3.3.5).

For any u ∈ Lp(Ω) and ε < ε0 we set

uε(x) = u (xε) = u(x+ λ0εen), ∀x ∈ V (3.3.9)

and
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vε(x) =

∫
Bε(xε)∩Ω

ηε(x+ λ0εen − y)u(y)dy, ∀x ∈ V, (3.3.10)

where, we recall, ηε(x) = ε−nη (ε−1x). Now, since Bε (xε) ⊂ Ω ∩ Qr0,M0 , we
have

vε(x) =

∫
Bε(xε)

ηε(x+ λ0εen − y)u(y)dy =

=

∫
Bε

ηε(y)u(x+ λ0εen − y)dy, ∀x ∈ V.

(3.3.11)

The first equality in (3.3.11) gives

vε(x) =

∫
Ω

ηε(x+ λ0εen − y)u(y)dy.

Hence

∂αvε(x) =

∫
Ω

∂αx ηε(x+ λ0εen − y)u(y)dy, ∀x ∈ V (3.3.12)

so that

∂αvε ∈ C∞
(
V
)
.

Moreover, for any u ∈ W k,p(Ω), we have

∂αvε(x) =

∫
Ω

ηε(x+ λ0εen − y)∂αu(y)dy =

=

∫
Bε(xε)

ηε(x+ λ0εen − y)∂αu(y)dy, ∀x ∈ V,

(3.3.13)

for every |α| ≤ k.

We have the following

Proposition 3.3.4. If u ∈ W k,p(Ω) and p ∈ [1,+∞) then

vε → u, as ε→ 0, in W k,p(V ).



132 Chapter 3. The Sobolev spaces

Proof. First of all we prove

vε → u, as ε→ 0, in Lp(V ).

The triangle inequality gives

‖vε − u‖Lp(V ) ≤ ‖uε − u‖Lp(V ) + ‖vε − uε‖Lp(V ) . (3.3.14)

Now

‖uε − u‖pLp(V ) =

∫
V

|u(x+ λ0εen)− u(x)|p dx

and, by Theorem 2.3.27, we have

lim
ε→0
‖uε − u‖Lp(V ) = 0. (3.3.15)

Moreover, by the second equality in (3.3.11) we have, for any x ∈ V ,

vε(x)− uε(x) =

∫
Bε

ηε(y) (u(x+ λ0εen − y)− u(x+ λ0εen)) dy.

In order to prove that the second term on the right hand side in (3.3.14) goes
to 0 it suffices to repeat the same steps which provide the proof of Theorem
2.3.34. For completeness, let us repeat these steps.

∫
V

|vε − uε|p dx ≤
∫
V

(∫
Bε

ηε(y) |u(x+ λ0εen − y)− u(x)| dy
)p

dx =

=

∫
V

(∫
Bε

η1/p′

ε (y)η1/p
ε (y) |u(x+ λ0εen − y)− u(x)| dy

)p
dx ≤

≤
∫
V

dx

(∫
Bε

ηε(y)dy

)p/p′ ∫
Bε

ηε(y) |u(x+ λ0εen − y)− u(x)|p dy =

=

∫
V

dx

∫
Bε

ηε(y) |u(x+ λ0εen − y)− u(x)|p =

=

∫
Bε

(
ηε(y)

∫
V

|u(x+ λ0εen − y)− u(x)|p dx
)
dy ≤

≤ sup
|y|≤ε

∫
V

|u(x+ λ0εen − y)− u(x)|p dx.

All in all, we have∫
V

|vε − uε|p dx ≤ sup
|y|≤ε

∫
V

|u(x+ λ0εen − y)− u(x)|p dx.
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Theorem 2.3.27 now yields

lim
ε→0
‖vε − uε‖Lp(V ) = 0.

By the latter, by (3.3.14) and by (3.3.15) we have

lim
ε→0
‖vε − u‖Lp(V ) = 0.

If u ∈ W k,p(Ω), we obtain from what has been proven above and from
(3.3.13)

∂αvε → ∂αu, per ε→ 0, in Lp(V ), for |α| ≤ k.

Hence

vε → u, as ε→ 0, in W k,p(V ).

�

Proof of Theorem 3.3.3. Let x0 ∈ ∂Ω, let us denote by Q̃r0,2M0(x0)
the cylinder isometric to Qr0,2M0 such that (2.7.2) holds. As a consequence,{
Q̃ r0

2
,
M0
2

(x0)
}
x0∈∂Ω

is an open covering of the compact set ∂Ω. Let{
Q̃ r0

2
,
M0
2

(xi)
}

1≤i≤N

be a finite subcovering of ∂Ω. For any 1 ≤ i ≤ N and let us denote

Vi = Ω ∩ Q̃ r0
2
,
M0
2

(xi).

For any fixed δ > 0 let vi ∈ C∞
(
Vi
)
be the function constructed in (3.3.10)

which satisfies

‖vi − u‖Wk,p(Vi)
≤ δ. (3.3.16)

Moreover, let V0 ⊂ Ω be such that

Ω ⊂
N⋃
i=0

Vi

and let {ζi}0≤i≤N be a partition of unity (compare Theorem 2.4.3) which
satisfies ζi ∈ C∞0 (Rn), supp ζi ⊂ Vi per 1 ≤ i ≤ N and

N∑
i=0

ζi(x) = 1, ∀x ∈ Ω.
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Let us denote by v0 = ζ0u and

v =
N∑
i=0

ζivi.

We have v ∈ C∞(Ω) and, taking into account (3.3.16),

‖∂αv − ∂αu‖Lp(Ω) =

∥∥∥∥∥
N∑
i=0

∂α(ζivi)−
N∑
i=0

∂α(ζiu)

∥∥∥∥∥
Lp(Ω)

≤

≤
N∑
i=0

‖∂α(ζivi)− ∂α(ζiu)‖Lp(Vi)
≤

≤ C
N∑
i=0

‖vi − u‖Wk,p(Vi)
≤

≤ CNδ,

for every |α| ≤ k.
Therefore, if u ∈ W k,p(Ω) then for every η > 0 there exists v ∈ C∞

(
Ω
)

such that
‖v − u‖Wk,p(Ω) < η.

The Theorem is proved. �

We conclude this Section with some propositions and exercises.

Proposition 3.3.5. Let Ω be a connected open set of Rn and let u ∈ W 1,1
loc (Ω)

satisfy
∇u = 0, in Ω,

then u is almost everywhere equal to a constant.

Proof. Let us first consider the case in which Ω = Br, r > 0, and
u ∈ W 1,1(Br). Let δ be any number in (0, r) and let ε ∈ (0, δ). Set

uε(x) =

∫
Br

ηε(x− y)u(y)dy.

By Theorem 3.3.1 we derive that uε ∈ C∞ (Br−δ) and that, for any x ∈ Br−δ,

∇uε(x) = −
∫
Br

∇ (ηε(x− y))u(y)dy =

∫
Br

ηε(x− y)∇yu(y)dy = 0.
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Hence
uε(x) = Cε, in Br−δ,

where Cε is a constant which depends on ε. On the other hand

uε → u, as ε→ 0, in L1 (Br−δ) .

Since the limit, in L1 (Br−δ), of a sequence of constant functions is a constant
function, we have u = C̃δ, almost everywhere in Br−δ, where C̃δ is a constant.
Triavially, C̃δ does not depend on δ and, as δ is arbitrary in (0, r), we have
that u is constant almost everywhere in Br.

Now, let us consider the general case and let us assume that u ∈ W 1,1
loc (Ω).

Let x ∈ Ω and Br (x) b Ω, for what proved before we have that there is C ∈ R
such that

u = C, a.e. in Br (x) . (3.3.17)

Let y be any point of Ω, y 6= x. We prove that there exists ρ > 0 such that

u = C, a.e. in Bρ (y) . (3.3.18)

Since Ω is a connected open set, there exists a continuous path γ : [0, 1]→ Ω,
γ such that γ(0) = x, γ(1) = y. Since γ ([0, 1]) is a compact, we have

r0 := dist (γ ([0, 1]) , ∂Ω) > 0.

Moreover, let ρ = min{r0, r}, we can estract a finite subcovering by the open
covering {Bρ(x)}x∈γ([0,1]), of γ ([0, 1]). Let {Bρ(xj)}1≤j≤N be such a finite
subcovering of γ ([0, 1]), where xj ∈ γ ([0, 1]). It is not restrictive to assume
x1 = x, xN = y. For this purpose it suffices, eventually, to add to the family
{Bρ(xj)}1≤j≤N , the balls Bρ (x) and Bρ (y)) and, rearranging the remaining
points x2, · · · , xN−1, we may assume that (as γ ([0, 1]) is connected)

Bρ (xj) ∩Bρ (xj+1) 6= ∅, j = 1, · · · , N − 1. (3.3.19)

In each ball Bρ (xj), u is constant almost everywhere and, since Bρ (xj) ∩
Bρ (xj+1) has positive measure, for j = 1, · · · , N − 1, we have by (3.3.17)
that u = C almost everywhere in Bρ (xj), j = 1, · · · , N . Therefore we obtain
(3.3.18). �

Proposition 3.3.6. Let F ∈ C1(R) be such that F ′ is bounded. Let Ω be a
bounded open set of Rn and let u ∈ W 1,p(Ω), p ∈ [1,+∞). Let us denote

v := F (u),
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we have v ∈ W 1,p(Ω) and

∂jv = F ′(u)∂ju, j = 1, · · · , n.

Proof. Since F ′ is a bounded function and Ω is a bounded set, we have
v ∈ Lp(Ω). As a matter of fact

|v| ≤ |F (u)− F (0)|+ |F (0)| ≤ ‖F ′‖L∞(R) |u|+ |F (0)| ∈ Lp(Ω).

Now, we apply Theorem 3.3.3 and let {um} ⊂ C∞(Ω)∩W 1,p(Ω) be a sequence
such that

um → u, as m→∞, in W 1,p(Ω). (3.3.20)
We have

F (um)→ F (u), as m→∞, in Lp(Ω). (3.3.21)
Concerning the latter we have

lim
m→∞

∫
Ω

|F (um)− F (u)|p dx ≤ ‖F ′‖pL∞(R) lim
m→∞

∫
Ω

|um − u|p dx = 0.

Now let us check that

F ′(um)∂jum → F ′(u)∂ju, as m→∞, in Lp(Ω), (3.3.22)
for j = 1, · · · , n.

We have
‖F ′(um)∂jum − F ′(u)∂ju‖Lp(Ω) ≤ ‖F

′(um) (∂jum − ∂ju)‖Lp(Ω) +

+ ‖(F ′(um)− F ′(u)) ∂ju‖Lp(Ω) ≤
≤ ‖F ′‖L∞(R) ‖∂jum − ∂ju‖Lp(Ω) +

+ ‖(F ′(um)− F ′(u)) ∂ju‖Lp(Ω) .

Since (3.3.20) holds, the second-to-last term on the right goes to zero as m→
∞, concerning the last term, it goes to zero by the Dominated Convergence
Theorem. Thus, we have checked (3.3.22).

Now, by (3.3.21) and (3.3.22) we have∫
Ω

v∂jφdx = lim
m→∞

∫
Ω

F (um)∂jφdx =

= − lim
m→∞

∫
Ω

∂j (F (um))φdx =

= − lim
m→∞

∫
Ω

F ′(um)∂jumφdx =

= −
∫

Ω

F ′(u)∂juφdx,
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for every φ ∈ C∞0 (Ω) and every j = 1, · · · , n. Hence

∂jv = F ′(u)∂ju ∈ Lp(Ω), j = 1, · · · , n

so that, taking into account that v ∈ Lp(Ω), we have v ∈ W 1,p(Ω). �

Proposition 3.3.7. Let Ω be a bounded open set of Rn, let u ∈ W 1,p(Ω) and
p ∈ [1,+∞). Let us denote by u+ = max{u, 0}, u− = min{u, 0}. We have
u+, u− ∈ W 1,p(Ω) and

∇u+ =


∇u, for u > 0,

0, for u ≤ 0,

(3.3.23)

∇u− =


0, for u ≥ 0,

−∇u, for u < 0,

(3.3.24)

∇|u| =


∇u, for u > 0,

0, for u = 0,

−∇u, for u < 0.

(3.3.25)

Proof. Let us prove (3.3.23). For any ε > 0 let us define

fε(t) =


√
t2 + ε2 − ε, for t > 0,

0, for t ≥ 0.

Recalling that u ∈ W 1,p(Ω), by the Dominated Convergence Theorem we get

lim
ε→0

∫
Ω

|fε(u)− u+|p dx = 0,

As a matter of fact we have

lim
ε→0
|fε(u)− u+|p = 0, in Ω

and
|fε(u)− u+|p ≤ 2p (|fε(u)|p + |u+|p) ≤ 2p+1|u|p ∈ L1(Ω).

Now, we have
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f ′ε(t) =


t√

t2+ε2
, for t > 0,

0, for t ≥ 0

and
|f ′ε(t)| ≤ 1.

Hence, Proposition 3.3.6 implies

fε(u) ∈ W 1,p(Ω).

Now

∂jfε(u) =


u∂ju√
u2+ε2

, for u > 0,

0, for u ≥ 0,

for j = 1, · · · , n. Hence, for any φ ∈ C∞0 (Ω),∫
Ω

u+∂jφdx = lim
ε→0

∫
Ω

fε(u)∂jφdx =

= − lim
ε→0

∫
u>0

u∂ju√
u2 + ε2

φdx =

= −
∫
u>0

∂juφdx

(3.3.26)

in the last step we have applied the Dominated Convergence Theorem. There-
fore ∫

Ω

u+∂jφdx = −
∫

Ω

∂juχu>0φdx, ∀φ ∈ C∞0 (Ω),

from which we get (3.3.23). Concerning (3.3.24), it suffices to notice that
u− = (−u)+. All in all, (3.3.25) follows by (3.3.23) and (3.3.24) (recall that
|u| = u+ + u−). �

Exercise 1. We say that f : R→ R is a piecewise C1 function, provided
that f satisfies what follows: f is a continuous function, it has a continuous
derivative in R \ {a1, · · · , al}, where aj ∈ R and f has the right and the left
derivatives in aj, for j = 1, · · · , l and such derivatives are finite.

Prove that if f is a piecewise C1 function, f ′ ∈ L∞(R), Ω is a bounded
open set of Rn and u ∈ W 1,p(Ω), p ∈ [1,+∞), then we have f(u) ∈ W 1,p(Ω)
and
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∇(f(u)) =


f ′(u)∇u, for u /∈ {a1, · · · , al} ,

0, for u ∈ {a1, · · · , al} .

[Hint: consider preliminarly the case l = 1 and, in doing so, first address to
the case in which f(0) = 0; observe that

f(t) =

{
f1(t), for t > 0,

f2(t), for t ≤ 0,

where f1, f2 ∈ C1(R) and f ′1, f ′2 ∈ L∞(R). Let us note that f(t) = f1(t+) +
f2(−t−) and use Proposition 3.3.6 ...].

Exercise 2. Let Ω be an open set of Rn and let u, v ∈ W 1,p(Ω)∩L∞(Ω).
Prove that

uv ∈ W 1,p(Ω) ∩ L∞(Ω)

and
∇(uv) = v∇u+ u∇v. (3.3.27)

Solving. Let φ ∈ C∞0 (Ω) and let V be an open set such that

supp φ ⊂ V b Ω.

Let

uε(x) =

∫
Ω

ηε(x− y)u(y)dy, vε(x) =

∫
Ω

ηε(x− y)v(y)dy.

We have (uε)|V , (vε)|V ∈ C∞
(
V
)
and∫

Ω

uv∂jφdx =

∫
V

uv∂jφdx =

= lim
ε→0

∫
V

uεvε∂jφdx =

= − lim
ε→0

∫
V

[(∂juε) vε + uε∂jvε]φdx =

= −
∫
V

[(∂ju) v + u∂jv]φdx,

first limit is justified by the Dominated Convergence Theorem, the second
limit is justified as follows
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‖(∂juε) vεφ− (∂ju) vφ‖L1(V ) ≤ ‖φ‖L∞(V ) ‖v‖L∞(V ) |V |
1/p′ ‖∂juε − ∂ju‖Lp(V ) +

+ ‖φ‖L∞(V ) ‖∂ju‖Lp(V ) ‖vε − v‖Lp′ (V ) → 0, as ε→ 0,

similarly we argue for ‖(∂jvε)uεφ− (∂jv)uφ‖L1(V ). Hence, we get

∂j(uv) = (∂jv)u+ (∂ju) v. (3.3.28)

Since (by Hölder inequality) (∂jv)u+ (∂ju) v ∈ Lp(Ω), we get (3.3.27). ♣

3.4 The extension theorems
Let us start by some propositions about the space W k,p

0 (Ω).

Proposition 3.4.1. If k ∈ N and p ∈ [1,+∞) then

W k,p(Rn) = W k,p
0 (Rn).

Proof. We limit ourselves to the case k = 1, the case k > 1 can be
proved in a similar way and is left to the reader.

Let R > 1 and let ζR ∈ C∞0 (Rn) satisfy

0 ≤ ζR ≤ 1, in Rn,

ζR(x) = 1, ∀x ∈ BR; ζR(x) = 0, ∀x ∈ Rn \B2R,

|∇ζR| ≤ C, in Rn,

where C is independent of R.
If u ∈ W 1,p(Rn), we have

‖u− ζRu‖W 1,p(Rn) → 0, as R→∞. (3.4.1)

Let us check (3.4.1).

‖u− ζRu‖Lp(Rn) ≤ ‖u‖Lp(Rn\BR) → 0, as R→∞

and, for any j = 1, · · · , n,

‖∂ju− ∂j(ζRu)‖Lp(Rn) = ‖(1− ζR)∂ju− u∂jζR‖Lp(Rn) ≤
≤ ‖∂ju‖Lp(Rn\BR) + C ‖u‖Lp(Rn\BR) → 0, as R→∞.

In order to complete the proof, firstly we observe (by Theorem 2.3.35)
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(ζRu) ? ηε → ζRu, as ε→ 0, in W 1,p(Rn), (3.4.2)
where ηε a mollifier. Moreover, let δ be any positive number, let R0 > 1 be
such that

‖u− ζR0u‖W 1,p(Rn) <
δ

2
and let ε0 > 0 be such that

‖(ζR0u) ? ηε0 − ζR0u‖W 1,p(Rn) <
δ

2
.

From the last two inequalities and the triangle inequality we get

‖(ζR0u) ? ηε0 − u‖W 1,p(Rn) < δ.

Since (ζR0u) ? ηε0 ∈ C∞0 (Rn), the Proposition is proved. �

Theorem 3.4.2 (The first Poincaré inequality). Let Ω be a bounded
open set of Rn. Let p ∈ [1,+∞], k ∈ N. The following inequality holds true,
for any α ∈ Nn

0 , |α| ≤ k − 1,

‖∂αu‖Lp(Ω) ≤ Cdk−|α|
∑
|β|=k

∥∥∂βu∥∥
Lp(Ω)

, ∀u ∈ W k,p
0 (Ω), (3.4.3)

where d is the diameter of Ω and C depends on n and k only.

Proof. We restrict ourselves to the case k = 1, actually starting from
this case (3.4.3) can easily be deduced by induction. It is not restrictive to
assume 0 ∈ Ω and

Ω ⊂ [−d, d]n.

Let u ∈ W 1,p
0 (Ω). Let {uj} be a sequence in C∞0 (Ω) such that

{uj} → u, in W 1,p(Ω).

For any p ∈ [1,+∞) and any j ∈ N, we have

|uj(x)| = |uj(x)− uj(x′,−d)| =

=

∣∣∣∣∫ xn

−d
∂yuj(x

′, y)dy

∣∣∣∣ ≤
≤
∫ d

−d
|∂yuj(x′, y)| dy ≤

≤ (2d)1/p′
(∫ d

−d
|∂yuj(x′, y)|p dy

)1/p

.
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Hence

|uj(x)|p ≤ (2d)p−1

∫ d

−d
|∂yuj(x′, y)|p dy. (3.4.4)

Let us integrate both the sides of (3.4.4) over [−d, d] w.r.t. xn. We get∫ d

−d
|uj(x′, xn)|p dxn ≤ (2d)p

∫ d

−d
|∂yuj(x′, y)|p dy.

Now, let us integrate both the sides of the last inequality over [−d, d]n−1. We
get (∫

Ω

|uj(x)|p dx
)1/p

≤ 2d

(∫ d

−d
|∂xnuj(x)|p dx

)1/p

.

Passing to the limit as j →∞, we obtain

‖u‖Lp(Ω) ≤ Cd ‖∇u‖Lp(Ω) .

If p = +∞, then we have

|uj(x)| = |uj(x)− uj(x′,−d)| ≤ 2d ‖∂xnuj‖L∞(Ω) ,

from which, passing to the limit as j →∞, we have

‖u‖L∞(Ω) ≤ Cd ‖∇u‖L∞(Ω) .

�

Remarks.
1. From the proof of Proposition 3.4.2 it is evident that inequality (3.4.3)
also holds if Ω is contained in a strip of Rn of the type Rn−1 × [−d, d] or
isometric to it.
2. Proposition 3.4.2 implies that, the following seminorms are actually norms
on W k,p

0 (Ω) ∑
|β|=k

∥∥∂βu∥∥
Lp(Ω)

,

∑
|β|=k

∥∥∂βu∥∥p
Lp(Ω)

1/p

.

Moreover such norms are equivalent to the norm

‖u‖Wk,p(Ω) .

�
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Proposition 3.4.3. Let p ∈ [1,+∞], k ∈ N and let Ω and Ω̃ be open sets of
Rn such that Ω ⊂ Ω̃. Let u ∈ W k,p

0 (Ω).
Denoting

ũ =


u, in Ω,

0, in Ω̃ \ Ω,

(3.4.5)

we have ũ ∈ W k,p
0

(
Ω̃
)
.

Proof. Let u ∈ W k,p
0 (Ω) and let {uj} ⊂ C∞0 (Ω) be a sequence such that

uj → u, as j →∞, in W k,p(Ω).

Hence, by denoting

ũj =


uj, in Ω,

0, in Ω̃ \ Ω,

(3.4.6)

we have {ũj} ⊂ C∞0

(
Ω̃
)
and

ũj → ũ, as j →∞, in W k,p
(

Ω̃
)
.

Therefore ũ ∈ W k,p
0

(
Ω̃
)
. �

The Main Theorem of the present Section is the following one.

Theorem 3.4.4 (extension in W 1,p). Let Ω be a bounded open set of Rn

whose boundary is of class C0,1 with cosntants r0,M0. Let d0 be the diameter
of Ω. Let Ω̃ be an open set of Rn such that Ω b Ω̃ and let p ∈ [1,+∞).

Then there exists a linear bounded operator

E : W 1,p(Ω)→ W 1,p(Rn), (3.4.7)

which satisfies, for any u ∈ W 1,p(Ω),

Eu = u, in Ω, (3.4.8)

supp (Eu) ⊂ Ω̃. (3.4.9)
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Moreover, there exists a constant C depending on r0, M0, d0, n and p only
such that

‖Eu‖W 1,p(Rn) ≤ C ‖u‖W 1,p(Ω) , ∀u ∈ W 1,p(Ω). (3.4.10)

Proof. Let x0 ∈ ∂Ω. We may assume (up tp an isometry) that x0 = 0
and

Ω ∩Qr0,2M0 = {x ∈ Qr0,2M0 : xn > ϕ(x′)} ,

where ϕ ∈ C1
(
B′r0

)
satisfies

ϕ(0) = 0

and
‖ϕ‖C1(B′r0) = ‖ϕ‖C0(B′r0) + r0[ϕ]0,1,B′r0 ≤M0r0.

Set

V + = Q r0
4
,
M0
4
∩ Ω, V − = Q r0

4
,
M0
4
\ V +.

Notice that, for every x′ ∈ B′r0/4 we have

|ϕ(x′)| = |ϕ(x′)− ϕ(0)| ≤ [ϕ]0,1,B′r0 |x
′| ≤ M0r0

4
. (3.4.11)

First, we assume that u ∈ C∞
(
Ω
)
and we define

ν(x′) =
(∇ϕ(x′),−1)√
|∇x′ϕ|2 + 1

, x′ ∈ B′r0 ,

u(x) =


u(x), in V +,

v(x), in V −,

where

v(x) = u(x′, 2ϕ(x′)− xn).

Claim. u ∈ W 1,p
(
Q r0

4
,
M0
4

)
and

‖u‖
W1,p

(
Q r0

4 ,
M0
4

) ≤ C ‖u‖W1,p(Ω) , (3.4.12)

where C depends on M0 only.
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Figure 3.2:
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Proof of Claim. Let Φ ∈ C∞0
(
Q r0

4
,
M0
4

)
and 1 ≤ i ≤ n. Denoting by Γ

the graph of ϕ|B′
r0/4

, by the divergence Theorem we get

∫
Q r0

4 ,
M0
4

u∂iΦdx =

∫
V +

u∂iΦdx+

∫
V −

v∂iΦdx =

= −
∫
V +

∂iuΦdx+

∫
Γ

uΦ(ν · ei)dS−

−
∫
V −

∂ivΦdx−
∫

Γ

vΦ(ν · ei)dS =

= −
∫
Q r0

4 ,
M0
4

wiΦdx+

∫
Γ

(u− v)Φ(ν · ei)dS,

where

wi(x) =


∂iu(x), in V +,

∂iv(x), in V −.
(3.4.13)

On the other hand,

(u− v)(x′, ϕ(x′)) = 0, ∀x ∈ B′r0/4,

hence

∫
Q r0

4 ,
M0
4

u∂iΦdx = −
∫
Q r0

4 ,
M0
4

wiΦdx, ∀Φ ∈ C∞0
(
Q r0

2
,M0

)
. (3.4.14)

Therefore

∂iu = wi(x), ∀x ∈ Q r0
4
,
M0
4
. (3.4.15)

Now, let us notice that

∫
Q r0

4 ,
M0
4

|u(x)|p dx =

∫
V +

|u(x)|p dx+

∫
V −
|v(x)|p dx (3.4.16)
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and ∫
V −
|v(x)|p dx =

∫
B′
r0/4

dx′
∫ ϕ(x′)

−M0r0
4

|u(x′, 2ϕ(x′)− xn)|p dxn =

=

∫
B′
r0/4

dx′
∫ 2ϕ(x′)+

M0r0
4

ϕ(x′)

|u(x′, ξn)|p dξn ≤

≤
∫

Ω

|u(x)|p dx.

(3.4.17)

In the last inequality we have used (3.4.11). By (3.4.16) and (3.4.17), we
have, ∫

Q r0
4 ,

M0
4

|u(x)|p dx ≤ 2

∫
Ω

|u(x)|p dx. (3.4.18)

Now, (3.4.13) gives

|∇u(x)| ≤ C |(∇u)(x′, 2ϕ(x′)− xn)| , ∀x ∈ V −,

where C depends on M0 only. Hence

∫
Q r0

4 ,
M0
4

|∇u(x)|p dx ≤
∫
V +

|∇u(x)|p dx+ C

∫
V −
|(∇u)(x′, 2ϕ(x′)− xn)|p dx ≤

≤ C

∫
Ω

|∇u(x)|p dx.

From the just obtained inequality e from (3.4.18) we obtain (3.4.12). Claim
is proved.

Since ∂Ω is a compact set, there exist x0,1, · · · , x0,N ∈ ∂Ω such that

∂Ω ⊂
N⋃
j=1

Q̃ r0
4
,
M0
4

(x0,j)

where, for any j = 1, · · · , N , Q̃ r0
4
,
M0
4

(x0,j) are suitable cylinders which are
isometric to Q r0

4
,
M0
4
. Moreover, let us denote uj the extensions of u on

Q̃ r0
4
,
M0
4

(x0,j). Let us employ the partition of unity (Lemma 2.4.3). Set Vj =

Q̃ r0
4
,
M0
4

(x0,j), j = 1, · · · , N , we have that there exist ζ0, ζ1, · · · , ζN ∈ C∞0 (Rn)

such that
0 ≤ ζj(x) ≤ 1, j = 1, · · · , N, ∀x ∈ Rn
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supp ζj ⊂ Vj, j = 1, · · · , N, supp ζ0 ⊂ Rn \ ∂Ω,

N∑
j=0

ζj(x) = 1, ∀x ∈ Rn,

and

N∑
j=1

ζj(x) = 1, for every x in a neighborhood of ∂Ω.

Be, also, η ∈ C∞0
(

Ω̃
)
, such that 0 ≤ η ≤ 1, η(x) = 1, for x ∈ Ω. Set

ũ = η

(
ζ0u+

N∑
j=1

ζjuj

)
,

By (3.4.12) and by the triangle inequality, we have

‖ũ‖W 1,p(Rn) ≤ C ‖u‖W 1,p(Ω) , (3.4.19)

where C depends on r0, n and M0 only. Moreover, we have

ũ(x) = u(x), ∀x ∈ Ω, (3.4.20)

supp ũ ⊂ Ω̃. (3.4.21)

Now, let us denote

Eu := ũ, ∀u ∈ C∞
(
Ω
)
.

E is a linear operator and satisfies the inequality

‖Eu‖W 1,p(Rn) ≤ C ‖u‖W 1,p(Ω) . (3.4.22)

Now, let u ∈ W 1,p(Ω) and apply Theorem 3.3.3. Let therefore be
{um} ⊂ C∞

(
Ω
)
such that

{um} → u, in W 1,p (Ω) .

We have, by (3.4.22),

‖Eum − Eum′‖W 1,p(Rn) ≤ C ‖um − um′‖W 1,p(Ω) .
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Hence {Eum} is a Cauchy sequence in W 1,p (Rn) consequently it converges
to a function which we continue to denote by ũ ∈ W 1,p (Rn) which satisfies
trivially (3.4.19)–(3.4.21). �

We merely state, with some comments, the Theorem of extension for
W k,p(Ω), where k ≥ 1. We refer to [28] for a proof.

Theorem 3.4.5 (extension in W k,p). Let k ≥ 1 and p ∈ [1,+∞). Let Ω
be a bounded open set of Rn whose boundary is of class Ck−1,1 with costants
r0,M0. Let d0 be the diameter of Ω. Let Ω̃ an open set of Rn such that
Ω b Ω̃.

Then there exists a bounded linear operator

E : W k,p(Ω)→ W k,p(Rn),

such that, for any u ∈ W k,p(Ω) we have

Eu = u, on Ω,

supp (Eu) ⊂ Ω̃.

Moreover, there exists a constant C depending on r0, M0, d0, n k and p only,
such that

‖Eu‖Wk,p(Rn) ≤ C ‖u‖Wk,p(Ω) , ∀u ∈ W k,p(Ω). (3.4.23)

Exercise 1. (i) Let u ∈ C∞
(
B+
r

)
, whereB±r = {x ∈ Rn : |x| < r, xn ≷ 0}.

Let us define

u(x) =


u(x), in B+

r ,

v(x), in B−r ,

where
v(x) = −3u(x′,−xn) + 4u

(
x′,−xn

2

)
.

Prove that, if p ∈ [1,+∞) then u(x) ∈ W 2,p(Br) and the following inequality
holds true

‖u‖W 2,p(Br)
≤ C ‖u‖W 2,p(Ω) , ∀u ∈ W 2,p(B+

r ).

(ii) Let us define

C∞
(
B+
r

)
3 u→ Eu = u ∈ W 2,p(Br).
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Prove that the operator E can be extended to W 2,p (B+
r ) and that it satisfies

Eu = u in B+
r .

(iii) Let k ∈ N and let c1, · · · , ck be such that

k∑
j=1

cj

(
−1

j

)m
= 1, ,m = 0, 1, · · · , k − 1,

(check that such c1, · · · , ck exist); let us define for any u ∈ C∞
(
B+
r

)
u(x) =


u(x), in B+

r ,

w(x), in B−r ,

where

w(x) =
k∑
j=1

cju

(
x′,−xn

j

)
.

Prove that if p ∈ [1,+∞) then u(x) ∈ W k,p(Br) and the following inequality
holds true

‖u‖Wk,p(Br)
≤ C ‖u‖Wk,p(B+

r ) , ∀u ∈ W k,p(B+
r ).

Moreover, deduce that the following operator

C∞
(
B+
r

)
3 u→ Eku = u ∈ W k,p(Br)

can be extended to W k,p (Br)and Eku = u in B+
r .

3.5 Traces in W 1,p(Ω)

It is well–known that if u ∈ C0
(
Ω
)
, then we can define its trace on ∂Ω,

namely u|∂Ω. If, on the other hand, u ∈ Lp (Ω), generally, it does not make
sense to consider its trace on ∂Ω. In the present Section we will see that we
can define a notion of trace that extends the known one for the functions of
W 1,p (Ω) ∩ C0

(
Ω
)
.

More precisely we have

Theorem 3.5.1 (trace Theorem). Let Ω be a bounded open set of class
C0,1 with constants r0 and M0. Let p ∈ [1,+∞). Let d0 be the diameter of
Ω. Then there exists an unique bounded linear operator

T : W 1,p(Ω)→ Lp(∂Ω),



3.5. Traces in W 1,p(Ω) 151

which satisfies:

(i) T (u) = u|∂Ω for every u ∈ C0
(
Ω
)
∩W 1,p(Ω);

(ii)
‖T (u)‖Lp(∂Ω) ≤ ‖u‖W 1,p(Ω) , ∀u ∈ W 1,p(Ω),

where C depends by r0, M0, d0 and p;
(iii) ∫

Ω

udiv Φdx = −
∫

Ω

∇u · Φdx+

∫
∂Ω

(Φ · ν)TudS,

for every u ∈ W 1,p(Ω) and for every Φ ∈ C1
(
Ω,Rn

)
.

The function Tu is called the trace of u on ∂Ω.

Proof. We first notice that, since C∞
(
Ω
)
⊂ W 1,p (Ω) (Theorem 3.3.2)

and Φ is arbitrary in C1
(
Ω,Rn

)
, if T there exists, then it is unique.

Let us prove the existence of T . First, let us consider the case where
u ∈ C∞

(
Ω
)
. Since ∂Ω is compact, we may consider a partition of unity

subordinate to a finite covering {Vj}1≤j≤N , where Vj = Q̃ r0
2
,M0

(x0,j), j =

1, · · · , N (Q̃ r0
2
,M0

(x0,j) is a cylinder isometric to Q r0
2
,M0

)

ζj ∈ C∞0 (Rn), 0 ≤ ζj ≤ 1, supp ζj ⊂ Vj,
n∑
j=1

ζj = 1 on ∂Ω.

Let j ∈ {1, · · · , N} be fixed. Up to isometries we may assume Vj = Q r0
2
,M0

and

Qr0,M0 ∩ Ω = {(x′, xn) ∈ Qr0,M0 : xn > ϕ(x′)} ,
where ϕ ∈ C1

(
B′r0

)
satisfies ϕ(0) = 0 and

‖ϕ‖L∞(B′r0 ) + r0 ‖∇ϕ‖L∞(B′r0 ) ≤M0r0.

Let v = ζju. For any t ∈
[
0, M0r0

2

]
and any x′ ∈ B′r0/2 we have

v (x′, ϕ(x′)) = v (x′, ϕ(x′) + t)−
∫ ϕ(x′)+t

ϕ(x′)

∂xnv(x′, xn)dxn.

Hölder inequality gives

|v (x′, ϕ(x′))|p ≤ 2p−1 |v (x′, ϕ(x′) + t)|p + 2p−1tp−1

∫ M0r0

ϕ(x′)

|∂xnv (x′, xn)|p dxn
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and if we integrate with respect to xn over
[
0, M0r0

2

]
both the sides of the last

inequality we get

M0r0

2
|v (x′, ϕ(x′))|p ≤ 2p−1

∫ ϕ(x′)+
M0r0

2

ϕ(x′)

|v (x′, xn)|p dxn+

+
2p−1

p

(
M0r0

2

)p ∫ M0r0

ϕ(x′)

|u∂xnζj + ζj∂xnu|
p dxn.

Now, we multiply both the sides of the last inequality by
√

1 + |∇x′ϕ(x′)|2,
and we integrate over B′r0/2 obtaining∫

∂Ω

|uζj|p dS ≤ C

∫
Ω

|u|p dx+ C

∫
Ω

|∇u|p dx,

where C depends by M0 e r0. Therefore

‖u‖Lp(∂Ω) =

∥∥∥∥∥
N∑
j=1

ζju

∥∥∥∥∥
Lp(∂Ω)

≤

≤
N∑
j=1

‖ζju‖Lp(∂Ω) ≤

≤ C ‖u‖W 1,p(Ω) , ∀u ∈ C∞
(
Ω
)
.

(3.5.1)

Set
Tu = u|∂Ω, ∀u ∈ C∞

(
Ω
)
.

Inequality (3.5.1) implies

‖Tu‖Lp(∂Ω) ≤ C ‖u‖W 1,p(Ω) , ∀u ∈ C
∞ (Ω) . (3.5.2)

Let now u ∈ W 1,p(Ω). From Theorem 3.3.3 we have that there exists a
sequence {um} in C∞

(
Ω
)
such that

{um} → u, in W 1,p(Ω).

In particular, (3.5.2) implies that {Tum} is a Cauchy sequence in Lp(∂Ω).
Set

Tu = lim
m→∞

Tum.

Now, we observe that if u ∈ C0
(
Ω
)
∩W 1,p(Ω), then the sequence {um} con-

structed in the proof of Proposition 3.3.4 (with ε = 1/m) uniformly converges
to u. Hence, for any u ∈ C0

(
Ω
)
∩W 1,p(Ω), we have
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Tu = lim
m→∞

Tum = lim
m→∞

um = u, in Lp(∂Ω).

Therefore, we have proved (i) and (ii), now let us prove (iii). Let u ∈ W 1,p(Ω)
and let {um} be a sequence in C∞

(
Ω
)
which converges to u in W 1,p(Ω). We

have, for any Φ ∈ C1
(
Ω,Rn

)
,

∫
Ω

udiv Φdx = lim
m→∞

∫
Ω

umdiv Φdx =

= lim
m→∞

(
−
∫

Ω

∇um · Φdx+

∫
∂Ω

(Φ · ν)umdS

)
=

= −
∫

Ω

∇u · Φdx+

∫
∂Ω

(Φ · ν)TudS.

�

Remark 3.5.2. If u ∈ W 1,p
0 (Ω) then Tu = 0. Actually, under the same

assumption of Theorem 3.5.1 the conversely is also valid, but here we omit
the proof and refer to Theorem 2 of Ch. 5 of [23]. �

The issue of traces will be taken up in Section 3.12.

3.6 The Sobolev spaces of function of one vari-
able

In the present Section we will dwell briefly on the Sobolev spaces in the case
where the space dimension is equal to 1. Let us observe that if I ⊂ R is
a bounded open interval, then the theorems proved in the previous sections
remain valid: it is certainly a useful exercise (left to the reader) to adapt
the proofs of these theorems and observe that they turn out to be simplified
with respect to the general case. In particular, by Theorem 3.3.3 we have
that C∞

(
I
)
is dense in W k,p(I), for every p ∈ [1,+∞) and, by the extension

Theorem 3.4.4 it turns out that if Ĩ c I, where Ĩ is an open interval of R,
then there exists a bounded linear operator

E : W 1,p(I)→ W k,p
(
Ĩ
)

which satisfies
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‖Eu‖W 1,p(Ĩ) ≤ ‖u‖W 1,p(I) , ∀u ∈ W 1,p(I),

Eu|I = u, supp (Eu) ⊂ I.

Now we investigate the basic relations between the absolutely continuous
functions and the functions of W 1,p(I). By the above mentioned extension
Theorem, we may consider the space W 1,p(R), instead of W 1,p(I).

Let us recall that if u ∈ L1
loc(R) then

lim
r→0

1

2r

∫ x+r

x−r
|u(t)− u(x)| dt = 0, a.e. x ∈ R, (3.6.1)

and

lim
r→0

1

2r

∫ x+r

x−r
u(t)dt = u(x), a.e. x ∈ R. (3.6.2)

When (3.6.2) holds true in x, we say that x is a Lebesgue point of u .
For any c ∈ R we have

R 3 x→
∫ x

c

u(t)dt ∈ ACloc(R) (3.6.3)

and (∫ x

c

u(t)dt

)′
= u(x), a.e. x ∈ R. (3.6.4)

When u ∈ L1
loc(R), we set

u∗(x) =


limr→0

1
2r

∫ x+r

x−r u(t)dt, provided the limit exists,

0, otherwise.

By (3.6.2) we have
u∗(x) = u(x), a.e. x ∈ R.

The function u∗ is called the precise representative of u . In the sequel
to this Section, if f ∈ ACloc(R) we will denote by f ′ its derivative, and if
g ∈ W 1,p

loc (R), we will denote by d
dx
g its weak derivative.

Theorem 3.6.1. Let p ∈ [1,+∞). We have
(i) if u ∈ W 1,p

loc (R), then u∗ ∈ ACloc(R); moreover

(u∗)′ ∈ Lploc(R), and
d

dx
u = (u∗)′ ;
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(ii) let u ∈ Lploc(R). If v ∈ ACloc(R) satisfies

u = v, a.e. in R

and v′ ∈ Lploc(R) then u ∈ W 1,p
loc (R) and d

dx
u = v.

In order to prove the Theorem above we need the following Lemma

Lemma 3.6.2. Let u ∈ L1
loc(R) and let ηε be a mollifier. If x is a Lebesgue

point of u we have

uε(x) := (ηε ? u) (x)→ u∗(x), as ε→ 0+.

Hence
uε(x)→ u(x), as ε→ 0+, a.e. x ∈ R.

Proof of Lemma. Let us recall

ηε = ε−1η
(
ε−1x

)
,

where supp η ⊂ (−1, 1), η ∈ C∞0 (R), η ≥ 0 and∫
R
η(x)dx = 1.

If x ∈ R is a Lebesgue point of u, then we have

|uε(x)− u(x)| =
∣∣∣∣1ε
∫
R
η

(
x− t
ε

)
(u(t)− u(x)) dt

∣∣∣∣ ≤
≤ ‖η‖L∞(R)

1

ε

∫ x+ε

x−ε
|u(t)− u(x)| dt→ 0, as ε→ 0+.

�

Proof of Theorem 3.6.1.
1. Let u ∈ W 1,p

loc (R). We have uε ∈ C∞(R) and

uε(y) = uε(x) +

∫ y

x

(uε)′ (t)dt, ∀x, y ∈ R. (3.6.5)

Let x0 ∈ R be a Lebesgue point of u (hence u∗(x0) = u(x0)). By (3.6.5) we
have

uε(x) = uε(x0) +

∫ y

x

(uε)′ (t)dt (3.6.6)
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and, for any ε, δ > 0,∣∣uε(x)− uδ(x)
∣∣ ≤ ∣∣uε(x0)− uδ(x0)

∣∣+

∣∣∣∣∫ x

x0

∣∣∣(uε)′ − (uδ)′∣∣∣ dt∣∣∣∣ . (3.6.7)

Now, Lemma 3.6.2 yields

uε(x0)→ u(x0), as ε→ 0. (3.6.8)

Moreover

(uε)′ (t) =

∫
R
−∂y (ηε(t− y))u(y)dy =

∫
R
ηε(t− y)

du(y)

dy
dy,

which in turn implies

(uε)′ → du

dt
, as ε→ 0, in Lploc(R). (3.6.9)

Now, by (3.6.7)–(3.6.9) we have that {uε} satifies the Cauchy property on
every compact set of R. Therefore {uε} uniformly converges to a contiuous
function v on every compact set of R. Since we have

uε → u, as ε→ 0, in Lploc(R),

we get
u = v, a.e. in R.

On the other hand, by (3.6.6) and by (3.6.9) (taking into account that {uε} →
v on any compact), we have

v(x) = v(x0) +

∫ x

x0

du(t)

dt
dt, ∀x ∈ R

which implies that v ∈ ACloc(R) e

v′(x) =
du(x)

dx
, a.e. in R. (3.6.10)

Moreover,

1

2r

∫ x+r

x−r
u(t)dt =

1

2r

∫ x+r

x−r
v(t)dt, ∀x ∈ R.

Hence, passing to the limit as r → 0 we have

u∗(x) = v(x), ∀x ∈ R.
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By the latter and by (3.6.10) we get

(u∗)′ (x) =
du(x)

dx
, a.e. in R.

2. Let u ∈ Lploc(R) satisfy

u = v, a.e. in R,

where v ∈ ACloc(R) and v′ ∈ Lploc(R). We have∫
R
uΦ′dx =

∫
R
vΦ′dx = −

∫
R
v′Φdx, ∀Φ ∈ C∞0 (R).

Hence, as v′ ∈ Lploc(R), we get

du

dx
= v′, and u ∈ W 1,p

loc (R).

�

Remark. The Extension Theorem implies that if 1 ≤ p < +∞, a, b ∈ R,
a < b, denoting by E the extension operator, then we have

(i’) if u ∈ W 1,p(a, b), (Eu)∗ ∈ AC([a, b]); in particular u is almost ev-
erywhere equal to an absolutely continuous function in [a, b] and the weak
derivative of u is equal to the classic derivative of (Eu)∗ in (a, b);

(ii’) if u ∈ Lp(a, b) and v ∈ AC([a, b]) satisfies

u = v, a.e. in [a, b]

and v′ ∈ Lp(a, b) then u ∈ W 1,p(a, b) and the weak derivative of u is equal to
the classic derivative of v. �

Theorem 3.6.1 can be accomplished by the following

Proposition 3.6.3. Let p > 1 and u ∈ W 1,p
loc (a, b). We have that u is almost

everywhere equal to a function C0,α
loc (R), where α = 1 − 1/p. Here C0,α

loc (R)
denotes the space of the functions u satisfying u|I ∈ C0,α(I) for every I
compact interval of R.

Proof. Let I be a bounded interval. By (3.6.5), (by using Hölder in-
equality), we have, for any x, y ∈ I

|uε(x)− uε(y)| =
∣∣∣∣∫ y

x

(uε)′ (t)dt

∣∣∣∣ ≤
≤ |x− y|1−1/p

(∫
I

∣∣(uε)′ (t)∣∣p dt)1/p

.
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Hence, passing to the limit as ε → 0, taking into account that uε → u∗ and
u∗(x) = u(x) almost everywhere, we obtain

|u(x)− u(y)| ≤ |x− y|1−1/p

(∫
I

∣∣∣∣dudt
∣∣∣∣p dt)1/p

, a.e. x, y ∈ I.

�

3.7 The embedding theorems

In this Section we are interested in proving non trivial embedding theo-
rems of W k,p(Ω) in other function spaces. For instance we will be interested
in establishing when it happens that W k,p(Ω) ⊂ Lq(Ω), for q 6= p as well
W k,p(Ω) ⊂ Cm,γ(Ω) for appropriate m ∈ N0, 0 < γ ≤ 1.

First we consider the spaceW 1,p(Ω) and we distinguish the following three
cases

(a) 1 ≤ p < n, (b) n < p ≤ +∞, (c) p = n.

About case (c) we will just give brief hints.

3.7.1 Case 1 ≤ p < n. The Gagliardo – Nirenberg in-
equality

Let us assume

1 ≤ p < n (3.7.1)

and let us ask ourselves for what q ∈ [1,+∞] can be true an estimate like

‖u‖Lq(Rn) ≤ C ‖∇u‖Lp(Rn) , ∀u ∈ C∞0 (Rn), (3.7.2)

where C and q do not depend on u.
Let us assume that (3.7.2) is true and let us prove that, necessarily

q =
np

n− p
.

First, we examine the case q ∈ [1,+∞). Let u ∈ C∞0 (Rn) be not identically
equal to 0, and, for any λ > 0, let

uλ(x) = u(λx), ∀x ∈ Rn.
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Of course if (3.7.2) holds true, then

‖uλ‖Lq(Rn) ≤ C ‖∇uλ‖Lp(Rn) , ∀u ∈ C∞0 (Rn) ∀λ > 0. (3.7.3)

Now

‖uλ‖qLq(Rn) =

∫
Rn
|u(λx)|q dx = λ−n

∫
Rn
|u(x)|q dx;

hence

‖uλ‖Lq(Rn) = λ−
n
q ‖u‖Lq(Rn) (3.7.4)

and

‖∇uλ‖pLp(Rn) =

∫
Rn
λp |(∇u)(λx)|p dx = λp−n

∫
Rn
|∇u(x)|p dx;

therefore

‖∇uλ‖Lp(Rn) = λ1−n
p ‖∇u‖Lp(Rn) . (3.7.5)

Since (3.7.4) and (3.7.5) hold true, we may write (3.7.3) as follows

‖u‖Lq(Rn) ≤ Cλ1+n
q
−n
p ‖∇u‖Lp(Rn) , ∀λ > 0. (3.7.6)

Now, if
q >

np

n− p
,

we get

1 +
n

q
− n

p
< 1 + n

(
n− p
np

)
− n

p
= 0.

Consequently

‖u‖Lq(Rn) ≤ lim
λ→+∞

Cλ1+n
q
−n
p ‖∇u‖Lp(Rn) = 0,

this is a contradiction because u does not vanish identically.
On the other hand, if

q <
np

n− p
,

we have
1 +

n

q
− n

p
> 0,
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hence
‖u‖Lq(Rn) ≤ lim

λ→0+
Cλ1+n

q
−n
p ‖∇u‖Lp(Rn) = 0,

this is again a contradiction.
Finally, if q = +∞, instead of (3.7.6) we have

‖u‖L∞(Rn) ≤ Cλ1−n
p ‖∇u‖Lp(Rn) , ∀λ > 0.

and, by (3.7.1), passing to the limit as λ→ +∞ we have a contradiction.

Here and in the sequel, if 1 ≤ p < n, we denote by p? the number

1

p?
=

1

p
− 1

n

and we call p? the Sobolev exponent or the Sobolev conjugate of p . Let
us notice

p? =
pn

n− p
> p.

The Main Theorem of the present Subsection is the following one

Theorem 3.7.1 (The Gagliardo – Nirenberg inequality). Let

1 ≤ p < n.

Then there exists C depending on p and n only such that

‖u‖Lp? (Rn) ≤ C ‖∇u‖Lp(Rn) , ∀u ∈ C1
0 (Rn) . (3.7.7)

The most challenging part of the proof of Theorem 3.7.7 concerns the
case p = 1 and this, in turn, is based on the following

Lemma 3.7.2. Let n ≥ 2 and

gj : Rn−1 → [0,+∞), j = 1, · · · , n,

be measurable functions. Then∫
Rn

n∏
j=1

gj(x1, · · · ,xj−1, xj+1, · · · , xn)dx1 · · · dxn ≤

≤
n∏
j=1

(∫
Rn−1

gn−1
j (y)dy

) 1
n−1

.

(3.7.8)
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Proof of Lemma 3.7.2. Let us proceed by induction on n. If n = 2,
we have ∫

R2

g1(x2)g2(x1)dx1dx2 =

∫
R
g1(x2)dx2

∫
R
g2(x1)dx1.

Therefore, if n = 2, (3.7.8) holds true. Now, let us assume that (3.7.8)
holds for n and let us prove it for n+ 1. Hence, let us assume that for any
nonnegative measurable functions g1, g2 · · · , we have∫

Rn

n∏
j=1

gjdx1 · · · dxn ≤
n∏
j=1

(∫
Rn−1

gn−1
j dy

) 1
n−1

,

let us notice that, to shorten the formula, we have omitted the variables.
However, it is important to recall that gj does not depend on xj.

By the Hölder inequality we get∫
Rn+1

n+1∏
j=1

gjdx1 · · · dxn+1 =

=

∫
R
dxn+1

∫
Rn
gn+1

n∏
j=1

gjdx1 · · · dxn ≤

≤
∫
R
dxn+1

(∫
Rn
gnn+1dx1 · · · dxn

) 1
n

×

×

(∫
Rn

n∏
j=1

g
n
n−1

j dx1 · · · dxn

)n−1
n

=

=

(∫
Rn
gnn+1dx1 · · · dxn

) 1
n

×

×
∫
R
dxn+1

(∫
Rn

n∏
j=1

g
n
n−1

j dx1 · · · dxn

)n−1
n

.

(3.7.9)

Now let us apply the inductive assumption to the functions g
n
n−1

j (·, xn+1),
j = 1, · · · , n. We get∫

Rn

n∏
j=1

g
n
n−1

j dx1 · · · dxn ≤
n∏
j=1

(∫
Rn−1

gnj (y, xn+1)dy

) 1
n−1

.

Hence, we have trivially
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(∫
Rn

n∏
j=1

g
n
n−1

j dx1 · · · dxn

)n−1
n

≤
n∏
j=1

(∫
Rn−1

gnj (y, xn+1)dy

) 1
n

.

The last inequality and (3.7.9) imply

∫
Rn+1

n+1∏
j=1

gjdx1 · · · dxn+1 ≤
(∫

Rn
gnn+1dx1 · · · dxn

) 1
n

×

×
∫
R
dxn+1

n∏
j=1

(∫
Rn−1

gnj (y, xn+1)dy

) 1
n

.

(3.7.10)

Now, we set

hj (xn+1) =

(∫
Rn−1

gnj (y, xn+1)dy

) 1
n

and we use the extended Hölder inequality:∫
R

n∏
j=1

(∫
Rn−1

gnj (y, xn+1)dy

) 1
n

dxn+1 =

∫
R

n∏
j=1

hj (xn+1) dxn+1 ≤

≤
n∏
j=1

(∫
R
hnj (xn+1) dxn+1

) 1
n

=

=
n∏
j=1

(∫
R
dxn+1

∫
Rn−1

gnj (y, xn+1)dy

) 1
n

=

=
n∏
j=1

(∫
Rn
gnj (y)dy

) 1
n

.

The just obtained inequality and (3.7.10) yield∫
Rn+1

n+1∏
j=1

gjdx1 · · · dxn+1 ≤
n+1∏
j=1

(∫
Rn
gnj dy

) 1
n

.

Proof of Lemma is concluded. �

Proof of Theorem 3.7.1. Let u ∈ C1
0 (Rn). For any j = 1, · · · , n, we

set
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fj (x1, · · · , xj−1, xj+1, · · · , xn) =

=

∫
R
|∇u (x1, · · · , xj−1, yj, xj+1, · · · , xn)| dyj.

(3.7.11)

We obtain

|u(x)| ≤ fj (x1, · · · , xj−1, xj+1, · · · , xn) , j = 1, · · · , n.
As a matter of fact, we have

u(x) =

∫ xj

−∞
∂xju (x1, · · · , xj−1, yj, xj+1, · · · , xn) dyj, j = 1, · · · , n,

from which, for any j = 1, · · · , n we have

|u(x)| ≤
∫
R
|∇u (x1, · · · , xj−1, yj, xj+1, · · · , xn)| dyj =

= fj (x1, · · · , xj−1, xj+1, · · · , xn) .

(3.7.12)

Now by multiplying all (3.7.12) we get

|u(x)|n ≤
n∏
j=1

fj,

hence

|u(x)|
n
n−1 ≤

n∏
j=1

f
1

n−1

j

and, by integrating over Rn we have∫
Rn
|u(x)|

n
n−1dx ≤

∫
Rn

n∏
j=1

f
1

n−1

j dx.

At this stage let us exploit Lemma 3.7.2. Set

gj = f
1

n−1

j , j = 1, · · · , n

and we obtain ∫
Rn
|u(x)|

n
n−1dx ≤

n∏
j=1

(∫
Rn−1

fj(η)dη

) 1
n−1

. (3.7.13)
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Now, we notice that∫
Rn−1

fj(η)dη =

=

∫
Rn−1

dη

∫
R
|∇u (η1, · · · , ηj−1, yj, ηj+1, · · · , ηn)| dyj =

=

∫
Rn
|∇u(x)| dx, j = 1, · · · , n.

By the just obtained equality and by (3.7.13) we get∫
Rn
|u(x)|

n
n−1dx ≤

(∫
Rn
|∇u(x)| dx

) n
n−1

,

which implies

‖u‖L1? (Rn) ≤ ‖∇u‖L1(Rn) . (3.7.14)

Therefore (3.7.7) is proved for p = 1. Now, let 1 < p < n and α > 1 to be
chosen. By applying (3.7.14) to |u|α we have

(∫
Rn
|u(x)|

αn
n−1 dx

)n−1
n

≤
∫
Rn
|∇ (|u(x)|α)| dx =

=

∫
Rn
α |u(x)|α−1 |∇u|dx ≤

≤ α

(∫
Rn
|u(x)|

(α−1)p
p−1 dx

) p
p−1
(∫

Rn
|∇u(x)|p dx

) 1
p

.

Now, let us choose α satisfying

αn

n− 1
= (α− 1)

p

p− 1

that is

α =
p(n− 1)

n− p
,

notice that α > 1, as n > p > 1. The above choice of α gives

αn

n− 1
= (α− 1)

p

p− 1
=

(
p(n− 1)

n− p
− 1

)
p

p− 1
=

pn

n− p
.

Hence
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(∫
Rn
|u(x)|

pn
n−p dx

)n−1
n

≤ p(n− 1)

n− p

(∫
Rn
|u(x)|

pn
n−p dx

) p−1
p
(∫

Rn
|∇u(x)|p dx

) 1
p

that is (∫
Rn
|u(x)|p

?

dx

)n−1
n
− p−1

p

≤ p(n− 1)

n− p

(∫
Rn
|∇u(x)|p dx

) 1
p

.

On the other hand

n− 1

n
− p− 1

p
=

1

p
− 1

n
=

1

p?
.

Therefore (∫
Rn
|u(x)|p

?

dx

) 1
p?

≤ p(n− 1)

n− p

(∫
Rn
|∇u(x)|p dx

) 1
p

.

�

Theorem 3.7.3 (The Sobolev inequality). Let Ω be a bounded open set
of Rn whose boundary is of class C0,1 with constants M0 and r0. Let d0 be
the diameter of Ω. Let us assume 1 ≤ p < n.

Then there exists C depending on M0, r0, d0, p and n only such that

‖u‖Lp? (Ω) ≤ C ‖u‖W 1,p(Ω) , ∀u ∈ W 1,p(Ω). (3.7.15)

Proof. Since Ω is a bounded open set of Rn of class C0,1, we can apply
the extension Theorem 3.4.4. Hence, there exists ũ ∈ W 1,p(Rn) such that

ũ = u, in Ω, supp ũ compact of Rn. (3.7.16)

Moreover, there exists C depending on M0, r0, d0, p and n only such that

‖ũ‖W 1,p(Rn) ≤ C ‖u‖W 1,p(Ω) , ∀u ∈ W 1,p(Ω). (3.7.17)

Proposition 3.4.1 implies that there exists a sequence {vj} ⊂ C∞0 (Rn) such
that

{vj} → ũ, in W 1,p(Rn).

Now, by Theorem 3.7.1 we have
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‖vj − vm‖Lp? (Rn) ≤ C ‖∇vj −∇vm‖W 1,p(Rn) , ∀j,m ∈ N,

from which it follows that {vj} is a Cauchy sequence in Lp?(Rn), hence there
exists v ∈ Lp?(Ω) such that

{vj} → v, in Lp
?

(Rn).

Hence ũ = v; as a matter of fact, for any R > 0 we have Lp?(BR) ⊂ Lp(BR),
consequently

‖v − ũ‖Lp(BR) ≤ ‖v − vj‖Lp(BR) + ‖vj − ũ‖Lp(BR) → 0, as j →∞

and, as R is arbitrary, we get ũ = v.
Therefore ũ ∈ Lp?(Rn) and passing to the limit in the following inequality

‖vj‖Lp? (Rn) ≤ C ‖∇vj‖W 1,p(Rn) , ∀j ∈ N,

we obtain

‖ũ‖Lp? (Rn) ≤ C ‖∇ũ‖W 1,p(Rn) . (3.7.18)

On the other hand (3.7.16) implies

‖u‖Lp? (Ω) ≤ ‖ũ‖Lp? (Rn) (3.7.19)

and (3.7.17) yields

‖∇ũ‖Lp(Rn) ≤ C ‖u‖W 1,p(Ω) , ∀u ∈ W 1,p(Ω).

so that, by the latter, by (3.7.18) and by (3.7.19) we get

‖u‖Lp? (Ω) ≤ C ‖u‖W 1,p(Ω) .

�

Corollary 3.7.4. Let Ω be a bounded open set of Rn and let d0 be its di-
ameter. Let us assume 1 ≤ p < n. We have that, if u ∈ W 1,p

0 (Ω), then
u ∈ Lp

?

0 (Ω) and there exists C depending on p, n and d0 only, such that

‖u‖Lp? (Ω) ≤ C ‖u‖W 1,p(Ω) .
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Proof. Let x0 ∈ Ω and R = 2d0. Since u ∈ W 1,p
0 (Ω) we have that the

function

ũ(x) =


u(x), for x ∈ Ω

0, for x ∈ BR \ Ω,

belongs to W 1,p
0 (BR(x0)). By the first Poincaré inequality (Theorem 3.4.2)

and by Theorem 3.7.3 we obtain

‖u‖Lp? (Ω) = ‖ũ‖Lp? (BR(x0)) ≤
≤ C ‖ũ‖W 1,p(BR(x0)) ≤

≤ CC̃ ‖∇ũ‖Lp(BR(x0)) =

= CC̃ ‖∇u‖Lp(Ω) ,

where C is the same constant that occurs in the inequality (3.7.15), hence,
it depends on p e da n only, and C̃ is the same constant that occurs in the
Poincaré inequality, hence, it depends on R, that is, on d0, only. �

Counterexample. If n > 1 it does not happen thatW 1,n(Ω) ⊂ L∞(Ω).
Let us prove what is claimed.

Let

u(x) = log log

(
1 +

1

|x|

)
, in B1.

We have u /∈ L∞(B1) and

∇u(x) =
x

(|x|3 + |x|2) log
(

1 + 1
|x|

) .
Let us check that u ∈ W 1,n(B1). We have

∫
B1

|u|ndx =

∫
B1

∣∣∣∣log log

(
1 +

1

|x|

)∣∣∣∣n dx =

= ωn

∫ 1

0

ρn−1

∣∣∣∣log log

(
1 +

1

ρ

)∣∣∣∣n dρ < +∞
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and (as n > 1)∫
B1

|∇u|ndx = ωn

∫ 1

0

ρn−1

(ρ2 + ρ)n
(

log
(

1 + 1
ρ

))ndρ =

= ωn

∫ 1

0

dρ

(ρ+ 1)n ρ
(

log
(

1 + 1
ρ

))n < +∞.

Therefore u ∈ W 1,n(B1), but u /∈ L∞(B1).

Let us observe that if n = 1, for what was proved in Section 3.6, we have
W 1,1(I) ⊂ L∞(I), where I is a bounded open interval of R. ♠

3.7.2 The Sobolev–Poincaré inequality

We begin by the following

Lemma 3.7.5. If p ∈ [1,+∞), then there exists a constant C depending on
p e da n only, such that∫

Br(x)

|u(y)− u(z)|p dy ≤ Crn+p−1

∫
Br(x)

|∇u(y)|p ||y − z|1−ndy, (3.7.20)

for every u ∈ C1
(
Br(x)

)
, r > 0, x ∈ Rn and for every z ∈ Br(x).

Proof. It is not restrictive to assume x = 0. By the Fundamental
Theorem of Calculus we have, for any y, z ∈ Br,

u(y)− u(z) =

∫ 1

0

d

dt
u(z + t(y − z))dt =

∫ 1

0

∇u(z + t(y − z))dt · (y − z);

which implies

|u(y)− u(z)|p ≤ |y − z|p
∫ 1

0

|∇u(z + t(y − z))|p dt.

Let ρ > 0 and let us integrate over Br ∩ ∂Bρ(z) both the sides of the last
inequality. We get

∫
Br∩∂Bρ(z)

|u(y)− u(z)|pdSy ≤
∫
Br∩∂Bρ(z)

dSy |y − z|p
∫ 1

0

|∇u(z + t(y − z))|p dt =

= ρp
∫ 1

0

dt

∫
Br∩∂Bρ(z)

|∇u(z + t(y − z))|p dSy =

= ρp
∫ 1

0

dt

∫
Br∩∂Btρ(z)

|∇u(ξ)|p t1−ndSξ := (F),
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where in the last inequality we set ξ = z + t(y − z), so that tn−1dSy = dSξ.
Now, if ξ ∈ ∂Btρ(z), we have |ξ−z|

ρ
= t; hence

(F) = ρp
∫ 1

0

dt

∫
Br∩∂Btρ(z)

|∇u(ξ)|p |ξ − z|
1−n

ρ1−n dSξ =

= ρn+p−1

∫ 1

0

dt

∫
Br∩∂Btρ(z)

|∇u(ξ)|p |ξ − z|1−ndSξ =

= ρn+p−2

∫ ρ

0

dτ

∫
Br∩∂Bτ (z)

|∇u(ξ)|p |ξ − z|1−ndSξ =

= ρn+p−2

∫
Br∩Bρ(z)

|∇u(ξ)|p |ξ − z|1−ndξ ≤

≤ ρn+p−2

∫
Br

|∇u(ξ)|p |ξ − z|1−ndξ.

Therefore

∫
Br∩∂Bρ(z)

|u(y)− u(z)|p dSy ≤ ρn+p−2

∫
Br

|∇u(ξ)|p |ξ − z|1−ndξ.

Now, let us integrate w.r.t. ρ over [0, r] both the sides of the previous in-
equality. We have

∫ r

0

dρ

∫
Br∩∂Bρ(z)

|u(y)− u(z)|p dSy ≤
∫ r

0

ρn+p−2dρ

∫
Br

|∇u(ξ)|p |ξ − z|1−ndξ =

=
rn+p−1

n+ p− 1

∫
Br

|∇u(ξ)|p |ξ − z|1−ndξ,

on the other hand, by using the polar coordinates, we have∫ r

0

dρ

∫
Br∩∂Bρ(z)

|u(y)− u(z)|p dSy =

∫
Br

|u(y)− u(z)|p dy.

Therefore, for any z ∈ Br, we have∫
Br

|u(y)− u(z)|p dy ≤ rn+p−1

n+ p− 1

∫
Br

|∇u(ξ)|p |ξ − z|1−ndξ

from which we obtain (3.7.20). �

In what follows, for any g ∈ L1 (Br(x)), we set
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(g)x,r = −
∫
Br(x)

g(y)dy =
1

|Br(x)|

∫
Br(x)

g(y)dy.

Theorem 3.7.6 (The Sobolev–Poincaré inequality). Let 1 ≤ p < n.
Then there exists a constant C depending on p and n only such that(

−
∫
Br(x)

|u(y)− (u)x,r|p? dy
) 1

p?

≤ Cr

(
−
∫
Br(x)

|∇u(y)|p dy
) 1

p

, (3.7.21)

for every u ∈ W 1,p (Br(x)).

Proof. First, we assume x = 0 and r = 1. Let u ∈ C1
(
B1

)
. Lemma

3.7.5 and Hölder inequality give

−
∫
B1

∣∣∣∣u(y)−−
∫
B1

u(z)dz

∣∣∣∣p dy = −
∫
B1

∣∣∣∣−∫
B1

(u(y)− u(z))dz

∣∣∣∣p dy ≤
≤ −
∫
B1

dy−
∫
B1

|u(y)− u(z)|p dz ≤

≤ C−
∫
B1

dy−
∫
B1

|∇u(z)|p |y − z|1−n dz =

= C−
∫
B1

dz |∇u(z)|p−
∫
B1

|y − z|1−n dy ≤

≤ C1−
∫
B1

dz |∇u(z)|p
∫
B2(z)

|y − z|1−n dy =

= C2−
∫
B1

|∇u(z)|p dz,

where C1 = ωn
n
C, C2 = 2ωnC1. Hence, we have obtained the inequality

−
∫
B1

|u(y)− (u)0,1|p dy ≤ C2−
∫
B1

|∇u(z)|p dz.

Now, let us apply the Sobolev inequality (Theorem 3.7.3) to u− (u)0,1. We
get

(
−
∫
B1

|u(y)− (u)0,1|p? dy
) 1

p?

≤ C3

[
−
∫
B1

|u(y)− (u)0,1|p? dy +−
∫
B1

|∇u(y)|p dy
] 1
p

≤

≤ C4

(
−
∫
B1

|∇u(y)|p dy
) 1

p

.
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Thus, we have obtained(
−
∫
B1

|u(y)− (u)0,1|p? dy
) 1

p?

≤ C4

(
−
∫
B1

|∇u(y)|p dy
) 1

p

, (3.7.22)

where C4 depend on n and p only.
Let now u ∈ C1

(
Br(0)

)
. Set

v(x) = u(rx), x ∈ B1

and apply (3.7.22) to function v. We have

(v)0,1 = (u)0,r, (3.7.23)

−
∫
B1

|∇v(y)|p dy = rp−
∫
Br

|∇u(x)|p dx (3.7.24)

and
−
∫
B1

|v(y)− (v)0,1|p? dy = −
∫
Br

|u(x)− (u)0,r|p? dx. (3.7.25)

By applying inequality (3.7.22) to v and taking into account (3.7.23)–(3.7.25)
we obtain (3.7.21) by density. �

3.7.3 The Morrey inequality

Let E be any measurable of Rn, here and in the sequel we say that u∗ : E → R
is a version of a given function u : E → R if

u = u∗, a.e. in E.

Lemma 3.7.7. If n < p ≤ +∞, then there exists a constant C depending
on p and n only, such that we have

|u(y)− u(z)| ≤ Cr1−n
p

∫
Br(x)

|∇u(ξ)|p |dξ, (3.7.26)

for every u ∈ C1
(
Br(x)

)
, r > 0, x ∈ Rn and for every y, z ∈ Br(x).

Proof. Let u ∈ C1
(
Br(x)

)
. Let us apply Lemma 3.7.5 for p = 1. We

have, for any y, z ∈ Br(x),
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|u(y)− u(z)| = −
∫
Br

|u(y)− u(z)| dξ ≤

≤ −
∫
Br

|u(y)− u(ξ)| dξ +−
∫
Br

|u(z)− u(ξ)| dξ ≤

≤ C

∫
Br(x)

(
|y − ξ|1−n + |z − ξ|1−n

)
|∇u(ξ)| dξ,

(3.7.27)

where C depends on n only. Let n < p < +∞, by the Hölder inequality we
have

∫
Br(x)

(
|y − ξ|1−n + |z − ξ|1−n

)
|∇u(ξ)| dξ ≤

≤
[∫

Br(x)

(
|y − ξ|1−n + |z − ξ|1−n

)
dξ

] p−1
p
(∫

Br(x)

|∇u(ξ)|p dξ
) 1

p

≤

≤ 2
1
p−1

∫
Br(x)

(
|y − ξ|−

(n−1)p
p−1 + |z − ξ|−

(n−1)p
p−1

)
dξ︸ ︷︷ ︸


I

p−1
p (∫

Br(x)

|∇u(ξ)|p dξ
) 1

p

.

(3.7.28)
Now, let us check that

I ≤ C2
p−n
p−1

(
p− 1

p− n

)
r
p−n
p−1 , (3.7.29)

where C depends on n only. We have Br(x) ⊂ B2r(y), for any y ∈ Br(x).
Hence (taking into account that p > n implies (n−1)p

p−1
< n)∫

Br(x)

|y − ξ|−
(n−1)p
p−1 dξ ≤

∫
B2r(y)

|y − ξ|−
(n−1)p
p−1 dξ =

=

∫
∂B1

dS

∫ 2r

0

ρ−
(n−1)p
p−1 ρn−1dρ =

= ωn2
p−n
p−1

(
p− 1

p− n

)
r
p−n
p−1 .

Since a similar estimate holds true for the integral∫
Br(x)

|z − ξ|−
(n−1)p
p−1 dξ
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provided z ∈ Br(x), we get (3.7.29). By estimate (3.7.29) and by (3.7.27) we
obtain

|u(y)− u(z)| ≤ Cn2
1
p−1 21−n

p r1−n
p

(∫
Br(x)

|∇u(ξ)|p dξ
) 1

p

. (3.7.30)

The last obtained estimate implies (3.7.26) for every n < p < +∞. If
p = +∞, we may pass to the limit as p→ +∞ in (3.7.30). �

Lemma 3.7.8. If n < p ≤ +∞, then there exists a constant C depending
on p and n such that

|u(x)| ≤ C ‖∇u‖W 1,p(B1(x) , (3.7.31)

for every u ∈ C1
(
B1(x)

)
, r > 0 and for every x ∈ Rn.

Proof. By (3.7.26) (y = x, r = 1 and z ∈ B1(x)) we get

|u(x)| ≤ C ‖∇u‖Lp(B1(x)) + |u(z)| .

Now, by integrating both the side w.r.t. z on B1(x) and by applying the
Hölder inequality, we have

|B1(x)| |u(x)| ≤ C ‖∇u‖Lp(B1(x)) +

∫
B1(x)

|u(z)|dz ≤

≤ C ′
(
‖∇u‖Lp(B1(x)) + ‖u‖Lp(B1(x))

)
≤

≤ C ′′ ‖u‖W 1,p(B1(x)) .

Which gives (3.7.31). �

Theorem 3.7.9 (the Morrey inequality). Let n < p < +∞ and let Ω
be a bounded open set of Rn whose baundary is of class C0,1 with constants
M0, r0. Then there exists a constant C, depending on p, n, M0 and r0 only,
such that for every u ∈ W 1,p(Ω) there exists a version of u, u∗ ∈ C0,γ

(
Ω
)
,

where
γ = 1− n

p
.

Moreover
‖u∗‖C0,γ(Ω) ≤ C ‖u‖W 1,p(Ω) . (3.7.32)
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Proof. Let us begin by proving that

‖v‖C0,γ(Rn) ≤ C ‖v‖W 1,p(Rn) , ∀v ∈ C∞0 (Rn), (3.7.33)

where C depends on p and n only. Indeed, by (3.7.31) we get trivially

‖v‖L∞(Rn) ≤ C ‖v‖W 1,p(Rn) , ∀v ∈ C∞0 (Rn) (3.7.34)

Now, we set
x =

y + z

2
, and r = |y − z|,

and by (3.7.26) we get, for any that y, z ∈ Rn,

|v(y)− v(z)| ≤ C |y − z|γ
(∫

Br(x)

|∇v(ξ)|pdξ
) 1

p

≤ C |y − z|γ ‖v‖W 1,p(Rn) .

(3.7.35)
Hence (3.7.34) and (3.7.35) give (3.7.33).

Now, as ∂Ω is of class C0,1 with constants M0, r0, by extension Theorem
3.4.4 we have that if u ∈ W 1,p(Ω) there exists ũ ∈ W 1,p(Rn) such that

ũ(x) = u(x), for x ∈ Ω,

supp ũ, is a compact of Rn,

‖ũ‖W 1,p(Rn) ≤ C ‖u‖W 1,p(Ω) .

(3.7.36)

By Proposition 3.4.1 we derive that there exists a sequence {vj} in C∞0 (Rn)
such that

{vj} → ũ, in W 1,p (Rn) (3.7.37)

and (3.7.33) implies

‖vj − vk‖C0,γ(Rn) ≤ C ‖vj − vk‖W 1,p(Rn)

for every j, k ∈ N. Hence {vj} is a Cauchy sequence in C0,γ (Rn) and therefore
there exists u∗ ∈ C0,γ (Rn) such that

vj → u∗, as j →∞, in C0,γ (Rn) .

By the latter and by (3.7.36), (3.7.37) we obtain

u∗|Ω = ũ|Ω = u, a.e. in Ω.
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Since (3.7.33) yields

‖vj‖C0,γ(Rn) ≤ C ‖vj‖W 1,p(Rn) , ∀j ∈ N,

passing to the limit, we have

‖u∗‖C0,γ(Ω) ≤ C ‖u∗‖W 1,p(Rn) ≤ C ‖ũ‖W 1,p(Rn) ≤ C ′C ‖u‖W 1,p(Ω) ,

which concludes the proof. �

3.7.4 The General Sobolev inequalities

By Theorems 3.7.3 3.7.9, proceeding by iteration we obtain the following
general theorem, whose proof we leave to the reader.

Theorem 3.7.10 (Sobolev embedding). Let Ω be a bounded open set of
class C0,1 with constants M0, r0 and let u ∈ W k,p(Ω).

(i) If
k <

n

p
, (3.7.38)

then u ∈ Lq(Ω), where
1

q
=

1

p
− k

n
. (3.7.39)

Moreover
‖u‖Lq(Ω) ≤ C ‖u‖Wk,p(Ω) , (3.7.40)

where C depends on M0, r0, k and n only.
(ii) If

k >
n

p
, (3.7.41)

then u ∈ Cm,α
(
Ω
)
, where m = k − [n

p
]− 1 and

α =


[n
p
] + 1− n

p
, if n

p
is not an integer number,

any positive number, if α < 1 and n
p
is an integer number

(3.7.42)
and

‖u‖Cm,α(Ω) ≤ C ‖u‖Wk.p(Ω) , (3.7.43)

where C depends on M0, r0, k and n only.



176 Chapter 3. The Sobolev spaces

Examples.
If n = 1 and u ∈ H1(0, 1), then u ∈ C0,1/2([0, 1]). If n = 2 and u ∈ H1(Ω),

then u ∈ Lq(Ω) for every 1 ≤ q <∞ and, if u ∈ H2(Ω) then u ∈ C0,α(Ω) for
every α < 1. Finally, if u ∈ Hk(Ω) for every k ∈ N, then u ∈ C∞(Ω). ♠

3.8 The compactness theorems

In the previous Section we have proved that if Ω is a bounded open set of
class C0,1 and 1 ≤ p < n then W 1,p(Ω) ⊂ Lp

?
(Ω). Moreover the embedding

W 1,p(Ω) ↪→ Lp
?

(Ω),

is continuous, as inequality (3.7.15) holds true. Similarly, (Theorem 3.7.9),
for n < p < +∞, the embedding

W 1,p(Ω) ↪→ C0,1−n
p
(
Ω
)
,

is continuous. In this Section we will prove compact embedding theorems, in
particular, the Rellich – Kondrachov Theorem, which gives the compactness
of the embedding

W 1,p(Ω) ↪→ Lq(Ω),

for 1 ≤ p < n and q < p?. This means that any bounded subset Y diW 1,p(Ω)
is relatively compact in Lq(Ω) (namely, Y is compact in Lq(Ω)).

Theorem 3.8.1 (Rellich – Kondrachov). Let Ω be a bounded open set of
Rn with boundary of class C0,1 and let 1 ≤ p < n, 1 ≤ q < p? = np

n−p . Then
the embedding of W 1,p(Ω) in Lq(Ω) is compact.

In order to prove Theorem 3.8.1 we need the following.

Lemma 3.8.2. Let 1 ≤ q < +∞, let Ω be a bounded open set of Rn and let
Λ be the subset of Lq(Ω) defined as follows

Λ =
{
u ∈ Lq(Ω) : ‖u‖Lq(Ω) ≤ 1

}
.

Let us assume

lim
ε→0

(
sup
u∈Λ
‖uε − u‖Lq(Ω)

)
= 0, (3.8.1)
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where
uε(x) =

∫
Ω

ηε(x− y)u(y)dy

and ηε = ε−nη (ε−1x) where η ∈ C∞0 (Rn), supp η ⊂ B1,
∫
Rn η(x)dx = 1.

Then Λ is relatively compact in Lq(Ω).

Proof of Lemma 3.8.2. We prove that Λ is a totally bounded set in
Lq(Ω).

Let δ > 0. By (3.8.1) we have that there exists ε0 > 0 so that

‖uε0 − u‖Lq(Ω) <
δ

2
, ∀u ∈ Λ. (3.8.2)

Let

Λ0 = {uε0 : u ∈ Λ}

Now we prove that Λ0 is relatively compact in C0
(
Ω
)
.

Let us denote

M0 = sup
Rn
|ηε0| , M1 = sup

Rn
|∇ηε0| .

We have, for any u ∈ Λ,

|uε0(x)| =
∣∣∣∣∫

Ω

ηε0(x− y)u(y)dy

∣∣∣∣ ≤
≤M0|Ω|1−

1
q ‖u‖Lq(Ω) ≤

≤M0|Ω|1−
1
q

and, similarly,

|∇uε0(x)| =
∣∣∣∣∫

Ω

∇ηε0(x− y)u(y)dy

∣∣∣∣ ≤M1|Ω|1−
1
q .

Therefore Λ0 is equibounded and equicontinuous. Hence, the Arzelà–Ascoli
Theorem implies that Λ0 is relatively compact in C0

(
Ω
)
.

Now we prove that Λ0 is relatively compact in Lq(Ω). The inequality

‖w‖Lq(Ω) ≤ |Ω|
1
q ‖w‖C0(Ω) , ∀w ∈ C0

(
Ω
)
,

implies that, for any w ∈ C0
(
Ω
)
⊂ Lq(Ω) and for any r > 0

BC0

r′ (w) ⊂ BLq

r (w),
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where r′ = r|Ω|−
1
q , BC0

r′ (w) is the open ball of C0
(
Ω
)
centered at w with

radius r′ and BLq

r (w) is the open ball of Lq(Ω) centered at w with radius r.
Since Λ0 is relatively compact in C0

(
Ω
)
, there exist w1, · · · , wNr ∈ C0

(
Ω
)

such that

Λ0 ⊂
Nr⋃
j=1

BC0

r′ (wj) ⊂
Nr⋃
j=1

BLq

r (wj) .

All in all, Λ0 is totally bounded set of Lq(Ω). Hence

Λ0 ⊂
N⋃
j=1

BLq

δ/2 (wj) ,

where N depends by δ > 0. Consequently, if u ∈ Λ, then there exists
ju ∈ {1, · · · , N} so that

‖uε0 − wju‖Lq(Ω) <
δ

2
.

By this inequality and by (3.8.2) we derive that, if u ∈ Λ then

‖u− wju‖Lq(Ω) < δ.

Hence

Λ ⊂
N⋃
j=1

BLq

δ (wj) ,

which implies compactness of Λ. �

Proof of Theorem 3.8.1. Let us apply Lemma 3.8.2. Set

Λ =
{
u ∈ W 1,p(Ω) : ‖u‖W 1,p(Ω) ≤ 1

}
. (3.8.3)

We begin by proving the Theorem for q = 1. Hence, let us prove that

lim
ε→0

(
sup
u∈Λ
‖uε − u‖L1(Ω)

)
= 0, (3.8.4)

where

uε = (u ? ηε) ,

being u the extension of u to 0 in Rn \ Ω.
Let δ > 0 and let Ω̃ b Ω satisfy
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∣∣∣Ω \ Ω̃
∣∣∣ < δ

p?

p?−1 . (3.8.5)

We have∫
Ω

|uε(x)− u(x)| dx =

∫
Ω\Ω̃
|uε(x)− u(x)| dx+

∫
Ω̃

|uε(x)− u(x)| dx. (3.8.6)

Now, by the Hölder inequality we derive∫
Ω\Ω̃
|uε(x)− u(x)| dx ≤

∣∣∣Ω \ Ω̃
∣∣∣1− 1

p? ‖uε − u‖Lp? (Ω) ≤

≤ δ
(
‖uε‖Lp? (Ω) + ‖u‖Lp? (Ω)

)
,

(3.8.7)

On the other hand by the Young inequality for convolutions, we have

‖uε‖Lp? (Ω) ≤ ‖u‖Lp? (Ω) . (3.8.8)

Now, Theorem 3.7.3 gives

‖u‖Lp? (Ω) ≤ C1 ‖u‖W 1,p(Ω) ≤ C1, ∀u ∈ Λ. (3.8.9)

Therefore by (3.8.7) – (3.8.9) we obtain∫
Ω\Ω̃
|uε(x)− u(x)| dx ≤ 2C1δ, ∀u ∈ Λ. (3.8.10)

Now, let us consider second addend on the right–hand side of (3.8.6). Let
ε =dist

(
Ω̃, ∂Ω

)
. For any x ∈ Ω̃ and for any ε ∈ (0, ε), we have

uε(x) =

∫
Ω

ηε(x− y)u(y)dy =

∫
Ω

η(ξ)u(x− εξ)dξ.

Hence

∫
Ω̃

|u(x− εζ)− u(x)| dx =

∫
Ω̃

dx

∣∣∣∣∫
Ω

η(ξ)(u(x− εξ)− u(x))dξ

∣∣∣∣ ≤
≤
∫

Ω

dξ

∫
Ω̃

η(ξ) |u(x− εξ)− u(x)| dx =

=

∫
Ω

η(ξ)dξ

∫
Ω̃

|u(x− εξ)− u(x)| dx.

(3.8.11)

Let now y ∈ B1 and ε < ε, by applying Theorem 3.3.3 we have, for almost
every x ∈ Ω̃ and for every ξ ∈ B1,
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|u(x− εξ)− u(x)| =
∣∣∣∣∫ 1

0

∇u(x− tεξ) · εξdt
∣∣∣∣ ≤ ε

∫ 1

0

|∇u(x− tεξ)| dt.

Hence, for any u ∈ Λ, ξ ∈ B1 and ε ∈ (0, ε) we have

∫
Ω̃

|uε(x)− u(x)| dx ≤ ε

∫ 1

0

dt

∫
Ω̃

|∇u(x− tεξ)| dx =

= ε

∫ 1

0

dt

∫
Ω̃−tεξ

|∇u(z)| dz ≤

≤ ε

∫
Ω

|∇u(z)| dz ≤ ε|Ω|1−
1
p ‖u‖W 1,p(Ω) ≤

≤ ε|Ω|1−
1
p .

(3.8.12)

From what we obtained in (3.8.11) and by (3.8.12) we get∫
Ω̃

|uε(x)− u(x)| dx ≤ ε|Ω|1−
1
p .

By the latter, by (3.8.6) and by (3.8.10) we have

∫
Ω

|uε(x)− u(x)| dx ≤ 2C1δ + ε|Ω|1−
1
p , ∀u ∈ Λ, ∀ε ∈ (0, ε) , (3.8.13)

which implies

lim sup
ε→0

(
sup
u∈Λ
‖uε − u‖L1(Ω)

)
≤ 2C1δ

and, as δ is arbitrary, we get

lim
ε→0

(
sup
u∈Λ
‖uε − u‖L1(Ω)

)
= 0.

Hence, by Lemma 3.8.2, Λ is relatively compact in L1(Ω).
Now we consider the case 1 < q < p?. Denoting θ = q−1

p?−1
, we have

0 < θ < 1, q = 1− θ + θp?, and∫
Ω

|uε(x)− u(x)|q dx =

∫
Ω

|uε(x)− u(x)|1−θ+θp
?

dx ≤

≤ ‖uε − u‖1−θ
L1(Ω) ‖uε − u‖

θ
Lp? (Ω) .
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Hence

‖uε − u‖Lq(Ω) ≤ ‖uε − u‖
1−θ
q

L1(Ω) ‖uε − u‖
θ
q

Lp? (Ω)
. (3.8.14)

On the other hand, by (3.8.9) we have

‖u‖Lp? (Ω) ≤ C1, ∀u ∈ Λ

and by the Young inequality we get

‖uε‖Lp? (Ω) ≤ ‖u‖Lp? (Ω) ≤ C1, ∀u ∈ Λ.

Hence, (3.8.13) and (3.8.14) give

‖uε − u‖Lq(Ω) ≤ (2C1)
θ
q

(
2C1δ + ε|Ω|1−

1
p

) 1−θ
q
, ∀u ∈ Λ.

Consequently

lim
ε→0

(
sup
u∈Λ
‖uε − u‖Lq(Ω)

)
= 0

and by Lemma 3.8.2 we have that Λ is relatively compact in Lq(Ω). �

Now we state and prove a compactness theorem in the case p > n.

Theorem 3.8.3. Let Ω be a bounded open set of Rn with boundary of class
C0,1 and let p > n, α ∈ (0, γ), where γ = 1− n

p
. Then the embedding

W 1,p(Ω) ↪→ C0,α
(
Ω
)
,

is compact.

Proof. Let {uj} be a sequence in W 1,p(Ω) satisfying

‖uj‖W 1,p(Ω) ≤ 1, ∀j ∈ N.

By Theorem 3.7.9 we have

‖uj‖C0,α(Ω) ≤ C1, ∀j ∈ N, (3.8.15)

where C1 depends on p, n and Ω. The Arzelà–Ascoli Theorem yields that
there exists a subsequence

{
ukj
}
and u ∈ C0

(
Ω
)
which satisfy{

ukj
}
→ u, uniformly. (3.8.16)
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By (3.8.15) and (3.8.16) we have, for any x, y ∈ Ω, x 6= y,

|u(x)− u(y)|
|x− y|γ

= lim
j→∞

∣∣ukj(x)− ukj(y)
∣∣

|x− y|γ
≤ C1. (3.8.17)

Hence u ∈ C0,γ
(
Ω
)
. Therefore u ∈ C0,α

(
Ω
)
for 0 < α < γ. Now, let us

recall the following inequality (see Proposition 2.2.1):

‖f‖C0,α(Ω) ≤ C ‖f‖
α
γ

C0,γ(Ω)
‖f‖

1−α
γ

C0(Ω)
,

For every f ∈ C0,γ
(
Ω
)
, where C depends by α, γ and Ω only. By applying

such an inequality to ukj −u, taking into account (3.8.15)–(3.8.17), we easily
obtain {

ukj
}
→ u, in C0,α

(
Ω
)
.

�

3.8.1 Counterexamples

1. The Rellich–Kondrachov Theorem does not hold for q = p?. Indeed,
we have the following counterexample. Let u ∈ C∞0 (B1 \ {0}) be a not
identically vanishing function and let

uj(x) = j
n
p? u(jx), ∀j ∈ N, ∀x ∈ B1.

We have (see beginning of Section 3.7.1)

‖uj‖Lp? (B1) = ‖u‖Lp? (B1) , ∀j ∈ N, (3.8.18)

‖uj‖Lp(B1) = j−1 ‖u‖Lp(B1) , ∀j ∈ N, (3.8.19)

‖∇uj‖Lp(B1) = ‖∇u‖Lp(B1) , ∀j ∈ N. (3.8.20)

Hence, by (3.8.19) and (3.8.20) we have

‖uj‖W 1,p(B1) = C ‖u‖W 1,p(B1) < +∞, ∀j ∈ N. (3.8.21)

Moreover
lim
j→∞

uj(x) = 0, ∀x ∈ B1. (3.8.22)

Now, if the embedding
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W 1,p(B1) ↪→ Lp
?

(B1)

were compact, by (3.8.21) there should exist a subsequence
{
ukj
}
and

v ∈ Lp?(B1) such that {
ukj
}
→ v, in Lp

?

(B1). (3.8.23)

Hence, by (3.8.18) we should have

‖v‖Lp? (B1) = ‖u‖Lp? (B1) . (3.8.24)

On the other hand, passing eventually to another subsequence, by (3.8.23)
we should have

v(x) = lim
j→∞

ukj(x) a.e. x ∈ B1,

from the latter and from (3.8.22) we should have

v(x) = 0, a.e. x ∈ B1,

that would contradict (3.8.24).

2. Now, let us consider the case where Ω = Rn and let us show that if
1 ≤ p < n and q ≤ p?, then the embedding

W 1,p (Rn) ↪→ Lq (Rn) ,

is not compact.
Let u ∈ C∞0 (Rn) be a not identically vanishing function such that supp

u ⊂ B1 and let

uj(x) = u(x− 2je1), ∀j ∈ N.

We obtain

‖uj‖W 1,p(Rn) = ‖u‖W 1,p(Rn) , ∀j ∈ N

and

‖uj − uk‖Lq(Rn) = 2 ‖u‖Lq(Rn) > 0, ∀j, k ∈ N, j 6= k. (3.8.25)

Hence {uj} is a bounded sequence in W 1,p (Rn) but, as (3.8.25) holds true,
we cannot extract any subsequence that converges in Lq (Rn).
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3. Let us prove that if Ω is a bounded open set and p > n, γ = 1 − n
p

then the embedding

W 1,p (Ω) ↪→ C0,γ
(
Ω
)

is not compact.
Let u ∈ C∞0 (B1), not identically equal to 0. Denote by u the extension

of u to 0 in Rn \B1. Let us denote

uj(x) =
1

jγ
u(jx), ∀j ∈ N, ∀x ∈ B1.

Now, let us notice (the reader check as an exercise)

[u]0,γ,Rn = [u]0,γ,B1

and
[uj]0,γ,B1

= sup
x,y∈B1,x 6=y

|uj(x)− uj(y)|
|x− y|γ

=

= sup
x,y∈B1,x 6=y

|u(jx)− u(jy)|
|jx− jy|γ

=

= [u]0,γ,Rn .

In addition we have

‖uj‖Lp(B1) =
1

jγ

(∫
B1

|u(jx)|pdx
) 1

p

=

=
1

jγ+n
p

(∫
B1/j

|u(x)|pdx

) 1
p

=

=
1

j

(∫
B1/j

|u(x)|pdx

) 1
p

and

‖∇uj‖Lp(B1) =
1

jγ

(∫
B1

|(∇u)(jx)|pjpdx
) 1

p

=

=
j1−n

p

jγ

(∫
B1/j

|∇u(x)|pdx

) 1
p

=

=

(∫
B1/j

|∇u(x)|pdx

) 1
p

.
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Hence
{uj} → 0, in W 1,p(B1),

in particular, {uj} is a bounded sequence in W 1,p(B1). On the other hand,
if there was a subsequence

{
ukj
}
of {uj} and v ∈ C0,γ

(
B1

)
such that{

ukj
}
→ v, in C0,γ

(
B1

)
,

we should necessarily have v ≡ 0 and

[uj − v]0,γ,B1
= [uj]0,γ,B1

= [u]0,γ,Rn > 0

Which is a contradiction.

4. The case p > n, Ω = Rn, can be handle similarly to the case p < n.
Let u ∈ C∞0 (Rn), supp u ⊂ B1, u not identically vanishing function; let
uj(x) = u(x− 2je1). We have

‖uj‖W 1,p(Rn) = ‖u‖W 1,p(Rn) , ∀j ∈ N

and
[uj − uk]0,α,Rn ≥ [uj]0,α,Rn = [u]0,α,Rn > 0, for j 6= k,

where α ≤ 1 − n
p
. Hence, no extracted sequence of {uj} can be a Cauchy

sequence in C0,α (Rn).

3.9 The second Poincaré inequality
In Theorem 3.7.6 we have proved the Sobolev–Poincaré inequality that, in
particular, holds in the following form (see the proof of the above mentioned
Theorem)

(
−
∫
Br(x)

|u(y)− (u)x,r|p? dy
) 1

p?

≤ Cr

(
−
∫
Br(x)

|∇u(y)|p dy
) 1

p

, (3.9.1)

for every u ∈ W 1,p (Br(x)), where p ∈ [1,+∞) (actually it holds true for
p = +∞). We will now prove a more general version of (3.9.1).

Theorem 3.9.1 (The second Poincaré inequality). Let Ω be a bounded
connected open set of Rn with ∂Ω of class C0,1. Let p ∈ [1,+∞) and

uΩ =
1

|Ω|

∫
Ω

udx.

Then there exists a constant C depending on p, n and Ω only, such that

‖u− uΩ‖Lp(Ω) ≤ C ‖∇u‖Lp(Ω) , ∀u ∈ W 1,p(Ω). (3.9.2)
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Proof. We argue by contradiction. Let us assume that (3.9.2) does not
hold. Consequently for any k ∈ N there exists uk ∈ W 1,p(Ω) such that

‖uk − (uk)Ω‖Lp(Ω) > k ‖∇uk‖Lp(Ω) .

Let us denote

vk =
uk − (uk)Ω

‖uk − (uk)Ω‖Lp(Ω)

, ∀k ∈ N.

We have
(vk)Ω = 0,

‖vk‖Lp(Ω) = 1

and

k ‖∇vk‖Lp(Ω) < 1. (3.9.3)

Hence, there exists M < +∞ such that

‖vk‖W 1,p(Ω) ≤M.

Therefore, by Rellich–Kondrachov Theorem we have that there exists a sub-
sequence

{
vkj
}
of {vk}, and v ∈ Lp(Ω) which satisfy{

vkj
}
→ v, in Lp(Ω).

Hence
vΩ = 0 (3.9.4)

and
‖v‖Lp(Ω) = lim

j→∞

∥∥vkj∥∥Lp(Ω)
= 1. (3.9.5)

On the other hand by (3.9.3) we have

∫
Ω

v∂lφdx = lim
j→∞

∫
Ω

vkj∂lφdx = − lim
j→∞

∫
Ω

∂lvkjφdx = 0, ∀φ ∈ C∞0 (Ω) ,

for l = 1, · · · , n. Consequently∫
Ω

v∂lφdx = 0, ∀φ ∈ C∞0 (Ω) , l = 1, · · · , n.

Therefore ∇v = 0 in Ω (and, trivially, v ∈ W 1,p(Ω)). Since Ω is a connected
open set, Proposition 3.3.5 yields that there exists a constant c0 ∈ R such
that

v ≡ c0,
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and by (3.9.4) we have c0 = 0 that contradicts (3.9.5). Therefore (3.9.2)
holds true. �

Remark. The proof of (3.9.2) that we have given before is not con-
structive and this does not allow us to further specify the dependence of the
constant C on Ω. To fill this gap we refer the reader to [4]. �

3.10 The difference quotients

In this Section we provide the definition and the main properties of the
difference quotients. These topics will turn out to be useful in the study of
the regularity of the solutions of second order elliptic equations.

Definition 3.10.1. Let V and Ω be open sets Rn such that V b Ω. Let
j ∈ {1, · · · , n} and let u ∈ L1

loc(Ω). The following function

δhj u(x) =
u(x+ hej)− u(x)

h
, ∀x ∈ V. (3.10.1)

is called j-th partial quotient of u with increment h ∈ R \ {0},
|h| < dist (V, ∂Ω). We denote

δhu(x) =
(
δh1u(x), · · · , δhnu(x)

)
, ∀x ∈ V. (3.10.2)

We have the following

Theorem 3.10.2. Let Ω be an open set of Rn.
(i) If p ∈ [1,+∞), u ∈ W 1,p(Ω), then

∥∥δhu∥∥
Lp(V )

≤ C ‖∇u‖Lp(Ω) , for |h| < 1

2
dist (V, ∂Ω), h 6= 0 (3.10.3)

where C depends on n only.
(ii) Let us assume p ∈ (1,+∞), u ∈ Lp(Ω) and let us assume that there

exists C > 0 satisying∥∥δhu∥∥
Lp(V )

≤ C, for |h| < 1

2
dist (V, ∂Ω), h 6= 0 (3.10.4)

then
u ∈ W 1,p(V ) and ‖∇u‖Lp(V ) ≤ C.
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Proof. In order to prove (i) it suffices to assume u ∈ C∞(Ω) ∩W 1,p(Ω)
and to apply Theorem 3.3.2.

If 0 < |h| < dist (V, ∂Ω), j = 1, · · · , n and x ∈ V , we have

u(x+ hej)− u(x) =

∫ 1

0

∇u(x+ thej) · (hej)dt,

from which we have

|u(x+ hej)− u(x)| ≤ |h|
∫ 1

0

|∇u(x+ thej)| dt.

By using Hölder inequality and by integrating both the sides of the last
inequality over V , we get

∫
V

∣∣δhj u∣∣p dx ≤ ∫
V

dx

∫ 1

0

|∇u(x+ thej)|p dt =

=

∫ 1

0

dt

∫
V

|∇u(x+ thej)|p dx ≤

≤
∫

Ω

|∇u|p dx.

Now, let us prove (ii). Let us assume that for some C > 0 we have

∥∥δhu∥∥
Lp(V )

≤ C, for 0 < |h| < 1

2
dist (V, ∂Ω). (3.10.5)

Claim
If φ ∈ C∞0 (V ) and let us denote K = supp φ, then for any j ∈ {1, · · · , n}

we have

∫
V

uδhj φdx = −
∫
V

δ−hj uφdx, for 0 < |h| < dist (K, ∂V ). (3.10.6)

Proof of the Claim. Let us notice that

K − hej ⊂ V for 0 < |h| < dist (K, ∂V ),

for j = 1, · · · , n. Hence we have
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∫
V

uδhj φdx =
1

h

{∫
V

u(x)φ(x+ hej)dx−
∫
V

u(x)φ(x)dx

}
=

=
1

h

{∫
K−hej

u(x)φ(x+ hej)dx−
∫
V

u(x)φ(x)dx

}
=

=
1

h

{∫
K

u(x− hej)φ(x)dx−
∫
V

u(x)φ(x)dx

}
=

=
1

h

{∫
V

u(x− hej)φ(x)dx−
∫
V

u(x)φ(x)dx

}
=

= −
∫
V

δ−hj uφdx.

Claim is proved.

Let us fix j ∈ {1, · · · , n}. Since Lp(V ) is a a reflexive Banach space for
1 < p < +∞, by

sup
∥∥δ−hj u

∥∥
Lp(V )

≤ C

(recalling Theorems 2.3.31 and 2.3.32) there exists a sequence {hk} which
goes to 0 and vj ∈ Lp(V ), such that{

δ−hkj u
}
⇀ vj, weakly in Lp(V ). (3.10.7)

On the other hand, by the Dominated Convergence Theorem we have, for
any φ ∈ C∞0 (Ω) such that supp φ ⊂ V ,∫

Ω

u∂jφdx = lim
k→∞

∫
Ω

uδhkj φdx.

As a matter of fact

u(x)δhkj φ(x)→ u(x)∂jφ(x), ∀x ∈ Ω as k →∞

and ∣∣∣uδhkj φ∣∣∣ ≤ |u| ‖∇φ‖L∞(Ω) χṼ , ∀k ∈ N,

where

Ṽ =

{
x ∈ Ω : dist (x, V ) ≤ 1

2
dist (V, ∂Ω)

}
.
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Therefore ∫
V

u∂jφdx =

∫
Ω

u∂jφdx =

= lim
k→∞

∫
Ω

u
(
δhkj φ

)
dx =

= − lim
k→∞

∫
Ω

(
δ−hkj u

)
φdx =

= − lim
k→∞

∫
V

(
δ−hkj u

)
φdx =

= −
∫
V

vjφdx.

Consequently

∂ju = vj, in the weak sense for j = 1, · · · , n.

Hence ∇u ∈ Lp (V,Rn), but u ∈ Lp (V ). Therefore u ∈ W 1,p (V ).
Finally, by (3.10.7) we have

‖∇u‖Lp(V ) ≤ lim inf
k→∞

∥∥δ−hku∥∥
Lp(V )

≤ C,

(C is the same constant that occurs in (3.10.5)). �

Remark. If p = 1, then (ii) of Theorem 3.10.2 does not hold. As a
matter of fact, let Ω = (−2, 2) and

u(t) = χ(−1,1).

We have u ∈ L1(−2, 2). Let V =
(
−3

2
, 3

2

)
. Now, dist (V, ∂Ω) = 1

2
and for

0 < |h| < 1
4
we have (for h > 0)

δhu(t) =
χ(−1,1)(t+ h)− χ(−1,1)(t)

h
=

=
χ(−1−h,1−h)(t)− χ(−1,1)(t)

h
=

=
1

h
χ(−1,−1−h)∪(1−h,1).

Hence ∫
V

∣∣δhu(t)
∣∣ dt = 2, for 0 < |h| < 1

4
,

but (see Example 2 of Section 3.1)

u /∈ W 1,1(V ).



3.11. The dual space of H1
0 (Ω) 191

�

In the sequel we will use the following variant of Theorem 3.10.2.

Theorem 3.10.3. Let r > 0. We have
(i) If p ∈ [1,+∞) and u ∈ W 1,p (B+

r ), then for any k ∈ {1, · · · , n − 1}
we have, for 0 < |h| < r

2
,∥∥δhku∥∥Lp(B+

r/2

) ≤ C ‖∂ku‖Lp(B+
r ) , (3.10.8)

where C depends on n only.
(ii) Let k ∈ {1, · · · , n − 1}. Let p ∈ (1,+∞), u ∈ Lp (B+

r ) and let us
suppose that there exists C > 0 such that∥∥δhu∥∥

Lp
(
B+
r/2

) ≤ C, for 0 < |h| < r

2
, (3.10.9)

then
∂ku ∈ Lp

(
B+
r

)
and ‖∂ku‖Lp(B+

r ) ≤ C.

The proof of the above Theorem is completely analogous to the one of
Theorem 3.10.2 and it is left to the reader as an exercise.

3.11 The dual space of H1
0(Ω)

Let Ω be an open set of Rn. We denote by H−1(Ω) the dual space of H1
0 (Ω)

(i.e. the space of the linear bounded form from H1
0 (Ω) to R). If F ∈ H−1(Ω),

we write

〈F, v〉 := F (v), v ∈ H1
0 (Ω)

and
‖F‖H−1(Ω) = sup

{
〈F, v〉 : v ∈ H1

0 (Ω), ‖u‖H1
0 (Ω) ≤ 1

}
.

The following Theorem holds true.

Theorem 3.11.1 (characterization of H−1(Ω)). Let Ω be an open set of
Rn.
(i) F ∈ H−1(Ω) if and only if there exist f0, f1, · · · , fn ∈ L2(Ω) satisfying

〈F, v〉 =

∫
Ω

f0vdx+
n∑
j=1

∫
Ω

fjvxjdx, ∀v ∈ H1
0 (Ω). (3.11.1)
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(ii)

‖F‖H−1(Ω) =

= inf


(

n∑
j=0

∫
Ω

|fj|2dx

)1/2

: F satisfies (3.11.1) for f0, f1, · · · , fn ∈ L2(Ω)

 .

We also write

F = f0 −
n∑
j=1

∂jfj.

If
f1, · · · , fn = 0,

we will identify the functional

〈F, v〉 =

∫
Ω

f0vdx, ∀v ∈ H1
0 (Ω)

with f0 and we will write F ∈ L2(Ω). Similarly, if f0 ∈ Hk(Ω), we will write
F ∈ Hk(Ω).

Let us note that f0, f1, · · · , fn are not uniquely determined. For instance,
if Ω is bounded, then the functional

〈F, v〉 =

∫
Ω

f0vdx,

where f0 ∈ L2(Ω), can also be represented by

〈F, v〉 =

∫
Ω

(f0 + 2x1)vdx+

∫
Ω

x2
1∂1vdx, ∀v ∈ H1

0 (Ω)

and in infinite other ways.

Proof of Theorem 3.11.1. Let us equip H1
0 (Ω) with the scalar product

(u, v)H1
0 (Ω) =

∫
Ω

(uv +∇u · ∇v)dx, ∀u, v ∈ H1
0 (Ω).

It is clear that if F is like (3.11.1), then F ∈ H−1(Ω), as a matter of fact, by
applying the Cauchy–Schwarz inequality we get

|〈F, v〉| =

∣∣∣∣∣
∫

Ω

f0vdx+
n∑
j=1

∫
Ω

fj∂jvdx

∣∣∣∣∣ ≤
≤

(
n∑
j=0

∫
Ω

|fj|2dx

)1/2

‖v‖H1
0 (Ω) , ∀v ∈ H1

0 (Ω).

(3.11.2)
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Conversely, let us assume F ∈ H−1(Ω). By the Riesz representation
Theorem we have that there exists a unique u ∈ H1

0 (Ω) such that

〈F, v〉 = (u, v)H1
0 (Ω) =

∫
Ω

(uv +∇u · ∇v)dx, ∀v ∈ H1
0 (Ω). (3.11.3)

Hence, denoting

f0 = u, fj = ∂ju, j = 1, · · · , n, (3.11.4)

we have

〈F, v〉 =

∫
Ω

f0vdx+
n∑
j=1

∫
Ω

fj∂jvdx, ∀v ∈ H1
0 (Ω). (3.11.5)

The proof of (i) is concluded.

Now, let us prove (ii). Let u ∈ H1
0 (Ω) and fj ∈ L2(Ω), j = 0, 1, · · · , n, be

like in (3.11.4). Let gj ∈ L2(Ω), j = 0, 1, · · · , n satisfy

〈F, v〉 =

∫
Ω

(
g0v +

n∑
j=1

gj∂jv

)
dx, ∀v ∈ H1

0 (Ω).

Let us check that ∫
Ω

n∑
j=0

|fj|2 dx ≤
∫

Ω

n∑
j=0

|gj|2 dx. (3.11.6)

We have

∫
Ω

(
|u|2 + |∇u|2

)
dx = 〈F, u〉 =

∫
Ω

(
g0u+

n∑
j=1

gj∂ju

)
dx ≤

≤

(∫
Ω

n∑
j=0

|gj|2 dx

)1/2(∫
Ω

(
|u|2 + |∇u|2

)
dx

)1/2

.

Hence ∫
Ω

n∑
j=0

|fj|2 dx =

∫
Ω

(
|u|2 + |∇u|2

)
dx ≤

≤
∫

Ω

n∑
j=0

|gj|2 dx,
(3.11.7)
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which proves (3.11.6).
In order to complete the proof, let us notice that by (3.11.2) we get

‖F‖H−1(Ω) ≤

(
n∑
j=0

∫
Ω

|fj|2dx

)1/2

. (3.11.8)

On the other hand, setting

ṽ =
u

‖u‖H1
0 (Ω)

,

we obtain, by (3.11.5) (recall that u satisfies (3.11.4)),

〈F, ṽ〉 =

∫
Ω

(uṽ +∇u · ∇ṽ)dx =

= ‖u‖H1
0 (Ω) =

=

(
n∑
j=0

∫
Ω

|fj|2dx

)1/2

.

(3.11.9)

Hence, by (3.11.8) and (3.11.9) we have

‖F‖H−1(Ω) =

(
n∑
j=0

∫
Ω

|fj|2dx

)1/2

.

By the just obtained equality and by (3.11.7) we obtain (ii). �

Remark. Let us note that the greatest lower bound in (ii) is actually
the minimum. �

Exercise. Let us denote by H−m(Ω), m ∈ N, the dual space of Hm
0 (Ω).

Prove that F ∈ H−m(Ω) if and only if there exist fα ∈ L2(Ω), |α| ≤ m such
that

〈F, ṽ〉 =

∫
Ω

∑
|α|≤m

fα∂
αvdx, ∀v ∈ Hm

0 (Ω)

and prove the analogue of the part (ii) of Theorem 3.11.1. ♣
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3.12 The Sobolev spaces with noninteger expo-
nents and traces

In the present Section we will provide a characterization of the traces of
Hk(Ω) function, k ∈ N. For this purpose we need to extend the notion of
the Sobolev space that we have studied so far to the spaces with non integer
exponents. First of all, we provide brief reminders of the Fourier transform.

3.12.1 Review of the Fourier transform

Let us denote by Dj = 1
i
∂j, j = 1, · · · , n.

Definition 3.12.1. We denote by S the space of functions f ∈ C∞(Rn)
which satisfy

pα,β(f) := sup
x∈Rn

∣∣xαDβf
∣∣ <∞, ∀α, β ∈ Nn

0 . (3.12.1)

The topology on S is defined by the seminorms pα,β(f).

According to Definition 3.12.1, a sequence {fk} ⊂ S converges to f ∈ S
if and only if

lim
k→∞

pα,β(fk − f) = 0, ∀α, β ∈ Nn
0 .

The space S is known as the Schwartz space or, also, the space of rapidly
decreasing functions; equipped with the family of seminorms {pα,β}, S is a
Frechét space (for the definition of Fréchet space we refer to [69] and, in the
present Notes, Section 9.2). We have

C∞0 (Rn) ⊂ S ⊂ Lp (Rn) , ∀p ∈ [1,+∞].

It is simple to prove that C∞0 (Rn) is dense in S. The function f(x) = e−|x|
2

is an example of function that does not belong to C∞0 (Rn), but belongs to
S.

Definition 3.12.2. Let f ∈ L1 (Rn), we define its Fourier transform by

f̂(ξ) := F(f)(ξ) :=

∫
Rn
f(x)e−ix·ξdx, ∀ξ ∈ Rn.

We have ∥∥∥f̂∥∥∥
L∞(Rn)

≤ ‖f‖L∞(Rn) , ∀f ∈ L
1 (Rn) .
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Actually, we have f̂ ∈ C0 (Rn) and

f̂(ξ)→ 0, as |ξ| → +∞. (3.12.2)

Property (3.12.2) is known as Riemann–Lebesgue Lemma.

Let us recall that, if f(x) = e−
|x|2

2 then

f̂(ξ) = (2π)n/2e−
|ξ|2

2 .

Theorem 3.12.3. Let f ∈ S. Then we have f̂ ∈ S. Moreover the following
properties hold.

a) The map
S 3 f → f̂ ∈ S

is one–to–one, continuous, with continuous inverse and

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ, ∀x ∈ Rn; (3.12.3)

b)
D̂α
xf(ξ) = ξαf̂(ξ), ∀f ∈ S;

c)
(̂xαf)(ξ) = (−1)|α|Dα

ξ f̂(ξ) ∀f ∈ S.

Formula (3.12.3) is known as the inversion formula for the Fourier
transform. If f ∈ L1 (Rn) and f̂ ∈ L1 (Rn) ∩ L∞ (Rn), we have

f(x) =
1

(2π)n

∫
Rn
f̂(ξ)eix·ξdξ, a.e. in Rn. (3.12.4)

Theorem 3.12.4. Let f, g ∈ S. We have∫
Rn
f(x)ĝ(x)dx =

∫
Rn
f̂(x)g(x)dx, (3.12.5)∫

Rn
f(x)g(x)dx =

1

(2π)n

∫
Rn
f̂(ξ)ĝ(ξ)dξ, (3.12.6)

(̂f ? g)(ξ) = f̂(ξ)ĝ(ξ), (3.12.7)

(̂fg)(ξ) =
1

(2π)n
(f̂ ? ĝ)(ξ). (3.12.8)
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Formula (3.12.6) is known as Parseval formula and it is equivalent to
the following one

‖f‖L2(Rn) =
1

(2π)n/2

∥∥∥f̂∥∥∥
L2(Rn)

, ∀f ∈ S. (3.12.9)

Let us notice that the restriction of the linear operator F over S acts as
follows

S 3 f → F(f) := f̂ ∈ S.

Moreover F is bijective and by (3.12.9) we have

‖F(f)‖L2(Rn) = (2π)n/2 ‖f‖L2(Rn) , ∀f ∈ S. (3.12.10)

Let us observe that, since C∞0 (Rn) is dense in L2 (Rn) and

C∞0 (Rn) ⊂ S ⊂ L2 (Rn) ,

then S is dense in L2 (Rn). Hence (3.12.10) implies that the linear operator
F can be extended to a bounded linear operator from L2 (Rn) to L2 (Rn).
We continue to denote by F such an extension. Hence it is defined

f̂ := F(f), ∀f ∈ L2 (Rn) .

It can be proved that the operator

F : L2(Rn)→ L2(Rn)

is bijective and Theorem 3.12.4 continue to holds. Moreover, denoting by

C : L2 (Rn)→ L2 (Rn) ,

(C(f)) (x) =
1

(2π)n
f(−x), ∀f ∈ L2 (Rn) , ∀x ∈ Rn,

we have
f = CF(f), ∀f ∈ L2 (Rn) . (3.12.11)

If f ∈ S or f ∈ L2 (Rn) ∩ L1 (Rn) then formula (3.12.11) is nothing but
inversion formula (3.12.3) or (3.12.4) respectively. For the proofs and much
more details we refer the reader to [36, Vol. I], [23], [69]
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3.12.2 Fourier transform and Hk (Rn) spaces, k ∈ N0

Let us state and prove

Theorem 3.12.5. Let k ∈ N0. The following properties hold
(i) Let u ∈ L2 (Rn). We have that u ∈ Hk (Rn) if and only if(

1 + |ξ|2
)k/2

û(ξ) ∈ L2 (Rn) . (3.12.12)

(ii) There exists a constant C ≥ 1 depending on k and n only, such that

C−1 ‖u‖Hk(Rn) ≤
∥∥∥(1 + |ξ|2

)k/2
û(ξ)

∥∥∥
L2(Rn)

≤ C ‖u‖Hk(Rn) , (3.12.13)

for every u ∈ Hk (Rn).

Proof. If k = 0, then (i) and (ii) are obvious. Let us assume k ≥ 1 and
let us begin to prove (i). Since S ⊂ Hk (Rn), we have that if u ∈ Hk (Rn)
then

∫
Rn
∂αuϕdx = (−1)|α|

∫
Rn
u∂αϕdx, for |α| ≤ k, ∀ϕ ∈ S. (3.12.14)

Claim I

u ∈ Hk (Rn) ⇐⇒ (iξ)αû(ξ) ∈ L2 (Rn) , for |α| ≤ k. (3.12.15)

Proof of Claim I. Let us prove "=⇒". Let u ∈ Hk (Rn), R be an
arbitrary positive number and ψ ∈ C∞0 (BR). Let us define

ϕ(x) =
1

(2π)n

∫
Rn
ψ(ξ)eix·ξdξ, ∀x ∈ Rn.

We have
ϕ ∈ S, and ϕ̂(ξ) = ψ(ξ), ∀ξ ∈ Rn.

In addition, as u ∈ L2 (Rn),

(iξ)αû(ξ)|BR ∈ L2 (BR) , for |α| ≤ k,

hence (iξ)αû(ξ)ψ(ξ) ∈ L2 (Rn) and by the Parseval identity we have, for
|α| ≤ k,
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∫
Rn

(iξ)αû(ξ)ψ(ξ)dξ =

∫
Rn

(iξ)αû(ξ)ϕ̂(ξ)dξ =

= (−1)|α|
∫
Rn
û(ξ)(iξ)αϕ̂(ξ)dξ =

= (−1)|α|(2π)n
∫
Rn
u(x)∂αϕ(x)dx =

= (2π)n
∫
Rn
∂αu(x)ϕ(x)dx =

=

∫
Rn
∂̂αu(ξ)ϕ̂(ξ)dξ =

=

∫
Rn
∂̂αu(ξ)ψ(ξ)dξ

Hence ∫
Rn

(
(iξ)αû− ∂̂αu

)
ψdξ = 0, ∀ψ ∈ C∞0 (BR) ,

but ∂̂αu|BR ∈ L2 (BR) for |α| ≤ k, (because u ∈ Hk (Rn)), therefore

(iξ)αû = ∂̂αu, in BR

and since R is arbitrary,

(iξ)αû = ∂̂αu, in Rn.

In particular
(iξ)αû ∈ L2 (Rn) ,

hence "=⇒" is proved.

Now we prove"⇐=". Let us assume that

(iξ)αû(ξ) ∈ L2 (Rn) , for |α| ≤ k.

Let uα ∈ L2 (Rn), |α| ≤ k, be defined by

uα(x) =
1

(2π)n

∫
Rn

(iξ)αû(ξ)eix·ξdξ.

For any φ ∈ C∞0 (Rn) and any |α| ≤ k, we have (recall (3.12.6))
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∫
Rn
∂αφ(x)u(x)dx =

1

(2π)n

∫
Rn
∂̂αφ(ξ)û(ξ)dξ =

=
1

(2π)n

∫
Rn

(iξ)αφ̂(ξ)û(ξ)dξ =

=
(−1)|α|

(2π)n

∫
Rn
φ̂(ξ)(iξ)αû(ξ)dξ =

=
(−1)|α|

(2π)n

∫
Rn
φ̂(ξ)ûα(ξ)dξ =

= (−1)|α|
∫
Rn
φ(x)uα(x)dx.

Hence
∂αu = uα ∈ L2 (Rn) , for |α| ≤ k.

Therefore u ∈ Hk (Rn). Claim I is proved.

Claim II.
The following conditions are equivalent

(a) (iξ)αû ∈ L2 (Rn) for |α| ≤ k,

(b) (1 + |ξ|2)
k/2

û(ξ) ∈ L2 (Rn).

Proof of Claim II. First, let us note that (a) is equivalent to∫
Rn

∑
|α|≤k

|ξα|2 |û(ξ)|2 dξ < +∞,

hence, in order to prove that (a) and (b) are equivalent it suffices to prove
that there exists C ≥ 1 such that

C−1 ≤
∑
|α|≤k |ξα|

2

(1 + |ξ|2)k
≤ C, ∀ξ ∈ Rn. (3.12.16)

To this purpose we notice that the function

g(ξ, τ) =

∑
|α|≤k τ

2(k−|α|) |ξα|2

(τ 2 + |ξ|2)k
,

is homogeneous of degree 0, it is continuous in Rn+1 \ {(0, 0)}, and

g(ξ, τ) > 0, ∀(ξ, τ) ∈ Rn+1 \ {(0, 0)}.
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Hence there exists C ≥ 1 such that

C−1 ≤ g(ξ, τ) ≤ C

so that, if τ = 1 we get (3.12.16), which, in turn implies the equivalence of
(a) an (b). Claim II is proved.

By Claim I and Claim II we obtain (i).

Concerning (ii), it is enough to observe that by (3.12.11) we have

∂αu(x) =
1

(2π)n

∫
Rn

(iξ)αû(ξ)eix·ξdξ, for |α| ≤ k

and by the Parseval identity we have

‖u‖Hk(Rn) =
1

(2π)n

∫
Rn

∑
|α|≤k

|ξα|2 |û(ξ)|2 dξ.

Hence by (3.12.16) we derive (3.12.13). �

3.12.3 The Sobolev spaces with noninteger exponents

Theorem 3.12.5 justifies the the following definition (instead of Rn we will
consider Rm, with m ∈ N to avoid confusion later on, when we will need to
set m = n− 1)

Definition 3.12.6. Let m ∈ N and let s be a real positive number, we say
that u ∈ Hs (Rm) if (

1 + |ξ|2
)s/2

û(ξ) ∈ L2 (Rm) ,

in this case we denote

‖u‖Hs(Rm) =

(
1

(2π)m

∫
Rm

(
1 + |ξ|2

)s |û(ξ)|2 dξ
)1/2

. (3.12.17)

It is evident that if s ∈ N we again obtain the Sobolev spaces with integer
exponents that we have studied so far, nevertheless if s /∈ N we obtain some
new spaces, namely the Sobolev spaces with noninteger exponents,
also known as "the Sobolev spaces with fractional exponent". It is simple to
check that the norm ‖·‖Hs(Rm) is induced by the scalar product

(u, v)Hs(Rm) =
1

(2π)m

∫
Rm

(
1 + |ξ|2

)s
û(ξ)v̂(ξ)dξ.

We leave the reader to verify that Hs (Rm) is a Hilbert space.
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Theorem 3.12.7. If 0 < s < 1 then the norm ‖u‖Hs(Rm) is equivalent to the
norm

‖u‖ =
(
‖u‖2

L2(Rm) + |u|2s,Rm
)1/2

, (3.12.18)

where

|u|2s,Rm =

∫
Rm

dx

∫
Rm

|u(x)− u(y)|2

|x− y|m+2s
dy. (3.12.19)

Proof. We need to prove that there exists C ≥ 1 such that, for every
u ∈ Hs (Rm) we have

C−1

∫
Rm
|ξ|2s |û(ξ)|2 dξ ≤ |u|2s,Rm ≤ C

∫
Rm
|ξ|2s |û(ξ)|2 dξ. (3.12.20)

Let us begin by observing that

|u|2s,Rm =

∫
Rm

dx

∫
Rm

|u(x+ z)− u(x)|2

|z|m+2s
dz =

=
1

(2π)m

∫
Rm

1

|z|m+2s
dz

∫
Rm

∣∣∣ ̂u(·+ z)− û(·)
∣∣∣2 dξ =

=
1

(2π)m

∫
Rm

1

|z|m+2s
dz

∫
Rm

∣∣eiz·ξ − 1
∣∣2 |û(ξ)|2 dξ =

=
1

(2π)m

∫
Rm

φ(ξ) |û(ξ)|2 dξ,

(3.12.21)

where

φ(ξ) =

∫
Rm

∣∣eiz·ξ − 1
∣∣2

|z|m+2s
dz.

Notice that φ is a homogeneous with degree 2s. As a matter of fact, for any
t > 0, we have

φ(tξ) =

∫
Rm

∣∣eitz·ξ − 1
∣∣2

|z|m+2s
dz =

=

∫
Rm

∣∣eiy·ξ − 1
∣∣2

|t−1y|m+2s

dy

tm
= t2s

∫
Rm

∣∣eiy·ξ − 1
∣∣2

|y|m+2s
dy =

= t2sφ(tξ), ∀ξ ∈ Rm.

Moreover, φ is a continuous function in Rm. In order to prove this, let
ξ0 ∈ Rm and let us check that
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lim
ξ→ξ0

∫
Rm

∣∣eiz·ξ − 1
∣∣2

|z|m+2s
dz =

∫
Rm

∣∣eiz·ξ0 − 1
∣∣2

|z|m+2s
dz. (3.12.22)

We have

lim
ξ→ξ0

∣∣eiz·ξ − 1
∣∣2

|z|m+2s
=

∣∣eiz·ξ0 − 1
∣∣2

|z|m+2s
, ∀ξ ∈ Rm

and, if |ξ − ξ0| < 1, we have∣∣eitz·ξ − 1
∣∣2

|z|m+2s
=

∣∣eitz·ξ − 1
∣∣2

|z|m+2s
χB1(z) +

∣∣eitz·ξ − 1
∣∣2

|z|m+2s
χRm\B1(z) ≤

≤ C(1 + |ξ0|)2

|z|m−2(1−s) χB1(z) +
4

|z|m+2s
χRm\B1(z) ∈ L1 (Rm) .

Therefore by the Dominated Convergence Theorem we get (3.12.22).
Now, since φ is continuous in Rm and φ(ξ) > 0, for every |ξ| = 1, we have

that there exists C ≥ 1 such that

C−1|ξ|2s ≤ φ(ξ) ≤ C|ξ|2s, ∀ξ ∈ Rm.

By the last inequality and by (3.12.21) we obtain (3.12.20). �

Similarly to the previous Theorem the following one can be proved

Theorem 3.12.8. If s > 0, s /∈ N, then the norm ‖u‖Hs(Rm) is equivalent to
the norm

‖u‖ =
(
‖u‖2

H[s](Rm) + |u|2s,Rm
)1/2

, (3.12.23)

where

|u|2s,Rm =
∑
|α|=[s]

∫
Rm

dx

∫
Rm

|∂αu(x)− ∂αu(y)|2

|x− y|m+2(s−[s])
dy. (3.12.24)

Theorems 3.12.7, 3.12.8 justify the following definition.

Definition 3.12.9. Let Θ be a bounded open set of Rm of class C0,1. Let
s /∈ N be a positive real number. We define Hs(Θ) as the space of functions
u ∈ H [s](Θ) such that

|u|2s,Θ =
∑
|α|=[s]

∫
Θ

dx

∫
Θ

|∂αu(x)− ∂αu(y)|2

|x− y|m+2(s−[s])
dy < +∞,

equipped with the norm

‖u‖Hs(Θ) =
(
‖u‖H[s](Θ) + |u|2s,Θ

)1/2

.
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It is not difficult to prove that the space Hs(Θ) is complete.

Now let us define Hs(∂Ω), where Ω is a bounded open set. If s ∈ N, we
assume that ∂Ω is of class Cs. If s /∈ N we assume that ∂Ω is of class C [s],1.

We proceed basically as we did in Section 2.7 to define Lp(∂Ω) (we will
use the same notations as Section 2.7).

Let us begin by the case s := k, positive integer number. Thus, let us
assume ∂Ω of class Ck with constants r0,M0 and let us cover ∂Ω by a finite
number, N , of cylinders Q̃r0,2M0(Xi), i = 1 · · · , N , where Xi ∈ ∂Ω isometric
to Qr0,2M0 . Moreover let us assume that: Σi := Q̃r0,2M0(Xi) ∩ ∂Ω, for any
i = 1 · · · , N , up to isometry for which Xi is mapped in 0, is the graph of a
function ϕi ∈ Ck(B′r0) likewise Definition 2.7.1. We say that f ∈ Hk(∂Ω)
provided that the functions f(x′, ϕi(x

′)), i = 1, · · · , N , belong to Hk(B′r0)
and we denote

‖f‖Hk(∂Ω) =

(
N∑
i=1

‖f‖2
Hk(Σi)

)1/2

,

where
‖f‖Hk(Σi)

= ‖f(·, ϕi(·))‖Hk(Br0 ) .

Of course, the norm ‖·‖Hk(∂Ω) depends on the particular family of cylinders
that we use as a covering, but they are all equivalent norms. Moreover,
Hk(∂Ω) is a separable Hilbert space.

If s /∈ N, we say that f ∈ Hs(∂Ω) provided that the functions f(x′, ϕi(x
′))

belong to Hs(B′r), for any i = 1, · · · , N and we denote

‖f‖Hs(∂Ω) =

(
N∑
i=1

‖f‖2
Hs(Σi)

)1/2

.

The space Hs(∂Ω) is complete and can be equipped of a Hilbert structure.

For an extended discussion of Sobolev spaces with noninteger exponent
we refer the reader to [21, Cap. 6], [43, Cap. 6], [59, Cap. 2]. Here we limit
ourselves to prove a Theorem that will be useful in the next Section.

Theorem 3.12.10 (density of C∞(Rm) in Hs(Rm)). If s is a positive real
number then C∞0 (Rm) is dense in Hs (Rm).

We premise the following
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Lemma 3.12.11. Let η ∈ C∞0 (Rm) satisfy
(i) supp η ⊂ B1,
(ii) η ≥ 0,
(iii)

∫
Rn η(x)dx = 1.

Let us denote, for any ε > 0, v ∈ Hs (Rm), s > 0,

ηε(x) = ε−mη
(
ε−1x

)
and

vε = ηε ? v, in Rm.

Then we have
lim
ε→0
‖ηε ? v − v‖Hs(Rm) = 0. (3.12.25)

Proof of the Lemma. We have

η̂ε(ξ) =

∫
Rm

ε−mη
(
ε−1x

)
e−ix·ξdx =

∫
Rm

η (y) e−iεy·ξdy = η̂(εξ).

Moreover
lim
ε→0

η̂(εξ) = η̂(0) =

∫
Rm

η(x)dx = 1 (3.12.26)

and
|η̂(εξ)| ≤

∫
Rm

η(x)dx = 1, ∀ξ ∈ Rm, ∀ε > 0. (3.12.27)

Hence, for any v ∈ Hs (Rm), we have

‖ηε ? v − v‖2
Hs(Rm) =

1

(2π)m

∫
Rm

(
1 + |ξ|2

)s |η̂(εξ)− 1|2 |v̂(ξ)|2 dξ.

By the last equality, by the Dominated Convergence Theorem (take into
account (3.12.26) and (3.12.27)) we obtain (3.12.25). �

Proof of Theorem 3.12.10. The case where s ∈ N has been proved in
Proposition 3.4.1. Let us consider the case 0 < s < 1 (if s > 1, the proof
proceeds in a similar way, and we leave the details to the reader).

Claim. Let us denote by Hs the subspace of the functions of Hs (Rm)
with compact support. Then Hs is dense in Hs (Rm).

Proof of the Claim.
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Let ζ ∈ C∞0 (Rm) satisfy

0 ≤ ζ ≤ 1, in Rm,

ζ(x) = 1, ∀x ∈ B1, ζ(x) = 0, ∀x ∈ Rm \B2

and
|∇ζ| ≤ C0, in Rm,

where C0 is a constant. Let R > 1 and

ζR(x) = ζ
(
R−1x

)
.

We have

‖u− ζRu‖L2(Rm) ≤ ‖u‖L2(Rm\BR) → 0, as R→∞.

Now, we prove
lim
R→∞

|u− uζR|s,Rm = 0. (3.12.28)

In proving the latter, we will obtain as a by-product of the performed calcu-
lations that uζR belongs to Hs (Rm).

We apply Theorem 3.12.7 and we write

|u− uζR|2s,Rm =

∫
Rm

dx

∫
Rm

Φ2
R(x, y)

|x− y|m+2s
dy,

where
ΦR(x, y) = |(1− ζR(x))u(x)− (1− ζR(y))u(y)| .

We have

ΦR(x, y) ≤ |1− ζR(y)| |u(x)− u(y)|+ |ζR(x)− ζR(y)| |u(x)| ≤
≤ χRm\BR(y) |u(x)− u(y)|+ |ζR(x)− ζR(y)| |u(x)| .

Hence

|u− uζR|2s,Rm ≤ 2

∫
Rm

dx

∫
Rm\BR

|u(x)− u(y)|2

|x− y|m+2s
dy+

+ 2

∫
Rm

dx

∫
Rm

|ζR(x)− ζR(y)|2 |u(x)|2

|x− y|m+2s
dy.

(3.12.29)

Set

I :=

∫
Rm

dx

∫
Rm

|ζR(x)− ζR(y)|2 |u(x)|2

|x− y|m+2s
dy.
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Let us notice that

|ζR(x)− ζR(y)| = 0, for |x| ≥ 2R and |y| ≥ 2R

moreover,

|ζR(x)− ζR(y)| ≤ min

{
2,
C0|x− y|

R

}
, ∀x ∈ Rm,∀y ∈ Rm.

Hence

I ≤
∫
|x|≤2R

dx

∫
Rm

|ζR(x)− ζR(y)|2 |u(x)|2

|x− y|m+2s
dy+

+

∫
Rm

dx

∫
|y|≤2R

|ζR(x)− ζR(y)|2 |u(x)|2

|x− y|m+2s
dy := I1 + I2.

(3.12.30)

We have

I1 ≤
C2

0

R2

∫
|x|≤2R

|u(x)|2 dx
∫
|x−y|≤ 2R

C0

dy

|x− y|m−2+2s
+

+ 4

∫
|x|≤2R

|u(x)|2 dx
∫
|x−y|> 2R

C0

dy

|x− y|m+2s
≤

≤ ωm
2− 2s

C2
0

R2

(
2R

C0

)2−2s ∫
|x|≤2R

|u(x)|2 dx+

+
ωm
2s

(
2R

C0

)−2s ∫
|x|≤2R

|u(x)|2 dx ≤

≤ CR−2s ‖u‖2
L2(Rm) ,

(3.12.31)

where C depends by m and s only.

Concerning I2, we have
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I2 =

∫
|y|≤2R

dy

∫
Rm

|ζR(x)− ζR(y)|2 |u(x)|2

|x− y|m+2s
dx =

=

∫
|y|≤2R

dy

∫
|x−y|≤ 2R

C0

|ζR(x)− ζR(y)|2 |u(x)|2

|x− y|m+2s
dx+

+

∫
|y|≤2R

dy

∫
|x−y|> 2R

C0

|ζR(x)− ζR(y)|2 |u(x)|2

|x− y|m+2s
dx ≤

≤ C2
0

R2

∫
|y|≤2R

dy

∫
|x|≤2R(1+1/C0)

|u(x)|2

|x− y|m−2+2s
dx+

+ 4

(
2R

C0

)−m−2s ∫
|y|≤2R

dy

∫
|x−y|> 2R

C0

|u(x)|2 dx.

By interchanging the order of integration in the second–to–last integral and
trivially estimating from above the last integral, we obtain

I2 ≤
C2

0

R2

∫
|x|≤2R(1+1/C0)

|u(x)|2 dx
∫
|y|≤2R

dy

|x− y|m−2+2s
+

+ 4
ωm
m

(
2R

C0

)−m−2s

(2R)m ‖u‖2
L2(Rm) ≤

≤ C2
0

R2

∫
|x|≤2R(1+1/C0)

|u(x)|2 dx
∫
|y−x|≤2R(2+1/C0)

dy

|x− y|m−2+2s
+

+ CR−2s ‖u‖2
L2(Rm) ≤

≤ C ′R−2s ‖u‖2
L2(Rm) ,

(3.12.32)

where C e C ′ depend by m and s only.
By (3.12.30), (3.12.31) and (3.12.32) we get

I = I1 + I2 ≤ CR−2s ‖u‖2
L2(Rm) ,

where C depends by s and m only.
By the just obtained inequality and by (3.12.29) we have

|u− uζR|2s,Rm ≤ 2

∫
Rm

dx

∫
Rm\BR

|u(x)− u(y)|2

|x− y|m+2s
dy + CR−2s ‖u‖2

L2(Rm) .

Since the following function belongs to L2 (Rm × Rm) (as u ∈ Hs (Rm))

Rm × Rm 3 (x, y)→ |u(x)− u(y)|2

|x− y|m+2s
,



3.12. The Sobolev spaces with noninteger exponents and traces 209

we obtain (3.12.28). The Claim is proved.

Now, let δ > 0 and let R0 be (recall (3.12.28)) such that

‖u− uζR0‖s,Rm <
δ

2
.

Lemma 3.12.11 implies that there exists ε0 > 0 such that

‖uζR0 − (uζR0) ? ηε0‖s,Rm <
δ

2
.

Hence
‖u− (uζR0) ? ηε0‖s,Rm < δ

Since (uζR0) ? ηε0 ∈ C∞0 (Rm), the last inequality concludes the proof. �

3.12.4 The Theorem of characterization of the traces.

We preliminarily examine the extension of the notion of trace of a function
belonging to H1

(
Rn

+

)
, where Rn

+ = {x = (x′, xn) ∈ Rn : xn > 0}.
If u ∈ H1

(
Rn

+

)
, then the function

ũ (x′, xn) := u (x′, |xn|) ,

belongs to H1 (Rn) and, as H1 (Rn) = H1
0 (Rn), there exists a sequence {vj}

in C∞0 (Rn) such that

{vj} → ũ, in H1 (Rn) .

Hence {
(vj)|Rn+

}
→ u, in H1

(
Rn

+

)
.

Denoting
w = vj − vk, j, k ∈ N,

we have

w (x′, 0) = w (x′, xn)−
∫ xn

0

∂xnw (x′, y) dy, ∀xn > 0,

from which we obtain

|w (x′, 0)|2 ≤ 2 |w (x′, xn)|2 + 2xn

∫ xn

0

|∂xnw (x′, y)|2 dy.
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Now, integrating both the sides of the last inequality over (0, δ), δ > 0,
w.r.t. xn, we have

δ |w (x′, 0)|2 ≤ 2

∫ δ

0

|w (x′, xn)|2 dxn + 2δ

∫ δ

0

dxn

∫ xn

0

|∂xnw (x′, y)|2 dy ≤

≤ 2

∫ δ

0

|w (x′, xn)|2 dxn + 2δ2

∫ δ

0

|∂xnw (x′, y)|2 dy.

Integrating both the sides of the last inequality over Rn−1 w.r.t. x′, we have

∫
Rn−1

|w (x′, 0)|2 dx′ ≤ 2

δ

∫
Rn
|w (x)|2 dx+ 2δ

∫
Rn
|∇w (x)|2 dx.

Starting from this inequality we proceed as in the proof of Theorem 3.5.1
(inequality (3.5.2)) and we obtain the extension of the trace operator from
the space

C∞∗
(
Rn

+

)
:=
{
ũ|Rn+ : ũ ∈ C∞0 (Rn)

}
to the space H1

(
Rn

+

)
. In particular, we have

Tu ∈ L2
(
Rn−1

)
, ∀u ∈ H1

(
Rn

+

)
and

‖Tu‖L2(Rn−1) ≤ C ‖u‖H1(Rn) , ∀u ∈ H1
(
Rn

+

)
, (3.12.33)

where C depends on n only.

The following Theorem provides a characterization of the image of H1(Ω)
by means the trace operator.

Theorem 3.12.12 (characterization of the trace). Let Ω be either a
bounded open set of class C0,1 with constants M0, r0, or Ω = Rn

+. Let

T : H1(Ω)→ L2(∂Ω)

be the trace operator defined in Theorem 3.5.1 (in the case where Ω = Rn
+

the definition is given at the beginning of this Section).
Then we have

T
(
H1(Ω)

)
= H1/2(∂Ω).
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Moreover
(i)

‖T (u)‖H1/2(∂Ω) ≤ C ‖u‖H1(Ω) , ∀u ∈ H1(Ω),

where C depends on M0, r0 and n only.
(ii) There exists a bounded, linear map

T : H1/2(∂Ω)→ H1(Ω)

such that

T (T (h)) = h, ∀h ∈ H1/2(∂Ω).

In particular, denoting by u = T (h), we have

‖u‖H1(Ω) ≤ C ‖h‖H1/2(∂Ω) , ∀h ∈ H1/2(Ω),

where C depends on M0, r0 and n only.

In the general case the proof of Theorem 3.12.12, is quite technical. Here
we limit ourselves to the case Ω = Rn

+. A complete treatment (including the
traces of the functions belonging to W k,p(Ω), k ∈ N) can be founded in [43,
Ch. 6] and in [59, Ch. 2, Secs. 2.3 – 2.5].

Proof of Theorem 3.12.12 in the case Ω = Rn
+.

We have proved, in (3.12.33), that T ∈ L2 (Rn−1). Now we prove

Tu ∈ H1/2
(
Rn−1

)
.

Claim
Let v ∈ C∞∗

(
Rn

+

)
. Let us denote

h (x′) = v (x′, 0) , ∀x′ ∈ Rn−1.

We have

ĥ (ξ′) =
1

2π

∫
R
v̂ (ξ′, ξn) dξn. (3.12.34)

Proof of the Claim.
Since

v (x′, xn) =
1

(2π)n

∫
Rn
v̂ (ξ) eix·ξdξ,
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we have

h (x′) = v (x′, 0) =

=
1

(2π)n

∫
Rn
v̂ (ξ) eix

′·ξ′dξ =

=
1

(2π)n−1

∫
Rn−1

(
1

2π

∫
R
v̂ (ξ′, ξn) dξn

)
eix
′·ξ′dξ′

and by proposition (a) of Theorem 3.12.3 we obtain (3.12.34). Claim is
proved.

Now, by (3.12.34) we have

∫
Rn−1

∣∣∣ĥ(ξ′)
∣∣∣2 (1 + |ξ′|2

)1/2
dξ′ ≤ 1

4π2

∫
Rn−1

(∫
R
|v̂(ξ′, ξn)| dξn

)2 (
1 + |ξ′|2

)1/2
dξ′ =

=
1

4π2

∫
Rn−1

(
1 + |ξ′|2

)1/2
dξ′
(∫

R

(
1 + |ξ|2

)1/2 |v̂(ξ′, ξn)|
(
1 + |ξ|2

)−1/2
dξn

)2

≤

≤ 1

4π2

∫
Rn−1

(
1 + |ξ′|2

)1/2
dξ′
(∫

R

(
1 + |ξ|2

)
|v̂(ξ′, ξn)|2 dξn

∫
R

(
1 + |ξ|2

)−1
dξn

)
.

Moreover ∫
R

(
1 + |ξ|2

)−1
dξn =

∫
R

dξn
1 + |ξ′|2 + ξ2

n

=
π

(1 + |ξ′|2)1/2
.

Therefore∫
Rn−1

∣∣∣ĥ(ξ′)
∣∣∣2 (1 + |ξ′|2

)1/2
dξ′ ≤ 1

4π

∫
Rn

(
1 + |ξ|2

)
|v̂(ξ)|2 dξ

that is

‖T (v)‖H1/2(Rn−1) ≤
1

2
√
π
‖v‖H1(Rn+) , ∀v ∈ C∞∗

(
Rn

+

)
,

from which, by density we have

‖T (u)‖H1/2(Rn−1) ≤
1

2
√
π
‖u‖H1(Rn) , ∀u ∈ H1

(
Rn

+

)
. (3.12.35)

Now we prove (ii).
Let h ∈ C∞0 (Rn−1) and, for any ε > 0, let
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uε (x′, xn) =
1

(2π)n−1

∫
Rn−1

e−(1+|ξ′|)(xn+ε)ĥ (ξ′) eix
′·ξ′dξ′, ∀x ∈ Rn

+.

By applying Theorem 3.12.3 and by performing the derivative under the
integral sign, it can be easily checked that

uε ∈ C∞
(
Rn

+

)
and

uε (x′, 0) =
1

(2π)n−1

∫
Rn−1

e−(1+|ξ′|)εĥ (ξ′) eix
′·ξ′dξ′, ∀x′ ∈ Rn−1.

Now we prove what follows
(a) uε ∈ H1

(
Rn

+

)
and, denoting

u (x′, xn) =
1

(2π)n−1

∫
Rn−1

e−(1+|ξ′|)xnĥ (ξ′) eix
′·ξ′dξ′, ∀x ∈ Rn,

(let us notice that u(·, 0) = h) we have,

uε ∈ H1
(
Rn

+

)
and u ∈ H1

(
Rn

+

)
.

Moreover

‖uε‖H1(Rn) ≤ C ‖h‖H1/2(Rn−1) , (3.12.36)

and
‖u‖H1(Rn) ≤ C ‖h‖H1/2(Rn−1) , (3.12.37)

where C depends on n only.
(b)

uε → u, as ε→ 0 in H1
(
Rn

+

)
.

Proof of (a).
The Parseval identity implies∫

Rn−1

|uε (x′, xn)|2 dx′ = cn

∫
Rn−1

e−2(1+|ξ′|)(xn+ε)
∣∣∣ĥ (ξ′)

∣∣∣2 dξ′,
where cn depends on n only. Hence
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∫
Rn+
|uε (x′, xn)|2 dx′dxn = cn

∫
Rn−1

∣∣∣ĥ (ξ′)
∣∣∣2 dξ′(∫ +∞

0

e−2(1+|ξ′|)(xn+ε)dxn

)
=

= cn

∫
Rn−1

∣∣∣ĥ (ξ′)
∣∣∣2 e−2ε(1+|ξ′|)

2 (1 + |ξ′|)
dξ′ ≤

≤ (2π)n−1cn
2

‖h‖2
L2(Rn−1) .

Therefore

‖uε‖L2(Rn) ≤ C ‖h‖L2(Rn−1) , (3.12.38)

where C depends on n only.

Now we estimate from above ‖∇uε‖L2(Rn). We have

∂xnuε (x′, xn) = − 1

(2π)n

∫
Rn−1

(1 + |ξ′|) e−(1+|ξ′|)(xn+ε)ĥ (ξ′) eix
′·ξ′dξ′.

Hence, arguing as above, we get

∫
Rn+
|∂xnuε (x′, xn)|2 dx′dxn =

= cn

∫
Rn−1

∣∣∣ĥ (ξ′)
∣∣∣2 dξ′(∫ +∞

0

(1 + |ξ′|)2
e−2(1+|ξ′|)(xn+ε)dxn

)
=

=
cn
2

∫
Rn−1

(1 + |ξ′|)
∣∣∣ĥ (ξ′)

∣∣∣2 e−2ε(1+|ξ′|)dξ′ ≤

≤ (2π)n−1cn
2

‖h‖2
H1/2(Rn−1) .

(3.12.39)

Now, if 1 ≤ j ≤ n− 1, we have

∂xjuε (x′, xn) =
1

(2π)n

∫
Rn−1

iξje
−2(1+|ξ′|)(xn+ε)ĥ (ξ′) eix

′·ξ′dξ′

and arguing as in (3.12.39), we get∫
Rn+

∣∣∂xjuε (x′, xn)
∣∣2 dx′dxn ≤ (2π)n−1cn

2
‖h‖2

H1/2(Rn−1) . (3.12.40)

By (3.12.39) and (3.12.40) we get

‖∇uε‖2
L2(Rn) ≤ C ‖h‖2

H1/2(Rn−1) ,
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where C depends on n only. By the just obtained inequality and by (3.12.38)
we derive

‖uε‖H1(Rn) ≤ C ‖h‖H1/2(Rn−1)

where C depends on n only.
As can be easily observed, the calculations performed above also apply

to ε = 0 and similarly yield

‖u‖H1(Rn) ≤ C ‖h‖H1/2(Rn−1) ,

where C depends on n only. Hence we have proved (3.12.36) and (3.12.37).
Proof of (a) is concluded.

Proof of (b).
Since

(u− uε) (x′, xn) =
1

(2π)n−1

∫
Rn−1

e−(1+|ξ′|)xn
(

1− e−ε(1+|ξ′|)
)
ĥ (ξ′) eix

′·ξ′dξ,

we easily obtain

‖u− uε‖L2(Rn) ≤ C

∫
Rn−1

(
1− e−ε(1+|ξ′|))2

1 + |ξ′|

∣∣∣ĥ (ξ′)
∣∣∣2 dξ′

and

‖∇ (u− uε)‖L2(Rn) ≤ C

∫
Rn−1

(1 + |ξ′|)
(

1− e−ε(1+|ξ′|)
)2 ∣∣∣ĥ (ξ′)

∣∣∣2 dξ′.
Therefore, by the Dominated Convergence Theorem we get

lim
ε→0
‖u− uε‖2

H1(Rn) = 0.

By the previous limit and by the trace Theorem (that is, by (i)) we have

T (u) = lim
ε→0

T (uε) , in L2
(
Rn−1

)
. (3.12.41)

On the other hand

lim
ε→0
‖T (uε)− h‖L2(Rn−1) =

= lim
ε→0

cn

∫
Rn−1

(
1− e−ε(1+|ξ′|)

)2 ∣∣∣ĥ (ξ′)
∣∣∣2 dξ′ = 0

(3.12.42)

Therefore, by (3.12.41) and (3.12.42) we get
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T (u) = h, ∀h ∈ C∞0
(
Rn−1

)
. (3.12.43)

Now, we set

T (h) = u.

By (3.12.37) we have

‖T (h)‖H1(Rn) ≤ C ‖h‖H1/2(Rn−1) , ∀h ∈ C∞0
(
Rn−1

)
(3.12.44)

and by (3.12.43) we have

T (T (h)) = h, ∀h ∈ C∞0
(
Rn−1

)
. (3.12.45)

Now, (3.12.35) and (3.12.44) give

‖T (T (h))‖L2(Rn) ≤ C ‖h‖H1/2(Rn−1) , ∀h ∈ C∞
(
Rn−1

)
. (3.12.46)

Finally, by density Theorem 3.12.10, by (3.12.44), (3.12.45) and by (3.12.46)
the thesis follows. �

3.13 Final comments and supplements
In this Section we will state, without proof, some theorems concerning the
traces and Lipschitz continuous functions.

Concerning the traces, if k ≥ 1 and if Ω is a bounded open set of Rn of
class Ck−1,1, it can be proved that (see [43], [59])

Hk−1/2(∂Ω) = T
(
Hk(Ω)

)
.

In the sequel we will be mainly interested in the cases k = 1, 2. In particular,
if u ∈ H2(Ω), then ∂ku ∈ H1(Ω) for k = 1, · · · , n, hence ∂ku|∂Ω ∈ H1/2(∂Ω).
Moreover, we have

H2(∂Ω) ⊂ H3/2(∂Ω) ⊂ H1(∂Ω).

If u ∈ H2(Ω), we can define ∂u
∂ν

= ∇u · ν on ∂Ω (ν unit outward normal
vector) and we have∥∥∥∥∂u∂ν

∥∥∥∥
H1/2(∂Ω)

≤ C ‖u‖H2(Ω) , ∀u ∈ H2(Ω), (3.13.1)
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where C depends by Ω only.

Similarly to what we saw in Section 3.5, the following Theorem can be
proved

Theorem 3.13.1. Let Ω be a bounded open set of Rn of class C1,1. If u ∈
H2(Ω) then

u ∈ H2
0 (Ω) if and only if u|∂Ω = 0 and

∂u

∂ν
= 0 on ∂Ω. (3.13.2)

Theorem 3.12.12 can be generalized as follows

Theorem 3.13.2. Let Ω be a bounded open set of Rn of class C1,1. Then,
for every

(ψ0, ψ1) ∈ H3/2(∂Ω)×H1/2(∂Ω)

there exists u ∈ H2(Ω) such that

u|∂Ω = ψ0 and
∂u

∂ν
= ψ on ∂Ω

and
‖u‖H2(Ω) ≤ C

(
‖ψ0‖H3/2(∂Ω) + ‖ψ1‖H1/2(∂Ω)

)
,

where C depends on Ω only.

3.13.1 The space H−1/2(∂Ω)

Let Ω be a bounded open set of Rn of class C0,1. We denote by H−1/2(∂Ω)
the dual space of H1/2(∂Ω). Thus, H−1/2(∂Ω) is the space of the linear
functionals

Φ : H1/2(∂Ω)→ R

such that for a constant C we have

|Φ(ϕ)| ≤ C ‖ϕ‖H1/2(∂Ω) ∀ϕ ∈ H1/2(∂Ω). (3.13.3)

We define the norm, ‖Φ‖H−1/2(∂Ω), of Φ in H−1/2(∂Ω) as the greatest lower
bound of C satisfying (3.13.3).
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3.13.2 The space W 1,∞
loc (Rn) and C0,1

loc (Rn)

We say that u ∈ C0,1
loc (Rn) provided that for any x0 ∈ Rn there exists r > 0

such that
u|Br(x0) ∈ C

0,1
(
Br(x0)

)
,

Theorem 3.13.3. Let u : Rn → R. We have that u ∈ W 1,∞
loc (Rn) if and only

if u ∈ C0,1
loc (Rn).

Proof. Let u ∈ C0,1
loc (Rn). Theorem 2.6.1 implies that u is differentiable

almost everywhere and ∇u = (∂1u, · · · ∂nu) ∈ L∞loc (Rn). Hence, for any
1 ≤ k ≤ n, we have∫

Rn
u∂kϕdx =

∫
Rn

(∂k (uϕ)− ∂kuϕ) dx = −
∫
Rn
∂kuϕdx, ∀ϕ ∈ C∞0 (Rn) .

Therefore ∂ku is the weak derivative of u, hence u ∈ W 1,∞
loc (Rn).

Conversely, let u ∈ W 1,∞
loc (Rn) and let Br(x0) be a ball of Rn. Let us

denote

uε(x) =

∫
Rn
ηε(x− y)u(y)dy.

We have uε ∈ C∞ (Rn) and

∇uε(x) =

∫
Rn
ηε(x− y)∇u(y)dy.

Consequently, for every ε ∈ (0, r], we get

|∇uε(x)| ≤ ‖∇u‖L∞(B2r(x0)) < +∞, ∀x ∈ Br(x0).

Hence

|uε(x)− uε(y)| ≤ ‖∇u‖L∞(B2r(x0)) |x− y|, ∀x, y ∈ Br(x0). (3.13.4)

Moreover, Theorem 2.3.37 implies that

uε → u, as ε→ 0 (uniformly).

By this and by (3.13.4), we have

|u(x)− u(y)| ≤ ‖∇u‖L∞(B2r(x0)) |x− y|, ∀x, y ∈ Br(x0). (3.13.5)

Therefore u|Br(x0) ∈ C0,1
(
Br(x0)

)
. Since Br(x0) is arbitrary, the proof is

complete. �
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3.13.3 Almost everywhere differenziability of function
belonging to W 1,p

loc (Rn) with p > n.

Theorem 3.13.4. Let n < p ≤ +∞. If u ∈ W 1,p
loc (Rn), then u is almost

everywhere differentiable in Rn.

Proof. Since W 1,∞
loc (Rn) ⊂ W 1,p

loc (Rn) for p < +∞, we may assume that
n < p < +∞. Let x ∈ Rn be such that (Corollary 2.5.5 )

lim
r→0
−
∫
Br(x)

|∇u(ξ)−∇u(x)|pdξ = 0. (3.13.6)

Let us denote

v(ξ) = u(ξ)− u(x)−∇u(x) · (ξ − x), ξ ∈ Rn,

let y ∈ Rn, y 6= x and r = |x− y|. Theorem 3.3.3 and Lemma 3.7.7 give

|u(y)− u(x)−∇u(x) · (y − x)| = |v(y)− v(x)| ≤

≤ Cr1−n
p

(∫
Br(x)

|∇v(ξ)|pdξ
)1/p

=

= C ′|x− y|
(
−
∫
Br(x)

|∇u(ξ)−∇u(x)|pdξ
)1/p

.

Hence

u(y)− u(x)−∇u(x) · (y − x) = o(|y − x|), as y → x.

Therefore u is differentiable in every point x which satisfies (3.13.6) and by
Corollary 2.5.5 we conclude the proof. �

Remark. From Theorems 3.13.3 and 3.13.4 one immediately obtains the
Rademacher Theorem by a proof different from the one followed in Section
2.6. The reader is invited to make sure that following this new proof does
not lead to "vicious circles". �





Chapter 4

The boundary value problems for
second order elliptic equations
and the Dirichlet to Neumann
map

4.1 Introduction
Let Ω be a bounded open set of Rn. Let us denote byM(n) the vector space of
the matrices n×n whose entries are real numbers and let A ∈ L∞(Ω;M(n)),
i.e. A =

{
ajk
}n
j,k=1

is a matrix whose entries ajk belong to L∞(Ω), for
j, k = 1, · · · , n.

Throughout this Chapter we will assume that A satisfies the following
condition of uniform ellipticity

λ−1|ξ|2 ≤ A(x)ξ · ξ ≤ λ|ξ|2 a.e. in Ω, ∀ξ ∈ Rn, (4.1.1)

where λ ≥ 1 is a given number. We define

|A(x)|M(n) =

(
n∑

j,k=1

(
ajk(x)

)2

) 1
2

, a.e. x ∈ Ω

and
‖A‖L∞(Ω;M(n)) =

∥∥|A(·)|M(n)

∥∥
L∞(Ω)

.

Let us notice that if A is symmetric, then the second inequality of (4.1.1)
implies also

sup
|ξ|=1,|η|=1

|A(x)ξ · η| ≤ λ, ∀x ∈ Ω (4.1.2)

221
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and ∥∥ajk∥∥
L∞(Ω)

≤ λ, for j, k = 1, · · · , n. (4.1.3)

Let us check (4.1.2) and (4.1.2). Let ξ, η ∈ Rn such that |ξ| = 1 and
|η| = 1. By the symmetry of A(x) we have

|A(x)ξ · η| = 1

4
|A(x)(ξ + η) · (ξ + η)− A(x)(ξ − η) · (ξη)| ≤

≤ 1

4

(
λ|ξ + η|2 + λ|ξ − η|2

)
=

=
λ

4

(
2|ξ|2 + 2|η|2

)
=

= λ.

Hence, (4.1.2) follows. Concerning (4.1.3), we have, for j, k = 1, · · · , n∥∥ajk(x)
∥∥
L∞(Ω)

= |A(x)ej · ek| ≤ λ, a.e. x ∈ Ω.

In this Chapter we will tackle the Dirichlet problem for the operator
−div(A∇u), which formally consists in determining u ∈ H1(Ω) such that

−div(A∇u) = F, in Ω,

u = ϕ, on ∂Ω,

(4.1.4)

where ϕ ∈ H1/2(∂Ω) and F ∈ H−1(Ω). We will deal with the variational
formulation of problem (4.1.4). Next we will deal with the existence and the
uniqueness of the solutions in H1(Ω) and subsequently we prove some regu-
larity results for the same problem, i.e., in coarse terms, we will prove that
if Ω, A, and F have greater regularity, then u also acquires more regularity.

The investigation on problem (4.1.4) will guide us to deal with the more
general case in which, instead of −div(∇u), we will have the operator

−
n∑

j,k=1

∂j
(
ajk∂ku+ dju

)
+

n∑
j=1

bj∂ju+ cu, (4.1.5)

where bj, dj, c ∈ L∞(Ω), for j = 1, · · · , n.

4.2 The Lax–Milgram Theorem and the Fred-
holm Theorem

LetH be a real Hilbert space, let us denote by ‖·‖ and (·, ·) the scalar product
on H and the induced norm induced respectively. As usual we denote by H ′
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the dual space of H.
If A is a linear operator we denote by R(A) the range of A, that is

R(A) := {Au : u ∈ H}

and by N (A) the kernel of A

N (A) := {u ∈ H : Au = 0 ∈ H} .

Let

a : H ×H → R, (4.2.1)

a bilinear form. We say that a is continuous if there exists C > 0 such that

|a(u, v)| ≤ C ‖u‖ ‖v‖ , ∀u, v ∈ H. (4.2.2)

We say that the bilinear form a is coercive if there exists α > 0 such
that

α ‖u‖2 ≤ a(u, u), ∀u ∈ H. (4.2.3)

The following Theorem holds true.

Theorem 4.2.1 (Lax–Milgram). Let a be a coercive bilinear form and let
F ∈ H ′. Then there exists a unique u ∈ H such that

a(u, v) = F (v), ∀v ∈ H. (4.2.4)

Moreover
‖u‖ ≤ 1

α
‖F‖H′ , (4.2.5)

where ‖·‖H′ is the norm of H ′.

Proof. The Riesz Representation Theorem implies that there exists a
unique f ∈ H such that

F (v) = (f, v), ∀v ∈ H. (4.2.6)

Moreover
‖F‖H′ = ‖f‖H .

Let u ∈ H be fixed and observe that, as (4.2.2) holds, the map

H 3 v → a(u, v) ∈ R,
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is linear and bounded. The Riesz Representation Theorem implies that there
exists a unique Au ∈ H such that

a(u, v) = (Au, v), ∀v ∈ H.

Hence, we have defined the map

A : H → H,

such that
a(u, v) = (Au, v), ∀u, v ∈ H. (4.2.7)

By (4.2.6) and (4.2.7) we have that (4.2.4) is equivalent to

Au = f, u ∈ H. (4.2.8)

Now, we prove that the map A is (i) linear, (ii) bounded and
(iii) bijective.

(i) Let u1, u2 ∈ H, λ1, λ2 ∈ R. We have

(A (λ1u1 + λ2u2) , v) = a (λ1u1 + λ2u2, v)

= λ1a (u1, v) + λ2a (u2, v) =

= λ1 (Au1, v) + λ2 (Au2, v) =

= (λ1Au1 + λ2Au2, v) , ∀v ∈ H.

Hence
A (λ1u1 + λ2u2) = λ1Au1 + λ2Au2, ∀u1, u2 ∈ H.

(ii) By (4.2.2) we get

|(Au, v)| = |a(u, v)| ≤ C ‖u‖ ‖v‖ , ∀u, v ∈ H.

By the Cauchy–Schwarz inequality we get

‖Au‖ ≤ C ‖u‖ , ∀u ∈ H.

Therefore A is bounded and

‖A‖L(H) ≤ C,

where L(H) is the space of bounded linear map from H in itself.

(iii) Condition (4.2.3) implies

α ‖u‖2 ≤ a(u, u) = (Au, u) ≤ ‖Au‖ ‖u‖ , ∀u ∈ H.
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Hence

α ‖u‖ ≤ ‖Au‖ , ∀u ∈ H. (4.2.9)

Since α > 0, A is inijective.
In order to prove that A is onto, we first prove that R(A) is closed. Let

{wk} be a sequence in R(A) such that

{wk} → w, (4.2.10)

and let us check that w ∈ R(A). Let uk ∈ H, k ∈ N, satisfy

Auk = wk, ∀k ∈ N.

By (4.2.9) we have

‖uk − uj‖ ≤
1

α
‖Auk − Auj‖ =

1

α
‖wk − wj‖ , ∀k, j ∈ N.

Since {wk} converges, it is a Cauchy sequence. Consequently, {uk} is a
Cauchy sequence too. Therefore there exists u ∈ H such that

{uk} → u.

Now, by (4.2.10) and, as A is continuous, we obtain

w = lim
k→∞

wk = lim
k→∞

Auk = Au.

Therefore w ∈ R(A).
Now we prove

R(A) = H. (4.2.11)

We argue by contradiction. Let us assume that R(A) $ H. Since R(A) is
closed, there exists w ∈ H \ {0} such that w ⊥ R(A), (by this we mean
(w, h) = 0 for every h ∈ R(A)). Hence

α ‖w‖2 ≤ a(w,w) = (Aw,w) = 0.

Consequently, we should have w = 0 that contradicts w 6= 0. Thus (4.2.11)
is proved.

Now, since (4.2.4) and (4.2.8) are equivalent, there exists one and only
one solution u ∈ H of the problem

a(u, v) = F (v), ∀v ∈ H. (4.2.12)
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Concerning estimate (4.2.5), it follows immediately by

α ‖u‖2 ≤ a(u, u) = F (u) ≤ ‖F‖H′ ‖u‖ . (4.2.13)

�

Remark. We observe that, as a is a bilinear form, by (4.2.5) we obtain
that if Fj ∈ H ′, j = 1, 2 and uj ∈ H are solutions to

a(uj, v) = Fj(v) ∀v ∈ H,

then

‖u1 − u2‖ ≤
1

α
‖F1 − F2‖H′ (4.2.14)

from which, in particular, we get again the uniqueness. �

We now recall the Fredholm Alternative Theorem [53]. Meanwhile, we
recall that a linear operator K from H in itself is said compact , provided
that for every bounded set M ⊂ H, K(M) is relatively compact in H. We
recall that a compact operator is necessarily bounded, neverthless if H does
not have finite dimension, the identity on H is a bounded operator, but it is
not compact.

Theorem 4.2.2 (Fredholm Alternative). Let

K : H → H,

a linear compact operator. Then we have:

(i) the dimension of N (I −K) is finite;

(ii) R(I −K) is a closed subspace;

(iii) R(I −K) = N (I −K?)⊥,
(iv) N (I −K) = {0} if and only if R(I −K) = H;

(v) dim N (I −K) = dim N (I −K?).

Recall that K? is the adjoint operator K defined by

(Ku, v) = (u,K?v) , ∀u, v ∈ H.
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4.3 The variational formulation of the Dirichlet
problem. Existence theorems

Let us begin by clarifying what we mean by the variational formulation
of Dirichlet problem (4.1.4). We begin by the case in which the condition
at the boundary is homogeneous. In this case (4.1.4) can be written
(formally): 

−div(A∇u) = F, in Ω,

u = 0, on ∂Ω

(4.3.1)

and the variational formulation of problem above is the following:

Determine u such that
∫

Ω
A∇u · ∇vdx = F (v), ∀v ∈ H1

0 (Ω),

u ∈ H1
0 (Ω).

(4.3.2)

Let us observe that if Ω is an open set of class C0,1, ajk ∈ C1(Ω),
j, k = 1, · · · , n and u ∈ C2

(
Ω
)
with u|∂Ω = 0 and F ∈ C0(Ω), then (4.3.1) is

equivalent to (4.3.2). Indeed, under such assumptions, the divergence Theo-
rem implies

∫
Ω

div(A∇u)vdx = −
∫

Ω

A∇u · ∇vdx, ∀v ∈ C∞0 (Ω). (4.3.3)

Therefore, (4.3.1) implies (4.3.2) (taking into account Remark 3.5.2 and that
C∞0 (Ω) is dense in H1

0 (Ω)). Conversely, if (4.3.2) holds true, then Theorem
3.5.1 implies u|∂Ω = 0 and (4.3.2) gives∫

Ω

(div(A∇u) + F ) vdx = 0, ∀v ∈ C∞0 (Ω), (4.3.4)

that gives (4.3.1). Of course, under the general assumptions on Ω, A and F ,
the formulation (4.3.1) makes no sense, while the formulation (4.3.2) makes
perfectly sense, and the Lax–Milgram Theorem will tell us easily that it is a
well–posed problem. Actually, let H = H1

0 (Ω) and

a(u, v) =

∫
Ω

A∇u · ∇vdx, ∀u, v ∈ H1
0 (Ω). (4.3.5)
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The form (4.3.5) is bilinear. Moreover by the Cauchy–Schwarz inequality we
have, for any u, v ∈ H1

0 (Ω),

|a(u, v)| ≤ ‖A‖L∞(Ω;M(n))

∫
Ω

|∇u||∇v|dx ≤

≤ ‖A‖L∞(Ω;M(n) ‖∇u‖L2(Ω) ‖∇v‖L2(Ω)

and by (4.1.1) we have

λ−1 ‖∇u‖2
L2(Ω) ≤

∫
Ω

A∇u · ∇udx = a(u, u), ∀u ∈ H1
0 (Ω).

Now, recalling that ‖∇u‖L2(Ω) and ‖u‖H1(Ω) are two equivalent norms of
H1

0 (Ω), we have only to apply the Lax–Milgram Theorem to conclude that
problem (4.3.2) has an unique solution in H1

0 (Ω). Moreover the following
inequality holds true

‖∇u‖L2(Ω) ≤ λ ‖F‖H−1(Ω) . (4.3.6)

Inequality (4.3.6), together with the already existence and uniqueness
results, implies that problem (4.3.2) is well–posed in H1

0 (Ω).

Now we consider the case where the boundary condition is not homo-
geneous, but the equation is still homogeneous.

Let Ω be an open set of Rn of class C0,1, let ϕ ∈ H1/2(∂Ω) and let
us assume that (4.1.1) is satisfied. Formally, the Dirichlet problem can be
written as 

−div(A∇u) = 0, in Ω,

u = ϕ, on ∂Ω.

(4.3.7)

We wish to give the variational formulation of problem (4.3.7) and to prove
the existence of the solutions in H1(Ω) to this problem.

The variational formulation of (4.3.7) is
∫

Ω
A∇u · ∇vdx = 0, ∀v ∈ H1

0 (Ω),

u = ϕ, on ∂Ω (in the sense of the traces).
(4.3.8)

Notice that, in the case where A, u and ϕ are sufficiently regular, the first
equation in (4.3.8) is equivalent to the first equation of (4.3.7).
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In order to solve (4.3.7) ((4.3.8)), we proceed in the following way. Re-
calling Theorem 3.12.12, there exists Φ ∈ H1(Ω) such that

Φ|∂Ω = ϕ, (in the sense of the traces)

which in turn (by (ii) of Theorem 3.12.12) implies

‖Φ‖H1(Ω) ≤ C ‖ϕ‖H1/2(∂Ω) , (4.3.9)

where C is a constant depending on Ω only. Set w = u− Φ. Since u and Φ
have the same trace on ∂Ω we have w|∂Ω = 0, so that problem (4.3.7) can be
written (formally),

−div(A∇w) = div(A∇Φ), in Ω,

w = 0, on ∂Ω,

(4.3.10)

whose variational formulation is


∫

Ω
A∇w · ∇vdx =

∫
Ω
A∇Φ · ∇vdx, ∀v ∈ H1

0 (Ω),

w ∈ H1
0 (Ω).

(4.3.11)

Let us note that the bilinear form is still given by (4.3.5). The solution
of problem (4.3.7) ((4.3.8)) is given by

u = w + Φ ∈ H1(Ω). (4.3.12)

Moreover, denoting

F (v) =

∫
Ω

A∇Φ · ∇vdx, ∀v ∈ H1
0 (Ω),

it turns out that F ∈ H−1(Ω). As a matter of fact by the Cauchy–Schwarz
inequality we have

|F (v)| ≤ λ ‖∇Φ‖L2(Ω) ‖∇v‖L2(Ω) , ∀v ∈ H1
0 (Ω).

By (4.3.9) and (4.3.10) we have

|F (v)| ≤ Cλ ‖ϕ‖H1/2(∂Ω) ‖v‖H1(Ω) , ∀v ∈ H1
0 (Ω).

Therefore F ∈ H−1(Ω) and the following inequality holds

‖F‖H−1(Ω) ≤ C ′ ‖ϕ‖H1/2(∂Ω) , (4.3.13)
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where C ′ depends on Ω and λ only .

The Lax–Milgram Theorem implies that problem (4.3.11) has a unique
solution w ∈ H1

0 (Ω), moreover by (4.2.5) we have

‖∇w‖L2(Ω) ≤ λ ‖F‖H−1(Ω) ≤ λC ′ ‖ϕ‖H1/2(∂Ω) . (4.3.14)

Now, by using (4.3.9), (4.3.12) and (4.3.14) we get

‖u‖H1(Ω) ≤ ‖w‖H1(Ω) + ‖Φ‖H1(Ω) ≤ C ′′ ‖ϕ‖H1/2(∂Ω) , (4.3.15)

where C ′′ depends by λ and Ω only. Notice that (4.3.15) implies, in particular,
the uniqueness of solution of problem (4.3.7).

From what we have proved so far, we have the following

Theorem 4.3.1. Let Ω be an open set of class C0,1. Let us assume that A ∈
L∞(Ω;M(n)) and A satisfies (4.1.1). Let F ∈ H−1(Ω) and ϕ ∈ H1/2(∂Ω).

Then the following problem
−div(A∇u) = F, in Ω,

u = ϕ, on ∂Ω,

(4.3.16)

whose variational formulation is
∫

Ω
A∇u · ∇vdx = F (v), ∀v ∈ H1

0 (Ω),

u = ϕ, su ∂Ω (in the sense of traces),
(4.3.17)

has a unique solution u ∈ H1(Ω) and we have

‖u‖H1(Ω) ≤ C
(
‖F‖H−1(Ω) + ‖ϕ‖H1/2(∂Ω)

)
, (4.3.18)

where C depends on λ and Ω only.

Now let L be the following operator

Lu = −
n∑

j,k=1

∂j
(
ajk∂ku+ dju

)
+

n∑
j=1

bj∂ju+ cu, (4.3.19)

where A ∈ L∞(Ω;M(n)), A =
{
ajk
}n
j,k=1

, satisfies (4.1.1) and

bj, dj, c ∈ L∞(Ω),
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for j = 1, · · · , n.
Let us consider the Dirichlet problem

Lu = f, in Ω,

u = 0, su ∂Ω,

(4.3.20)

where f ∈ L2(Ω). The variational formulation of above problem is:

Determine u such that
a(u, v) = (f, v), ∀v ∈ H1

0 (Ω),

u ∈ H1
0 (Ω),

(4.3.21)

where

a(u, v) =

∫
Ω

(A∇u · ∇v + ud · v − b · ∇uv − cuv) dx, (4.3.22)

d = (d1, · · · , dn) and b = (b1, · · · , bn).

Problem (4.3.20) does not always have existence and uniqueness. To show
this fact, let us consider the following simple example

−u′′ − u = f, in (0, π),

u(0) = u(π) = 0,

(4.3.23)

where f ∈ L2(0, π). The solutions to (4.3.23) have to be found among the
functions of the type

C1 sinx+ C2 cosx−
∫ x

0

sin(x− t)f(t)dt.

By the boundary conditions we have C2 = 0 and∫ π

0

f(t) sin tdt = 0. (4.3.24)

Therefore, if (4.3.24) is satisfied, then (4.3.23) has infinite solutions, given
by

C sinx−
∫ x

0

sin(x− t)f(t)dt, C ∈ R
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Whereas if (4.3.24) is not satisfied, then (4.3.23) has no solutions. So we
cannot expect that the bilinear form (4.3.22) is always coercive. We can,
however, prove the following Theorem that will be useful for establish some
conditions of existence and uniqueness to problem (4.3.21)

Theorem 4.3.2. Let Ω be a bounded open set of Rn. Let us assume that A ∈
L∞(Ω;M(n)) and that A satisfies condition (4.1.1) and b, d ∈ L∞ (Ω;Rn),
c ∈ L∞(Ω), for j = 1, · · · , n. Moreover, let

a(u, v) =

∫
Ω

(A∇u · ∇v + ud · ∇v − b · ∇uv − cuv) dx.

Then a is a continuous bilinear form and there exist γ0 ≥ 0 and α0 > 0 such
that for any γ ≥ γ0 we have

α0 ‖u‖2
H1(Ω) ≤ a(u, u) + γ ‖u‖2

L2(Ω) , ∀u ∈ H1
0 (Ω). (4.3.25)

In particular,
aγ(u, v) := a(u, u) + γ (u, v)L2(Ω) , (4.3.26)

is a continuous and coercive bilinear form for every γ ≥ γ0.

Proof. By the Cauchy–Schwarz inequality we have, for any u, v ∈ H1
0 (Ω)

|a(u, v)| ≤
∫

Ω

‖A‖L∞(Ω;M(n)) |∇u| |∇v| dx+

+

∫
Ω

(
‖d‖L∞(Ω;Rn) |u| |∇v|+ ‖b‖L∞(Ω;Rn) |∇u| |v|+ ‖c‖L∞(Ω) |u| |v|

)
dx ≤

≤ ‖A‖L∞(Ω;M(n)) ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) + ‖d‖L∞(Ω;Rn) ‖u‖L2(Ω) ‖∇v‖L2(Ω) +

+ ‖b‖L∞(Ω;Rn) ‖∇u‖L2(Ω) ‖v‖L2(Ω) + ‖c‖L∞(Ω) ‖u‖L2(Ω) ‖v‖L2(Ω) ≤
≤ C ‖u‖H1(Ω) ‖v‖H1(Ω) ,

where

C =
(
‖A‖L∞(Ω;M(n)) + ‖d‖L∞(Ω;Rn) + ‖b‖L∞(Ω;Rn) + ‖c‖L∞(Ω)

)
.

Therefore

|aγ(u, v)| ≤ (C + |γ|) ‖v‖H1(Ω) ‖u‖H1(Ω) , ∀u, v ∈ H1
0 (Ω)

which implies the continuity of aγ for any γ ∈ R.
Concerning coercivity of aγ, we notice firstly that (4.1.1) gives
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∫
Ω

A∇u · ∇udx ≥ λ−1 ‖∇u‖2
L2(Ω) , ∀u ∈ H1

0 (Ω). (4.3.27)

Moreover, let ε be a positive number which we will choose later on. We get

∣∣∣∣∫
Ω

ud · ∇udx
∣∣∣∣ ≤ ‖d‖L∞(Ω;Rn) ‖u‖L2(Ω) ‖∇u‖L2(Ω) ≤

≤ ε

2
‖∇u‖2

L2(Ω) +
1

2ε
‖d‖2

L∞(Ω;Rn) ‖u‖
2
L2(Ω)

(4.3.28)

similarly,∣∣∣∣∫
Ω

b · ∇uudx
∣∣∣∣ ≤ ε

2
‖∇u‖2

L2(Ω) +
1

2ε
‖b‖2

L∞(Ω;Rn) ‖u‖
2
L2(Ω) . (4.3.29)

Furthermore ∣∣∣∣∫
Ω

cu2dx

∣∣∣∣ ≤ ‖c‖L∞(Ω) ‖u‖
2
L2(Ω) . (4.3.30)

Hence, by (4.3.27)–(4.3.30) we obtain

aγ(u, u) ≥
(
λ−1 − ε

)
‖∇u‖2

L2(Ω) +

+

[
γ −

(
1

2ε
‖d‖2

L∞(Ω;Rn) +
1

2ε
‖b‖2

L∞(Ω;Rn) + ‖c‖L∞(Ω)

)]
‖u‖2

L2(Ω) .

Now, by choosing

ε =
λ−1

2

and denoting

γ0 = λ ‖d‖2
L∞(Ω;Rn) + λ ‖b‖2

L∞(Ω;Rn) + ‖c‖L∞(Ω) ,

we have, for any γ ≥ γ0

aγ(u, u) ≥ λ−1

2
‖∇u‖2

L2(Ω) , ∀u ∈ H1
0 (Ω).

Finally, the first Poincaré inequality (Theorem 3.4.2) implies that there exists
α0, depending on the diameter of Ω, such that (4.3.25) is satisfied. �

Exercise. Prove there that there exists δ > 0 such that if diam(Ω) ≤ δ
(diam(Ω) is the diameter of) then problem (4.3.20), where f ∈ H−1(Ω), has
a unique solution in H1

0 (Ω). [Hint: use the first Poincaré inequality].
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The following operator is called the (formal) adjoint of the operator L

L?v = −
n∑

j,k=1

∂k
(
ajk∂jv + bkv

)
+

n∑
j=1

dj∂jv + cv. (4.3.31)

To the operator L? corresponds the bilinear form

a?(v, u) =

∫
Ω

(
AT∇v · ∇u− vb · ∇u+ d · ∇vu− cvu

)
dx, ∀u, v ∈ H1

0 (Ω),

where AT is the transposed of the matrix A. Let us notice that

a?(v, u) = a(u, v), ∀u, v ∈ H1
0 (Ω).

Finally, let f ∈ L2(Ω), we say that v ∈ H1
0 (Ω) is a weak solution of the

adjoint problem 
L?v = f, in Ω,

u = 0, on ∂Ω,

(4.3.32)

provided that we have
a?(v, u) = (f, u)L2(Ω), ∀u ∈ H1

0 (Ω),

v ∈ H1
0 (Ω).

(4.3.33)

The following Theorem holds true

Theorem 4.3.3. Let L be operator (4.3.19) and L? its formal adjoint.
(i) The following alternative holds true.

either
(a) for any f ∈ L2(Ω) there exists a unique u ∈ H1

0 (Ω) such that
Lu = f, in Ω,

u = 0, on ∂Ω

(4.3.34)

or
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(b) there exists at least one not identically vanishing solution u ∈
H1

0 (Ω) to the homogeneous problem
Lu = 0, in Ω,

u = 0, on ∂Ω.

(4.3.35)

(ii) If (b) holds true, then, denoting by N the subspace H1
0 (Ω) of the solutions

to (4.3.35) and by N? the subspace of H1
0 (Ω) of the solutions to

L?v = 0, in Ω,

v = 0, on ∂Ω,

(4.3.36)

we have that N and N? have finite dimension, moreover

dimension of N = dimension of N?.

(iii) Finally, problem (4.3.34) admits a solution in H1
0 (Ω) if and only if

(f, v)L2(Ω) = 0, ∀v ∈ N?. (4.3.37)

Proof. Let γ0 be the same of Theorem 4.3.2. Let us fix γ ≥ γ0. Since
aγ, defined by (4.3.26), is a continuous and coercive bilinear form, we have
that for any g ∈ L2(Ω) there exists a unique u ∈ H1

0 (Ω) such that

Lγu = g.

Set

L−1
γ g = u.

Now, we notice that u ∈ H1
0 (Ω) solves the boundary value problem
Lu = f, in Ω,

u = 0, su ∂Ω

(4.3.38)

if and only if

aγ(u, v) = (γu+ f, v)L2(Ω), ∀v ∈ H1
0 (Ω)
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which, in turn, is equivalent to

u = L−1
γ (γu+ f). (4.3.39)

Let us denote
Ku = γL−1

γ u (4.3.40)

and
h = L−1

γ f. (4.3.41)

Let us notice that K is linear and it satisfies

aγ(Kg, v) = γ(g, v)L2(Ω), ∀g ∈ L2(Ω), ∀v ∈ H1
0 (Ω).

Moreover, as (4.3.39) and (4.3.40) hold, (4.3.38) is equivalent to

u−Ku = h. (4.3.42)

Also, we notice that we have h ∈ H1
0 (Ω) and by the definition of K, we have

Kg ∈ H1
0 (Ω), for any g ∈ L2(Ω), . Therefore, every function of L2(Ω) which

is a solution to (4.3.42) belongs to H1
0 (Ω).

Now we examine the solvability of (4.3.42) in L2(Ω).

Let us begin to check that

K : L2(Ω)→ L2(Ω),

is a well–defined compact operator. Let g ∈ L2(Ω), set

w = Kg.

By (4.3.25) we have

α0 ‖w‖2
H1(Ω) ≤ aγ(w,w) = γ(g, w)L2(Ω) ≤ γ ‖g‖L2(Ω) ‖w‖L2(Ω) .

Hence
‖Kg‖H1(Ω) = ‖w‖H1(Ω) ≤

γ

α0

‖g‖L2(Ω) . (4.3.43)

Therefore the operator K is well–defined from L2(Ω) in itself. In addition K is
compact. As a matter of fact, let M be a bounded set of L2(Ω), by (4.3.43),
we have that K(M) is bounded in H1(Ω) so that the Rellich–Kondrachov
Theorem implies that K(M) is relatively compact in L2(Ω).

Let us apply Theorem 4.2.2. By proposition (iv) of such a Theorem we
have tthe following alternative:

either
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(j) the equation

u−Ku = h̃. (4.3.44)

has a unique solution in L2(Ω), for every h̃ ∈ L2(Ω)

or
(jj) there exists at least a not identically vanishing solution (in L2(Ω)) to

the equation
u−Ku = 0. (4.3.45)

If proposition (j) holds true, then, as (4.3.38) and (4.3.42) are equivalent,
we have that there exists a unique solution to problem (4.3.34). Whereas, if
proposition (jj) holds true, then, by (i) and (v) of Theorem 4.2.2, we have
that the subspace N 6= {0} of solutions of (4.3.45) (hence, of the solutions
to (4.3.35)) has finite dimension. Let us observe that, in the latter case we
have

γ 6= 0. (4.3.46)

otherwise we should have K = 0 and, by (4.3.45), N = {0}. Moreover the
dimension of N is equal to the dimension of N?, where N? is the subspace
of the solutions to

u−K?u = 0. (4.3.47)

At this point, to conclude (b), let us examine what relationship holds true
between K? and L?.

Claim. Let us denote

L?γ = L? + γ, (4.3.48)

we have

K? = γ
(
L?γ
)−1

. (4.3.49)

Proof of the Claim. Firstly, recall that

∀g ∈ L2(Ω) ∃u ∈ H1
0 (Ω) (unique) such that

aγ(u, v) = (g, v)L2(Ω), ∀v ∈ H1
0 (Ω)

that is
u = L−1

γ g. (4.3.50)

By the Lax–Milgram Theorem we have

∀g̃ ∈ L2(Ω) ∃ũ ∈ H1
0 (Ω) (unique) such that

a?γ (ũ, ṽ) = (g̃, ṽ)L2(Ω) , ∀ṽ ∈ H1
0 (Ω)
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that is
ũ =

(
L?γ
)−1

g̃. (4.3.51)

Now, let us recall that

a?γ (ũ, ṽ) = aγ (ṽ, ũ) , ∀ṽ ∈ H1
0 (Ω),

and let us choose ṽ = u, where u is given by (4.3.50). We get

(g̃, u)L2(Ω) = a?γ (ũ, u) = aγ (u, ũ) = (g, ũ)L2(Ω) .

Hence, (4.3.50) and (4.3.51) give

(
g̃, L−1

γ g
)
L2(Ω)

=
((
L?γ
)−1

g̃, g
)
L2(Ω)

,

for every g̃ ∈ L2(Ω) and for every g ∈ L2(Ω). Now, as Kg = γL−1
γ g we obtain

(4.3.49). The Claim is proved.

By (4.3.48) and (4.3.49) (taking into account that K? assumes its values
in H1

0 (Ω)) we have the equivalences

v −K?v = 0⇐⇒ L?γv − γv = 0⇐⇒ L?v = 0.

Therefore, the solutions (4.3.47) to are all and only the solutions to (4.3.36)
and by that also (b) is proved

Now, we prove (iii). Proposition (iii) of Theorem 4.2.2 implies that the
boundary value problem (4.3.38) (which, we recall, is equivalent to equation
(4.3.42)) admits a solution if and only if

(h, v)L2(Ω) = 0, ∀v ∈ N?.

On the other hand, by v = K?v, (4.3.40) and by (4.3.41), we have

(f, v)L2(Ω) = (f,K?v)L2(Ω) = (Kf, v)L2(Ω) = γ (h, v)L2(Ω)

and, taking into account (4.3.46), we have that problem (4.3.34) has a solu-
tion in H1

0 (Ω) if and only if

(f, v)L2(Ω) = 0, ∀v ∈ N?.

�
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4.4 The Neumann problem

Let Ω be a connected open set of Rn whose boundary is of class C0,1 and let
A be a matrix whose entries are functions of L∞(Ω). Let us assume that A
satisfies (4.1.1). Formally the Neumann problem for the equation

−div(A∇u) = F,

may be written as follows
−div(A∇u) = F, in Ω,

A∇u · ν = g, on ∂Ω.

(4.4.1)

Concerning the variational formulation we first have to specify that

F ∈
(
H1(Ω)

)′ and g ∈ H−1/2(∂Ω),

where (H1(Ω))
′ is the dual space of H1(Ω). Having done this, arguing simi-

larly to the Dirichlet problem, we formulate the Neumann problem as follows:

Determine u ∈ H1(Ω) such that


∫

Ω
A∇u · ∇vdx = F (v) + 〈g, v〉H−1/2,H1/2 , ∀v ∈ H1(Ω),

u ∈ H1(Ω),

(4.4.2)

where we mean
〈g, v〉H−1/2,H1/2 = 〈g, T (v)〉H−1/2,H1/2 ,

here T (v) is the trace of v on ∂Ω.

Let us notice at once that, by setting v = 1, in (4.4.2) we have that a
necessary condition (and, as we will see in Theorem 4.4.1, also sufficient) to
ensure that the problem (4.4.2) admits solutions, is

F (1) + 〈g, 1〉H−1/2,H1/2 = 0. (4.4.3)

Also, we notice that if u0 ∈ H1(Ω) is a solution to problem (4.4.2), then all
the solutions to (4.4.2) are given by

u0 + C,
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where C is any constant. Indeed, it is immediately checked that u0 + C is a
solution to (4.4.2). Conversely, if u ∈ H1(Ω) is a solution to (4.4.2), then∫

Ω

A∇(u− u0) · ∇vdx = 0, ∀v ∈ H1(Ω).

Now, we choose v = u− u0 and (4.1.1) gives

λ−1

∫
Ω

|∇(u− u0)|2 ≤
∫

Ω

A∇(u− u0) · ∇(u− u0)dx = 0.

Since Ω is connected, we obtain that u− u0 is a constant in Ω.
Thus, to ensure the uniqueness to the Neumann problem we may formu-

late it as follows


∫

Ω
A∇u · ∇vdx = F (v) + 〈g, v〉H−1/2,H1/2 , ∀v ∈ H1(Ω),

u ∈
{
w ∈ H1(Ω) :

∫
Ω
wdx = 0

}
.

(4.4.4)

Concerning the existence, we have

Theorem 4.4.1. Let Ω be a connected open set of Rn whose boundary is of
class C0,1. Let us assume that A ∈ L∞(Ω;M(n)) and that A satisfies (4.1.1).
Let us assume that F ∈ (H1(Ω))

′ and g ∈ H−1/2(∂Ω) satisfy (4.4.3).
Then problem (4.4.4) has a unique solution and the following inequality

holds true

‖u‖H1(Ω) ≤ C
(
‖F‖(H1(Ω))′ + ‖g‖H−1/2(∂Ω)

)
, (4.4.5)

where C depends on λ and Ω only.

Proof. Set
H̃ :=

{
w ∈ H1(Ω) :

∫
Ω

wdx = 0

}
,

Theorem 3.9.1 implies that H̃ is a Hilbert space equipped with the norm

‖w‖H̃ =

(∫
Ω

|∇w|2dx
)1/2

.

Moreover, the bilinear form on H̃

a(u, v) =

∫
Ω

A∇u · ∇vdx, (4.4.6)
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is coercive and continuous. Now we check that the linear functional

H̃ 3 v → F̃ (v) := F (v) + 〈g, v〉H−1/2,H1/2 ∈ R,

is well–defined and continuous on H̃. As a matter of fact, by Theorem 3.9.1
we have

|F (v)| ≤ ‖F‖(H1(Ω))′ ‖v‖H1(Ω) ≤ C ‖F‖H−1(Ω) ‖v‖H̃ , ∀v ∈ H̃, (4.4.7)

where C depends on Ω only. Moreover, recalling that H−1/2(Ω) is the dual
space of H1/2(Ω) (compare Section 3.13.1), inequality (ii) of Theorem 3.5.1
gives ∣∣〈g, v〉H−1/2,H1/2

∣∣ ≤ ‖g‖H−1/2(∂Ω) ‖v‖H1/2(∂Ω) ≤
≤ C ‖g‖H−1/2(∂Ω) ‖v‖H1(Ω) ≤
≤ C ‖g‖H−1/2(∂Ω) ‖v‖H̃ ,

(4.4.8)

where C depends by Ω only. Therefore, (4.4.7) and (4.4.8) give

|F̃ (v)| ≤ C
(
‖F‖H−1(Ω) + ‖g‖H−1/2(∂Ω)

)
‖v‖H̃ , ∀v ∈ H̃. (4.4.9)

Now, since bilinear form (4.4.6) is continuous and coercive on H̃ and since
(4.4.9) holds, F̃ is a bounded linear functional on H̃. Therefore by the Lax–
Milgram Theorem we have that there exists a unique u ∈ H̃ which satisfies

a(u, v) = F̃ (v), ∀v ∈ H̃. (4.4.10)
Moreover

‖u‖H1(Ω) ≤ C ‖∇u‖L2(Ω) ≤ C
(
‖F‖(H1(Ω))′ + ‖g‖H−1/2(∂Ω)

)
, (4.4.11)

where C depends on λ and Ω only.
Now, let v be any function of H1(Ω) and let us denote

vΩ =
1

|Ω|

∫
Ω

vdx, ṽ = v − vΩ.

Since ṽ ∈ H̃, by (4.4.3) and (4.4.10) we obtain∫
Ω

A∇u · ∇vdx =

∫
Ω

A∇u · ∇ṽdx =

= a (u, ṽ) = F (ṽ) + 〈g, ṽ〉H−1/2,H1/2 =

= F (v) + 〈g, v〉H−1/2,H1/2 − vΩ

(
F (1) + 〈g, 1〉H−1/2,H1/2

)
=

= F (v) + 〈g, v〉H−1/2,H1/2 .

(4.4.12)
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Therefore u is a solution to problem (4.4.4). Estimate (4.4.4) follows by
(4.4.11). �

4.5 The Caccioppoli inequality

Theorem 4.5.1 (the Caccioppoli inequality). Let x0 ∈ Rn and R >
0. Let A be a symmetric matrix whose entries are measurable functions on
BR(x0). Let us assume A satisfies (4.1.1) (with Ω = BR(x0)).
Let b ∈ L∞(BR(x0);Rn) and c ∈ L∞(BR(x0)). Let u ∈ H1

loc(BR(x0)) satisfy∫
BR(x0)

A∇u · ∇vdx =

∫
BR(x0)

(b∇u+ cu) vdx, ∀v ∈ H1
0 (BR(x0)). (4.5.1)

If 0 < r < ρ < R, then we have∫
Br(x0)

|∇u|2dx ≤ C

(ρ− r)2

∫
Bρ(x0)

u2dx, (4.5.2)

where C depends on λ, R ‖b‖L∞(BR(x0);Rn) and R
2 ‖c‖L∞(BR(x0);Rn) only.

Proof. It is not restrictive to assume x0 = 0. Let η ∈ C∞0 (Bρ) satisfy

0 ≤ η ≤ 1; η = 1, in Br (4.5.3)

and

|∇η| ≤ K

ρ− r
, (4.5.4)

where K is a positive constant. We choose in (4.5.1)

v = η2u

and we have ∫
BR

A∇u · ∇
(
η2u
)
dx =

∫
BR

(b∇u+ cu) η2udx. (4.5.5)

Hence
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∫
BR

(A∇u · ∇u)η2dx =

∫
BR

(b∇u+ cu) η2udx−

− 2

∫
BR

(A∇u · ∇η)ηudx ≤

≤
∫
BR

(
|b||∇u||u|η2 + |c|u2η2

)
dx+

+ 2

∫
BR

(A∇u · ∇u)1/2(A∇η · ∇η)1/2|u|ηdx ≤

≤
∫
BR

(
|b||∇u||u|η2 + |c|u2η2

)
dx+

+
1

2

∫
BR

(A∇u · ∇u)η2dx+ 2

∫
BR

(A∇η · ∇η)u2dx.

By moving to the left–hand side the second-to-last integral and, by estimating
from above the last integral, we have

1

2

∫
BR

(A∇u · ∇u)η2dx ≤

≤
∫
BR

(
|b||∇u||u|η2 + |c|u2η2

)
dx+

2K2λ

(ρ− r)2

∫
Bρ

u2dx.

(4.5.6)

Now let us estimate from above the first integral on the right hand side of
(4.5.6). We obtain, for ε > 0 to be choosen,

∫
BR

(
|b||∇u||u|η2 + |c|u2η2

)
dx ≤ ε

2

∫
BR

|∇u|2η2dx+

+
1

2ε
‖b‖2

L∞(BR;Rn)

∫
BR

u2η2dx+

+ ‖c‖L∞(BR)

∫
BR

u2η2dx ≤

≤ ελ

2

∫
BR

(A∇u · ∇u)η2dx+

+ Cε

∫
BR

u2η2dx,

(4.5.7)

where

Cε =
1

2ε
‖b‖2

L∞(BR,Rn) + ‖c‖L∞(BR) .
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Using inequality (4.5.7) in (4.5.6), after a few easy calculations, we have

1

2
(1− ελ)

∫
BR

(A∇u · ∇u)ηdx ≤

≤ Cε

∫
BR

u2η2dx+
2K2λ

(ρ− r)2

∫
Bρ

u2dx.

(4.5.8)

Now we choose
ε = ε0 :=

1

2λ
,

and we get

Cε0 = λ ‖b‖2
L∞(BR;Rn) + ‖c‖L∞(BR)

and by (4.5.8) we have

λ−1

4

∫
Br

|∇u|2dx ≤ 1

4

∫
BR

(A∇u · ∇u)η2dx ≤

≤ K1

(ρ− r)2

∫
Bρ

u2,

(4.5.9)

where
K1 = 2K2λ+R2Cε0 .

By (4.5.9) we obtain immediately∫
Br

|∇u|2dx ≤ 4K1λ

(ρ− r)2

∫
Bρ

u2dx,

so that (4.5.2) follows. �

Exercise 1. Let x0 ∈ Rn and R > 0. Let L be the operator

Lu = −
n∑

j,k=1

∂j
(
ajk∂ku+ dju

)
+

n∑
j=1

bj∂ju+ cu, (4.5.10)

where A ∈ L∞(BR(x0);M(n)), A =
{
ajk
}n
j,k=1

, satisfies (4.1.1) and
bj, dj, c ∈ L∞(BR(x0)), for j = 1, · · · , n. Let f ∈ L2(BR(x0)) and let us
assume that u ∈ H1(BR(x0)) is a weak solution to

Lu = f, in BR(x0).

Prove that, if 0 < r < ρ < R then we have∫
Br(x0)

|∇u|2dx ≤ C

(ρ− r)2

∫
Bρ(x0)

u2dx+ Cρ2

∫
Bρ(x0)

f 2dx, (4.5.11)
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where C depends on λ, ‖A‖L∞(BR(x0);M(n)), R ‖d‖L∞(BR(x0);Rn), R ‖b‖L∞(BR(x0;Rn)

and R2 ‖c‖L∞(BR(x0) only. ♣

Exercise 2. Let R > 0 and x0 ∈ {(x′, 0) : x′ ∈ Rn−1}. Let L be operator
(4.5.10) and let u ∈ H1(B+

R(x0)) satisfy
Lu = f, in B+

R(x0), in weak sense,

u(x′, 0) = 0, x′ ∈ B′R(x0) in the traces sense,

then ∫
B+
r (x0)

|∇u|2dx ≤ C

(ρ− r)2

∫
B+
ρ (x0)

u2dx+ Cρ2

∫
B+
ρ (x0)

f 2dx, (4.5.12)

where C depends on λ, ‖A‖L∞(B+
R(x0);M(n)), R ‖d‖L∞(B+

R(x0);Rn), R ‖b‖L∞(B+
R(x0);Rn)

and R2 ‖c‖L∞(B+
R(x0)) only. ♣

Exercise 3. Let x0, R and A be like Exercise 2.
(a) Give the variational formulation of problem

div(A∇u) = 0, in B+
R(x0),

(A∇u)(x′, 0) · en = 0, for x′ ∈ B′R(x0).

(4.5.13)

(b) Prove that∫
B+
r (x0)

|∇u|2dx ≤ C

(ρ− r)2

∫
B+
ρ (x0)

u2dx, (4.5.14)

where C depends on λ and ‖A‖L∞(B+
R(x0);M(n)) only. ♣

4.6 The regularity theorems

In Section 4 (Theorem 4.3.1) we have proved that if Ω is a bounded open set
of Rn, A ∈ L∞(Ω;M(n)) satisfies (4.1.1) and F ∈ H−1(Ω), then the Dirichlet
problem 

−div(A∇u) = F, in Ω,

u = 0, on ∂Ω,

(4.6.1)
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is well–posed in H1
0 (Ω).

It is natural to ask whether with more restrictive assumptions on the data
Ω, A and F , u is more regular. More precisely, we ask whether there exists
k > 1 such that u ∈ Hk(Ω). In carrying out this investigation it is convenient
to distinguish between the regularity in the interior and regularity at
the boundary . In the investigation of the regularity in the interior we
are interested in whether for some k > 1 we have u ∈ Hk

loc(Ω), while in
the investigation of regularity at the boundary we are interested in knowing
whether for some k > 1 it happens that for every x0 ∈ ∂Ω there exists a
neighborhood of x0, U , such that u|U ∈ Hk(Ω ∩ U). As we should expect,
in the study of regularity in the interior, the regularity of ∂Ω plays no role.
In contrast, in the study of regularity at the boundary, the regularity of ∂Ω
plays a crucial role.

Before going on to the rigorous treatment, let us illustrate in a rough
manner the main idea that drives the study of the regularity in the interior;
similar arguments can be made for the regularity at the boundary.

Let us consider the equation

−∆u = f, in Ω (4.6.2)

where f ∈ L2(Ω). Let u ∈ H1(Ω) be a solution to (4.6.2); that is.∫
Ω

∇u · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω). (4.6.3)

Let us suppose that we know u be sufficiently regular (say u ∈ H3
loc(Ω))

so that the operations that we will make are allowed.
Let x0 ∈ Ω and R > 0 satisfy B2R(x0) ⊂ Ω. Let η ∈ C∞0 (B2R(x0) such

that
0 ≤ η ≤ 1; η = 1, in BR(x0) (4.6.4)

and
|∇η| ≤ K

R
, (4.6.5)

where K is a positive constant. Let k ∈ {1, · · · , n}. Multiply both the
sides of (4.6.2) by ∂k (η2∂ku) and integrate over Ω or, equivalently, choose in
(4.6.3))

v = ∂k
(
η2∂ku

)
(4.6.6)

obtaining ∫
Ω

∆u∂k
(
η2∂ku

)
dx =

∫
Ω

f∂k
(
η2∂ku

)
dx. (4.6.7)
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Let us consider the left–hand side of (4.6.7), integration by per parts yields∫
Ω

∆u∂k
(
η2∂ku

)
dx =

∫
Ω

n∑
j=1

∂2
ju∂k

(
η2∂ku

)
dx =

= −
∫

Ω

n∑
j=1

∂j
(
∂2
jku
)
η2∂kudx =

=

∫
Ω

n∑
j=1

∂2
jku∂j

(
η2∂ku

)
dx =

=

∫
Ω

n∑
j=1

∣∣∂2
jku
∣∣2 η2dx+

+ 2

∫
Ω

n∑
j=1

(
∂2
jku
)
η∂jη∂kudx.

Concerning the right–hand side of (4.6.7), we get∫
Ω

f∂k
(
η2∂ku

)
dx =

∫
Ω

fη2∂2
kudx+ 2

∫
Ω

fη∂kη∂kudx.

Using in (4.6.7) the last two obtained equalities and summing up over k, we
have

∫
Ω

n∑
j,k=1

∣∣∂2
jku
∣∣2η2dx = −2

∫
Ω

n∑
j,k=1

(
∂2
jku
)
η∂jη∂kudx+

+

∫
Ω

fη2

n∑
k=1

∂2
kudx+ 2

∫
Ω

fη

n∑
k=1

∂kη∂kudx := I.

(4.6.8)

Let ε > 0 to be choosen later on, let us denote by ∂2u the Hessian matrix{
∂2
jku
}n
j,k=1

. We have

I ≤ ε

∫
Ω

∣∣∂2u
∣∣2 η2dx+

1

ε

∫
Ω

|∇u|2 |∇η|2 dx+

+
ε

2

∫
Ω

∣∣∂2u
∣∣2 η2dx+

1

2ε

∫
Ω

|f |2 η2dx+

+

∫
Ω

|f |2 η2dx+

∫
Ω

|∇η|2 |∇u|2 dx.

Now, in (4.6.8), we move to the left–hand side the terms that contain the
second derivatives, and we get
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(
1− 3ε

2

)∫
Ω

∣∣∂2u
∣∣2 η2dx ≤

(
1 +

1

2ε

)∫
Ω

|∇u|2 |∇η|2 dx+

+

(
1 +

1

2ε

)∫
Ω

|f |2 η2dx.

At this point, we choose ε = 1
3
and by (4.6.4), (4.6.5) we get

∫
BR(x0)

∣∣∂2u
∣∣2 dx ≤ 5K2

R2

∫
B2R(x0)

|∇u|2 dx+ 5

∫
B2R(x0)

|f |2 dx. (4.6.9)

We observe that (4.6.9) allows us to estimate the second derivatives of u
in L2 (BR(x0)) by means of the finite quantity that occurs on the right. It
is evident that this estimate by itself do not provide a proof that
u ∈ H2 (BR(x0)), j, k = 1, · · · , n, since to obtain the estimate we exploited
a regularity of u even greater than was proved (!). However, in the rigorous
proofs that we will present soon in this Chapter, we will "retrace", in a sense,
the previous steps by considering as test function, instead of the (4.6.6), the
function

v = −δ−hk
(
η2δhku

)
where δ−hk and δhk , are the difference quotients studied in Section 3.10.

4.6.1 The regularity theorems in the interior

The Main Theorem of the present Subsection is the following.

Theorem 4.6.1 (regularity in the interior). Let Ω be a bounded open set
of Rn. Let

f ∈ L2(Ω). (4.6.10)

Let A be a symmetric matrix. Let us assume that A satisfies (4.1.1),
A ∈ C0,1(Ω;M(n)) and it satisfies

|A(x)− A(y)| ≤ E|x− y|, ∀x, y ∈ Ω, (4.6.11)

where E is a positive number. Let us assume u ∈ H1(Ω) is a solution to

− div(A∇u) = f, in Ω. (4.6.12)

Then we have
u ∈ H2

loc(Ω), (4.6.13)



4.6. The regularity theorems 249

and, for any B2R(x0) ⊂ Ω, the following estimate holds true∑
|α|≤2

R2|α|
∫
BR(x0)

|∂αu|2 dx ≤ C
(
1 + E2R2

) ∫
B2R(x0)

u2dx+

+ CR4

∫
B2R(x0)

f 2dx,

(4.6.14)

where C depends on λ only.

Proof. It is not restrictive to assume 0 ∈ Ω and R < 1
2
dist (0, ∂Ω). Let

η ∈ C∞0 (B3R/2) satisfy

0 ≤ η ≤ 1; η = 1, in BR (4.6.15)

and
|∇η| ≤ K

R
, (4.6.16)

where K is a positive constant.
Since u ∈ H1(Ω) satisfies (4.6.12), we have∫

Ω

A∇u · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω). (4.6.17)

Let h ∈
(
−R

8
, R

8

)
\ {0}. Let us note that, if w1, w2 ∈ H1(Ω) and supp

w1 ⊂ B3R/2 (or supp w2 ⊂ B3R(2), then, for any k ∈ {1, · · · , n}, we have∫
Ω

w1δ
−h
k w2dx = −

∫
Ω

w2δ
h
kw1dx (4.6.18)

and
δhk (w1w2) = wh1δ

h
kw2 + w2δ

h
kw1, (4.6.19)

where wh1 (x) = w1(x + hek). Concerning (4.6.18), just argue like in the the
Claim of the proof of Theorem 3.10.2. While equalty (4.6.18) follows easily
by

hδhk (w1w2) = w1(x+ hek)w2(x+ hek)− w1(x)w2(x) =

= w1(x+ hek)w2(x+ hek)− w1(x+ hek)w2(x)+

+ w1(x+ hek)w2(x)− w1(x)w2(x) =

= h
(
wh1δ

h
kw2 + w2δ

h
kw1

)
.

Now, let us choose as test function in (4.6.17)

v = −δ−hk
(
η2δhku

)
. (4.6.20)
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We get∫
Ω

A∇u · ∇vdx = −
∫

Ω

A∇u ·
[
δ−hk ∇

(
η2δhku

)]
dx =

=

∫
Ω

δhk (A∇u) · ∇
(
η2δhku

)
dx =

=

∫
Ω

Ah
(
δhk∇u

)
· ∇
(
η2δhku

)
dx+

+

∫
Ω

(
δhkA

)
∇u · ∇

(
η2δhku

)
dx =

=

∫
Ω

[
Ah
(
δhk∇u

)
·
(
δhk∇u

)]
η2dx+R,

(4.6.21)

where
R =

∫
Ω

Ah
(
δhk∇u

)
·
(
2η∇ηδhku

)
dx+

+

∫
Ω

(
δhkA

)
∇u ·

(
δhk∇u

)
η2dx+

+

∫
Ω

(
δhkA

)
∇u ·

(
2η∇ηδhku

)
dx.

Now, by (4.1.1) we get

∫
Ω

[
Ah
(
δhk∇u

)
·
(
δhk∇u

)]
η2dx ≥ λ−1

∫
Ω

∣∣δhk∇u∣∣2 η2dx. (4.6.22)

Concerning R, let ε be a positive number which will choose later on. By
(4.6.11) we have

|R| ≤ cnλ

R

∫
Ω

∣∣δhk∇u∣∣ ∣∣δhku∣∣ ηdx+ E

∫
Ω

∣∣δhk∇u∣∣ |∇u| η2dx+

+
E

R

∫
Ω

|∇u|
∣∣δhku∣∣ η2dx ≤

≤ ε

∫
Ω

∣∣δhk∇u∣∣2 η2dx+

+
C

ε

(
R−2 + E2

) ∫
B3R/2

(∣∣δhku∣∣2 + |∇u|2
)
dx,

(4.6.23)

where cn depends on n only and C depends on λ and n only. Now let us
choose
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ε =
λ−1

2

so that, by (4.6.22) and (4.6.23), we get∫
Ω

[
Ah
(
δhk∇u

)
·
(
δhk∇u

)]
η2dx+R ≥ λ−1

2

∫
Ω

∣∣δhk∇u∣∣2 η2dx−

− 2Cλ
(
R−2 + E2

) ∫
B3R/2

(∣∣δhku∣∣2 + |∇u|2
)
dx.

(4.6.24)

Hence, (4.6.17), (4.6.20), (4.6.21) and (4.6.24) yield

λ−1

2

∫
Ω

∣∣δhk∇u∣∣2 η2dx ≤ −
∫

Ω

fδ−hk
(
η2δhku

)
dx+

+ C
(
R−2 + E2

) ∫
B3R/2

(∣∣δhku∣∣2 + |∇u|2
)
dx,

(4.6.25)

where C depends on λ and n only.
Now, by Theorem 3.10.2–(i) (with V = B3R/2 and Ω = B7R/4) we have∫

B3R/2

∣∣δhku∣∣2 dx ≤ ∫
B7R/4

|∇u|2dx. (4.6.26)

Moreover∫
Ω

∣∣δ−hk (
η2δhku

)∣∣2 dx ≤ C

∫
Ω

∣∣∇ (η2δhku
)∣∣2 dx ≤

≤ C ′
∫

Ω

∣∣η∇η (η2δhku
)∣∣2 dx+ C ′

∫
Ω

η2
∣∣∇δhku∣∣2 dx ≤

≤ C ′′

R2

∫
B3R/2

∣∣δhku∣∣2 dx+ C ′
∫

Ω

η2
∣∣δhk∇u∣∣2 dx.

(4.6.27)

Let now σ > 0 to be choosen, (4.6.27) implies

∣∣∣∣∫
Ω

fδ−hk
(
η2δhku

)
dx

∣∣∣∣ ≤ 1

2σ

∫
B2R

f 2dx+
σ

2

∫
Ω

∣∣δ−hk (
η2δhku

)∣∣2 dx ≤
≤ 1

2σ

∫
B2R

f 2dx+

+ Cσ

(
R−2

∫
B3R/2

∣∣δhku∣∣2 dx+

∫
Ω

η2
∣∣δhk∇u∣∣2 dx

)
.

(4.6.28)
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Now we apply Theorem 3.10.2–(i) and inequality, (4.5.11), so that we have

R−2

∫
B3R/2

∣∣δhku∣∣2 dx ≤ R−2

∫
B7R/4

|∇u|2 dx ≤ CR−4

∫
B2R

u2dx+ C

∫
B2R

f 2dx.

By the last obtained estimate and by (4.6.28) we have

∣∣∣∣∫
Ω

fδ−hk
(
η2δhku

)
dx

∣∣∣∣ ≤ 1

2σ

∫
B2R

f 2dx+

+ C∗σ

(
R−4

∫
B2R

u2dx+

∫
Ω

η2
∣∣δhk∇u∣∣2 dx) ,

where C∗ is a constant depending on λ and n only. Inserting what we have
just obtained into (4.6.25) we get(

λ−1

2
− C∗σ

)∫
Ω

∣∣δhk∇u∣∣2 η2dx ≤ 1

2σ

∫
B2R

f 2dx+

+
C (1 + σ + E2R2)

R4

∫
B2R

u2dx.

Now, choosing

σ =
λ−1

4C∗

and we have, for k = 1, · · · , n,∫
BR

∣∣δhk∇u∣∣2 η2dx ≤ C

∫
B2R

f 2dx+
C (1 + E2R2)

R4

∫
B2R

u2dx.

By the last obtained inequality and by Theorem 3.10.2–(ii) we obtain

∂ku ∈ H1 (BR) ,

for k = 1, ·, n. Hence u ∈ H2 (BR) and

∑
|α|=2

R2|α|
∫
BR

|∂αu|2 dx ≤ C
(
1 + E2R2

) ∫
B2R

u2dx+ CR4

∫
B2R

f 2dx.

Finally, by the latter and by (4.5.11) we get (4.6.14). �
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Exercise 1. Under the same assumptions of Theorem 4.6.1, prove that,
if 0 < r < ρ and Bρ(x0) ⊂ Ω then∑

|α|≤2

(ρ− r)2|α|
∫
Br(x0)

|∂αu|2 dx ≤ C
(
1 + E2ρ2

) ∫
Bρ(x0)

u2dx+

+ C(ρ− r)4

∫
Bρ(x0)

f 2dx,

(4.6.29)

where C depends on λ only. [Hint: consider a finite coveringBr(x0) consisting
of balls of the type B ρ−r

2
(x), x ∈ Br(x0), and apply (4.6.14)].

Exercise 2. Under the same assumption of Theorem 4.6.1, prove that, if

Ω′ b Ω

then ∑
|α|≤2

δ
2|α|
0

∫
Ω′
|∂αu|2 dx ≤ C

(
1 + E2d2

0

) ∫
Ω

u2dx+

+ Cd4
0

∫
Ω

f 2dx,

(4.6.30)

where d0 is the diameter of Ω, δ0 =dist(Ω′, ∂Ω) and C depends on λ and
d0δ
−1
0 only. [Hint: use Exercise 1 and a partition of unity].

Exercise 3. (a) Generalize Theorem 4.6.1 to the equation

−
n∑

j,k=1

∂j
(
ajk∂ku+ dju

)
+

n∑
j=1

bj∂ju+ cu = f

where A =
{
ajk
}n
j,k=1

and f satisfy the same assumptions of Theorem 4.6.1,
d, b ∈ L∞(Ω;Rn), c ∈ L∞(Ω).

(b) Generalize (a) to the case where A is a nonsymmetric matrix. [Hint
to (b): write the operator div (A∇u) like

div(As∇u) + terms of order less than 2,

where As is symmetric part of A]. ♣

Theorem 4.6.2 (improved regularity in the interior). Let Ω be a
bounded open set of Rn with diameter d0. Let

f ∈ Hm(Ω). (4.6.31)
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Let A be a symmetric matrix. Let us assume that A satisfies (4.1.1), let us
assume that A ∈ Cm,1(Ω;M(n)) and it satisfies

‖A‖Cm,1(Ω;M(n)) ≤ Em, (4.6.32)

where, Em is a positive number and, recall,

‖A‖Cm,1(Ω;M(n))) =
∑
|α|≤m

d
|α|
0 ‖∂αA‖L∞(Ω;M(n))) + dm+1

0

∑
|α|=m

[∂αA]1,Ω.

Let us assume that u ∈ H1(Ω) is a solution to

− div(A∇u) = f, in Ω. (4.6.33)

Then we have
u ∈ Hm+2

loc (Ω), (4.6.34)

moreover, if B2R(x0) ⊂ Ω, then the following inequality holds true∑
|α|≤m+2

R2|α|
∫
BR(x0)

|∂αu|2 dx ≤ C
(
1 + E2

m

) ∫
B2R(x0)

u2dx+

+ C
∑
|α|≤m

R2(|α|+4)

∫
B2R(x0)

|∂αf |2 dx,
(4.6.35)

where C depends on λ only.

Proof. We simply consider the casem = 1, leaving the reader to complete
the proof by induction. Let l ∈ {1, · · · , n}. Let ṽ be any function belonging
to C∞0

(
B3R/2(x0)

)
. Choose, as a test function,

v = −∂lṽ.

We get

−
∫

Ω

A∇u · ∇∂lṽdx = −
∫

Ω

f∂lṽdx. (4.6.36)

Since f ∈ H1(Ω), we have

−
∫

Ω

f∂lṽdx =

∫
Ω

∂lfṽdx. (4.6.37)

Moreover, since u ∈ H2
loc(Ω) (by Theorem 4.6.1), we have
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−
∫

Ω

A∇u · ∇∂lṽdx = −
∫

Ω

n∑
j,k=1

ajk∂ku∂l (∂j ṽ) dx =

=

∫
Ω

n∑
j,k=1

∂l
(
ajk∂ku

)
∂j ṽdx =

=

∫
Ω

n∑
j,k=1

ajk∂k (∂lu) ∂j ṽdx+

+

∫
Ω

n∑
j,k=1

∂la
jk∂ku∂j ṽdx =

=

∫
Ω

n∑
j,k=1

ajk∂k (∂lu) ∂j ṽdx−

−
∫

Ω

n∑
j,k=1

∂j
[(
∂la

jk
)
∂ku
]
ṽdx.

By the equality obtained above, by (4.6.36) and by (4.6.37) we have (recall
that C∞0

(
B3R/2(x0)

)
is dense in H1

0

(
B3R/2(x0)

)
∫
B3R/2(x0)

A∇ (∂lu)·∇wdx =

∫
BR(x0)

f̃wdx, ∀w ∈ H1
0

(
B3R/2(x0)

)
, (4.6.38)

where

f̃ = ∂lf +
n∑

j,k=1

∂j
[(
∂la

jk
)
∂ku
]
.

Now f̃ ∈ L2(B3R/2(x0)). As a matter of fact

∫
B3R/2(x0)

∣∣∣f̃ ∣∣∣2 dx ≤
≤ 2

∫
B3R/2(x0)

|∂lf |2 dx+ cE2
1d
−4
0

∫
B3R/2(x0)

∣∣∂2u
∣∣2 dx+

+ cE2
1d
−2
0

∫
B3R/2(x0)

|∇u|2 dx.

(4.6.39)

By the latter, by Theorem 4.6.1 (more precisely, by (4.6.29)) and by
(4.6.38), we obtain
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R4
∑
|α|=3

∫
BR(x0)

|∂αu|2 dx ≤ C
(
1 + E2

1

) ∑
|α|=2

∫
B3R/2(x0)

|∂αu|2 dx+

+ CR4

∫
B3R/2(x0)

∣∣∣f̃ ∣∣∣2 dx. (4.6.40)

At this point, we again apply (4.6.29) to estimate from above the derivatives
of order less than or equal to 2 we obtain (4.6.35). �

Exercise 4. Generalize Theorem 4.6.2 to the equation

−
n∑

j,k=1

∂j
(
ajk∂ku+ dju

)
+

n∑
j,k=1

bj∂ju+ cu = f

whereA and f satisfy the same assumption of Theorem 4.6.2, d, b ∈ Cm−1,1
(
Ω;Rn

)
,

c ∈ Cm−1,1
(
Ω
)
, m ≥ 1. ♣

Corollary 4.6.3 (C∞ regularity in the interior). Let Ω an open set of
Rn. Let

f ∈ C∞(Ω).

Let A ∈ C∞(Ω;M(n)). Let us assume that A satisfies (4.1.1).
Let u ∈ H1(Ω) be a solution to

−div(A∇u) = f, in Ω.

Then we have
u ∈ C∞(Ω).

Proof. Let BR(x0) b Ω. For any m ≥ 0, we have f ∈ Hm(BR(x0)) and
A ∈ Cm,1(BR(x0);M(n)). Therefore Theorem 4.6.2 implies

u ∈
∞⋂
m=0

Hm(BR(x0)) = C∞(BR(x0)),

Where the last equality is due to Theorem 3.7.10. Since BR(x0) is arbitrary,
the thesis follows. �

Exercise 5. Prove Corollary 4.6.3 for the equation

−
n∑

j,k=1

∂j
(
ajk∂ku+ dju

)
+

n∑
j=1

bj∂ju+ cu = f

whereA satisfies the same assumption of Corollary 4.6.3 and d, b ∈ C∞ (Ω;Rn),
c ∈ C∞ (Ω). ♣
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4.6.2 Regularity teorems at the boundary–global regu-
larity

In this Section we will study the regularity at the boundary. The following
Lemma is a crucial step in the proof of the forthcoming theorems

Lemma 4.6.4 (local regularity at the boundary). Let R > 0 and

f ∈ L2
(
B+

2R

)
(4.6.41)

and let A be a symmetric matrix. Let us assume that A satisfies (4.1.1),
A ∈ C0,1(Ω;M(n)) and it satisfies

|A(x)− A(x)| ≤ E|x− x|, ∀x, x ∈ B+
2R, (4.6.42)

where E is a positive number. Let us assume that u ∈ H1
(
B+

2R

)
satisfies

− div(A∇u) = f, in B+
2R (4.6.43)

and
u(·, 0) = 0, in the sense of the traces in B′2R. (4.6.44)

Then we have
u ∈ H2

(
B+
R

)
(4.6.45)

and the following estimate holds true∑
|α|≤2

R2|α|
∫
B+
R

|∂αu|2 dx ≤ C
(
1 + E2R2

) ∫
B+

2R

u2dx+

+ CR4

∫
B+

2R

f 2dx,

(4.6.46)

where C depends on λ only.

Proof. Let η ∈ C∞0 (B3R/2) satisfy

0 ≤ η ≤ 1; η = 1, in BR (4.6.47)

and
|∇η| ≤ K

R
, (4.6.48)

where K is a positive constant. Let h ∈
(
−R

8
, R

8

)
\ {0} and let

k ∈ { 1, · · · , n− 1}.
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Let us denote

v = −δ−hk
(
η2δhku

)
. (4.6.49)

By (4.6.44), taking into account that η ∈ C∞0
(
B3R/2

)
, we have

v ∈ H1
0

(
B+

2R

)
.

Therefore, by u ∈ H1
(
B+

2R

)
, by (4.6.41), (4.6.43) and by (4.6.44), we get∫

B+
2R

A∇u · ∇vdx =

∫
B+

2R

fvdx. (4.6.50)

At this point we may argue likewise in the proof of Theorem 4.6.1. Actually,
by using Theorem 3.10.3 instead of 3.10.2 we have

λ−1

2

∫
B+

2R

∣∣δhk∇u∣∣2η2dx ≤ −
∫
B+

2R

fδ−hk
(
η2δhku

)
dx+

+ C
(
R−2 + E2

) ∫
B+

3R/2

(∣∣δhku∣∣2 + |∇u|2
)
dx,

(4.6.51)

for any k ∈ {1, · · · , n− 1}, where C depends on λ and n only. Let σ > 0 to
be choosen, we get (compare with (4.6.28))∣∣∣∣∣

∫
B+

2R

fδ−hk
(
η2δhku

)
dx

∣∣∣∣∣ ≤ 1

2σ

∫
B+

2R

f 2dx+

+ Cσ

(
R−2

∫
B+

3R/2

∣∣δhku∣∣2 dx+

+

∫
B+

2R

η2
∣∣∇δhku∣∣2 dx

)
.

(4.6.52)

By applying Theorem 3.10.3 and inequality (4.5.12), we get

R−2

∫
B+

3R/2

∣∣δhku∣∣2 dx ≤ R−2

∫
B+

7R/4

|∇u|2 dx ≤

≤ CR−4

∫
B+

2R

u2dx+ C

∫
B+

2R

f 2dx.

By the latter and by (4.6.52) we have
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∣∣∣∣∫
Ω

fδ−hk
(
η2δhku

)
dx

∣∣∣∣ ≤ 1

2σ

∫
B2R

f 2dx+

+ C?σ

(
R−4

∫
B2R

u2dx+

∫
Ω

η2
∣∣∇δhku, ∣∣2 dx) ,

where C? depends on λ and and n only. By using in (4.6.51) the just obtained
inequality, we obtain(

λ−1

2
− C?σ

)∫
B+

2R

∣∣δhk∇u∣∣2 η2dx ≤ 1

2σ

∫
B+

2R

f 2dx+

+
C (1 + σ + E2R2)

R4

∫
B+

2R

u2dx.

Now let us choose

σ =
λ−1

4C∗

and we get, for k = 1, · · · , n− 1,∫
B+
R

∣∣δhk∇u∣∣2 η2dx ≤ C

∫
B+

2R

f 2dx+
C (1 + E2R2)

R4

∫
B+

2R

u2dx.

By this inequality and by Theorem 3.10.3–(ii) we get

∂ku ∈ H1
(
B+
R

)
, for k = 1, · · · , n− 1

and applying again (4.5.12) we have

n∑
k,j=1
k+j<2n

∫
B+
R

∣∣∂2
jku
∣∣2 dx ≤ C (1 + E2R2)

R4

∫
B+

2R

u2dx+ CR4

∫
B+

2R

f 2dx, (4.6.53)

where C depends on λ n only.
Now, Theorem 4.6.1 implies that u ∈ H2

loc

(
B+
R

)
, this allows us to write

the equation (4.6.42) in the form

n∑
k,j=1

ajk∂2
jku+

n∑
k,j=1

∂ja
jk∂ku = −f, a.e. in B+

R .
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By the last equality we can find (taking into account that ann ≥ λ−1 > 0)

∂2
nu = − 1

ann

 n∑
k,j=1
k+j<2n

ajk∂2
jku+

n∑
k,j=1

∂ja
jk∂ku+ f

 . (4.6.54)

By (4.6.54), (4.6.53), (4.6.42) we have ∂2
nu ∈ H2

(
B+
R

)
. Finally, by (4.5.12)

we obtain (4.6.46). �

Theorem 4.6.5 (global regularity). Let Ω be a bounded open set of Rn

whose boundary is of class C1,1 with constants M0, r0. Let

f ∈ L2(Ω) (4.6.55)

and let A be a symmetric matrix. Let us assume that A satisfies (4.1.1),
A ∈ C0,1(Ω;M(n)) and it satisfies

|A(x)− A(x)| ≤ E|x− x|, ∀x, x ∈ Ω, (4.6.56)

where E is a positive number. Let us suppose that u ∈ H1
0 (Ω) is the solution

to

− div(A∇u) = f, in Ω. (4.6.57)

Then we have
u ∈ H2(Ω), (4.6.58)

and the following estimate holds true∑
|α|≤2

r
2|α|
0

∫
Ω

|∂αu|2 dx ≤ Cd4
0

∫
Ω

f 2dx, (4.6.59)

where d0 is the diameter of Ω and C depends by λ,E,M0 and d0

r0
only.

Proof. Let P ∈ ∂Ω. There exists a rigid transformation of coordinates
under which we have P = 0 and

Ω ∩Qr0,2M0 = {x ∈ Qr0,2M0 : xn > g(x′)} ,

where g ∈ C1,1
(
B′r0
)
,

g(0) = 0, |∇x′g(0)| = 0

and
‖g‖C1,1(B′r0) ≤M0r0.
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Let us consider the change of coordinates

Φ : Qr0,2M0 → Rn, Φ(x) = (x′, xn − g(x′)) .

Let us note that Φ "flattens the boundary" i.e.

Qr0,2M0 ∩ Φ (∂Ω) =
{

(y′, 0) : y′ ∈ B′r0
}
.

Φ ∈ C1,1 (Qr0,2M0 ∩ Ω) is injiective and it is a local diffeomorphism. Let

W = Qr0,2M0 ∩ Φ (Ω)

and

Ψ : W → Qr0,2M0 ∩ Ω, Ψ = Φ−1.

Let J be the jacobian matrix of Ψ. Then

det J(y) = 1, ∀y ∈ W.
Let u ∈ H1

0 (Ω) be the weak solutions to (4.6.57). Let ṽ be any function
belonging to H1

0 (W ) and set

v(x) = ṽ (Ψ(x)) .

We have ∫
Qr0,2M0

∩Ω

A∇u · ∇vdx =

∫
Qr0,2M0

∩Ω

fvdx. (4.6.60)

By the change of variables x = Ψ(y) equation (4.6.60) becomes∫
W

Ã(y)∇w(y) · ∇ṽ(y)dy =

∫
W

f̃(y)ṽ(y)dy, (4.6.61)

where

w(y) = u(Ψ(y)), ∀y ∈ W,

Ã(y) = (J(y))−1A(Ψ(y))
(
(J(y))−1

)t
, ∀y ∈ W

and
f̃(y) = f(Ψ(y)), ∀y ∈ W.

It is easy to check that

λ̃−1|ξ|2 ≤ Ã(y)ξ · ξ ≤ λ̃|ξ|2, ∀y ∈ W, ∀ξ ∈ Rn,
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Figure 4.1:

where λ̃ ≥ 1 depends on λ and M0 only. Moreover

w (y′, 0) = 0, y′ ∈ B′r0 in the sense of the traces.

Also we have Ã ∈ C0,1 (W ) and∣∣∣Ã(y)− Ã (y)
∣∣∣ ≤ Ẽ |y − y| , ∀y, y ∈ W,

where
Ẽ = C

(
E +M0r

−1
0

)
,

and C depends on λ and M0 only.
At this stage (compare Fig. 4.1) we introduce the quantity

r1 =
r0

2
min{1,M0}

in such a way that we have
B+

2r1
⊂ W.



4.6. The regularity theorems 263

Applying Lemma 4.6.4 we get

∑
|α|≤2

r
2|α|
1

∫
B+
r1

|∂αw|2 dy ≤ C
(

1 + Ẽ2r2
1

)∫
B2r1

w2dy+

+ Cr4
1

∫
B+

2r1

f̃ 2dy,

(4.6.62)

where C depends on λ̃ only. Coming back to the original variables, after
some calculation and simple estimates, we have

∑
|α|≤2

r
2|α|
0

∫
Ψ(B+

r1)
|∂αu|2 dx ≤ C

(∫
Ω

u2dx+ r4
0

∫
Ω

f 2dx

)
, (4.6.63)

where C depends on λ,M0 and Er0 only. On the other hand, as is easily
checked, there is C ≥ 1, C depending on λ andM0 only, such that, if r2 = r0

C
,

we have

Ω ∩Br2(P ) ⊂ Ψ
(
B+
r1

)
.

Therefore by (4.6.63) we get trivially

∑
|α|≤2

r
2|α|
0

∫
Ω∩Br2 (P )

|∂αu|2 dx ≤ C

(∫
Ω

u2dx+ r4
0

∫
Ω

f 2dx

)
. (4.6.64)

Now, by the compactness of ∂Ω, we can extract a finite covering by {Br2(P )}P∈∂Ω.
Let {Br2(Pj)}1≤j≤N , such a finite covering, where Pj ∈ ∂Ω, and let

Λ = Ω ∩
N⋃
j=1

Br2(Pj) e Ω′ = Ω \ Λ.

We can make dist(Ω′, ∂Ω) ≥ r0/C, where C ≥ 1 depends on M0 only, fur-
thermore N depends on M0 and d0

r0
only. Inequality (4.6.64) implies that

there is a constant C depending on λ,E,M0 and d0

r0
so that

∑
|α|≤2

r
2|α|
0

∫
Λ

|∂αu|2 dx ≤ C

(∫
Ω

u2dx+ r4
0

∫
Ω

f 2dx

)
.

By the just obtained inequality and by (4.6.30) we have
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∑
|α|≤2

r
2|α|
0

∫
Ω

|∂αu|2 dx ≤ C

(∫
Ω

u2dx+ d4
0

∫
Ω

f 2dx

)
, (4.6.65)

By the first Poincaré inequality (Proposition (3.4.2)) and by inequality (4.3.6),
we find ∫

Ω

u2dx ≤ Cd4
0

∫
Ω

f 2dx,

where C depends on λ only. By the last obtained inequality and by (4.6.65)
we get (4.6.58). �

Exercise 1. (a) Generalize Theorem 4.6.5 to the boundary value problem
−
∑n

j,k=1 ∂j
(
ajk∂ku+ dju

)
+
∑n

j=1 b
j∂ju+ cu = f, in Ω

u = 0, su ∂Ω.

where A =
{
ajk
}n
j,k=1

and f satisfy the same assumptions of Theorem 4.6.1
and d, b ∈ L∞(Ω;Rn), c ∈ L∞(Ω).

(b) Generalize the result obtained in (a) to the case where A is not a
symmetric matrix. ♣

Theorem 4.6.6 (improved global regularity). Let Ω be a bounded open
set of Rn of class Cm+1,1 with constants M0, r0, let d0 be the diameter of Ω.
Let

f ∈ Hm(Ω) (4.6.66)

and let A be a a symmetric matrix. Let us assume that A satisfies (4.1.1),
A ∈ Cm,1(Ω;M(n)) and it satisfies

‖A‖Cm,1(Ω;M(n)) ≤ Em,

where Em is a positive number.
Let us suppose that u ∈ H1

0 (Ω) is the solution to

− div(A∇u) = f, in Ω. (4.6.67)

Then we have
u ∈ Hm+2(Ω), (4.6.68)
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and the following estimate holds true∑
|α|≤m+2

r
2|α|
0

∫
Ω

|∂αu|2 dx ≤ C
∑
|α|≤m

d
2(|α|+4)
0

∫
Ω

|∂αf |2 dx, (4.6.69)

where C depends on λ,Em,M0 and d0

r0
only.

Proof. The proof is mostly similar to that of Theorem 4.6.2, so we focus
here by considering, in the case m = 1, the steps in which the new proof
differs from the proof of Theorem 4.6.2, leaving the details to the care of the
reader. First of all, in analogy to Lemma 4.6.4, let us consider the following
special situation. Let R > 0 and

f ∈ H1
(
B+

2R

)
.

Let A be a symmetric matrix whose entries are measurable functions in B+
2R.

Let us suppose that A satisfies (4.1.1) and that A ∈ C1,1 (B2R,M(n)). Let
us suppose that u ∈ H1

(
B+

2R

)
is a solution to

−div(A∇u) = f, in B+
2R,

and
u(·, 0) = 0, in B′2R, (in the sense of the traces) . (4.6.70)

Let us prove that
u ∈ H3

(
B+
r

)
, ∀r < R. (4.6.71)

To this purpose, let us prove

Claim. Let l = 1, · · · , n− 1. We have, for every r ∈ (0, 2R),

∂lu(·, 0) = 0, in B′r, (in the sense of the traces). (4.6.72)

Proof of the Claim. First let us note that, since u ∈ H2 (B+
r ), for every

r < R, ∂lu(x′, 0) is well–defined in the sense of traces. Now, let

v = ∂lu

and let us denote by T (v) the trace of v on {xn = 0}. As a consequence of
Theorem 3.5.1, T (v) is characterised by the identity.

−
∫
B′R

Φn(x′, 0)T (v)dx′ =

∫
B+
R

vdivΦdx+

∫
B+
R

∇v · Φdx, (4.6.73)
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for every Φ ∈ C∞0 (BR;Rn).
Let now Φ be any function belonging to C∞0 (BR;Rn). By (4.6.71) and

by Theorem 3.5.1 (applied to u), we get

∫
B+
R

v(divΦ)dx =

∫
B+
R

∂lu(divΦ)dx = −
∫
B+
R

u(∂ldivΦ)dx =

= −
∫
B+
R

u(div∂lΦ)dx =

=

∫
B+
R

∇u · ∂lΦdx+

∫
B′R

∂lΦn(x′, 0)T (u)dx′ =

=

∫
B+
R

∇u · ∂lΦdx = −
∫
B+
R

∂l∇u · Φdx =

= −
∫
B+
R

∇v · Φ.

Hence, (4.6.73) implies

T (v) = 0, in B′r, ∀r ∈ (0, 2R).

Claim is proved.

We now briefly and only formally show the most significant steps to com-
plete the proof; we encourage the reader to treat the steps in a rigorous
manner using appropriately the variational formulation in a similar way as
we did in the proof of Theorem (4.6.2).

By calculating the derivative w.r.t. xl, l ∈ {1, · · · , n − 1}, of both the
sides of the equation

−
n∑

j,k=1

∂j
(
ajk∂ku

)
= f, (4.6.74)

we obtain

−
n∑

j,k=1

∂j
(
ajk∂kv

)
= f̃ , (4.6.75)

where v = ∂lu and

f̃ = ∂lf +
n∑

j,k=1

∂j
(
(∂la

jk)∂ku
)
.
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Now, as f ∈ H1
(
B+

2R

)
, ajk ∈ C1,1

(
B+

2R

)
, u ∈ H2 (B+

r ) for every r ∈ (0, 2R),
we get

f̃ ∈ L2
(
B+
r

)
, ∀r ∈ (0, 2R).

on the other hand, for every r ∈ (0, 2R), we have v ∈ H1 (B+
r ) and

v(·, 0) = 0, in x′ ∈ B′r, (in the sense of the traces) .

Therefore by Lemma 4.6.4 we have

∂lu = v ∈ H2
(
B+
r

)
, ∀r ∈ (0, 2R), (4.6.76)

for l ∈ {1, · · · , n− 1}. Moreover by (4.6.75) we get (likewise to (4.6.54))

∂3
nu = ∂n

− 1

ann

 n∑
k,j=1
k+j<2n

ajk∂2
jku+

n∑
k,j

∂ja
jk∂ku+ f


 , (4.6.77)

from which, taking into account (4.6.76), we get

u ∈ H3
(
B+
r

)
, ∀r ∈ (0, 2R).

Finally, inequality (4.6.69) (for m = 1) is obtained applying inequality
(4.6.46) to (4.6.75). In addition, inequality (4.6.46) gives the estimates

R6

n∑
k,j,l=1
k+j+l<3n

∥∥∂3
jklu
∥∥2

L2(B+
R)
≤ C

(
1 + E2

1

) ∫
B2R

u2dx+

+ C
∑
|α|≤1

R2|α|+4

∫
B+

2R

|∂α|2 dx.

By the last inequality, by means of (4.6.77) (applying again inequality (4.6.46)
to equation (4.6.74)), we obtain (4.6.69) (for m = 1).

In order to complete the proof, simply follow the proof of Theorem 4.6.5
taking into account that diffeomorphisms Φ e Ψ are, in this case, of class C2,1

(Cm+1,1 in the general case). �

Corollary 4.6.7 (C∞ global regularity). Let Ω be a bounded open set of
Rn with boundary of class C∞. Let

f ∈ C∞(Ω).
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Let A ∈ C∞(Ω;M(n)). Let us assume that A satisfies (4.1.1).
Let us assume that u ∈ H1

0 (Ω) is a solution to

−div(A∇u) = f, in Ω

Then we have
u ∈ C∞(Ω).

Proof. By Theorem 4.6.6 and by the Embedding Theorem 3.7.10 we
have

u ∈
∞⋂
m=0

Hm(Ω) = C∞(Ω).

�

4.7 The Dirichlet to Neumann Map
Denote by MS(n) the vector space of symmetric matrix n× with real entries.
Let Ω be a bounded open set of Rn of class C0,1. Let A ∈ L∞(Ω;MS(n)) and
let us suppose that (4.1.1) holds. Formally, the Dirichlet to Neumann Map
can be constructed in the following way: let ϕ ∈ H1/2(∂Ω) and let u ∈ H1(Ω)
be the solution to the problem

div(A∇u) = 0, in Ω,

u = ϕ, on ∂Ω.

(4.7.1)

We have seen that u is uniquely determined by ϕ hence, if it would make
sense, we could define the map

ϕ→ A∇u · ν, (conormal derivative of u on ∂Ω). (4.7.2)

Let us observe that if u ∈ C2(Ω) and A ∈ C1
(
Ω;MS(n)

)
, by (4.7.1) we have∫

∂Ω

(A∇u · ν)vdS =

∫
Ω

A∇u · ∇vdx, ∀v ∈ C1(Ω). (4.7.3)

As a matter of fact, if v ∈ C1(Ω), by the divergence Theorem and by (4.7.1)
we get

∫
Ω

A∇u · ∇vdx =

∫
Ω

(div(vA∇u)− div(A∇u)v) dx =

∫
∂Ω

(A∇u · ν)vdS.
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Equality (4.7.3) allows us to "read" A∂u
∂ν

by means integral on the right–hand
side. Now, if A ∈ L∞(Ω;MS(n)) and u ∈ H1(Ω) then the integral on the
right–hand side of (4.7.3) makes perfectly sense. Based on these insights we
will define below A∇u · ν as an element of H−1/2(∂Ω) (the dual space of
H1/2(∂Ω)).

First, notice that∫
Ω

A∇u · ∇vdx = 0, ∀v ∈ H1
0 (Ω). (4.7.4)

As a matter of fact, recalling (4.3.11) and (4.3.12), we have, for each
v ∈ H1

0 (Ω),∫
Ω

A∇u · ∇vdx =

∫
Ω

{A∇Φ · ∇v + A∇w · ∇v}dx = 0.

By (4.7.4), recalling Theorem 3.5.1, we have that if ϕ ∈ H1(Ω) then the
integral ∫

Ω

A∇u · ∇vdx (4.7.5)

depends only by the trace of v on ∂Ω. As a matter of fact, if v1, v2 ∈ H1(Ω)
have the same trace on ∂Ω then v1 − v2 ∈ H1

0 (Ω). Hence (4.7.4) implies∫
Ω

A∇u · ∇v1dx =

∫
Ω

A∇u · ∇v2dx.

Therefore, for every ϕ ∈ H1/2(∂Ω) it turns out to be well–defined the func-
tional

Lϕ : H1/2(∂Ω)→ R,

which maps φ ∈ H1/2(∂Ω) in the real number

Lϕ(φ) =

∫
Ω

A∇u · ∇vdx,

where v|∂Ω = φ (in the sense of traces).

We prove that Lϕ is a linear and bounded functional.

The linearity of Lϕ is trivial. Concerning the boundedness, let

φ ∈ H1/2(∂Ω),
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by Theorem 3.12.12 we know that there exists v ∈ H1(Ω) so that

v|∂Ω = φ, (in the sense of traces)

which satisfies

‖v‖H1(Ω) ≤ C ‖φ‖H1/2(∂Ω) , (4.7.6)

where C is a constant depending on Ω only. Proceeding in a similar way to
what we did to obtain (4.3.13) and taking into account (4.3.15), we get

|Lϕ(φ)| =
∣∣∣∣∫

Ω

A∇u · ∇vdx
∣∣∣∣ ≤ λ ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) ≤

≤ C ‖ϕ‖H1/2(∂Ω) ‖φ‖H1/2(∂Ω) ,

(4.7.7)

where C is a constant depending on Ω and λ only. Therefore, the functional
Lϕ is bounded and it satisfies

‖Lϕ‖H−1/2(∂Ω) ≤ C ‖ϕ‖H1/2(∂Ω) , ∀ϕ ∈ H1/2(∂Ω). (4.7.8)

Moreover, notice that (4.7.8) implies that the linear operator

H1/2(∂Ω) 3 ϕ→ Lϕ ∈ H−1/2(∂Ω),

is bounded.
Now we set

A∇u · ν := Lϕ

consequently, we write, for any v ∈ H1(Ω) such that v|∂Ω = φ,

〈A∇u · ν, φ〉H−1/2,H1/2 = Lϕ(φ) =

∫
Ω

A∇u · ∇vdx, (4.7.9)

where, by 〈·, ·〉H−1/2,H1/2 we denote the scalar product in the duality. With
the notations used so far we should have written (A∇u · ν)(φ) instead of
〈A∇u · ν, φ〉H−1/2,H1/2 , but the latter notation it is certainly more handleable
in the present context. .

Finally, we define the Dirichlet to Neumann Map as

ΛA : H1/2(∂Ω)→ H−1/2(∂Ω), ΛA(ϕ) = A∇u · ν. (4.7.10)

By (4.7.8) it follows that ΛA ∈ L
(
H1/2(∂Ω), H−1/2(∂Ω)

)
, where, we recall,

L
(
H1/2(∂Ω), H−1/2(∂Ω)

)
denotes the space of the linear and bounded op-

erators from H1/2(∂Ω) to H−1/2(∂Ω). From the that construction we have
performed so far we get
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〈ΛA(ϕ), φ〉H−1/2,H1/2 =

∫
Ω

A∇u · ∇vdx, ∀ϕ, φ ∈ H1/2(∂Ω), (4.7.11)

where u ∈ H1(Ω) is the solution to (4.7.1) and v is any function of H1(Ω)
which satisfies v|∂Ω = φ. It is simple to check that

‖ΛA‖L(H1/2,H−1/2) =

= sup
{
〈ΛA(ϕ), φ〉H−1/2,H1/2 : ‖ϕ‖H1/2(∂Ω) ≤ 1, ‖φ‖H1/2(∂Ω) ≤ 1

}
.

In what follows we prove other simple but important properties of ΛA.

We first observe that since the right-hand integral in (4.7.11) is indepen-
dent of the choice of v (as long as it is a trace of φ) we can choose v = w
where w ∈ H1(Ω) is the solution of the Dirichlet problem

div(A∇w) = 0, in Ω,

w = φ, on ∂Ω.

(4.7.12)

From this it follows that the bilinear form

H1/2(∂Ω)×H1/2(∂Ω) 3 (ϕ, φ)→ 〈ΛA(ϕ), φ〉H−1/2,H1/2 ∈ R

is symmetric that is

〈ΛA(ϕ), φ〉H−1/2,H1/2 = 〈ΛA(φ), ϕ〉H−1/2,H1/2 , ∀ϕ, φ ∈ H1/2(∂Ω). (4.7.13)

As a matter of fact

〈ΛA(ϕ), φ〉H−1/2,H1/2 =

∫
Ω

A∇u · ∇wdx =

=

∫
Ω

A∇w · ∇udx =

= 〈ΛA(φ), ϕ〉H−1/2,H1/2 .

An important consequence of (4.7.13) is the following identity
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Theorem 4.7.1 (the Alessandrini identity). Let A1, A2 ∈ L∞(Ω;MS(n)).
Let us assume that A1, A2 satisfy (4.1.1). Let ϕ, φ ∈ H1/2(∂Ω) and let
u1, u2 ∈ H1(Ω) be the solutions to

div(A∇u1) = 0, in Ω,

u1 = ϕ, on ∂Ω

(4.7.14)

and 
div(A∇u2) = 0, in Ω,

u2 = φ, on ∂Ω,

(4.7.15)

then

〈(ΛA1 − ΛA2)(ϕ), φ〉H−1/2,H1/2 =

∫
Ω

(A1 − A2)∇u1 · ∇u2dx. (4.7.16)

Proof. By (4.7.13) we have (by setting for sake of brevity, 〈·, ·〉 =
〈·, ·〉H−1/2,H1/2)

〈(ΛA1 − ΛA2)(ϕ), φ〉 = 〈ΛA1(ϕ), φ〉 − 〈ΛA2(ϕ), φ〉 =

= 〈ΛA1(ϕ), φ〉 − 〈ΛA2(φ), ϕ〉.
(4.7.17)

Now, by (4.7.14) and (4.7.15) we have, respectively,

〈ΛA1(ϕ), φ〉 =

∫
Ω

A1∇u1 · ∇u2dx

and

〈ΛA2(φ), ϕ〉 =

∫
Ω

A2∇u2 · ∇u1dx =

∫
Ω

A2∇u1 · ∇u2

by inserting the latter in (4.7.17) we get

〈(ΛA1 − ΛA2)(ϕ), φ〉 =

∫
Ω

(A1 − A2)∇u1 · ∇u2dx.

�

A simple consequence of the Alessandrini identity is the continuity of the
map A→ ΛA. Precisely we have the following



4.7. The Dirichlet to Neumann Map 273

Proposition 4.7.2. There exists a constant C dpending on λ and Ω only so
that, if A1, A2 ∈ L∞(Ω;MS(n)) satisfy (4.1.1), then

‖ΛA1 − ΛA2‖L(H1/2,H−1/2) ≤ C ‖A1 − A2‖L∞(Ω,MS(n)) . (4.7.18)

Proof. By the Alessandrini identity and by the Cauchy–Schwarz inequal-
ity we have

∣∣〈(ΛA1 − ΛA2)(ϕ), φ〉H−1/2,H1/2

∣∣ =

∣∣∣∣∫
Ω

(A1 − A2)∇u1 · ∇u2dx

∣∣∣∣ ≤
≤ ‖A1 − A2‖L∞(Ω;MS(n))) ‖∇u1‖L2(Ω) ‖∇u2‖L2(Ω) .

(4.7.19)

Now, (4.3.15) gives

‖∇u1‖L2(Ω) ≤ C ‖ϕ‖H1/2(∂Ω) and ‖∇u2‖L2(Ω) ≤ C ‖φ‖H1/2(∂Ω) ,

where C depends on λ and Ω only. Inserting the last obtained inequalities
in (4.7.19) we have∣∣〈(ΛA1 − ΛA2)(ϕ), φ〉H−1/2,H1/2

∣∣ ≤
≤ C ‖A1 − A2‖L∞(Ω;MS(n)) ‖ϕ‖H1/2(∂Ω) ‖φ‖H1/2(∂Ω)

From which (4.7.18) follows. �

Similarly, one can also define the Neumann to Dirichlet Map. Let
g ∈ H−1/2(∂Ω) satisfy

〈g, 1〉 = 0.

Let us consider the solution u ∈ H1(Ω) to the Neumann problem


∫

Ω
A∇u · ∇vdx = 〈g, ϕ〉H−1/2,H1/2 , ∀v ∈ H1(Ω),

u ∈
{
w ∈ H1(Ω) :

∫
Ω
wdx = 0

}
,

(4.7.20)

we define the Neumann to Dirichlet Map as follows

NA : H−1/2(∂Ω)→ H1/2(∂Ω),

NA(g) = u|∂Ω, (in the sense of the traces).
(4.7.21)
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4.8 The inclusion inverse problem
Let n = 2 or n = 3 and let us assume that Ω represents an electrically
conductor of constant conductivity, say, 1 and let us suppose that Ω contains
an inclusion D of different conductivity, say k, with k > 0 and k 6= 1. We
consider the problem of determining D from the knowledge of a density of
prescribed current on ∂Ω and of the corresponding voltage u measured on
∂Ω.

We provide a mathematical formulation of the problem. Let us assume
that Ω is a bounded open set of Rn (n = 2, 3) whose boundary is of class
C0,1, let φ ∈ H−1/2(∂Ω) satisfy ∫

∂Ω

φdS = 0, (4.8.1)

Where we have denoted ∫
∂Ω

φdS = 〈φ, 1〉H−1/2,H1/2 .

φ represents the density of prescribed current on ∂Ω. If the inclusion is
present, the electrostatic potenzial u is determined, up to an additive con-
stant, as a solution of Neumann problem

div ((1 + (k − 1)χD)∇u) = 0, in Ω,

∂u
∂ν

= φ, on ∂Ω,

(4.8.2)

where D is a measurable subset of Ω. In what follows we assume∫
Ω

u(x)dx = 0, (4.8.3)

which yields with the uniqueness of the boundary value problem (4.8.2).
The inverse problem consists in determining D, by assigning a non-

trivial input φ and measuring the corresponding trace u|∂Ω. The uniqueness
of D is still an open question. We point out that if we dispose of the entire
Neumann to Dirichlet Map (or the Dirichlet to Neumann Map), and ∂D is
enough regular, the uniqueness can be proved (see [39]). Keep in mind that
having the entire Dirichlet to Neumann Map is equivalent to being able to
make infinite measurements on ∂Ω. However, the ideas (developed detailed
in [3]) that we will present here allow us to find size estimates (of volume
or area) of the inclusion from certain integrals of the data, φ and u|∂Ω as
we show below.
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Let us consider the quantity

W =

∫
∂Ω

φu, (4.8.4)

and compare it with

W0 =

∫
∂Ω

φu0, (4.8.5)

where u0 represents the solution to the Neumann problem
∆u0 = 0, in Ω,

∂u0

∂ν
= φ, on ∂Ω,

(4.8.6)

with ∫
Ω

u0 = 0.

W and W0 represent the power required to maintain the current φ, when
the inclusion D is present and it is not present, respectively. Partially an-
ticipating the results that we will prove later in this Section, we have
that if k 6= 1, k > 0, then the following inequality holds true

C1

∫
D

|∇u0|2 ≤ |W0 −W | ≤ C2

∫
D

|∇u0|2 , (4.8.7)

where C1 and C2 are positive constants depending on k only. Let us assume,
for instance+, that D is a connected open set. Inequalities (4.8.7) implies
that if φ 6= 0 then |D| is 0 if and only ifW0−W = 0. Let us prove this claim.
If |D| = 0 then by the second inequality we immediately have W0 −W = 0.
Conversely, if W0−W = 0, then by the first inequality we have that if D 6= ∅
then

u0 = constant in D.

Since u0 is an analytic function, we have

u0 = constant in Ω,

consequently φ = 0, but we have assumed φ 6= 0, therefore D = ∅.

Inequalities (4.8.7) can be proved as a consequence of general properties
of the continuous symmetric coercive bilinear forms on a Hilbert space.

Introduce some notation. Let H be a real Hilbert space and H ′ its dual
space.
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Let λ0, λ1 ∈ [1,+∞) and let a0(·, ·) and a1(·, ·) two symmetric bilinear
forms on H which satisfy the conditions

λ−1
0 ‖u‖2 ≤ a0(u, u) ≤ λ0‖u‖2, ∀u ∈ H, (4.8.8a)

λ−1
1 ‖u‖2 ≤ a1(u, u) ≤ λ1‖u‖2, ∀u ∈ H. (4.8.8b)

Let us note that (4.8.8a) and (4.8.8b) imply, respectively, the continuity of
a0 and of a1. Just check this for a0(·, ·). We have that (4.8.8a) implies

|a0(u, v)| ≤
√
a0(u, u)

√
a0(v, v) ≤ λ0‖u‖‖v‖, ∀u, v ∈ H.

Moreover, let

α(u, v) = a1(u, v)− a0(u, v), u, v ∈ H. (4.8.9)

Let F ∈ H ′. By the Lax–Milgram Theorem, there exist u1, u0 ∈ H such
that

aj(uj, v) =< F, v > ∀ v ∈ H, j = 0, 1. (4.8.10)

Define

W0 =< F, u0 >, W1 =< F, u1 >, δW = W0 −W1. (4.8.11)

Now we prove two simple lemmas.

Lemma 4.8.1. The following equalities hold true.

a0(u1 − u0, u1 − u0)− α(u0, u0) = −δW, (4.8.12a)

a0(u0 − u1, u0 − u1) + α(u1, u1) = δW, (4.8.12b)

α(u1, u0) = −δW. (4.8.12c)

Proof. Let us check (4.8.12a).

a0(u1 − u0, u1 − u0)− α(u0, u0) =

= a0(u1 − u0, u1 − u0)− [a1(u0, u0)− a0(u0, u0)] =

= a1(u1, u1)− 2a1(u1, u0) + a1(u0, u0)− a1(u0, u0) + a0(u0, u0) =

= a1(u1, u1)− 2a1(u1, u0) + a0(u0, u0) =

=< F, u1 > −2 < F, u0 > + < F, u0 >=

=< F, u1 − u0 >= −δW.

Equality (4.8.12b) can be obtained similarly and (4.8.12c) is an immediate
consequence of (4.8.9). �



4.8. The inclusion inverse problem 277

Lemma 4.8.2. If one of the following conditions is satisfied

α(u, u) ≥ 0, ∀u ∈ H,

or
α(u, u) ≤ 0, ∀u ∈ H,

then we have

|α(u, v)| ≤ |α(u, u)|1/2|α(v, v)|1/2, ∀u, v ∈ H. (4.8.13)

Proof. Let u, v ∈ H. If α(u, u) = 0 and α(v, v) = 0, then, assuming
α(w,w) ≥ 0, for every w ∈ H, we have

0 ≤ α(u+ tv, u+ tv) = 2tα(u, v), ∀ t ∈ R,

which implies α(u, v) = 0 and (4.8.13) is proved.
If either α(u, u) 6= 0 or α(v, v) 6= 0, then, assuming, for instance, α(v, v) > 0,
we have

0 ≤ α(u+ tv, u+ tv) = t2α(v, v) + 2tα(u, v) + α(u, u), ∀ t ∈ R,

hence
(α(u, v))2 − α(u, u)α(v, v) ≤ 0

which gives (4.8.13).
If α(w,w) ≤ 0, for every w ∈ H, the thesis follows easily by applying the
previous procedure to −α(·, ·). �

Now we prove

Theorem 4.8.3. Let F ∈ H ′. Let us assume that the bilinear forms a0(·, ·)
and a1(·, ·) satisfy conditions (4.8.8) and let us assume that u0, u1 satisfy
(4.8.10). If α(·, ·) (defined by (4.8.9)), satisfies

0 ≤ α(u, u) ≤ C0a0(u, u), ∀u ∈ H, (4.8.14)

where C0 is a positive constant, then

δW ≥ 0

and
δW ≤ α(u0, u0) ≤ (1 + C0)δW. (4.8.15)

If α(·, ·) satisfies the condition

α(u, u) ≤ 0, ∀u ∈ H, (4.8.16)
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then
δW ≤ 0

and
− CδW ≤ −α(u0, u0) ≤ −δW, (4.8.17)

where C is a positive constant depending on λ0 and λ1 only.

Proof. First we consider the case in which (4.8.14) holds. By (4.8.12b)
we have δW ≥ 0 and by (4.8.12a) we have −α(u0, u0) ≤ −δW . Therefore

δW ≤ α(u0, u0). (4.8.18)

Now, let us estimate α(u0, u0) from above. Lemma 4.8.1 – b and Lemma
4.8.2 give

α(u0, u0) = α(u0 − u1, u0 − u1) + α(u1, u1) + 2α(u0 − u1, u1) ≤

≤ α(u0 − u1, u0 − u1) + α(u1, u1) + 2|α(u0 − u1, u0 − u1)|1/2|α(u1, u1)|1/2 ≤

≤ α(u0 − u1, u0 − u1) + α(u1, u1) +
1

C0

α(u0 − u1, u0 − u1) + C0α(u1, u1) =

= (1 + C0)[
1

C0

α(u0 − u1, u0 − u1) + α(u1, u1)] ≤

≤ (1 + C0) max

{
1,

1

C0

}
[a0(u0 − u1, u0 − u1) + α(u1, u1)] ≤

≤ C1δW,

where, in the last inequality we have set

C1 = (1 + C0) max

{
1,

1

C0

}
.

Hence we have
α(u0, u0) ≤ C1δW.

By the just obtained inequality and by (4.8.18) we get (4.8.15).
Now we consider the case in which (4.8.16) holds. By (4.8.12a) we get

δW ≤ 0 and also
|α(u0, u0)| ≤ −δW. (4.8.19)

Now we estimate |α(u0, u0)| from below. By (4.8.12c) we obtain, for ε > 0
to be choosen,

−δW = α(u0, u1) ≤ (−α(u0, u0))1/2 (−α(u1, u1))1/2 ≤

≤ ε

2
(−α(u1, u1)) +

1

2ε
(−α(u0, u0)). (4.8.20)
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By (4.8.12b) we have

− α(u1, u1) = a0(u1 − u0, u1 − u0)− δW. (4.8.21)

Moreover, (4.8.8) gives

a0(u1 − u0, u1 − u0) ≤ λ0 ‖u1 − u0‖2 ≤ λ0λ1a1(u1 − u0, u1 − u0).

By the just obtained inequality and by (4.8.21) we get

−α(u1, u1) ≤ λ0λ1a1(u1 − u0, u1 − u0)− δW.

The last inequality togheter with (4.8.20) and (4.8.12a), give (we denote
A = λ0λ1)

−δW ≤ ε

2
[Aa1(u1 − u0, u1 − u0)− δW ] +

1

2ε
(−α(u0, u0)) =

=
ε

2
[A (a1(u1 − u0, u1 − u0)− α(u0, u0)) + Aα(u0, u0)− δW ] +

+
1

2ε
(−α(u0, u0)) =

= −ε
2

(1 + A)δW +

(
1

2ε
− Aε

2

)
(−α(u0, u0)).

Therefore (
1− ε

2
(1 + A)

)
|δW | ≤ 1− Aε2

2ε
|α(u0, u0)|.

If
ε = min

{
1√
2A

,
1

1 + A

}
we have

2ε
(
1− ε

2
(1 + A)

)
1− Aε2

|δW | ≤ |α(u0, u0)|.

Ultimately, we have
C|δW | ≤ |α(u0, u0)|,

where C depends on λ0, λ1 only. �

Remark 1. If (4.8.14) holds, condition (4.8.8) can be weakened by as-
suming that a0(·, ·), a1(·, ·) are semidefinite positive. In turn, if case (4.8.16)
occurs, it suffices to assume that a0(·, ·), a1(·, ·) are semidefinite positive and
satisfy

a0(u, u) ≤ C1a1(u, u), ∀u ∈ H,



280 Chapter 4. The boundary value problems

where C1 is a positive constant. �

Now we apply Theorem 4.8.3 to inclusion inverse problem. Let

H =

{
v ∈ H1(Ω) :

∫
Ω

vdx = 0

}
,

a1(u, v) =

∫
Ω

(1 + (k − 1)χD)∇u · ∇v, u, v ∈ H,

a0(u, v) =

∫
Ω

∇u · ∇v, u, v ∈ H.

Let us assume that φ ∈ H−1/2(∂Ω) satisfies (4.8.1). Then Neumann
problems (4.8.2), (4.8.6) can be formulated (see Section 4.4 and the proof of
Theorem 4.4.1) as follows

a1(u, v) = 〈g, v〉H−1/2,H1/2 , ∀v ∈ H, (4.8.22)

a0(u, v) = 〈g, v〉H−1/2,H1/2 , ∀v ∈ H. (4.8.23)

Hence, in our case we have

H 3 v → 〈F, v〉 = 〈g, v〉H−1/2,H1/2 ∈ R,

α(u, v) = (1− k)

∫
D

∇u · ∇v, u, v ∈ H,

δW =

∫
∂Ω

φ(u0 − u1),

where u0 e u1 are solutions to (4.8.23) and (4.8.22) respectively.

Case k < 1. In this case, if C0 = 1 then (4.8.14) is satisfied. Hence by
(4.8.15) we have

δW

1− k
≤
∫
D

|∇u0|2 ≤
2δW

1− k
. (4.8.24)

Case k > 1. In this case (4.8.16) holds true. Hence, by (4.8.17) we get

− CδW

k − 1
≤
∫
D

|∇u0|2 ≤ −
δW

k − 1
, (4.8.25)

where C depends on k only. Inequalities (4.8.24) and (4.8.25) imply (4.8.7).



4.8. The inclusion inverse problem 281

Let us observe that estimates (4.8.7) can be used to easily find a size
estimate of D. For instance, if u0 = x1 + c in Ω we have ∇u0 = e1 and then
by (4.8.7) we get.

C−1
2 |W0 −W | ≤ |D| ≤ C−1

1 |W0 −W |. (4.8.26)

Obviously, to assign the value of u0 on Ω is equivalent to assign some stringent
conditions on the "input" current density. In the case in question, φ = e1 · ν
and it is not certain that, in practice, one one can make such a choice. For
this reason it is useful to find the estimates (from above and below) of the
measure of D for a generic nontrivial φ.

In order to examine this issue a little more deeply, let us begin by observ-
ing that to formulate Neumann problem (4.8.2) it is not necessary that D be
an open, but it suffices that D be a Lebesgue measurable set of Rn. If,
for instance we know that

dist(D, ∂Ω) ≥ d > 0

it is not difficult to find an estimate from below of |D| by exploiting the
second inequality in (4.8.7), i.e. the inequality

|δW | ≤ C2

∫
D

|∇u0|2 . (4.8.27)

Let us examine in which manner we can find an estimate from below of
|D|.

We have ∫
D

|∇u0|2 ≤ |D|max
D
|∇u0|2. (4.8.28)

Now, let x0 ∈ D satisfy

|∇u0(x0)| = max
D
|∇u0|. (4.8.29)

By the Mean Property for harmonic functions, we have

∇u0(x0) =
1

|Bd/2(x0)|

∫
Bd/2(x0)

∇u0(x)dx =

=
1

|Bd/2(x0)|

∫
∂Bd/2(x0)

u0(x)νdS,

which implies

|∇u0(x0)| ≤ 2

d
max

∂Bd/2(x0)
|u0|. (4.8.30)
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Now, let us estimate max∂Bd/2(x0) |u0| from above. Let x ∈ ∂Bd/2(x0) fulfill

|u0 (x) | = max
∂Bd/2(x0)

|u0|,

by using again the Mean Property and the Cauchy–Schwarz inequality we
get

|u0(x)| =

∣∣∣∣∣ 1

|Bd/4(x)|

∫
Bd/4(x)

u(y)dy

∣∣∣∣∣ ≤ |Bd/4(x)|1/2

|Bd/4(x)|

(∫
Bd/4(x)

|u(y)|2dy

)1/2

≤

≤ 1

|Bd/4(x)|1/2|
‖u0‖L2(Ω) ≤ C ‖∇u0‖L2(Ω) ,

(4.8.31)
where C depends by Ω and d only; in the last inequality of (4.8.31) we have
applied Theorem 3.9.1. On the other hand, by (4.4.5) we have

‖∇u0‖L2(Ω) ≤ C ‖φ‖H−1/2(∂Ω) .

The just obtained inequality and (4.8.31) yield

max
∂Bd/2(x0)

|u0| = |u0 (x) | ≤ C ‖φ‖H−1/2(∂Ω) .

Now, by this inequality and by (4.8.28)– (4.8.30) we get∫
D

|∇u0|2 ≤ C∗|D| ‖φ‖2
H−1/2(∂Ω) , (4.8.32)

where C∗ is a constant depending on Ω and d only. Finally, by (4.8.27) and
(4.8.32) we have

|δW |
C2C∗ ‖φ‖2

H−1/2(∂Ω)

≤ |D|.

To find an estimate from above of |D| (of course, in terms of δW ) is definitely
more challenging and, as we have already mentioned in the case where D is
an open set, such estimate from above has inevitably to do with the unique
continuation property of solution to the Laplace equation.

When D is only a Lebesgue measurable set, even prove that

δW = 0 =⇒ |D| = 0, (4.8.33)

is not trivial. To present here a proof of (4.8.33) we need the differentiation
Lebesgue Theorem 2.5.1. In particular such a Theorem 2.5.1 implies that if
D is a Lebesgue measurable set, then
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lim
r→0

|D ∩Br(x)|
|Br(x)|

= 1, a.e. x ∈ D. (4.8.34)

Let us set

D̃ =

{
x ∈ D : lim

r→0

|D ∩Br(x)|
|Br(x)|

= 1

}
. (4.8.35)

The following Proposition holds true ([19]).

Proposition 4.8.4. Let Ω be an open set of Rn and let D be a Lebesgue
measurable set such that D ⊂ Ω and |D| > 0. Let u ∈ H1

loc(Ω). Let us
assume that u satisfies the condition

u(x) = 0, ∀x ∈ D. (4.8.36)

Moreover, let us assume that, in a given point x0 ∈ D̃ we have∫
Br(x0)

|∇u|2dx ≤ C

r2

∫
B2r(x0)

u2dx, (4.8.37)

for every r > 0 such that B2r(x0) ⊂ Ω, where C is independent of r.
Then we have∫

Br(x0)

u2dx ≤ O
(
rk
)
, as r → 0, ∀k ∈ N. (4.8.38)

To prove Proposition 4.8.4 we need the following

Lemma 4.8.5. If R > 0 and u ∈ H1 (BR) then

(∫
BR

|u|qdx
) 1

q

≤ Cn,q

|BR|
1
2
− 1
q

(∫
BR

[
R2|∇u|2 + u2

]
dx

) 1
2

, (4.8.39)

where q is an arbitrary number of (1,+∞) for n = 2, and it is equal to 2n
n−2

for n ≥ 3. Moreover, Cn,q depends on q and n only.

Proof of Lemma 4.8.5. Set

v(y) = u(Ry), ∀y ∈ B1,
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it turns out that v ∈ H1 (B1). Now, by the Embedding Sobolev Theorem
(Theorem 3.7.10) and performing the change of variables y = Rx, we get(∫

BR

|u|qdx
) 1

q

=

(
Rn

∫
B1

|u(Ry)|qdy
) 1

q

=

= R
n
q

(∫
B1

|v(y)|qdy
) 1

q

≤

≤ CR
n
q

(∫
B1

[
|∇v|2 + |v|2

]
dy

) 1
2

=

= CR
n
q

(∫
B1

[
R2|(∇u)(Ry)|2 + |u(Ry)|2

]
dy

) 1
2

=

= CR
n
q

(
R−n

∫
BR

[
R2|∇u|2 + |u|2

]
dx

) 1
2

=

=
Cω

1
2
− 1
q

n

|BR|
1
2
− 1
q

(∫
BR

[
R2|∇u|2 + |u|2

]
dx

) 1
2

.

(4.8.40)

�

Proof of Proposition 4.8.4. Let us denote by ρ = dist(x0, ∂Ω). Since
x0 ∈ D̃, we have that for any ε > 0 there exists rε < 2ρ such that

|Br(x0) \D|
|Br(x0)|

< ε, ∀r ∈ (0, rε].

By the above inequality and by Lemma 4.8.5 we have

∫
Br(x0)

u2dx =

∫
Br(x0)\D

u2dx ≤ |Br(x0) \D|1−
2
q

(∫
Br(x0)\D

|u|qdx
) 2

q

≤

≤ |Br(x0) \D|1−
2
q

(∫
Br(x0)

|u|qdx
) 2

q

≤

≤ C

(
|Br(x0) \D|
|Br(x0)|

)1− 2
q
∫
Br(x0)

[
r2|∇u|2 + u2

]
dx ≤

≤ Cε1− 2
q

∫
Br(x0)

[
r2|∇u|2 + u2

]
dx,

where q is an arbitrary number of (1,+∞) for n = 2, and it is equal to 2n
n−2

for n ≥ 3. In addition, C depends on q and n only.
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By the just obtained inequality and by (4.8.37) we get∫
Br(x0)

u2dx ≤ Cε1− 2
q

∫
B2r(x0)

u2dx, r ∈ (0, rε], (4.8.41)

where C is independent on r and ε.
Let k ∈ N be arbitrary and let ε > 0 satisfy

Cε1− 2
q = 2−k.

We further let us denote by rk the value of rε that corresponds to this choice
of ε. Let us intruduce the following function

f(r) =

∫
Br(x0)

u2dx, r ∈ (0, 2rk].

Then (4.8.41) can be written as

f(r) ≤ 2−kf(2r), r ∈ (0, rk]. (4.8.42)

Now, for any 0 < r < rk, let m ∈ N satisfy

2−mrk ≤ r < 21−mrk. (4.8.43)

Iteration of (4.8.42) gives

f(r) ≤ 2−kf(2r) ≤ · · · ≤ 2−kmf (2mr) ≤ 2−kmf (2rk) .

On the other hand (4.8.43) implies

2−m ≤ r

rk
,

hence

f(r) ≤
(
r

rk

)k
f (2rk) ,

which gives (4.8.38). �

Remark 2. By the proof of Proposition 4.8.4 it is clear that assumption
(4.8.37) can be replaced by the assumption that there is p > 2 such that(

−
∫
Br

|u|pdx
)1/p

≤ C

(
−
∫
B2r

|u|2dx
)1/2

. (4.8.44)

See also Section 16.4. �
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Theorem 4.8.6. Let Ω be a connected bounded open set of Rn an let

D ⊂ Ω

be a Lebesgue measurable set of positive measure. Let u be a harmonic func-
tion in Ω which vanishes on D. Then

u ≡ 0. (4.8.45)

Remark 3. As will become clear from the proof, the boundedness as-
sumption of Ω is not essential: we have introduced it solely for the purpose
of easing the proof. We leave the simple extension to the reader.
♠
Proof of Theorem 4.8.6. Since

D =
∞⋃
j=1

(D ∩ Ωj) , (4.8.46)

where
Ωj = {x ∈ Ω : dist(x, ∂Ω) > 1/j} ,

we have
0 < |D| = lim

j→∞
|D ∩ Ωj|,

hence |D ∩ Ωj| > 0 for j large enough, in addition we have D ∩ Ωj ⊂ Ω.
Hence, provided to replace D ∩ Ωj, to D, we may always assume D ⊂ Ω.

Let us apply Proposition 4.8.4. Inequality (4.8.37) is nothing more than
the Caccioppoli inequality proved in Theorem 4.5.1. Hence we have, for
x0 ∈ D̃ (D̃ is defined by (4.8.35)),∫

Br(x0)

u2dx = O
(
rk
)
, as r → 0, ∀k ∈ N. (4.8.47)

Let now x ∈ Ω satisfy |x−x0| < 1
2
dist(x0, ∂Ω). Set r = |x−x0|, by the Mean

Property and by the Cauchy–Schwarz inequality we have

|u(x)| =
∣∣∣∣ 1

|Br(x)|

∫
Br(x)

u(y)dy

∣∣∣∣ ≤ 1

|Br(x)|

∫
Br(x)

|u(y)|dy ≤

≤ 1

|Br(x)|

∫
B2r(x0)

|u(y)|dy ≤ |B2r(x0)|
|Br(x)|

(∫
B2r(x0)

|u(y)|2dy
)1/2

≤

≤ cnr
n/2

(∫
B2r(x0)

|u(y)|2dy
)1/2

,
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where cn depends on n only. From what has just been obtained and from
(4.8.47), recalling that r = |x− x0|, we have

u(x) = O
(
|x− x0|k

)
, as x→ x0, ∀k ∈ N.

Therefore, as u is an analytic function the thesis follows. �
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Chapter 5

The Cauchy problem for the first
order PDEs

5.1 Review of ordinary differential equations

In this Section we give, without proof, some results on ordinary differential
equations that we will need later on. For further discussion we refer to [63].

Let t0 ∈ R, x0 ∈ Rn, x0 = (x0,1, · · · , x0,n), a > 0, b > 0. Set

Q =
{

(t, x) ∈ Rn+1 : |t− t0| ≤ a, |xi − x0,i| ≤ b
}

and let
f : Q→ Rn,

a continuous function in Q which is Lipschitz continuous with respect
to the variable x, that is

|f(t, x)− f(t, y)| ≤ L |x− y| , ∀(t, x), (t, y) ∈ Q. (5.1.1)

Let us consider the following Cauchy problem: determine the function x(t)
differentiable in a neighborhood of t0 and satisfying

·
x(t) = f (t, x(t)) ,

x(t0) = x0,

(5.1.2)

here ·x is the derivative of x w.r.t. t The following Theorem holds true

Theorem 5.1.1. Let f ∈ C0(Q) satisfy (5.1.1). Then there exists δ > 0 and
there exists a unique solution x ∈ C1 ([t0 − δ, t0 + δ];Rn) to problem (5.1.2).

291
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Moreover, setting

Mi = max
Q
|fi| , M = max

1≤i≤n
Mi,

we can choose δ = min
{
a, b

M

}
.

The following Lemma will be very useful

Lemma 5.1.2 (Gronwall). Let I be an interval of R, α ∈ I and c ≥ 0.
Moreover, let u, v ∈ C0(I,R) where v(t) ≥ 0 and u(t) ≥ 0, for every t ∈ I.

What follows holds true.
(i) If

v(t) ≤ c+

∫ t

α

u(s)v(s)ds, ∀t ≥ α,

then
v(t) ≤ ce

∫ t
α u(s)ds, ∀t ≥ α.

(ii) If

v(t) ≤ c+

∫ α

t

u(s)v(s)ds, ∀t ≤ α

then
v(t) ≤ ce

∫ α
t u(s)ds, ∀t ≤ α.

The Gronwall Lemma makes it simple to prove the continuous dependence
result of the solution to (5.1.2) by the data t0, x0, f . More precisely, we have

Theorem 5.1.3 (Continuous dependence by the data). Let f, f̃ ∈
C0(Q) satisfy (5.1.1). Let σ1, σ2, ε be positive numbers. Let us suppose that∣∣t0 − t̃0∣∣ ≤ σ1, |x0 − x̃0| ≤ σ2, max

Q

∣∣∣f − f̃ ∣∣∣ ≤ ε.

Set
M = max

Q
|f | , M̃ = max

Q

∣∣∣f̃ ∣∣∣ .
Then the following fact occurs:
There exists σ0 > 0 depending on a, b,M, M̃ such that if σ1, σ2 < σ0, then

there is δ > 0 and x, x̃ ∈ C1 ([t0 − δ, t0 + δ],Rn) that satisfy what follows:
·
x(t) = f (t, x(t)) ,

x(t0) = x0,
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·
x̃(t) = f (t, x̃(t)) ,

x̃
(
t̃0
)

= x̃0

and
|x(t)− x̃(t)| ≤ C (σ1 + σ2 + ε) , ∀t ∈ [t0 − δ, t0 + δ] ,

where C is a constant that depends on a, b, L,M, M̃ only.

Theorem 5.1.4 (regularity). Let k ∈ N and f ∈ Ck(Q). Then the solution
to Cauchy problem (5.1.2) belongs to Ck+1 ([t0 − δ, t0 + δ];Rn), where δ =
min

{
a, b

M

}
.

We now describe the Theorem of differentiability of the solution of
the Cauchy problem with respect to a parameter and with respect to the
inital values. Let λ1, λ2 ∈ R be such that λ1 < λ2 and let

Q̃ =
{

(t, x;λ) ∈ Rn+2 : |t− t0| ≤ a, |xi − x0,i| ≤ b, λ1 ≤ λ ≤ λ2

}
.

Moreover, let f ∈ C1
(
Q̃,Rn

)
. If

(
t0, x0, λ

)
∈ Q̃ then there exists a unique

solution to the Cauchy problem
·
x(t) = f

(
t, x(t);λ

)
,

x(t0) = x0.

(5.1.3)

Let us denote by
x
(
t, t0, x0;λ

)
this solution. It can be proved (and for this we refer to [63, Ch. 1]) that
x is differentiable with respect to all the variables and the derivatives are
continuous. In order to calculate the derivatives

∂x

∂t0
,

∂x

∂x0,j

,
∂x

∂λ
, j = 1, · · · , n,

we proceed in the following way: we write the system (5.1.3) in the form
∂
∂t
x
(
t, t0, x0;λ

)
= f

(
t, x
(
t, t0, x0;λ

)
;λ
)

x
(
t0, t0, x0;λ

)
= x0,

(5.1.4)
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next, we make the derivatives of both the sides of (5.1.4) obtaining a linear
first-order system with Cauchy conditions in the "new unknowns"

∂x

∂t0
,

∂x

∂x0,k

,
∂x

∂λ
.

For instance, in case n = 1, whether we are interested in calutating ∂x
∂t0

,
we make the derivatives of both the sides of equation (5.1.4) with respect to
t0 and we get

∂

∂t0

∂

∂t
x
(
t, t0, x0;λ

)
=
∂f

∂x

(
t, x
(
t, t0, x0;λ

)
;λ
) ∂

∂t0
x
(
t, t0, x0;λ

)
and by the initial datum, making the derivative with respect to t0, we have(

∂

∂t0
x
(
t, t0, x0;λ

)
+
∂

∂t
x
(
t, t0, x0;λ

))
|t=t0

= 0.

From which, taking into account (5.1.4), we have

∂

∂t0
x
(
t0, t0, x0;λ

)
= −f

(
t0, x0;λ

)
.

Now, set

U
(
t, t0, x0;λ

)
=

∂

∂t0
x
(
t, t0, x0;λ

)
, (5.1.5)

A
(
t, t0, x0;λ

)
=
∂f

∂x

(
t, x
(
t, t0, x0;λ

)
;λ
)

and interchanging the order of derivatives ∂
∂t0

∂
∂t
x (in the rigorous proof it is

proved that this step is admissible, compare [63, Cap. 1]) we have
∂U
∂t

= A
(
t, t0, x0;λ

)
U,

U
(
t0, t0, x0;λ

)
= −f

(
t0, x0;λ

)
,

that is a Cauchy problem for an ordinary differential equation in the new
unkwnon U . When U is determined, also ∂

∂t0
x turns out determined by

(5.1.5). Similarly we proceed when n > 1 and for the others derivatives.
Likewise, if f ∈ Ck

(
Q̃,Rn

)
, it can be proved that x

(
·, t0, x0;λ

)
has

continuous derivatives w.r.t. t0, x0,j and λ up to order k .
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5.2 First order linear PDEs
We begin by giving some definitions. Let Ω be a connected open set of Rn

and let
a : Ω→ Rn, a(x) = (a1(x), · · · , an(x)) ,

be a vector field on Ω. Let us denote by P (x, ∂) the following linear differ-
ential operator

P (x, ∂) = a · ∇ =
n∑
j=1

aj(x)∂j, x ∈ Ω. (5.2.1)

Throughout this Chapter we will call the symbol of the operator
P (x, ∂) the following homogeneous polynomial of first degree w.r.t. the vari-
ables ξ1, · · · , ξn

P (x, ξ) = a(x) · ξ =
n∑
j=1

aj(x)ξj, x ∈ Ω, ξ ∈ Rn. (5.2.2)

We say that ξ ∈ Rn \ {0} is a characeristic direction for P (x, ∂) at the
point x0 ∈ Ω if

P (x0, ξ) = 0. (5.2.3)

A surface
Γ = {x ∈ Ω : φ(x) = φ(x0)} ,

where φ ∈ C1(Ω) and
∇φ(x0) 6= 0

is said a characteristic surface at the point x0 ∈ Ω for P (x, ∂) if∇φ(x0)
is a characteristic direction for P (x, ∂) at the point x0. That is

P (x0,∇φ(x0)) = a · ∇φ(x0) =
n∑
j=1

aj(x0)∂jφ(x0) = 0, (5.2.4)

let us note
P (x,∇φ) = P (x, ∂)φ.

We say that Γ is a characteristic surface for P (x, ∂) if

P (x,∇φ(x)) = P (x, ∂)φ(x) = a(x) · ∇φ(x) = 0, ∀x ∈ Γ. (5.2.5)

We say that the vectors

ν(x0) = − ∇φ(x0)

|∇φ(x0)|
and − ν(x0) =

∇φ(x0)

|∇φ(x0)|
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Figure 5.1:

Let us note that the versor ν(x0) is directed toward the region {x ∈ Ω : φ(x) < 0}.
We agree to say that ν(x0) is the unit outward normal to Γ in x0 and −ν(x0)
is the inner outward normal to Γ in x0, respectively.

Notice that Γ is a characteristic surface at x0 for P (x, ∂) if and only if

P (x0, ν(x0)) = a(x0) · ∇ν(x0) = 0, (5.2.6)

In other words, Γ is a characteristic surface at x0 if and only if a(x0) is a
tangent vector to Γ at x0.

Of course, when n = 2, instead of the characteristic surfaces we will
simply speak of the characteristic lines (or curves).

In this Section we will study the following Cauchy problem for the first
order linear differential equation . Given the vector field a(·), and the
function h : Γ→ R determine u such that

P (x, ∂)u = c(x)u+ f(x),

u|Γ = h,

(5.2.7)

We will specify the assumptions on a, c, f, h in a while. Let us now premise
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some simple example to the investigation of problem (5.2.7). We call Γ the
initial surface and h the initial datum of Cauchy problem (5.2.7).

Example 1.
Let Ω = R2 and let

P (x, y, ∂) = ∂x + ∂y.

Let us consider the equation

∂xu+ ∂yu = 0, in R2. (5.2.8)

We can easily determine all the C1 (R2) solutions to equation (5.2.8). Actu-
ally, setting

µ = (1, 1),

we can write (5.2.8)
∂u

∂µ
= 0, in R2, (5.2.9)

where ∂u
∂µ

denotes the derivatives of u w.r.t. direction µ (defined in Section
1.1).

It is clear that the functions u ∈ C1 (R2) which satisfy (5.2.9) are all and
only the functions constant on the lines parallel to the vector µ. Hence, for
any fixed x0, we have

u(x0 + t, t) = F (x0), t ∈ R

from which by eliminating t, we have

u(x, y) = F (x− y). (5.2.10)

Therefore it suffices to assume that F ∈ C1(R) for obtaining, by (5.2.10), all
the solutions to (5.2.8).

Having (5.2.10) available, the study of the Cauchy problem for equation
(5.2.8) is quite simple, and here we take the opportunity to highlight some
important facts.

Let us consider the following Cauchy problem
ux + uy = 0,

u(x, 0) = h(x),

(5.2.11)

where h ∈ C1(R). By (5.2.10), taking into account of the initial datum in
(5.2.11), we have
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h(x) = u(x, 0) = F (x), x ∈ R.

Therefore, the unique solution of problem (5.2.11) is given by

u(x, y) = h(x− y), (x, y) ∈ R2. (5.2.12)

Let us now consider a somewhat more general situation and let us as-
sume that the Cauchy datum is assigned on a regular curve Γ of parametric
equations

x = x(τ), y = y(τ), τ ∈ I, (5.2.13)

where I is an interval. Let us examine what happens when Γ is a charac-
teristic line. We therefore consider the problem

ux + uy = 0,

u(τ, τ) = h(τ), τ ∈ R.
(5.2.14)

We immediately realize that if h is not constant, the problem (5.2.14) has
no solutions: we had, indeed, already observed that every C1 (R2) which is
a solution of the equation ux + uy = 0 must be constant on the lines parallel
to the vector µ = (1, 1) and therefore, in particular, they must be constant
on the line

{(τ, τ) : τ ∈ R}.

Moreover, if h is constant then Cauchy problem (5.2.14) has infinite solu-
tions as we easily, if h ≡ 0 then every solutions to (5.2.14) is given by

u(x, y) = F (x− y), with F (0) = 0.

More generally, if we have to face the Cauchy problem
ux + uy = 0,

u (x(τ), y(τ)) = h(τ), τ ∈ R
(5.2.15)

and if a characteristic line intersects Γ at two distinct, say P0 = (x(τ0), y(τ0))
and P1 = (x(τ1), y(τ1)) where τ0 6= τ1, then in order that problem (5.2.15)
has solution, it is necessary that h satisfies the condition

h(τ0) = h(τ1)
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Figure 5.2:

and this imposes, in turn, some restrictions on the datum h itself. In other
words, not every initial value is admissible for Cauchy problem
(5.2.15). This is because the values of u on Γ are determined by the val-
ues of u on a portion smaller of Γ itself. Keep in mind that in the situation
we have just considered, between the points P0 and P1 there must be a point
Q ∈ Γ at which the direction characteristic is tangent to Γ. That is, Γ
characteristic line w.r.t. the operator ∂x + ∂y at the point Q (Figure 5.2).

Let us further illustrate what has just been said. Let it be, then, (Figure
5.3)

Γ =

{(
τ,
τ 2

2

)
: 0 < τ < 2

}
and let us consider the following Cauchy problem

ux + uy = 0,

u
(
τ, τ

2

2

)
= h(τ), τ ∈ (0, 2).

(5.2.16)

Notice that Γ is a characteristic line w.r.t. the operator ∂x + ∂y at the
point Q =

(
1, 1

2

)
. Moreover, we check what follows.
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Figure 5.3:

(i) There exists a solution u ∈ C1 (R2) to problem (5.2.16) if and only if
h ∈ C1((0, 2)) and

h(x) = h(2− x), , ∀x ∈ (0, 2). (5.2.17)

(ii) If h ∈ C1(0, 2) satisfies (5.2.17), then for any 0 < r < 1, there exist
infinite solutions to the Cauchy problem

ux + uy = 0, in Br(Q),

u|Γ∩Br(Q) = h.

(5.2.18)

Let us check (i). By (5.2.10) we have u(x, y) = F (x−y). Consequently,
in order to

u

(
x,
x2

2

)
= h(x),

we need to have

h(x) = F

(
x− x2

2

)
= F

(
1

2
− 1

2
(1− x)2

)
, ∀x ∈ (0, 2),
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Figure 5.4:

from which (5.2.17) follows.

Let us check (ii). By the linearity of problem (5.2.18), we can choose
h ≡ 0. Moreover, let g ∈ C1 ((0, 2)) be an arbitrary function which satisfies
3

g

(
1

2

)
= g′

(
1

2

)
= 0.

Then it is easily checked that the functions

u(x, y) =


0, in Br(Q) ∩

{
y ≥ x− 1

2

}
,

g(x− y), in Br(Q) ∩
{
y < x− 1

2

}
,

(5.2.19)

are all solutions of Cauchy problem (Figure 5.4)


ux + uy = 0, in Br(Q),

u|Γ∩Br(Q) = 0.

(5.2.20)
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5.3 The method of characteristics – the linear
case

Let Ω be a connected open set of Rn and let a ∈ C1 (Ω,Rn) ,

a(x) = (a1(x), · · · , an(x)) .

Let us consider the operator

P (x, ∂) =
n∑
j=1

aj(x)∂j, x ∈ Ω. (5.3.1)

We will call characteristic line of P (x, ∂) any solution to the system of
ordinary differential equations – characteristic equations

dX(t)

dt
= a (X(t)) . (5.3.2)

Let u ∈ C1(Ω). Obxerve that, if we set

z(t) = u (X(t)) ,

then we have

dz(t)

dt
=
dX(t)

dt
· (∇u) (X(t)) = a (X(t)) · (∇u) (X(t)). (5.3.3)

This simple relationship is the starting point of the method of characteristics
by which we will tackle and we will solve the Cauchy problem

P (x, ∂)u = c(x)u+ f(x),

u|Γ = h,

(5.3.4)

where Γ is a portion of regular surface of parametric equations

x = x(y), y ∈ B′1, (5.3.5)

x ∈ C1 (B′1) and

Rank
(
∂x

∂y
(y)

)
= Rank

 ∂y1x1 · · · ∂yn−1x1
... · · · ...

∂y1xn · · · ∂yn−1xn

 = n− 1. (5.3.6)
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Moreover, we assume

c ∈ C1(Ω), f ∈ C1(Ω). (5.3.7)

The initial condition uΓ = h is expressed by

u (x(y)) = h (x(y)) := h(y), ∀y ∈ B′1, (5.3.8)

where

h ∈ C1 (B′1) . (5.3.9)

The method of characteristics consists of constructing a local change
of coordinates of class C1,

(−δ, δ)×B′r 3 (t, y)→ X(t, y) ∈ Rn, (5.3.10)

for suitable δ > 0 and r ∈ (0, 1). Where X has the following properties

X(0, y) = x(y), ∀y ∈ B′r (5.3.11)

and
∂tX(t, y) = a(X(t, y)), ∀(t, y) ∈ (−δ, δ)×B′r. (5.3.12)

In this way, setting

z(t, y) = u(X(t, y)), C(t, y) = c(X(t, y)), F (t, y) = f(X(t, y))

and taking into account (5.3.3), Cauchy problem (5.3.4) becomes
∂tz(t, y) = C(t, y)z(t, y) + F (t, y),

z(0, y) = h(y).

(5.3.13)

By the assumptions made on c, f , and h, see Section 5.1, it turns out that z ∈
C1 ((−δ, δ)×B′r) and, as we will see, that the function (under appropriate
conditions)

u(x) = z
(
X−1(x)

)
(5.3.14)

is a solution to (5.3.4).
Let us begin to see under what conditions, the transformation defined by

(5.3.10)–(5.3.12) is a diffeomorphism in a neighborhood of 0 ∈ Rn. Since,
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a ∈ C1(Ω) and x ∈ C1 (B′1) we have (for the differentiability w. r, t. the
parameters, see Section 5.1)

X ∈ C1 (J ×B′1) ,

where J is a suitable neighborhood of 0.
Moreover

∂X

∂(t, y)
(0, 0) =

(
∂tX(0, 0), ∂y1X(0, 0), · · · , ∂yn−1X(0, 0)︸ ︷︷ ︸

)
column vectors

=

=
(
a(x0), ∂y1x(0), · · · , ∂yn−1x(0)

)
and, since

∂tX(0, 0) = a(X(0, 0)) = a(x0),

Rank
(
a(x0), ∂y1x(0), · · · , ∂yn−1x(0)

)
= n− 1,

we have that the following conditions are equivalent

Rank
∂X

∂(t, y)
(0, 0) = n (5.3.15)

and

a(x0) /∈
〈
∂y1x(0), · · · , ∂yn−1x(0)

〉
, (5.3.16)

where 〈v1, v2, · · · , vn−1〉 is the vector space generated by v1, v2, · · · , vn−1.
Condition (5.3.16) is, in turn, equivalent to the condition that a(x0) is not
tangent to Γ in x0.

All in all, if Γ is noncharacteristic in x0 for operator (5.3.1) then
there exists δ > 0 and r ∈ (0, 1) such that X is a diffeomorphism in (−δ, δ)×
B′r.

Now, we denote by Ux0 = X ((−δ, δ)×B′r) and by

Ψ(x) = X−1(x), x ∈ Ux0 . (5.3.17)

Let us check that
u(x) = z(Ψ(x))

solves Cauchy problem (5.3.4).
Regarding the initial condition, by (5.3.11) we have immediately
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x(y) = X(0, y), ∀y ∈ B′r.
Hence, by (5.3.17) and recalling (5.3.13), we get

u (x(y)) = z (Ψ(X(0, y))) = z(0, y) = h(y), ∀y ∈ B′r. (5.3.18)

Concerning the equation

n∑
j=1

aj(x)∂ju = c(x)u+ f(x),

recall that by (5.3.17) we have(
∂Ψ(x)

∂x

)(
∂X (Ψ(x))

∂(t, y)

)
= In, (5.3.19)

where In is the identity matrix n × n. In particular, considering the first
column on the right–hand side and the first column on the left –hand side of
(5.3.19), we have

∑n
j=1 ∂xjΨ1∂tXj = 1,

∑n
j=1 ∂xjΨk∂tXj = 0, k = 2, · · · , n.

(5.3.20)

Now

∂xju(x) = ∂tz(Ψ(x))∂xjΨ1(x) + ∂y1z(Ψ(x))∂xjΨ2(x)+

· · ·+ ∂yn−1z(Ψ(x))∂xjΨn−1(x).

Hence (multiplying by aj(x) and summing up on j)

n∑
j=1

aj(x)∂xju = ∂tz(Ψ(x))
n∑
j=1

∂xjΨ1aj(x)+

+ ∂y1z(Ψ(x))
n∑
j=1

∂xjΨ2aj(x) + · · ·

+ ∂yn−1z(Ψ(x))
n∑
j=1

∂xjΨn−1(x)aj(x).

(5.3.21)

On the other hand by (5.3.12) we know

aj(x) = (∂tXj) (Ψ(x)).
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By this equality, by (5.3.20) and by the equation in (5.3.13) we have

n∑
j=1

aj(x)∂xju(x) = ∂tz(Ψ(x)) = c(x)u(x) + f(x).

Hence u is solution to Cauchy problem (5.3.4).
Finally, we observe that, by the hypotheses (5.3.7) (actually, it suffices

c ∈ C0(Ω)), u is the unique solution of class C1 to problem (5.3.4) in the
neighborhood Ux0 . Indeed, if u1, u2 ∈ C1 (Ux0) are two solutions then, setting

w = u1 − u2,

we have 
P (x, ∂)w = c(x)w,

w|Γ = 0,

and setting
z̃(t, y) = w(X(t, y)),

by (5.3.13) we have 
∂tz̃(t, y) = C(t, y)z̃(t, y),

z̃(0, y) = 0.

From which we have z̃ = 0 in (−δ, δ)×B′r, therefore w = 0 in Ux0 .
The construction we have illustrated and the local uniqueness hold for

any point of Γ.

Hence we have proved

Theorem 5.3.1. Let a ∈ C1 (Ω,Rn), c ∈ C1 (Ω) and f ∈ C1 (Ω). Let
Γ be a non characteristic surface of parametric equations x = x(y), where
x ∈ C1 (B′1) and satisfying (5.3.6). Let h be a function C1 on Γ (i.e. h ◦ x ∈
C1 (B′1).

Then there exists a neighborhood U of Γ such that there exists unique
solution u in C1(U) to the Cauchy problem

∑n
j=1 aj(x)∂ju = c(x)u+ f(x), x ∈ U ,

u|Γ = h.

(5.3.22)
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Given a surface Γ in Rn we call domain of dependence of Γ with respect
to the equation

n∑
j=1

aj(x)∂ju = c(x)u,

the largest closed set DΓ for which we have


∑n

j=1 aj(x)∂ju = c(x)u, x ∈ DΓ,

u|Γ = 0,

=⇒ u = 0 in DΓ.

Exercise 1. Let 0 < r < 1 and

Γ =
{(
x′,−

√
1− |x′|2

)
: |x′| < r

}
.

Construct a vector field a ∈ C1
(
B′1
)
such that the domain of dependence of

Γ with respect to the equation

a(x) · ∇u = 0,

contains B1. ♣

Exercise 2. Apply the characteristic method to prove that the functions
u ∈ C1 (Rn \ {0}) which satisfy

n∑
j=1

xj∂ju = αu,

are the homogeneous function of degree α. ♣

Exercise 3. Let b be a vector of Rn and let f ∈ C0 (Rn+1). Apply the
characteristic method to solve the following Cauchy problem

∂tu+ b · ∇u = f(x, t),

u(x, 0) = 0.

The equation ∂tu + b · ∇u = f(x, t) is known as the transport equation .
♣
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5.4 The method of characteristics – quasilinear
case

Let J be an open interval of R, let Ω be a connected open set of Rn. Let
a ∈ C1 (J × Ω,Rn) and c ∈ C1 (J × Ω). The following equation

a(x, u) · ∇u = c(x, u), (5.4.1)

is called a first-order quasilinear equation. Of course, a linear equations
are special case of the quasilinear equations.

With minor modifications, the characteristics method studied in the Sec-
tion 5.3 can be adapted to handle equation (5.4.1) and the related Cauchy
problem. In the case of equation (5.4.1), the characteristic equation (5.4.1)
is the following one 

dX
dt

(t) = a(X(t), z(t)),

dz
dt

(t) = c(X(t), z(t)).

(5.4.2)

Let us note that in the linear case, the equation

dz

dt
(t) = c(X(t), z(t)),

is precisely the one satisfied by z(t) = u(X(t)) when u is a solution of the
linear equation

a(x) · ∇u = c(x)u+ f(x).

We continue to call characteristic line, the curve of parametric equations

(X, z) = (X(t), z(t)) (5.4.3)

where X(t), z(t) is a solution of the system (5.4.2). When there is no risk of
ambiguity, we will call "characteristic line" also the projection on Rn of the
line (5.4.3).

Let us consider the Cauchy problem
a(x, u) · ∇u = c(x, u),

u|Γ = h,

(5.4.4)

where Γ is a portion of regular surface of parametric equations

x = x(y), ∀y ∈ B′1.
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To solve (5.4.4), we proceed similarly to what we did in the linear case.
Namely, we consider X(t, y) and z(t, y) such that

∂tX(t, y) = a(X(t, y), z(t, y)),

∂tz(t, y) = c(X(t, y), z(t, y)),

X(0, y) = x(y),

z(0, y) = h(y)

(5.4.5)

and it can be checked, exactly as in Section 5.3 that if

(−δ, δ)×B′r 3 (t, y)→ X(t, y) ∈ Rn,

for some δ > 0 and r ∈ (0, 1), is local change of coordinates of Rn, then the
function

u(x) := z
(
X−1(x)

)
, (5.4.6)

is a solution to Cauchy problem (5.4.4). More precisely: setting x0 = x(0)
there exists a neighborhood Ux0 such that the function u defined by (5.4.6)
satisfies 

a(x, u) · ∇u = c(x, u), in Ux0 ,

u|Γ∩Ux0
= h.

(5.4.7)

In order to the map X be a local diffeomorphism, it suffices to have

Rank
∂X

∂(t, y)
(0, 0) = n (5.4.8)

and since

∂X

∂(t, y)
(0, 0) =

(
∂tX(0, 0), ∂y1X(0, 0), · · · , ∂yn−1X(0, 0)

)
=

=
(
a(x0, h(x0)), ∂y1x(0), · · · , ∂yn−1x(0)

)
and

Rank
(
∂x

∂y
(0)

)
= n− 1,

condition (5.4.8) is equivalent to
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a(x0, h(x0)) /∈
〈
∂y1x(0), · · · , ∂yn−1x(0)

〉
,

(compare this condition with (5.3.16)).

Now we briefly consider the issue of continuous dependence by initial
datum in problem (5.4.4).

Let uk, k = 1, 2, satisfy
a(x, uk) · ∇uk = c(x, uk),

uk|Γ = hk.

(5.4.9)

We have

c(x, u1)− c(x, u2) = (u1 − u2)

∫ 1

0

∂uc (x, u2(x) + t (u1(x)− u2(x))) dt

and, similarly

a(x, u1) · ∇u1 − a(x, u2) · ∇u2 = a(x) · ∇ (u1 − u2) + b(x),

where
a(x) = a(x, u1(x))

and

b(x) = −∇u2(x) ·
∫ 1

0

∂ua (x, u2(x) + t (u1(x)− u2(x))) dt.

Set

c(x) = b(x) +

∫ 1

0

∂uc (x, u2(x) + t (u1(x)− u2(x))) dt,

w = u1 − u2,

h = h1 − h2.

By (5.4.9) we have 
a(x) · ∇w = c(x)w,

w|Γ = h.

(5.4.10)

Now, if h ≡ 0 and if at a point x0 ∈ Γ, then a(x0, h1(x0)) is not tangent
to Γ, then there exists a neighborhood Ux0 of x0 such that w ≡ 0 in Ux0 , that
is
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u1 ≡ u2, in Ux0 .

As a matter of fact, the equation

a(x) · ∇w = c(x)w

is linear and Theorem 5.3.1 applies.
We leave as an exercise to the reader to prove that if a(x0, h1(x0)) is not

tangent to Γ in x0 then there exists a neighborhood Vx0 such that

‖w‖L∞(Vx0) ≤ K
∥∥h∥∥

L∞(Γ∩Vx0) , (5.4.11)

that is

‖u1 − u2‖L∞(Vx0) ≤ K ‖h1 − h2‖L∞(Γ∩Vx0) ,

where K is a constant which depends on C1 norm of a and c and on the
(convex) angle between the vector a(x0, h1(x0)) and the unit outward normal
to Γ in x0.

We conclude this Section by the following

Example. Let us consider the following Cauchy problem
uy + uux = 0,

u(x, 0) = h(x), x ∈ R,
(5.4.12)

where h ∈ C1(R).
The characteristic equations are given by

∂x(t,s)
∂t

= z,

∂y(t,s)
∂t

= 1,

∂z(t,s)
∂t

= 0,

(5.4.13)

the initial conditions are

x(0, s) = s, y(0, s) = 0 z(0, s) = h(s). (5.4.14)

By (5.4.13) and (5.4.14) we have easily
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Figure 5.5:



x(t, s) = s+ th(s),

y(t, s) = t,

z(t, s) = h(s).

(5.4.15)

By the method shown in this Section, the solution to (5.4.12) is given by a
function u such that

u (x(t, s), y(t, s)) = z(t, s) = h(s). (5.4.16)

To express u in the variables x and y we eliminate s and t from the first two
equations of (5.4.15). We have
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x = s+ yh(s),

t = y.

To obtain s from the first equation it is necessary that s → s + yh(s) be
injective, that is, it is necessary that

0 6= d

ds
(s+ yh(s)) = 1 + yh′(s).

For instance, if h′ > 0, let us assume

Y0 := sup
s∈R
− 1

h′(s)
< 0,

then we have that the solution to (5.4.12) is defined for all y such that

y > Y0.

If h′(s) < 0, we assume

Y1 := inf
s∈R
− 1

h′(s)
> 0,

then we have the solution to (5.4.12) is defined for all y such that

y < Y1.

Let us dwell for a while on the latter case and examine what happens
above the line y = Y1. Let us come back to (5.4.16); this relation tells us
that u is constant on the projection of the characteristic passing through the
point (s, 0) and there it is equal to h(s). Let now s1, s2 ∈ R satisfy s1 < s2,
then the straight lines whose equations are given by

x = s1 + yh(s1)

and

x = s2 + yh(s2)

intersect at the point

P =

(
− s2h(s1)

h(s2)− h(s1)
,− s2 − s1

h(s2)− h(s1)

)
,
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that implies that the function u cannot be continuous in P . Let us observe
that the point P is situated either on the line y = Y1 or above it since, for
an appropriate s ∈ (s1, s2), we have (Figure 5.5)

− s2 − s1

h(s2)− h(s1)
= − 1

h′(s)
≥ Y1.

It is, actually, of some physical interest to include (in an appropriate
sense) the discontinuous solution among the solutions to problem (5.4.12)
since they correspond to "shock waves" . We refer for insights to [23, Ch. 3,
Sec. 4].

5.5 Brief review on the fully nonlinear case

In this Section we wish briefly consider to the method of the characteristics
to solve the Cauchy problem for the fully nonlinear equation

F (x, u(x),∇u(x)) = 0.

Namely, the Cauchy problem
F (x, u(x),∇u(x)) = 0, in Ω,

u|Γ = g,

(5.5.1)

where Ω is an open set Rn, Γ is a regular surface of Rn contained Ω,

F : Ω× R× Rn → R, (5.5.2)

is a function of class C2(Ω×R×Rn). The variables of F are x ∈ Ω, z ∈ R and
p ∈ Rn. Moreover g : Γ→ R is a function defined on Γ. The assumptions on
Γ, F and g will be specified in more detail later on. We notice that in the
linear and quasilinear cases investigated, respectively, in Sections 5.2 and 5.4,
we have F (x, z, p) = a(x) · p− c(x)z − f(x), F (x, z, p) = a(x, z) · p− c(x, z).
Notice that in the nonlinear case, generally, we cannot expect the uniqueness
of the solutions to Cauchy (5.5.1). The following simple example will help
us to understand this fact. Let us consider the Cauchy problem

u2
x1

+ u2
x2

= 1, in R2,

u(x1, 0) = g(x1), for x1 ∈ R.
(5.5.3)
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We note that all we can say about ux2 (x1, 0) is that it satisfies the condition

g′2(x1) + u2
x2

(x1, 0) = 1,

which leaves undetermined the sign of ux2 (x1, 0). If, for instance, g = 0, then
u = x2 and u = −x2 are both solutions of Cauchy problem (5.5.3).

We have already studied the method of characteristics for the linear and
the quasilinear linear equations. In the nonlinear case we follow a procedure
similar to the previous two cases, but in the nonlinear case it is less obvious
which are the characteristic equations. For this purpose some geometrical
considerations may be useful, which, neverthless, we do not take up here,
referring the interested reader to [41, Ch. 1]. We start by the following

Definition 5.5.1. Let F be the function (5.5.2). Let us assume that F is
of class C2 (Ω× R× Rn). We call the characteristic equations related to the
partial differential equation

F (x, u(x),∇u(x)) = 0, in Ω, (5.5.4)

the following system of ordinary differential equations



dX(t)
dt

= ∇pF (X(t), z(t), p(t)),

dz(t)
dt

= ∇pF (X(t), z(t), p(t)) · p(t),

dp(t)
dt

= −∂zF (X(t), z(t), p(t))p(t)−∇xF (X(t), z(t), p(t)).

(5.5.5)

The functionX(·), z(·), p(·) are called the characteristic lines of the equa-
tion (5.5.4). X(·) is called the ray or the projected characteristic lines
on Rn.

If F does not depend on z, system (5.5.5) is decoupled in z, while the
first and the third equations constitute the Hamilton–Jacobi system:

dX(t)
dt

= ∇pF (X(t), p(t)),

dp(t)
dt

= −∇xF (X(t), p(t)).

(5.5.6)

Remarks.
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1. Let us note that if (X(·), z(·), p(·)) is a characteristic line for equation
(5.5.4) then

F (X(t), z(t), p(t)) = constant. (5.5.7)

As a matter of fact, exploiting (5.5.5), we have

d

dt
F (X(t), z(t), p(t)) = ∇xF (X(t), z(t), p(t)) · dX

dt
+

+ Fz(X(t), z(t), p(t))
dz

dt
+∇pF (X(t), z(t), p(t)) · dp

dt
=

= ∇xF · ∇pF + Fz∇pF · p(t)+
+∇pF · (−Fzp(t)−∇xF ) = 0,

In the last step, for the sake of brevity, we have omitted the arguments
X(t), z(t), p(t) in F .
2. Let us suppose that u is a solution of class C2 to the equation

F (x, u(x),∇u(x)) = 0, (5.5.8)

we wish to look for X(t) (or, more precisely, for an equation for X(t)) such
that, setting

z(t) = u(X(t)), p(t) = ∇u(X(t)),

it happens that (X(t), z(t), p(t)) solves system (5.5.5).
We have

dz(t)

dt
= p(t) · dX(t)

dt
, (5.5.9)

dpi(t)

dt
=

n∑
j=1

∂2
iju(X(t))

dXj(t)

dt
, i = 1, · · · , n. (5.5.10)

Now, calculating the derivatives of both the sides of equation (5.5.8) w.r.t.
xi, i = 1, · · ·n, we have

n∑
j=1

∂pjF∂
2
iju(x) = −∂xiF − ∂zF∂xiu(x), (5.5.11)

where the argument of F in (5.5.11) is (x, u(x),∇u(x)). Now, let us observe
what follows: if

dXj(t)

dt
= ∂pjF (X(t), z(t), p(t)), j = 1, · · · , n, (5.5.12)
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then by (5.5.10) and by (5.5.11), calculated for x = X(t), we have, for
i = 1, · · · , n

dpi(t)

dt
= −∂xiF (X(t), z(t), p(t))− ∂zF (X(t), z(t), p(t))pi(t) (5.5.13)

and by (5.5.9) we have

dz(t)

dt
=

n∑
j=1

∂pjF (X(t), z(t), p(t))pj(t). (5.5.14)

Equations (5.5.12), (5.5.13) and (5.5.14) are just the equations of the system
(5.5.5). �

In order to solve Cauchy problem (5.5.1) we will follow an approach sim-
ilar to that followed in the linear (and quasilinear) case by letting the pro-
jected characteristic lines, X(t), play a similar role to that played, in the
linear case, by the characteristic lines.

In what follows we will consider the case

Γ = {x ∈ Ω : xn = 0} . (5.5.15)

We observe that we can always lead back to this situation, at least locally,
even if Γ is given by

Γ = {x ∈ Ω : φ(x) = 0} ,

where φ ∈ C3(Ω) and φ(x0) = 0 for a given x0 ∈ Ω and

∇φ(x0) 6= 0. (5.5.16)

Indeed, thanks to (5.5.16), there exists a neighborhood, U , of x0 such that
Γ ∩ U is is a graph of a function of n − 1 variables. If, for instance, let us
suppose that φxn(x0) 6= 0 then, up to a translation that moves x0 to 0, we
may assume that for an appropriate δ > 0, we have

Γ ∩ U = {(x′, ϕ(x′)) : x′ ∈ B′δ} , (5.5.17)

where ϕ ∈ C3(B′δ), ϕ(0) = |∇x′ϕ(0)| = 0. Now, let

Λ : Bδ ⊂ Rn
x → Rn

y , Λ(x) = (x′, xn − ϕ(x′)) ,

Λ(Γ) = {(y′, 0) : y′ ∈ B′δ} = {y ∈ Bδ : −yn = 0}
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and, setting
v(y) = u

(
Λ−1(y)

)
,

we easily obtain that the problem (5.5.1) takes the form
F̃ (y, v(y),∇yv(y)) = 0, in V ,

v(y) = g̃(y), for y ∈ Λ(Γ) ∩ V ,
(5.5.18)

where V is a neighborhood of 0 and F̃ : V × R × Rn → R is a function of
class C2(V × R× Rn).

Theorem 5.5.2. Let R > 0 and F ∈ C2(BR × R × Rn). Let g ∈ C2(B′R).
Let η ∈ R satisfy

F (0, g(0),∇x′g(0), η) = 0 (5.5.19)

and
Fpn (0, g(0),∇x′g(0), η) 6= 0, (5.5.20)

then for some r ∈ (0, R) there exists a unique solution u ∈ C2(Br) to the
initial–value problems

F (x, u(x),∇u(x)) = 0, in Br,

u(x′, 0) = g(x′), for x′ ∈ B′r,

uxn(0, 0) = η.

(5.5.21)

Proof. Let us begin by proving the uniqueness. It will suffice to prove
that if u is a solution to

F (x, u(x),∇u(x)) = 0, in BR,

u(x′, 0) = g(x′), for x′ ∈ B′R,

uxn(0, 0) = η,

(5.5.22)

then there exists a neighborhood of 0 in which u is uniquely determined.
Set

z0 = g(0), p′0 = ∇x′g(0).
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By (5.5.19) and (5.5.20) we have

F (0, z0, p
′
0, η) = 0, Fpn (0, z0, p

′
0, η) 6= 0.

By applying the Implicit Function Theorem, we have that there exists δ ∈
(0, R] such that, setting

U = Bδ × (z0 − δ, z0 + δ)×B′δ(p′0)× (η − δ, η + δ) ,

we have that the set

{(x, z, p) ∈ U : F (x, z, p) = 0} ,

is equal to the graph of the function

ψ : Bδ × (z0 − δ, z0 + δ)×B′δ(p′0)→ (η − δ, η + δ) , (5.5.23)

where ψ is of class C2 and

ψ(0, z0, p
′
0) = η.

Now, since u satisfies (5.5.22), we have

F (x′, 0, g(x′),∇x′g(x′), uxn(x′, 0)) = 0,

uxn(0, 0) = η,

and we have

uxn(x′, 0) = ψ (x′, 0, g(x′),∇x′g(x′)) , ∀x′ ∈ B′δ.

Set
pn(x′) = ψ (x′, 0, g(x′),∇x′g(x′))

and
p(0)(x′) = (∇x′g(x′), pn(x′)) , (5.5.24)

we have 

F (x, u(x),∇u(x)) = 0, in Bδ,

u(x′, 0) = g(x′), for x′ ∈ B′δ,

∇u(x′, 0) = p(0)(x′), for x′ ∈ B′δ.

(5.5.25)
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We denote by y an arbitrary point of B′δ and recalling that by Remark 2 of
the present Section, the function

t→ (X(t), z(t), p(t)) := (X(t, y), u(X(t, y)),∇u(X(t, y))

is a solution to the characteristic equations (for each y ∈ B′δ)

dX
dt

= ∇pF (X, z, p),

dz
dt

= ∇pF (X, z, p) · p,

dp
dt

= −∂zF (X, z, p)p−∇xF (X, z, p)

(5.5.26)

and 

X(0, y) = (y, 0),

z(0, y) = u(X(0, y)) = g(y),

p(0, y) = ∇u(X(0, y)) = p(0)(y).

(5.5.27)

Therefore, due to the uniqueness of the solution to Cauchy problem
(5.5.26)–(5.5.27) it turns out that u(X(t, y)) is determined for every y ∈ B′δ
and for every t in a neighborhood of 0 (this neighborhood depends on y). To
conclude the proof, it suffices, therefore, to prove that the map

(t, y)→ X(t, y), (5.5.28)

is a diffeomorphism in a neighborhood of 0. From what we said in Section
5.1 (final part), map (5.5.28) is of class C2. To establish that it is a local
diffeomorphism, it suffices to check that the Jacobian matrix of (t, y) →
X(t, y) is nonsingular in 0. Now from (5.5.27) we have

∂X(0, 0)

∂(t, y)
=

 ∂tX1(0, 0) ∂y1X1(0, 0) · · · ∂yn−1X1(0, 0)
...
... · · · ...

∂tXn(0, 0) ∂y1Xn(0, 0) · · · ∂yn−1Xn(0, 0)

 . (5.5.29)

On the other hand

∂yiXj(0, 0) = δij, for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1,

∂yiXn(0, 0) = 0, for 1 ≤ i ≤ n− 1
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and, for 1 ≤ j ≤ n− 1,

∂tXj(0, 0) = ∂pjF (X(0, 0), z(0, 0), p(0, 0)) = ∂pjF (0, g(0),∇x′g(0), η) .

Hence

det

(
∂X(0, 0)

∂(t, y)

)
= (−1)n∂pnF (0, g(0),∇x′g(0), η) 6= 0, (5.5.30)

from which it follows that map (5.5.28) is a local diffeomorphism. The proof
of uniqueness is complete.

Now, let us prove the esistence of the solution to problem (5.5.21). Let
p(0)(x′) be defined by (5.5.24) and let (X(t, y), z(t, y), p(t, y)) be the solu-
tion of the Cauchy problem comprising the system (5.5.26) and the initial
conditions 

X(0, y) = (y, 0),

z(0, y) = g(y),

p(0, y) = p(0)(y).

(5.5.31)

Set
f(t, y) = F (X(t, y), z(t, y), p(t, y)) ,

we have

f(0, y) = F
(
(y, 0), g(y), p(0)(y)

)
=

= F ((y, 0), g(y),∇yg(y), ψ ((y, 0), g(y),∇yg(y))) = 0,

where ψ is given by (5.5.23). Hence, by (5.5.7), we have

f(t, y) = F (X(t, y), z(t, y), p(t, y)) = 0. (5.5.32)

Moreover, in a completely similar way to what has been done above for the
uniqueness we have that there exists δ1 > 0 and a neighbourhood of 0, U0,
such that

Bδ1 3 (t, y)→ X(t, y) ∈ U0,

is a diffeomorphism of class C2 (Bδ1(0)). We denote the inverse of X(·, ·) by

X−1(x) = (t(x), y(x))
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and set

u(x) = z(t(x), y(x)), p(x) = p(t(x), y(x)).

The remaining part of the proof consists of proving that u satisfies (5.5.21).
First of all, we check that

u(x′, 0) = g(x′). (5.5.33)

To this purpose we note that

t(x′, 0) = 0, y(x′, 0) = x′.

Hence
u(x′, 0) = z (t(x′, 0), y(x′, 0)) = z (0, x′) = g (x′) .

Therefore, we have (5.5.33). We will check the condition ∂xnu(0, 0) = η later
on, now we check that u satisfies the equation

F (x, u(x),∇u(x)) = 0. (5.5.34)

Firstly, we observe that from (5.5.32) we have

F (x, u(x), p(x)) = f(t(x), y(x)) = 0, ∀x ∈ U0. (5.5.35)

Therefore, to prove (5.5.34) it suffices to prove that

p(x) = ∇u(x), ∀x ∈ U0. (5.5.36)

To this purpose we prove the following claims:

Claim I

∂tz(t, y) =
n∑
j=1

pj(t, y)∂tXj(t, y), ∀(t, y) ∈ Bδ1 . (5.5.37)

Claim II

∂yiz(t, y) =
n∑
j=1

pj(t, y)∂yiXj(t, y), ∀(t, y) ∈ Bδ1 . (5.5.38)

Claim I follows by the first and the second equation of (5.5.26). As a
matter of fact, we have

∂tz(t, y) = ∇pF (X(t, y), z(t, y), p(t, y)) · p = ∂tX(t, y) · p(t, y).
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The proof of Claim II is less immediate than Claim I. Set

hi(t, y) = ∂yiz(t, y)−
n∑
j=1

pj(t, y)∂yiXj(t, y). (5.5.39)

By (5.5.24) and recalling that

∂yiXj(0, y) = δij, for 1 ≤ i, j ≤ n− 1,

∂yiXn(0, y) = 0, for 1 ≤ i ≤ n− 1,
(5.5.40)

we have, for i = 1, · · · , n− 1,

hi(0, y) = ∂yiz(0, y)−
n∑
j=1

pj(0, y)∂yiXj(0, y) = ∂yig(y)−p(0)
i (y) = 0. (5.5.41)

Now, we prove that hi(·, y) satisfies

∂thi(t, y) = −∂zF (X(t, y), z(t, y), p(t, y))hi(t, y). (5.5.42)

By (5.5.37) we have

∂2
tyi
z =

n∑
j=1

(
∂yipj∂tXj + pj∂

2
tyi
Xj

)
. (5.5.43)

Now making the derivative w.r.t. t of both the sides of (5.5.39) we have

∂thi = ∂2
tyi
z −

n∑
j=1

(
∂tpj∂yiXj + pj∂

2
tyi
Xj

)
.

By this equality, by (5.5.43) and by (5.5.26) we have

∂thi =
n∑
j=1

(∂yipj∂tXj − ∂tpj∂yiXj) =

=
n∑
j=1

(
∂yipj∂pjF −

(
−∂xjF − ∂zFpj

)
∂yiXj

)
=

=
n∑
j=1

(
∂yipj∂pjF + ∂xjF∂yiXj + ∂zFpj∂yiXj

)
.

(5.5.44)

Now by (5.5.32), making the derivative w.r.t. yi of both the sides, we get
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n∑
j=1

(
∂yipj∂pjF + ∂xjF∂yiXj

)
= −∂zF∂yiz

and inserting the latter into (5.5.44) we get

∂thi = −∂zF∂yjz +
n∑
j=1

∂zFpj∂yiXj =

= −∂zF

(
∂yiz −

n∑
j=1

pj∂yiXj

)
=

= −∂zFhi.

All in all, by the latter and by (5.5.41) we get, for i = 1, ·, n− 1,
∂thi = −∂zFhi,

hi(0, y) = 0,

from which we have

hi(t, y) = 0, for i = 1, ·, n− 1.

Claim II is proved.

Now, let us prove (5.5.36). First, we recall that u(x) = z (X−1(x)) =
z(t(x), y(x)). We have by (5.5.37) and (5.5.38),

∂xiu = ∂tz∂xit+
n−1∑
j=1

∂yjz∂xiyj =

=

(
n∑
k=1

pk∂tXk

)
∂xit+

n−1∑
j=1

n∑
k=1

pk∂yjXk∂xiyj =

=
n∑
k=1

pk

(
∂tXk∂xit+

n−1∑
j=1

∂yjXk∂xiyj

)
=

=
n∑
k=1

pk∂xi
(
Xk

(
X−1(x)

))
=

=
n∑
k=1

pkδik = pi
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for i = 1, · · · , n. From which we have (5.5.36) and, in particular,

∂xnu(0) = pn(0) = η.

Which concludes the proof. �

5.6 Appendix: geodesics and Hamilton–Jacobi
equations

We warn that throughout this Appendix we will adopt the convention of
repeated indices. In addition, we will strictly adhere to the notation on
indices (upper or lower) for the components of a tensor.

In the first part of this Appendix we will present the rudiments of the
theory of Hamilton-Jacobi equations, these topics can be carried out in a
more general way, for more details we refer to [23].

Let Ω be an open set of Rn, we say that a real–valued function,

L ∈ C∞ (Ω× Rn)

is a Lagrangian on Ω. An example of Lagrangian that we are interested in
is given by

L(x, q) =
1

2
gij (x) qiqj, ∀x ∈ Ω, ∀q ∈ Rn, (5.6.1)

where {gij (x)}ni,j=1 is a real symmetric nonsingular matrix, n × n, whose
entries belong to C∞ (Ω).

Given a Lagrangian L we will call equation of Euler–Lagrange the
differential equation in the unknown x = x(t)

d

dt

(
∇qL

(
x(t),

·
x(t)

))
−∇xL

(
x(t),

·
x(t)

)
= 0. (5.6.2)

Here and in the sequel we will indistinctly let us denote by df
dt

or by
·
f(t)

the derivative with respect to t of a differentiable function f . The solutions
x : [t0, t1]→ Rn of (5.6.2) are also called the extremal of the functional∫ t1

t0

L
(
x(t),

·
x(t)

)
dt. (5.6.3)

Assumption I. In what follows we suppose that, for every p ∈ Rn, the
equation

∇qL(x, q) = p, (5.6.4)
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has a unique solution of class C∞ (Ω× Rn). We denote such a solution by
q(x, p).

The function

H(x, p) = p · q(x, p)− L (x, q(x, p)) . (5.6.5)

is called the Hamiltonian associated to L

We have

Theorem 5.6.1. Let x = x(t) be a solution to Euler–Lagrange equation

d

dt

(
∇qL

(
x(t),

·
x(t)

))
−∇xL

(
x(t),

·
x(t)

)
= 0. (5.6.6)

Then, setting
p(t) = ∇qL

(
x(t),

·
x(t)

)
,

it turns out that (x(t), p(t)) is a solution of the Hamilton–Jacobi system
dx
dt

= ∇pH(x(t), p(t)),

dp
dt

= −∇xH(x(t), p(t)).

(5.6.7)

Moreover
H(x(t), p(t)) = constant. (5.6.8)

Proof. Let x(t) be a solution to equation (5.6.6). Then, since equation
(5.6.4) has a unique solution, q(x, p), and since

p(t) = ∇qL
(
x(t),

·
x(t)

)
,

we have
·
x(t) = q(x(t), p(t)). (5.6.9)

Now we have, for i = 1, · · · , n,

∂piH(x, p) = ∂pi (p · q(x, p)− L (x, q(x, p))) =

= pk∂piq
k(x, p) + qi(x, p)− ∂qkL(x, q(x, p))∂piq

k(x, p) =

= ∂piq
k(x, p)

(
pk − ∂qkL(x, q(x, p))

)
+ qi(x, p) =

= qi(x, p).

Hence, recalling (5.6.9), we have, for i = 1, · · · , n,

dxi(t)

dt
= ∂piH(x(t), p(t)),
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which is the first equation of system (5.6.7). Concerning the second equation,
for i = 1, · · · , n, we have

∂xiH(x, p) = ∂xi (p · q(x, p)− L (x, q(x, p))) =

= pk∂xiq
k(x, p)− ∂xiL(x, q(x, p))− ∂qkL(x, q(x, p))∂xiq

k(x, p) =

= ∂xiq
k(x, p)

(
pk − ∂qkL(x, q(x, p))

)
− ∂xiL(x, q(x, p)) =

= −∂xiL (x, q(x, p)) .

(5.6.10)

On the other hand, by (5.6.6) and (5.6.9), we have, for i = 1, · · · , n,

∂xiL(x(t), q(x(t), p(t)) = ∂xiL(x(t),
·
x(t)) =

=
d

dt
∂qiL(x(t),

·
x(t)) =

=
dpi(t)

dt
.

By the just obtained equality and by (5.6.10) we get

dpi(t)

dt
= −∂xiH(x(t), p(t)), for i = 1, · · · , n. (5.6.11)

which is the second equation of system (5.6.7).
Finally, (5.6.8) follows by (5.6.7) and by

d

dt
H(x(t), p(t)) = ∂xiH(x(t), p(t))

dxi(t)

dt
+ ∂piH(x(t), p(t))

dpi(t)

dt
=

= ∂xiH(x(t), p(t))∂piH(x(t), p(t))− ∂piH(x(t), p(t))∂xiH(x(t), p(t)) = 0.

�

Assumption II. Let H be the Hamiltonian associated to the Lagrangian
L which satisfies Assumption I. Let us suppose that, for every q ∈ Rn, the
equation

∇pH(x, p) = q

has a unique solution of class C∞ (Ω× Rn). We denote by p(x, q) such solu-
tion. Let us notice that (5.6.5) implies trivially

L(x, q) = p(x, q) · q −H(x, p(x, q)). (5.6.12)

We now prove the converse of Theorem 5.6.1.
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Theorem 5.6.2. Let H the Hamiltonian associated to L and let us suppose
that Assumption I and II hold true. Moreover, let us suppose (x(t), p(t)) that
is a solution to the Hamilton–Jacobi equation

dx(t)
dt

= ∇pH(x(t), p(t)),

dp(t)
dt

= −∇xH(x(t), p(t)).

(5.6.13)

Then x(t) is a solution to Euler–Lagrange equation

d

dt

(
∇qL

(
x(t),

·
x(t)

))
−∇xL

(
x(t),

·
x(t)

)
= 0. (5.6.14)

Proof. By Assumpyion II and by (5.6.13), in particular by

∇pH(x(t), p(t)) =
·
x(t),

we have
p(t) = p

(
x(t),

·
x(t)

)
.

Now, by (5.6.12) we have

L
(
x,
·
x(t)

)
= p(t) · ·x(t)−H (x(t), p(t)) . (5.6.15)

On the other hand

∇qL(x, q) = p(x, q),

hence
∇qL

(
x(t),

·
x(t)

)
= p

(
x(t),

·
x(t)

)
= p(t).

Therefore, taking into account (5.6.13), we have

d

dt
∇qL

(
x(t),

·
x(t)

)
=
·
p(t) = −∇xH(x(t), p(t)). (5.6.16)

Now, let us make the derivatives w.r.t. xi of both the sides of (5.6.12)

∂xiL(x, q) = qk∂xipk(x, q)− ∂xiH(x, p(x, q))−
− ∂pkH(x, p(x, q))∂xipk(x, q) =

=
(
qk − ∂pkH(x, p(x, q))

)
∂xipk(x, q)− ∂xiH(x, p(x, q)),

from which we have
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∂xiL
(
x(t),

·
x(t)

)
=

=

(
dxk

dt
− ∂pkH(x(t), p(t))

)
∂xipk(x(t), p(t))−

− ∂xiH(x(t), p(t)) =

= −∂xiH(x(t), p(t)).

By the just obtained inequality and by (5.6.16) we have

d

dt
∇qL

(
x(t),

·
x(t)

)
= ∇xL

(
x(t),

·
x(t)

)
.

�

Now let us consider the geodesic lines with respect to the Riemannian
metric

gij(x)dxi ⊗ dxj,
where {gij (x)}ni,j=1 is a symmetric real matrix n× n whose entries belong to
C∞ (Ω). Let us suppose

λ−1 |ξ|2 ≤ gij (x) ξiξj ≤ λ |ξ|2 , ∀ξ ∈ Rn, ∀x ∈ Ω, (5.6.17)

where λ ≥ 1. Let us denote by {gij (x)}ni,j=1 the inverse matrix of {gij (x)}ni,j=1.

Definition 5.6.3. We say that the path

γ : [t0, t1]→ Ω,

Is a geodesic line with respect to the Riemannian metric gij(x)dxi ⊗ dxj,
if γ ∈ C∞ ([t0, t1],Ω) and it solves the equations

d2γh(t)

dt2
+ Γhij(γ(t))

dγi(t)

dt

dγj(t)

dt
= 0, h = 1, · · · , n, (5.6.18)

where (Christoffel symbols) , for i, j, h = 1, · · · , n,

Γhij(x) =
1

2
ghk(x) [∂igkj(x) + ∂jgki(x)− ∂kgij(x)] . (5.6.19)

The following Proposition holds true.

Proposition 5.6.4. The path γ : [t0, t1] → Ω is a geodesic line w.r.t. the
Riemannian metric gij(x)dxi ⊗ dxj if and only if γ is an extremal of the
Lagrangian

L(x, q) = gij(x)qiqj, x ∈ Ω, q ∈ R. (5.6.20)
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Proof. Let us write the Euler–Lagrange equation

d

dt

(
∇qL

(
x(t),

·
x(t)

))
−∇xL

(
x(t),

·
x(t)

)
= 0. (5.6.21)

We have

∂qkL
(
x(t),

·
x(t)

)
= 2gkj(x(t))

dxj(t)

dt
,

d

dt

(
∂qkL

(
x(t),

·
x(t)

))
= 2gkj(x(t))

d2xj(t)

dt2
+

+ 2∂xigkj(x(t))
dxi(t)

dt

dxj(t)

dt

and

∂xkL
(
x(t),

·
x(t)

)
= ∂xkgij(x(t))

dxi(t)

dt

dxj(t)

dt
.

Therefore the Euler–Lagrange equation can be written (we omit the variables,
for the sake of brevity)

gkj
d2xj

dt2
=

(
1

2
∂xkgij − ∂igkj

)
dxi

dt

dxj

dt
.

From which we have

d2xh

dt2
= ghk

(
1

2
∂xkgij − ∂igkj

)
dxi

dt

dxj

dt
=

=
1

2
ghk
(
∂xkgij − ∂xigkj − ∂xjgki

) dxi
dt

dxj

dt
=

= −Γhij
dxi

dt

dxj

dt
.

Hence the equation

d2xh

dt2
+ Γhij

dxi

dt

dxj

dt
= 0,

is equivalent to the Euler–Lagrange equation related to L and by (5.6.18)
the thesis follows. �

Remark. Let {gij (x)}ni,j=1 be a matrix like in Proposition 5.6.4, set

L(x, q) =
1

2
gij (x) qiqj, ∀x ∈ Ω, ∀q ∈ Rn.
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Notice that, by (5.6.1), we can write (5.6.4) as

gijq
j = pi, for i = 1, · · · , n.

Hence
H(x, p) = gijpjpi −

1

2
gijg

ihphg
ikpk =

1

2
gijpjpi.

�

The following Theorem holds true

Theorem 5.6.5. Let {gij (x)}ni,j=1 be a real symmetric matrix n × n whose
entries belong to C∞ (Ω) and let us assume that it satisfies (5.6.17). Let
u ∈ C∞(Ω) be a solution to the eikonal equation

gij (x) ∂xiu∂xju = 1 (5.6.22)

and let x = γ(t) be a solution to the system

dxi(t)

dt
= gij (x(t)) ∂xju(x(t)), i = 1, · · · , n.

Then x = γ(t) is a geodesic line w.r.t. the Riemannian metric

gij(x)dxi ⊗ dxj.

Proof. Let

L(x, q) =
1

2
gij (x) qiqj, ∀x ∈ Ω, ∀q ∈ Rn.

Let H be the Hamiltonian of L, that is

H(x, p) =
1

2
gij(x)pjpi ∀x ∈ Ω, ∀p ∈ Rn.

Set

p(t) = ∇u(γ(t)), (5.6.23)

where u is a solution to equation (5.6.22) and γ is a solution to the equations

dγi(t)

dt
= gij (γ(t)) ∂xju(γ(t)) (= ∂piH(γ(t), p(t))) , (5.6.24)

for i = 1, · · · , n.
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Now, we make the derivative w.r.t. xk of both the sides of equation
(5.6.22) and we get

2
(
gij (x) ∂2

xixku
)
∂xju+

(
∂xkg

ij (x)
)
∂xiu∂xju = 0. (5.6.25)

By (5.6.23), (5.6.24) and (5.6.25) we have, for i = 1, · · · , n,

dpi(t)

dt
= ∂2

xixku(γ(t))
dγk(t)

dt
=

= ∂2
xixku(γ(t))gkj (γ(t)) ∂xju(γ(t)) =

=
(
gkj (γ(t)) ∂2

xixku(γ(t))
)
∂xju(γ(t)) =

= −1

2
∂xig

jk (γ(t)) ∂xju(γ(t))∂xku(γ(t)) =

= −∂xiH(γ(t), p(t)).

The just obtained equality and (5.6.24) implies that (γ(t), p(t)) is a solution
to the system 

dγ(t)
dt

= ∇pH(x(t), γ(t)),

dp(t)
dt

= −∇xH(γ(t), p(t)).

(5.6.26)

Therefore, by Theorem 5.6.2 and by Proposition (5.6.4) the thesis follows.
�

Remark. Let us observe that if u is a solution to the equation

gij (x) ∂xiu∂xju = 1

and γ(t) is a solution to the system

dγi(t)

dt
= gij (γ(t)) ∂xju(γ(t)), i = 1, · · · , n,

then t is the natural parameter (in the Riemannian metric) of the path x =
γ(t). As a matter of fact we have

gij (γ(t))
dγi(t)

dt

dγj(t)

dt
= gij (γ(t))

(
gik (γ(t)) ∂xku(γ(t))

) (
gjl (γ(t)) ∂xlu(γ(t))

)
=

= δkj ∂xku(γ(t))gjl (γ(t)) ∂xlu(γ(t)) =

= gjl (γ(t)) ∂xlu(γ(t))∂xju(γ(t)) = 1.
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Moreover, for fixed x ∈ Rn, set

u (x) = R0.

If γ is the solution to the Cauchy problem
dγi(t)
dt

= gij (γ(t)) ∂xju(γ(t)), i = 1, · · · , n,

γ(R0) = x,

then

u(γ(t)) = t, ∀t ∈ I (5.6.27)

(I is the maximal interval of the solution γ). As a matter of fact we have

d

dt
u(γ(t)) = ∂xiu(γ(t))

dγi(t)

dt
=

= ∂xiu(γ(t))gij (γ(t)) ∂xju(γ(t)) = 1,

hence

u(γ(t)) = t+ C,

where C is a constant which can be determined easily in the following way

R0 = u (x) = u (γ(R0)) = R0 + C,

hence C = 0 and (5.6.27) is proved. These comments will be used in Ch. 15.
�

Let us conclude this Appendix by some propositions on the extremal and
other comments on the geodetics lines.

Proposition 5.6.6. Let L ∈ C∞ (Ω× Rn). We have what follows.
(i) if x ∈ C∞ ([t0, t1],Rn) is an extremal of the functional∫ t1

t0

L

(
x(t),

dx(t)

dt

)
dt, (5.6.28)

we have

∇qL

(
x(t),

dx(t)

dt

)
· dx(t)

dt
− L

(
x(t),

dx(t)

dt

)
= constant. (5.6.29)
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(ii) If L(x, q) is an homogeneous function w.r.t. q of degree α 6= 1 and x(t)
is an extremal of functional (5.6.28) then

L

(
x(t),

dx(t)

dt

)
= constant. (5.6.30)

Proof.
(i) Set

F (t) = ∇qL

(
x(t),

dx(t)

dt

)
· dx(t)

dt
− L

(
x(t),

dx(t)

dt

)
.

We have

dF (t)

dt
=

d

dt

(
∇qL

(
x(t),

dx(t)

dt

))
· dx(t)

dt
+∇qL

(
x(t),

dx(t)

dt

)
· d

2x(t)

dt2
−

−∇xL

(
x(t),

dx(t)

dt

)
· dx(t)

dt
−∇qL

(
x(t),

dx(t)

dt

)
· d

2x(t)

dt2
=

=

[
d

dt

(
∇qL

(
x(t),

dx(t)

dt

))
−∇xL

(
x(t),

dx(t)

dt

)]
· dx(t)

dt
= 0.

From which the thesis follows.

(ii) By point (i) we have

∇qL

(
x(t),

dx(t)

dt

)
· dx(t)

dt
− L

(
x(t),

dx(t)

dt

)
= constant.

On the other hand by the homogeneity of L(x, ·) we get

∇qL

(
x(t),

dx(t)

dt

)
· dx(t)

dt
= αL

(
x(t),

dx(t)

dt

)
.

Therefore

(α− 1)L

(
x(t),

dx(t)

dt

)
= constant

and recalling that α 6= 1, the thesis follows. �

Proposition 5.6.7. Let L ∈ C∞ (Ω× Rn) be an homogeneous function w.r.t.
q of degree 2. If x ∈ C∞ ([t0, t1],Rn) is an extremal of the functional∫ t1

t0

L

(
x(t),

dx(t)

dt

)
dt, (5.6.31)
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and
L

(
x(t),

dx(t)

dt

)
> 0, ∀t ∈ [t0, t1], (5.6.32)

then x is an extremal of the functional∫ t1

t0

√
L

(
x(t),

dx(t)

dt

)
dt. (5.6.33)

Proof. By Proposition (5.6.6) and by (5.6.32) we may set

c2
0 = L

(
x(t),

dx(t)

dt

)
> 0,

where c0 is a positive constant. Since x is an extremal of the functional
(5.6.31), we have

d

dt

(
∇q

√
L

(
x(t),

dx(t)

dt

))
=

1

2c0

d

dt

(
∇qL

(
x(t),

dx(t)

dt

))
=

=
1

2c0

∇xL

(
x(t),

dx(t)

dt

)
=

= ∇x

√
L

(
x(t),

dx(t)

dt

)
.

Hence x is an extremal of functional (5.6.33). �

Proposition 5.6.8. Let us suppose that L satisfies the same assumptions of
Proposition 5.6.7. Let ϕ an extremal of functional∫ t1

t0

√
L

(
x(t),

dx(t)

dt

)
dt. (5.6.34)

Let us suppose

L

(
ϕ(t),

dϕ(t)

dt

)
> 0, ∀t ∈ [t0, t1],

then there exists a unique parametrization t(τ), t′(τ) > 0 in [τ0, τ1] (t(τ0) = t0
and t(τ1) = t1), such that, setting ψ(τ) = ϕ(t(τ)), we have

L

(
ψ(τ),

dψ(τ)

dτ

)
= constant. (5.6.35)

Moreover the path x = ψ(τ) is an extremal of the functional∫ τ1

τ0

L

(
x(τ),

dx(τ)

dτ

)
dτ. (5.6.36)
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Proof. Let

f(t) =

√
L

(
ϕ(t),

dϕ(t)

dt

)
, ∀t ∈ [t0, t1].

Let c0 > 0 a be constant and let t(τ) satisfy∫ t(τ)

t0

f(t)dt = c0τ, ∀τ ∈ [τ0, τ1] .

Set ψ(τ) = ϕ(t(τ)); we get, by the homogeneity of L(x, ·),√
L

(
ψ(τ),

dψ(τ)

dτ

)
=

√
L

(
ϕ(t(τ)),

dϕ

dt
(t(τ))

)
t′(τ) =

= t′(τ)

√
L

(
ϕ(t(τ)),

dϕ

dt
(t(τ))

)
= c0.

Hence (5.6.35) is proved.
Now, let us prove that x = ψ(τ) is an extremal of the functional (5.6.36).

Set

F (t) =
1

f(t)
∇qL

(
ϕ(t),

dϕ(t)

dt

)
and

G(t) =
1

f(t)
∇xL

(
ϕ(t),

dϕ(t)

dt

)
.

Since ϕ is an extremal of functional (5.6.34), we have

dF (t)

dt
= G(t). (5.6.37)

Now, recalling √
L

(
ψ(τ),

dψ(τ)

dτ

)
= c0,

we have (by the homogeneity of L w.r.t. q)

∇qL

(
ψ(τ),

dψ(τ)

dτ

)
= t′(τ)∇qL

(
ϕ(t(τ)),

dϕ

dt
(t(τ))

)
=

= t′(τ)

√
L

(
ϕ(t(τ)),

dϕ

dt
(t(τ))

)
F (t(τ)) =

= c0F (t(τ)).
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Hence, recalling (5.6.37) (and the homogeneity of L w.r.t. q), we have

d

dτ

(
∇qL

(
ψ(τ),

dψ(τ)

dτ

))
= c0

d

dτ
(F (t(τ))) =

= c0t
′(τ)

dF

dt
(t(τ)) = c0t

′(τ)G(t(τ)) =

=
c0t
′(τ)

f(t(τ))
∇xL

(
ϕ(t(τ)),

dϕ

dt
(t(τ))

)
=

=
c0

t′(τ)f(t(τ))
∇xL

(
ψ(τ),

dψ(τ)

dτ

)
=

= ∇xL

(
ψ(τ),

dψ(τ)

dτ

)
.

Hence ψ is an extremal of functional (5.6.36). �

Remark. Let {gij (x)}ni,j=1 be a real symmetric matrix n × n whose
entries belong to C∞ (Ω) and let us assume that it satisfies (5.6.17). Let

L(x, q) = gij (x) qiqj, ∀x ∈ Ω, ∀q ∈ Rn.

By Proposition 5.6.7 we have that, if x = γ(t) is a geodesic line, i.e. it is an
extremal of the functional∫ t1

t0

L

(
x(t),

dx(t)

dt

)
dt =

∫ t1

t0

gij (x(t))
dxi

dt

dxj

dt
dt, (5.6.38)

then x = γ(t) is also an extremal of the functional∫ t1

t0

L

(
x(t),

dx(t)

dt

)
dt =

∫ t1

t0

√
gij (x(t))

dxi

dt

dxj

dt
dt. (5.6.39)

On the other hand, by Proposition 5.6.8, we have that if x = γ(t) is an
extremal of functional (5.6.39) and if t(τ) is strictly increasing and it satisfies

t′(τ)

√
gij (γ(t(τ)))

dγi

dt
(t(τ)

dxj

dt
(t(τ) = c, (5.6.40)

where c > 0 is a positive constant, then x = γ(t(τ) is an extremal of∫ t1

t0

L

(
x(t),

dx(t)

dt

)
dt =

∫ τ1

τ0

gij (x(τ))
dxi

dτ

dxj

dτ
dτ, (5.6.41)

where τ0 and τ1 satisfy t(τ0) = t0 and t(τ1) = t1. Let us notice that if c = 1,
then condition (5.6.40) means that τ is the natural parameter of the path
x = γ(t) (extremal of (5.6.39)) in the riemanniann metric gij(x)dxi⊗ dxj. �





Chapter 6

Real analytic functions

6.1 Power series

In this chapter we will consider the multiple series∑
α∈Nn0

cα, (6.1.1)

where cα ∈ R (or cα ∈ C).
When we say that the series (6.1.1) converges, we will mean always that

it is absolutely convergent . That is∑
α∈Nn0

|cα| < +∞.

Therefore, if the series (6.1.1) converges, the value of the sum in (6.1.1) does
not depend on the order of the terms cα. If cα(x) are functions, we will nat-
urally extend the notions of uniform, total convergence, Ck(Ω) convergence
and so on. For instance, we will say that∑

α∈Nn0

cα(x), (6.1.2)

uniformly converges to a function f in a set K ⊂ Rn provided that:
(i) for every x ∈ K,

∑
α∈Nn0

|cα(x)| converges,
(ii) we have

f(x) =
∑
α∈Nn0

cα(x), ∀x ∈ K

and

339
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(iii)

lim
N→+∞

sup
x∈K

∣∣∣∣∣∣f(x)−
∑
|α|≤N

cα(x)

∣∣∣∣∣∣ = 0.

Let cα ∈ R (or cα ∈ C) we call power series a series like∑
α∈Nn0

cαx
α. (6.1.3)

For any y ∈ Rn set

Qy = {x ∈ Rn : |xj| ≤ |yj|, j = 1, · · · , n}.

We have

Proposition 6.1.1. If series (6.1.3) converges at a point y ∈ Rn then the
series uniformly converges in Qy.

Proof. The convergence at y of (6.1.3) is equivalent to∑
α∈Nn0

|cα||yα| < +∞.

Hence, we have ∑
α∈Nn0

sup
Qy

|cαxα| ≤
∑
α∈Nn0

|cα||yα| < +∞.

From which we get the total convergence and, consequently, the uniform
convergence, of series (6.1.3).�

Proposition 6.1.1 implies that the sum of series (6.1.3) is continuous in
Qy.

The differentiability will be proved in Proposition 6.1.3 to prove such a
Proposition we need

Lemma 6.1.2. Let us denote by υ = (1, 1, · · · , 1). If |xj| < 1 j = 1, · · · , n,
we have ∑

α∈Nn0

xα =
1

(υ − x)υ
, (6.1.4)

and ∑
α≥β

α!

(α− β)!
xα−β = ∂β

(
1

(υ − x)υ

)
=

β!

(υ − x)υ+β
. (6.1.5)
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Proof. Concerning the convergence of series (6.1.4), we have, for |xj| < 1,
j = 1, · · · , n,∑

α≤υN

|xα| =
∑
α≤υN

∣∣xαjj ∣∣ =

=
n∏
j=1

∑
αj≤N

∣∣xαjj ∣∣ =

=
n∏
j=1

1− |xj|N+1

1− |xj|
→

n∏
j=1

1

1− |xj|
, as N →∞.

Concerning the sum of the series we have, similarly,

∑
α≤υN

xα = lim
N→∞

n∏
j=1

∑
αj≤N

x
αj
j =

1

(1− x1) · · · (1− xn)
=

1

(υ − x)υ
.

Now, let us prove (6.1.5). Recalling (1.2.2)

∂βxα =


α!

(α−β)!
xα−β, for α ≥ β,

0, otherwise,

we have∑
α≥β

α!

(α− β)!
xα−β =

∑
α∈Nn0

∂βxα =

=
n∏
j=1

∑
αj∈N0

∂βjx
αj
j =

=
n∏
j=1

∂
βj
j

1

1− xj
= ∂β

(
1

(υ − x)υ

)
=

=
β!

(υ − x)υ+β
.

�

Proposition 6.1.3. If series (6.1.3) converges at the point y ∈ Rn and
yj > 0 for every j = 1, · · · , n then, denoted by f the sum of such a series,
we have f ∈ C∞ (Int(Qy)), where Int(Qy) is the interior part of Qy.

Moreover
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∂αf(0) =
1

α!
cα. (6.1.6)

Proof. In order to prove that f ∈ C∞ (Int(Qy)) it suffices to prove that
for every q ∈ (0, 1) and for every β ∈ Nn

0 we have∑
α∈Nn0

sup
Qqy

∣∣∂β (cαx
α)
∣∣ < +∞.

By (1.2.2) we have

∂β (cαx
α) =


α!

(α−β)!
cαx

α−β, for α ≥ β,

0, otherwise.

Hence

∑
α∈Nn0

sup
Qqy

∣∣∂β (cαx
α)
∣∣ ≤∑

α≥β

α!

(α− β)!
|cα|

∣∣∣(qy)α−β
∣∣∣ =

=
1

|yβ|
∑
α≥β

α!|cαyα|
(α− β)!

q|α−β|.

(6.1.7)

Now, since (6.1.3) converges in y ∈ Rn, we get

|cαyα| ≤ µy :=
∑
α∈Nn0

|cαyα| < +∞. (6.1.8)

By the above obtained inequality and by (6.1.7) we have (for y 6= 0)

∑
α∈Nn0

sup
Qqy

∣∣∂β (cαx
α)
∣∣ ≤ µy
|yβ|

∑
α≥β

α!

(α− β)!
q|α−β|. (6.1.9)

Applying (6.1.5) with x = qυ = q(1, 1 · · · , 1), we have

∑
α≥β

α!

(α− β)!
q|α−β| =

∑
α≥β

α!

(α− β)!
(qυ)α−β =

=
β!

(υ − υq)υ+β
=

=
β!

(1− q)n+|β| .

(6.1.10)
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By the just obtained equality and by (6.1.9) we obtain∑
α∈Nn0

sup
Qqy

∣∣∂β (cαx
α)
∣∣ ≤ µy
|yβ|

β!

(1− q)n+|β| < +∞. (6.1.11)

We have proved so far that for each q ∈ (0, 1) we have f ∈ C∞ (Qyq).
Therefore f ∈ C∞ (Int(Qy)) .

Concerning (6.1.6) we have

∂βf(x) =
∑
α∈Nn0

∂β (cαx
α) =

∑
α≥β

α!

(α− β)!
cαx

α−β.

Therefore
∂βf(0) =

1

β!
cβ.

�

Exercise 1. Let f(x) be the sum of the series∑
α∈Nn0

cαx
α,

in Q% where % = (%1, · · · , %n), with %j > 0, j = 1, · · · , n. Let q ∈ (0, 1) and
set

r = (1− q) min
1≤j≤n

%j, and µ% =
∑
α∈Nn0

|cα%α| . (6.1.12)

Then we have

sup
Qq%

∣∣∂βf ∣∣ ≤ (1− q)−nµ%r−|β|β!. (6.1.13)

Solving Exercise 1.
Is an immediate consequence of (6.1.11). ♣

Exercise 2. Prove that

∑
α∈Nn0

|α|!
α!

xα =
1

1−
∑n

j=1 xj
, for

n∑
j=1

|xj| < 1, (6.1.14)

∑
α≥β

|α|!
(α− β)!

xα−β =
|β|!(

1−
∑n

j=1 xj

)1+|β| , for
n∑
j=1

|xj| < 1. (6.1.15)
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Solving Exercise 2.
By (1.2.3) we have

(x1 + x2 + · · ·+ xn)m =
∑
|α|=m

m!

α!
xα, m ∈ N0.

Hence, for
∑n

j=1 |xj| < 1, we have∑
α∈Nn0

|α|!
α!

xα =
∞∑
m=0

∑
|α|=m

|α|!
α!

xα =

=
∞∑
m=0

(x1 + x2 + · · ·+ xn)m =

=
1

1− (x1 + x2 + · · ·+ xn)
,

from which we get (6.1.14).
Concerning (6.1.15), it suffices to note that by (6.1.14), we have, for∑n
j=1 |xj| < 1,∑

α≥β

|α|!
(α− β)!

xα−β =
∑
α∈Nn0

|α|!
α!

∂β(xα) =

= ∂β(
1

1− (x1 + x2 + · · ·+ xn)
) =

=
|β|!

(1− (x1 + x2 + · · ·+ xn))1+|β| .

6.2 Analytic functions in an open set of Rn

Definition 6.2.1. Let Ω be an open set of Rn and f : Ω → R (or C) a
function. We say that f is an analytic function of real variables in
x0 ∈ Ω if there exist a neighborhood Ux0 of x0, cα ∈ R (C),α ∈ Nn

0 , such that

f(x) =
∑
α∈Nn0

cα(x− x0)α, ∀x ∈ Ux0 .

We say that f is a analytic function of real variables in Ω if it is analytic
function of real variables in every x0 ∈ Ω.

We say that f : Ω → Rm (or Cm) where m ∈ N, f = (f1, · · · , fm) is an
analytic function of real variables in x0 ∈ Ω (or in Ω) provided fj are
analytic functions of real variables in x0 ∈ Ω (or in Ω).
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In what follows, if there is no ambiguity, we will simply say "analytic
functions", omitting the expression "of real variables".

We will denote by Cω(Ω;Rm) (Cω(Ω;Cm)) the class of analytic function
defined on Ω with values in Rm (Cm), if m = 1 we write, if there is no
ambiguity, simply Cω(Ω) to denote Cω(Ω;R) (Cω(Ω;C)).

Proposition 6.1.3 immediately gives:

Cω(Ω) ⊂ C∞(Ω). (6.2.1)

Moreover, for every x0 ∈ Ω there exists a neighborhood Ux0 of x0 such that

f(x) =
∑
α∈Nn0

1

α!
∂αf(x0)(x− x0)α, ∀x ∈ Ux0 (6.2.2)

and there exist M > 0, r > 0 (depending on x0) and Ũx0 , neighborhood of
x0, with Ũx0 b Ux0 , such that

|∂αf(x)| ≤M |α|!r−|α|, ∀α ∈ Nn
0 , ∀x ∈ Ux0 , (6.2.3)

((6.2.3) follows by (6.1.13)).
We recall that the inclusion (6.2.1) is proper. As a matter of fact, the

function

f(t) =


e−1/t2 , for t 6= 0,

0, for t = 0,

(6.2.4)

belongs to C∞(R), but it is not analytic. As a matter of fact, since we have
f (k)(0) = 0, for every k ∈ N0, we have

∞∑
k=0

1

k!
f (k)(0)tk = 0 6= f(t), ∀t ∈ R \ {0}.

Therefore, for every t 6= 0, f(t) is different from the sum of its Taylor series.

The analytic functions enjoy the unique continuation property. In-
deed, the following holds true.

Theorem 6.2.2. Let Ω be a connected open set of Rn and f ∈ Cω(Ω). Let
x0 ∈ Ω. Then we have

∂αf(x0) = 0, ∀α ∈ Nn
0 =⇒ f ≡ 0, in Ω.

In particular, if f vanishes identically in an open set (not empty) of Ω then
f vanishes identically in Ω.
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Proof. Let

Ω̃ = {x ∈ Ω : ∂αf(x) = 0, ∀α ∈ Nn
0} .

It is clear that Ω̃ 6= ∅ because x0 ∈ Ω̃. Therefore, whether we prove that Ω̃
is at the same time an open and a closed set in Ω (in the topology induced
by Rn), as Ω is connected, we have Ω = Ω̃ and the thesis follows.

Since f is continuous, the set Ω̃ is closed in) Ω. Now we prove that Ω̃ is
an open set of Ω.

Let x̃ ∈ Ω̃. By the analyticity of f we have that there exists a neighbor-
hood Ux̃ of x̃ such that

f(x) =
∑
α∈Nn0

1

α!
∂αf(x̃)(x− x̃)α, ∀x ∈ Ux̃.

On the other hand, ∂αf(x̃) = 0 for every α ∈ Nn
0 , hence f(x) = 0 for every

x ∈ Ux̃. Hence
∂αf(x) = 0, ∀α ∈ Nn

0 , ∀x ∈ Ux̃,

from which Ux̃ ⊂ Ω̃. Therefore Ω = Ω̃. �

In Theorem 6.2.4 we will prove that the analytic functions can be char-
acterized by the growth of their derivatives. We premise the following

Definition 6.2.3. Let m ∈ N and let Ω be an open set of Rn. Let f : Ω→
Rm (or Cm), f = (f1, · · · , fm). Let x0 ∈ Ω and M, r > 0, j = 1, · · · ,m. We
write

f ∈ CM,r(x0),

provided that f ∈ C∞ in a neighborhood of x0 and we have

|∂αfj(x0)| ≤M |α|!r−|α|, ∀α ∈ Nn
0 , j = 1, · · · ,m.

Theorem 6.2.4. Let Ω be an open set of Rn and f : Ω→ Rm (or Cm). The
following conditions are equivalent:

(i) f is analytic in Ω,
(ii) for any compact K, K ⊂ Ω, there exist M, r > 0 (depending on K)

such that
f ∈ CM,r(x0), ∀x0 ∈ K.
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Proof. It suffices to consider the case m = 1.
We prove that (i)⇒(ii).
By (6.2.3) we know that if y ∈ Ω, there exist My, ry > 0 and a neighbor-

hood Uy of y such that

sup
Uy
|∂αf | ≤My|α|!r−|α|y , ∀α ∈ Nn

0 . (6.2.5)

Let K ⊂ Ω be a compact, then {Uy}y∈K is an open covering of K, hence
there exist Uy1 , · · · ,UyN such that

K ⊂
N⋃
j=1

Uyj .

Set
M = max

1≤j≤N
Myj , r = min

1≤j≤N
ryj .

By (6.2.5) we have

sup
K
|∂αf | ≤ sup⋃N

j=1 Uyj

|∂αf | ≤M |α|!r−|α|, ∀α ∈ Nn
0 . (6.2.6)

We prove that (ii)⇒(i).
Let us suppose that (ii) holds. Let x0 ∈ Ω and ρ > 0 satisfy Bρ(x0) ⊂ Ω.

It is not restrictive to assume that x0 = 0 ∈ Ω. Let us choose K = Bρ and
let M, r > 0 satisfy

|∂αf(x)| ≤M |α|!r−|α|, ∀x ∈ Bρ, ∀α ∈ Nn
0 . (6.2.7)

Set d, 0 < d < min{r, ρ}, we now prove

f(x) =
∑
α∈Nn0

1

α!
∂αf(0)xα, for every x such that

n∑
j=1

|xj| ≤ d.

Let x satisfy
∑n

j=1 |xj| ≤ d and set

φ(t) = f(tx), t ∈ [0, 1].

We have, for any m ∈ N,

f(x) = φ(1) =
m−1∑
k=0

1

k!
φ(k)(0) +Rm =

∑
|α|≤m−1

1

α!
∂αf(0)xα +Rm. (6.2.8)
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where

Rm =
1

(m− 1)!

∫ 1

0

(1− t)(m−1)φ(m)(t)dt.

By (1.2.3), (6.2.7) and by
∑n

j=1 |xj| ≤ d we have

∣∣∣∣ 1

m!
φ(m)(t)

∣∣∣∣ =

∣∣∣∣∣∣
∑
|α|=m

1

α!
∂αf(0)xα

∣∣∣∣∣∣ ≤
≤
∑
|α|=m

|α|!
α!

Mr−|α| |xα| =

= Mr−m
∑
|α|=m

|α|!
α!
|x1|α1 · · · |xn|αn =

= Mr−m

(
n∑
j=1

|xj|

)m

≤

≤M

(
d

r

)m
.

Therefore

|Rm| ≤
1

(m− 1)!

∫ 1

0

(1− t)(m−1)
∣∣φ(m)(t)

∣∣ dt ≤
≤ 1

(m− 1)!

∫ 1

0

(1− t)(m−1)m!M

(
d

r

)m
dt =

= M

(
d

r

)m
.

(6.2.9)

All in all, by (6.2.8) and (6.2.9) we get, if
∑n

j=1 |xj| ≤ d (recall d < r),∣∣∣∣∣∣f(x)−
∑
|α|≤m

1

α!
∂αf(0)xα

∣∣∣∣∣∣ ≤M

(
d

r

)m
→ 0, as m→∞.

�

6.3 Majorant functions
In the proof of the Cauchy–Kowalevkaya Theorem we will make use the
method of majorant series. We give the following
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Definition 6.3.1. Let m ∈ N. Let Ux0 be a neighborhood of x0 ∈ Rn and let
f : Ux0 → Rm (or Cm), F : Ux0 → Rm, f = (f1, · · · , fm), F = (F1, · · · , Fm).
Let us suppose that fj, Fj ∈ C∞(Ux0), j = 1, · · · ,m. We say that F is a
majorant of f or F majorazes f in x0 and we write

f 4 F, in x0,

provided

|∂αfj(x0)| ≤ ∂αFj(x0), ∀α ∈ Nn
0 , j = 1, · · · ,m.

Remark. Notice that if f 4 F in x0, then, we have f 4 F̃ in x0, where

F̃ (x) = F (a−1
1 x1, · · · , a−1

n xn)

for every aj ∈ (0, 1], j = 1, · · · , n. �

In what follows we will assume, without any restriction that x0 = 0 and
we will write simply (if there is no ambiguity) f 4 F instead of f 4 F in 0.

Proposition 6.3.2. Let f : U0 → Cm, where U0 is a neighborhood of 0 ∈ Rn

and, for given M, r > 0, let

φM,r(x) =
Mr

r − (x1 + · · ·+ xn)
.

Then we have
(i) f ∈ CM,r(0) if and only if f 4 υmφM,r (here υm = (1 · · · , 1︸ ︷︷ ︸)

m

),

(ii) f ∈ CM,r(0) and f(0) = 0 if and only if f 4 υm (φM,r −M).

Proof
(i) is an immediate consequence of (6.1.14). We have, indeed,

φM,r(x) =
M

1− (x1+···+xn
r

)
=
∑
α∈Nn0

M |α|!r−|α|

α!
xα.

Hence ∂αφM,r(0) = M |α|!r−|α|, from which we get (i). (ii) is a trivial conse-
quence of (i). �

From the derivation rules we have
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Proposition 6.3.3. Let f, g : U0 → C; F,G : U0 → R where U0 is a
neighborhood of 0 ∈ Rn. If,

f 4 F, and g 4 G

then

f + g 4 F +G, fg 4 FG.

Proof. The proof is left as an exercise to the reader. �

Proposition 6.3.4. Let n,m, p ∈ N and

f, F : U0 ⊂ Rn → Rm,

where U0 is a neighborhood of 0. Let us suppose

f(0) = F (0) = 0,

and let V be an open set of Rm such that U0 ⊂ V. Let

g,G : V → Rp.

Let us assume that f, F, g,G be of class C∞ and

f 4 F, g 4 G.

Then we have
g ◦ f 4 G ◦ F.

Proof. Set h = g◦f eH = G◦F . By the chain rule we have that for every
α ∈ Nn

0 there exists a polynomial Pα with positive coefficients indipendent of
f, g, F,G such that, for j = 1, · · · , p, we have

∂αhj(0) = Pα
(
∂βgl(0), · · · , ∂γfk(0)

)
,

∂αHj(0) = Pα
(
∂βGl(0), · · · , ∂γFk(0)

)
.

Since

|∂γfk(0)| ≤ ∂γFk(0), ∀β ∈ Nn
0 , k = 1, · · · ,m,

∣∣∂βgl(0)
∣∣ ≤ ∂βGl(0), ∀β ∈ Nm

0 , l = 1, · · · , p,



6.3. Majorant functions 351

and taking into account that the coefficients of Pα are positive, we get

|∂αhj(0)| ≤ Pα
(∣∣∂βgl(0)

∣∣ , · · · , |∂γfk(0)|
)
≤

≤ Pα
(∣∣∂βGl(0)

∣∣ , · · · , |∂γFk(0)|
)

=

= ∂αHj(0).

�

Proposition 6.3.5. Let n,m, p ∈ N. Let M, r, µ, ρ be positive numbers and
x̃ ∈ Rn, ỹ ∈ Rm. Let f ∈ CM,r(x̃) be a function with values in Rm, g ∈ Cµ,ρ(ỹ)
be a function with values in Rp, ỹ = f(x̃). Then

h := g ◦ f ∈ Cµ, ρr
Mm+ρ

(x̃). (6.3.1)

Proof. Set

g∗(y) = g(y + ỹ), f ∗(x) = f(x+ x̃)− f(x̃).

We have
h(x+ x̃) = g (ỹ + f(x+ x̃)− f(x̃)) = g∗ (f ∗(x))

and

f ∗ ∈ CM,r(0), g∗ ∈ Cµ,ρ(0).

Proposition 6.3.2 implies

f ∗ 4 υm (φM,r −M) . (6.3.2)

g∗ 4 υpφµ,ρ. (6.3.3)

Set
χ(x) = φµ,ρ ((φM,r(x)−M)) .

By Proposition 6.3.4, by (6.3.2) and (6.3.3) we have

h(x+ x̃) = (g∗ ◦ f ∗) (0) 4 υpχ(x). (6.3.4)

Moreover it is simple to obtain

χ(x) = φµ,ρ (φM,r(x)−M) =

=
µρ

ρ−m (φM,r(x)−M)
=

=
µρ (r − (x1 + · · ·+ xn))

ρr − (ρ+mM)(x1 + · · ·+ xn)
.
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Now we check that

χ(x) 4
µρr

ρr − (ρ+mM)(x1 + · · ·+ xn)
. (6.3.5)

To this purpose, set A = ρr, B = ρ+mM , t = x1 + · · ·+ xn,

χ̃(t) = µρ
r − t
A−Bt

.

We have

χ(x) = χ̃(x1 + · · ·+ xn). (6.3.6)

and

r − t
A−Bt

=
r/A

1−Bt/A
− t

A

1(
1− B

A
t
) =

=
r

A

∞∑
k=0

(
Bt

A

)k
− t

A

∞∑
k=0

(
Bt

A

)k
=

=
r

A
+

1

A

∞∑
k=1

[(
B

A

)k
r −

(
B

A

)k−1
]
tk 4

4
r

A
+
r

A

∞∑
k=1

(
B

A

)k
tk =

r

A−Bt
.

(6.3.7)

By (6.3.6) and (6.3.7) we obtain (6.3.5). Finally, by (6.3.4), (6.3.5) and by
Proposition 6.3.2 we get (6.3.1). �

Theorem 6.3.6. Let n,m, p ∈ N. Let Ω1 be an open set of Rn, and Ω2 be an
open set of Rm. Let f ∈ Cω(Ω1,Rm) satisfy f(Ω1) ⊂ Ω2. Let g ∈ Cω(Ω2,Rp).
Then g ◦ f ∈ Cω(Ω1,Rp).

Proof. Is an immediate consequence of Proposition 6.3.5 and of Theorem
6.2.4. �

In what follows we will use the Inverse Function Theorem and the
Implicit Function Theorem for analytic functions .

For instance, we will exploit the following fact. If φ : Ω→ R is an analytic
function in Ω and

∇φ(x0) 6= 0,

x0 ∈ Ω, then there exist r, δ > 0 and an isometry

Ψ : Rn → Rn,



6.3. Majorant functions 353

such that

Ψ(0) = x0,

Ψ−1 ({x ∈ Ω : φ(x) = φ(x0)}) ∩Qr,2M = {(x′, ϕ(x′)) : x′ ∈ B′r}

where ϕ ∈ Cω (B′r;R) and it satisfies

ϕ(0) = 0, |∇ϕ(0)| = 0,

and
‖ϕ‖C1(B′r0) ≤Mr.

We will not prove this Theorem which can be proved by the method of the
majorant functions that we will learn to use in the next Chapter.





Chapter 7

The Cauchy problem for PDEs
with analytic coefficients

7.1 Formulation of the Cauchy problem

In this Section we will give a fairly general formulation of the Cauchy prob-
lem. Although we are mainly interested in the linear operators, the formu-
lation that we will give also applies to the fully nonlinear operators.

Let Ω be a connected open set of Rn. Let x0 ∈ Ω, φ ∈ Cm(Ω;R), where
m ∈ N. Let us suppose that

φ(x0) = 0. (7.1.1)

Set

Γ = {x ∈ Ω : φ(x) = 0} (7.1.2)

and let us assume

∇φ(x) 6= 0, ∀x ∈ Γ. (7.1.3)

Let us denote by

ν(x) = − ∇φ(x)

|∇φ(x)|
, ∀x ∈ Γ. (7.1.4)

Let be given the function g0, g1, · · · , gm−1, defined on Γ, and let F
(
x, (pα)|α|≤m

)
be a function defined on Ω × RNm , where Nm ∈ N depends on m only. The
Cauchy problem is formulated as follows.

Determine u of class Cm in a neighborhood U of x0 such that

355
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F
(
x, (∂αu)|α|≤m

)
= 0, ∀x ∈ U ,

∂ju(x)
∂νj

= gj(x), j = 0, 1, · · · ,m− 1, ∀x ∈ Γ ∩ U .
(7.1.5)

The functions g0, g1, · · · , gm−1 and Γ are called, respectively, the ini-
tial data or the initial values and the initial surface of Cauchy problem
(7.1.5). The equations

∂ju(x)

∂νj
= gj(x), j = 0, 1, · · · ,m− 1, ∀x ∈ Γ ∩ U , (7.1.6)

are called the initial conditions of the Cauchy problem . Of course, it
makes sense and interest to set more general initial conditions. For instance,
instead of the vector field ν(x), we may consider a vector field `(x) in a
neighborhood of Γ, of class Cm−1, requiring that

∂ju(x)

∂`j
= gj(x), j = 0, 1, · · · ,m− 1, ∀x ∈ Γ ∩ U . (7.1.7)

We can easly check that if the vector field `(x) and the functions gj are
smooth enough and if `(x) · ν(x) 6= 0, for any x ∈ Γ, then conditions (7.1.6)
and (7.1.7) are equivalent. To realize this, let us consider the simple case
where m = 2, Ω = Rn, φ(x) = xn, hence ν(x) = −en for every x ∈ Γ and
` = (`′, `n), where `′ = (`1, · · · , `n−1), is a vector field such that `n(x′) 6= 0
for every x′ ∈ Rn−1. Let us assume u ∈ C2(Rn) and

u(x′, 0) = g0(x′), ∂nu(x′, 0) = −g1(x′), ∀x′ ∈ Rn−1, (7.1.8)

where g0 ∈ C1(Rn−1) and g1 ∈ C0(Rn−1). By the first equation in (7.1.8) we
have

∇x′u(x′, 0) = ∇x′g0(x′), ∀x′ ∈ Rn−1

that, together with ∂nu(x′, 0) = −g1(x′), gives

∂u

∂`
(x′, 0) = `′ · ∇x′g0(x′)− `ng1(x′), ∀x′ ∈ Rn−1. (7.1.9)

Conversely, let us suppose that

u(x′, 0) = g̃0(x′),
∂

∂`
u(x′, 0) = g̃1(x′), ∀x′ ∈ Rn−1, (7.1.10)
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where g̃0 ∈ C1(Rn−1) and g̃1 ∈ C0(Rn−1). We have, by the first equation in
(7.1.10) and taking into account that `n 6= 0,

∂nu(x′, 0) =
1

`n(x′)
(−`′(x′) · ∇x′ g̃0(x′) + g̃1(x′)) .

We also notice that if `n = 0 at some point x′0 ∈ Rn−1 then between (7.1.8)
and (7.1.10) there is no equivalence. Actually, if (7.1.8) holds, then we can
equally get (7.1.9), but by (7.1.10) we see that between g̃0 and g̃1 the following
condition of compatibility needs to be fulfilled

−`′(x′0) · ∇x′ g̃0(x′0) + g̃1(x′0) = 0.

On the other hand, if this condition is satisfied, it is undeterminate the value
of ∂nu(x′0, 0).

7.2 The characteristic surfaces
The notion of the characteristic surface has a fundamental importance in
the investigation of the Cauchy problem. Roughly speaking, we say that the
surface Γ is noncharacteristic if, assuming φ, u, F, gj ∈ C∞,
for j = 0, 1, · · · ,m− 1, all the derivatives of u on Γ can be determined from
by (7.1.5).

Of course, we need to specify this notion and arrive at a formal defini-
tion, however in what follows we will not tackle problem (7.1.5) in its full
generality, but we will limit ourselves to the linear case, i.e.

F
(
x, (∂αu)|α|≤m

)
= P (x, ∂)u− f(x) =

∑
|α|≤m

aα(x)∂αu− f(x),

Where we will assume, unless explicitly otherwise stated,

φ, aα, f ∈ C∞(Ω), |α| ≤ m (7.2.1)

and that (7.1.3) holds.
To motivate the definition of a characteristic surface that we will give, we

begin by considering the following Cauchy problem


P (x, ∂)u = f(x), ∀x ∈ BR,

∂jnu(x′, 0) = gj(x
′), j = 0, 1, · · · ,m− 1, ∀x′ ∈ B′R.

(7.2.2)
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Here φ(x) = −xn, Γ = {x ∈ BR : xn = 0}.
Now, if gj, j = 0, 1, · · · ,m − 1, are of class C∞, and if there exists a

solution u ∈ C∞(BR) to problem (7.2.2), we have, by the initial condizions,

∂α
′
∂jnu(x′, 0) = ∂α

′
gj(x

′), ∀α′ ∈ Nn−1
0 , j = 0, 1, · · · ,m− 1. (7.2.3)

Let us notice that by (7.2.3) we cannot determine the derivatives

∂jnu(x′, 0), j ≥ m (7.2.4)
and a fortiori, we cannot determine the derivatives ∂α′∂jnu(x′, 0) for j ≥ m,
α′ ∈ Nn−1

0 . To gain such derivatives we should exploit the equation

P (x, ∂)u = f(x)

which we write in the form

a(0′,m)(x
′, 0)∂mn u(x′, 0) = −

∑
|α′|≤m, αn<m

aα(x′, 0)∂αu(x′0) + f(x′, 0). (7.2.5)

Let us note that to the right–hand side of (7.2.5), by (7.2.3), all the deriva-
tives that appear can be expressed in terms of the initial data and their
derivatives. Therefore, if

a(0′,m)(x
′, 0) 6= 0, ∀x′ ∈ B′R, (7.2.6)

by (7.2.5) we determine ∂mn u(x′, 0), hence we can calculate

∂α
′
∂mn u(x′, 0), ∀α′ ∈ Nn−1

0 ,∀x′ ∈ B′R. (7.2.7)

Actually, condition (7.2.6) allows us to deduce all the derivatives of u(x′, 0).
As a matter of fact, by calculating the derivatives w.r.t. xn of both the sides
of (7.2.5), we have

a(0′,m)(x)∂m+1
n u(x) = −∂na(0′,m)(x)∂mn u(x)︸ ︷︷ ︸

known for xn=0 (by (7.2.7))

−

− ∂n(
∑

|α′|≤m, )αn<m

aα(x)∂αu(x))︸ ︷︷ ︸
known for xn=0 (by (7.2.3))

+

+ ∂nf(x)︸ ︷︷ ︸
known for xn=0

.

(7.2.8)
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Again, condition (7.2.6) allows us to derive from (7.2.8) the derivative

∂m+1
n u(x′, 0), ∀x′ ∈ B′R.

Of course, we can further make the derivatives of both the sides of (7.2.8) and
we determine ∂m+2

n u(x′, 0). Iterating the procedure we obtain the derivatives

∂knu(x′, 0), ∀k ∈ N0, ∀x′ ∈ B′R
and then calculating the derivatives w.r.t. x1, x2 · · · , xn−1 we can calculate
all the derivatives of u at the points (x′, 0) ∈ B′R.

At this point we note that condition (7.2.6) can be written

Pm((x′, 0), ν) = im
∑
|α|=m

aα(x′, 0)να 6= 0, ∀α′ ∈ Nn−1
0 , ∀x′ ∈ B′R (7.2.9)

being, in this case, ν = en and recalling that Pm(x, ξ) = im
∑
|α|=m aα(x)ξα.

Now we give the following general definition

Definition 7.2.1. Let Ω be an open set of Rn and x0 ∈ Ω. Let aα ∈ C0(Ω),
for any |α| ≤ m. Let

P (x, ∂) =
∑
|α|≤m

aα(x)∂α

be a linear differential operator of order m.
We say that ` ∈ Rn is a characteristic direction for the operator

P (x, ∂) in x0 if
Pm(x0, `) = 0. (7.2.10)

Let φ ∈ C1(Ω) satisfy
∇φ(x0) 6= 0.

We say that Γ = {x ∈ Ω : φ(x) = φ(x0)} is a characteristic surface in
x0 for the operator P (x, ∂) provided ν(x0) = − ∇φ(x0)

|∇φ(x0)| is a characteristic
direction for P (x, ∂) in x0 that is, if

Pm(x0, ν(x0)) = im
∑
|α|=m

aα(x0)να(x0) = 0,

or, equivalently,
Pm(x0,∇φ(x0) = 0.
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In the sequel, we will say that Γ is a noncharacteristic surface in x0

for the operator P (x, ∂), provided that

Pm(x0,∇φ(x0) 6= 0.

We will say that Γ is a characteristic surface for the operator P (x, ∂) if
it is characteristic at each point of Γ. Finally, we say that Γ is a nonchar-
acteristic surface for the operator P (x, ∂) as long as it is noncharacteristic
at every point of Γ. Let us notice that being a "non characteristic" is more
restrictive than the negation of "characteristic surface." This little abuse will
simplify the form of expression later on.

We notice that the previous definition involves only the principal part
of the operator P (x, ∂).

For completeness, we also give a definition of a non characteristic surface
for the quasilinear operator of order m

P(u) =
∑
|α|=m

aα
(
x, (∂βu)||β|≤m−1

)
∂αu+ a0

(
x, (∂βu)||β|≤m−1

)
, (7.2.11)

where aα
(
x, (pβ)||β|≤m−1

)
, a0 are given functions.

Definition 7.2.2. Let Ω, x0, φ, Γ be like in Definition 7.2.1 and let P be
like in (7.2.11). We say that Γ is a noncharacteristic surface in x0 for the
operator P if Γ is a noncharacteristic surface in x0 for to the operator∑

|α|=m

aα
(
x, (pβ)||β|≤m−1

)
∂α

for each value of pβ, for |β| ≤ m− 1. We say that Γ is a noncharacteristic
surface for the operator P if it is a noncharacteristic in each point of Γ.

Remark. Definition 7.2.2 is actually more restrictive than that would be
needed to determine ∂γu(x′, 0) for all γ ∈ Nn

0 . Let us consider, for instance,
the Cauchy problem

P(u) = 0, ∀x ∈ BR,

∂jnu(x′, 0) = gj(x
′), j = 0, 1, · · · ,m− 1, ∀x′ ∈ B′R,

. (7.2.12)
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Let us suppose that aα, a0, gj are functions C∞. We have proved before
that the derivatives ∂γu(x′, 0), for |γ| ≤ m − 1, depend on the initial data
only. Hence the value of aα

(
(x′, 0), (∂βu(x′, 0))||β|≤m−1

)
are determined by

the Cauchy data only. Therefore, it should be more natural to say that
Γ is a noncharacteristic surface for the operator P provided that Γ is a
noncharacteristic surface in x0 for to the operator∑

|α|=m

aα
(
(x′, 0), (∂βu(x′, 0))||β|≤m−1

)
∂α.

�

7.3 Transformation of a linear differential op-
erator.

We wish to examine the transformation of the principal part of the linear
differential operator

P (x, ∂) =
∑
|α|≤m

aα(x)∂α,

under the action of
Λ ∈ Cm(Ω,Rn),

where Ω is an open set of Rn and Λ = (Λ1, · · · ,Λn) is a diffeomorphism of
class Cm. By this we mean that Λ is injective and it satisfies

det (∂xΛ(x)) 6= 0, ∀x ∈ Ω,

where ∂xΛ(x) is the jacobian matrix of Λ. Let u ∈ Cm(Ω) and set

v(y) = u
(
Λ−1(y)

)
, ∀y ∈ Ω̃ := Λ(Ω),

we have v ∈ Cm(Ω̃).
Moreover by

u(x) = v (Λ(x)) , ∀x ∈ Ω,

we have

∂xju(x) =
n∑
k=1

(∂ykv) (Λ(x)) ∂xjΛk(x), j = 1, · · · , n, ∀x ∈ Ω

∂2
xjxi

u(x) =
n∑

h,k=1

(∂yhykv) (Λ(x)) ∂xiΛh(x)∂xjΛk(x)+
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∂2
xjxi

u(x) =
n∑

h,k=1

(∂yhykv) (Λ(x)) ∂xiΛh(x)∂xjΛk(x)+

+
n∑
k=1

(∂ykv) (Λ(x)) ∂xjxiΛk(x) =

=
((

(∂xΛ(x))t∂y
)
i

(
(∂xΛ(x))t∂y

)
j

)
v(Λ(x))+

+ (first order terms).

In general we have

∂αxu(x) =
((

(∂xΛ(x))t∂y
)α)

v(Λ(x)) + (terms of order less than |α|). (7.3.1)

Now, let us denote by P̃ (y, ∂y) the transformed operator of P (x, ∂x) through
Λ, that is the operator satisfying(

P̃ (y, ∂y)v(y)
)
|y=Λ(x)

= P (x, ∂x)u(x). (7.3.2)

By (7.3.2) we have that the principal part of P̃ (y, ∂y), P̃m(y, ∂y), is given by

P̃m(y, ∂y) =
∑
|α|=m

aα(Λ−1(y))
(
(∂xΛ(x))t ∂y

)α
|x=Λ−1(y)

=

= P (x, ∂x(Λ(x))t∂y)|x=Λ−1(y)

(7.3.3)

and its symbol P̃m(y, η) is given (up to the multiplicative constant im) by

P̃m(y, η) =
∑
|α|=m

aα(Λ−1(y))
(
(∂xΛ(x))t η

)α
|x=Λ−1(y)

. (7.3.4)

From what we have so far established, we easily obtain

Theorem 7.3.1 (invariant property of the characteristic surfaces).
Let Ω be an open set of Rn, and let x0 ∈ Ω, φ ∈ Cm(Ω),

Γ = {x ∈ Ω : φ(x) = φ(x0)} .

Let us suppose that
∇φ(x) 6= 0, ∀x ∈ Γ.

Moreover, let P (x, ∂) be a linear differential operator of order m and
Λ ∈ Cm(Ω,Rn) be a diffeomorphism of class Cm.

Then Γ is a noncharacteristic surface for P (x, ∂) if and only if Λ(Γ) is a
noncharacteristic surface for the operator P̃ (y, ∂y).



7.3. Transformation of a linear differential operator. 363

Proof. It is not restrictive to assume x0 = 0 and Λ(x0) = 0. Now, since
Γ = {x ∈ Ω : φ(x) = 0}, we have

Λ(Γ) =
{
y ∈ Λ(Ω) : φ̃(y) = 0

}
,

where φ̃ = φ ◦ Λ. On the other hand, Γ is a noncharacteristic surface for
P (x, ∂) if and only if

Pm(x,∇φ(x)) 6= 0, ∀x ∈ Γ,

but we have

∇yφ̃(y) = (∂xΛ(x))t|x=Λ−1(y) (∇xφ)
(
Λ−1(y)

)
.

Therefore by (7.3.4) we have

P̃m(y,∇yφ̃(y)) = im
∑
|α|=m

aα(x) (∇xφ)α = Pm(x,∇xφ(x))

from which the thesis follows. �

The following Proposition holds true.

Proposition 7.3.2. Let Ω be an open set of Rn and let x0 ∈ Ω and φ ∈
C∞(Ω) satisfy

∇φ(x0) 6= 0.

Let f, aα ∈ C∞(Ω) for |α| ≤ m. Let us assume that

Γ = {x ∈ Ω : φ(x) = φ(x0)}

is a noncharacteristic surface in x0 for the operator P (x, ∂). Let
gj ∈ C∞(Ω), for j = 0, 1, · · · ,m− 1.

If u is a C∞ solution in a neighborhood U of x0 of the Cauchy problem
P (x, ∂)u = f(x), ∀x ∈ U ,

∂ju(x)
∂νj

= gj(x), j = 0, 1, · · · ,m− 1,∀x ∈ Γ ∩ U ,
. (7.3.5)

then the derivatives ∂αu(x0) are uniquely determined for every α ∈ Nn
0 .
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Proof. Although the proof follows the line indicated in the particular
case φ(x) = −xn we want to dwell on some details that may be useful later.

We split the proof into two steps. In Step I we determine the derivatives
of u of order less than m on Γ in, Step II we determine the higher order
derivatives of u.

Step I. We begin by proving that if φ ∈ Ck(Ω), k ≥ 1, ∇φ(x0) 6= 0 and v
is any Ck function in a neighborhood of x0 then there exists a neighborhood
V of x0 such that the derivatives ∂jv(x)

∂νj
on Γ∩V , for j = 0, 1, · · · , k determine

the derivatives ∂αv on Γ ∩ V for each |α| ≤ k.
Since ∇φ(x0) 6= 0, we may limit ourselves, up to isometries, to consider

the case where, we have, for a suitable δ > 0,

Γ = {(x′, ϕ(x′)) : x′ ∈ B′δ} , (7.3.6)

where ϕ ∈ Ck(B′δ),
ϕ(0) = |∇ϕ(0)| = 0.

We have
ν((x′, ϕ(x′))) =

(∇x′ϕ(x′),−1)√
1 + |∇x′ϕ|2

. (7.3.7)

Also set

µ(x′) := ν((x′, ϕ(x′)))
√

1 + |∇x′ϕ|2 = (∇x′ϕ(x′),−1). (7.3.8)

We proceed by induction on the order s of derivatives. If s = 0, then v
is known on Γ, but to better understand the procedure, we also consider the
case k = 1. In such a case we have, for x′ ∈ B′δ,

v(x′, ϕ(x′)) = g0(x′), (7.3.9)

n−1∑
j=1

(∂jv)(x′, ϕ(x′))∂jϕ(x′)− (∂nv)(x′, ϕ(x′)) =

= g1(x′)
√

1 + |∇x′ϕ(x′)|2.

(7.3.10)

Making the derivatives w.r.t. xi of both the sides of (7.3.9), for i =
1, · · · , n− 1, we get, (for the sake of brevity, omit the variables)

∂iv + ∂nv∂iϕ = ∂ig0.

Hence
∂iv = ∂ig0 − ∂nv∂iϕ
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and, inserting these derivatives in (7.3.10), we have

n−1∑
j=1

∂jg0∂jϕ−
(
1 + |∇x′ϕ|2

)
∂nv = g1

√
1 + |∇x′ϕ|2

from which we get

∂nv =
1

1 + |∇x′ϕ|2
(
∇x′g0 · ∇x′ϕ− g1

√
1 + |∇x′ϕ|2

)
.

Now let us prove that if ∂αv are determined by |α| ≤ s on Γ (with
s ≤ k − 1) then ∂αv are determined on Γ for |α| ≤ s+ 1.

Let
∂αv(x′, ϕ(x′)) = hα(x′), for |α| = s, on Γ (7.3.11)

and set, for j = 0, 1, · · · , k,

g̃j(x
′) =

(
1 + |∇x′ϕ|2

)j/2 ∂jv
∂νj

=
∑
|α|=j

µα(x′)∂αv(x′, ϕ(x′)).

Then, besides (7.3.11), we know that∑
|α|=s+1

µα∂αv = g̃s+1 on Γ, (7.3.12)

which we write

s+1∑
j=0

∑
|α′|=s+1−j

µ′α
′
µj∂jn∂

α′v = g̃s+1 on Γ, (7.3.13)

where α′ = (α1, · · · , αn−1) and µ′ = (µ1, · · · , µn−1).
At this point we express ∂jn∂α

′
v, for |α′| = s+1−j, through the functions

∂s+1
n v and hγ for |γ| ≤ s.
If j < s + 1, there exists i ∈ {1, · · · , n − 1} such that α′ − ei ≥ 0. Set

β′ = α′ − ei and let us recall that by (7.3.11) we have

∂jn∂
β′v = h(β′,j),

from which, making the derivative w.r.t. xi we have

∂jn∂i∂
β′v︸ ︷︷ ︸

∂α′v

+ µi∂
j+1
n ∂β

′
v = ∂ih(β′,j),

hence
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∂jn∂
α′v = ∂ih(β′,j) − µi∂j+1

n ∂β
′
v.

Now, if β′ 6= 0, we proceed in a similar manner for ∂jn∂α
′
v and then we iterate.

Denoting by H(α′,j) the functions of the type

j∑
k=0

∑
|β′|=s−j

c(β′,k)h(β′,k),

where c(β′,k) are known functions expressable by means of µi, i = 1, · · · , n−1,
we obtain

∂jn∂
α′v = H(α′,j) + (−1)s+1−jµ′α

′
∂s+1
n v for |α| = s+ 1− j. (7.3.14)

Inserting (7.3.14) in (7.3.13) we get (recall µn = −1)

g̃s+1 =
s+1∑
j=0

∑
|α′|=s+1−j

(−1)jµ′α
′
(
H(α′,j) + (−1)s+1−jµ′α

′
∂s+1
n v

)
=

=
s+1∑
j=0

∑
|α′|=s+1−j

(−1)jµ′α
′
H(α′,j) +

 s+1∑
j=0

∑
|α′|=s+1−j

(−1)jµ′2α
′

 ∂s+1
n v.

From which we have

(−1)s+1

1 +
∑

1≤|α′|≤s+1

µ′2α
′

 ∂s+1
n v =

= g̃s+1 −
s+1∑
j=0

∑
|α′|=s+1−j

(−1)jµ′α
′
H(α′,j).

(7.3.15)

Since ∑
1≤|α′|≤s+1

µ′2α
′ ≥ 0,

by (7.3.15) we determine ∂s+1
n v.

Step II. Let us consider the Cauchy problem


P (x, ∂)u = f(x), ∀x ∈ U ,

∂ju(x)
∂νj

= gj(x), j = 0, 1, · · · ,m− 1, ∀x ∈ Γ ∩ U .
. (7.3.16)
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Figure 7.1:

Like Step I we assume that Γ is the graph (7.3.6), where ϕ ∈ C∞(B′δ),
ϕ(0) = |∇x′ϕ(0)| = 0. By what was proved in Step I we can determine, from
the functions g0, g1, · · · , gm−1 only, the derivatives

∂αu, for |α| ≤ m− 1, on Γ. (7.3.17)

Let now us show in which a way we determine the other derivatives of u
on Γ. Let

Λ : Bδ ⊂ Rn
x → Rn

y , Λ(x) = (x′, xn − ϕ(x′)) ,

we have

Λ(Γ) = {(y′, 0) : y′ ∈ B′δ} = {y ∈ Bδ : −yn = 0}
and, set

v(y) = u
(
Λ−1(y)

)
.

Equality (7.3.1) implies that the derivatives

∂αv(y′, 0), for |α| ≤ m− 1, ∀y′ ∈ B′δ,
are all uniquely determined. In particular, the following derivatives are de-
termined

∂jnv(y′, 0), for j = 0, 1, · · · ,m− 1, ∀y′ ∈ B′δ, . (7.3.18)
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On the other hand, by (7.3.2) we have that v, solves the following equation
in a neighborhood of 0

P̃ (y, ∂y)v(y) :=
∑
|α|≤m

bα∂
α
y v(y) = f̃(y),

where f̃(y) = f (Λ−1(y)). Now, by Proposition 7.3.1 we have that Λ(Γ) is a
noncharacteristic surface for P̃ (y, ∂y). Since Λ(Γ) = {y ∈ Bδ : −yn = 0} we
have

b(0,m)(y
′, 0) =

∑
|α|=m

bα(y′, 0)eαn 6= 0 ∀y′ ∈ B′δ.

We are therefore reduced to the same situation examined at the beginning of
this Section 7.2 and we then calculate the derivatives ∂αy v(y′, 0) for |α| ≥ m
from the derivatives of gj, j = 0, 1, · · · ,m− 1 and the coefficients (and their
derivatives) of P̃ (y, ∂y). Finally, by exploiting formula (7.3.1) we obtain the
derivatives ∂αxu on Γ for |α| ≥ m. �

We conclude this Section with some examples and remarks.

Remarks. Let P (x, ∂), x ∈ Ω, be a linear differential operator whose
principal part is Pm(x, ∂).

1. We call characteristic equation the non linear first order equation in
the unknown φ

Pm(x,∇φ(x)) = 0. (7.3.19)

2. We say that P (x, ∂) is elliptic in the point x0 ∈ Ω if

Pm(x0, ξ) 6= 0, ∀ξ ∈ Rn \ {0}.

It is evident that the elliptic operators have not characteric surface. If P (x, ∂)
is elliptic in each point of Ω we say that P (x, ∂) is elliptic in Ω. Each linear
differential operators of one variable are elliptic

P (t,
d

dt
) = am(t)

dm

dtm
+ · · ·+ a0(t), t ∈ I,

where am(t) 6= 0 for t ∈ I, where I is an interval of R. As a matter of fact

P (t, ξ) = am(t)ξm 6= 0, t ∈ I, ∀ξ ∈ R \ {0}.

A remarkable example of an elliptic operator is the operator of Cauchy-
Riemann

P ((x, y), ∂x, ∂y) = ∂x + i∂y.
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If m = 2 and ajk, where ajk(x) = akj(x) for x ∈ Ω, j, k = 1, · · · , n are
real–valued functions in R, we define a uniformly elliptic operator with
bounded coefficients an operator of the type

P (x, ∂) =
n∑

j,k=1

ajk(x)∂2
jk +

n∑
j=1

bj(x)∂j + c(x)

such that there exists a constant λ ≥ 1 satisfying

λ−1|ξ|2 ≤
n∑

j,k=1

ajk(x)ξjξk ≤ λ|ξ|2, ∀x ∈ Ω, ∀ξ ∈ Rn.

�

Exercise. Let us consider the following operator with constant coeffi-
cients

P (∂) =
n∑

j,k=1

ajk∂
2
jk, (7.3.20)

where {ajk} is a real symmetric matrix. If det{ajk} 6= 0 then there exists
a nonsingular matrix C such that, setting y = Cx, operator (7.3.20), is
transformed in

P (∂y) =
n∑
j=1

κj∂2
yj
,

where κj, j = 1, · · · , n, is equal either to 1 or to −1. ♣

7.4 The Cauchy-Kovalevskaya Theorem
In what follows we denote by Ω an open set of Rn, x0 ∈ Ω and by
φ ∈ Cω(Ω,R) a function such that

∇φ(x) 6= 0, ∀x ∈ Γ := {x ∈ Ω : φ(x) = φ(x0)} . (7.4.1)

By (7.4.1) we have that for every x̂ ∈ Γ there exist r,M > 0 and an isometry
Ψ under which we have Ψ(0) = x̂, and

Ψ−1(Γ) ∩Qr,2M = {(x′, ϕ(x′)) : x′ ∈ B′r}

where ϕ ∈ Cω (B′r;R) and it satisfies
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ϕ(0) = 0, |∇ϕ(0)| = 0,

‖ϕ‖C1(B′r) ≤Mr.

We say that a function
h : Γ→ C

is analitic on Γ, provided that

(h ◦Ψ) (·, ϕ(·)) ∈ Cω (B′r) .

In this Section we will prove

Theorem 7.4.1 (Cauchy–Kovalevskaya). Let m ∈ N and let Ω be an
open set of Rn, x0 ∈ Ω, φ ∈ Cω(Ω,R) which satisfies (7.4.1). Moreover, let
P (x, ∂) be the linear differential operator

P (x, ∂) =
∑
|α|≤m

aα(x)∂α, (7.4.2)

where aα ∈ Cω(Ω), for |α| ≤ m. Let g0, g1, · · · , gm−1 be analytic functions
on Γ. Let us assume that Γ is a noncharacteristic surface for the operator
P (x, ∂). Let f ∈ Cω(Ω).

Then for every x̃ ∈ Γ there exists a neighborhood Ux̃ such that the Cauchy
problem

P (x, ∂)u(x) = f(x), ∀x ∈ Ux̃,

∂ju(x)
∂νj

= gj(x), j = 0, 1, · · · ,m− 1, ∀x ∈ Γ ∩ Ux̃
(7.4.3)

has a unique analytic solution in Ux̃.

In order to prove Cauchy-Kovalevskaya Theorem we need two preliminary
steps

(i) local flatness of initial surface;
(ii) transformation of problem (7.4.3) to a Cauchy problem for a first

order system.

We have already considered point (i) in the context of of the proof of
Step II of Proposition 7.3.2. Here it suffices to add that, referring to the
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notations used in the above proof, the function ϕ introduced there is, not
only C∞, but also analytic in B′δ and, consequently, the map

Λ : Bδ ⊂ Rn
x → Rn

y , Λ(x) = (x′, xn − ϕ(x′)) , (7.4.4)

which, we recall, flatten Γ in the sense that

Λ(Γ) = {(y′, 0) : y′ ∈ B′δ} = {y ∈ Bδ : −yn = 0} .

Moreover, setting
v(y) = u

(
Λ−1(y)

)
, (7.4.5)

the operator P̃ (y, ∂y), defined by(
P̃ (y, ∂y)v(y)

)
|y=Λ(x)

= P (x, ∂x)u(x), (7.4.6)

has its principal part P̃m(y, ∂y), given by

P̃m(y, ∂y) =
∑
|α|=m

bα(y)∂α, (7.4.7)

where
bα(y) = aα(Λ−1(y)), for |α| ≤ m, (7.4.8)

are analytic functions on Bδ.
Again by Proposition 7.3.2 we know that the new initial data

g̃j(y
′) = ∂jnv(y′, 0), j = 0, 1, · · · ,m− 1, are determined by the initial data gj

and that g̃j are analytic in a neighborhood of 0 ∈ Rn−1. Moreover, we know
that the surface

{y ∈ Bδ : −yn = 0}

is noncharacteristic. Therefore

b(0,m)(y
′, 0) 6= 0, ∀y′ ∈ B′δ(0).

Hence, setting

b̃α(y) = − bα(y)

b(0,m)(y)
, f̃(y) =

f (Λ−1(y))

b(0,m)(y)
,

we write problem (7.4.3) as
∂mn v =

∑
|α|≤m,αn≤m−1 b̃α(y)∂αv + f̃(y),

∂jnv(y′, 0) = g̃j(y
′), j = 0, 1, · · · ,m− 1.

(7.4.9)



372 Chapter 7. The Cauchy problem for PDEs with analytic coefficients

We may easily transform problem (7.4.9) into a Cauchy problem with
homogeneous initial conditions. To this purpose it suffices to define the
function

H(y) =
m−1∑
j=0

yjn
j!
g̃j(y

′)

and set
w = v −H,

obtaining 
∂mn w =

∑
|α|≤m,αn≤m−1 b̃α(y)∂αw + F (y),

∂jnw(y′, 0) = 0, j = 0, 1, · · · ,m− 1.

(7.4.10)

where

F (y) = f̃(y)− ∂mn H(y) +
∑

|α|≤m,αn≤m−1

b̃α(y)∂αH(y). (7.4.11)

(ii). The idea of the tranformation is simple and it partly replicates the
one usually followed to reduce a Cauchy problem for ordinary differential
equations of order m to a Cauchy problem for a first-order system. However,
in our case the unknown depends on n > 1 variables, and this requires further
arrangements.

In order to highlight the main steps we illustrate the procedure in the
case where n = 2 and the operator is equal to its principal part only. Next
we will outline how to proceed in the general case.

Let us consider the Cauchy problem
∂mt u =

∑
j≤m−1

∑
i+j=m ai,j(x, t)∂

i
x∂

j
tu+ f(x, t),

∂jtu(x, 0) = 0, j = 0, 1, · · · ,m− 1, ∀x ∈ R.
(7.4.12)

Let us assume that m ≥ 2 and let u(x, t) be a C∞ solution of (7.4.12).
We set

Vi,j = ∂ix∂
j
tu, for i+ j ≤ m− 1.

It is simple to check what follows
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∂tVi,j = Vi,j+1, for i+ j < m− 1, (7.4.13a)

∂tVi,j = ∂xVi−1,j+1, for i+ j = m− 1, i > 0, (7.4.13b)

∂tV0,m−1 =
∑

i+j=m−1

ai+1,j(x, t)∂xVi,j + f(x, t), (7.4.13c)

Vi,j(x, 0) = 0 for i+ j ≤ m− 1. (7.4.13d)

Hence, if V0,0 is a solution to Cauchy problem (7.4.12), then it is a so-
lution to Cauchy problem (7.4.13a)–(7.4.13d). Thus, in order to prove the
equivalence of problem (7.4.12) and problem (7.4.13a)–(7.4.13d) it suffices to
prove the converse. Let us suppose, therefore, that V = (Vi,j)i+j≤m−1 is a
C∞ a solution to problem (7.4.13a)–(7.4.13d) and let us prove that V0,0 is a
solution to problem (7.4.12).

1. We prove that

If i+ j = m− 1, i > 0 then Vi,j = ∂xVi−1,j. (7.4.14)

Proof. Let i+ j ≤ m− 1 and i > 0. By (7.4.13b) we have

∂tVi,j = ∂xVi−1,j+1, for i+ j = m− 1, i > 0. (7.4.15)

Now, since (i− 1) + j = m− 2, by (7.4.13a) we have

Vi−1,j+1 = ∂tVi−1,j. (7.4.16)

Hence, by (7.4.15) e (7.4.16) we have

∂t (Vi,j − ∂xVi−1,j) = 0. (7.4.17)

On the other hand, by (7.4.13d) we have

(Vi,j − ∂xVi−1,j) (x, 0) = 0

this equality and (7.4.17) implies

Vi,j = ∂xVi−1,j.

2. We prove that

If i+ j ≤ m− 1, i > 0 then Vi,j = ∂xVi−1,j. (7.4.18)
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Proof. Set l = (m − 1) − (i + j) and let us proceed by induction on l. If
l = 0, then (7.4.18) holds true, because it is nothing but (7.4.14). Let now
let us suppose that (7.4.18) holds true for l and prove it for l+ 1. Hence, let
us suppose that

if i+ j = (m− 1)− l, i > 0 then Vi,j = ∂xVi−1,j. (7.4.19)

Let i, j satisfy i + j = (m − 1) − (l + 1) and i > 0. Since i + j < m − 1 by
(7.4.13a) we have

∂tVi,j = Vi,j+1. (7.4.20)

Since we have i+ (j + 1) = (m− 1)− l, (7.4.19) gives

Vi,j+1 = ∂xVi−1,j+1. (7.4.21)

Since (i− 1) + j = (m− 1)− l − 2 < m− 1, (7.4.13a) gives

Vi−1,j+1 = ∂tVi−1,j, for i+ j < m− 1. (7.4.22)

Hence, by (7.4.21) e (7.4.22) we have

Vi,j+1 = ∂xVi−1,j+1 = ∂t∂xVi−1,j,

by the latter and by (7.4.20) we have

∂t (Vi,j − ∂xVi−1,j) = 0 (7.4.23)

so, by (7.4.13d) we have that, if i+ j = (m− 1)− (l + 1), i > 0, then

Vi,j = ∂xVi−1,j.

(7.4.18) is proved.

Conclusions. Iteration of (7.4.18) implies what follows:

if i+ j ≤ m− 1, i > 0 then Vi,j = ∂ixV0,j. (7.4.24)

On the other hand, (7.4.13a) gives

V0,j = ∂tV0,j−1 = · · · = ∂jtV0,0. (7.4.25)

All in all, by (7.4.24) and (7.4.25) we get

Vi,j = ∂ix∂
j
tV0,0
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and using this equality into (7.4.13c)–(7.4.13d) we have that V0,0 solves
(7.4.12).

We may rewrite problem (7.4.13a)–(7.4.13d) in a more concentrated form
as follows 

∂tV (x, t) = B(x, t)∂xV + F (x, t),

V (x, 0) = 0.

(7.4.26)

where, for an appropriate N ∈ N, V is a function with values in RN , B is an
N ×N matrix whose entries are analytic and F = feN .

In the case n > 2 one may similarly reduce Cauchy problem (7.4.3) to
a Cauchy problem for a first order system. We outiline the procedure (the
details of which we leave to the reader). First, it is convenient to introduce
the following notation. If α ∈ Nn−1

0 \ {0} is a multi-index, we set

i(α) = min{i : αi > 0}.

In addition, we set t = xn and

Vα,j = ∂jt ∂
α
x′w, for |α|+ j ≤ m− 1.

By (7.4.10) we have

∂tVα,j = Vα,j+1, for |α|+ j < m− 1, (7.4.27a)

∂tVα,j = ∂xi(α)
Vα−ei(α),j+1, for |α|+ j = m− 1, |α| > 0, (7.4.27b)

∂tV0,m−1 =
∑

|α|+j=m,j<m

cα,j∂xi(α)
Vα−ei(α),j +

∑
|α|+j≤m

dα,jVβ,j + F, (7.4.27c)

Vα,j(x
′, 0) = 0 for |α|+ j ≤ m− 1, (7.4.27d)

where cα,j, dα,j, F are analytic functions in the variables x′ and t.

Proof of the Cauchy–Kovalevskaya Theorem.
Taking into account what has been done in (i) and (ii) and changing the

notations a little, we may reformulate Cauchy problem (7.4.10) as follows.


∂tUk(x, t) =

∑n−1
j=1

∑N
l=1 B

lk
j ∂xjUl +

∑N
l=1C

lkUl + Fk, k = 1, · · · , N,

Uk(x, 0) = 0, k = 1, · · · , N,
(7.4.28)
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where Blk
j , C lk, Fk, j = 1, · · · , n − 1, l, k = 1, · · · , N are analytic functions

in a neighborhood of 0.

In order to prove the existence and the uniqueness for Cauchy problem
(7.4.28) we proceed as follows:

Step I. For any function U ∈ C∞ that we suppose to satisfy (7.4.28), we
will calculate the derivatives

∂αUk(0, 0) := Uk,α, ∀α ∈ Nn
0 , k = 1, · · · , N.

Setting, ∂α = ∂α
′

x ∂
αn
t , for α = (α′, αn), we will have

Uk,(α′,0) = 0, ∀α′ ∈ Nn−1
0 , k = 1, · · · , N. (7.4.29)

Step II. We will show what follows. Let us assume that the functions B̃lk
j ,

C̃ lk, F̃ and ϕ̃ (the latter is independent of t) satisfy the following conditions

(a) Blk
j 4 B̃lk

j , C lk 4 C̃ lk, for j = 1, · · · , n − 1, l, k = 1, · · · , N , F 4 F̃ ,
0 4 ϕ̃

and let us assume that
(b) it occurs that for any C∞ solution Ũ to the Cauchy problem


∂tŨk =

∑n−1
j=1

∑N
l=1 B̃

lk
j ∂xj Ũl +

∑N
l=1 C̃

lkŨl + F̃k,

Ũk(x, 0) = ϕ̃k(x),

(7.4.30)

we will have

|Uk,α| ≤ ∂αŨk(0, 0), ∀α ∈ Nn
0 , k = 1, · · · , N. (7.4.31)

Step III. We will construct some majorants B̃lk
j , C̃ lk, F̃ and ϕ̃ for which

Cauchy problem (7.4.30) does indeed have an analitic solution. Let us
denote again by Ũ such a solution. By Step II and, in particular, by (7.4.31)
it will follow that the power series∑

α∈Nn0

1

α!
Uαx

α′tαn ,

will converge in a neighborhood of 0 and its sum, which we denote by V , will
satisfy, the system
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∂tVk(x, t) =
n−1∑
j=1

N∑
l=1

Blk
j (x, t)∂xjVl +

N∑
l=1

C lk(x, t)Vl + Fk(x, t). (7.4.32)

Indeed, for k = 1, · · · , N , the analytic functions

∂tVk

and
N∑
l=1

Blk
j (x, t)∂xjVl +

N∑
l=1

C lk(x, t)Vl + Fk(x, t),

will have (by construction) all the derivatives equal at 0 . Furthermore, by
(7.4.29), we will have

Vk(x, 0) = 0, k = 1, · · · , N (7.4.33)

and we will then have proved the existence of a solution to Cauchy problem
(7.4.28).

Step IV. The uniqueness in the class of analytic functions in a connected
neighborhood of 0 for Cauchy problem (7.4.28) will be a consequence of Step
I and of the unique continuation property for the analytic functions (Theorem
6.2.2).

Step I. By the initial conditions U(x, 0) = 0 we have

∂α
′

x Uk(x, 0) = 0, k = 1, · · · , N, (7.4.34)

which implies (7.4.29). Now, for every α ∈ Nn
0 , where αn > 0, we have, for

k = 1, · · · , N ,

∂αUk(0, 0) = Pk,α
(
∂γBkl

j , · · · , ∂δCkl, · · · ∂βUh
)
x=0,t=0

+

+ ∂α
′

x ∂
αn−1
t Fk(0, 0),

(7.4.35)

where Pk,α is a polynomial with positive coefficients and the multi-
indices β in the derivatives ∂βUh satisfy

|β| ≤ |α|, e βn ≤ αn − 1.

In particular, (7.4.35) is a recursive relation on the derivatives of U . To prove
(7.4.35) it suffices to make the derivatives of both the sides of the equations
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in (7.4.28). Concerning the positivity of the coefficients of Pk,α it suffices to
keep in mind that we only use the rules of derivation of a product and a sum
of functions.

For instance, if i = 1, · · · , n− 1, we have

∂t∂xiUk =
n−1∑
j=1

N∑
l=1

(
Blk
j ∂

2
xixj

Ul + ∂xiB
lk
j ∂xjUl

)
+

+
N∑
l=1

(
C lk∂xiUl + ∂xiC

lkUl
)

+ ∂xiFk

(7.4.36)

and, taking into account (7.4.34), we have

∂t∂xiUk(0, 0) = ∂xiFk(0, 0).

Analogously,
∂t∂

α′

x Uk(0, 0) = ∂α
′

x Fk(0, 0)

and

∂2
tUk =

n−1∑
j=1

N∑
l=1

(
Blk
j ∂t∂xjUl + ∂tB

lk
j ∂xjUl

)
+

+
N∑
l=1

(
C lk∂tUl + ∂tC

lkUl
)

+ ∂tFk.

(7.4.37)

Let us observe that all the derivatives of U in (0, 0) that occur in (7.4.37)
can be obtained by (7.4.36) and by (7.4.34). A similar argument applies to
∂2
t ∂

α′U(0, 0), · · · ∂jt ∂α
′
U(0, 0), j = 1, · · · , α′ ∈ Nn−1

0 .

Step II. Let Ũ be a solution to problem (7.4.30). In a similar way to what
we have done in Step I we obtain, for α ∈ Nn

0 with αn > 0, that for each
k = 1, · · · , N ,

∂αŨk(0, 0) = Pk,α

(
∂γB̃kl

j , · · · , ∂δC̃kl, · · · ∂βŨh
)
x=0,t=0

+

+ ∂α
′

x ∂
αn−1
t F̃k(0, 0)+,

(7.4.38)

where Pk,α is the same polynomial with positive coefficients that occurs in
(7.4.35) and (as in (7.4.35)) the multi-indices β in the derivatives ∂βUh satisfy
|β| ≤ |α| and βn ≤ αn − 1. Furthermore, we have that
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∂α
′

x Ũk(0, 0) = ∂α
′

x ϕ̃k(0) (7.4.39)

and by 0 4 ϕ̃ we have

0 ≤ ∂α
′

x ϕ̃k(0). (7.4.40)

In order to prove (7.4.31) one can proceed by induction on the order αn of
the derivative with respect to t. If αn = 0 then we have

∣∣Uk,(α′,0)

∣∣ ≤ ∂α
′

x ϕ̃k(0) = ∂α
′

x Ũk(0, 0), ∀α ∈ Nn−1
0 , k = 1, · · · , N. (7.4.41)

Now, let us suppose that for a given αn we have

∣∣Uk,(α′,αn)

∣∣ ≤ ∂αnt ∂α
′

x Ũk(0, 0), ∀α ∈ Nn−1
0 k = 1, · · · , N. (7.4.42)

We have, for k = 1, · · · , N ,

Uk,(α′,αn+1) = ∂αn+1
t ∂α

′

x Uk(0, 0) = ∂α
′

x ∂
αn
t Fk(0, 0)+

+ Pk,(α′,αn+1)

(
∂γBkl

j , · · · , ∂δCkl, · · · ∂βUh
)
x=0,t=0

,

where
|β| ≤ |α|, and βn ≤ αn.

Then, since the coefficients of Pk,(αn+1) are positive, using (a) of Step II
and the inductive hypothesis (7.4.42), we have

∣∣Uk,(α′,αn+1)

∣∣ ≤ ∣∣∣∂α′x ∂αnt Fk(0, 0)
∣∣∣+

+ Pk,(α′,αn+1)

(∣∣∂γBkl
j

∣∣ , · · · , ∣∣∂δCkl
∣∣ , · · · |Uh,β|)x=0,t=0

≤

≤ ∂α
′

x ∂
αn
t F̃k(0, 0)+

+ Pk,(α′,αn+1)

(
∂γB̃kl

j , · · · , ∂δC̃kl, · · · ∂βŨh
)
x=0,t=0

=

= ∂αn+1
t ∂α

′

x Ũk(0, 0).

(7.4.43)

Step III.We may assume that for appropriate positive numbersM1,M2 and
ρ1, ρ2 with M1 ≥ 1, we have

Blk
j , C

lk ∈ CM1,ρ1(0), j = 1, · · · , n− 1, l, k = 1, · · · , N, (7.4.44)
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Fk ∈ CM2,ρ2 k = 1, · · · , N. (7.4.45)

We set

M =
M2

M1

, ρ = min{ρ1, ρ2}.

By Proposition 6.3.2, we may choose, for j = 1, · · · , n−1, l, k = 1, · · · , N ,

B̃lk
j = C̃ lk =

M1ρ

ρ− (σ−1t+ x1 + · · ·+ xn−1)

and
F̃k =

M2ρ

ρ− (σ−1t+ x1 + · · ·+ xn−1)
,

where σ ∈ (0, 1] is to be chosen. System (7.4.30) becomes, for k = 1, · · · , N ,

∂tŨk(x, t) =

=
M1ρ

ρ− (σ−1t+ x1 + · · ·+ xn−1)

(
n−1∑
j=1

N∑
l=1

∂xj Ũl +
N∑
l=1

Ũl +M

)
.

(7.4.46)

At this point we search for a solution to equation (7.4.46) of the form

Ũk(x, t) = w
(
σ−1t+ x1 + · · ·+ xn−1

)
. (7.4.47)

Set s = σ−1t+ x1 + · · ·+ xn−1 and

φ(s) =
M1

1− ρ−1s
(7.4.48)

we have

(
σ−1 − φ(s)N(n− 1)

) dw
ds

= Nφ(s)w +Mφ(s). (7.4.49)

Now we choose σ > 0 so that

σ−1 − φ(s)N(n− 1) > 0

in a neighborhood of 0. For instance, we choose

σ = σ0 :=
1

2NM1(n− 1)
. (7.4.50)

We get
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σ−1
0 − φ(s)N(n− 1) = NM1(n− 1) (1− 2s/ρ) > 0, for |s| < ρ

2
.

Setting

h(s) =
φ

σ−1
0 −N(n− 1)φ

=
1

N(n− 1)

ρ

ρ− 2s
,

equation (7.4.49) becomes

dw

ds
= Nh(s)w +Mh(s). (7.4.51)

Let w0 the solution to (7.4.51) such that

w0(0) = 0. (7.4.52)

We have

w0 =
M

N

[
exp

(
N

∫ s

0

h(η)dη

)
− 1

]
=
M

N

[(
ρ

ρ− 2s

) ρ
2(n−1)

− 1

]
. (7.4.53)

In particular, w0 is analytic in
(
−ρ

2
, ρ

2

)
and

0 4 w0. (7.4.54)

The latter relationship can be easily checked by using formula (7.4.53) or can
be also easily derived from (7.4.51) and (7.4.53), by expressing the derivatives
of w0 in 0 by means of those of lower order and noticing that they are all
nonnegative. Now, for k = 1, · · · , N , let us consider the following functions

Ũk(x, t) = w0

(
σ−1

0 t+ x1 + · · ·+ xn−1

)
, (7.4.55)

we have that Ũk are solutions to equations (7.4.46) (when σ = σ0) and by
Proposition 6.3.4, they are analytic. Moreover by (1.2.3) we have

ϕ̃k(x) = Ũk(x, 0) = w0 (x1 + · · ·+ xn−1) =

=
∞∑
m=0

w
(m)
0 (0)

∑
|α′|=m

1

α′!
xα
′
.

(7.4.56)

From which, taking into account (7.4.54), it is obvious that

0 4 ϕ̃k, per k = 1, · · · , N. (7.4.57)
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All in all, Ũ is an analytic solution in a neighborhood of (0, 0), of the Cauchy
problem


∂tŨk = H(x, t)

(∑n−1
j=1

∑N
l=1 ∂xj Ũl +

∑N
l=1 Ũl +M

)
,

Ũk(x, 0) = ϕ̃k(x),

(7.4.58)

where
H(x, t) =

M1ρ

ρ− (σ−1
0 t+ x1 + · · ·+ xn−1)

.

Since Ũ is analytic, (7.4.43) implies that the following power series converges
in a neighborhood U of (0, 0) ∑

α∈Nn0

1

α!
Uαx

α′tαn ,

in addition its sum, U , solves Cauchy problem (7.4.28) in U .

Step IV. The uniqueness to Cauchy problem (7.4.28) in the class of analytic
functions in a connected neighborhood of 0 is a consequence of Step I and
of the unique continuation property for analytic functions. As a matter of
fact, if V ′ V ′′ are analytic solutions of (7.4.28),+ then

∂αV ′k(0, 0) = Uk,α = ∂αV ′′k (0, 0), k = 1, · · · , N

so that, by Theorem 6.2.2, we have V ′ = V ′′ in a neighborhood of 0.
�

Remark on the neighborhood in which there exist solutions of
the Cauchy problem

In what follows we will be interested in having some detailed information
about the dependence of the neighborhood U by the known term f and,
consequently, by the initial data of Cauchy problem (7.4.3). From Step III of
the previous proof we can say that the neighborhood U does not depend on
the constant M2. To clarify what we have just claimed, it suffices to apply
Proposition 6.3.5 to the composite function

w0

(
σ−1

0 t+ x1 + · · ·+ xn−1

)
.

Let us observe that by (7.4.53), setting κ = ρ
2(n−1)

, we have there exists a
constant cκ ≥ 1 such that

0 ≤ w
(m)
0 (0) ≤ cκM

N

(
cκρ
−1
)m

m!, ∀m ∈ N0.
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Hence
w0 ∈ C cκM

N
, ρ
cκ

.

On the other hand we get trivially(
σ−1

0 t+ x1 + · · ·+ xn−1

)
∈ C(σ−1

0 +n−1),1.

Hence
w0

(
σ−1

0 t+ x1 + · · ·+ xn−1

)
∈ C cκM

N
,R,

where
R =

ρ

cκσ
−1
0 + n− 1

and by (7.4.50) it turns out that σ0 does not depend by M2. Therefore R
depends on M1, ρ, n and N only. Moreover, we can choose U = {(x, t) ∈
Rn : |t|+ |x1|+ · · ·+ |xn−1| < R} as the neighborhood in which the Cauchy
problem (7.4.28) admits a solution.

In preparation for what we will do later, let us go back to consider the
case of a linear differential operator of order m given by

P (x, ∂) =
∑
|α|≤m

aα(x)∂α (7.4.59)

and let us consider the following Cauchy problem
P (x, ∂)u(x) = f(x),

∂jnu(x′, 0) = 0, j = 0, 1, · · · ,m− 1,∀x′ ∈ B′1.
(7.4.60)

Let us suppose that, for given M0, ρ0, we have

Pm((x′, 0), en) 6= 0, ∀x′ ∈ B′1, (7.4.61)

aα ∈ CM0,ρ0(z), |α| ≤ m, ∀z ∈ B′1 × [−δ0, δ0], (7.4.62)

f be a polynomial. (7.4.63)

Then the solution to problem (7.4.60) there exists in B′1 × [−δ, δ] (actually,
in a neighborhood of B′1 × {0}) where δ > 0 depends on M0, ρ0, δ0 and
min{|Pm((x′, 0), en)| : x′ ∈ B′1}, but does not depend by the polynomial
f . In order to check this assertion, let h be the degree of the polynomial f .
Set
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K = 1 +
∑
|β|≤h

max
B′1×[−δ0,δ0]

∣∣∂βf ∣∣ .
It is evident that, setting.

ũ =
u

K
, f̃ =

f

K
,

u solves Cauchy problem (7.4.60) if and only if v is solves the following
Cauchy problem

P (x, ∂)ũ(x) = f̃(x),

∂jnũ(x′, 0) = 0, j = 0, 1, · · · ,m− 1, ∀x′ ∈ B′1.
(7.4.64)

On the other hand, because of the way we defined f̃ we can certainly state
that

f̃ ∈ C1,1(z), ∀z ∈ B′1 × [−δ0, δ0]. (7.4.65)

We can then return to problem (7.4.28). Hence by applying the Cauchy–
Kovalevskaya Theorem and taking into account that aα, |α| ≤ m, are analytic
functions in a neighborhood of B′1(0)×{0}, we conclude that the solution of
Cauchy problem (7.4.60) exists and it is analytic in B′1× [−δ, δ] where δ > 0
depends on M0, ρ0, δ0 and on

min{|Pm((x′, 0), en)| : x′ ∈ B′1}

(but does not depend on f).
Obviously, if (7.4.61), (7.4.62), (7.4.63) hold, similar conclusions are valid

to the Cauchy problem


P (x, ∂)u(x) = f(x), se x ∈ Ux̃,

∂jnu(x′, 0) = gj, j = 0, 1, · · · ,m− 1, ∀x′ ∈ B′1.
(7.4.66)

provided that gj are polynomials for j = 0, 1, · · · ,m− 1. �
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7.5 Further comments on the Cauchy–Kovalevskaya
Theorem. Examples

7.5.1 A few brief note on the qualisinear and the non-
linear case

It is not difficult to adapt the proof of the Cauchy–Kovalevskaya Theorem
to the case of a quasilinear operator∑

|α|=m

aα
(
x, (∂βu)||β|≤m−1

)
∂αu+ a0

(
x, (∂βu)||β|≤m−1

)
.

In this case, we recall, the Cauchy problem is
P(u) = 0,

∂jnu(x) = gj(x), j = 0, 1, · · · ,m− 1, ∀x ∈ Γ.

(7.5.1)

One can proves that if aα, a0, gj are analytic functions, Γ is analytic and
noncharacteristic (Definition 7.2.2) then for every x̃ ∈ Γ there exists a neigh-
borhood Ux̃ in which Cauchy problem (7.5.1) has analytic solution. For the
proof we refer to [23].

In (7.1.5) we have formulated the Cauchy problem for the fully nonlinear
equation 

F
(
x, (∂αu)|α|≤m

)
= 0,

∂ju(x)
∂νj

= gj(x), j = 0, 1, · · · ,m− 1, ∀x ∈ Γ.

(7.5.2)

Here we only outline the proof of the existence of the solutions to problem
(7.5.2) referring for more details to [18, Chapter 1], [21, Chapter 1].

Let us consider the case where Γ = {xn = 0}. We know that we may
always reduce to this case by "flattening" Γ (by map (7.4.4)). So, instead of
the conditions ∂ju(x)

∂νj
= gj(x), j = 0, 1, · · · ,m−1, for x ∈ Γ, we may consider

∂jnu(x′, 0) = gj(x
′) j = 0, 1, · · · ,m− 1, ∀x′ ∈ B′r, (7.5.3)

where r > 0. In the first part of the proof of Proposition 7.3.2 we have
already seen that conditions (7.5.3) allow us to determine the derivatives

∂α
′

x′ ∂
j
nu(x′, 0) = ∂α

′

x′ gj(x
′) j = 0, 1, · · · ,m− 1, α′ ∈ Nn−1

0 x′ ∈ B′r. (7.5.4)



386 Chapter 7. The Cauchy problem for PDEs with analytic coefficients

without involving the equation F
(
x, (∂αu)|α|≤m

)
= 0. Let us recall that in

order to calculate the derivative ∂mn u(x′, 0) we need to use the equation. More
precisely, we have

F
(
x′, 0, (∂α

′

x′ gj)|α′|+j≤m,j≤m−1(x′), ∂mn u(x′, 0)
)

= 0. (7.5.5)

To find z = ∂mn u(x′, 0) from equation (7.5.5) we need that the equation

F
(
x′, 0, (∂α

′

x′ gj)|α′|+j≤m,j≤m−1(x′), z
)

= 0, (7.5.6)

admits a solution. If, for instance, we require

(∂zF )
(
x′, 0, (∂α

′

x′ gj)|α′|+j≤m,j≤m−1(x′), z
)
6= 0 (7.5.7)

then we may express z as a a function of variable x′ of class C1 (provided
F is of class C1) or as an analytic function, provided F is analytic. Let us
observe that condition (7.5.7) makes it possible to write, in a neighborhood
of Γ, the equation

F
(
x, (∂αu)|α|≤m

)
= 0

like

∂mn u = G
(
x, (∂αu)|α|≤m,αn<m

)
, (7.5.8)

where G is analytic (provided F is analytic). Hence, in the fully nonlinear
case, condition (7.5.7) may replace the condition that Γ is noncharacteristic
surface for a linear (or quasilinear) operator. Furthermore, since we can find
∂mn u(x′, 0) from (7.5.5), we set gm(x′) = ∂mn u(x′, 0), by making the derivatives
of both the sides of (7.5.8) w.r.t. xn we have


∂m+1
n u =

∑
|α|≤m,j<m aα′,j∂

α′

x′ ∂
j+1
n u+ (∂nG)

(
x, (∂αu)||α|≤m−1,αn

)
,

∂ju(x′,0)
∂νj

= gj(x
′), j = 0, 1, · · · ,m, ∀x ∈ Γ.

where
aα′,j =

(
∂pα′,jG

)(
x, (∂α

′

x′ ∂
j
nu)||α′|+j≤m,j<m

)
,

for |α′|+ j ≤ m, j < m.
In other words, if conditions (7.5.6) and (7.5.7) hold we may reformu-

late Cauchy problem (7.5.2) as a Cauchy problem for a quasilinear equation
of order m + 1 and we may use the existence results that obtained in the
quasilinear case.
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7.5.2 Comments about the existence and the unique-
ness of solutions. Examples and counterexamples

In this Subsection we return to the linear case. In general, if Γ is a charac-
teristic surface for the operator P (x, ∂), neither existence nor uniqueness for
Cauchy problem (7.4.3) can be expected. Let us look at some example.
(a) Let Pm(ξ) be a homogeneous polynomial of degree m and let us assume

Pm(N) = 0,

where N ∈ Rn \ {0}. Then the hyperplane

π = {x ·N = 0}

is a characteristic surface for the operator Pm(∂). Now, let us consider the
functions

u(t)(x) = etx·N −
m−1∑
k=0

tk(x ·N)k

k!
, t ∈ R

where t 6= 0. It easy to check that, for every t ∈ R, u(t) solves the Cauchy
problem 

Pm(∂)u(x) = 0,

∂ju
∂Nj = 0, j = 0, 1, · · · ,m− 1, on π,

(7.5.9)

Hence, does not hold the uniqueness for problem (7.5.9).

(b) The Cauchy–Kovalevskaya Theorem gives the existence and uniqueness
of solutions to the Cauchy problem having initial data on a noncharacteristic
surface under the assumption of analyticity of all the data of the problem.
Regarding the existence of the solutions, if we desire to preserve the same
generality of the Theorem, the assumptions of analyticty cannot be reduced.
To prove this, it suffices to consider the following Cauchy problem

∂2
yu+ ∂2

xu = 0,

u(x, 0) = g0(x), for x ∈ (−r, r),

∂yu(x, 0) = g1(x), for x ∈ (−r, r).

(7.5.10)
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Since u satisfies the Laplace equation ∂2
yu + ∂2

xu = 0 in a neighborhood
of (0, 0) it is analytic in such a neighborhood, therefore the initial data,
u(x, 0) = g0(x) and ∂yu(x, 0) = g1(x) also need to be analytic.

Incidentally, even though we consider the "one–sided" Cauchy problem
the situation do not change in a significant way. Let us consider, indeed, the
problem 

∂2
yu+ ∂2

xu = 0, for (x, y) ∈ B+
r ,

u(x, 0) = g0(x), for x ∈ (−r, r),

∂yu(x, 0) = g1(x), for x ∈ (−r, r),

where u ∈ C2(B+
r ) ∩ C0(B+

r ). Let us suppose for simplicity that g1 ≡ 0 and
let us consider the even reflection w.r.t. x–axis of u

v(x, y) = u(x, |y|)

then, by the Schwarz reflection principle, we have

∆v = 0, in Br

and again we have that v is an analytic function and therefore g0 is an analytic
function.

Exercise 1. Let us suppose g0, g1 ∈ Cω(−r, r) in (7.5.10). Prove that
the solution to Cauchy problem (7.5.10) is given by

u(x, y) =
∞∑
n=0

(−1)n

(
g

(2n)
0 (x)y2n

(2n)!
+
g

(2n+1)
1 (x)y2n+1

(2n+ 1)!

)
. (7.5.11)

♣

(c) Let us consider the Cauchy problem

∂tu− ∂2
xu = 0,

u(x, 0) = g0(x), for x ∈ R,

∂tu(x, 0) = g1(x), for x ∈ R.

(7.5.12)
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In this case the straight line {t = 0} is a characteristic line for the operator
∂t − ∂2

x. It is evident that if we do not require

g1(x) = g′′0(x), ∀x ∈ R, (7.5.13)

then Cauchy problem (7.5.12) has no solutions. As a matter of fact, if prob-
lem (7.5.12) admits solutions, even just of class C2, then

g′′0(x) = ∂2
xu(x, 0) = ∂tu(x, 0) = g1(x), for |x| < 1

and therefore (7.5.13) hold.
We now check that even condition (7.5.13) is satisfied we can exhibit a

g0 ∈ Cω such that problem (7.5.12) has no solutions. First, it is evident that
if (7.5.13) is satisfied, then problem (7.5.12) can be be formulated as

∂tu− ∂2
xu = 0,

u(x, 0) = g0(x), for x ∈ R.
(7.5.14)

Let
g0(x) =

1

1 + x2
.

We have that g0 ∈ Cω(R) and

g
(2k)
0 (0) = (−1)k(2k)! , for k ∈ N0.

Now, if there exists a solution u analytic in a neighborhood of (0, 0) of
problem 7.5.14, then u(0, t) should be expanded in Taylor series in t = 0

∂jtu(0, 0) = ∂2j
x u(0, 0) = g

(2j)
0 (0) = (−1)j(2j)!,

on the other side, the power series

∞∑
j=0

(−1)j(2j)!

j!
tj

has the radius of convergence equal to zero. Hence u(0, t) is not analytic.
Also, we note that the Cauchy problem

∂tu− ∂2
xu = 0,

u(x, 0) = 0, for x ∈ R.
(7.5.15)
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admits only one analytic solution, namely the null solution. As a matter of
fact, the null function is trivially solution of problem (7.5.15) and if u is an
analytic solution of (7.5.15) then we have, for each i, j ∈ N0

∂ix∂
j
tu(0, 0) = ∂i+2j

x u(0, 0) = 0

hence u ≡ 0.
Of course the one-sided Cauchy problems are also of interest

∂tu− ∂2
xu = 0, for x ∈ R, t > 0

u(x, 0) = g0(x), for x ∈ R.
(7.5.16)

For this problem it turns out that (if g0 is regular enough)

u(x, t) =
1√
4π

∫ +∞

−∞
g0(ξ)e−

(x−ξ)2
4t dξ

is a solution to (7.5.16). In particular if g0 = 1
1+x2 , then Cauchy problem

(7.5.16) admits solutions (of course, nonanalytic w.r.t. t).
Keep in mind that the problems that we have considered in the point (c)

are not written in the form (7.4.12). As a matter of fact, the term on the
right–hand side of equation ∂tu = ∂2

xu has order 2 greater than the order of
derivative ∂tu, on the left–hand side.

(d) In a strong contrast with the example considered in (b) we present now
the following example for the vibrating string equation. Let us consider the
Cauchy problem 

∂2
t u− ∂2

xu = 0,

u(x, 0) = g0(x), for x ∈ (−1, 1),

∂tu(x, 0) = g1(x), for x ∈ (−1, 1).

(7.5.17)

Let us first prove problem (7.5.17) has at most one solution u ∈ C2(Q)
where Q = {(x, t) ∈ R2 : |x|+ |t| ≤ 1}.

To this purpose we observe that

0 =
(
∂2
t u− ∂2

xu
)
∂tu =

1

2

(
∂t(∂tu)2 − 2∂x(∂xu∂tu) + ∂t(∂xu)2

)
. (7.5.18)
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Figure 7.2: Q = {(x, t) ∈ R2 : |x|+ |t| ≤ 1}
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Moreover, let us suppose that g0 = 0 and g1 = 0 in (7.5.17). We integrate
both the sides of (7.5.18) over

Tδ = Q ∩ {(x, t) ∈ R2 : 0 < t < 1− δ},
where δ ∈ (0, 1) is arbitrary. We obtain, by the divergence Theorem,

0 =

∫∫
Tδ

(
∂2
t u− ∂2

xu
)
∂tudxdt =

=
1

2

∫
∂Tδ

(
(∂tu)2νt − 2(∂xu∂tu)νx + (∂xu)2νx

)
dS =

= −1

2

∫ 1

−1

(
(∂tu)2(x, 0) + (∂xu)2(x, 0)

)
dx+

+
1

2
√

2

∫ 1

1−δ
(∂tu(x, 1− x)− ∂xu(x, 1− x))2 dx+

+
1

2

∫ 1−δ

−1+δ

(
(∂tu)2(x, δ) + (∂xu)2(x, δ)

)
dx+

+
1

2
√

2

∫ −1+δ

−1

(∂tu(x, 1 + x) + ∂xu(x, 1 + x))2 dx ≥

≥ 1

2

∫ 1−δ

−1+δ

(
(∂tu)2(x, δ) + (∂xu)2(x, δ)

)
dx.

(7.5.19)

Hence ∫ 1−δ

−1+δ

(
(∂tu)2(x, δ) + (∂xu)2(x, δ)

)
dx = 0

from which we have (∂tu)2(x, δ) + (∂xu)2(x, δ) = 0 and, since δ is arbitrary,
we have ∂xu = ∂tu = 0 in Q ∩ {(x, t) ∈ R2 : 0 ≤ t}. Finally, since u(x, 0) =
∂xu(x, 0) = 0, we have u = 0 in Q ∩ {(x, t) ∈ R2 : 0 ≤ t}. Similarly, we
obtain u = 0 in Q ∩ {(x, t) ∈ R2 : 0 ≥ t}. Therefore u = 0 in Q.

The existence of solutions also does not require that the Cauchy data g0

and g1 are analytic. As a matter of fact it is checked straightforwardly that,
if g0 ∈ C2([−1, 1]) and g1 ∈ C1([−1, 1]), then the solution to Cauchy problem
(7.5.17) is given by

u(x, t) =
g0(x+ t) + g0(x− t)

2
+

1

2

∫ x+t

x−t
g1(η)dη. (7.5.20)

Conclusion. From the short discussion of this Section we can say that, in
the context of partial differential equations, the Cauchy–Kovalevskaya The-
orem represents for us more a starting point than an ending point. Starting
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with the next Section we will focus more on the issue of the uniqueness, under
assumptions which are weaker than the analyticity of all the data.

7.6 The Holmgren Theorem

Let us start by recalling the divergence Theorem. Let D a bounded open
Rn such that its boundary ∂D is of class C0,1. Then we have

∫
D

∂judx =

∫
∂D

uνjdS, j = 1, · · · , n ∀u ∈ C1
(
D
)
, (7.6.1)

where ν = (ν1, · · · , νn) is the unit outward normal to ∂D and dS is the
(n− 1)–element of surface.

Let m ∈ N, aα ∈ Cm
(
D
)
, |α| ≤ m and

P (x, ∂) =
∑
|α|≤m

aα(x)∂α. (7.6.2)

We call the (formal) adjoint operator of P (x, ∂) the following operator

Cm
(
D
)
3 u→ P ∗(x, ∂)u =

∑
|α|≤m

(−1)|α|∂α (aα(x)u) . (7.6.3)

Let us note that, up to the sign, the principal part of P ∗(x, ∂) is equal to the
principal part of P (x, ∂).

The following Green identity holds true, for any u, v ∈ Cm
(
D
)
,∫

D

(vP (x, ∂)u− uP ∗(x, ∂)v) dx =

∫
∂D

M(u, v; ν)dS, (7.6.4)

whereM(u, v; ν) is linear w.r.t. u, v and ν. Moreover

M(u, v; ν) =
∑

|β|+|γ|≤m−1

cβγ(x)∂βu∂γv, (7.6.5)

where cβγ, |β|+ |γ| ≤ m− 1, belong (at least) to C0 (∂D).
Identity (7.6.4) can be obtained by applying repeatedly the following

simple identity

v(x)a(x)∂ju(x) = ∂j (v(x)a(x)u(x))− ∂j (v(x)a(x))u(x)
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obtaining

v(x)aα(x)∂αu(x) = v(x)aα(x)∂j∂
α−eju(x) =

= ∂j
(
v(x)aα(x)∂α−eju(x)

)
− ∂j (v(x)aα(x)) ∂α−eju(x) =

= · · · =
= div (Fα) + (−1)|α|∂α (aα(x)v(x))u(x),

(7.6.6)

where Fα is a suitable vector field. Next we add up the identities obtained in
(7.6.6), we integrate over D the obtained new identity, and by the divergence
Theorem we get (7.6.4).

Before stating the Holmgren Theorem, let us introduce some notation.
Let Ω be an open set of Rn, x0 ∈ Ω and let φ ∈ C2(Ω). Let us denote by

Γ = {x ∈ Ω : φ(x) = φ(x0)}.

We will assume
∇φ(x) 6= 0, ∀x ∈ Γ. (7.6.7)

If U is a neighborhood of x0 we denote by U+ the set

U+ = U ∩ {x ∈ Ω : φ(x) ≥ φ(x0)}. (7.6.8)

Theorem 7.6.1 (Holmgren). Let aα ∈ Cω (Ω), |α| ≤ m. Let us suppose
that Γ is a noncharacteristic surface in x0 for the operator

P (x, ∂) =
∑
|α|≤m

aα(x)∂α. (7.6.9)

Then there exists a neighborhood U of x0 such that we have:
if u ∈ Cm

(
U+

)
satisfies

P (x, ∂)u = 0, in U+

∂αu = 0, for |α| ≤ m− 1, x ∈ Γ ∩ U+.

(7.6.10)

Then we have
u ≡ 0 in U+. (7.6.11)

Remarks. Before starting with the proof of Theorem 7.6.1 we observe
what follows.

(i) In (7.6.10), u is required to be a solution to the equation P (x, ∂)u = 0
in U+, unlike the Cauchy-Kovalevskaya Theorem in which u is required to be
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Figure 7.3:

a solution in a full neighborhood of x0. Furthermore, it is only required that
u ∈ Cm

(
U+

)
.

(ii) The initial surface Γ is assumed to be of class C2, thus, not analytic
like in the Cauchy-Kovalevskaya Theorem. Also, let us note that in (7.6.10)
we require ∂αu = 0 for |α| ≤ m− 1, on Γ ∩ U+ and not just that

∂ju

∂νj
= 0, for j = 0, 1, · · · ,m− 1.

Of course, if we want to assume the latter conditions we should require
φ ∈ Cm−1(Ω) (compare with the proof of the first part of Proposition 7.3.2).
�

Proof of the Holmgren Theorem.
We may assume Γ be a graph of a function. More precisely we may

assume that.

Γ = {(x′, ψ(x′)) : x′ ∈ B′r0}, (7.6.12)

where ψ ∈ C2
(
B′r0
)
satisfies

ψ(0) = |∇x′ψ(0)| = 0. (7.6.13)
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Figure 7.4:

We will divide the proof of the Theorem into two steps. In the first
step we will assume that ψ is a strictly convex function. In the second
step we will reduce to the first part by means of the so–called Holmgren
transformation.

Step I. Let ψ strictly convex, let R0 satisfy

Γ ⊂ QR0 := B′R0
× (−R0, R0) (7.6.14)

and, by assumptions,
aα ∈ Cω (Q2R0) . (7.6.15)

Since Γ is a noncharacteristic surface in 0 we may assume, recalling
(7.6.13),

|Pm(0, en)| = c0 > 0. (7.6.16)

By the continuity of the coefficients of Pm(x, ∂) and by (7.6.16) we have that
there exists ρ1 > 0 such that
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|Pm ((x′, h), en)| ≥ c0

2
, ∀x′ ∈ B′ρ1

(0), |h| ≤ ρ1. (7.6.17)

This implies that for every h ∈ [−ρ1, ρ1] the flat surface

{(x′, h) : x′ ∈ B′r0}

is noncharacteristic.
Let now f be a polynomial. By the Cauchy–Kovalevskaya Theorem and

by the Remark which follows such a Theorem, there exists ρ2, 0 < ρ2 < ρ1,
ρ2 independent of f such that, there exists an analytic solution in B′ρ2

(0)×
[h− ρ2, h+ ρ2] to the following Cauchy problem

P ∗(x, ∂)w = f,

∂αw(x′, h) = 0, |α| ≤ m− 1.

(7.6.18)

Let

h0 = min
∂B′ρ2 (0)

ψ,

h1 = min
{
h0,

ρ2

2

}
.

Let us notice that by the strict convexity of ψ, h1 is positive. Let us choose
in (7.6.18)

h = h1. (7.6.19)

Let us consider the set

D =
{

(x′, xn) : x′ ∈ B′ρ2
(0), ψ(x′) < xn < h1

}
.

We have that D has a "lens" shape in particular on the boundary of D there
are no vertical segments. Let us note that, because of the way we choose h1,
we have w ∈ Cω(D).

Now, by the assumptions u belongs to Cm
(
D
)
and it is a solution to the

Cauchy problem
P (x, ∂)u = 0, in D,

∂αu = 0, for |α| ≤ m− 1, x ∈ Γ ∩D.
(7.6.20)

By the Green identity (7.6.4), we have
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Figure 7.5:

∫
D

fudx =

∫
D

uP ∗(x, ∂)wdx =

=

∫
D

(uP ∗(x, ∂)w − wP (x, ∂)u) dx =

=

∫
∂D

M(u,w; ν)dS = 0.

(7.6.21)

To prove that ∫
∂D

M(u,w; ν)dS = 0,

it suffices to write the integral over ∂D as a sum of two integrals, say I1

and I2, with the same integrandM(u,w; ν), where I1 is the integral over a
portion of the graph of ψ, on which ∂αu = 0, for |α| ≤ m− 1, and I2 is the
integral over a portion of hyperplane {xn = h1} on which, by (7.6.18) and
(7.6.19), we have ∂αw = 0, for |α| ≤ m − 1. Hence, by (7.6.5), both I1 and
I2 is equal to zero. Therefore, by (7.6.21) we get∫

D

fudx = 0, for every polynomial f
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and since the set of polynomials is dense in C0
(
D
)
(Theorem 2.1.2) we have

u ≡ 0, in D.

The first part of proof is concluded.

Step II. Now, we suppose that Γ satisfies (7.6.13) e (7.6.12), but we do
not suppose that ψ is strictly convex. We may reduce to the case discussed
in Step t I using the following Holmgren transformation

Λ : Rn
x → Rn

y , x→ y = Λ(x′, xn) =

(
x′, xn +

A

2
|x′|2

)
, (7.6.22)

where A > 0 is to be chosen. Let us note that Λ is a diffeomorphism. Let it
be further

Γ̃ := Λ(Γ) =
{

(x′, ψ̃(x′)) : x′ ∈ B′r0
}
, (7.6.23)

where
ψ̃ := ψ(x′) +

A

2
|x′|2. (7.6.24)

Let us choose A in such a way that ψ̃ is strictly convex. For this purpose it
suffices to have

A >
∥∥∂2ψ

∥∥
L∞(B′r0 )

,

where ∂2ψ is the Hessian matrix of ψ. Fix such a number A. Let us denote
by P̃ (y, ∂y) the transformed operator by means of Λ

P̃ (y, ∂y)v(y)|y=Λ(x) = P (x, ∂x)u(x),

where v is defined by
v(Λ(x)) = u(x).

Let us notice that the coefficients of P̃ are analytic functions. Setting Ũ+ =

Λ(U+), we have that v ∈ Cm
(
Ũ+

)
is a solution to the Cauchy problem

P̃ (y, ∂y)v = 0, in U+,

∂αv(y) = 0, for |α| ≤ m− 1, y ∈ Γ̃ ∩ U+.

Let us recall (compare with (7.3.4)) that the symbol of the principal part of
P̃m(y, η) is given by

P̃m(y, η) = P (x, ∂x(Λ(x))tη)|x=Λ−1(y).
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Since
(Λ(0))ten = en

we have
P̃m(0, en) = Pm(0, en) 6= 0.

In short, we come back to the case already treated in Step I. Therefore, for
a suitable neighborhood U of 0, we have v ≡ 0 in U+ which implies u ≡ 0 in
U+. �

Remarks about the Holmgren Theorem.
1. If Γ is a noncharacteristic surface, Theorem 7.6.1 allows us to say

that there exists an open set S such that Γ ⊂ S and such that, denoting by
S+ = S ∩ {x ∈ Ω : φ(x) ≥ φ(x0)}, it occurs that if v ∈ Cm

(
S+

)
is a solution

of the Cauchy problem
P (x, ∂)u = 0, in S+,

∂αu(x) = 0, for |α| ≤ m− 1, x ∈ Γ,

(7.6.25)

then u ≡ 0 in S+.
Nevertheless, the statement of Holmgren Theorem does not clarify suffi-

ciently how large the set S (or S+) can be. Actually, one would expect that
∂S \ Γ should consist of characteristic surfaces or, in other words, that the
uniqueness for the Cauchy problem would hold until a characteristic surface
is encountered.

If P (x, ∂) is an elliptic operator with analytic coefficients in an open
connected set Ω of Rn (Section 7.3) and if Γ is a portion of a regular surface,
then, since the ellipticity of P (x, ∂) guarantees us that Γ is not characteristic,
we would expect the same ellipticity of P (x, ∂) guarantees that a solution of
P (x, ∂)u = 0 in Ω, with null Cauchy data on Γ, is identically null on Ω. For
instance, if P (x, ∂) = ∆, the above occurs. As a matter of fact, it is enough
to keep in mind that the solutions of ∆u = 0 are analytic in Ω to obtain that
u ≡ 0 in Ω.

If we have the vibrating string operator ∂2
t − ∂2

x we know that if u is a
solution of ∂2

t u− ∂2
xu = 0 with zero initial conditions on Γ = (−R,R) then u

vanishes in the square {|x|+ |t| < R} that is, u vanishes in a region bounded
by characteristic lines parallel to {x+ t = 0}, {x− t = 0}.

Neither the situation described for the Laplace equation nor the one de-
scribed for the vibrating string operator are a direct consequence of the state-
ment of Theorem 7.6.1. A general answer to the problems is given by the
Global Uniqueness Theorem proved by F. John, of which we will here provide
the statement and examine some of its consequences.
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2. The assumptions of Theorem 7.6.1 can be weakened. Here we merely
give a few hints and refer to [34, Theorem 5.3.1] the interested reading in
learning more about the topic. We point out, in particular, that:

(i) one may assume ψ ∈ C1(Ω).
(ii) one may give a distributional formulation of Cauchy problem (7.6.10)

and in this framework prove the uniqueness of the solution.

3. It is worth mentioning that the Holmgren uniqueness Theorem cannot
be extended to the nonlinear case. For further information we refer the reader
to [26], [55]. �

7.6.1 Statement of the Holmgren–John Theorem. Ex-
amples

Here we we only state the Holmgren–John global uniqueness Theorem, for
the proof we refer to [41]) or, in these notes, to the Chapter 11 in which we
will prove the Stability Theorem due to F. John himself and from which we
can trivially deduce the uniqueness.

In order to state the Global Uniqueness Theorem, we need the following
definition (in it we follow the terminology introduced in [41]).

Definition 7.6.2. Let

F : B′1 × (0, 1)→ Rn, (7.6.26)

a function satisfying the following properties (let us denote by y′ ∈ B′1 and
λ ∈ (0, 1) the independent variables):

(i) F is injective,
(ii) F is analytic in B′1 × (0, 1),
(iii) for every (y′, λ) ∈ B′1 × (0, 1) the jacobian matrix ∂y′,λF (y′, λ) is

nonsingular.
We call analytic field in Rn the family of sets {Sλ}λ∈(0,1), where

Sλ = {F (y′, λ) : y′ ∈ (0, 1)} , for λ ∈ (0, 1). (7.6.27)
We call support of the analytic field the open set (see Figure 7.6)

Σ :=
⋃

λ∈(0,1)

Sλ.

We denote, for any µ ∈ (0, 1),

Σµ :=
⋃

λ∈(0,µ]

Sλ.
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Figure 7.6:

Figure 7.7:
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Theorem 7.6.3 (Holmgren–John). Let Sλ be an analytic field in Rn and
let Σ be its support. Let

P (x, ∂) =
∑
|α|≤m

aα(x)∂α

be a linear differential operator of order m, where aα ∈ Cω(Σ). Let us define
the sets (see Figure 7.7)

R = {x ∈ Rn : x ∈ Σ, xn ≥ 0} , (7.6.28)

Z = {(x′, 0) : (x′, 0) ∈ Σ} . (7.6.29)
Let us suppose

(a) Z and Sλ, λ ∈ (0, 1), are noncarhacteristic for P (x, ∂),
(b) for every µ ∈ (0, 1), R∩ Σµ, is a closed set of Rn.
Then we have that if u ∈ Cm(R) is a solution to the Cauchy problem

P (x, ∂)u = 0, in R,

∂αu = 0, for |α| ≤ m− 1, x ∈ Z,
(7.6.30)

we have
u ≡ 0.

Let us illustrate somewhat the assumptions of Theorem 7.6.3. We observe
that Z is a portion of the hyperplane {xn = 0}: this is exclusively a exposi-
tory choice, actually Z can be any C2 noncharacteristic surface for P (x, ∂).
Furthermore, hypothesis (b) assures us that in the boundary of R ∩ Σµ, for
µ ∈ (0, 1), there are no vertical segments, in other words, R∩Σµ has a "lens"
shape which we have already encountered in the proof of the Theorem 7.6.1.

Example 1 – Wave equation.
Let us denote by x ∈ Rn and t ∈ R the independent variables, let

K =
{

(x, t) ∈ Rn+1 : |x| < |1− t|
}
. (7.6.31)

Let us prove that if u ∈ C2(K) is a solution to the Cauchy problem

∂2
t u−∆xu = 0, in K,

u(x, 0) = 0, for |x| < 1,

∂tu(x, 0) = 0, for |x| < 1,

(7.6.32)
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Figure 7.8:

then u = 0 in K.
We apply Theorem 7.6.3
In this case we have

P (∂t, ∂x) = ∂2
t u−∆x.

Let ε ∈ (0, 1) be fixed and let, for λ ∈ (0, 1) (Figure 7.8)

Sελ =
{

(x, t) ∈ Rn+1 : t = 1−
√

(1− λ+ ε)2 + |x|2, |x| <
√

1− ε2
}
.

Let

F : B√1−ε2(0)× (0, 1)→ Rn+1,

F (y, λ) =
(
y, 1−

√
(1− λ+ ε)2 + |y|2

)
.

Moreover, set

Σε =
⋃

λ∈(0,1)

Sελ =

=
{

1−
√

(1− λ+ ε)2 + |x|2 < t < 1−
√
ε2 + |x|2, |x| <

√
1− ε2

}
,
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Rε =
{

(x, t) ∈ Rn+1 : 0 ≤ t < 1−
√
ε2 + |x|2

}
,

Zε =
{

(x, 0) : |x| <
√

1− ε2
}

and
Σε
µ =

{
(x, t) ∈ Rn+1 : 0 ≤ t ≤ 1−

√
(1− µ+ ε)2 + |x|2

}
.

For each 0 < µ < ε we have Rε ∩ Σε
µ = ∅ and, for each ε ≤ µ < 1, we have

Σε
µ = Rε ∩ Σε

µ.

Finally, let us check that Z and Sελ are noncharacteristic. We have triv-
ially that Z is a noncharacteristic surface. Concerning Sελ, we notice that

Sελ =
{

(x, t) ∈ Rn+1 : φ(x, t) = (1− λ+ ε)2, t < 1
}
,

where
φ(x, t) = (1− t)2 − |x|2.

Therefore we have

∇x,tφ(x, t) = (−2x, 2(t− 1)), P (∇x,tφ(x, t)) = 4
(
(1− t)2 − |x|2

)
.

Hence, if (x, t) ∈ Sελ, then

P (∇x,tφ(x, t)) = 4(1− λ+ ε)2 > 0.

Therefore Sελ is noncharacteristic.
By Theorem 7.6.3 we get

u = 0, in Rε

and, since ε is arbitrary, we have

u = 0, for 0 ≤ t < 1− |x|.
Similarly we can check that u = 0 for 0 ≤ |x| − 1 < t ≤ 0. Therefore u = 0
in K. ♠

Example 2 – Elliptic equations with analytic coefficients.
Let

P (x, ∂)

be a linear elliptic operator of order m whose coefficients are analytic
functions. Let us begin by proving the following unique continuation property
.
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Figure 7.9:
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Proposition 7.6.4. Let ρ,R be such that 0 < ρ < R. Let u ∈ Cm (BR) and
let us suppose that 

P (x, ∂)u = 0, in BR,

u = 0, in Bρ,

(7.6.33)

then
u ≡ 0, in BR.

Proof. Let x0 ∈ BR \ Bρ and let us prove that u(x0) = 0. We may
assume that x0 lies on the xn–axis, because, by means of a rotation of Rn,
we may always reduce to this case (Figure 7.9). Hence let us suppose that

x0 = aen,

where ρ < a < R.
Trivially we have

∂αu(x′, 0) = 0, |α| ≤ m, x′ ∈ B′ρ. (7.6.34)

Let ε be such that 0 < ε < min{R− a, ρ} and let Sλ be defined by

xn = (a+ ε)2

[
λ− |x′|2

(ρ− ε)2

]
, x′ ∈ B′ρ−ε, 0 < λ < 1.

Recalling that an elliptic operator has no characteristics, by Theorem 7.6.3
we have u(aen) = 0. �

It is evident from the proof of the above Proposition that if u ∈ Cm (BR),
is a solution to P (x, ∂)u = 0 in BR and it is null in Bρ(x̃) ⊂ BR we have that
u ≡ 0 in BR.

Theorem 7.6.5. Let Ω be a connected open set of Rn and let

P (x, ∂) =
∑
|α|≤m

aα(x)∂α,

be a linear differential operator of order m, elliptic in Ω, where

aα ∈ Cω(Ω ∪ Γ),

and Γ ⊂ ∂Ω. Let us assume that Γ is a local graph of class C2.
If u ∈ Cm(Ω ∪ Γ) is a solution to the Cauchy problem

P (x, ∂)u = 0, in Ω,

∂αu = 0, |α| ≤ m− 1 on Γ,

(7.6.35)
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then
u = 0, in Ω.

Proof. By Theorem 7.6.1 (or 7.6.3) we that have there exists an open
set (in the topology induced on Ω ∪ Γ) U+ ⊂ Ω such that ∂U+ ∩ Γ 6= ∅ and
such that

u = 0, in U+. (7.6.36)

Set

A = {x ∈ Ω : ∃ρx > 0 such that u = 0, in Bρx(x)} . (7.6.37)

By (7.6.36) we have A 6= ∅ and, trivially, we have that A is an open set in
Ω. In order to prove the assertion, it suffices to prove that A is also closed
in Ω and, since Ω is connected, we have A = Ω from which we will obtain
the thesis. In order to prove that A is closed in Ω it suffices to prove that if
{xj}j∈N is a sequence of A such that

lim
j→∞

xj = x0, (7.6.38)

where x0 ∈ Ω, then x0 ∈ A.
Let ε > 0 satisfy Bε(x0) ⊂ Ω. By (7.6.38), there exists j0 such that

|x0 − xj0| <
ε

4
.

Since xj0 ∈ A there exists ρxj0 > 0 such that

u = 0, in Bρxj0
(xj0) ⊂ Ω. (7.6.39)

Set ρ = min
{
ε
4
, ρxj0

}
, we have Bρ(xj0) ⊂ Bε(x0) and, by (7.6.39), we have

u = 0 in Bρ(xj0), then, by Proposition 7.6.4 and subsequent remarks, we
have u = 0 in Bε(x0). Therefore x0 ∈ A and the thesis follows. �

Remarks on Theorem 7.6.5.
1. At this point we report, for information only, that if P (x, ∂) is an

eliptic operator in Ω, f ∈ Cω(Ω) and u ∈ Cm(Ω) is a solution of the equation
P (x, ∂)u = f in Ω, then u ∈ Cω(Ω), see [57] for a proof. It is evident that if
we had used this regularity property of the solutions, Theorem 7.6.5 would
be a consequence of the unique continuation property for analytic functions
(and the Holmgren Theorem). However, to prove Theorem 7.6.5 we did not
need the above regularity result.
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2. Let us consider some interesting consequences of Theorem 7.6.5. Let
Ω, Γ and P (x, ∂) be as in Theorem 7.6.5, further let us suppose that Γ is of
class Cm. We denote by XΓ the class of functions

g : Γ→ Rm, g(x) = (g0(x), g1(x), · · · , gm−1(x)), ∀x ∈ Γ

such that there exists u ∈ Cm(Ω ∪ Γ) solution to the Cauchy problem
P (x, ∂)u = 0, in Ω,

∂ju
∂νj

= gj, j = 0, 1, · · · ,m− 1 on Γ.

(7.6.40)

The class XΓ enjoys the following property.
For every Γ0 ⊂ Γ, Γ0 open in Γ in the induced topology, it occurs that

g ∈ XΓ, and g = 0 on Γ0 =⇒ g = 0 on Γ (7.6.41)

and, therefore, by linearity, if g, g̃ ∈ XΓ and g = g̃ on Γ0 then g = g̃ on Γ.
In other words, the class XΓ must enjoy the unique continuation property
(7.6.41). By this same fact we deduce that if the initial data of a Cauchy
problem for P (x, ∂) belong to the class of functions Ck(Γ,Rm), for any k ≥ m,
such a Cauchy problem cannot, in general, admits solutions. As a matter of
fact, the class Ck(Γ,Rm) does not enjoy property (7.6.41).

The proof of the assertion above is very simple. As a matter of fact, let
g ∈ XΓ and let u ∈ Ck(Ω ∪ Γ), k ≥ m be a solution of problem (7.6.41). Let
us suppose

g = 0, on Γ0.

Then applying Theorem 7.6.5 (with Γ0 in the place of Γ) we have that u = 0
in Ω and being u ∈ Ck(Ω ∪ Γ), we have g = u|Γ = 0. �

Example 3 – One–dimensional heat equation.
We consider the following Cauchy problem

∂2
xu− ∂tu = 0, in D := (0, 1)× (0, 1),

u(0, t) = 0, for t ∈ (a, b),

∂xu(0, t) = 0, for t ∈ (a, b),

(7.6.42)

where a, b are given numbers and such that 0 < a < b < 1. Let us notice
that problem (7.6.42) is a noncharacteristic Cauchy problem, since the
initial line is {x = 0}.



410 Chapter 7. The Cauchy problem for PDEs with analytic coefficients

By using the same arguments exploited in Example 1 and in Example
2 (Proposition 7.6.4) it can be proved easily that if u ∈ C2(D) then u = 0 in
[0, 1] × [a, b]. The details are left to the reader (it is useful to keep in mind
that the only characteristics of the operator ∂2

x − ∂t are the straight lines
t = t0, for any t0 ∈ R).

It is quite natural to wonder whether a solution of (7.6.42) is null in
D. The answer to this question is negative as proved in an example due to
Tychonoff, [74], which we will discuss below.

First, let us consider the following Cauchy problem.
∂2
xu− ∂tu = 0,

u(0, t) = ϕ(t), for t ∈ R,

∂xu(0, t) = 0, for t ∈ R,

(7.6.43)

For the time being, let us just assume that ϕ ∈ C∞(R) and let us search, at
first just formally, a solution of the type

u(x, t) =
∞∑
j=0

aj(t)x
j, (7.6.44)

where aj are functions to be found.
Obviously we have to require that

a0(t) = ϕ(t), and a1(t) = 0

and, by requiring that (7.6.44) is a solution to the equation ∂2
xu − ∂tu = 0,

we need to require

∞∑
j=0

a′j(t)x
j −

∞∑
j=2

j(j − 1)aj(t)x
j−2 = 0,

from which we have

aj+2(t) =
1

(j + 2)(j + 1)
a′j(t), ∀j ∈ N0.

Hence

a2k(t) =
ϕ(k)(t)

(2k)!
, a2k+1(t) = 0 ∀k ∈ N0.

Therefore
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u(x, t) =
∞∑
k=0

ϕ(k)(t)

(2k)!
x2k. (7.6.45)

In order that (7.6.45) is actually a solution to Cauchy problem (7.6.43) (in a
neighborhood of {0} × R) it suffices to require that there exist two positive
numbers c and M such that∣∣ϕ(k)(t)

∣∣ ≤ cMk(2k)!, ∀k ∈ N0. (7.6.46)

Let now

ϕ(t) =


e−

1
t2 , for t > 0,

0, for t ≤ 0.

(7.6.47)

We show now that (7.6.46) is satisfied. We will prove, indeed,

∣∣ϕ(k)(t)
∣∣ ≤ (9k

2e

) k
2

k!, ∀k ∈ N0. (7.6.48)

which (by the Stirling formula, (1.2.5)) implies (7.6.46).
To prove (7.6.48) we use the Cauchy formula for the holomorphic func-

tions. Let therefore t > 0 and let S be the circumference centered at t + i0
and with radius t

2
in the complex plane, i.e.

S =

{
t

(
1 +

1

2
eiϑ
)

: ϑ ∈ [0, 2π)

}
.

We have, for any k ∈ N0,

ϕ(k)(t) =
k!

2πi

∫
S

e−
1
z2

(z − t)k+1
dz.

Now, when z = t
(
1 + 1

2
eiϑ
)
∈ S, it is easily checked that

1

z
=

4

3t
+

2

3t
eiϑ.

Therefore

<
(

1

z2

)
=

(
4

3t

)2
[(

1 +
1

2
cosϑ

)2

−
(

1

2
sinϑ

)2
]

=

=

(
4

3t

)2 [
1

4
+

1

2
(1 + cosϑ)2

]
≥ 4

9t2
.
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Therefore we have

∣∣ϕ(k)(t)
∣∣ ≤ k!

2π

∫
|z−t|= t

2

∣∣∣∣∣ e−
1
z2

(z − t)k+1

∣∣∣∣∣ ds ≤
≤ k!

2π

∫
|z−t|= t

2

e−
4

9t2

|z − t|k+1
ds =

=
k!

2π

(
2π
t

2

)
1

(t/2)k+1
e−

4
9t2

=

=
2kk!

tk
e−

4
9t2 .

(7.6.49)

Since

sup
1

tk
e−

4
9t2 =

(
9k

8e

)k/2
,

by (7.6.49) we get (7.6.48) which in turn implies that the series in (7.6.45)
converges for every x ∈ R and its sum, u, is indeed the solution to Cauchy
problem (7.6.43).

From what we have just established, it turns out that, denoting by ψ the
following function

ψ(t) =



e
− 1

(t−b)2 , for t > b,

0, per a ≤ t ≤ b,

e
− 1

(a−t)2 , for t < a,

we have that

ũ =
∞∑
k=0

ψ(k)(t)

(2k)!
x2k,

is the solution to the Cauchy problem
∂2
xũ− ∂tũ = 0, in R2,

ũ(0, t) = ψ(t), for t ∈ R,

∂xũ(0, t) = 0, for t ∈ R

and ũ = 0 in R × [a, b], but if t0 /∈ [a, b] then ũ(·, t0) does not identically
vanish, more precisely ũ(·, t0) does not vanish in any open set of R because,
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as ũ(·, t0) is analytic (as it is the sum of a series of powers in the variable x)
one would have that ψ(k)(t0) = 0 for every k ∈ N0 that is false.

We conclude this discussion about the heat equation by observing that
does not hold the uniqueness in C2(R × [0,+∞)) to the following Cauchy
problem characteristic

∂2
xu− ∂tu = 0, in R2,

u(x, 0) = 0, for x ∈ R.
(7.6.50)

It suffices to consider the function u defined by (7.6.45) where ϕ defined by
(7.6.47) and we have that u is the solution of problem (7.6.50), but it does
not vanish identically. ♠

Exsercise. Let T, r > 0 and denote

K =
{

(x, t) ∈ Rn+1 : |x|+ |t| < T + r
}
.

Prove that if u ∈ C2(K) satisfies
∂2
t u−∆xu = 0, in K

u = 0, in Br × (−T, T ),

then
u = 0, in K.

♣





Chapter 8

Uniqueness for an inverse problem

8.1 Introduction

In this short chapter we present an inverse problem for the Laplace equation.
The direct problem is nothing but the Dirichlet problem


∆u = 0, in Ω,

u = ϕ, on ∂Ω.

(8.1.1)

For simplicity, we assume that Ω is a bounded and connected open of Rn

whose boundary is of class C∞ and ϕ ∈ C∞(∂Ω). In Chapter 4 we saw (see
in particular, Corollary 4.6.7) that, under these assumptions, there exists a
unique u ∈ C∞

(
Ω
)
, which is the solution to (8.1.1).

Now, let us suppose that a portion of ∂Ω, which we will call Γ(i), is
unknown and that we have

ϕ(x) = 0, ∀x ∈ Γ(i) (8.1.2)

and let us suppose that we know

∂u

∂ν
= ψ, su Σ, (8.1.3)

where Σ ⊂ ∂Ω \ Γ(i). We are interested in determining Γ(i). This is our
inverse problem. Let us note that if we consider all the data of the problem
we should write

415
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∆u = 0, in Ω,

u = ϕ, on ∂Ω,

∂u
∂ν

= ψ, on Σ,

(8.1.4)

which evidently is an overdetermined problem from which there is to be ex-
pected a compatibility relation between ϕ, ψ and ∂Ω so that, if we assume to
known ϕ, ψ and ∂Ω\Γ(i), we can reasonably hope to obtain some information
about Γ(i) itself. It is evident that if ϕ ≡ 0 on ∂Ω then we have no informa-
tion on Γ(i). We will see that this trivial case is (under precise assumptions)
the only case in which Γ(i) is not uniquely determined.

Instead of considering the inverse problem as an overdetermined problem,
it turns out to be more efficient to consider the inverse problem from the
point of view which we now illustrate. Since the direct problem has a unique
solution u ∈ C∞

(
Ω
)
for every bounded open set of class C∞, and for any

ϕ ∈ C∞(∂Ω) satisfying (8.1.2), it turns out that the derivative

∂u

∂ν |Σ

is a function of Γ(i). Let us let us denote such a function by

U
(
Γ(i)
)
,

the inverse problem we are intersted in may be formulated as follows

Determine the solution to the equation U
(
Γ(i)
)

= ψ.

In the next Section we will specify the assumptions and we will formulate
the uniqueness theorem for the inverse problem above.

8.2 Statement of the uniqueness theorem for
the inverse problem

Let us suppose that Ω is as above and let us suppose that ∂Ω is the union
of two internally disjoint portions, Γ(a) ("accessible" portion) and Γ(i) ("in-
accessible" portion). More precisely, let us suppose that:

∂Ω = Γ(a) ∪ Γ(i) (8.2.1)
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Γ(a) and Γ(i) closed in ∂Ω and
◦

Γ(a) = Γ(a),
◦

Γ(i) = Γ(i), (8.2.2)

we equip ∂Ω with the topology induced by the Euclidean topology of Rn,
◦

Γ(a) ∩
◦

Γ(i) = ∅. (8.2.3)

Hence

Γ(i) = ∂Ω \
◦

Γ(a) and Γ(a) = ∂Ω \
◦

Γ(i) (8.2.4)

and
◦

Γ(a) is connected, (8.2.5)

therefore, (8.2.2) implies Γ(a) is connected.
Let Σ be a compact subset of ∂Ω such that

Σ b
◦

Γ(a),
◦
Σ 6= ∅. (8.2.6)

Let ϕ ∈ C∞(∂Ω) satisfy

supp ϕ ⊂
◦

Γ(a). (8.2.7)

We now state the Theorem

Theorem 8.2.1 (uniqueness). Let Ωk, k = 1, 2, be two bounded connected
open sets of Rn whose boundary is of class C∞. Let us assume that

∂Ω1 = Γ(a) ∪ Γ
(i)
1 and ∂Ω2 = Γ(a) ∪ Γ

(i)
2 , (8.2.8)

where Γ(a),Γ
(i)
k , k = 1, 2, satisfies (8.2.2), (8.2.3) and (8.2.5). Let us as-

sume that ϕk ∈ C∞ (∂Ωk) do not vanish identically and satisfying (8.2.7).
Moreover, let us assume

ϕ1 = ϕ2, on Γ(a). (8.2.9)

Let uk ∈ C∞
(
Ωk

)
, k = 1, 2, be the solutions to

∆uk = 0, in Ωk,

uk = ϕ, on ∂Ωk.

(8.2.10)
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Let us assume that

∂u1

∂ν
=
∂u2

∂ν
, on Σ, (8.2.11)

where Σ is a compact subset of ∂Ω which satisfies (8.2.6).
Then we have

Ω1 = Ω2, (8.2.12)

and, consequently,
Γ

(i)
1 = Γ

(i)
2 .

The proof will be given in the next Section.

8.3 Proof of the uniqueness

The idea of the proof of uniqueness Theorem is quite simple, but it requires
propositions of general topology that we will prove separately for the purpose
of not breaking the main argument of the proof.

We argue by contradiction. We assume that one of the two sets Ω1 \ Ω2,
Ω2 \ Ω1, is not empty. For instance, let us assume

Ω1 \ Ω2 6= ∅. (8.3.1)

Define G as
G =

⋃
A∈A

A, (8.3.2)

where

A =
{
A open set of Rn : A ⊂ Ω1 ∩ Ω2, Γ(a) ⊂ A, A connected

}
. (8.3.3)

As we will prove in Proposition 8.3.1 (and as can be expected), G is a
connected open set, moreover Γ(a) ⊂ G and G ⊂ Ω1 ∩ Ω2. From the latter
and from (8.3.1) we have

Ω1 \G 6= ∅. (8.3.4)

Set
u := u1 − u2, in G.

We have



8.3. Proof of the uniqueness 419



∆u = 0, in G,

u = 0, on Σ,

∂u
∂ν

= 0, on Σ.

Theorem 7.6.5 implies
u ≡ 0, in G (8.3.5)

Claim.
u1 = 0, su ∂

(
Ω1 \G

)
. (8.3.6)

Proof of Claim. We exploit the following relationship (proved in Propo-
sition 8.3.3)

∂
(
Ω1 \G

)
⊂ Γ

(i)
1 ∪

(
Γ

(i)
2 ∩ ∂G

)
. (8.3.7)

Let x ∈ ∂
(
Ω1 \G

)
, then by (8.3.7) we distinguish two cases:

(a) x ∈ Γ
(i)
1 ,

(b) x ∈ Γ
(i)
2 ∩ ∂G.

In case (a) u1(x) = 0 because u = ϕ1 on ∂Ω1 and ϕ1 = 0 on Γ
(i)
1 .

In case (b), we have u2(x) = 0 because u = ϕ2 on ∂Ω2 and ϕ2 = 0 on Γ
(i)
2 .

On the other hand, by (8.3.5) and taking into account that u is continuous
in G, we have

u1(x) = u1(x)− u2(x) = u(x) = 0.

The Claim is proved.

Therefore u1 solves the Dirichlet problem
∆u1 = 0, in Ω1 \G,

u1 = 0, on ∂
(
Ω1 \G

)
,

and the maximum principle implies

u1 = 0, in Ω1 \G.

Now, taking into account (8.3.4), the unique continuation property gives

u1 = 0, in Ω1.
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From which we have
ϕ1 = 0, in ∂Ω1,

But this contradicts the assumption that ϕ1 does not vanish identically.
Therefore Ω1 \ Ω2 6= ∅. Hence Ω1 ⊂ Ω2. Similarly we have Ω2 ⊂ Ω1.
Therefore, Ω1 = Ω2. On the other hand (see Exercise of Section 2.7)

Ω1 =
◦
Ω1 =

◦
Ω2 = Ω2.

�

Proposition 8.3.1. G, defined by (8.3.2) is an open nonempty set and it
enjoys the following properties

(a) G ⊂ Ω1 ∩ Ω2,
(b) Γ(a) ⊂ G,
(c) G is connected.

Proof. Since Ωk, k = 1, 2, are of class C∞, there exist r0,M0, positive
numbers, such that Ωk, k = 1, 2, are of class C1,1 with constant r0,M0.
Proposition 2.11.8 implies that there exists µ1 > 0 such that, the following
map is continuous

Φ : ∂Ω× (0, µ1r0)→ Rn,

Φ(y, t) = y − tν(y), ∀(y, t) ∈ ∂Ω× (0, µ1r0) .

For any δ ∈ (0, µ1r0) we denote

Λδ = Φ

( ◦
Γ(a) × (0, δ)

)
.

Let us check
Λδ ∈ A, (8.3.8)

where A is defined in (8.3.3). It evident that Λδ 6= ∅. Moreover, by the
continuity of Φ−1 (see (c) of Proposition 2.11.8), Λδ is an open set (see (a)
of Proposition 2.11.8)

Λδ ⊂ Ω1, and Λδ ⊂ Ω2.

Also, Λδ is connected, as the image of the connected set Γ(a)×(0, δ) by means
of the continuous map Φ. To complete the proof of (8.3.8), it suffices to check

Γ(a) ⊂ Λδ. (8.3.9)
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Let x ∈ Γ(a) and let r > 0 arbitrary. Since, by (8.2.2),

◦
Γ(a) = Γ(a),

we have Br(x)∩
◦

Γ(a) 6= ∅. Let y ∈ Br(x)∩
◦

Γ(a), if t is a positive number small
enough, we have

y − tν(y) ∈ Br(x) ∩ Λδ.

Therefore
Br(x) ∩ Λδ 6= ∅, ∀r > 0.

Hence x ∈ Λδ and (8.3.9) is proved. Now, let us notice that

Λδ ∩ A 6= ∅, ∀A ∈ A. (8.3.10)

Let us fix A ∈ A and let x ∈
◦

Γ(a). Since x is an interior point of Γ(a),
Γ(a) ⊂ ∂Ω1 ∩ ∂Ω2 and since Ω1 and Ω2 are of class C1,1, there exists r > 0
such that

Br(x) ∩ Ω1 = Br(x) ∩ Ω2 ⊂ Λδ.

Hence
Br(x) ∩ A ⊂ Λδ.

On the other hand, since
◦

Γ(a) ⊂ A, we have x ∈ A. Hence

∅ 6= Br(x) ∩ A ⊂ Λδ ∩ A,

which implies (8.3.10).

Now, since
G =

⋃
A∈A

A (8.3.11)

and since Λδ ∈ A, we have that G 6= ∅ and (trivially)

G ⊂ Ω1 ∩ Ω2, Γ(a) ⊂ Λδ ⊂ G.

Hence (a) and (b) are proved. It remains to prove (c). Let x, y ∈ G and
let A,B ∈ A satisfy x ∈ A e y ∈ B. By (8.3.10), we have Λδ ∩ A 6= ∅ and
Λδ ∩B 6= ∅. Let

z ∈ Λδ ∩ A and w ∈ Λδ ∩B
and let γ1 be a continuous path that joins x and z in A, γ2 be a continuous
path that joins z and w in Λδ and γ3 be a continuous path that joins w and
y in B. Set

γ = γ1 ∨ γ2 ∨ γ3.
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γ is a continuous path that joins x and y in A∪Λδ∪B. Hence A∪Λδ∪B ∈ A
and we have A∪Λδ ∪B ⊂ G. Consequently γ joins x and y in G. All in all,
G is connected. �

We have

Proposition 8.3.2. Let C a nonempty set of Rn and A an open set of Rn.
then

A ∩ C 6= ∅ ⇐⇒ A ∩ C 6= ∅ (8.3.12)

Proof. The implication "⇐=" is trivial. Concerning the implication
"=⇒", let z ∈ A∩C and Br(z) ⊂ A. Since z ∈ C, we have ∅ ( Br(z)∩C ⊂
A ∩ C. Therefore A ∩ C 6= ∅. �

Proposition 8.3.3. Let G defined by (8.3.2). Let us suppose

Ω1 \ Ω2 6= ∅. (8.3.13)

Then we have

∂
(
Ω1 \G

)
⊂ Γ

(i)
1 ∪

(
Γ

(i)
2 ∩ ∂G

)
. (8.3.14)

Proof.
Step I. First, let us notice that, since Ω1 \G ⊃ Ω1 \

(
Ω1 ∩ Ω2

)
! ∅ and

Ω1 \G 6= Rn, we have ∂
(
Ω1 \G

)
6= ∅.

Now we prove that

∂
(
Ω1 \G

)
⊂ ∂Ω1 ∪ ∂Ω2. (8.3.15)

We argue by contradiction. Let x0 ∈ ∂
(
Ω1 \G

)
and let us suppose that

x0 /∈ ∂Ω1 ∪ ∂Ω2. (8.3.16)

It cannot be the case that x0 /∈ Ω1 because if it were, it would exist ρ > 0 such
that Bρ(x0) ∩

(
Ω1 \G

)
⊂ Bρ(x0) ∩ Ω1 = ∅, that contradicts ∂

(
Ω1 \G

)
6= ∅.

Let now examine the following two cases:
(a) x0 ∈ Ω1 ∩ Ω2

(b) x0 ∈ Ω1 ∩
(
Rn \ Ω2

)
.

Case (a). Let ρ > 0 such that

Bρ(x0) ⊂ Ω1 ∩ Ω2. (8.3.17)

On the other hand, x0 ∈ ∂
(
Ω1 \G

)
, hence
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Bρ(x0) ∩

(
Ω1 \G

)
6= ∅,

Bρ(x0) ∩
(
Rn \

(
Ω1 \G

))
6= ∅.

(8.3.18)

By (8.3.17) and by the second of (8.3.18), we have

∅ ( Bρ(x0) ∩
(
Rn \

(
Ω1 \G

))
= Bρ(x0) ∩

[
(Rn \ Ω1) ∪

(
G ∩ Ω1

)]
=

= Bρ(x0) ∩
(
G ∩ Ω1

)
⊂

⊂ Bρ(x0) ∩G.

All in all, Bρ(x0) ∩G 6= ∅ and, by Proposition 8.3.2 we get

Bρ(x0) ∩G 6= ∅. (8.3.19)

Moreover, by the first relationship of (8.3.18), we obtain

Bρ(x0) ∩
(
Rn \G

)
⊃ Bρ(x0) ∩

(
Ω1 \G

)
) ∅. (8.3.20)

Therefore (recalling (8.3.17))

G ( Bρ(x0) ∪G ⊂ Ω1 ∩ Ω2. (8.3.21)

Claim. Bρ(x0) ∪G is a connected set.

Proof of the Claim. Let x, y ∈ Bρ(x0) ∪ G. Let us prove that there
exists a continuous path γ that joins x and y in Bρ(x0) ∪ G. If x, y ∈ G
we have nothing to prove because (by Proposition 8.3.1) G is connected. If
x, y ∈ Bρ(x0), of course we have nothing to prove. Hence, let us suppose that
x ∈ G and y ∈ Bρ(x0). By (8.3.19) there exists z ∈ Bρ(x0) ∩ G. Let γ1 be
a continuous path that joins x and z in G and γ2 be a continuous path that
joins z and y in Bρ(x0). Let

γ = γ1 ∨ γ2.

γ is a continuous path that joins x and y in Bρ(x0) ∪G. Claim is proved.

Now, from (b) of Proposition 8.3.1 we have Bρ(x0) ∪G ⊃ Γ(a) and recall-
ing the definition of G we would have

G = Bρ(x0) ∪G,

which contradicts (8.3.21).
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Case (b). Let ρ > 0 satisfy

Bρ(x0) ⊂ Ω1 ∩
(
Rn \ Ω2

)
. (8.3.22)

Since x0 ∈ ∂ (Ω1 \G), we again obtain (8.3.19). Therefore

∅ ( Bρ(x0) ∩G ⊂ Ω1 ∩ Ω2 ⊂ Ω2,

hence Bρ(x0) ∩ Ω2 6= ∅, that contradicts (8.3.21). Hence (8.3.22) is proved.

Step II. Now we prove

∂ (Ω1 \G) ⊂ Γ
(i)
1 ∪ Γ

(i)
2 . (8.3.23)

To this aim, let us prove

◦
Γ(a) ∩ ∂

(
Ω1 \G

)
= ∅. (8.3.24)

Let us suppose that (8.3.24) does not hold. Hence, there exists x such that

x ∈
◦

Γ(a) ∩ ∂
(
Ω1 \G

)
. (8.3.25)

Since x ∈
◦

Γ(a) and Γ(a) ⊂ (∂Ω1) ∩ (∂Ω2), taking into account that ∂Ωk,
k = 1, 2, are of class C1,1, there exist r,M positive numbers, such that

(i) Qr,2M (x) ∩ ∂Ω1 = Qr,2M (x) ∩ ∂Ω2 ⊂
◦

Γ(a),
(ii) Qr,2M (x) ∩ Ω1 = Qr,2M (x) ∩ Ω2 and they are connected.
Now we prove that

G ( G ∪
(
Qr,2M (x) ∩ Ω1

)
⊂ Ω1 ∩ Ω2 (8.3.26)

and
G ∪

(
Qr,2M (x) ∩ Ω1

)
is connected. (8.3.27)

From these we will arrive to a contradiction.
First, by G ⊂ Ω1 ∩ Ω2 we have

G ∩
(
Qr,2M (x) ∩ Ω1

)
⊂ Ω1 ∩ Ω2. (8.3.28)

On the other hand, since, by (8.3.25) and x ∈ ∂
(
Ω1 \G

)
, we obtain

∅ ( Qr,2M (x) ∩
(
Ω1 \G

)
⊂
(
Qr,2M (x) ∩ Ω1

)
\G.
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Hence
G ( G ∪

(
Qr,2M (x) ∩ Ω1

)
and (8.3.26) is proved.

In order to prove that the set G ∪
(
Qr,2M (x) ∩ Ω1

)
is connected, we first

of all check that (
Qr,2M (x) ∩ Ω1

)
∩G 6= ∅, (8.3.29)

As a matter of fact, by x ∈ ∂
(
Ω1 \G

)
we have

∅ (
(
Qr,2M (x) ∩ Ω1

)
∩
[
Rn \

(
Ω1 \G

)]
=

=
(
Qr,2M (x) ∩ Ω1

)
∩
[
(Rn \ Ω1) ∪

(
Ω1 ∩G

)]
=

=
(
Qr,2M (x) ∩ Ω1

)
∩G.

Hence (
Qr,2M (x) ∩ Ω1

)
∩G 6= ∅

and by Proposition 8.3.2 we get (8.3.29).
At this point, in order to prove that

(
Qr,2M (x) ∩ Ω1

)
∪ G is connected,

we need only recall (ii) and to proceed as in the proof of the Claim in Step
I. Therefore (8.3.27) is proved. Now, since

G ∪
(
Qr,2M (x) ∩ Ω1

)
⊃ Γ(a),

by (8.3.26), (8.3.27) and by the definition of G, we arrive to a contradiction.
Hence (8.3.24) holds, which combined with (8.3.15) implies

∂ (Ω1 \G) ⊂ (∂Ω1 ∪ ∂Ω2) \
◦

Γ(a) =

=

(
∂Ω1 \

◦
Γ(a)

)
∪
(
∂Ω2 \

◦
Γ(a)

)
=

= Γ
(i)
1 ∪ Γ

(i)
2 ,

which gives (8.3.23).

Step III. We conclude the proof of (8.3.14). Let

x ∈ ∂
(
Ω1 \G

)
.

Let us distinguish two cases:
(j) x ∈ Rn \ Ω1,
(jj) x ∈ Ω1.
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Case (j) cannot occur, because if x ∈ Rn \Ω1 then there exists r > 0 such
that Br(x) ⊂ Rn \ Ω1, hence

Br(x) ∩
(
Ω1 \G

)
⊂ Br(x) ∩ Ω1 = ∅,

but this cannot hold because x ∈ ∂
(
Ω1 \G

)
.

Let us consider case (jj). If x ∈ Γ
(i)
1 then trivially x ∈ Γ

(i)
1 ∪

(
Γ

(i)
2 ∩ ∂G

)
.

Instead, if x /∈ Γ
(i)
1 then, by (8.3.23), we have

x ∈ Γ
(i)
2 . (8.3.30)

Moreover, since, by (8.3.24), we have x /∈
◦

Γ(a) and since, by (8.2.4), we have

∂Ω1 = Γ
(i)
1 ∪

◦
Γ(a), we get x /∈ ∂Ω1 and, taking into account that x ∈ Ω1, we

have x ∈ Ω1. Hence there exists r > 0 such that

Br(x) ⊂ Ω1. (8.3.31)

Now, let s ∈ (0, r] be arbitrary. Since x ∈ ∂
(
Ω1 \G

)
we have

∅ ( Bs(x) ∩
[
Rn \

(
Ω1 \G

)]
=

= Bs(x) ∩
(
Ω1 ∩G

)
.

Hence
Bs(x) ∩G 6= ∅, ∀s ∈ (0, r], (8.3.32)

therefore
x ∈ G. (8.3.33)

On the other hand, since x ∈ ∂
(
Ω1 \G

)
, we have for every s > 0

∅ ( Bs(x) ∩
(
Ω1 \G

)
⊂ Bs(x) ∩ (Rn \G) .

Therefore
x ∈ Rn \G,

that combined with (8.3.33) gives x ∈ ∂G, which in turn combined with
(8.3.30) concludes proof. �



Chapter 9

The Hadamard example.
Solvability of the Cauchy problem
and continuous dependence by
the data

9.1 The Hadamard example

We present the Hadamard example relating to the Cauchy problem.
Let us consider the following Cauchy problem

∂2
xu+ ∂2

yu = 0,

u(x, 0) = ϕ(x), for x ∈ (0, 1),

∂yu(x, 0) = ψ(x), for x ∈ (0, 1).

(9.1.1)

If ϕ and ψ are analytic, by the Cauchy–Kovalevskaya Theorem, there exists a
unique analytic solution to problem (9.1.1). Such a solution, by the Holmgren
Theorem, is the unique solution of class C2 in a neighborhood of (0, 1)×{0}.
Let now

ϕν(x) = e−
√
ν sin νx, and ψν(x) = 0, ν ∈ N.

It is immediately checked that

uν(x, y) = e−
√
ν sin νx sinh νy, ν ∈ N,

is the solution to the Cauchy problem

427
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∂2
xuν + ∂2

yuν = 0,

uν(x, 0) = ϕν(x), for x ∈ (0, 1),

∂yuν(x, 0) = ψν(x), for x ∈ (0, 1).

(9.1.2)

Let us note that for every k ∈ N0

sup
(0,1)

∣∣∣∣dkϕνdxk

∣∣∣∣→ 0, as ν →∞,

on the other hand, for every a, b ∈ (0, 1), a < b and for every δ > 0 we have

sup
[a,b]×[−δ,δ]

|uν | → +∞, as ν →∞.

In other words, "small errors" on the data of Cauchy problem (9.1.1)
yield uncontrollable errors on the solution. This phenomenon makes
problem (9.1.1) essentially intractable for the applications. Actually, in any
problem of an applied nature, the data, in the present case the initial data,
are derived through measurements and these are necessarily approximated
with some error, so in order to be able to practically use the mathematical
solution it is necessary that it depends continuously by the data.

In a broad way, we may present the notion of well–posed problem in
the sense of Hadamard as follows. Let X and Y be two metric spaces
and be

A : X → Y

a map from X to Y . Let us consideri the problem of determining x ∈ X
such that

A(x) = f, (9.1.3)

where f ∈ Y .

We say that problem (9.1.3) is well–posed in the sense of Hadamard
provided that we have

1. (Existence) for any f ∈ Y there exists at least one x ∈ X such that
A(x) = f .

2. (Uniqueness) for any x1, x2 ∈ X which satisfy A(x1) = A(x2) we have
x1 = x2;
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3. (Continuous dependence by the data) let us suppose that condi-
tion 2 is satisfied, then the map

A−1 : A(X)→ X

is continuous (A(X) with the topology induced by Y );

In the next Section we will see that in the Cauchy problem there is an
interesting relationship between the first two points above (existence and
uniqueness) and the third point (continuous dependence by the data).

9.2 Solvability of the Cauchy problem and its
relations to the continuous dependence on
the data

In this Section we will use some theorems from Functional Analysis on topo-
logical vector spaces of which, however, we will not give the proof. As a
reference book we will use W. Rudin’s book [69] to which we refer for the
above-mentioned proofs and for further consideration. We will quote detailed
references from of [69] as we go along.

Let us recall the following Theorem of General Topology.

Theorem 9.2.1 (Baire). Let X be a complete metric space. Then for any
countable family of closed subset, {Fn}n∈N, which satisfies

Int(Fn) = ∅, ∀n ∈ N, (9.2.1)

we have

Int

(⋃
n∈N

Fn

)
= ∅. (9.2.2)

Definition 9.2.2 (topological vector space). Let X be a vector space on
C (or R) equipped with a topology τ . We say that X is a topological vector
space

(a) for every x ∈ X , {x} is closed w.r.t. τ
(b) the maps

X × X 3 (x, y)→ x+ y ∈ X
and

X × C 3 (x, λ)→ λx ∈ X
(or, X × R 3 (x, λ)→ λx ∈ X ) are continuous.
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Let X be a vector space, we say that p : X → [0,+∞) is a seminorm
on X provided we have

p(x+ y) ≤ p(x) + p(y), ∀x, y ∈ X

and
p(λx) ≤ |λ|p(x), ∀λ ∈ C, ∀x ∈ X .

Let X be a topological vector space:
(i) We say that X is locally convex if there exists a local base of neighbor-
hoods of 0 whose members are convex. By the condition (b) of Definition
9.2.2 it is clear that if U is a neighborhood of 0 then, for every x ∈ X , x+U
is a neighborhood of x and conversely. Hence, given a local base of neigh-
borhoods of 0 it turns out defined trivially a local base of neighborhoods of
each point of X ;
(ii) We say that X is a F–space if its topology is induced by a complete
metric d which is invariant w.r.t. translation (i.e. d(x + z, y + z) = d(x, y)
for every x, y, z ∈ X );
(iii) We say that X is a Fréchet space if it is a locally convex F–space.

Let Ω be an open set of Rn. If Ω is bounded, We set, as usual, for any
u ∈ Ck

(
Ω
)
, k ∈ N0,

‖u‖Ck(Ω) =
k∑
j=0

∑
|α|≤k

max
Ω
|∂αu| .

As it is well known, Ck
(
Ω
)
, equipped with ‖·‖Ck(Ω), is a Banach space. Also,

we recall that Ck,σ
(
Ω
)
, 0 < σ ≤ 1, is a Banach space equipped with the norm

‖u‖Ck,σ(Ω) = ‖u‖Ck(Ω) + [u]Ω;k,σ.

Now we equip Ck(Ω), where k ∈ N0, or k = ∞, with a topology that
makes it a space of Fréchet space.

We start by C0(Ω) (C0(Ω,C) or C0(Ω,R), [69, Ch. 1, Sect. 1.44]). Let
{Kj}j∈N be a family of compact sets contained in Ω such that Kj 6= ∅,
Kj ⊂

◦
Kj+1 for every j ∈ N and

∞⋃
j=1

Kj = Ω.
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For any f ∈ C0(Ω), let us denote by

p0,j(f) = max
Kj
|f |.

{p0,j}j∈N is a family of separating seminorms, that is, for each f ∈ C0(Ω),
which does not vanish identically, there exists j ∈ N such that pj(f) 6= 0.
The collection of sets [69, Thm. 1.37]

Vj =

{
f ∈ C0(Ω) : p0,j(f) <

1

j

}
,

make up a local base in C0(Ω) of convex neighborhoods of 0 which in turn
defines a topology induced by the distance

d0(f, g) =
∞∑
j=1

2−jp0,j(f − g)

1 + p0,j(f − g)
, ∀f, g ∈ C0(Ω). (9.2.3)

It is proved that C0(Ω) with the metric (9.2.3) is a Fréchet space (it is quite
simple and is left as an exercise).

In a similar way we proceed for Ck(Ω), k finite. More precisely, we start,
rather than from the seminorms p0,j, from the seminorms

pk,j(f) = max

{
max
Kj
|∂αf | : |α| ≤ k

}
and we define the distance dk on Ck(Ω) by substituting p0,j by pk,j in (9.2.3),
that is

dk(f, g) =
∞∑
j=1

2−jpk,j(f − g)

1 + p0,j(f − g)
, ∀f, g ∈ Ck(Ω). (9.2.4)

Similarly, it is proved that Ck(Ω) with the metric (9.2.4) is a Fréchet space.
Finally, concerning C∞(Ω), the following seminorms (with the corre-

sponding metric), are defined

qN(f) = max {|∂αf(x)| : x ∈ KN , |α| ≤ N} .

d∞(f, g) =
∞∑
N=1

2−NqN(f − g)

1 + qN(f − g)
, ∀f, g ∈ C∞(Ω). (9.2.5)

in the sequel, when we are dealing with the convergence of sequences, it will
be more convenient to use directly the seminorms instead of the distances
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dk, 0 ≤ k ≤ ∞. For instance, the sequence {fk} in C∞(Ω) converges to f in
the topology induced by the norm d∞ if and only if

lim
k→∞

qN(fk − f) = 0, ∀N ∈ N.

Theorem 9.2.3 (closed graph). Let X , Y be two F-spaces and

Λ : X → Y (9.2.6)

be a linear map. Then Λ is continuous if and only if the graph of Λ

G = {(x,Λx) : x ∈ X}

is closed in X × Y.

We refer to [69, Prop. 2.14, Thm 2.15] for a proof. Keep in mind that
the most significant implication of Theorem 9.2.3 consists of

G closed =⇒ Λ continuous.

The reverse is true even if Λ is nonlinear, with X and Y topological spaces
topological and Y is a Hausdorff space

Let
P (x, ∂) =

∑
|α|≤m

aα(x)∂α, (9.2.7)

a linear differential operator of order m and aα ∈ C∞(Rn,C), for |α| ≤ m,
we say that the Cauchy problem with initial surface {xn = 0} for P (x, ∂)
enjoys the local uniqueness property (in 0) provided there exists δ > 0
such that we have: if u ∈ Cm

(
Bδ

)
satisfies


P (x, ∂)u = 0, in Bδ,

∂jnu(x′, 0) = 0, for j = 0, 1, · · · ,m− 1, ∀x′ ∈ B′δ,
(9.2.8)

then
u ≡ 0 in Bδ.

For instance, if the coefficients of P (x, ∂) are analytic (in a neighbor-
hood of 0) and P (0, en) 6= 0, the Holmgren Theorem implies that the local
uniqueness property is satisfied.
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We say that the following Cauchy problem
P (x, ∂)u = 0,

∂jnu(x′, 0) = gj(x
′), for j = 0, 1, · · · ,m− 1,

(9.2.9)

is locally solvable (in the origin) in C∞ if the following occurs:
for every open neighborhood U of 0 in Rn−1 and for every

g = (g0, g1, · · · , gm−1) ∈ C∞(U ,Cm)

there exists V , open neighborhood of 0 in Rn and there exists u ∈ C∞(V)
such that

P (x, ∂)u = 0, in V ,

∂jnu = gj, for j = 0, 1, · · · ,m− 1, in V ∩ {xn = 0}.
(9.2.10)

The definitions of the local uniqueness property and of the solvabil-
ity in the origin of the Cauchy problem with initial surface the hyperplane

{x ∈ Rn : N · x = 0} ,

where N is a versor of Rn, is formulated in obvious way or, simply, by recon-
ducting them to the case N = en by means of an isometry of Rn.

The following two theorems and their immediate consequences are known
in the literature as the Lax–Mizohata Theorem. Here we present them in a
slightly modified form. In particular, Theorem 9.2.4 is due to Lax, and
Theorem 9.2.5 is due to Mizohata. The above theorems are treated, for
instance, in [56].

Theorem 9.2.4. Let P (x, ∂) be operator (9.2.7) with C∞(Rn,C) coefficients.
Let us suppose that P (x, ∂) enjoys the local uniqueness property and that
Cauchy problem (9.2.9) is locally solvable in C∞. Then for every U , neigh-
borhood of 0 in Rn−1, there exists r > 0 such that for every

g = (g0, g1, · · · , gm−1) ∈ C∞ (U ,Cm) ,

there exists a unique u ∈ Cm
(
Br

)
such that

P (x, ∂)u = 0, in Br,

∂jnu = gj for j = 0, 1, · · · ,m− 1, in B′r.
(9.2.11)
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Remark 1. Let us observe that in Theorem 9.2.4, unlike in the definition of
local solvability, r, hence the neighborhood of 0, Br, does not depend on g.
Of course r depends on U . �

Proof. Let U ∈ Rn−1 be a neighborhood of 0 and let σ ∈ (0, 1) be fixed.
Since Cauchy problem (9.2.9) is locally solvable in 0, by local uniqueness
property we have that, for every

g = (g0, g1, · · · , gm−1) ∈ C∞ (U ,Cm) ,

there exists δ > 0 such that B′δ ⊂ U and such that for every ρ ∈ (0, δ] there
exists a unique solution u ∈ Cm,σ

(
Bρ

)
of problem Pg,ρ:

(Pg,ρ)


P (x, ∂)u = 0, in Bρ,

∂jnu = gj, for j = 0, 1, · · · ,m− 1, in B′ρ.

Let {ρk} be a strictly decreasing sequence such that

lim
k→∞

ρk = 0.

For any k,M ∈ N, let us consider the sets

Ak,M =

=
{
g ∈ C∞(U ,Cm) : exists u solution to Pg,ρk and ‖u‖Cm,σ(Bρk) ≤M

}
.

It is evident that Ak,M is symmetric, for any k,M ∈ N (g ∈ Ak,M ⇒
−g ∈ Ak,M) and convex for every k,M ∈ N.

Step 1. Let us check that

C∞ (U ,Cm) =
⋃

k,M∈N

Ak,M . (9.2.12)

Of course, it suffices to check "⊂". Let g ∈ C∞(U ,Cm). By the local
solvability there exists V ⊂ Rn, neighborhood of 0, such that Cauchy problem
(9.2.10) admits a solution u ∈ C∞(V). It is enough then to choose k ∈ N such
that Bρk ⊂ V and M such that M ≥ ‖u‖Cm,σ(Bρk) and we have g ∈ Ak,M .

Step 2. Now we prove that for every k,M ∈ N, Ak,M is closed in C∞ (U ,Cm)
equipped with the topology induced by the metric d∞.
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We fix k,M ∈ N and let {gν}ν∈N be a sequence in Ak,M such that

{gν} → g̃, in C∞(U ,Cm). (9.2.13)

let us check that g̃ ∈ Ak,M .
First of all, we have

g̃ ∈ C∞(U ,Cm). (9.2.14)

Moreover, denoting by uν the solution of problem Pgν ,ρk we have, by the
definition of Ak,M ,

‖uν‖Cm,σ(Bρk) ≤M, ∀ν ∈ N.

Hence, by the Arzelà–Ascoli Theorem there exists a subsequence
{
uνq
}

of
{uν} and ũ ∈ Cm,σ

(
Bρk

)
such that

uνq → ũ, as q →∞, in Cm
(
Bρk

)
. (9.2.15)

Moreover we have
‖ũ‖Cm,σ(Bρk) ≤M, (9.2.16)

Concerning the justification of the latter inequality, we notice that the
sequence

{
uνq
}
converges to ũ in Cm

(
Bρk

)
, but not necessarily it converges

in Cm,σ
(
Bρk

)
, neverthless (9.2.16) holds, since for x 6= y ∈ Bρk we have, for

any q ∈ N, ∑
|α|=m

∣∣∂αuνq(x)− ∂αuνq(y)
∣∣

|x− y|σ
≤M −

∥∥uνq∥∥Cm(Bρk)
;

hence, from the punctual convergence of
{
∂αuνq

}
for |α| = m and by∥∥uνq∥∥Cm(Bρk)

→ ‖u‖Cm(Bρk)
, as q →∞,

we obtain (9.2.16).
By (9.2.15) we have easily

0 = P (x, ∂)uνq → P (x, ∂)ũ, as q →∞, in C0
(
Bρk

)
.

Therefore
P (x, ∂)ũ = 0, in Bρk . (9.2.17)

By (9.2.13) and (9.2.15) we have, for j = 0, 1, · · · ,m− 1,

∂jnu(x′, 0) = lim
q→∞

∂jnuνqu(x′, 0) = lim
q→∞

gj,νq(x
′) = g̃, ∀x′ ∈ B′ρk . (9.2.18)
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By (9.2.14), (9.2.16)–(9.2.18) we get g̃ ∈ Ak,M .

Step 3. Now, recalling that C∞ (U ,Cm) is a Frechét space, by Theorem
9.2.1 we have that there exist k0,M0 ∈ N such that

Int (Ak0,M0) 6= ∅. (9.2.19)

To prove (9.2.19) we argue by contradiction. Let us assume (9.2.19) does not
hold. Consequently we have

Int (Ak,M) = ∅, ∀k,M ∈ N,

and recalling that Ak,M is closed for every k,M ∈ N, (9.2.12) and Theorem
9.2.1 imply

C∞ (U ,Cm) = Int (C∞ (U ,Cm)) = Int

( ⋃
k,M∈N

Ak,M

)
= ∅.

This is clearly a contradiction, then (9.2.19) needs to hold.
On the other hand, (9.2.19) implies that there exists ψ ∈ Int (Ak0,M0), and

since Ak0,M0 is symmetric and convex, we have −ψ ∈ Int (Ak0,M0) therefore

0 =
1

2
(ψ − ψ) ∈ Int (Ak0,M0) .

All in all, we have
0 ∈ Int (Ak0,M0) .

Consequently there existsW0 ⊂ Int (Ak0,M0), whereW0 is an element of local
base of neighborhood of 0 in C∞(U ,Cm), hence it is of the type

W0 =
⋂

|α|≤h,1≤j≤h′

{
f ∈ C∞(U ,Cm) : max

Kj
|∂αf | < εα,j

}
,

where h, h′, εα,j are suitable positive numbers and {Kj}j∈N is a family of

compact subset of U which satisfies Kj 6= ∅, Kj ⊂
◦
Kj+1 for every j ∈ N and

∞⋃
j=1

Kj = U .

We recall that the local uniqueness property implies that there exists
r > 0, that we may assume less or equal to ρk0 , such that if w ∈ Cm

(
Br

)
satisfies
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P (x, ∂)w = 0, in Br,

∂jnw = 0, for j = 0, 1, · · · ,m− 1, in B′r,

then we have
w ≡ 0 in Br.

Now, let g ∈ C∞ (U), then there exists trivially λ > 0 such that

λ−1g ∈ W0 ⊂ Int (Ak0,M0)

and by the definition of Ak0,M0 we have there exists v ∈ Cm
(
Bρk0

)
(actually,

v ∈ Cm,σ
(
Bρk0

)
) solution to Pλ−1g,ρk0

. Hence v|Br is the unique solution in

Cm
(
Br

)
to the Cauchy problem

P (x, ∂)v = 0, in Br,

∂jnv = λ−1gj, for j = 0, 1, · · · ,m− 1, in B′r,

Therefore, u = λv is the unique solution in Cm
(
Br

)
to the Cauchy prob-

lem 
P (x, ∂)u = 0, in Br,

∂jnu = gj for j = 0, 1, · · · ,m− 1, in B′r.

�

Remark 2. It is evident from the proof of Theorem 9.2.4 that if in the
definition of local solvability we require the existence of u in Cm′(V) with
m′ > m, then we reach the same conclusions. �

Theorem 9.2.5 (Lax–Mizohata). Let us suppose that P (x, ∂) satisfies the
same assumption of Theorem 9.2.4. Let U ⊂ Rn−1 be a neighborhood of 0
and let r > 0 be defined in Theorem 9.2.4. Let Λ be the map

Λ : C∞ (U ,Cm)→ Cm
(
Br

)
,

C∞ (U ,Cm) 3 g → Λ(g) = u solution to the Cauchy problem :
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P (x, ∂)u = 0, in Br,

∂jnu = gj, for j = 0, 1, · · · ,m− 1, in B′r.
(9.2.20)

Then Λ is continuous.

Proof. Let us prove that the graph of Λ is closed and then we apply
Theorem 9.2.3. Let {(gν , uν)}ν∈N be a sequence in C∞ (U ,Cm) × Cm

(
Br

)
which satisfies

P (x, ∂)uν = 0, in Br,

∂jnuν = gν,j, for j = 0, 1, · · · ,m− 1, in B′r

(9.2.21)

and

{(gν , uν)} → (g, v) , in C∞ (U ,Cm)× Cm
(
Br

)
. (9.2.22)

Then
P (x, ∂)v = lim

ν→∞
P (x, ∂)uν = 0

and, for 0 ≤ j ≤ m− 1,

∂jnv(x′, 0) = lim
ν→∞

∂jnuν(x
′, 0) = lim

ν→∞
gν,j(x

′) = gj(x
′).

Hence v solves Cauchy problem (9.2.20) and by Theorem 9.2.4, we have

v = Λg.

Therefore the graph of Λ is closed, hence Theorem 9.2.3 implies that Λ is
continuous. �

We observe that by Theorem 9.2.5 and the Hadamard example it follows
(again) that the Cauchy problem for the Laplace equation, (9.1.1), is not
locally solvable in C∞. Indeed, by the Holmgren Theorem, such a Cauchy
problem for the Laplace equation enjoys the property of local uniqueness in
C2, but, as shown in the Hadamard example, the map Λ defined for this
Cauchy problem is not continuous.

Similarly, Theorem 9.2.5 may be applied to obtain some necessary condi-
tion for the local solvability of the Cauchy problem. Here we limit ourselves
only to consider the case of the operators with constant coefficients which
are equal to their principal part. We refer to [34, Ch.5, Sect.4], [36, Ch.12,
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Sect.3] for the general operators with constant coefficients, and to [36, Ch.23,
Sect.3] for the operators with C∞ coefficients, warning the reader, however,
that (especially in [36, Ch.23, Sect. 3]) quite advanced tools are used.

Let
Pm(ξ) =

∑
|α|=m

aαξ
α, (9.2.23)

be a homogeneous polynomial of degree m with coefficients aα ∈ C, for
|α| = m and let N be a versor of Rn. We say that Pm is hyperbolic with
respect to the direction N provided we have
(a) Pm(N) 6= 0
(b) for every ξ ∈ Rn the algebraic equation in z

Pm(ξ + zN) = 0,

has real roots only.

Theorem 9.2.6. Let N be a versor of Rn and let Pm(∂) be the differential
operator with constant coefficients

Pm(∂) =
∑
|α|=m

aα∂
α. (9.2.24)

Let us suppose that the Cauchy problem for operator (9.2.24) with initial
surface

{x ∈ Rn : N · x = 0} (9.2.25)

enjoys the local sovability and the local uniqueness property.
Then the polynomial Pm(ξ) is hyperbolic w.r.t. the direction N .

Proof. We have already seen in Section 7.5.2 that by the local uniqueness
for the Cauchy problem for operator (9.2.24) with initial surface (9.2.25), we
have

Pm(N) 6= 0. (9.2.26)

We argue by contradiction to prove that, for every ξ ∈ Rn, there exist real
roots only to the equation

Pm(ξ + zN) = 0. (9.2.27)

Let us suppose that there exist ξ0 ∈ Rn and z0 = <z0 + i=z0, such that
=z0 6= 0 and

Pm(ξ0 + z0N) = 0. (9.2.28)
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Let us denote by

η = ξ0 + <z0N, and τ = =z0

and by

uν(x) = exp
{
−|ν|1/2 + ν (iη · x− τN · x)

}
, ν ∈ Z.

We have, by (9.2.28) (recalling that ξ0 + z0N = η + iτN and Pm(ξ) is a
homogeneous polynomial)

Pm(∂)uν(x) = uν(x)Pm (ν (iη − τN)) =

= uν(x)(iν)mPm (η + iτN) = 0.
(9.2.29)

Set

gν,j =
∂j

∂N j
uν , for ν ∈ Z and j = 0, 1 · · · ,m− 1,

we have trivially that uν solves the Cauchy problem
P (x, ∂)uν = 0, in Rn,

∂j

∂Nj uν = gν,j, for j = 0, 1, · · · ,m− 1, N · x = 0.

On the other hand it is easy to check that

gν → 0, as |ν| → +∞, in C∞.

Moreover, if τN · x > 0 then we have

|uν(x)| → +∞, as ν → −∞

and if τN · x < 0 then we have

|uν(x)| → +∞, as ν → +∞.

Hence, the map Λ defined in Theorem 9.2.5 is not continuous. Since Pm(∂)
enjoys the local uniqueness property, Pm(∂) cannot enjoy at the same time the
local sovability. Thus we have a contradiction. Therefore equation (9.2.27)
has real roots only. �

If the polynomial P (ξ) is not homogeneous, one can prove (with more
efforts) a theorem which is similar to Theorem 9.2.6 that we merely state
here (see [34, Ch.5, Sect. 4] , [36, Ch.12, Sect. 3])
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Theorem 9.2.7. Let P (ξ) be a polynomial of degree m, N a versor of Rn

and P (∂) the following differential operator with constant coefficient

P (∂) =
∑
|α|≤m

aα∂
α, (9.2.30)

where aα ∈ C for |α| ≤ m. Let us suppose that the Cauchy problem for
operator (9.2.30) with initial surface

{x ∈ Rn : N · x = 0} ,

enjoys local sovability property and let us suppose

Pm(N) 6= 0, (9.2.31)

where Pm is the principal part of P .
Then

∃τ0 ∈ R such that ∀ξ ∈ Rn and ∀τ < τ0 P (i(ξ + iτN)) 6= 0. (9.2.32)

A polynomial that enjoys the properties (9.2.31) and (9.2.32) is called
hyperbolic polynomial w.r.t. the direction N . It is not difficult to
prove (see the literature quoted above) that in the case where P (ξ) is a homo-
geneous polynomial the two definitions of hyperbolicity coincide. Moreover,
if P (ξ) is a hyperbolic polynomial (not necessarily homogeneous), denoted
by Pm(ξ) its principal part, then we have
(a) Pm(N) 6= 0,
(b) for every ξ ∈ Rn the equation in z

Pm(ξ + zN) = 0,

has real roots only.
However, if the principal part of P (ξ) satisfies (a) and (b) it does not im-

ply that P (x, ∂) is hyperbolic w.r.t. N . It can be proved that if the equation
Pm(ξ + zN) = 0, has simple real roots only, then the hyperbolicity condi-
tion with respect to a direction N is also sufficient for the local solvability of
the Cauchy problem with initial surface {N · x = 0}.

9.3 Concluding Remarks
1. In this Chapter we have considered the properties of the local uniqueness
and the local solvability for the Cauchy problem, but with simple and natural
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changes one could consider the same properties for the one–sided Cauchy
problem. Actually, it suffices to replace each neighborhood of 0 ∈ Rn, say V ,
by V+ = V ∩Rn−1 × [0,+∞), and in defininig the seminorms of C∞(V+) we
consider a family of compacts Kj ⊂ IntV+(Kj+1) for every j ∈ N e

⋃∞
j=1Kj =

V+. In this way provided that the appropriate modifications are introduced,
Theorems 9.2.5 and 9.2.4 preserve their validity, in particular, the ball Br

should be replaced with the half-ball Br ∩ (Rn−1 × [0,+∞)).

2. In Theorem 9.2.5 we have seen that if the properties of the local uniqueness
and of the local solvability in Cinfty hold true then the map Λ, defined in
Theorem 9.2.5, is continuous. In what follows, we check that if the operator
P (x, ∂) has analytic coefficients, the converse also holds (in a sense).

Let us suppose that
Pm(0, en) 6= 0,

and let us suppose that there exists r > 0 such that only the null function
solves (in C∞ (Br)) the Cauchy problem

P (x, ∂)u = 0, in Br,

∂jnu = 0, for j = 0, 1, · · · ,m− 1, in B′r.
(9.3.1)

Then by the Cauchy-Kovalevskaya Theorem, there exists r̃ ≤ r such that the
following map Λ̃ is well–defined

Cω (B′r,Cm) 3 g → Λ̃(g) = u ∈ Cω (Br̃) solution to the Cauchy problem:


P (x, ∂)u = 0, in Br̃,

∂jnu = gj, for j = 0, 1, · · · ,m− 1, in B′r.
(9.3.2)

We prove what follows: let us assume that Λ̃ is a continuous map provided
that we equip the spaces Cω (B′r,Cm) and Cω (Br̃) with the metric d∞, we
have that Cauchy problem (9.3.2) satisfies the local solvability property in
C∞ (i.e. if the initial data of the Cauchy belong to C∞ there exist solutions
to the Cauchy problem).

Let us suppose that Λ̃ is continuous and let g ∈ C∞ (B′r,Cm). Let {g,ν}
be the sequence in Cω (B′r,Cm) defined as follows

g,ν(x
′) =

( ν
2π

)(n−1)/2
∫
B′r

e−
ν|x′−y′|2

2 g(x′)dx′.
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The sequence {g,ν} converges to g in C∞ (B′r,Cm) and since g,ν ∈ Cω (B′r,Cm),
for every ν ∈ N, the Cauchy-Kovalevskaya Theorem yields the existence of
a solution uν which is unique in Cω (Br̃). By the continuity of Λ̃ and since
{gν}ν∈N is a Cauchy sequence in C∞ (B′r,Cm) we derive that {uν} is a Cauchy
sequence in C∞ (Br̃(0)). The completeness of C∞ (Br̃) implies that {uν}ν∈N
converges to a function u ∈ C∞ (Br̃).

Moreover, by

P (x, ∂)uν → P (x, ∂)u, as ν →∞

and

∂jnuν(x
′, 0) = gj,ν(x

′)→ gj(x
′), ∂jnuν(x

′, 0)→ ∂jnu(x′, 0), as ν →∞,

for j = 0, 1, · · · ,m − 1, we derive that u ∈ C∞ (Br̃) solves the Cauchy
problem 

P (x, ∂)u = 0, in Br̃,

∂jnu = gj, for j = 0, 1, · · · ,m− 1, in B′r̃.

3. Keep in mind that the definition of hyperbolicity that we provided above,
involves not only the operator (or, more precisely, its symbol), but also the
direction N . Let us consider, for instance, the wave operator in space dimen-
sion two

P (∂t, ∂x1 , ∂x2) = ∂2
t −

(
∂2
x1

+ ∂2
x2

)
.

The symbol of P (∂t, ∂x1 , ∂x2) is the polynomial

P (η, ξ1, ξ2) = −η2 +
(
ξ2

1 + ξ2
2

)
,

which is hyperbolic w.r.t. the direction (1, 0, 0), but is not hyperbolic
w.r.t. the directions (0, 1, 0) e (0, 0, 1).

Elliptic operators (with constant coefficients), as is checked easily, are not
hyperbolic with respect to any direction. Hence, the Cauchy problem for the
elliptic operators does not enjoy the property of local solvability in C∞, nor,
at the light of what was shown in Section 9.2, it may happen that there is a
continuous dependence in C∞ (or from C∞ in Cm).





Chapter 10

Well–posed problems.
Conditional stability

10.1 Introduction
In the previous Chapter, we introduced the notion of well-posed problem
in the sense of Hadamard and we observed that some Cauchy problems are
not well posed. In particular, we observed that in such problems may fail
some kind of continuous dependence of the solutions with respect to the
data. This phenomenon represents a serious obstacle in the study of the
problems originating from the applications. Indeed, in these problems the
measurements of the data are, apart for trivial cases, affected by the errors
of approximation the effect of which must always be taken into account if
the theoretical results obtained have any reasonable application.

Moreover, one should not believe that the phenomena of noncontinuous
dependence of the solutions with respect to the data are present only in par-
ticularly complicated situations as is the case of Cauchy problems. Indeed,
such phenomena are encountered even in the approximate calculation of a
derivative or, to put ourselves in an "applicative" perspective, in the approx-
imate calculation of the velocity from a given time law. Let us suppose that
a certain object moves with rectilinear motion with a time law

x = s(t)

and let us let us suppose that we are interested in determining its velocity
v(t). As we know very well

v(t) = s′(t).

However, now, let us suppose that we only have an approximation of the
time law. Let ε > 0 and let sε be an approximate measure of the time law

445
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of our object. For instance let us suppose that

sup
t∈[0,T ]

|s(t)− sε(t)| ≤ ε, (10.1.1)

where T > 0 is the time in which the motion is performed (initial time 0). It
would be desired that vε = s′ε be itself an approximation of v. Nevertheless,
this does not happen. As a matter of fact, let

sε(t) = s(t) + ε sin
(
ε−2t

)
, t ∈ [0, T ].

Then (10.1.1) is satisfied, hence

lim
ε→0

sup
t∈[0,T ]

|s(t)− sε(t)| = 0, (10.1.2)

on the other side

v(t)− vε(t) = s′(t)− s′ε(t) = ε−1 cos
(
ε−2t

)
9 0, as ε→ 0.

Thus, without additional information about the motion of the object, we can-
not obtain an approximation of its velocity based only on an approximation
of its time law.

The example we have just considered may be expressed more formally by
saying that the operator

d

dt
: X → Y,

where
X = C1 ([0, T ]) , equipped with norm ‖·‖C0([0,T ])

and
Y = C0 ([0, T ]) , equipped with norm ‖·‖C0([0,T ])

is not continuous.
In what follows when we say that a problem is not well–posed, or ill–

posed, in the sense of Hadarmard we will always mean (if we do not risk
ambiguities) that although the existence and uniqueness of the solutions occur,
the problem does not enjoy the continuous dependence with respect to the data.
The continuous dependence should be considered with respect to the topologies
suggested by the same nature of the applied problem under investigation.

The Functional Analysis is a rich repository of examples of not well–posed
problems in the sense specified above. For instance, it is known that. if X is
a Banach space and A ∈ L(X) (where L(X) denotes the space of linear and
continuous operators from X into itself) is injective then
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A−1 : R(A)→ X,

where
R(A) = {Au : u ∈ X} ,

is continuous if and only if R(A) is closed in X. In particular, if R(A) is not
closed, then the problem

A(u) = f, (10.1.3)

is not well–posed in the sense of Hadamard. This is the case of the integral
operator

L2(0, 1) 3 u→ (Au)(t) =

∫ t

0

u(s)ds ∈ L2(0, 1). (10.1.4)

Similarly, if X has not a finite dimension and A is a compact and injective
operator from X into itself, then again A−1 is not continuous and therefore
(10.1.3) is an ill-posed problem.

As it is well known, operator (10.1.4) is compact. More generally, if
k ∈ L2([0, 1]× [0, 1]) then the operator

L2(0, 1) 3 u→ (Ku)(t) =

∫ 1

0

k(t, s)u(s)ds ∈ L2(0, 1), (10.1.5)

is a compact operator. Hence the integral equation∫ 1

0

k(t, s)u(s)ds = f(t), t ∈ [0, 1], (10.1.6)

is certainly an ill-posed problem in the sense of Hadamard since, even if it
admits solutions they do not depend continuously (in L2(0, 1)) by f .

As we have already observed, a problem for which there is no continuous
dependence with respect to the data, without further information, cannot
be treated practically. In order to treat it, additional information is needed.
This introduces the notion of conditionally well-posed problem whose
formal definition formal is as follows.

Definition 10.1.1. Let (X, d1) e (Y, d2) be two metric spaces and let

A : X → Y
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be a map from X to Y . we say that the problem of determining u ∈ X such
that

A(u) = f, (10.1.7)

where f ∈ Y , is a condizional well–posed problem or likewise well–
posed problem in the sense of Tikhonov [73] with respect to K ⊂ X
provided that we have
(i) A|K : K → Y is injective,
(ii)

(
A|K
)−1

: A(K)→ K is continuous.

Remark. Let us note that in the above Definition there is no requirement
for the existence of solutions of the problem A(u) = f . In essence, the
problem that is considered is the following one.

Given f ∈ A(K), determine u such that
A(u) = f,

u ∈ K.
(10.1.8)

The introduction of the set K into the definition of a well-posed problem
in the sense of Tikhonov is equivalent to the introduction of a additional
information or an a priori information (as it is often said in the lit-
erature) to the problem under investigation. We will synthesize the above
requirements by saying

Determine u ∈ X such that A(u) = f

with the a priori bound u ∈ K.
(10.1.9)

The a priori information pertains to the specific character of the problem
under investigation and it is suggested by the applied nature of that problem.
To find a stability estimate for problem (10.1.8) or (10.1.9) means to find
an appropriate estimate of the modulus of continuity ω of

(
A|K
)−1, which,

we recall, is defined by

ω(δ) = sup
{
d1

(
A−1(f1), A−1(f2)

)
: f1, f2 ∈ A(K), d2 (f1, f2) ≤ δ

}
.

Obviously the best that one can do is to determine exactly ω, but very often
to arrive at an accurate asymptotic estimate of ω(δ) as δ goes to 0, can be
considered a satisfactory result for many applications.
�
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If the problem
A(u) = f,

is not well–posed in the sense of Hadamard andA is a continuous and injective
map , there always exist sets K for which problem (10.1.7) is conditionally
well–posed. The following Theorem holds true.

Theorem 10.1.2 (Tikhonov). Let K and Y be two metric spaces. Let us
assume K is a compact. Moreover, let

F : K → Y

which satisfies
(i) F is injective,
(ii) F is continuous.
Then

F−1 : F (K)→ K,

is continuous.

Proof. Let C be a closed subset of K, let us prove that

F (C) =
(
F−1

)−1
(C)

is closed in Y . We have

C ⊂ K, C closed K ⇒ F (C) compact in Y ⇒
⇒ F (C) closed in Y.

Therefore F is continuous. �

Example 1. To illustrate what we have said so far, let us return to
the problem of calculating the derivative of a function and we consider a
simplified version of it, i.e. the following one: calculate the derivative of
f ∈ C1([0, 1]) which satisfies

f ′(0) = f ′(1) = 0. (10.1.10)

Let us note that also this problem is ill–posed in L2(0, 1). As a matter of
fact, let

fn(t) =
1√
n

cos πnt, t ∈ [0, 1], n ∈ N.
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Then (10.1.10) is satisfied and

‖fn‖L2(0,1) =
1√
2n
→ 0, as n→∞

and
‖f ′n‖L2(0,1) =

π
√
n√
2
→ +∞, as n→∞.

We reformulate the problem as a functional equation. Let be

X =
{
u ∈ C0([0, 1]) : u(0) = u(1) = 0

}
,

Y =
{
f ∈ C1([0, 1]) : f ′(0) = f ′(1) = 0

}
and

T : X → Y, (T (u)) :=

∫ t

0

u(s)ds.

Equip X and Y with the L2(0, 1) norm
The above problem becomes: given f ∈ Y determine u ∈ X such that

T (u) = f, (10.1.11)

which has, trivially, a unique solution given by

u(t) = f ′(t), t ∈ [0, 1].

We have seen above that there is no continuous dependence of the solutions
by the datum. On the other hand T is continuous and, setting

K =
{
u ∈ X : u ∈ C1([0, 1]), ‖u′‖L2(0,1) ≤ E

}
,

where E is a positive number, since K is a compact of X, the problem
T (u) = f,

u ∈ K,
(10.1.12)

is well–posed in the sense of Tikhonov. Hence, denoting by ωE the modulus
of continuity of

(
T|K
)−1 we have

∥∥T−1(f1)− T−1(f2)
∥∥
L2(0,1)

= ‖f ′1 − f ′2‖L2(0,1) ≤

≤ ωE

(
‖f1 − f2‖L2(0,1)

)
,

(10.1.13)
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for every f1, f2 ∈ T (K).
An estimate of ωE can be easily proved as follows. If f ∈ C2([0, 1])

and f ′(0) = f ′(1) = 0 then integrating by parts and applying the Cauchy–
Schwarz inequality we get∫ 1

0

f ′2(t)dt =

∫ 1

0

f ′(t)f ′(t)dt = −
∫ 1

0

f ′′(t)f(t)dt ≤

≤
(∫ 1

0

f ′′2(t)dt

)1/2(∫ 1

0

f 2(t)dt

)1/2

.

Hence ∫ 1

0

f ′2(t)dt ≤
(∫ 1

0

f ′′2(t)dt

)1/2(∫ 1

0

f 2(t)dt

)1/2

. (10.1.14)

Let now f1, f2 ∈ T (K), satisfy

‖f1 − f2‖L2(0,1) ≤ ε,

then by (10.1.14) we have∥∥T−1(f1)− T−1(f2)
∥∥
L2(0,1)

≤ (2Eε)1/2. (10.1.15)

Therefore
ωE(ε) ≤ (2Eε)1/2. (10.1.16)

In particular, for fixed E, we have

ωE(ε) = O
(
(ε)1/2

)
as ε→ 0, (10.1.17)

the reader is invited to check that the exponent 1/2 in the estimate (10.1.17)
cannot be improved, however on this kind of issue we will return to further
in this Chapter.

10.2 Interpolation estimates for the derivatives
of a function.

In this Section we will prove some estimates among functions and their deriva-
tives. These estimates can be considered as conditional stability estimates of
some not well–posed problem. We start by the following.



452 Chapter 10. Well–posed problems. Conditional stability

Proposition 10.2.1. If f ∈ C2([a, b]), where a, b ∈ R, a < b, then we have

‖f ′‖L∞(a,b) ≤

≤ c0

(
((b− a)−2 ‖f‖L∞(a,b) + ‖f ′′‖L∞(a,b)

)1/2

‖f‖1/2
L∞(a,b) ,

(10.2.1)

where c0 ≤ 8
√

2 is a positive constant.

Proof. The proof of (10.2.1) can be reduced to the case where
[a, b] = [0, 1]. To this aim it suffices to consider , instead of f , the function

[0, 1] 3 t→ f (a+ (b− a)t) ∈ R.

Let us continue to denote by f this function. Let us fix x ∈
[
0, 1

2

]
and let

h ∈
(
0, 1

2

]
. We have

f ′(x) =

(
f ′(x)− f(x+ h)− f(x)

h

)
+
f(x+ h)− f(x)

h
. (10.2.2)

The Lagrange Theorem implies that there exist ξ, η such that

x < η < ξ < x+ h

and
f ′(x)− f(x+ h)− f(x)

h
= f ′(x)− f ′(ξ) = (x− ξ)f ′(η).

Hence ∣∣∣∣f ′(x)− f(x+ h)− f(x)

h

∣∣∣∣ ≤ h ‖f ′′‖L∞(0,1) . (10.2.3)

By the just obtained inequality and by (10.2.2) we have, for every x ∈
[
0, 1

2

]
and for every h ∈

(
0, 1

2

]
,

|f ′(x)| ≤ h ‖f ′′‖L∞(0,1) + h−1 (|f(x+ h)|+ |f(x)|) ≤
≤ h ‖f ′′‖L∞(0,1) + 2h−1 ‖f‖L∞(0,1) .

(10.2.4)

Instead, if x ∈
[

1
2
, 1
]
, then it suffices to replace (10.2.2) by

f ′(x) =

(
f ′(x)− f(x− h)− f(x)

−h

)
+
f(x− h)− f(x)

−h
,

for every h ∈
(
0, 1

2

]
and we obtain

|f ′(x)| ≤ h ‖f ′′‖L∞(0,1) + 2h−1 ‖f‖L∞(0,1) , (10.2.5)
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for every h ∈
(
0, 1

2

]
. By (10.2.4) and (10.2.5) we get

‖f ′‖L∞(0,1) ≤ h ‖f ′′‖L∞(0,1) + 2h−1 ‖f‖L∞(0,1) , ∀h ∈
(

0,
1

2

]
. (10.2.6)

Now, set
E = ‖f ′′‖L∞(0,1) e ε = ‖f‖L∞(0,1) (10.2.7)

and let us determine the minimum of the function (in h variable) on the
right–hand side of (10.2.6), i.e.(

0,
1

2

]
3 h→ Φ(h) = hE + 2h−1ε.

It turns out that if
(

2ε
E

)1/2 ≤ 1
2
then, for h = h0 :=

(
2ε
E

)1/2,

min
[0,1/2]

Φ = Φ(h0) = 2
√

2Eε, (10.2.8)

while, if
(

2ε
E

)1/2 ≥ 1
2
then

min
[0,1/2]

Φ = Φ(1/2) =
1

2
E + 4ε,

but, since in this case 8ε ≥ E, we get

min
[0,1/2]

Φ ≤ 8ε. (10.2.9)

By (10.2.8), (10.2.9) and (10.2.6) we have

‖f ′‖L∞(0,1) ≤ 2
√

2Eε+ 8ε ≤ 8
√

2(E + ε)1/2ε1/2

and recalling (10.2.7) we obtain (10.2.1).�

Remarks
1. By Proposition 10.2.1 it follows the equivalence of the norms

‖f‖C2([a,b]) = ‖f‖L∞(a,b) + (b− a) ‖f ′‖L∞(a,b) + (b− a)2 ‖f ′′‖L∞(a,b) ,

and
‖f‖ = ‖f‖L∞(a,b) + (b− a)2 ‖f ′′‖L∞(a,b) ,

(reader chek: use the inequality 2AB ≤ A2 +B2).

2. Inequality (10.2.1) is a stability estimate for the calculation of the
first derivative provided we have the a priori information
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(b− a)2 ‖f ′′‖L∞(a,b) ≤ E. (10.2.10)

As a matter of fact, if

‖f‖L∞(a,b) ≤ ε, (10.2.11)

then

‖f ′‖L∞(a,b) ≤
c0

b− a
(E + ε)1/2ε1/2.

More precisely, setting

KE =
{
f ∈ C2([a, b]) : (b− a)2 ‖f ′′‖L∞(a,b) ≤ E

}
and denoting by ω the modulus of continuity of

KE 3 f → f ′ ∈ C1([a, b]),

we have

ω(ε) ≤ c0

b− a
(E + ε)1/2ε1/2, ∀ε > 0. (10.2.12)

Also, we observe

ω(ε) ≥ 1

b− a
(E + ε)1/2ε1/2, ∀ε > 0. (10.2.13)

In order to check (10.2.13), for the sake of brevity, let us consider the case
[a, b] = [0, 1] and let us denote

fε(x) =
Eε

E + ε
sin

x√
ε/(ε+ E)

. (10.2.14)

We have
‖fε‖L∞(0,1) ≤ ε, ‖f ′′ε ‖L∞(0,1) ≤ E.

Hence fε ∈ KE and we have

ω(ε) ≥ ‖f ′ε‖L∞(0,1) = (E + ε)1/2ε1/2,

from which we get (10.2.13).
Inequality (10.2.13) implies that the exponent 1

2
in stability estimate

(10.2.1) is optimal, that is it cannot be improved by a bigger exponent.
�
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In what follows we extend Proposition 10.2.1 to higher order derivatives.
To this aim we need some notations. Let a ∈ R. We recall that the translation
operator, τa, is defined as

(τaf)(x) = f(x− a) (10.2.15)

where f is any one real variable function. Also we denote

τ ∗a = τ−a. (10.2.16)

Let us denote by I the identity operator. Moreover, if h ∈ R let us denote
by ∆hf the difference operator

(∆hf) (x) = ((τ ∗h − I) f) (x) = f(x+ h)− f(x). (10.2.17)

Let e0, e1, · · · ej, j ∈ N0, be the polynomials

e0(x) = 1,

e1(x) = x,

e2(x) = x(x− h),

· · ·
ej(x) = x(x− h) · · · (x− (j − 1)h) .

Let us note that ej, has degree j for every j ∈ N0. Let h 6= 0 and let us
denote by Pn−1, n ∈ N, the Newton interpolation polynomial centered
at x0 and with degree n− 1, that is

Pn−1(x) =
n−1∑
j=0

(
∆j
hf
)

(x0)

j!hj
ej(x− x0). (10.2.18)

Let us notice that if 1 ≤ j ≤ n− 1 and s ∈ {0, 1, · · · , n− 1} then we have

ej(sh) =


0, for 0 ≤ s ≤ j − 1,

(
s
j

)
j!hj, for j ≤ s ≤ n− 1.

(10.2.19)

We check (10.2.19). If 0 ≤ s ≤ j−1 then one of the factors of ej(sh) vanishes.
While, if j ≤ s ≤ n− 1 (where 1 ≤ j ≤ n− 1) we have

ej(sh) = (sh)(sh− h) · · · (sh− (sh− (j − 1)h)) =

= hjs(s− 1) · · · (h− (s− (j − 1))) =

= hj
(
s

j

)
j! .
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Also, let us note that if 0 ≤ s ≤ n− 1, we get

f(x0 + sh) = ((τ ∗h)s f) (x0) (10.2.20)

and

(τ ∗h)s = (∆h + I)s =
n−1∑
j=0

(
s

j

)
∆j
h. (10.2.21)

Hence (10.2.20) and (10.2.21) yield

f(x0 + sh) =
n−1∑
j=0

(
s

j

)(
∆j
hf
)

(x0) =

=
n−1∑
j=0

1

j!hj
(
∆j
hf
)

(x0)ej(x0 + sh− x0) =

= Pn−1(x0 + sh).

All in all, we have

f(x0 + sh) = Pn−1(x0 + sh), per s = 0, 1, · · · , n− 1. (10.2.22)

We can now state and prove the following

Proposition 10.2.2. Let n ≥ 2 and f ∈ Cn([a, b]), where a, b ∈ R, a < b.
For 1 ≤ k ≤ n− 1 we have∥∥f (k)

∥∥
L∞(a,b)

≤

≤ ck,n

(
((b− a)−n ‖f‖L∞(a,b) +

∥∥f (n)
∥∥
L∞(a,b)

) k
n ‖f‖1− k

n

L∞(a,b) ,
(10.2.23)

where ck,n is a positive constant which depends on k and n only.

Proof. As in the proof of Proposition 10.2.1 we may reduce to the case
[a, b] = [0, 1]. We begin to prove (10.2.23) when k = n−1. Let f ∈ Cn([0, 1]).
Fix x0 ∈

[
0, 1

2

]
and let h ∈

(
0, 1

2(n−1)

]
and set

R(x) = f(x)− Pn−1(x), x ∈ [0, 1].

By (10.2.22) we have

R(x0) = R(x0 + h) = · · · = R (x0 + (n− 1)h) = 0

from which, By repeatedly applying the Rolle Theorem, we have that there
exists ξ ∈ (x0, x0 + (n− 1)h) such that
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f (n−1)(ξ)− P (n−1)
n−1 (ξ) = R(n−1)(ξ) = 0.

Therefore there exists ξ ∈ (x0, x0 + (n− 1)h) such that

f (n−1)(ξ) = P
(n−1)
n−1 (ξ). (10.2.24)

On the other hand we have

P
(n−1)
n−1 (x) =

e
(n−1)
n−1 (x− x0)

(n− 1)!

(
∆n−1
h f

)
(x0)

hn−1
,

and
e

(n−1)
n−1 (x) = (n− 1)! .

By the latter and by (10.2.24) we have

f (n−1)(ξ) =

(
∆n−1
h f

)
(x0)

hn−1
. (10.2.25)

Therefore

f (n−1)(x0) =
(
f (n−1)(x0)− f (n−1)(ξ)

)
+

(
∆n−1
h f

)
(x0)

hn−1
(10.2.26)

and by the Lagrange Theorem, we get∣∣f (n−1)(x0)− f (n−1)(ξ)
∣∣ ≤ ∥∥f (n)

∥∥
L∞(0,1)

|x0 − ξ| ≤

≤
∥∥f (n)

∥∥
L∞(0,1)

(n− 1)h.
(10.2.27)

Moreover(
∆n−1
h f

)
(x0) =

(
(τ ∗h − I)n−1 f

)
(x0) =

=
n−1∑
j=0

(
n− 1

j

)
(−1)n−1−jf(x0 + jh)

(10.2.28)

therefore

∣∣(∆n−1
h f

)
(x0)

∣∣ ≤ n−1∑
j=0

(
n− 1

j

)
|f(x0 + jh)| ≤ 2n−1 ‖f‖L∞(0,1) . (10.2.29)

By (10.2.26), (10.2.27) and (10.2.29) we have
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∣∣f (n−1)(x0)
∣∣ ≤ ∥∥f (n)

∥∥
L∞(0,1)

(n− 1)h+

(
2

h

)n−1

‖f‖L∞(0,1) . (10.2.30)

Applying (10.2.30) to f(1 − x) we also obtain the estimate for x0 ∈
[

1
2
, 1
]
.

All in all, we have for 0 < h ≤ 1
2(n−1)

,

∥∥f (n−1)
∥∥
L∞(0,1)

≤ E(n− 1)h+

(
2

h

)n−1

ε, (10.2.31)

here we set

E :=
∥∥f (n)

∥∥
L∞(0,1)

, ε := ‖f‖L∞(0,1) .

Now we find the minimum of the function(
0,

1

2(n− 1)

]
3→ Φ(h) = E(n− 1)h+

(
2

h

)n−1

ε.

By elementary calculation we have

min
(0, 1

2(n−1) ]
Φ ≤ cn(E + ε)1− 1

n ε
1
n ,

where cn depends on n only. Hence

∥∥f (n−1)
∥∥
L∞(0,1)

≤ cn

(∥∥f (n)
∥∥
L∞(0,1)

+ ‖f‖L∞(0,1)

)1− 1
n ‖f‖

1
n

L∞(0,1) . (10.2.32)

Now, let 1 ≤ k ≤ n− 1, by iteration of (10.2.32) we obtain

∥∥f (k)
∥∥
L∞(0,1)

≤ ck+1

(∥∥f (k+1)
∥∥
L∞(0,1)

+ ‖f‖L∞(0,1)

) k
k+1 ‖f‖

1
k+1

L∞(0,1) ≤

≤ ck+1c
1
k+2

k+2

(∥∥f (k+2)
∥∥
L∞(0,1)

+ ‖f‖L∞(0,1)

) k
k+2 ‖f‖

2
k+2

L∞(0,1) ≤

≤ · · · ≤

≤ ck,n

(∥∥f (n)
∥∥
L∞(0,1)

+ ‖f‖L∞(0,1)

) k
n ‖f‖1− k

n

L∞(0,1) .

where ck,n depends on k and n only. By the above obtained inequality, coming
back [a, b] we get (10.2.23). �
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Estimates like (10.2.23) can be easily derived for Lp norm, 1 ≤ p ≤ ∞.
Let

‖f‖Lp(a,b) =

(∫ b

a

|f(x)|p
)1/p

. (10.2.33)

We have

Proposition 10.2.3. Let n ≥ 2 and f ∈ Cn([a, b]), where a, b ∈ R, a < b.
For 1 ≤ k ≤ n− 1 we have∥∥f (k)

∥∥
Lp(a,b)

≤

≤ ck,n

(
((b− a)−n ‖f‖Lp(a,b) +

∥∥f (n)
∥∥
Lp(a,b)

) k
n ‖f‖1− k

n

Lp(a,b) ,
(10.2.34)

where ck,n is a positive constant which depends on k and n only.

Proof. Similarly to the proof of the previous Proposition, we may reduce
to the case [a, b] = [0, 1]. Let us prove (10.2.34) when k = n−1. Let t ∈

[
0, 1

2

]
h ∈

(
0, 1

2(n−1)

]
, by (10.2.26) (with t replacing x0) we have

f (n−1)(t) =
(
f (n−1)(t)− f (n−1)(ξ)

)
+

(
∆n−1
h f

)
(t)

hn−1
. (10.2.35)

Set

f̃ (n)(τ) =

 f (n)(τ), for τ ∈ [0, 1],

0, for τ /∈ [0, 1].

We have

∣∣f (n−1)(t)− f (n−1)(ξ)
∣∣ =

∣∣∣∣∫ t

ξ

f (n)(τ)dτ

∣∣∣∣ ≤
≤
∫ t+(n−1)h

t

∣∣f (n)(τ)
∣∣ dτ =

∫
R

∣∣∣f̃ (n)(τ)
∣∣∣χ(0,(n−1)h)(τ − t)dτ,

where χ(0,(n−1)h) is the characteric function (0, (n−1)h). Hence, by (10.2.35),
for t ∈

[
0, 1

2

]
and h ∈

(
0, 1

2(n−1)

]
, we have

∣∣f (n−1)(t)
∣∣ ≤ ∫

R

∣∣∣f̃ (n)(τ)
∣∣∣χ(0,(n−1)h)(τ − t)dτ +

(
∆n−1
h f

)
(t)

hn−1
. (10.2.36)

At this point we use the triangle inequality in Lp and the Young inequality
for convolutions:

‖F ? G‖Lp(R) ≤ ‖F‖Lp(R) ‖G‖L1(R)
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where F = f̃ (n), G = χ(0,(n−1)h) and we get

(∫ 1/2

0

∣∣f (n−1)(t)
∣∣p dt)1/p

≤ (n− 1)h
∥∥f (n)

∥∥
Lp(0,1)

+

(
2

h

)n−1

‖f‖Lp(0,1) .

Similarly, we have(∫ 1

1/2

∣∣f (n−1)(t)
∣∣p dt)1/p

≤ (n− 1)h
∥∥f (n)

∥∥
Lp(0,1)

+

(
2

h

)n−1

‖f‖Lp(0,1) .

Hence, by h ∈
(

0, 1
2(n−1)

]
, we have

∥∥f (n−1)
∥∥
Lp(0,1)

≤ (n− 1)h
∥∥f (n)

∥∥
Lp(0,1)

+

(
2

h

)n−1

‖f‖Lp(0,1) .

From now on we proceed as in the proof of Proposition 10.2.2. �

Remark 4. It can be proved (see exercise below) that the exponent 1− k
n

of the estimate (10.2.23) is optimal. Regarding the constant we report here,
without a proof (we refer to [30]), the following sharp estimate (k,m ∈ N0,
m > 0) ∥∥f (k)

∥∥
L∞(a,b)

≤ 4e2kmk ‖f‖1− 1
m

L∞(a,b) M
1
m
km,

where
Mkm = max

{
(km)!

(b− a)nm
‖f‖1− 1

m

L∞(a,b) ,
∥∥f (km)

∥∥
L∞(a,b)

}
.

�

Exercise 1. Prove the optimality of the exponent 1 − k
n
in inequalities

(10.2.23) and (10.2.34). (hint: note that inequalities (10.2.23) and (10.2.34)
hold for complex–valued functions. After that, instead of trigonometric func-
tions like (10.2.14) use complex exponential). ♣

Exercise 2. (i) Let 0 < α < β ≤ 1. Prove that for every f ∈ C0,β([a, b])
we have

|f |α,[a,b] ≤ C(b− a)−α
[
(b− a)β |f |β,[a,b] + ‖f‖L∞(a,b)

]α
β ‖f‖

1−α
β

L∞(a,b) ,

where C depends on α and β only.
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(ii) Let 0 < α ≤ 1. Prove that for every f ∈ C1,α([a, b]) we have

‖f ′‖L∞(a,b) ≤ C(b− a)−1
[
(b− a)1+α |f ′|α,[a,b] + ‖f‖L∞(a,b)

] 1
1+α ‖f‖

α
1+α

L∞(a,b) ,

where C depends on α only.
hint to (ii): note that instead of (10.2.3) we have∣∣∣∣f ′(x)− f(x+ h)− f(x)

h

∣∣∣∣ ≤ |f |α,[a,b] hα.
♣

We conclude this Section with two estimates for the derivatives of several
variables functions.

Proposition 10.2.4. Let f ∈ C2
(
B1

)
. We have

‖∇f‖L∞(B1) ≤ c
(∥∥∂2f

∥∥
L∞(B1)

+ ‖f‖L∞(B1)

) 1
2 ‖f‖

1
2

L∞(B1) , (10.2.37)

where c is a positive constant whhich depends on n only.

Proof. Let h ∈ (0, 1] be to choose later on and let x ∈ B1. Set

Ωh(x) = Bh(x) ∩B1.

For j = 1, · · · , n we have

fxj(x) = fxj(x)− 1

|Ωh(x)|

∫
Ωh(x)

fxj(y)dy+

+
1

|Ωh(x)|

∫
Ωh(x)

fxj(y)dy =

=
1

|Ωh(x)|

∫
Ωh(x)

(
fxj(x)− fxj(y)

)
dy+

+
1

|Ωh(x)|

∫
∂Ωh(x)

f(y)νjdS.

(10.2.38)

We have, for a suitable x on the segment of extremes x and y,

fxj(x)− fxj(y) = ∇fxj (x) · (x− y), (10.2.39)

in addition we have

|Ωh(x)| ≥ C1h
n, |∂Ωh(x)| ≥ C2h

n−1, (10.2.40)
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where C1 and C2 depend on n only. From what was obtained in (10.2.38),
(10.2.39) and (10.2.40) we get

|∇f(x)| ≤ C
(
h
∥∥∂2f

∥∥
L∞(B1)

+ h−1 ‖f‖L∞(B1)

)
,

where C depends on n only. Now we minimize the function on the right–hand
side of (10.2.40) and we obtain (10.2.37). �

Proposition 10.2.5. Let f ∈ C1
(
B1

)
. We have

‖f‖L∞(B1) ≤ c
(
‖∇f‖L∞(B1) + ‖f‖L2(B1)

) n
n+2 ‖f‖

n
n+2

L2(B1) , (10.2.41)

where c depends on n only.

Proof. Let h ∈ (0, 1] be to choose, x ∈ B1 and Ωh(x) like in the previous
proof. We have

f(x) =
1

|Ωh(x)|

∫
Ωh(x)

(f(x)− f(y)) dy +
1

|Ωh(x)|

∫
Ωh(x)

f(y)dy. (10.2.42)

By
|f(x)− f(y)| ≤ ‖∇f‖L∞(B1) |x− y|

we have

1

|Ωh(x)|

∫
Ωh(x)

|f(x)− f(y)| dy ≤ h ‖∇f‖L∞(B1) . (10.2.43)

On the other hand, by the Cauchy–Schwarz inequality we have∣∣∣∣ 1

|Ωh(x)|

∫
Ωh(x)

|f(y)| dy
∣∣∣∣ ≤ 1

|Ωh(x)|1/2
‖f‖L2(B1) ≤

≤ 1

(c1hn)1/2
‖f‖L2(B1) .

(10.2.44)

Hence

|f(x)| ≤ C
(
h−n/2 ‖f‖L2(B1) + h ‖∇f‖L∞(B1)

)
, (10.2.45)

where C depends on n only. Now we minimize the function on the right–hand
side of (10.2.45) and we get (10.2.41). �
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10.3 Stability estimates for the continuation of
holomorphic functions

In what follows we will identify C with R2. Let us recall very quickly the
definition and some properties of the holomorphic functions.

1. Let Ω be an open set of C, f : Ω → C be a complex–valued function
defined in Ω and z0 ∈ Ω. We say that f is holomorphic in z0 if the
following limit there exists (in C)

lim
z→z0

f(z)− f(z0)

z − z0

. (10.3.1)

In such a case we denote by f ′(z0) the value of limit (10.3.1) and we say
that it is the derivative of f in z0. We say that f is holomorphic in
Ω provided it is holomorphic in each point of Ω. For instance, z, zn are
holomorphic functions in C while <z,=z, z are not.

2. From what we say in 1 it follows that if f is holomorphic in z0 = x0 + iy0

then f , as a function of the real variables x and y, is differentiable in (x0, y0)
and

∂f

∂x
+ i

∂f

∂y
= 0, in (x0, y0). (10.3.2)

Denoting by P = <f , Q = =f , (10.3.2) we may write

∂P

∂x
=
∂Q

∂y
,

∂P

∂y
= −∂Q

∂x
, in (x0, y0). (10.3.3)

Equations (10.3.2) and (10.3.3) are known as the Cauchy-Riemann equa-
tions (or condition). By introducing the notations

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
, (10.3.4)

the Cauchy-Riemann conditions can be written as

∂f

∂z
= 0, in (x0, y0). (10.3.5)

Also we have, setting dz = dx+ idy, dz = dx− idy and by considering f as
a function of z and z

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z
dz. (10.3.6)
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3. The Cauchy Theorem. If f : Ω → C is holomorphic in Ω then the
differential form

f(z)dz = f(x+ iy)dx+ if(x+ iy)dy

is locally exact. That is, for every (x0, y0) ∈ Ω there exist δ > 0 and

F : Bδ(x0, y0)→ C,

F differentiable in Bδ(x0, y0) such that

∂F

∂x
= f,

∂F

∂y
= if.

4. It can be proved that if f ∈ C0(Ω) is holomorphic in Ω \ L, where L is a
straight line then fdz is holomorphic in Ω. In particular, if f ∈ C0(Ω) and
f is holomorphic in Ω \ {a} where a ∈ Ω, then fdz is locally exact. This in
turn enables the proof of the
Cauchy integral formula. Let f be holomorphic in Ω. Let a ∈ Ω and
r > 0 satisfy Br(a) ⊂ Ω. Setting γ(t) = a+ reit, t ∈ [0, 2π), we have

f(a) =
1

2πi

∫
γ

f(z)

z − a
dz. (10.3.7)

5. The Cauchy formula implies that if f is holomorphic in Bρ then f can be
expanded in a power series in Bρ, that is there exists {an}n≥0, sequence of
C, such that

f(z) =
∞∑
n=0

anz
n, ∀z ∈ Bρ. (10.3.8)

Since a holomorphic function can be expanded in a power series in each point
of an open set Ω, we have f : Ω → C is holomorphic in Ω if and only if f
is a complex analitic function in Ω, i.e. if and only if for every a ∈ Ω there
exists δ such that

f(z) =
∞∑
n=0

f (n)(a)

n!
(z − a)n, ∀z ∈ Bδ(a). (10.3.9)

The "if · · · then" part of the equivalence follows immediately by the prop-
erties of differentiability of power series and by (10.3.1). Keep in mind,
however, that the expression "analytic complex function" should not be con-
fused with the expression "analytic complex–valued function " For instance
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f(z, z) = z2 − z2 is complex-valued analytic function, but not analytic com-
plex function, as it is not holomorphic.

6. From what we have said in 4, we get the converse of the Cauchy The-
orem. That is to say: if f ∈ C0(Ω) and f(z)dz is locally exact in Ω then
f is holomorphic in Ω. As a matter of fact, if f(z)dz is locally exact in Ω
then it has locally a primitive hence, there exists locally, F ∈ C1 such that
∂F
∂x

= f, ∂F
∂y

= if from which we have that F satisfies the Cauchy-Riemann
conditions, hence F is holomorphic and f = F ′, on the other hand since the
derivative of a complex analytic function is still a complex analytic function,
hence holomorphic, f = F ′ is holomorphic.

We also have that if f ∈ C0(Ω) and Br(a) ⊂ Ω then

f (n)(a) =
n!

2πi

∫
γ

f(z)

(z − a)n+1
dz, ∀n ∈ N0, (10.3.10)

where γ(t) = a+ reit, t ∈ [0, 2π). Moreover, again by (10.3.7), we obtain the
mean property

f(a) =
n!

2π

∫ 2π

0

f(a+ reit)dt, (10.3.11)

as soon as Br(a) ⊂ Ω. From the mean property it follows the

Maximum modulus principle. Let Ω ⊂ C a bounded open set and
f ∈ C0(Ω) be a holomorphic function in Ω, then

max
Ω
|f | = max

∂Ω
|f |.

Moreover, if Ω is connected and there exists a ∈ Ω such that

|f(a)| = max
Ω
|f |

then f is constant in Ω.

7. Let us now return our attention to the analyticity of holomorphic functions
and let us recall what follows. If

f : Ω→ C,

is holomorphic in Ω, connected open set of C, then if a ∈ Ω we have

f (n)(a) = 0, ∀n ∈ N0 =⇒ f ≡ 0 in Ω. (10.3.12)

From which we have that, if D is nonempty open set contained in Ω, then
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f = 0, in D =⇒ f ≡ 0 in Ω. (10.3.13)

Moreover, if f does not vanish identically in Ω then the set of zeros of
f has no accumulation points in Ω. As a matter of fact, if f does not
vanish identically in Ω then (10.3.12) implies that for every a ∈ Ω there exists
k ∈ N0 such that

f (k)(a) 6= 0.

Denoting by k0 ∈ N0 the minimum of such k, (10.3.9) gives

f(z) = (z − a)k0

∞∑
n=0

f (n)(a)

n!
(z − a)n−k0 := (z − a)k0ϕ(z), ∀z ∈ Bδ(a),

where ϕ(a) 6= 0, hence f(z) 6= 0 in Bδ1(a) \ {a} for some δ1 > 0. The above
point can also be expressed in the following way: let

{zn : n ∈ N}

a infinite set which has at least an accumulation point in Ω, then

f(zn) = 0, ∀n ∈ N =⇒ f ≡ 0 in Ω (10.3.14)

or also

f(z) = O
(
|z − a|N

)
, ∀N ∈ N =⇒ f ≡ 0 in Ω. (10.3.15)

Let us notice that (10.3.14) does not hold if {zn : n ∈ N} has accumula-
tions points on ∂Ω only. Let us consider, for instance,

Ω = {x+ iy : x > 0, |y| < x}

and let
f(z) = e−

1
z .

We have f(z) = O
(
|z|N

)
, for every N ∈ N, but f 6≡ 0.

8. In this concluding part of this summary, we prove

Proposition 10.3.1. Let Ω be a connected open set of C. Let us suppose
that

o

Ω = Ω. (10.3.16)
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Let z0 ∈ ∂Ω and Γ = ∂Ω ∩ BR(z0) 6= ∅, where R > 0. In addition, Let
f ∈ C0(Ω ∪ Γ), f be holomorphic in Ω which satisfies

f = 0 on Γ, (10.3.17)

then f ≡ 0 in Ω.

Proof. In what follows we will need some simple topological relationships
that we will prove (for the convenience of the reader) in the concluding part
of the main proof. By (10.3.16) we have immediately

∂Ω = Ω ∩
(
C \ Ω

)
. (10.3.18)

Now, let us fix δ ∈
(
0, R

4

)
. Since z0 ∈ ∂Ω, we have by (10.3.18)

Bδ(z0) ∩ Ω 6= ∅, Bδ(z0) ∩
(
C \ Ω

)
6= ∅. (10.3.19)

Now, let a and b be such that

b ∈ Bδ(z0) ∩ Ω, a ∈ Bδ(z0) ∩
(
C \ Ω

)
.

Since
|b− a| ≤ |b− z0|+ |z0 − a| < 2δ < R− 2δ,

we get
b ∈ BR−2δ(a) ∩ Ω ⊂ BR(z0) ∩ Ω,

in particular BR−2δ(a) ∩ Ω 6= ∅, (the second inclusion relationship follows
from the triangle inequality). Let us denote by

r = R− 2δ.

We have also (see "concluding part")

∂ (Br(a) ∩ Ω) \ Γ ⊂ (∂Br(a)) ∩ Ω. (10.3.20)

Set now

ϕ(z) = (z − a)−nf(z), n ∈ N. (10.3.21)

It turns out that ϕ is holomorphic in Br(a)∩Ω and continuous in Br(a) ∩ Ω.
By the maximum modulus principle we obtain

|ϕ(z)| ≤ max
∂(Br(a)∩Ω)

|ϕ| , ∀z ∈ Br(a) ∩ Ω (10.3.22)

and by (10.3.20) we get, recalling that f = 0 on Γ,
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Figure 10.1:

max
∂(Br(a)∩Ω)

|ϕ| ≤ max
∂(Br(a)∩Ω)\Γ

|ϕ|+ max
Γ
|ϕ| ≤

≤ max
∂(Br(a))∩Ω

|ϕ| = max
∂(Br(a))∩Ω

(
|z − a|−n |f |

)
=

= r−n max
∂(Br(a))∩Ω

|f |.

(10.3.23)

Now let z ∈ Br(a) ∩ Ω, by (10.3.21), (10.3.22) and (10.3.23) we derive

|f(z)| ≤
(
|z − a|
r

)n
max

∂(Br(a))∩Ω
|f | , ∀n ∈ N (10.3.24)

and passing to the limit as n goes to infinity we deduce

f(z) = 0, ∀z ∈ Br(a) ∩ Ω.

Since Br(a) ∩ Ω is a nonempty open set and Ω is a connected open set, by
(10.3.13) we have f ≡ 0 in Ω.

Concluding part of the proof. We prove (10.3.20). Let us recall
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∂(A ∩B) ⊂ ∂A ∪ ∂B. (10.3.25)

Let now
x ∈ ∂ (Br(a) ∩ Ω) \ Γ,

we wish to prove that
x ∈ (∂Br(a)) ∩ Ω. (10.3.26)

First, we have trivially

∂ (Br(a) ∩ Ω) \ Γ ⊂ Ω (10.3.27)

By (10.3.25) we have

x ∈ (∂Br(a)) ∪ ∂Ω and x /∈ Γ. (10.3.28)

Now, by (10.3.28) we have that if x /∈ ∂Br(a) then x ∈ ∂Ω. Moreover we have
x ∈ Br(a). Because, if x /∈ Br(a), as x /∈ ∂Br(a), we would have x /∈ Br(a),
hence it would exist ρ > 0 such that Bρ(x) ∩ Br(a) = ∅. Consequently, for
such ρ we would have Bρ(x) ∩ (Br(a) ∩ Ω) = ∅ which contradicts
x ∈ ∂ (Br(a) ∩ Ω).

All in all, if x /∈ ∂Br(a) then

x ∈ ∂Ω ∩Br(a) ⊂ ∂Ω ∩BR(z0) = Γ,

But this cannot occur because, by (10.3.28), x /∈ Γ. Therefore, (10.3.28)
implies that

x ∈ ∂Br(a).

Finally, since (10.3.27) holds we get (10.3.26), hence (10.3.20) is proved. �

Remark. Assumption
o

Ω = Ω excludes, for instance, that Ω = B1 \
{z1, · · · , zn} where zj ∈ BR for j = 1, · · · , n, where R < 1. In this case,
Proposition 10.3.1 does not hold for R < 1 and Γ = {z1, · · · , zn}. �

10.4 The Hadamard three circle inequality and
other examples of stability estimates.

In the previous Section we focused on the unique continuation property for
the holomorphic functions. As we have seen it takes on several facets corre-
sponding to (10.3.12)–(10.3.15) and to Proposition 10.3.1. In particular, we
have that if a holomorphic function f : Ω → C is known in a set D ⊂ Ω
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which admits at least one accumulation point in Ω and if Ω is connected,
then f is uniquely determined in Ω. The problem of determining effectively
the values of f on Ω from f|D has an interest in applications. However this
problem is not well posed in the sense of Hadamard as can be inferred from
the following simple example.

Example 1.
Let Ω = B1 and D = Br where r ∈ (0, 1). Then any holomorphic func-
tion on B1 is uniquely determined by f|Br . Nevertheless, small errors in the
evaluation of f|Br may produce uncontrollable errors on f . Let indeed

fn(z) =
1

n

(z
r

)n
, n ∈ N.

We have

max
Br

|fn| =
1

n
→ 0, as n→∞,

on the other hand, if |z| > r, then we have

|fn(z)| = 1

n

(
|z|
r

)n
→∞, as n→∞.

♠

The conditional stability question for the analytic extension problem may
be formulated as follows

Let Ω be a connected open set of C and D ⊂ Ω which has at least one
accumulation point in Ω. Let f be any holomorphic function in Ω, continuous
on Ω, which satisfies

max
Ω
|f | ≤ E (10.4.1)

and
max
D
|f | ≤ ε. (10.4.2)

We are interested in finding a stability estimate like the following one

|f(z)| ≤ Eη
( ε
E

; z
)
, ∀z ∈ Ω, (10.4.3)

where
η (s; z)→ 0 as s→ 0, ∀z ∈ Ω.
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There is a fairly general treatment of estimates of stability (10.4.3), but
here we will examine only a few examples that are particularly significant.

Example 2: The Hadamard three circle inequality.
Let 0 < r < ρ < R. Let f be a holomorphic function in BR and continuous
in BR. Let us denote by

M(s) := max
Bs

|f | , for 0 < s ≤ R. (10.4.4)

We have

M(ρ) ≤ (M(r))θ0(M(R))1−θ0 , (10.4.5)

where

θ0 =
log R

ρ

log R
r

. (10.4.6)

Proof of (10.4.5).
Let n and m be two integer numbers, m > 0. Let us consider the function

F (z) = z−n (f(z))m , for z ∈ BR \ {0}. (10.4.7)

F is holomorphic in BR \ {0} and it is continuous in BR \Br. We can apply
the maximum modulus principle. Set

M̃(s) := max
∂Bs
|f | , for 0 < s ≤ R.

We have, for any ρ ∈ (r, R),

ρ−n
(
M̃(ρ)

)m
= max

∂Bρ
|F | ≤

≤ max

{
max
∂Br
|F | ,max

∂BR
|F |
}

=

= max
{
r−n

(
M̃(r)

)m
, R−n

(
M̃(R)

)m}
,

which gives

M̃(ρ) ≤ max

{(ρ
r

) n
m
M̃(r),

( ρ
R

) n
m
M̃(R)

}
. (10.4.8)

Since Q is dense in R, by (10.4.8) we have

M̃(ρ) ≤ max
{(ρ

r

)α
M̃(r),

( ρ
R

)α
M̃(R)

}
, ∀α ∈ R. (10.4.9)
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r
ρ

R

Figure 10.2:

Now, let us choose α in such a way that(ρ
r

)α
M̃(r) =

( ρ
R

)α
M̃(R),

that is, let

α =
log
(
M̃(R)

M̃(r)

)
log R

ρ

and (10.4.9) implies

M̃(ρ) ≤
(
M̃(r)

)θ0 (
M̃(R)

)1−θ0
, (10.4.10)

where θ0 is given by (10.4.6). Finally, by the maximum modulus principle,
we get (10.4.5). �

Remarks
1. If f is holomorphic in BR \Br and it is continuous in BR \Br, inequality
(10.4.10) still applies.

2. It is evident that (10.4.5) is a stability estimate for the problem:
Determine f ∈ C0

(
BR

)
, f holomorphic in BR which satisfies

max
Br

|f | ≤ ε
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and

max
BR

|f | ≤ E.

3. Let us notice that inequality (10.4.5) is equivalent to the convexity of the
function

t→ logM(et).

4. The inequality (10.4.5) cannot be improved. More precisely, the following
facts apply.

For every C > 0 independent of f we have

θ0 = sup
{
θ : M(ρ) ≤ C (M(r))θ , M(R) = 1

}
. (10.4.11)

In other words, the exponent θ0 in (10.4.5) is the best exponent. Moreover

inf
{
C > 0 : M(ρ) ≤ C (M(r))θ0 , M(R) = 1

}
= 1, (10.4.12)

that is the constant 1 in (10.4.5) is the best constant.

Proof of (10.4.11)
It suffices to prove that if θ ∈ R satisfies

M(ρ) ≤ C (M(r))θ , (10.4.13)

for every f ∈ C0
(
BR

)
, f holomorphic in BR and such that M(R) = 1 then

θ ≤ θ0. (10.4.14)

Now, let

fn(z) =
( z
R

)n
, n ∈ N.

We have

M(ρ) =
( ρ
R

)n
, M(r) =

( r
R

)n
and by (10.4.13) we have

n log
ρ

R
≤ logC + θn log

r

R
, ∀n ∈ N,

from which (recalling that r < ρ < R) we have
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log(ρ/R)

log(r/R)
≥ θ +

logC

n log(r/R)
, n ∈ N

and passing to the limit as n→∞ we obtain (10.4.14).

Proof of (10.4.12)
It suffices to prove that if C > 0 satisfies

M(ρ) ≤ C (M(r))θ9 ,

for every f ∈ C0
(
BR

)
, f holomorphic in BR and M(R) = 1 then

C ≥ 1. (10.4.15)

It suffices to choose
f(z) =

z

R

and we have trivially

(M(r))θ0 =
( r
R

)θ0
=
ρ

R
= M(ρ),

from which (10.4.15) follows.

5. It is interesting to note that the mere inequality (10.4.5) implies the
following unique continuation property

f(z) = O
(
|z|N

)
, as z → 0, ∀N ∈ N =⇒ f ≡ 0 in BR. (10.4.16)

indeed, let us assume that

f(z) = O
(
|z|N

)
, as z → 0, ∀N ∈ N (10.4.17)

and, arguing by contradiction, let us suppose that

f 6≡ 0 in BR. (10.4.18)

Then there exists ρ ∈ (0, R) such that

M(ρ) > 0. (10.4.19)

On the other hand, (10.4.17) implies

M(r) ≤ CN

( r
R

)N
, ∀N ∈ N
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for some constant CN (independent of r). By this inequality and by (10.4.5)
we have

M(ρ)

M(R)
≤
(
M(r)

M(R)

)θ0
≤

≤
(
CN

( r
R

)N)θ0
=

= exp

{
logR/ρ

logR/r

[
−N log

R

r
+ logCN

]}
, ∀r ∈ (0, ρ),∀N ∈ N

and passing to the limit as r → 0, we have

M(ρ)

M(R)
) ≤ exp

[
−N log

R

ρ

]
, ∀N ∈ N (10.4.20)

now, again passing to the limit as N →∞ we have

M(ρ) = 0

which contradicts (10.4.19). Hence f ≡ 0 in BR.

6. We can easily prove an inequality in L2 similar to (10.4.5). More precisely
the following inequalities (0 < r < ρ < R) hold true

∫ 2π

0

∣∣f (ρeiφ)∣∣2 dφ ≤
≤
(∫ 2π

0

∣∣f (reiφ)∣∣2 dφ)θ0 (∫ 2π

0

∣∣f (Reiφ)∣∣2 dφ)1−θ0

,

(10.4.21)

∫
Bρ

|f |2 dxdy ≤
(∫

Br

|f |2 dxdy
)θ0 (∫

BR

|f |2 dxdy
)1−θ0

. (10.4.22)

Proof of (10.4.21).
First, let us observe that

ρ = rθ0R1−θ0 . (10.4.23)

By the assumption on f we have

f(z) =
∞∑
n=0

anz
n, |z| ≤ R.



476 Chapter 10. Well–posed problems. Conditional stability

Hence, by (10.4.23) and by the Hölder inequality we have∫ 2π

0

∣∣f (ρeiφ)∣∣2 dφ =
∞∑
n=0

ρ2n|an|2 =

=
∞∑
n=0

(
r2n|an|2

)θ0 (R2n|an|2
)1−θ0 ≤

≤

(
∞∑
n=0

r2n|an|2
)θ0 ( ∞∑

n=0

R2n|an|2
)1−θ0

=

=

(∫ 2π

0

∣∣f (reiφ)∣∣2 dφ)θ0 (∫ 2π

0

∣∣f (Reiφ)∣∣2 dφ)1−θ0

.

Now, let us prove (10.4.22). We have∫
Bρ

|f |2 dxdy =

∫ ρ

0

s

(∫ 2π

0

∣∣f (seiφ)∣∣2 dφ) ds =

=

∫ 1

0

tρ

(∫ 2π

0

∣∣f (tρeiφ)∣∣2 dφ) dt.
From which, by using (10.4.21), (10.4.23) and by Hölder inequality, we get∫

Bρ

|f |2 dxdy ≤

≤ ρ

{∫ 1

0

[∫ 2π

0

t
∣∣f (treiφ)∣∣2 dφ]θ0 [∫ 2π

0

t
∣∣f (tReiφ)∣∣2 dφ]1−θ0

dt

}
≤

≤ ρ

[∫ 1

0

∫ 2π

0

t
∣∣f (treiφ)∣∣2 dφdt]θ0 [∫ 1

0

∫ 2π

0

t
∣∣f (tReiφ)∣∣2 dφdt]1−θ0

=

=

[∫ 1

0

∫ 2π

0

tr
∣∣f (treiφ)∣∣2 dφdt]θ0 [∫ 1

0

∫ 2π

0

tR
∣∣f (tReiφ)∣∣2 dφdt]1−θ0

=

=

(∫
Br

|f |2 dxdy
)θ0 (∫

BR

|f |2 dxdy
)1−θ0

.

One can also prove Lp versions of the inequalities (10.4.21) and (10.4.22), for
these we refer the interested reader to [20, Ch. 1]. ♠

Exercise. Let u be a harmonic function in BR ⊂ R2 such that
u ∈ C0

(
BR

)
. Prove that if 0 < r < ρ < R then the following inequality

holds true
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∫
∂Bρ

u2dS ≤
(∫

∂Br

u2dS

)θ0 (∫
∂BR

u2dS

)1−θ0
, (10.4.24)

∫
Bρ

u2dxdy ≤
(∫

Br

u2dxdy

)θ0 (∫
BR

u2dxdy

)1−θ0
, (10.4.25)

where θ0 is given by (10.4.6). [Hint: recall the solution formula for Dirichlet
problem in polar coordinates

u(%, φ) =
a0

2
+
∞∑
n=1

%n (an cosnφ+ bn sinnφ)

and apply it to obtain (10.4.25)]. ♣

Example 3: Stability estimate on the bisector of an angle ([13]).
Let S be a bounded open set of C whose boundary is is made up of two

segments, OA e OB such that ÂOB = πα, 0 < α < 2 and by a Jordan curve
Γ of extremes A and B Let z0 ∈ S and let us assume that z0 belongs to the
bisector of the angle ÂOB. Let f ∈ C0

(
S
)
be holomorphic in S. Let us

denote by

E = max
S
|f |, ε = max

Γ
|f |.

Then

|f(z0)| ≤ E
1−
(
|z0|
R

)1/α

ε

(
|z0|
R

)1/α

, (10.4.26)

where R denotes the diameter of S.

Proof of (10.4.26).
Let σ > 0 be to choose and

F (z) = f(z) expσ

(
z

z0

)1/α

.

Set |z0| = r. We have, for z = ρe±
iαπ
2 ,∣∣∣F (ρe± iαπ2 )∣∣∣ =

∣∣∣f (ρe± iαπ2 )∣∣∣ .
Hence

|F (z)| ≤ E, on OA and OB.
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Figure 10.3:
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Moreover

|F (z)| ≤ ε expσ

(
R

r

)1/α

, on Γ.

Hence, by the maximum modulus principle, we have

|f(z0)|eσ = |F (z0)| ≤ max

{
E, ε expσ

(
R

r

)1/α
}
,

from which we have

|f(z0)| = e−σ|F (z0)| ≤ max

{
Ee−σ, ε expσ

[(
R

r

)1/α

− 1

]}
.

Now, we choose σ such that

eσ =

(
E

ε

)( rR)
1/α

and we obtain (10.4.26). �

Stability estimates for the analytic continuation can be proved even for
more general sets than those considered in examples 1 and 2. We report,
without proof, the following result (see [48, cap. III], [38]):

Let Ω ⊂ C be a bounded simply connected open set whose boundary is
of C1 class. Let Γ = ∂Ω and let us assume that Γ = Γ1 ∪ Γ2 where Γ1 and
Γ2 is a regular path such that Γ1 ∩ Γ2 = ∅. Let us assume that f ∈ C0

(
Ω
)
,

f holomorphic in Ω satisfying

|f(z)| ≤ ε, ∀z ∈ Γ1, |f(z)| ≤ E, ∀z ∈ Γ2

then

|f(z)| ≤ E1−ω(z)εω(z), ∀z ∈ Ω, (10.4.27)

where ω(z) is the harmonic function in Ω such that

ω(z) = 1, ∀z ∈ Γ1, ω(z) = 0, ∀z ∈ Γ2.

ω is called harmonic measure associated to Γ1 in Ω

Example 4: Stability estimate for the continuation of real ana-
lytic functions.
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In Theorem 6.2.2 we have seen that if f : Ω → R (or C), where Ω is a
connected open set of Rn, is an analytic function and D ⊂ Ω is a (nonempty)
open set then

f = 0 in D =⇒ f = 0 in Ω. (10.4.28)

That is, a real analytic function on a connected open Ω is determined by its
values on any nonempty open set D ⊂ Ω. Nevertheless small errors on f|D
can have uncontrollable effects on f(z) for z ∈ Ω \D.

In the present Example 4, as application of Example 3, we will find an
error estimate for the analytic continuation problem.

Let us consider the following particular situation: let Ω be a star shaped
open set of Rn w.r.t. x0 ∈ Ω (i.e. for every x ∈ Ω we have x0 + t (x− x0) ∈ Ω
for every x ∈ Ω). Let us assume that Br(x0) ⊂ Ω for some r > 0. Let
f : Ω→ R satisfy (E, ε > 0)

f ∈ CE,ρ(x), ∀x ∈ Ω, (10.4.29)

that is (compare Definition 6.2.3)

|∂αf(x)| ≤ Eρ−|α||α|! ∀α ∈ Nn
0 , ∀x ∈ Ω, (10.4.30)

and
|f(x)| ≤ ε, ∀x ∈ Br. (10.4.31)

We want to prove the following stability estimate

|f(x)| ≤ (2E)1−θεθ ∀x ∈ Ω, (10.4.32)

where θ ∈ (0, 1) and θ depends on n, ρ
r
and ρ

d
only, where d is the diameter

of Ω.

Proof of (10.4.31).
It is not restrictive to assume x0 = 0. The idea of the proof is as follows:

let us fix x ∈ Ω \Br and let us consider the function

ϕ(t) = f(tx), t ∈ [0, 1]; (10.4.33)

we extend such a function holomorphically to a function ϕ in a neighborhood
(in C) of {t+ i0 : t ∈ [0, 1]} and by (10.4.30), (10.4.31) and the result of
Example 3, we reach (10.4.32).

By formula (1.2.6) we have, for t0 ∈ [0, 1] and k ∈ N0

ϕ(k)(t0) =
∑
|α|=k

k!

α!
xα (∂αf) (t0x).
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By (10.4.30) we have

∣∣ϕ(k)(t0)
∣∣ ≤ ∑

|α|=k

k!

α!
|x||α| |(∂αf) (t0x)| ≤

≤ Ek!

(
|x|
ρ

)k ∑
|α|=k

k!

α!
=

= Ek!

(
n|x|
ρ

)k
.

(10.4.34)

Hence the power series

∞∑
k=0

1

k!
ϕ(k)(t0) (z − t0)k , z = t+ iτ ∈ C, (10.4.35)

converges in

Bh(t0) = {z ∈ C : |z − t0| < h} ,

where h = ρ
2n|x| . Moreover the sum of power series (10.4.35) is holomorphic in

Bh(t0). The above extension can be performed for every t0 ∈ [0, 1] therefore
the function ϕ can be holomorphically extended in (Figure 10.4)

K = {z ∈ C : dist(z, I) < h} ,

where I := {t+ i0 : t ∈ [0, 1]}. The extension ϕ to K is formally written as
ϕ(t+ iτ) and by (10.4.34) we have

|ϕ(t+ iτ)| ≤ 2E, for every t+ iτ ∈ K. (10.4.36)

On the other hand by (10.4.31) and by (10.4.33) we have

|ϕ(t+ i0)| ≤ ε, for |t| ≤ r

|x|
. (10.4.37)

At this point it suffices to prove an estimate from above of |ϕ(t+i0)| = |f(x)|.
This estimate can be obtained by applying twice estimate (10.4.26). First
we apply estimate (10.4.26) in the triangles

S+ =

{
t+ iτ : |t| ≤ s, 0 ≤ τ ≤ h

(
1− |t|

s

)}
,

S− =

{
t+ iτ : |t| ≤ s, − h

(
1− |t|

s

)
≤ τ ≤ 0

}
,
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Figure 10.4:

where
s := min{ r

|x|
, h}.

We get

|ϕ(iτ)| ≤ (2E)1−ϑεϑ, for |τ | ≤ h

2
, (10.4.38)

where

ϑ =

(
h

2R0

)1/α0

=
1(

2
√

s2

h2 + 1

)1/α0
, (10.4.39)

α0 =
2

π
arctan

s

h
,

R0 =
√
s2 + h2,

(hence, ϑ depends on r
ρ
and n only).

Now, we use (10.4.38) and (10.4.36) to apply (10.4.26) in the triangle

T =

{
t+ iτ : |τ | ≤ h

2
, 0 ≤ t ≤ (h+ 1)

(
1− 2|τ |

h

)}
.

To this aim, set

α1 =
2

π
arctan

h

h+ 1
,
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R1 =

√(
h

2

)2

+ (1 + h)2,

and we have
|ϕ(1 + i0)| ≤ (2E)1−ϑϑ̃εϑϑ̃, (10.4.40)

where

ϑ̃ =

(
1

R1

)1/α1

.

Therefore we have proved (10.4.32) with θ = ϑϑ̃. �

Concluding Remarks.
Come back to the holomorphic functions. The Hadamard three circle

inequality allows us to estimate |f(z)| for z ∈ BR provided we know that f
is holomorphic in BR and, in addition, we know

sup
|z|≤r
|f(z)| ≤ ε (error) , (10.4.41)

and
sup
|z|≤R

|f(z)| ≤ E (a priori information) . (10.4.42)

As a matter of fact, we have

|f(z)| ≤ εθ|z|E1−θ|z| , (10.4.43)

where
θ|z| =

logR/|z|
logR/r

. (10.4.44)

It is immediately checked that the a priori information

sup
|z|≤R

|f(z)| ≤ E,

is not sufficient to control the error on {|z| = R}. It is enough to consider
fn(z) =

(
z
R

)n, obtaining
sup
|z|≤r
|fn(z)| → 0 as n→∞, and |fn(z)| = 1, as |z| = R.

We will now show that by "strengthening" the a priori information (10.4.42)
we can find a stability estimate for |f(z)| when |z| = R. Let us consider, for
instance, the following a priori information: f ∈ C0,α

(
BR

)
, 0 < α ≤ 1



484 Chapter 10. Well–posed problems. Conditional stability

sup
|z|≤R

|f(z)|+ [f ]0,α ≤ Eα, (10.4.45)

where
[f ]0,α = sup

z,w∈BR,z 6=w

|f(z)− f(w)|
|z − w|

. (10.4.46)

Let us assume, for brevity, that R = 1. Let z0 ∈ ∂B1. Set zt = z0(1− t),
with t ∈ [0, 1) to be chosen, we have

|f(z0)| ≤ |f(zt)− f(z0)|+ |f(zt)| ≤
≤ Eα |zt − z0|α + |f(zt)| ≤
≤ Eαt

α + |f(zt)| .
On the other hand by (10.4.43) we have

|f(z)| ≤ εθ̃tE1−θ̃t
α ,

where

θ̃t =
log 1

1−t

log 1/r
.

Hence

|f(z0)| ≤ Eα

(
tα + ε

log 1
1−t

1

)
, ∀t ∈ [0, 1),

where

ε1 =

(
ε

Eα

) 1
| log r|

. (10.4.47)

Now we have

tα + ε
log 1

1−t
1 = tα + exp (log(1− t) |log ε1|) .

On the other hand, we have

log(1− t) ≤ −t.

Hence

|f(z0)| ≤ Eα (tα + exp (−t |log ε1|)) , ∀t ∈ [0, 1). (10.4.48)

Now we note that, if ε1 < 1 then

0 < |log ε1|−1 (log |log ε1|) ≤ e−1
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and we can choose

t = |log ε1|−1 (log |log ε1|) ∈ [0, 1).

We obtain

|f(z0)| ≤ Eα
(
|log ε1|−α (log |log ε1|) + |log ε1|−1) ≤

≤ CEα |log ε1|−α (log |log ε1|) ,
(10.4.49)

where C depends on α only. If ε1 ≥ 1 then we have trivially

|f(z0)| ≤ Eα ≤ Eαε1. (10.4.50)

Thus, by (10.4.49) and (10.4.50) we have the following stability estimate,
for every z0 ∈ ∂B1

|f(z0)| ≤ C̃Eα |log ε1|−α (log |log ε1|) . (10.4.51)

where C̃ depends on α and ε1 is given by (10.4.47). �





Chapter 11

The John stability Theorem for
the Cauchy problem for PDEs
with analytic coefficients

11.1 Statement of the Theorem
The stability estimate that we present in this Chapter is due to F. John [40].
The basic elements of the proof are as follows.

1. The Green identity and the construction of an appropriate solution of
the adjoint operator.

2. The stability estimates for the analytic continuation problem.

In what follows we will consider the following linear system

ut(x, t) =
n∑
j=1

Aj(x, t)uxj(x, t) + A0(x, t)u(x, t), (11.1.1)

where u :=
(
u1, · · · , uN

)T , x ∈ Rn, t ∈ R, Aj(x, t), j = 0, 1, · · · , n are N×N
matrices . Moreover, let us introduce the following notations

γ(x) =
(
1− |x|2

)n+1
, (11.1.2)

For any λ ∈ R let us denote by Sλ the surface

Sλ = {(x, λγ(x))|x ∈ B1} (11.1.3)

and, for any λ1 < λ2, let

487
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Rλ1,λ2 =
{

(x, t) ∈ Rn+1|x ∈ B1 λ1γ(x) < t < λ2γ(x)
}
. (11.1.4)

Theorem 11.1.1 (John stability estimate). Let c0, L,M, ρ, E, ε positive
numbers. Let Aj, j = 1, · · · , n and B matrices N × N whose entries are
analytic in R0,L and satisfy

Aj ∈ CM,ρ

(
x, t
)
, j = 0, 1, · · · , n ∀

(
x, t
)
∈ R0,L. (11.1.5)

Set

A(x, λ) = I + λ

n∑
j=1

Aj(x, λγ(x))γxj(x). (11.1.6)

Let us assume that

|detA(x, λ)| ≥ c0, ∀x ∈ R0,L, ∀λ ∈ [0, L], (11.1.7)

(that is Sλ is a noncharacteristic surface for every λ ∈ [0, L]).
Let u ∈ Cn+1

(
R0,L

)
satisfy

ut(x, t) =
n∑
j=1

Aj(x, t)uxj(x, t)+A−0(x, t)u(x, t), ∀(x, t) ∈ R0,L (11.1.8a)

‖u(·, 0)‖L∞(B1) ≤ ε, (11.1.8b)

‖u‖Cn+1(R0,L) ≤ E. (11.1.8c)

Then, for every r ∈ (0, 1), we have

|u(x, t)| ≤ C(E + 2ε)

(1− r)n+1

∣∣∣∣log
ε

E + 2ε

∣∣∣∣−1

, ∀x ∈ R0,L ∩
(
B1−r × R

)
, (11.1.9)

where C depends on M,L, ρ, c0 and n only.

11.2 Proof of the Theorem

Let us premise the following
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Lemma 11.2.1. Let Aj be as in Theorem 11.1.1. Let us assume that

Aj,∈ CM0,ρ0

(
x, t
)
, ∀

(
x, t
)
∈ B1 × [−δ0, δ0]. (11.2.1)

Let W ∈ RN be such that |W | = 1 and let ξ ∈ Rn arbitrary.
Let U be the solution to the Cauchy problem

Ut =
∑n

j=1Aj(x, t)Uxj + A0(x, t)U,

U(x, 0) = e−ix·ξW, ∀x ∈ B1.

(11.2.2)

Then there exist M,ρ, δ positive numbers depending by M0, ρ0, δ0, but inde-
pendent of ξ such that

U ∈ CMe|ξ|,ρ

(
x, t
)
, ∀

(
x, t
)
∈ B1 × [−δ, δ], (11.2.3)

that is

|∂αU | ≤Me|ξ|ρ−|α||α|!, ∀
(
x, t
)
∈ B1 × [−δ, δ], ∀α ∈ Nn+1

0 . (11.2.4)

Proof of Lemma 11.2.1. Let

ψ(x) = e−|ξ|e−iξ·xW.

Let us consider the Cauchy problem
Vt =

∑n
j=1Aj(x, t)Vxj + A0(x, t)V,

V (x, 0) = ψ(x), ∀x ∈ B1.

(11.2.5)

We have, trivially,

U(x, t) = e|ξ|V (x, t). (11.2.6)

On the other hand∣∣∣∂α′ψ(x)
∣∣∣ =

∣∣∣(iξ)α′e−|ξ|e−ξ·xW ∣∣∣ = |ξ||α′|e−|ξ| ≤

≤ |α′||α′|e−|α′| ≤ |α′|!, ∀α′ ∈ Nn
0 , ∀x ∈ B1,

hence
ψ ∈ C1,1 (x) , ∀x ∈ B1.

Therefore there exist M,ρ, δ which depend on M0, ρ0, δ0, but independent of
ξ such that
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V ∈ C1,1

(
x, t
)
, ∀

(
x, t
)
∈ B1 × [−δ, δ]

and by (11.2.6) we have (11.2.3). �

Proof of Theorem 11.1.1.
Step 1. The Green identity.

We have

vT

(
ut −

n∑
j=1

Ajuxj − A0u

)
=

= ∂t(v
Tu)− ∂xj

(
vT

n∑
j=1

Aju

)
−

−

(
vTt −

n∑
j=1

(
vTAj

)
xj

+ vTA0

)
u.

(11.2.7)

Let now v ∈ C1
(
Rλ1,λ2

)
be a solution to the adjoint system

vt −
n∑
j=1

(
ATj v

)
xj

+ AT0 v = 0, in Rλ1,λ2 . (11.2.8)

Since u is a solution to system (11.1.8a), integrating both the sides of (11.2.7)
over Rλ1,λ2 we have

0 =

∫
Rλ1,λ2

[
∂t(v

Tu)− ∂xj

(
vT

n∑
j=1

Aju

)]
dxdt =

=

∫
∂Rλ1,λ2

[
(vTu)(ν · en+1)−

(
vT

n∑
j=1

Aju(ν · ej)

)]
dS =

=

∫
B1

(
vTu+ λ2v

T

n∑
j=1

γxjAju

)
(x, λ2γ(x))dx−

−
∫
B1

(
vTu+ λ1v

T

n∑
j=1

γxjAju

)
(x, λ1γ(x))dx.

Hence, recalling (11.1.6) we get∫
B1

vT (x, λ2γ(x))A(x, λ2)u(x, λ2γ(x))dx =

=

∫
B1

vT (x, λ1γ(x))A(x, λ1)u(x, λ1γ(x))dx.

(11.2.9)
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Step 2. Construction of an appropriate solution to (11.2.8). Let
W ∈ RN be such that |W | = 1 and ξ ∈ Rn arbitrary. Let us denote by w the
function

w(x) = e−ix·ξW. (11.2.10)

Let λ ∈ [0, L]. Let us consider the following Cauchy problem


vt =

∑n
j=1

(
ATj (x, t)v

)
xj
− AT0 (x, t)v,

v(x, λγ(x)) = γ(x)
(
AT (x, λ)

)−1
w(x), x ∈ B1.

(11.2.11)

Let us prove that there exists δ > 0, depending on M,ρ, c0 only, such that
there exists the solution v(x, t;λ) of (11.2.11), and it is analytic in Rλ−δ,λ+δ.
To this purpose we perform some change of variables. First, we set

s =
t

γ(x)
, v(x, t;λ) = γ(x)V

(
x,

t

γ(x)
;λ

)
and we have

vt(x, t;λ) = Vs

(
x,

t

γ(x)
;λ

)
.

vxj = γVxj + γxjV −
tγxj
γ
Vs =

= γVxj + γxjV − sγxjVs.
Inserting what obtained above in system (11.2.11), we get

Vs = vt =
n∑
j=1

ATj vxj +

(
n∑
j=1

ATj,xj − A
T
0

)
v =

=
n∑
j=1

ATj
(
γVxj − sγxjVs

)
+

[
n∑
j=1

(
ATj γxj + ATj,xjγ

)
− AT0 γ

]
V,

From which (recalling (11.1.6)), we get

AT (x, s)Vs = γ

n∑
j=1

ATj Vxj +

(
n∑
j=1

ATj,xj − A
T
0

)
V =

=
n∑
j=1

ATj
(
γVxj − sγxjVs

)
+

[
n∑
j=1

(
ATj γxj + ATj,xjγ

)
− AT0 γ

]
V.
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Now, set

Aj(x, s) = γ(x)
(
AT (x, s)

)−1
ATj (x, sγ(x)), j = 1, · · · , n,

A0(x, s) =

=
(
AT (x, s)

)−1

[
n∑
j=1

ATj (x, sγ(x))γxj + γ

(
n∑
j=1

ATj,xj(x, sγ(x))− AT0 (x, sγ(x))

)]
.

Therefore problem (11.2.11) can be written as


Vs(x, s;λ) =

∑n
j=1Aj(x, s)Vxj(x, s;λ) + A0(x, s)V (x, s;λ),

V (x, s;λ)|s=λ =
(
AT (x, λ)

)−1
w(x), ∀x ∈ B1.

(11.2.12)

Now we denote

Z(x, s;λ) =
(
AT (x, λ)

)−1
V (x, s+ λ;λ) (11.2.13)

and by (11.2.10), (11.2.13) we have


Zs(x, s;λ) =

∑n
j=1 Ãj(x, s;λ)Zxj(x, s;λ) + Ã0(x, s;λ)Z(x, s;λ),

Z(x, 0;λ) = e−ix·ξW, x ∈ B1,

(11.2.14)
where

Ãj(x, s;λ) = AT (x, λ)Aj(x, s+ λ)
(
AT (x, λ)

)−1
, j = 1, · · · , n,

and

Ã0(x, s;λ) =

= AT (x, λ)

[
B(x, s+ λ)

(
AT (x, λ)

)−1
+

n∑
j=1

Aj(x, s+ λ)∂xj
(
AT (x, λ)

)−1

]
.

Now Ãj(x, s;λ), j = 1, · · · , n and Ã0(x, s;λ) are analitic functions in (x, s, λ).
In addition, for every

(
x, s, λ

)
∈ B1 × [0, L]× [0, L], we have

Ãj ∈ CM ′,ρ′
(
x, s, λ

)
, j = 0, 1, · · · , n,
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where M ′ e ρ′ depend on M,ρ, c0 (and n, which we will omit in the sequel)
only.

By Lemma 11.2.1, there exist M ′′, ρ′′, δ depending on M,ρ, c0 and L only
such that there is Z which is the solution to (11.2.14), it is analitic in B1 ×
[−δ, δ]× [0, L] and satisfies

Z ∈ CM ′′e|ξ|,ρ′′
(
x, s, λ

)
, ∀

(
x, s, λ

)
∈ B1 × [−δ, δ]× [0, L]. (11.2.15)

Coming back to problem (11.2.11), we have that there exists v, solution to
(11.2.11) in Rλ−δ,λ+δ, such that∣∣∂αx,t,λv(x, t;λ)

∣∣ ≤M0e
|ξ|ρ−|α||α|!, ∀α ∈ Nn+2

0 , (11.2.16)

for all (x, t;λ) ∈ Rλ−δ,λ+δ × [0, L], where M0, δ0 and δ depend on M,ρ, c0

and L only. Let us note that to obtain (11.2.16) for every λ ∈ [0, L] it
suffices to consider (11.2.15) and the similar relationships on the coefficients
corresponding to λ = 0.

Step 3. Planning the concluding part of the proof.
We employ (11.2.9), where v is the solution to problem (11.2.11) for some

λ ∈ [0, L]. Let λ0 ∈ [0, L] be fixed and let λ satisfy |λ− λ0| < δ. By (11.2.9)
we have

g(λ) :=

∫
B1

γ(x)wT (x)u(x, λγ(x))dx =

=

∫
B1

vT (x, λ0γ(x);λ)A(x, λ0)u(x, λ0γ(x))dx.

(11.2.17)

The function g is analitic because the integrand in the second integral of
(11.2.17) depends analytically by λ.

We are first interested in proving an estimates from above for g(λ) from
which, subsequently, we will derive the estimates from above for u. Setting
λ0 = 0 in (11.2.17) we have

g(λ) =

∫
B1

vT (x, 0;λ)u(x, 0)dx, ∀λ ∈ [0, δ). (11.2.18)

By (11.1.8b) and by (11.2.16), we have, for α = 0,

|g(λ)| ≤
∫
B1

∣∣vT (x, 0;λ)
∣∣ |u(x, 0)|dx ≤ cM0e

|ξ|ε, ∀λ ∈ [0, δ), (11.2.19)

where c ≥ 1 depends on n only.
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Let now λ0 be an arbitrary point of [0, L], by (11.2.16) and (11.2.17) we
get

∣∣g(k)(λ)
∣∣ =

∣∣∣∣∫
B1

∂kλv
T (x, λ0γ(x);λ)A(x, λ0)u(x, λ0γ(x))dx

∣∣∣∣ ≤
≤
∫
B1

∣∣∂kλvT (x, λ0γ(x);λ)
∣∣ |A(x, λ0)||u(x, λ0γ(x))|dx ≤

≤ C1EM0e
|ξ|ρ−k0 k!,

where C1 ≥ 1 depends on M,ρ, c0, L only.
Summarizing we have

|g(λ)| ≤ cM0e
|ξ|ε, ∀λ ∈ [0, δ) (11.2.20)

and ∣∣g(k)(λ)
∣∣ ≤ C1M0e

|ξ|ρ−k0 k!, ∀λ ∈ [0, L], k ∈ N0. (11.2.21)

Inequality (11.2.21) implies that g can be extended analytically in a neigh-
borhood of [0, L] × {0} ⊂ C. In addition, for any λ? ∈ [0, L], we have that
the power series

∞∑
k=0

g(k)(λ?)

k!
(z − λ?)k ,

has the radius of convergence equal to ρ0 and∣∣∣∣∣
∞∑
k=0

g(k)(λ?)

k!
(z − λ?)k

∣∣∣∣∣ ≤ C1M0e
|ξ| ρ0

ρ0 − |z − λ?|
, (11.2.22)

for |z − λ?| < ρ0. Therefore the sum of the power series (10.4.35) is holomor-
phic in B ρ0

2
(λ?) and the function g can be extended holomorphically in (see

Figure 8.1)

J =
{
z ∈ C : dist(z, [0, L]× {0}) < ρ0

2

}
.

The extension of g to J is formally written as g(λ+ iτ) and by (11.2.22) we
have

|g(λ+ iτ)| ≤ 2C1EM0e
|ξ|, for t+ iτ ∈ J,

|g(λ+ i0)| ≤ cM0e
|ξ|ε, ∀λ ∈ [0, δ).

Now, proceeding in a similar way to what we did to prove (10.4.40), we get
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Figure 11.1:

|g(λ+ i0)| ≤
(
2C1EM0e

|ξ|)1−ϑ (
cEM0e

|ξ|ε
)ϑ ≤

≤ C2e
|ξ|E1−ϑεϑ, ∀λ ∈ [0, L],

where ϑ ∈ (0, 1) depends on Lρ−1
0 only and C2 = 2cC1M0. By the definition

of g given in (11.2.17) and recalling that w(x) = e−|ξ|e−iξ·xW , we have

∣∣∣∣∫
B1

γ(x)W Tu(x, λγ(x))e−iξ·xdx

∣∣∣∣ ≤ C2e
|ξ|E1−ϑεϑ, ∀λ ∈ [0, L].

(11.2.23)

Step 4. Conclusion of the proof.
Let us fix λ ∈ [0, L]. Let W = ej, for j = 1, · · · , N and set

fj(x) =


γ(x)uj(x, λγ(x)), for |x| ≤ 1,

0, for |x| ≥ 1.

(11.2.24)

Let us fix j = 1, · · · , N and, in the sequel, let us omit the index j by fj. By
(11.2.23) and (11.2.24) we get

∣∣∣f̂(ξ)
∣∣∣ =

∣∣∣∣∫
Rn
f(x)e−iξ·xdx

∣∣∣∣ ≤ C2e
|ξ|E1−ϑεϑ, ∀ξ ∈ Rn, (11.2.25)

(where f̂ is the Fourier transform of f).
The proof will be completed as soon as we estimate |f(x)| by means of

(11.2.25). Let us recall that
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f(x) = (2π)−n
∫
Rn
f̂(ξ)e−iξ·xdξ, ∀x ∈ Rn. (11.2.26)

Let s be a positive number which we will choose later. By (11.2.25) and
(11.2.26) we have, for every x ∈ Rn

|f(x)| ≤ (2π)−n
∫
Rn

∣∣∣f̂(ξ)
∣∣∣ dξ =

= (2π)−n
(∫
|ξ|≤s

∣∣∣f̂(ξ)
∣∣∣ dξ +

∫
|ξ|>s

∣∣∣f̂(ξ)
∣∣∣ dξ) ≤

≤ (2π)−n
(
C3s

nesE1−ϑεϑ +

∫
|ξ|>s

∣∣∣f̂(ξ)
∣∣∣ dξ) ,

(11.2.27)

where C3 = ωn
n
C2 (ωn is the measure of unit ball of Rn).

To estimate from above the last integral in (11.2.27) we proceed as follows.
First of all we note that by the definition of γ and f we have ∂αf(x) = 0 for
every x ∈ ∂B1 and for every α ∈ Nn

0 such that |α| ≤ n from which we have,
for k = 1, · · · , n, by using integration by parts

(−iξk)n+1 f̂(ξ) =

∫
Rn

(−iξk)n+1 e−iξ·xf(x)dx =

=

∫
B1

∂n+1
k

(
e−iξ·x

)
f(x)dx =

= (−1)n+1

∫
B1

e−iξ·x∂n+1
k f(x)dx.

Hence (11.1.8c) implies

|ξk|n+1
∣∣∣f̂(ξ)

∣∣∣ ≤ ∫
B1

∣∣∂n+1
k f(x)

∣∣ dx ≤ C4E, (11.2.28)

where C4 depends on L (and on n) only. So that, we have trivially

|ξ|n+1
∣∣∣f̂(ξ)

∣∣∣ ≤ C5E, (11.2.29)

where C5 = n
n+1

2 C4. Now, by (11.2.28) we have∫
|ξ|>s

∣∣∣f̂(ξ)
∣∣∣ dξ =

∫
|ξ|>s
|ξ|−(n+1) |ξ|n+1

∣∣∣f̂(ξ)
∣∣∣ dξ ≤

≤ C5E

∫
|ξ|>s
|ξ|−(n+1) dξ = ωnC5

E

s
.

(11.2.30)
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Now we use in (11.2.30) what we obtained in (11.2.30) and by the trivial
inequality E < E + 2ε we get

|f(x)| ≤ C6(E + 2ε)

[(
ε

E + 2ε

)ϑ
snes +

1

s

]
, ∀x ∈ Rn, ∀s > 0, (11.2.31)

where C6 depends on M,L, ρ, c0 only.
In order to choose s we proceed as follows. Set

σ =

(
ε

E + 2ε

)ϑ
and rewrite the term on the right–hand side of (11.2.31) as

φ(s) := exp (s+ log s− | log σ|) +
1

s
.

Now we choose

s : s0 =
1

2
| log σ|, (11.2.32)

taking into account that 0 < σ ≤ 2−ϑ < 1, we have

φ(s0) =
√
σ
∣∣log
√
σ
∣∣+ 2| log σ|−1 ≤ cϑ| log σ|−1,

where cϑ depends on ϑ. Hence, by (11.2.32) and (11.2.31) we have

|f(x)| ≤ C7(E + 2ε)

∣∣∣∣log

(
ε

E + 2ε

)∣∣∣∣−1

, (11.2.33)

where C7 = C6(cϑ + 2)ϑ−1. Finally, recalling that f(x) = γ(x)uj(x, λγ(x))
for |x| ≤ 1 we have, for any r ∈ (0, 1)

|u(x, λγ(x))| ≤ C7N
1/2

(1− r)n+1
(E + 2ε)

∣∣∣∣log

(
ε

E + 2ε

)∣∣∣∣−1

, (11.2.34)

for |x| ≤ 1− r, from which the thesis follows. �

Remarks.
We outline some changes that we should make in the case of nonhogeneous

system

1. Let us consider the case in which instead of (11.1.8) we have, for
(x, t) ∈ R0,L,
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ut(x, t) =
n∑
j=1

Aj(x, t)uxj(x, t) + A0(x, t)u(x, t) + F (x, t), (11.2.35a)

‖u(·, 0)‖L∞(B1) ≤ ε, (11.2.35b)

‖u‖Cn+1(R0,L) ≤ E, (11.2.35c)

‖F‖L∞(R0,L
≤ ε1, (11.2.35d)

where F is not necessarily analytic. Let us continue to denote (even though
λ1 > λ2) by Rλ1,λ2 the subset of Rn+1 enclosed by Sλ1 and Sλ2 . In such a
way (11.2.9) becomes∫

B1

vT (x, λ2γ(x))A(x, λ2)u(x, λ2γ(x))dx+

+ sgn (λ1 − λ2)

∫
Rλ1,λ2

vT (x, t)F (x, t)dxdt =

=

∫
B1

vT (x, λ1γ(x))A(x, λ1)u(x, λ1γ(x))dx.

(11.2.36)

We construct v(x, t;λ) likewise the Step 2 of Theorem 11.2.1. Consequently,
instead of (11.2.17), for a fixed λ0 in [0, L] and setting

g̃(λ) =

∫
B1

wT (x)u(x, λγ(x))dx+

+ sgn (λ0 − λ)

∫
Rλ,λ0

vT (x, t;λ)F (x, t)dxdt,

we have

g̃(λ) =

∫
B1

vT (x, λ0γ(x);λ)A(x, λ0)u(x, λ0γ(x))dx, (11.2.37)

for |λ− λ0| < δ and λ ∈ [0, L]. Exactly like the Step 3 of the proof of
Theorem 11.2.1 we get the estimate

|g̃(λ+ i0)| ≤ C2M0e
|ξ|E1−ϑεϑ, ∀λ ∈ [0, L]. (11.2.38)

Now by (11.2.16) and by (11.2.35d) we have

∣∣∣∣∣
∫
Rλ,λ0

vT (x, t;λ)F (x, t)dxdt

∣∣∣∣∣ ≤ ε1

∫
Rλ,λ0

∣∣vT (x, t;λ)
∣∣ dxdt ≤

≤ cLM0e
|ξ|ε1,

(11.2.39)
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where c depends on n only. By (11.2.38) and (11.2.39) we have

∣∣∣∣∫
B1

γ(x)wT (x)u(x, λγ(x))dx

∣∣∣∣ ≤ C2M0e
|ξ|E1−ϑεϑ + cLM0e

|ξ|ε1.

From now on we may argue like Step 4 of the proof of Theorem 11.1.1 and
we find

|u(x, t)| ≤ C(E + 2ε2)

(1− r)n+1

∣∣∣∣log
ε2

E + 2ε2

∣∣∣∣−1

(11.2.40)

for all x in R0,L ∩
(
B1−r × R

)
, where C depends on M,L, ρ, c0 and n only

and
ε2 = E1−ϑεϑ + ε1.

2. The a priori information (11.1.8c) and γ (compare (11.1.2)) occur in the
proof of stability Theorem especially to obtain (11.2.30), while in the other
parts of the proof what is needed to know about u is only that

‖u‖L∞(R0,L) ≤ E.

Now we prove that with some further arrangements we may define

γ(x) = 1− |x|2 (11.2.41)

and, instead of the a priori information (11.1.8c) we require

‖u‖C1(R0,L) ≤ E. (11.2.42)

First of all, we notice that the functions fj defined like (11.2.24) (with γ
given by (11.2.41)) satisfy to (we omit the index j)

‖f‖C1(B1) ≤ CE, (11.2.43)

where C depends on L only. Since f = 0 in Rn \B1 we have

−iξkf̂(ξ) = (−1)

∫
B1

e−iξ·x∂kf(x)dx, k = 1, · · · , n.

By the latter, taking into account (11.2.43) we have∫
Rn
|ξ|2

∣∣∣f̂(ξ)
∣∣∣2 dξ = (2π)−n

∫
B1

|∇f(x)|2 dx ≤ CE2,

where C depends on L (and n) only.
Therefore we have (recalling (11.2.25)), for every s > 0
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∫
Rn

∣∣∣f̂(ξ)
∣∣∣ dξ =

∫
|ξ|≤s

∣∣∣f̂(ξ)
∣∣∣2 dξ +

∫
|ξ|>s

∣∣∣f̂(ξ)
∣∣∣2 dξ ≤

≤ c
(
C2E

1−ϑεϑ
)2
sne2s +

C
2
E2

s2
,

where c depends on n only.
All in all, by ∫

B1

|f(x)|2 dx = (2π)−n
∫
Rn

∣∣∣f̂(ξ)
∣∣∣2 dξ,

we have ∫
B1

|f(x)|2 dx ≤ C3

((
E1−ϑεϑ

)2
sne2s + E2s−2

)
,

where
C3 = max

{
(2π)ncC2

2 , (2π)nC
}
.

Arguing similarly to the proof of (11.2.34), we get∫
B1

|f(x)|2 dx ≤ C4

(
E2 + 2ε2

) ∣∣∣∣log
ε2

E2 + 2ε2

∣∣∣∣−2

, (11.2.44)

where C4 = cϑC3 and cϑ depends on ϑ.
By applying Proposition 10.2.5 and by (11.2.44), we have

|u(x, t)| ≤ C(E +
√

2ε)

1− r

∣∣∣∣log
ε

E +
√

2ε

∣∣∣∣− 1
n+1

, (11.2.45)

for every x ∈ R0,L ∩
(
B1−r × R

)
, where C depends on M,L, ρ, c0 and n only.

3. Let us examine the main modifications that we should make in the proof of
Theorem 11.2.1 to deal with the case where the initial surface in the Cauchy
problem is not a portion of the hyperplane {t = 0}. Let ϕ ∈ C2

(
B1

)
satisfy

ϕ(0) = |∇ϕ(0)| = 0. Let us consider the Cauchy problem
ut =

∑n
j=1Aj(x, t)uxj + A0(x, t)u+ F (x, t),

u(x, ϕ(x)) = g(x), x ∈ B1,

(11.2.46)

Where Aj, j = 0, 1, · · · , n are analytic functions. We require that the surface
{t = ϕ(x)|x ∈ B1} is noncharacteristic. This is equivalent to require that
the "algebraic" system
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ut(x, ϕ(x))−

∑n
j=1 Aj(x, ϕ(x))uxj(x, ϕ(x)) = f̃(x),

ut(x, ϕ(x))ϕxi(x) + uxi(x, ϕ(x)) = gxi(x), i = 1, · · · , n,
(11.2.47)

has a unique solution (ut(x, ϕ(x)), ux1(x, ϕ(x)), · · · , uxn(x, ϕ(x))) for any g(x),
where

f̃(x) = A0(x, ϕ(x))g(x) + F (x, ϕ(x)).

In turn this is equivalent to require the uniqueness of ut, uxi , i = 0, 1, · · · , n
as solution to the system


(
I +

∑n
j=1 ϕxi(xx)Aj(x, ϕ(x))

)
ut(x, ϕ(x)) = G(x),

uxi(x, ϕ(x)) = gxi(x)− ut(x, ϕ(x))ϕxi(x), i = 1, · · · , n,

where

G(x) = f̃(x) +
n∑
j=1

Aj(x, ϕ(x))gxi(x).

From which we have that {t = ϕ(x)|x ∈ B1} is a characteristic surface if and
only if

det

(
I +

n∑
j=1

ϕxi(x)Aj(x, ϕ(x))

)
6= 0, ∀x ∈ B1. (11.2.48)

Let us first consider the case in which

g ≡ 0.

By mean the Holmgren transformation, (7.6.22), we may assume that ϕ is
strictly convex. For any λ1, λ2 positive numbers, let us denote by Sλ1,λ2 the
subset of Rn+1 enclosed by hyperplanes t = λ1, t = λ2 and the graph of ϕ,
let us suppose that λ1 and λ2 are small enough in such a way that Sλ1,λ2 has
a "lens shape" and let us apply the Green identity. We get∫

B1

vT (x, λ2)A(x, λ2)u(x, λ2γ(x))dx+

+ sgn (λ1 − λ2)

∫
Sλ1,λ2

vT (x, t)F (x, t)dxdt =

=

∫
B1

vT (x, λ1)A(x, λ1)u(x, λ1)dx,

(11.2.49)
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Let v(x, t;λ) the solution to
vt =

∑n
j=1

(
ATj (x, t)v

)
xj
− AT0 (x, t)v,

v(x, λ) = We−iξ·x, x ∈ B1.

(11.2.50)

Now we set
g(λ) :=

∫
B1

e−iξ·xW Tu(x, λγ(x))dx

and along the lines of the proof of Theorem 11.2.1 we obtain an estimate like
(11.1.9) (reader take care of the details).

In the case in which g does not vanish we may reduce to the previous
case by setting

ũ(x, t) = u(x, t)− g(x). (11.2.51)

Let us examine the situation in some detail. First, let us assume, for the
sake of brevity, that in (11.2.46) we have F ≡ 0. Furthermore, we assume
that the solution u of Cauchy problem (11.2.46) there exists in an open set
D, we assume that u ∈ C2

(
D
)
and that u satisfies the a priori information

‖u‖C2(D) ≤ E. (11.2.52)

In addition, let us assume that

‖g‖L∞(B1) ≤ ε. (11.2.53)

We have that ũ satisfies
ũt =

∑n
j=1Aj(x, t)ũxj + A0(x, t)ũ+ F̃ (x, t),

ũ(x, ϕ(x)) = 0, x ∈ B1,

(11.2.54)

where

F̃ (x, t) =
n∑
j=1

Aj(x, t)gxj(x) + A0(x, t)g(x). (11.2.55)

Now by Proposition 10.2.4 we have

‖∇g‖L∞(B1) ≤ c
(∥∥∂2g

∥∥
L∞(B1)

+ ‖g‖L∞(B1)

) 1
2 ‖g‖

1
2

L∞(B1) , (11.2.56)
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where c is a positive constant depending on n only. Inequality (11.2.56)
allows us to estimate from above the first derivatives of g in terms of ε and
the a priori bound (11.2.52). Concerning the latter it suffices to recall that
g(x) = u(x, ϕ(x)) and to calcolate the derivatives of g obtaining

∥∥∂2g
∥∥
L∞(B1)

≤ K1E, (11.2.57)

where K1 depends on ‖ϕ‖C2(B1). By (11.2.53), (11.2.55), (11.2.56) and
(11.2.57) we have ∥∥∥F̃∥∥∥

C2(D)
≤ K2 (E + ε)

1
2 ε

1
2 . (11.2.58)

Finally, taking into account that by (11.2.51) and (11.2.52) we have

‖ũ‖C2(D) ≤ K3E. (11.2.59)

By using what is obtained in the case g ≡ 0, we get, by (11.2.58) and
(11.2.59), a stability estimate for ũ from which immediately follows a stability
estimate for u. We invite the reader to write explicitly a stability estimate
for the solution u to problem (11.2.46) provided the a priori information
(11.2.52) is satisfied.

4. Stability estimate (11.1.9) is a logarithmic estimate and, while it is still
a stability estimate, it is a rather modest estimate. John, in [40], called
"well-behaved" the problems for which a Hölder conditional stability holds
and "not well-behaved" the problems for which the conditional stability is at
best of logarithmic type. This terminology is still in use today. Of course,
in order to be able to say that a class of problems is "well-behaved" or "not
well-behaved" with respect to certain a priori informations, it needs to be
shown that the estimate in question is optimal in that class of problems with
those certain a priori informations. Concerning Theorem 11.1.1, the class of
problems is the class of the Cauchy problems for partial differential equations
with analytic coefficients and the a priori bounds concern a finite numbers of
derivatives of the solutions. Now, with respect to the class of problems and
of the a priori informations that we have considered above, John himself, in
[40], proved that the Cauchy problem is "not well-behaved." The example
constructed by John concerns the following Cauchy problem for the wave
equation
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uxx + uyy − utt = 0, x2 + y2 < 1, t ∈ R,

u = g0, x ∈ ∂Bρ × R,

∂u
∂ν

= g1, x ∈ ∂Bρ × R.

(11.2.60)

where ρ < 1 and ν is the unit outward normal to ∂Bρ × R.
More precisely, set

ε = ‖g0‖L∞(∂Bρ×R) + ‖g1‖L∞(∂Bρ×R) , (11.2.61)

John has proved that for every m ∈ N there exists u ∈ Cm
(
B1 × R

)
solution

to (11.2.60), where g0, g1 satisfy (11.2.61), such that

‖u‖Cm(B1×R) = 1

and such that
‖u‖L∞(Br×R) ≥ C |log ε|−α ,

where r ∈ (ρ, 1), C > 0 and α > 0 depend on r.�
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Chapter 12

PDEs with constant coefficients
in the principal part

12.1 Introduction
We begin to study the unique continuation properties for operators with
non analytic coefficients. First we give some definitions. Let Ω an open
connected set of Rn, we say that the linear differential equation

Lu = 0 in Ω, (12.1.1)

enjoys the weak unique continuation property if for any open subset ω
of Ω,

P (x, ∂)u = 0 in Ω and u = 0 in ω =⇒ u ≡ 0.

We say that equation (12.1.1) enjoys the strong unique continuation
property if for any point x0 ∈ Ω and for any solution u which satisfies

lim
r→0

r−k
∫
Br(x0)

u2 = 0, ∀k ∈ N,

it follows that
u ≡ 0, in Ω.

It is obvious that the strong unique continuation property implies the weak
unique continuation property.

As we will see later, the weak unique continuation property is strictly
relataded to the uniqueness of the Cauchy problem for equation (12.1.1).

In the present Chapter we consider the linear differential operators whose
principal part has constant coefficients. In other words, we will consider
the operators

507
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Lu = P (D)u+M(x,D)u, (12.1.2)

where P (D) is a differential operator of order m whose coefficients are con-
stant (real or complex) and M(x,D) is a differential operator of order (less
or equal to) m− 1 whose coefficients belong to L∞ and

Dj =
1

i
∂j, j = 1, · · · , n.

The latter notation is very convenient in this Chapter because we will be use
extensively the Fourier transform.

One of the main purposes of this Chapter is to lay the ground for the
Carleman estimates, which will be studied more systematically in the next
chapters. These types of estimates were introduced by Carleman in [14] and
[15] (in 1933 and 1939 respectively). With these estimates a very important
qualitative step is accomplished in the investigation of the unique continua-
tion properties for partial differential equations, particularly for the Cauchy
problem. Indeed, by means of the Carleman estimates, one can prove the
unique continuation properties for differential equations with nonanalytic
coefficients. Actually, the estimates proved in [14] and [15] involve partial
differential equations of two variables, but the idea introduced by Carleman
has revealed to be very fruitful leading to the development of a technique
that constitutes certainly the most general and powerful tool, though not
unique, for dealing with unique continuation issues.

The Main Theorem which we will prove here is due to Nirenberg, (see
Theorem 12.2.1), [60]. Subsequently, we will apply such a Theorem to obtain
the weak unique continuation property for the equation

∆u− b(x) · ∇u− c(x)u = 0. (12.1.3)

where b = (b1, · · · , bn) ∈ L∞(Rn,Cn), c ∈ L∞(Rn,C). Moreover, we will
illustrate other applications and relevant features of Theorem 12.2.1.

12.2 The Nirenberg Theorem

Let us introduce and recall some notations.
Let P (D) be the operator

P (D) =
∑
|α|≤m

aαD
α, (12.2.1)
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where aα ∈ C, for every α ∈ Nn
0 satisfying |α| ≤ m. Let

P (ξ) =
∑
|α|≤m

aαξ
α, ∀ξ ∈ Rn,

the symbol of P (D). For each multi-index α we denote

P (α)(ξ) = ∂αξ P (ξ).

We set
Q1 = {x ∈ Rn : |xj| < 1, j = 1, · · · , n} .

We prove the following

Theorem 12.2.1 (Nirenberg). Let N ∈ Rn, |N | = 1. Then there exists a
constant C, depending on n and m only, such that for every α ∈ Nn

0 we have∫
Q1

e2τN ·x ∣∣P (α)(D)u
∣∣2 dx ≤ C

∫
Q1

e2τN ·x |P (D)u|2 dx, (12.2.2)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R.

Remark 1. Estimate (12.2.2) is a prototype of the Carleman estimates.
Let us notice that in such an estimate there is a "weight," e2τN ·x dependent
on a parameter τ , and it is very important that such a parameter can be
arbitrarily large.

Let us observe, in particular, that the at right–hand side of (12.2.2) it
occurs the operator P (D) applied to an arbitrary u ∈ C∞0 (Q1,C), not to a
solution of some equation. �

In order to prove Theorem 12.2.1 we need some preliminary results.

First of all, let us recall the following one–dimensinal Poincaré inequality∫ 1

−1

|u|2dt ≤ 4

π2

∫ 1

−1

|u′|2 dt, ∀u ∈ C∞0 ((−1, 1),C). (12.2.3)

Now let us prove

Lemma 12.2.2. There exists C0 > 0 such that for each γ ∈ C we have

∫ 1

−1

|u|2dt ≤ C0

∫ 1

−1

|u′ − γu|2 dt, ∀u ∈ C∞0 ((−1, 1),C). (12.2.4)
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Proof. Let γ = α + iβ, α, β ∈ R. We have

|u′ − γu|2 = α2 |u|2 + |u′ − iβu|2 − 2α< ((u′ − iβu)u) =

= α2 |u|2 +
∣∣∣(ue−iβt)′∣∣∣2 − α (|u|2)′ .

Hence, as u ∈ C∞0 ((−1, 1),C), taking into account (12.2.3), we get∫ 1

−1

|u′ − γu|2 dt =

∫ 1

−1

(
α2 |u|2 +

∣∣∣(ue−iβt)′∣∣∣2) dt ≥
≥
∫ 1

−1

∣∣∣(ue−iβt)′∣∣∣2 dt ≥ π2

4

∫ 1

−1

∣∣ue−iβt∣∣2 dt =

=
π2

4

∫ 1

−1

|u|2 dt.

Therefore inequality (12.2.4) is proved with C0 = 4
π2 . �

Let a1, · · · , ak ∈ C, ak 6= 0, and let

p(η) =
k∑
j=0

ajη
j, η ∈ C. (12.2.5)

Let us consider the differential operator

p(Dt) =
k∑
j=0

ajD
j
t , (12.2.6)

where Dt = 1
i
d
dt
. Set

p′(Dt) =
k∑
j=1

jajD
j−1
t .

We have the following

Lemma 12.2.3. Let k ∈ N. Then there exists C1 > 0 depending on k only,
such that we have

∫ 1

−1

|p′(Dt)u|2 dt ≤ C1

∫ 1

−1

|p(Dt)u|2 dt, ∀u ∈ C∞0 ((−1, 1),C). (12.2.7)
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Proof. It is not restrictive to assume that ak = 1. Let γ1, · · · , γk ∈ C be
the roots of the polynomial p, we have

p(η) =
∏

1≤j≤k

(η − γj) .

Set
pl(η) =

1

(η − γl)
∏

1≤j≤k

(η − γj) , for l = 1, · · · , k.

We have

p′(η) =
k∑
l=1

pl(η), ∀η ∈ C. (12.2.8)

Let l ∈ {1, · · · , k} be fixed, u ∈ C∞0 ((−1, 1),C) and let us denote

vl = pl(Dt)u.

Let us observe that
(Dt − γl) vl = p(Dt)u.

Now we apply Lemma 12.2.2 to vl (where γ = i−1γl) and we get∫ 1

−1

|pl(Dt)u|2 dt =

∫ 1

−1

|vl|2 dt ≤

≤ C0

∫ 1

−1

|(Dt − γl) vl|2 dt =

= C0

∫ 1

−1

|p(Dt)u|2 dt.

(12.2.9)

By (12.2.8) and (12.2.9) we have∫ 1

−1

|p′(Dt)u|2 dt ≤ k
k∑
l=1

∫ 1

−1

|pl(Dt)u|2 dt ≤

≤ C0k
2

∫ 1

−1

|p(Dt)u|2 dt.

(12.2.10)

Hence, inequality (12.2.7) is proved with C1 = k2C0. �

Theorem 12.2.4 (Hörmander). Let P (D) be a differential operator of
order m with constant coefficients. Then there exists a constant C2 which
depends on m and on n only, such that we have, for any α ∈ Nn

0 ,∫
Q1

∣∣P (α)(D)u
∣∣2 dx ≤ C2

∫
Q1

|P (D)u|2 dx, ∀u ∈ C∞0 (Q1,C). (12.2.11)
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Proof. First of all we prove (12.2.11) for α = ej, j = 1, · · · , n. It is not
restrective to assume j = n. for any f ∈ L2 (Rn) we set

f̂(ξ′, xn) = Fξ′(f(·, xn) =

∫
Rn−1

f(x′, xn)e−ix
′ξ̇′dx′, ∀ξ′ ∈ Rn−1.

Let u ∈ C∞0 (Q1,C); we have

Fξ′ (P (D)u) = P (ξ′, Dn) û(ξ′, xn) (12.2.12)

and by the Parseval identity, we have∫
Q1

∣∣P (en)(D)u
∣∣2 dx =

=
1

(2π)n−1

∫
Rn−1

dξ′
∫ 1

−1

∣∣P (en) (ξ′, Dn) û(ξ′, xn)
∣∣2 dxn. (12.2.13)

Now we apply Lemma 12.2.9 to the operator p(Dn) = P (ξ′, Dn), where
ξ′ ∈ Rn−1 is fixed. We obtain∫ 1

−1

∣∣P (en) (ξ′, Dn) û(ξ′, xn)
∣∣2 dxn ≤

≤ C1

∫ 1

−1

|P (ξ′, Dn) û(ξ′, xn)|2 dxn.
(12.2.14)

By (12.2.13) and (12.2.14) we have

∫
Q1

∣∣P (en)(D)u
∣∣2 dx ≤ C1

(2π)n−1

∫
Rn−1

dξ′
∫ 1

−1

|P (ξ′, Dn) û(ξ′, xn)|2 dxn =

= C1

∫
Q1

|P (D)u|2 dx.

Since the previous proof can be repeated for any indices. We have that for
each multi–indices α such that |α| = 1 the estimate following holds∫

Q1

∣∣P (α)(D)u
∣∣2 dx ≤ C1

∫
Q1

|P (D)u|2 dx, ∀u ∈ C∞0 (Q1,C). (12.2.15)

By iteration of (12.2.15) we get, for any α ∈ Nn
0 ,∫

Q1

∣∣P (α)(D)u
∣∣2 dx ≤ C

|α|
1

∫
Q1

|P (D)u|2 dx, ∀u ∈ C∞0 (Q1,C).
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Hence inequality (12.2.11) is now proved with C2 = C
|α|
1 . �

Proof of Theorem 12.2.1.
Let u ∈ C∞0 (Q1,C). Setting v = eτN ·xu, we obtain

Dju = e−τN ·x (Dj + iτNj) v. (12.2.16)

For each multi-index α, we have

Dαu = e−τN ·x (D + iτN)α v.

Hence

eτN ·xP (D)u = P (D + iτN)v, eτN ·xP (α)(D)u = P (α)(D + iτN)v.

Therefore by (12.2.11) we get∫
Q1

e2τN ·x ∣∣P (α)(D)u
∣∣2 dx =

∫
Q1

∣∣P (α)(D + iτN)v
∣∣2 dx ≤

≤ C2

∫
Q1

|P (D + iτN)v|2 dx =

= C2

∫
Q1

e2τN ·x |P (D)u|2 dx,

where C2 is the same constant of (12.2.11).
�

Remark 1.
Since P (D) is an operator of order m, we have that there exists α ∈ Nn

0

such that P (α)(ξ) = α!aα 6= 0. Therefore (12.2.2) gives, in particular,∫
Q1

|u|2 dx ≤ C3

∫
Q1

|P (D)u|2 dx, ∀u ∈ C∞0 (Q1,C), (12.2.17)

where
C3 = C2(

1

α!
min{|aα| : aα 6= 0, |α| = m})2.

By the proof of Theorem 12.2.1 we observe that, if M(ξ) is a polynomial
for which there exists a constant C4 > 0 such that

|M(ξ + iτN)|2∑
|α|≤m |P (α)(ξ + iτN)|2

≤ C4, ∀ξ ∈ Rn, ∀τ ∈ R (12.2.18)
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then there exists a constant C such that∫
Q1

e2τN ·x |M(D)u|2 dx ≤ C

∫
Q1

e2τN ·x |P (D)u|2 dx, (12.2.19)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R.
Likewise, if Mτ (ξ) is a polynomial in the variable ξ depending by the

parameter τ and if

sup

{
|Mτ (ξ + iτN)|2∑

|α|≤m |P (α)(ξ + iτN)|2
: (ξ, τ) ∈ Rn+1

}
< +∞, (12.2.20)

then, for a constant C (independent of τ and u), we have

∫
Q1

e2τN ·x |Mτ (D)u|2 dx ≤ C

∫
Q1

e2τN ·x |P (D)u|2 dx, (12.2.21)

for any u ∈ C∞0 (Q1,C) and any τ ∈ R.
For instance, in the case

P (D) = −
(
D2

1 + · · ·+D2
n

)
= ∆,

we have

P (ξ) = −
(
ξ2

1 + · · ·+ ξ2
n

)
,
∑
|α|≤2

∣∣P (α)(ξ)
∣∣2 = |ξ|4 + 4

(
n2 + |ξ|2

)
,

from which we easily obtain that (12.2.18) is satisfied for all N ∈ Rn, |N | = 1,
provided M(ξ) = ξj (as well as, of course, for M(ξ) = 1). Hence, we have∫

Q1

(
|u|2 + |∇u|2 + |D2u|2

)
dx ≤ C

∫
Q1

|∆u|2 dx, (12.2.22)

for every u ∈ C∞0 (Q1,C), where

|D2u|2 =
n∑

j,k=1

|D2
jku|2 =

n∑
j,k=1

|∂2
jku|2.

Moreover, we have

∑
|α|≤2

∣∣P (α)(ξ + iτN)
∣∣2 =

(
|ξ|2 − τ 2

)2
+ 4τ 2(ξ ·N)2 + 4

(
|ξ|2 + τ 2

)
+ 4n2
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and, setting

M0,τ (ξ) = τ, Mj,τ (ξ) = ξj, j = 1, · · · , n,

we have (reader check), for k = 1, · · · , n,

sup

{
|Mk,τ (ξ + iτN)|2∑
|α|≤2 |P (α)(ξ + iτN)|2

: (ξ, τ) ∈ Rn+1

}
< +∞.

Hence, ∫
Q1

e2τN ·x (τ 2|u|2 + |∇u|2
)
dx ≤ C

∫
Q1

e2τN ·x |∆u|2 dx, (12.2.23)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R. Trivially, also the following
estimate holds

∫
Q1

e2τN ·x (|u|2 + |∇u|2
)
dx ≤ C

∫
Q1

e2τN ·x |∆u|2 dx, (12.2.24)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R.
In what follows, we will exploit estimate (12.2.24) to prove some unique

continuation property for the equation

∆U = b(x) · ∇U + c(x)U,

with b = (b1, · · · , bn) ∈ L∞(Rn), c ∈ L∞(Rn).
As it will be clear later on, the aforesaid unique continuation property

results could be derived with a slightly less effort by using (12.2.23) instead
of (12.2.24). However, part of the arguments that we will use employing
(12.2.24) can be extended to differential operators which are more general
and this, in a certain sense, will repay us for the greater effort we will put
into using (12.2.24). �

12.3 Application of the Nirenberg Theorem to
the Laplace operator

In this Section we will apply estimate (12.2.24) to obtain the weak unique
continuation property and the uniqueness for the Cauchy problem to equa-
tion (12.1.3).
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The steps to be done are fairly numerous and, in order to highlight the
key points, we proceed gradually. First, we warn that we should not confuse
the solution of equation (12.1.3) with u in inequality (12.2.24). Now, let us
dwell on inequality (12.2.24) and we notice that, since C∞0 (Q1,C) is dense in
H2

0 (Q1,C), estimate (12.2.24) holds true also for any u ∈ H2
0 (Q1,C).

Hence, we have∫
Q1

e2τN ·x (|u|2 + |∇u|2
)
dx ≤ C

∫
Q1

e2τN ·x |∆u|2 dx, (12.3.1)

for every u ∈ H2
0 (Q1,C) and for every τ ∈ R.

Actually, it would not be difficult to prove that (12.2.24) holds for each
u ∈ H1

0 (Q1,C) which satisfies ∆u ∈ L2(Q1,C). However, at least for the
time being, let us omit further consideration on this point. Let us recall that
(Theorem 4.6.1):

Proposition 12.3.1. Let Ω be an open set of Rn, f ∈ L2(Ω,C) and let
U ∈ H1(Ω,C) satisfy∫

Ω

∇U · ∇ϕdx = −
∫

Ω

fϕdx, ∀ϕ ∈ H1
0 (Ω,C), (12.3.2)

then U ∈ H2

loc(Ω,C).

Let b = (b1, · · · , bn) ∈ L∞(Rn;Rn), c ∈ L∞(Rn) and f ∈ L2(Rn).
Let us start to consider the following Cauchy problem. Let

h(x′) = 1−
√

1− |x′|2,

Λ = {(x′, xn) ∈ B′1 × R : h(x′) < xn < 1}

and

Γ = {(x′, h(x′)) : x′ ∈ B′1} .

We say that U ∈ H2(Λ) is a solution of the Cauchy problem

∆U = b(x) · ∇U + c(x)U + f(x), in Λ,

U = 0, on Γ,

∂U
∂ν

= 0, on Γ,

(12.3.3)
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provided U ∈ H2(Λ) and


∆U = b(x) · ∇U + c(x)U + f(x), in Λ

UΨ ∈ H2
0 (Λ), ∀Ψ ∈ C∞(Rn), suppΨ ⊂ Rn−1 × (−∞, 1).

(12.3.4)

Let us observe that in formulation (12.3.4), we express the conditions U =
∂U
∂ν

= 0 on Γ as "UΨ ∈ H2
0 (Λ), for every Ψ ∈ C∞(Rn), such that suppΨ ⊂

Rn−1 × (−∞, 1)". Another way to express correctly these initial conditions
is through the definition of the traces. In the case of initial surface Γ that we
are considering, both the formulations are equivalent (due to the regularity
of Γ), however formulation (12.3.4) is more elementary because it allows us
to dispense with the notion of the trace.

Set

K = ‖b‖L∞(Λ) + ‖c‖L∞(Λ) , ε = ‖f‖L2(Λ) . (12.3.5)

Our goal is to find an estimate that, roughly speaking, tells us that if ε
"is small" then ‖U‖L2(Λ) "is small" and tell us that if ε = 0 (thus f ≡ 0)
then U ≡ 0

Let us start by considering the simple case in which, in (12.3.3), K and
ε are zero. In such a case we have


∆U = 0, in Λ,

UΨ ∈ H2
0 (Λ), ∀Ψ ∈ C∞(Rn), suppΨ ⊂ Rn−1 × (−∞, 1).

(12.3.6)

Let δ ∈ (0, 1
3
) and let ζ ∈ C∞(R) satisfy 0 ≤ ζ ≤ 1, (Figure 10.1)

ζ(xn) = 1, for xn ≤ 1− 2δ, ζ(xn) = 0 for 1− δ ≤ xn < 1

and

|ζ ′(xn)| ≤ cδ−1 e |ζ ′′(xn)| ≤ cδ−2, for 1− 2δ ≤ xn ≤ 1− δ,
where c is a constant.

Let us extend U to zero in {(x′, xn) ∈ B′1 × R : −1 < xn < h(x′)}, in such
a way that this extension belongs to H2(Q1), we continue to denote by U
such an extension. We have ζU ∈ H2

0 (Q1). Let us apply (12.3.1) to

u = ζ(xn)U(x),
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Figure 12.1:

where
N = −en, and τ > 0.

We have

∆(ζU) = ζ(xn)∆U + 2ζ ′(xn)∂nU + ζ ′′(xn)U

as ∆U = 0, we get

|∆(ζU)| ≤ χ(1−2δ,1−δ)(xn)
(
2cδ−1 |∂nU |+ cδ−2 |U |

)
. (12.3.7)

Hence by (12.3.1) and (12.3.7) we get

∫
Q1

e−2τxn
(
|ζU |2 + |∇(ζU)|2

)
dx ≤ C

∫
Q1

e−2τxn |∆(ζU)|2 dx ≤

≤ C ′δ−4

∫
Q1∩{1−2δ<xn<1−δ}

e−2τxn
(
|U |2 + |∇U |2

)
dx ≤

≤ C ′e−2τ(1−2δ)δ−4

∫
Q1∩{1−2δ<xn<1−δ}

(
|U |2 + |∇U |2

)
dx ≤

≤ C ′e−2τ(1−2δ)δ−4 ‖U‖2
H1(Q1) ,

(12.3.8)

for every τ > 0.
Now we have, trivially, for every τ > 0
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∫
Q1

e−2τxn
(
|ζU |2 + |∇(ζU)|2

)
dx ≥

≥ e−2τ(1−3δ)

∫
Λ∩{xn<1−3δ}

(
|U |2 + |∇U |2

)
dx.

(12.3.9)

By (12.3.8) and (12.3.9) we obtain

z

∫
Λ∩{xn<1−3δ}

(
|U |2 + |∇U |2

)
dx ≤

≤ C ′e−2τδδ−4 ‖U‖2
H1(Q1) → 0, as τ → +∞.

From which we have U = 0 in Λ ∩ {xn < 1 − 3δ} and, as δ is arbitrary, we
get U = 0 in Λ.

In the general case, particularly when b or c are not zero, one would like
to argue in a similar manner, but one encounters an obstacle due to the fact
that in expanding |∆(ζU)|, besides the terms present in (12.3.7), new terms,
depending on U and ∇U , arise. To overcome this difficulty, we first perform
a rescaling of estimate (12.3.1)

For any r > 0, set

Qr = {x ∈ Rn : |xj| < r, j = 1, · · · , n} .

Proposition 12.3.2. Let N ∈ Rn (|N | = 1). There exists a constant C > 0
so that∫

Qr

e2τN ·x (|u|2 + r2|∇u|2
)
dx ≤ Cr4

∫
Qr

e2τN ·x |∆u|2 dx, (12.3.10)

for every r > 0, for every u ∈ H2
0 (Qr) and for every τ ∈ R.

Proof.
Let u ∈ H2

0 (Qr) and let us denote

ũ(y) = u(ry), ∀y ∈ Q1.

We apply (12.3.1) to ũ, replacing there τ by τr. We get

∫
Q1

e2τrN ·y (|u(ry)|2 + r2|(∇u)(ry)|2
)
dy ≤ Cr4

∫
Q1

e2τrN ·y |(∆u)(ry)|2 dy.

Now, by performing the change of variables y = r−1x, we have
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∫
Qr

e2τN ·x (|u(x)|2 + r2|∇u(x)|2
)
r−ndx ≤ Cr4

∫
Qr

e2τN ·x |∆u(x)|2 r−ndy.

By last inequality we immediately have (12.3.10). �

Now let us go back to Cauchy problem (12.3.3). Let r ∈ (0, 1) be a
number to be choosen later, set

ρ =
r2

2
, R =

√
2ρ− ρ2.

It is easy to check that ρ,R < r hence

Λρ := {(x′, xn) ∈ B′R × R : h(x′) < xn < ρ} ⊂ Qr.

Let δ ∈ (0, 1
3
) and ζ ∈ C∞(R) satisfy 0 ≤ ζ ≤ 1,

ζ(xn) = 1, for xn ≤ ρ(1− 2δ), ζ(xn) = 0 for ρ(1− δ) ≤ xn < ρ

and

|ζ ′(xn)| ≤ c(δρ)−1 and |ζ ′′(xn)| ≤ c(δρ)−2, for ρ(1− 2δ) ≤ xn ≤ ρ(1− δ),

where c is a constant.
Now we extend U to zero in {(x′, xn) ∈ B′R × R : −ρ < xn < h(x′)}, this

extension belongs to H2(Qr), we continue to denote it by U , it turns out that
ζU ∈ H2

0 (Qr). Let us prepare to apply the estimate (12.3.10) to

u = ζ(xn)U(x),

where N = −en and τ > 0.

∆(ζU) = ζ(xn)∆U + 2ζ ′(xn)∂nU + ζ ′′(xn)U =

= ζ(xn) (b · ∇U + cU + f) +

+ 2ζ ′(xn)∂nU + ζ ′′(xn)U.

From which we have, taking into account (12.3.5),

|∆(ζU)| ≤ Kζ (|U |+ |∇U |) + ζ |f |+
+ c(ρδ)−2χI(xn)(|∂nU |+ |U |),

(12.3.11)

where we set I = (ρ(1− 2δ), ρ(1− δ)).
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Let us denote

J1 =

∫
Qr

e−2τxnζ2
(
|U |2 + |∇U |2

)
dx,

and

J2 =

∫
Qr∩{ρ(1−2δ)<xn<ρ(1−δ)}

e−2τxn
(
|U |2 + |∇U |2

)
dx.

Hence by (12.3.10) and (12.3.11) we have (recall that C denotes a constant
that may change from line to line)∫

Qr

e−2τxn
(
|ζU |2 + r2|∇(ζU)|2

)
dx ≤

≤ Cr4

∫
Qr

e−2τxn |∆(ζU)|2 dx ≤

≤ CK2r4J1 + Cr4 (ρδ)−4 J2+

+ Cr4

∫
Qr

e−2τxnζ2 |f |2 dx,

(12.3.12)

for every τ > 0.
At this point it is useful to note that compared to (12.3.8), here we have

two new terms: J1 and r4
∫
Qr
e−2τxnζ2 |f |2 dx. Recalling the second equality

in (12.3.5), we estimate from above the last term in (12.3.8) as follows

r4

∫
Qr

e−2τxnζ2 |f |2 dx ≤ r4

∫
Qr

|f |2 dx = r4ε2, (12.3.13)

for every τ > 0.
Before considering the term J1, let us estimate from above J2 basically in

the same way as done in (12.3.8). We have

J2 =

∫
Qr∩{ρ(1−2δ)<xn<ρ(1−δ)}

e−2τxn
(
|U |2 + |∇U |2

)
dx ≤

≤ Ce−2τρ(1−2δ)

∫
Qr∩{ρ(1−2δ)<xn<ρ(1−δ)}

(
|U |2 + |∇U |2

)
dx ≤

≤ Ce−2τρ(1−2δ) ‖U‖2
H1(Qr)

,

(12.3.14)

for every τ > 0.
Hence, by (12.3.12)–(12.3.14), we get
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∫
Qr

e−2τxn
(
|ζU |2 + r2|∇(ζU)|2

)
dx ≤ CK2r4J1+

+ C
(
rρ−1δ−1

)4
e−2τρ(1−2δ) ‖U‖2

H1(Qr)
+

+ Cr4ε2,

(12.3.15)

for every τ > 0.
By the manner in which ζ is defined, we have trivially (recall r < 1)∫

Qr

e−2τxn
(
|ζU |2 + r2|∇(ζU)|2

)
dx ≥

≥ r2

∫
Qr∩{xn<ρ(1−2δ)}

e−2τxn
(
|U |2 + |∇U |2

)
dx,

(12.3.16)

for every τ > 0.
Concerning J1, let us observe

J1 =

∫
Qr∩{xn<ρ(1−2δ)}

e−2τxnζ2
(
|U |2 + |∇U |2

)
dx+

+

∫
Qr∩{ρ(1−2δ)<xn<ρ(1−δ)}

e−2τxnζ2
(
|U |2 + |∇U |2

)
dx ≤

≤
∫
Qr∩{xn<ρ(1−2δ)}

e−2τxn
(
|U |2 + |∇U |2

)
dx+

+ e−2τρ(1−2δ) ‖U‖2
H1(Qr)

,

(12.3.17)

for every τ > 0.
Now by (12.3.15)–(12.3.17) we have

r2
(
1− CK2r2

) ∫
Qr∩{xn<ρ(1−2δ)}

e−2τxn
(
|U |2 + |∇U |2

)
dx ≤ Cr4ε2+

+ Cr4
(
ρ−1δ−1

)4
e−2τρ(1−2δ) ‖U‖2

H1(Qr)
,

for every τ > 0.
Now, let us choose r = r0 < 1 satisfying 1 − CK2r2

0 ≥ 1
2
(here, recall that

C does not depends by r) and denoting by ρ0 and R0 the values of ρ and R
correspondingly to this choice of r we get∫

Qr0∩{xn<ρ0(1−2δ)}
e−2τxn

(
|U |2 + |∇U |2

)
dx ≤ Cε2+

+ Ce−2τρ0(1−2δ) ‖U‖2
H1(Λρ0 ) ,

(12.3.18)
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for every τ > 0, where C depends on K and δ only.
We have, trivially∫

Qr0∩{xn<ρ0(1−2δ)}
e−2τxn

(
|U |2 + |∇U |2

)
dx ≥

≥
∫
Qr0∩{xn<ρ0(1−3δ)}

e−2τxn
(
|U |2 + |∇U |2

)
dx ≥

≥ e−2τρ0(1−3δ) ‖U‖2
H1(Λρ0(1−3δ))

,

for every τ > 0.
By the last obtained estimate and by (12.3.18) we get

‖U‖2
H1(Λρ0(1−3δ))

≤ C
[
e2τρ0(1−3δ)ε2 + e−2τρ0δ ‖U‖2

H1(Λρ0 )

]
, (12.3.19)

for every τ > 0.
Now, let us observe that if ε = 0, and if τ goes to +∞, then by (12.3.19)

we get U = 0 in Λρ0(1−3δ). Instead, if ε > 0 by (12.3.19) we can derive a
stability estimate by choosing appropriately τ .

The choice of τ is driven by the idea of " balancing" the two right hand
addends of (12.3.19) (or also, minimize with respect to τ the right-hand
member of (12.3.19)). For this purpose it is convenient to rearrange the
inequality and set

E = ‖U‖H1(Λρ0 ) .

By (12.3.19) we have, trivially

‖U‖2
H1(Λρ0(1−3δ))

≤ C
[
e2τρ0(1−3δ)ε2 + e−2τρ0δ

(
E2 + ε2

)]
, (12.3.20)

for every τ > 0.
Let us choose

τ = τ0 =
1

2ρ0(1− 2δ)
log

(
E2 + ε2

ε2

)
.

We get

e2τ0ρ0(1−3δ)ε2 = e−2τ0ρ0δ
(
E2 + ε2

)
=
(
ε2
)µ(δ) (

E2 + ε2
)1−µ(δ)

,

where
µ(δ) =

δ

1− 2δ
.
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Hence, by (12.3.20) we have the following stability estimate

‖U‖H1(Λρ0(1−3δ))
≤ 23/2Cεµ(δ)(E + ε)1−µ(δ). (12.3.21)

It is obvious that estimate (12.3.21) implies (putting there ε = 0)
the uniqueness to Cauchy problem (12.3.3), however this estimate says
something more about the Cauchy problem. Precisely tells us that if we have
a bound of the norm H1 of the solution U , then we can estimate the error
on the solution U starting from the error on the datum f .

However, let us leave out the stability issue and we return to the unique-
ness question for the Cauchy problem. So far we have obtained a local
uniqueness result in the case where the initial surface is a semisphere (the
graph of h). Recalling that the operator ∆ is invariant under the rotations,
the result of local uniqueness that we obtained can be easily extend to U ∩Λ,
where U is a neighborhood of the graph of h. Actually, by further exploiting
the particularity of the operator ∆ we can easily obtain an intermediate re-
sult starting from which it will be easy to reach the global uniqueness for
the Cauchy problem for quite general initial surfaces.

Such an intermediate result is proved in the following Proposition.

Proposition 12.3.3. Let K,R2, R1 > 0, R1 < R2. Let us suppose that
U ∈ H2(BR2(0) \BR1) satisfy what follows

|∆U | ≤ K (|∇U |+ |U |) , in BR2 \BR1 (12.3.22)

U = 0,
∂U

∂ν
= 0, on ∂BR2 , (12.3.23)

(i.e. UΨ ∈ H2
0 (BR2 \BR1) for every Ψ ∈ H2(Rn) whose support is contained

in Rn \BR1) then
U = 0 in BR2 \BR1 . (12.3.24)

Proof. It suffices to reduce by dilation to the case in which R2 = 1
and observe that to obtain (12.3.21) (with ε = 0) we may just use (12.3.22)
instead of the equation ∆U = b · ∇U + cU . Next, starting from (12.3.21)
(with ε = 0) and using the invariance of ∆ with respect to the rotations,
we immediately obtain that there exists r ∈ (0, R2) such that U = 0 in
BR2 \ BR2−r. From which iterating the obtained result, we get that U ≡ 0.
�

Remark 1. Let us observe that to require that

|∆U | ≤ K (|∇U |+ |U |) , in Ω, (12.3.25)
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where Ω is an open set of Rn is equivalent to require that there exist
b ∈ L∞ (Ω;Cn) and c ∈ L∞ (Ω;C) such that U is a a solution of the equation

∆U = b(x) · ∇U + c(x)U, in Ω. (12.3.26)

Indeed, it is obvious that if U satisfies (12.3.26) then U satisfies (12.3.25)
with

K = max
{
‖b‖L∞(Ω;Cn) , ‖c‖L∞(Ω;C)

}
.

Conversely, if U satisfies (12.3.25), then we define

b(x) =


∇U(x)(∆U(x))
|∇U(x)|2+|U(x)|2 , for |∇U(x)|2 + |U(x)|2 > 0,

0, for |∇U(x)|2 + |U(x)|2 = 0

and

c(x) =


U(x)(∆U(x))

|∇U(x)|2+|U(x)|2 , for |∇U(x)|2 + |U(x)|2 > 0,

0, for |∇U(x)|2 + |U(x)|2 = 0.

By (12.3.25) we have

‖b‖L∞(Ω;Cn) ≤ K, and ‖c‖L∞(Ω;C) ≤ K.

In addition, if |∇U(x)|2 + |U(x)|2 = 0 then (12.3.25) implies

∆U(x) = 0 = b(x) · ∇U(x) + c(x)U(x),

and, if |∇U(x)|2 + |U(x)|2 > 0 then

b(x) · ∇U(x) + c(x)U(x) =

=
∇U(x)(∆U(x))

|∇U(x)|2 + |U(x)|2
· ∇U(x) +

U(x)(∆U(x))

|∇U(x)|2 + |U(x)|2
U(x) =

= ∆U(x).

�

In the next Proposition we will use the Kelvin transform which is
defined as follows. Let u be a sufficiently smooth function, let

v(y) = |y|2−n u
(
y|y|−2

)
, (12.3.27)
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we have

∆v(y) = |y|−2−n (∆xu)
(
y|y|−2

)
. (12.3.28)

Theorem 12.3.4 (weak unique continuation property). Let K,R, ρ >
0, ρ < R. Let us assume that U ∈ H2(BR) satisfies the inequality

|∆U | ≤ K (|∇U |+ |U |) , in BR. (12.3.29)

We have that, if
U = 0, in Bρ, (12.3.30)

then
U = 0 in BR. (12.3.31)

Proof. It is not restrictive to assume R = 1 and, consequently, ρ < 1.
Let us apply the Kelivin transform. Set

V (y) = |y|2−n U
(
y|y|−2

)
, in Rn \B1, (12.3.32)

by (12.3.30) we have
V = 0, in Rn \B1/ρ. (12.3.33)

Moreover V ∈ H2
(
B1/ρ \B1

)
and

∣∣(∇xU)
(
y|y|−2

)∣∣ ≤ C
(
|y|n−1|V (y)|+ |y|n|∇yV (y)|

)
hence, by this inequality, by (12.3.28) and by (12.3.29) we obtain

|∆V | ≤ CK (|∇V |+ |V |) , in Rn \B1. (12.3.34)

Now, by applying Proposition 12.3.3 we have

V = 0 in B1/ρ \B1. (12.3.35)

From which, taking into account (12.3.27), we immediately obtain the thesis.
�

We now prove the following
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Theorem 12.3.5. Let Ω be a (bounded) connected open set of Rn, let Σ ⊂ ∂Ω
be a local graph of a function of class C2. Let us assume that b ∈ L∞(Ω,Cn),
c ∈ L∞(Ω,C). Moreover, let U ∈ H2(Ω,C) satisfy

∆U = b(x) · ∇U + c(x)U, in Ω,

U = 0, on Σ,

∂U
∂ν

= 0, on Σ.

(12.3.36)

Then we have

U = 0 in Ω. (12.3.37)

Remark 2. As usual, the conditions U = ∂U
∂ν

= 0 on Σ should be
understood as: UΨ ∈ H2

0 (Ω), for every Ψ ∈ C∞(Rn) such that Ψ = ∂Ψ
∂ν

= 0
on ∂Ω \ Σ. �

Proof. For any M, r > 0 let us denote

Qr,M = B′r × (−Mr,Mr) .

Up to rigid transformation of Rn, we may assume there exist r0 and
h ∈ C2

(
B′r0
)
such that

h(0) = |∇x′h(0)| = 0

and
graph(h) ⊂ Σ,

where graph(h) is the graph of h. While eventually reducing r0 we may
assume that there exists M0 > 0 such that

‖h‖C2(B′r0) ≤M0r0

and

Ω ∩Qr0,2M0 =
{
x ∈ B′r0 × R : h(x′) < xn < 2M0r0

}
.

Now, let us denote

Q−r02M0
=
{
x ∈ B′r0 × R : −2M0r0 < xn ≤ h(x′)

}
and let

Ω̃ = Ω ∪Q−r02M0
.
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Moreover, let Ũ be the extension of U to 0 in Q−r0,2M0
. We have Ũ ∈ H2

(
Ω̃
)

and

∆Ũ = b̃(x) · ∇Ũ + c̃(x)Ũ ,

where b̃ e c̃ are the extensions of b, c to 0 in Q−r0,2M0
. We have trivially

b̃ ∈ L∞
(

Ω̃,Cn
)
, c̃ ∈ L∞

(
Ω̃,C

)
.

From now on, we argue as we did in the proof of Theorem 7.6.5. For the
convenience of the reader here we repeat the main steps of this proof.

First of all, we note that Ω̃ is connected.
Then, set

A =
{
x ∈ Ω̃ : ∃ρx > 0 such that Ũ = 0, in Bρx(x)

}
. (12.3.38)

By the definition of Ũ we have Int
(
Q−r0,2M0

)
⊂ A hence A 6= ∅ and it turns

out, trivially, that A is an open set in Ω̃. To prove that A is also closed in Ω̃
(from which, since Ω̃ is connected, we get A = Ω̃ and, consequently, Ũ ≡ 0)
we can follow exactly the same argument followed in the proof of Theorem
7.6.5, using, in this case, Proposition 12.3.4 instead of Theorem 7.6.4. �

Remark 3. Let us observe that by the weak unique continuation prop-
erty (Theorem 7.6.4) we have derived the uniqueness for Cauchy problem
(12.3.36). Conversely, if we dispose of the uniqueness for Cauchy problem
(12.3.36) we may derive the weak unique continuation property for the equa-
tion

∆U = b(x) · ∇U + c(x)U, in Ω,

where Ω is a connected open set of Rn. Indeed, let ω a subset of Ω and let
us assume that

U = 0, in ω.

Let Br(x0) b ω.
We have that U is a solution to the Cauchy problem

∆U = b(x) · ∇U + c(x)U, in Ω,

U = 0, on ∂Br(x0),

∂U
∂ν

= 0, on ∂Br(x0).
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Hence, by the uniqueness for the Cauchy problem, we have

U ≡ 0, in Ω.

�

12.4 Necessary conditions
In the present Section we return to estimate (12.2.2) or, more generally, to
estimate (12.2.19). We have already observed (Remark 1 of Section 12.2)
that if (12.2.18) holds, then (12.2.19) holds. As we will see, the converse is
also true. More precisely, we have the following

Theorem 12.4.1. Let M(D) and P (D) be two linear differential operators
of order r and m respectively. The following conditions are equivalent:
(i) There exists C > 0 such that∫

Q1

e2τN ·x |M(D)u|2 dx ≤ C

∫
Q1

e2τN ·x |P (D)u|2 dx, (12.4.1)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R.
(ii) The following is true

sup
(ξ,τ)∈Rn+1

{
|M(ξ + iτN)|2∑

|α|≤m |P (α)(ξ + iτN)|2

}
< +∞. (12.4.2)

In particular, if (12.4.1) holds true, then r ≤ m.

In order to prove Theorem 12.4.1 we need a Lemma (Lemma 12.4.3) to
which we premise the following

Proposition 12.4.2 (extension of the Leibniz formula). Let P (D) be a
linear differential operator of order m, we have

P (D)[fu] =
∑
|α|≤m

Dαf

α!
P (α)(D)u, ∀f, u ∈ Cm(Rn,C). (12.4.3)

Proof. By the Leibniz formula, we get

P (D)[fu] =
∑
|α|≤m

(Dαf)Rα(D)u, ∀f, u ∈ Cm(Rn,C), (12.4.4)
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where Rα(D) are linear differential operators of order (less or equal) to
m − |α|. Let ξ, η ∈ Rn be arbitrary and let f(x) = eix·ξ, u(x) = eix·η. By
(12.4.4) we have

eix·(ξ+η)P (ξ + η) = P (D)[eix·ξeix·η] = eix·(ξ+η)
∑
|α|≤m

ξαRα(η).

Hence
P (ξ + η) =

∑
|α|≤m

ξαRα(η), ∀ξ, η ∈ Rn.

On the other hand, by the Taylor formula we have

P (ξ + η) =
∑
|α|≤m

ξα

α!
P (α)(η),

from which we obtain
Rα(η) =

1

α!
P (α)(η)

that gives (12.4.3). �

Lemma 12.4.3. For any m ∈ N0 and for any φ ∈ C∞0 (Q1,C), which does
not vanish identically, there exists a constant Cφ ≥ 1 such that for every
linear differential operator R(D) of order m we have

C−1
φ R̃(ξ) ≤

(∫
Q1

∣∣R(D)
[
φ(x)eix·ξ

]∣∣2 dx)1/2

≤ CφR̃(ξ), (12.4.5)

for every ξ ∈ Rn, where

R̃(ξ) =

∑
|α|≤m

∣∣R(α)(ξ)
∣∣21/2

. (12.4.6)

Proof. Let φ ∈ C∞0 (Q1,C) be a function not identically zero
Formula (12.4.3) gives

R(D)
[
φ(x)eix·ξ

]
= eix·ξ

∑
|α|≤m

1

α!
R(α)(ξ)Dαφ(x). (12.4.7)

Set

Iαβ (φ) =

∫
Rn

1

α!
Dαφ(x)

1

β!
Dβφ(x)dx, (12.4.8)
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by (12.4.7), we have

∫
Rn

∣∣R(D)
[
φ(x)eix·ξ

]∣∣2 dx =

∫
Rn

∣∣∣∣∣∣
∑
|α|≤m

1

α!
R(α)(ξ)Dαφ(x)

∣∣∣∣∣∣
2

dx =

=

∫
Rn

∑
|α|,|β|≤m

R(α)(ξ)R(β)(ξ)
1

α!
Dαφ(x)

1

β!
Dβφ(x)dx =

=
∑

|α|,|β|≤m

R(α)(ξ)R(β)(ξ)Iαβ (φ) .

(12.4.9)

Let us consider the quadratic form

H(z) =
∑

|α|,|β|≤m

Iαβ (φ) zαzβ, (12.4.10)

where z ∈ CN(m,n) (N(m,n) the number of multi–indexes α such that |α| ≤
m). Let us notice that

H(z) =

∫
Rn

∣∣∣∣∣∣
∑
|α|≤m

1

α!
zαD

αφ(x)

∣∣∣∣∣∣
2

dx. (12.4.11)

From which, recalling (12.4.9) and choosing

z(0)
α = R(α)(ξ), for |α| ≤ m, (12.4.12)

we have
H
(
z(0)
)

=

∫
Rn

∣∣R(D)
[
φ(x)eix·ξ

]∣∣2 dx. (12.4.13)

Of course, (12.4.11) gives H(z) ≥ 0 for every z ∈ CN(m,n). Actually, H(z) is a
positive–definite form as we are going to prove. Arguing by contradiction,
let us suppose that there exists z̃ 6= 0 such that H (z̃) = 0 then, applying
inequality (12.2.17) to the operator

M̃(D) =
∑
|α|≤m

1

α!
z̃αD

α,

we would have that there exists a constant C̃ such that

0 = C̃H (z̃) = C̃

∫
Q1

∣∣∣M̃(D)φ
∣∣∣2 dx ≥ ∫

Q1

|φ|2 dx
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and this would imply φ ≡ 0, which contradicts the assumption that φ does
not vanish identically. Since H is positive–definite, there exists a constant
Cφ ≥ 1 (depending by φ) such that

C−1
φ

∑
|α|≤m

|zα|2 ≤ H(z) ≤ Cφ
∑
|α|≤m

|zα|2 , ∀z ∈ CN(m,n). (12.4.14)

By the latter, recalling (12.4.12) and (12.4.13) we get (12.4.5). �

Proof of Theorem 12.4.1.
We have already seen in Remark 1 of Section 12.2 that (12.4.2) implies

(12.4.1). Now we prove the converse. Let C? be a positive constant, let us
fix τ ∈ R and let us assume that

∫
Q1

e2τN ·x |M(D)u|2 dx ≤ C?

∫
Q1

e2τN ·x |P (D)u|2 dx, (12.4.15)

for every u ∈ C∞0 (Q1,C). Then, setting v = e2τN ·xu and arguing similarly to
the proof of Theorem 12.2.1, we have∫

Q1

|M(D + iτN)v|2 dx =

∫
Q1

e2τN ·x |M(D)u|2 dx ≤

≤ C?

∫
Q1

e2τN ·x |P (D)u|2 dx =

= C?

∫
Q1

|P (D + iτN)v|2 dx.

Therefore

∫
Q1

|M(D + iτN)v|2 dx ≤ C?

∫
Q1

|P (D + iτN)v|2 dx, (12.4.16)

for every v ∈ C∞0 (Q1,C).
Now let φ ∈ C∞0 (Q1,C) be not identically zero. For instance, let

φ(x) =


exp

(
− 1

1−|x|2

)
, for |x| < 1,

0, for |x| ≥ 1.

Let v(x) = φ(x)eix·ξ. By (12.4.5) and (12.4.16) we have, for every ξ ∈ Rn,
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C−1
∑
|α|≤r

∣∣M (α)(ξ + iτN)
∣∣2 ≤

≤
∫
Q1

∣∣M(D + iτN)
[
φ(x)eix·ξ

]∣∣2 dx ≤
≤ C?

∫
Q1

∣∣P (D + iτN)
[
φ(x)eix·ξ

]∣∣2 dx ≤
≤ CC?

∑
|α|≤m

∣∣P (α)(ξ + iτN)
∣∣2 .

(12.4.17)

where C ≥ 1 does not depend on τ . By (12.4.17) we obtain

|M(ξ + iτN)|2 ≤ C2C?
∑
|α|≤m

∣∣P (α)(ξ + iτN)
∣∣2 , ∀(ξ, τ) ∈ Rn+1. (12.4.18)

Therefore

sup
(ξ,τ)∈Rn+1

{
|M(ξ + iτN)|2∑

|α|≤m |P (α)(ξ + iτN)|2

}
≤ C2C? < +∞,

that concludes the proof. �

Remark 1. By reviewing the proof of Theorem 12.4.1 it is easily seen
that if τ0 is a fixed real number the following conditions are equivalent:

(i’) There exists C > 0 such that

∫
Q1

e2τ0N ·x |M(D)u|2 dx ≤ C

∫
Q1

e2τ0N ·x |P (D)u|2 dx, (12.4.19)

for every u ∈ C∞0 (Q1,C).
(ii’) The following holds true

sup
ξ∈Rn

{
|M(ξ + iτ0N)|2∑

|α|≤m |P (α)(ξ + iτ0N)|2

}
< +∞. (12.4.20)

In particular the following conditions are equivalent:

(i”) There exists C > 0 such that for every u ∈ C∞0 (Q1,C) we have∫
Q1

|M(D)u|2 dx ≤ C

∫
Q1

|P (D)u|2 dx,
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(ii”)

sup
ξ∈Rn

|M(ξ)|2∑
|α|≤m |P (α)(ξ)|2

< +∞.

�

Remark 2. In applying Theorem 12.2.1 for proving the uniqueness of
Cauchy problem (12.3.3) it was sufficient to use estimate (12.2.2) for τ suffi-
ciently large. More precisely, the estimate we actually used is∫

Q1

e2τN ·x |M(D)u|2 dx ≤ C

∫
Q1

e2τN ·x |P (D)u|2 dx, (12.4.21)

for every u ∈ C∞0 (Q1,C) and for every τ ≥ τ0, where τ0 is a positive num-
ber and, as well as C, does not depends on u. If M(ξ) and P (ξ) are ho-
mogeneous polynomials, it is simple to check that estimate (12.4.21) is
equivalent to the estimate

∫
Q1

e−2τN ·x |M(D)u|2 dx ≤ C

∫
Q1

e−2τN ·x |P (D)u|2 dx, (12.4.22)

for every u ∈ C∞0 (Q1,C) and for every τ ≥ τ0. It suffices to consider the
simple change of variables x → −x (the reader takes care of the details).
Taking into account what we said in Remark 1 of this Section, estimate
(12.4.21) (hence, estimate (12.4.22)) is equivalent to

sup

{
|M(ξ + iτN)|2∑

|α|≤m |P (α)(ξ + iτN)|2
: (ξ, τ) ∈ Rn+1, |τ | ≥ τ0

}
< +∞. (12.4.23)

�

Remark 3. If Mj(ξ) are polynomials of degree rj, for j = 1, · · · , J and
Sk(ξ) are polynomials of degree sk, for k = 1, · · · , K, the necessary and
sufficient conditions for the validity of estimate

J∑
j=1

∫
Q1

e2τN ·x |Mj(D)u|2 dx ≤ C

K∑
k=1

∫
Q1

e2τN ·x |Sk(D)u|2 dx, (12.4.24)

for every u ∈ C∞0 (Q1,C) and for every τ ≥ τ0 (or for a fixed τ) can be
obtained easily arguing as in the proof of Theorem 12.4.1. For instance, the
estimate
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J∑
j=1

∫
Q1

|Mj(D)u|2 dx ≤ C
K∑
k=1

∫
Q1

|Sk(D)u|2 dx, (12.4.25)

for every u ∈ C∞0 (Q1,C), is equivalent to

sup
ξ∈Rn


∑J

j=1 |Mj(ξ)|2∑K
k=1

∑
|α|≤sk

∣∣∣S(α)
k (ξ)

∣∣∣2
 < +∞. (12.4.26)

From which, for r ≤ s, where r, s are nonnegative integer numbers, we easily
get the estimate

∫
Q1

|Dru|2 dx ≤ C

∫
Q1

|Dsu|2 dx, ∀u ∈ C∞0 (Q1,C), (12.4.27)

where, for a nonnegative integer p, we set

|Dpu|2 =
∑
|α|=p

|Dαu|2 .

Similarly it can be proved that∫
Q1

e2τN ·x |Dru|2 dx ≤ C

∫
Q1

e2τN ·x |Dsu|2 dx, (12.4.28)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R.
More generally we have

τ 2(s−r)
∫
Q1

e2τN ·x |Dru|2 dx ≤ C

∫
Q1

e2τN ·x |Dsu|2 dx, (12.4.29)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R.

More attention is required to study the following two estimates. Let
Pm(ξ) be a homogeneous polynomial of degree m ≥ 1 and let us consider the
estimates

∫
Q1

|Dmu|2 dx ≤ C

∫
Q1

|Pm(D)u|2 dx, ∀u ∈ C∞0 (Q1,C) (12.4.30)

and
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∫
Q1

e2τN ·x |Dmu|2 dx ≤ C

∫
Q1

e2τN ·x |Pm(D)u|2 dx, (12.4.31)

for every u ∈ C∞0 (Q1,C) and for every τ ≥ τ0, where τ0 is a nonnegative
integer number.

Let us begin by (12.4.30). We distinguish two cases:

(a) Pm(D) is elliptic, that is

ξ ∈ Rn, Pm(ξ) = 0⇒ ξ = 0; (12.4.32)

(b) Pm(D) is not elliptic, that is there exists ξ0 ∈ Rn \ {0} such that

Pm(ξ0) = 0. (12.4.33)

Let us check that estimate (12.4.30) holds if and only if Pm(D) is
elliptic.
Let us denote by

q(ξ) =
|ξ|2m∑

|α|≤m

∣∣∣P (α)
m (ξ)

∣∣∣2 . (12.4.34)

Let us assume that (a) holds true. Since Pm(ξ) is a homogeneous polynomial
of degree m, there exists λ ≥ 1 such that

λ−1 |ξ|m ≤ |Pm(ξ)| ≤ λ |ξ|m , ∀ξ ∈ Rn. (12.4.35)

Hence

q(ξ) ≤ λ2, ∀ξ ∈ Rn

and, by what noted in Remark 1 of this Section, we have that estimate
(12.4.30) holds true.

In case (b), let ξ0 ∈ Rn \ {0} satisfy Pm(ξ0) = 0. Let µ ∈ R. Then the
numerator of q(µξ0) is equal to µ2m|ξ0|2m and the denominator has degree
w.r.t. µ less or equal to 2m− 2, as Pm(µξ0) = 0, for every µ ∈ R. Therefore

lim
µ→+∞

q(µξ0) = +∞

from which we have that in case (b), estimate (12.4.30) does not hold.

Let now consider estimate (12.4.31). We prove that it does not hold
in any case.
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For any ξ ∈ Rn and τ ≥ τ0, set

q(ξ, τ) =
(|ξ|2 + τ 2)

m∑
|α|≤m

∣∣∣P (α)
m (ξ + iτN)

∣∣∣2 . (12.4.36)

Let us begin by case (a). Let ξ ∈ Rn be such that ξ and N are linearly
independent. Let us consider the equation

Pm(ξ + zN) = 0, z ∈ C. (12.4.37)

Let a + ib be a solution of (12.4.37). Then b 6= 0, otherwise we would have
Pm(ξ + aN) = 0, but since Pm(D) is elliptic, we would have ξ + aN = 0
which contradicts the assumption of linear independence between ξ and N .
Hence, either b > 0 or b < 0. Setting η = ξ + aN , we have η 6= 0 and

Pm(η + ibN) = 0. (12.4.38)

Now, if b > 0, let µ ≥ τ0
b
and we get

Pm(µη + iµbN) = µmPm(η + ibN) = 0. (12.4.39)

Hence the numerator of q(µη, µτ) is equal to µ2m (|η|2 + b2)
m, whereas, by

(12.4.39), the denominator of q(µη, µτ) has degree w.r.t. µ less or equal to
2m− 2. Therefore

lim
µ→+∞

q(µη, µb) = +∞. (12.4.40)

If b < 0, it suffices to notice that by (12.4.38) it follows Pm(−η+i(−b)N) = 0
and similarly to (12.4.40) we have

lim
µ→+∞

q(µ(−η), µ(−b)) = +∞.

Hence
sup

{
q(ξ, τ) : (ξ, τ) ∈ Rn+1, |τ | ≥ τ0

}
= +∞. (12.4.41)

To conclude, in the elliptic case estimate (12.4.31) does not hold.

Let us consider case (b). Let ξ0 ∈ Rn \ {0} satisfy

Pm(ξ0) = 0.

Let τ ≥ τ0 be fixed. We have

lim
µ→+∞

q(µξ0, µτ) = lim
µ→+∞

(
|ξ0|2 + (τµ−1)

2
)m

h(µ)
= +∞,
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where

h(µ) =
∑

|α|≤m−1

µ−2(m−|α|) ∣∣P (α)
m (ξ0 + i

(
τµ−1

)
N)
∣∣2 +

∣∣Pm(ξ0 + i
(
τµ−1

)
N)
∣∣2 .

From which we have that if Pm(D) is not elliptic, estimate (12.4.31) does not
hold. �

12.5 Examples and further considerations.

Remark 1 of Section 12.2 implies that, if Pm(ξ), is a homogeneous polynomial
of degree m, then we have∫

Q1

e2τN ·x |u|2 dx ≤ C

∫
Q1

e2τN ·x |Pm(D)u|2 dx, (12.5.1)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R.
Let us assume m ≥ 1. Let N = −en, let l be a positive number and

h : B′1 → R

be a strictly convex function which satisfies

h(0) = 0, and l ≤ inf
∂B′1

h. (12.5.2)

Let

Λ = {(x′, xn) ∈ B′1 × R : h(x′) < xn < l}

and

Γ = {(x′, h(x′)) : x′ ∈ B′1(0)} .

Moreover, let a0 ∈ L∞(Λ). By proceeding in similar manner as we did to
prove the uniqueness for Cauchy problem (12.3.3), w prove the uniqueness
for the problem


Pm(D)U + a0(x)U = 0, in Λ,

UΨ ∈ Hm
0 (Λ), ∀Ψ ∈ C∞(Rn), suppΨ ⊂ Rn−1 × (−∞, 1).

(12.5.3)
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We invite the reader to develop the details (remember to use the homothetic
transformation x→ rx), however, on this issue we refer to [60, Theorem 1].

Of course, it is meaningful and interesting to ask what happens regarding
the uniqueness for the Cauchy problem if one perturbs the operator with
operators of order r with 1 ≤ r ≤ m− 1. Keep in mind, however, that here
we are basically considering the case of uniqueness for the Cauchy problem
whose initial surface is a strictly convex function.

Let us consider the case r = m− 1. If the estimate holds true∫
Q1

e2τN ·x ∣∣Dm−1u
∣∣2 dx ≤ C

∫
Q1

e2τN ·x |Pm(D)u|2 dx, (12.5.4)

for every u ∈ C∞0 (Q1,C) and for every τ ≥ τ0 (τ0 ≥ 0), then we have the
uniqueness of solutions to the Cauchy problem


Pm(D)U +

∑
|α|≤m−1 bα(x)U = 0, in Λ,

UΨ ∈ Hm
0 (Λ), ∀Ψ ∈ C∞(Rn), suppΨ ⊂ Rn−1 × (−∞, 1),

(12.5.5)

where bα ∈ L∞(Λ), for |α| ≤ m − 1. As a matter of fact if (12.5.4) holds,
then by (12.4.28) we have

m−1∑
j=0

∫
Q1

e2τN ·x ∣∣Dju
∣∣2 dx ≤ C

∫
Q1

e2τN ·x |Pm(D)u|2 dx, (12.5.6)

for every u ∈ C∞0 (Q1,C) and for every τ ≥ τ0. In particular, let us observe
that (12.5.6) and (12.5.4) are equivalent and, in addition, (12.5.6) allows us
to treat (when N = −en) problem (12.5.5) in a manner similar to (12.3.3).

In Remark 3 of Section 12.4, we have seen, that necessary and sufficient
condition to be hold (12.5.4) is there exists C > 0 such that, for every ξ ∈ Rn

and for every τ ≥ τ0, we have

qm−1(ξ, τ) =
(|ξ|2 + τ 2)

m−1∑
|α|≤m

∣∣∣P (α)
m (ξ + iτN)

∣∣∣2 ≤ C. (12.5.7)

Now, in the next Proposition we give a simpler formulation of condition
(12.5.7)



540 Chapter 12. PDEs with constant coefficients in the principal part

Proposition 12.5.1. The following conditions are equivalent:
(a) Estimate (12.5.6) holds true
(b) If (ξ, τ) ∈ Rn+1 \ {(0, 0)}, then

Pm(ξ + iτN) = 0⇒
n∑
j=1

∣∣P (j)
m (ξ + iτN)

∣∣2 > 0,

where P (j)
m (ξ + iτN) = P

(ej)
m (ξ + iτN).

In order to prove Proposition 12.5.1 we will use two lemmas.

Lemma 12.5.2. Let d be a positive integer number. Let K be a compact set
of Rd and let f : K → R and g : K → R be two continuous functions. The
following conditions are equivalent:
(i) X ∈ K, f(X) = 0 ⇒ g(X) > 0;
(ii) There exists C > 0 such that C (f(X))2 + g(X) > 0 for every X ∈ K.

Proof. If K = ∅, the equivalence between (i) and (ii) is trivial. Let us
suppose, accordingly, that K 6= ∅ and that (i) apply. Set

K0 = {X ∈ K : f(X) = 0} .

By (i), by the continuity of g, and since K is compact, there exists an open
set V0, of Rd, which satisfies K0 ⊂ V0 and

g(X) > 0, ∀X ∈ V0 ∩K.

If K \ V0 = ∅, then (ii) is trivially satisfied. If K \ V0 6= ∅, we set

M1 = min
K\V0

f 2 > 0, M2 = min
K\V0

g

and let C be a positive number such that CM1 +M2 > 0. We have

C (f(X))2 + g(X) ≥ g(X) > 0, ∀X ∈ V0 ∩K
and

C (f(X))2 + g(X) ≥ CM1 +M2 > 0, ∀X ∈ K \ V0,

from which (ii) follows.
Let us suppose that (ii) holds, we have trivially that if f(X) = 0 then

g(X) = C (f(X))2 + g(X) > 0.

�
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Lemma 12.5.3. Let τ0 ∈ R and let Mj(ξ) be polynomials of degree rj, for
j = 1, · · · , J . The following conditions are equivalent:
(a) There exists C > 0 such that

J∑
j=1

∫
Q1

e2τ0N ·x |Mj(D)u|2 dx ≤ C

∫
Q1

e2τ0N ·x |Pm(D)u|2 dx, (12.5.8)

for every u ∈ C∞0 (Q1,C);
(b) there exists C > 0 such that

J∑
j=1

∫
Q1

|Mj(D)u|2 dx ≤ C

∫
Q1

|Pm(D)u|2 dx, (12.5.9)

for every u ∈ C∞0 (Q1,C);
(c)

sup
ξ∈Rn

∑J
j=1 |Mj(ξ)|2∑
|α|≤m

∣∣∣P (α)
m (ξ)

∣∣∣2 < +∞. (12.5.10)

Proof. Let us assume that (12.5.8) holds. For every u ∈ C∞0 (Q1,C) we
have

J∑
j=1

∫
Q1

|Mj(D)u|2 dx =
J∑
j=1

∫
Q1

e−2τ0N ·xe2τ0N ·x |Mj(D)u|2 dx ≤

≤ e2|τ0|
√
n

J∑
j=1

∫
Q1

e2τ0N ·x |Mj(D)u|2 dx ≤

≤ Ce2|τ0|
√
n

∫
Q1

e2τ0N ·x |Pm(D)u|2 dx ≤

≤ Ce4|τ0|
√
n

∫
Q1

|Pm(D)u|2 dx.

(12.5.11)

Hence, (b) follows. Similarly, we can prove that (b) implies (a).
The equivalence between (b) and (c) was proved in Remark 3 of Section

12.4, see (12.4.26). �

Remark 1. Taking into account Remark 2 of Section 12.4, we have
that if (12.5.6) holds then

m−1∑
j=0

∫
Q1

e2τN ·x ∣∣Dju
∣∣2 dx ≤ C

∫
Q1

e2τN ·x |Pm(D)u|2 dx, (12.5.12)
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for every u ∈ C∞0 (Q1,C) and for every τ ∈ R. Hence, Theorem 12.4.1 implies
that estimate (12.5.6) holds if and only if there exists C > 0 such that for
every (ξ, τ) ∈ Rn+1 we have

qm−1(ξ, τ) =
(|ξ|2 + τ 2)

m−1∑
|α|≤m

∣∣∣P (α)
m (ξ + iτN)

∣∣∣2 ≤ C. (12.5.13)

�

Proof of Proposition 12.5.1.
In order to prove that (a) implies (b) we argue by contradiction. We

assume that (a) holds and that (b) does not hold. Hence, we assume that
there exists (ξ?, τ?) ∈ Rn+1 \ {(0, 0)} satisfying:

Pm(ξ? + iτ?N) = 0 and
n∑
j=1

∣∣P (j)
m (ξ? + iτ?N)

∣∣2 = 0.

From this, we easily obtain

lim
µ→+∞

q(µξ?, µτ?) = +∞

which contradicts (12.5.13). Hence, (a) implies (b).
Now, let us suppose that (b) holds true. Let

Sn =
{

(ξ, τ) ∈ Rn+1 : |ξ|2 + τ 2 = 1
}
.

By Lemma 12.5.2, there exists C, which we may assume larger than 1, which
satisfies

C|Pm(ξ + iτN)|2 +
n∑
j=1

∣∣P (j)
m (ξ + iτN)

∣∣2 > 0, ∀(ξ, τ) ∈ Sn. (12.5.14)

Therefore, since the polynomials Pm and P (j)
m are homogeneous of degree m

and m − 1 respectively, there exists λ > 0 such that, for each (ξ, τ) ∈ Rn+1

we have

γ(ξ, τ) :=
|Pm(ξ + iτN)|2

(|ξ|2 + τ 2)
+

1

C

n∑
j=1

∣∣P (j)
m (ξ + iτN)

∣∣2 ≥
≥ λ

(
|ξ|2 + τ 2

)m−1
.

(12.5.15)
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On the other hand, we have trivially that, for some constant C̃, we get

qm−1(ξ, τ) ≤ C̃, |ξ|2 + τ 2 ≤ 1

and by (12.5.15), we have

qm−1(ξ, τ) ≤ (|ξ|2 + τ 2)
m−1∑

|α|≤m−2

∣∣∣P (α)
m (ξ + iτN)

∣∣∣2 + γ(ξ, τ)
≤

≤ λ−1, for |ξ|2 + τ 2 ≥ 1.

(12.5.16)

Hence
qm−1(ξ, τ) ≤ max

{
C̃, λ−1

}
, ∀(ξ, τ) ∈ Rn+1.

Now, taking into account Remark 1 of this Section, (a) follows. �

Examples
1. Let P2(ξ) =

∑n
j=1 ξ

2
j . We know that the corresponding operator is

P2(D) =
∑n

j=1D
2
j = −∆. We already know that the following estimate

holds

∫
Q1

e2τN ·x (|u|2 + |∇u|2
)
dx ≤ C

∫
Q1

e2τN ·x |∆u|2 dx, (12.5.17)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R. On the other hand, it is
immediate to see that (b) of Proposition 12.5.1 is satisfied because

n∑
j=1

∣∣∣P (j)
2 (ξ + iτN)

∣∣∣2 = 4
(
|ξ|2 + τ 2

)
> 0, ∀(ξ, τ) ∈ Rn+1 \ {(0, 0)}.

♠
2. A similar argument applies to the wave operator � = D2

0 − ∆ (here
x0 represents the time variable). Since the symbol of the operator � is
P2(ξ) = −ξ2

0 +
∑n

j=1 ξ
2
j , we have

n∑
j=0

∣∣∣P (j)
2 (ξ + iτN)

∣∣∣2 = 4
(
|ξ|2 + τ 2

)
> 0, ∀(ξ, τ) ∈ Rn+1 \ {(0, 0)}.

Hence (b) of Proposition 12.5.1 is satisfied. ♠
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3. Whereas, the fourth order operator ∆2, which is called bilaplacian or, in
dimension 2, plate operator, does not satisfy (b) of Proposition 12.5.1. In
this case we have

P4(ξ) =

(
n∑
j=1

ξ2
j

)2

.

Hence
P4(ξ + iτN) =

(
|ξ|2 + 2iτξ ·N − τ 2

)2
.

Which implies that P4(ξ + iτN) = 0 holds if and only if
|ξ|2 − τ 2 = 0,

τξ ·N = 0.

(12.5.18)

The system above, clearly has non-zero (ξ, τ) solutions. On the other hand
for these values we have

n∑
j=1

∣∣∣P (j)
4 (ξ + iτN)

∣∣∣2 = 16
(
|ξ|2 + τ 2

) ∣∣|ξ|2 + 2iτξ ·N − τ 2
∣∣2 = 0.

Therefore P4 does not satisfy (b) of Proposition 12.5.1. ♠

4a. We will now consider more carefully the case in which P2(D) is a second
order elliptic operator with complex coefficients.

P2(D) =
n∑

j,k=1

ajkD
2
jk, (12.5.19)

where ajk ∈ C, ajk = akj, for j, k = 1, · · · , n. Set

a(ξ, η) =
n∑

j,k=1

ajkξjηk, ξ, η ∈ Rn. (12.5.20)

Let N ∈ Rn a versor and let us suppose that

a(N,N) = 1. (12.5.21)

Let us notice that we may always reduce to the situation (12.5.21) since by
the ellipticity of P2(D), we have a(N,N) = P2(N) 6= 0 and, consequently
we may divide from the beginning all the coefficients of P2(D) by a(N,N)
leading us back to the assumption (12.5.21). Hence we have
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P2(ξ + iτN) = a(ξ, ξ) + 2iτa(ξ,N)− τ 2. (12.5.22)

Let us observe that, as P2 is elliptic, we have that, if (ξ, τ) ∈ Rn+1\{(0, 0)}
satisfies

P2(ξ + iτN) = 0, (12.5.23)

then both ξ and τ need to be different from zero. As a matter of fact,
if τ = 0 then, as P2(D) is elliptic, the unique solution of equation

P2(ξ + i0N) = 0, (12.5.24)

is ξ = 0. On the other hand, if we had ξ = 0 then by the homogeneity of P2

we would have

0 = P2(iτN) = −τ 2P2(N),

and by the ellipticity of P2 we would have τ = 0.
Moreover, by the homogeneity and the ellipticity of P2, we have that if

(ξ, τ) 6= (0, 0) satisfies (12.5.23), then ξ and N must be linearly independent.
Let us prove the last sentence arguing by contradiction. If ξ and N were not
linearly dependent then there would exist a, b ∈ R not both zero, such that
aξ + bN = 0. Let us suppose, for instance, a 6= 0, then ξ = − b

a
N . Hence

0 = P2(ξ + iτN) = P2

((
− b
a

+ iτ

)
N

)
=

(
− b
a

+ iτ

)2

P2(N),

from which P2(N) = 0, on the other hand this cannot occur because P2 is
elliptic and N 6= 0. Similarly, we proceed assuming b 6= 0.

In the case of real coefficients it is easily seen that (b) of Proposition
12.5.1 is satisfied. Indeed, having to consider only the solutions (ξ, τ) 6= (0, 0)
of equation (12.5.23), we would get ξ 6= 0 and τ 6= 0 and then to establish
(b) it suffices to check that equation (12.5.23), (considered in the unknown
τ) has no nonzero real double roots. Let, therefore, ξ0 6= 0 and τ0 6= 0 such
that

P2(ξ0 + iτ0N) = 0 (12.5.25)

and let us assume that

d

dτ
P2(ξ0 + iτN)|τ=τ0 =

n∑
j=1

P
(j)
2 (ξ0 + iτN)Nj = 0. (12.5.26)

Since
d

dτ
P2(ξ0 + iτN)|τ=τ0 = 2ia(ξ0, N)− 2τ0,
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by (12.5.26) we get τ0 = ia(ξ0, N) and, taking into account (12.5.22), we have

P2(ξ0 + iτ0N) = a(ξ0, ξ0)− (a(ξ0, N))2.

On the other hand, since ξ0 e N since ξ0 and N are linearly independent, by
the Cauchy–Schwarz inequality we have (recall a(N,N) = 1)

a(ξ0, ξ0)− (a(ξ0, N))2 > 0,

which contradicts (12.5.25). Therefore, if (12.5.25) holds true, then (12.5.26)
cannot be true, consequently

n∑
j=1

∣∣∣P (j)
2 (ξ0 + iτ0N)

∣∣∣2 > 0.

Let us consider now the case of complex coefficients.

If n = 2 and we consider

P2(D) = −D2
1 + 2iD2

12 +D2
2 = (iD1 +D2)2 ,

then P2(D) is elliptic, but it is easy to check that (b) of Proposition 12.5.1
does not hold. As a matter of fact, we have

|P2(ξ + iτN)|2 =
(
(ξ1 + τN2)2 + (ξ2 − τN1)2

)2

and
2∑
j=1

|P (j)
2 (ξ + iτN)|2 = 8

(
(ξ1 + τN2)2 + (ξ2 − τN1)2

)
.

Hence, if ξ0 = (−N2, N1) and τ = 1, then we have

|P2(ξ0 + iN)|2 = 0

and
2∑
j=1

|P (j)
2 (ξ0 + iN)|2 = 0.

Now, let us prove that if n ≥ 3 then (b) of Proposition 12.5.1 is satisfied.
We prove, like in the case of the real coefficients, that if (ξ0, τ0) 6= (0, 0)
satisfies

P2(ξ0 + iτ0N) = 0, (12.5.27)
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then
n∑
j=1

P
(j)
2 (ξ0 + iτ0N)Nj =

d

dτ
P2(ξ0 + iτN)|τ=τ0 6= 0. (12.5.28)

We argue by contradiction. Let us assume ξ0 ∈ Rn and τ0 ∈ R, where
(ξ0, τ0) 6= (0, 0), satisfy (12.5.27) and let us assume that (12.5.28) does not
hold, i.e. let us assume τ0 is a double root of equation in τ

d

dτ
P2(ξ0 + iτN)|τ=τ0 = 0. (12.5.29)

We already noticed that we must have ξ0 6= 0 and τ0 6= 0. Since τ0 is a double
solution of the equation (12.5.22), the discriminant of that equation (when
ξ = ξ0) is null. Hence

a(ξ0, ξ0) = (a(ξ0, N))2 (12.5.30)

and

τ0 = ia(ξ0, N). (12.5.31)

By (12.5.30) and (12.5.31) we have

a(ξ0, ξ0) = −τ 2
0 , a(ξ0, N) = −iτ0 and (recall) a(N,N) = 1. (12.5.32)

Now, let η be a vector of Rn such that ξ0, N and η be linearly independent
(recall n ≥ 3). Let B a basis of Rn which complete {ξ0, N, η} and let us write
the matrix of bilinear form a w.r.t. B. Set

ã11 = a(ξ0, ξ0) = −τ 2
0 , ã12 = ã21 = a(ξ0, N), ã22 = a(N,N),

ã33 = a(η, η) = α33 + iβ33,

and

ã13 = ã31 = a(ξ0, η) := α13 + iβ13, ã23 = ã32 = a(N, η) := α23 + iβ23,

where α13, β13, α23, β23, α33, β33, are real numbers.
Let us consider the vector v of Rn \ 0 whose components with respect

to the base B have coordinates represented by the vector (x, y, z, 0, · · · , 0).
Thus, let us note that

v 6= 0⇔ (x, y, z) 6= (0, 0, 0).
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Since P2(D) is elliptic and v 6= 0 we have

a(v, v) 6= 0, (12.5.33)

in turn, by (12.5.32), this is equivalent to the fact that for (x, y, z) 6= (0, 0, 0)
we have

x2 − 2iτ0xy − τ 2
0 y

2 + 2(α13 + iβ13)xz+

+ 2(α23 + iβ23)yz + (α33 + iβ33)z2 6= 0,

for every (x, y, z) ∈ R3 \ {(0, 0, 0)}. Now, the above condition is equivalent
to the fact that (0, 0, 0) is the unique solution to the algebraic system

x2 − τ 2
0 y

2 + 2α13xz + 2α23yz + α33z
2 = 0,

−2τ0xy + 2β13xz + 2β23yz + +β33z
2 = 0.

(12.5.34)

But this cannot occur. Let us see why.
First of all, let us recall that τ0 6= 0. Moreover, let us suppose that z 6= 0.

Then, if we set
X =

x

z
, Y =

y

z
,

system (12.5.35) become
X2 − τ 2

0Y
2 + 2α13X + 2α23Y + α33 = 0

−2τ0XY + 2β13X + 2β23Y + β33 = 0

(12.5.35)

and it is simple to check that system (12.5.35) admits always solutions. To
convince yourself of this, it suffices to notice that the asymptotes of the first
hyperbole (possibly degenerate) in (12.5.35) are parallel to the straight lines
X = ±τ0Y which must necessarily meet the asymptotes of the second hy-
perbola (possibly degenerate) that are parallel to the coordinate axes. From
above it follows that there exists v ∈ Rn \ 0 such that a(v, v) = 0 and this
contradicts (12.5.33). In summary if n ≥ 3 then (12.5.28) must hold, and
this implies that (b) of the Proposition 12.5.1 is satisfied. ♠

4b. We conclude by considering the case where P2(D) is a non-elliptic
operator of second order, with real coefficients

In such a case there is at least one characteristic direction. We recall that
N ∈ Rn \ 0 is a characteristic direction with respect to the operator P2(D)
provided we have

P2(N) = 0.
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In this case, the planes
N · x = c,

where c ∈ R are characteristic surfaces. Let N be a characteristic direction,
if we have

n∑
j=1

∣∣∣P (j)
2 (N)

∣∣∣2 > 0,

we say that N · x = c, c ∈ R, is a simple characteristic If we have

P2(N) = 0

and
n∑
j=1

∣∣∣P (j)
2 (N)

∣∣∣2 = 0,

we say that {N · x = c}, is a double characteristic
For instance, the wave operator has only simple characteristics (reader

check) while the heat operator and the Schrödinger operator have
double characteristics. The heat operator is given by (for n > 1)

P (D) = −
n−1∑
j=1

D2
j − iDn = ∆x′ − ∂n.

So the principal part of the heat operator is

P2(D) = −
n−1∑
j=1

D2
j ,

whose symbol is −
∑n−1

j=1 ξ
2
j . It is evident that the unique characteristic di-

rections are those generated by the versor en which is a double characteristic
direction. In the case of the Schrödinger operator we have.

P (D) = −
n−1∑
j=1

D2
j −Dn = ∆x′ −

1

i
∂n

and it is once again clear that the only characteristic directions are those
generated by the en versor and, as in the case of the heat operator, they are
double.

Let us check that the operators with simple characteristics satisfy (b) of
Proposition 12.5.1 for all the versors N .
Let N be a versor of Rn such that
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P2(N) 6= 0. (12.5.36)

Let (ξ, τ) ∈ Rn+1 \ {0} satisfy

P2(ξ + iτN) = 0. (12.5.37)

Let us denote by A the symmetric matrix {ajk}nj,k=1. Since the coefficients
of P2(D) are real numbers, we have

n∑
j=1

∣∣∣P (j)
2 (ξ + iτN)

∣∣∣2 = 4
(
|Aξ|2 + τ 2|AN |2

)
. (12.5.38)

Now, if τ = 0, then (12.5.37) implies P2(ξ) = 0, however P2(D) has only
simple characteristics, hence

n∑
j=1

∣∣∣P (j)
2 (ξ + i0N)

∣∣∣2 > 0.

If τ 6= 0, then AN 6= 0, otherwise, if it were AN = 0 we would have
P2(N) = AN ·N = 0 which would contradict the (12.5.36). Therefore from
(12.5.38) we have

n∑
j=1

∣∣∣P (j)
2 (ξ + iτN)

∣∣∣2 ≥ 4τ 2|AN |2 > 0.

Hence, if (12.5.36) holds true, then (b) of Proposition 12.5.1 holds true.
If N is a simple characteristic, then

P2(N) = 0.

and, as N is a simple characteristic, we have

AN 6= 0. (12.5.39)

Now, let (ξ, τ) ∈ Rn+1 \ {0} be a solution to (12.5.37). If τ = 0, we have
P2(ξ) = 0, hence

n∑
j=1

∣∣∣P (j)
2 (ξ)

∣∣∣2 > 0.

On the other hand, if τ 6= 0 from (12.5.39), as already seen above, we have

n∑
j=1

∣∣∣P (j)
2 (ξ + iτN)

∣∣∣2 > 0.
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Therefore, even whenN is a simple characteristic direction, (b) of Proposition
12.5.1 is satisfied.

Finally, let us consider the case in which P2(D) has a double characteristic
direction; be it η, then any way one chooses the versor N , we have

P2(η + i0N) = 0 (12.5.40)

and
n∑
j=1

∣∣∣P (j)
2 (η + i0N)

∣∣∣2 = 0. (12.5.41)

Therefore, in this case, (b) of Proposition 12.5.1 is not satisfied. This implies
that the following estimate does not hold

∫
Q1

e2τN ·x |u|2 dx+

∫
Q1

e2τN ·x |Du|2 dx ≤ C

∫
Q1

e2τN ·x |P2(D)u|2 dx,

for every u ∈ C∞0 (Q1,C) and for every τ ≥ τ0.
Let us notice that in the case of the heat operator and of Schrödinger

operator, the principal part P2(D) excludes the term iDnu. Actually, if we
employ directly estimate (12.2.1) we have (reader check)∫

Q1

e2τN ·x |u|2 dx+

∫
Q1

e2τN ·x |∇u|2 dx ≤

≤ C

∫
Q1

e2τN ·x |∆x′u− ∂n|2 dx,
(12.5.42)

for every u ∈ C∞0 (Q1,C) and for every τ ∈ R.
As in previous situations, (12.5.42) implies the uniqueness for the Cauchy

problem with strictly convex initial surfaces for the differential inequal-
ities

|∆x′U − ∂nU | ≤M (|∇x′U |+ |U |) , (12.5.43)

where M is a positive number and U is enough regular.
When n = 2, one can exploit the particularity of the dimension two to

prove the following unique continuation property, we refer to [60, Theorem
9] for the proof:

Let ω be an open of R2 = Rx×Rt contained in a rectangle R. For t0 ∈ R,
we denote by st0 straight line of equation t = t0 and set (Figure 12.2)

Rω = {(x, t0) ∈ R : st0 ∩ ω 6= ∅} .

Let us assume
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Figure 12.2:

∣∣∂2
xU − ∂tU

∣∣ ≤M (|∂xU |+ |U |) , in R, (12.5.44)

then
U(x, t) = 0, ∀(x, t) ∈ Rω. (12.5.45)

From the previous result it follows, in particular, that if U is regular
enough (it is sufficient that U, ∂xU, ∂tU, ∂2

xU are continuous in (0, 1)× (0, 1))
and if U is a solution of the Cauchy problem



∂2
xU − ∂tU = a(x, t)∂xU + b(x, t)U, in (0, 1)× (0, 1),

U(0, t) = 0, for t ∈ (α, β),

∂xU(0, t) = 0, for t ∈ (α, β),

(12.5.46)

where α, β are given numbers which satisfy 0 < α < β < 1 and

a, b ∈ L∞((0, 1)× (0, 1)),

then
U = 0, in (0, 1)× (α, β).
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We do not enter into the details and refer the interested reader directly
to [60, Theorem 9]. ♠

12.6 Chapter summary and conclusions
In this chapter we have proved estimate (12.2.2), in a relatively simple man-
ner. The most relevant peculiarity of such an estimate is that in it there is a
"weight" which depends on a parameter τ that may be arbitrarily large.

By applying estimate (12.2.2) to the Laplace operator and by exploit-
ing some important invariance properties of this operator, we have proved,
in Theorem 12.3.5, the global uniqueness for the Cauchy problem for the
equation

∆U = b(x) · ∇U + c(x)U,

where b, c ∈ L∞.
We proved that the estimate (12.2.2) allows us to prove the global unique-

ness for the Cauchy problem with strictly convex initial surface, for the oper-
ators Pm(D) +a0(x), where Pm(D) is a homogeneous operator with constant
coefficients and a0 ∈ L∞.

We have shown with several examples and remarks related to Theorem
12.4.1, the strict connections that exists between an estimate of the type
(12.4.1) and some properties of the symbols of operators M(D) and PD).
These connections makes it possible to transfer into the algebraic field the
estimates under investigation in this Chapter.

The estimates considered in this Chapter have two remarkable weak-
nesses that we now briefly discuss.

1. The first weakness lies in the character of the weight exponent. This
is because such an exponent is linear and, as we have seen, this greatly limits
the geometry in which to apply our estimates. Let us consider, for instance
the following Cauchy problem

P (D)U = 0, in Rn

and
U = 0, for xn ≤ 0,

to prove the uniqueness we would be most helped by a weight whose level
surfaces are "curved" with respect to the xn = c planes. More precisely, if
instead of the weight e−2τxn we dispose of estimates with weight e2τ(−xn+ δ

2
|x|2),
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Figure 12.3:

with δ > 0 ( even small), it could be shown that U vanishes in regions of the
type

{
−xn + δ

2
|x|2 < r, xn > 0

}
with r > 0 (Figure 12.3).

However, the proof of an estimate that corresponds to this nonlinear weight
would not allow repeat, in a simple and immediate way, the proof of Theorem
12.2.1. To realize this, let us observe that, setting v = eτ(N ·x+ δ

2
|x|2)u, instead

of the (12.2.16) we would have

Dju = e−τN ·x (Dj + iτ (Nj + δxj)) v

and we cannot use in immediate manner the Fourier transform. For the time
being, we refer to [75] for further discussion.

2. The other weakness of estimate (12.2.2) consists in the fact that these
estimates hold for operators with constant coefficients in the principal part.

Let Pm(x,D) be the principal part of the operator. One might be tempted
to consider Pm(x,D), in a neighborhood U of a point x0, as the pertubation
of the operator with constant coefficients Pm(x0, D) i.e., we could write

Pm(x,D) = Pm(x0, D) + (Pm(x0, D)− Pm(x,D))

and, by exploiting the regularity of the coefficients of Pm(x,D), we may
consider that, for a suitable neighborhood U , we have



12.6. Chapter summary and conclusions 555

|Pm(x0, D)U − Pm(x,D)U | < ε|DmU |, ∀x ∈ U . (12.6.1)

To clarify the idea further let us show, in broad terms, that if Pm(x,D) is
elliptic with continuous coefficients then we we have

∫
Q1

|Dmu|2 dx ≤ C

∫
Q1

|Pm(x,D)u|2 dx, ∀u ∈ C∞0 (Q1,C). (12.6.2)

We have already seen that, in the case of elliptic operators with constant
coefficients, (12.4.30) is valid. Now let x0 = 0, ε > 0 and let rε be such that
the (12.6.1) is satisfied for U = Qrε .
Then by estimate (12.4.30) (which we know is true in the elliptic case) we
have ∫

Q1

|Dmu|2 dx ≤ 2C

∫
Q1

|Pm(x,D)u|2 dx+ 2Cε2

∫
Q1

|Dmu|2 dx,

for every u ∈ C∞0 (Qrε ,C). It is then evident that by choosing ε = 1
2
√
C

we
get ∫

Qrε

|Dmu|2 dx ≤ 4C

∫
Qrε

|Pm(x,D)u|2 dx, ∀u ∈ C∞0 (Qrε ,C).

A similar argument can be made in the neighborhood of the other points of
Q1 and, using a partition of the unity, one can obtain (12.6.2).

It is easily understood that a similar argument for the estimates of the
type (12.5.6) – that is, considering Pm(x,D) as a pertubation of order m in a
neighborhood of x0 of the operator with constant coefficients Pm(x0, D) – is
difficult to realize even in the elliptic case. Actually, estimate (12.4.31) does
not hold even for elliptic operators and thus the following "error term" that
would follow from (12.6.1),

Cε2

∫
Q1

e2τN ·x |Dmu|2 dx,

cannot be "absorbed" by the terms to the left of the sign of inequality. The
development of the theory will show that the case of the variable coefficients
(in the principal part) is more tricky than the one with constant coefficients,
even in the case of the weight e2τN ·x.





Chapter 13

Carleman estimates and the
Cauchy problem I – Elliptic
operators

13.1 Introduction

In the previous Chapter we gave a first insight into the Carleman estimates
by showing how they are used in the investigation of the uniqueness of the
Cauchy problem and of the unique continuation property for operators whose
principal part has constant coefficients. In Section 12.6, we pointed out some
important weaknesses of Theorem 12.2.1. Such weak points, briefly, consist
of:

(a) the linear character of the weight exponent;

(b) estimate (12.2.2) of Theorem 12.2.1 cannot be easily extended for oper-
ators with variable coefficients.

For such reasons, here we begin a more systematic study of the Carleman
estimates in order to extend somewhat the uniqueness results we have seen
in Chapter 12. Although we will focus mainly on elliptic operators (Section
13.5), the introductory examples (Sect. 13.2) and the framework apply to
other types of operators as well. In Chapter 14 we will consider the second
order operators whose principal part has real coefficients and that
are not necessarily elliptic.

Let us consider the operator

P (x,D) =
∑
|α|≤m

aα(x)Dα, x ∈ Ω, (13.1.1)

557
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where Dj = 1
i
∂j, j = 1, · · · , n, Ω is an open set of Rn and aα ∈ L∞(Ω;C),

for every α ∈ Nn
0 , |α| ≤ m.

We will follow the classical approach developed in [34] by L. Hörman-
der. This approach is not only more elementary than the one based on the
pseudodifferential operators ([36, vol. IV], [50]), but it allows more easily to
reduce on the regularity assumptions of the coefficients of the principal parts
of the operators.

Let us recall that the symbol of the operator P (x,D) is

P (x, ξ) =
∑
|α|≤m

aα(x)ξα ∀ξ ∈ Rn.

We further denote by Pm(x,D) the principal part of P (x,D), i.e.

Pm(x,D) =
∑
|α|=m

aα(x)Dα (13.1.2)

(of course we assume that |α| = m, aα is not identically zero for at least one
α such that ).

Let ϕ be a sufficiently regular real-valued function, say ϕ ∈ C∞
(
Ω
)
,

however in many cases a less regularity will suffice.
Let µ ≥ 0, we are interested in the Carleman estimates such as

τµ
∑

|α|≤m−1

∫
Ω

|Dαu|2 e2τϕdx ≤ C

∫
Ω

|Pm(x,D)u|2 e2τϕdx, (13.1.3)

for every u ∈ C∞0 (Ω) and for every τ ≥ τ0, where C and τ0 are constants
independent of u and τ .

In this Chapter we will be interested in the case where

µ > 0.

In this case, it is simple to check that the estimate (13.1.3) is equivalent to
a similar estimate where P (x,D) is replaced by Pm(x,D). Indeed, let us
suppose that estimate (13.1.3) holds and let us denote by

R(x,D) = P (x,D)− Pm(x,D),

we have

|R(x,D)u| =

∣∣∣∣∣∣
∑

|α|≤m−1

aα(x)Dαu

∣∣∣∣∣∣ ≤M
∑

|α|≤m−1

|Dαu| , (13.1.4)
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where
M = max

|α|≤m−1

{
‖aα‖L∞(Ω)

}
.

Hence, by (13.1.3) we get

τµ
∑

|α|≤m−1

∫
Ω

|Dαu|2 e2τϕdx ≤ C

∫
Ω

|Pm(x,D)u|2 e2τϕdx ≤

≤ 2C

∫
Ω

|P (x,D)u|2 e2τϕdx+ 2C

∫
Ω

|R(x,D)u|2 e2τϕdx ≤

≤ 2C

∫
Ω

|P (x,D)u|2 e2τϕdx+ C̃M2
∑

|α|≤m−1

∫
Ω

|Dαu|2 e2τϕdx,

for every u ∈ C∞0 (Ω) and for every τ ≥ τ0. Moving the last sum to the left
hand side, we have(

τµ − C̃M2
) ∑
|α|≤m−1

∫
Ω

|Dαu|2 e2τϕdx ≤ C

∫
Ω

|P (x,D)u|2 e2τϕdx, (13.1.5)

for every u ∈ C∞0 (Ω) and for every τ ≥ τ0. Now let τ1 ≥ τ0 be a number
such that for every τ ≥ τ1 we have

τµ − C̃M2 ≥ τµ

2
,

by (13.1.5) we obtain

τµ
∑

|α|≤m−1

∫
Ω

|Dαu|2 e2τϕdx ≤ 4C

∫
Ω

|P (x,D)u|2 e2τϕdx, (13.1.6)

for every u ∈ C∞0 (Ω) and for every τ ≥ τ1. Hence, if (13.1.3) holds then
(13.1.6) holds. The converse (of course with different values of C and τ0) can
be similarly proved.

It should be observed at once that estimates of type (13.1.3) (or (13.1.6))
for µ > 0 have a local character in the sense specified in the following

Lemma 13.1.1 (local character of the Carleman estimates). Let
µ > 0. Let Ω be a bounded open set of Rn and let P (x,D) be a differential
operator whose coefficients belong to L∞(Ω). Let us assume that for each
y ∈ Ω there exist δy > 0, Cy > 0 and τy ∈ R such that
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τµ
∑

|α|≤m−1

∫
Ω∩Bδy (y)

|Dαu|2 e2τϕdx ≤

≤ Cy

∫
Ω∩Bδy (y)

|P (x,D)u|2 e2τϕdx,

(13.1.7)

for every u ∈ C∞0
(
Ω ∩Bδy(y)

)
and for every τ ≥ τy. Then there exist C > 0

and τ0 ∈ R such that

τµ
∑

|α|≤m−1

∫
Ω

|Dαu|2 e2τϕdx ≤ C

∫
Ω

|P (x,D)u|2 e2τϕdx, (13.1.8)

for every u ∈ C∞0 (Ω) and for every τ ≥ τ0.

Proof. Since Ω is compact, there exists a finite set of points, y1, · · · , yN ,
such that

Ω ⊂
N⋃
j=1

Bδyj
(yj).

Let {ηj}1≤j≤N be a partition of unity (Lemma 2.4.2) such that

ηj ∈ C∞0
(
Bδyj

(yj)
)

; 0 ≤ ηj ≤ 1;
N∑
j=1

ηj = 1, in Ω.

Let u ∈ C∞0 (Ω) and let us denote by

uj = uηj, for j = 1, · · ·N.
For every α ∈ Nn

0 , by the Cauchy–Schwarz inequality we have

|Dαu|2 =

∣∣∣∣∣
N∑
j=1

Dαuj

∣∣∣∣∣
2

≤ N

N∑
j=1

|Dαuj|2 . (13.1.9)

Now, we notice that

P (x,D)uj = ηjP (x,D)u+Rm−1(x,D)u,

where Rm−1(x,D) is an operator of order m−1 whose coefficients depend on
the coefficients of P (x,D) (but not on their derivatives) and on the functions
ηj, j = 1, · · ·N and their derivatives of order less or equal to m. We have

|P (x,D)uj| ≤ ηj |P (x,D)u|+M
∑

|α|≤m−1

|Dαu| , (13.1.10)
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where M depends on the L∞ norms of the coefficients of P (x,D) and on the
L∞ norms of the derivatives of ηj of order less or equal to m.

By (13.1.10), (13.1.7) and (13.1.9) we get

τµ
∑

|α|≤m−1

∫
Ω

|Dαu|2 e2τϕdx ≤

≤ N2τµ
N∑
j=1

∑
|α|≤m−1

∫
Ω∩Bδyj (yj)

|Dαuj|2 e2τϕdx ≤

≤ N2

N∑
j=1

∫
Ω∩Bδyj (yj)

|P (x,D)uj|2 e2τϕdx ≤

≤ C

∫
Ω

|P (x,D)u|2 e2τϕdx+ C
∑

|α|≤m−1

∫
Ω

|Dαu|2 e2τϕdx,

for every τ ≥ τ0, where
τ0 = max

1≤j≤N
τyj

and C is a constant. Now, we move the last integral to the left hand side and
we proceed exactly as did above to prove (13.1.6) and we obtain (13.1.8). �

13.2 Introductory examples – the first order
operators

This Section has essentially two purposes: the first one consists of showing,
with simple examples concerning the first order operators (with constant and
real coefficients), that certain conditions are needed (necessary or sufficient)
on ϕ in order that it can be the exponent of a weight in a Carleman estimate
of type (13.1.3). The other purpose is to show, again in the case of first order
operators, how to apply the Carleman estimates to prove the uniqueness of
the Cauchy problem.

Let I = (−1, 1) and ϕ ∈ C2
(
I
)
; let us begin by considering the following

elementary Carleman estimate

τµ
∫
I

|u(x)|2 e2τϕ(x)dx ≤ C

∫
I

|u′(x)|2 e2τϕ(x)dx, (13.2.1)

for every u ∈ C∞0 (I) and for every τ ≥ τ0. We will show how to derive an
estimate like (13.2.1) and what conditions on µ and ϕ are necessary for them
to hold.



562 Chapter 13. Carleman estimates and the Cauchy problem I

Let us start by the following

Proposition 13.2.1. Let

A =
{
x ∈ I : ϕ′(x) = 0

}
. (13.2.2)

If
x ∈ A ⇒ ϕ′′(x) > 0, (13.2.3)

then there exist τ0 and C such that

τ

∫
I

|u(x)|2 e2τϕ(x)dx ≤ C

∫
I

|u′(x)|2 e2τϕ(x)dx, (13.2.4)

for every u ∈ C∞0 (I) and for every τ ≥ τ0.

Remark. Of course if A = ∅ (13.2.2) is trivially satisfied. �

Proof. Set

v = eτϕu, (13.2.5)

we have

eτϕu′ = eτϕ
(
e−τϕv

)′
= v′ − τϕ′v. (13.2.6)

Hence estimate (13.2.1) is equivalent to (we omit for brevity the integration
set)

τ

C

∫
|v|2 dx ≤

∫
|v′ − τϕ′v|2 dx

for every v ∈ C∞0 (I) and for every τ ≥ τ0.
Now estimate from below the integral on the RHS. Spreading the square

and integrating by parts we have

∫
|v′ − τϕ′v|2 dx =

∫ (
|v′|2 − 2τϕ′< (v′v) + τ 2ϕ′2 |v|2

)
dx =

=

∫ (
|v′|2 − τϕ′

(
|v|2
)′

+ τ 2ϕ′2 |v|2
)
dx =

=

∫ (
|v′|2 + τ

(
ϕ′′ + τϕ′2

)
|v|2
)
dx.

(13.2.7)

Now, as (13.2.3) holds, by applying Lemma 12.5.2 (with f = ϕ′ and g = ϕ′′)
we have that there exists τ0 such that
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τ0ϕ
′2(x) + ϕ′′(x) > 0, ∀x ∈ I

and, setting

C−1 = min
I

(
τ0ϕ

′2 + ϕ′′
)
> 0,

we have, by (13.2.7)∫
|v′ − τϕ′v|2 dx ≥

∫
τ
(
ϕ′′ + τϕ′2

)
|v|2 dx ≥

≥ C−1τ

∫
|v|2 dx.

(13.2.8)

From which, taking into account (13.2.5) and (13.2.6), (13.2.4) follows.�

Remarks.

1. If A = ∅ then a stronger version of (13.2.1) holds true. More precisely,
we have

τ 2

∫
I

|u(x)|2 e2τϕ(x)dx ≤ C

∫
I

|u′(x)|2 e2τϕ(x)dx, (13.2.9)

for every u ∈ C∞0 (I) and for every τ ≥ τ0. In this case, indeed, we have

m := min
I
|ϕ′| > 0

as A = ∅. On the other hand, setting

m1 = ‖ϕ′′‖L∞(I) ,

and taking into account (13.2.7), we get

∫
|v′ − τϕ′v|2 dx =

∫ (
|v′|2 + τ 2

(
τ−1ϕ′′ + ϕ′2

)
|v|2
)
dx ≥

≥
∫ (
|v′|2 + τ 2

(
−τ−1m1 +m2

)
|v|2
)
dx ≥

≥ τ 2m2

2

∫
|v|2 dx,

(13.2.10)

for every v ∈ C∞0 (I) and for every τ ≥ τ0, where τ0 =
2m2

1

m2 e C = 2
m2 . From

which (13.2.9) follows.
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2. On the other hand, it is also evident that estimate (13.2.1) cannot be true
for µ > 2. As a matter of fact, we have

∫
|v′ − τϕ′v|2 dx ≤ 2

∫ (
|v′|2 + τ 2 ‖ϕ′‖2

L∞(I) |v|
2
)
dx (13.2.11)

and so, if (13.2.1), and µ > 2, would imply

∫
|v|2 dx ≤

≤ 2τ 2−µ
∫ (

τ−2 |v′|2 + ‖ϕ′‖2
L∞(I) |v|

2
)
dx→ 0, as τ → +∞

which is evidently absurd since v is an arbitrary function of C∞0 (I). �

We establish some necessary conditions for estimate (13.2.1).

Proposition 13.2.2. Let

A0 = {x ∈ I : ϕ′(x) = 0} . (13.2.12)

If there exist C and τ0 such that∫
I

|u(x)|2 e2τϕ(x)dx ≤ C

∫
I

|u′(x)|2 e2τϕ(x)dx, (13.2.13)

for every u ∈ C∞0 (I) and for every τ ≥ τ0, then

x ∈ A0 ⇒ ϕ′′(x) ≥ 0. (13.2.14)

Proof. We first notice that, by density, (13.2.13) is satisfied for each
u ∈ H1

0 (I).
In order to prove the Proposition we argue by contradiction and we as-

sume that (13.2.14) does not hold. Let x0 ∈ I satisfy ϕ′(x0) = 0 and
ϕ′′(x0) < 0. For the purpose of simplifying the notations, since x0 is an
interior point of I, we assume that x0 = 0. Hence we have

ϕ′(0) = 0 and ϕ′′(0) < 0. (13.2.15)

Since (13.2.13) is trivially equivalent to∫
I

|u(x)|2 e2τ(ϕ(x)−ϕ(0))dx ≤ C

∫
I

|u′(x)|2 e2τ(ϕ(x)−ϕ(0))dx, (13.2.16)
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for every u ∈ H1
0 (I) and for every τ ≥ τ0, we may assume

ϕ(0) = 0.

Set
a = −ϕ′′(0) > 0

and let ψ ∈ H1
0 (I) be a function that we will choose later.

If 0 < ε ≤ τ
−1/2
0 , we have

x→ ψ
(
ε
√
τx
)
∈ H1

0 (I), ∀τ ≥ ε−2.

Now, introducing the following notation in (13.2.16)

u(x) = ψ
(
ε
√
τx
)
,

we have ∫
I

∣∣ψ (ε√τx)∣∣2 e2τϕ(x)dx ≤ Cε2τ

∫
I

∣∣ψ′ (ε√τx)∣∣2 e2τϕ(x)dx.

By performing the change of variables t =
√
τx, we get

∫ √τ
−
√
τ

|ψ (εt)|2 e2τϕ(t/
√
τ)dt ≤ Cε2τ

∫ √τ
−
√
τ

|ψ′ (εt)|2 e2τϕ(t/
√
τ)dt. (13.2.17)

We notice that the Taylor formula gives

ϕ(x) = −a
2
x2 +

x2

2
ω(x), ∀x ∈ I,

where

lim
x→0

ω(x) = 0. (13.2.18)

Now we choose

τ = ε−2,

and by (13.2.17) we get

∫ 1/ε

−1/ε

|ψ (εt)|2 e−t2(a−ω(εt))dt ≤ C

∫ 1/ε

−1/ε

|ψ′ (εt)|2 e−t2(a−ω(εt))dt. (13.2.19)

Let us choose ψ such that
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ψ(x) =



2(x+ 1), for x ∈
[
−1,−1

2

)
,

1, for x ∈
[
−1

2
, 1

2

)
,

2(−x+ 1), for x ∈
[

1
2
, 1
]
.

(13.2.20)

By (13.2.19) and (13.2.20) we have

∫ 1/2ε

−1/2ε

e−t
2(a−ω(εt)dt ≤

∫ 1/ε

−1/ε

|ψ (εt)|2 e−t2(a−ω(εt)dt ≤

≤ C

∫ 1/ε

−1/ε

|ψ′ (εt)|2 e−t2(a−ω(εt)dt =

= 8C

∫ 1/ε

1/2ε

e−t
2(a−ω(εt)dt.

(13.2.21)

Passing to the limit as ε → 0 and recalling (13.2.18), we get (by the Domi-
nated Convergence Theorem)

0 <

∫ +∞

−∞
e−at

2

dt = lim
ε→0

∫ 1/2ε

−1/2ε

e−t
2(a−ω(εt)dt ≤ lim

ε→0
8C

∫ 1/ε

1/2ε

e−t
2(a−ω(εt)dt = 0

Which is, evidently, absurd. �

Proposition 13.2.3. Let A0 be as in Proposition 13.2.12. If there exist C0

e τ0 such that

τ

∫
I

|u(x)|2 e2τϕ(x)dx ≤ C

∫
I

|u′(x)|2 e2τϕ(x)dx, (13.2.22)

for every u ∈ C∞0 (I) and for every τ ≥ τ0, then

x ∈ A0 ⇒ ϕ′′(x) ≥ 1

2C
> 0. (13.2.23)

Proof. As already noticed above (proof of Proposition 13.2.1), estimate
(13.2.22) is equivalent to

τ

C

∫
I

|v|2 dx ≤
∫
I

|v′ − τϕ′v|2 dx, (13.2.24)
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for every v ∈ H1
0 (I) and for every τ ≥ τ0. Let us notice that

∫
|v′ − τϕ′v|2 dx =

∫
I

|v′ + τϕ′v|2 dx− 4τ

∫
I

ϕ′<(vv′)dx =

=

∫
I

|v′ + τϕ′v|2 dx+ 2τ

∫
I

ϕ′′ |v|2 dx.
(13.2.25)

We suppose, as in the proof of Proposition 13.2.2, that ϕ′(0) = 0 and
we want to prove that ϕ′′(0) ≥ 1

2C
. We may also let us assume here that

ϕ(0) = 0.
Let

v(x) = e−τϕ(x)ψ
(
ε
√
τx
)
,

with ψ ∈ H1
0 (I) to be chosen later and with τ ≥ ε−2, 0 < ε < τ

−1/2
0 . By

(13.2.23) and (13.2.24) we have

1

C

∫
I

∣∣ψ (ε√τx)∣∣2 e−2τϕdx ≤

≤ 2

∫
I

ϕ′′(x)
∣∣ψ (ε√τx)∣∣2 e−2τϕdx+ ε2

∫
I

∣∣ψ′ (ε√τx)∣∣2 e−2τϕdx.

(13.2.26)

By Proposition 13.2.2, if we set

α = ϕ′′(0),

we have
α ≥ 0. (13.2.27)

Now, by the Taylor formula and by performing the change of variables
t =
√
τx we obtain, (we argue as in the proof of Proposition 13.2.2),

1

C

∫ √τ
−
√
τ

|ψ (εt)|2 e−t2(α+ω(t/
√
τ))dt ≤

≤ 2

∫ √τ
−
√
τ

(
α + ω1(t/

√
τ)
)
|ψ (εt)|2 e−t2(α+ω(t/

√
τ))dt+

+ ε2

∫ √τ
−
√
τ

|ψ′ (εt)|2 e−t2(α+ω(t/
√
τ))dt,

(13.2.28)

where ω(x) and ω1(x) go to 0 as x goes to 0. Passing to the limit in (13.2.28)
as τ → +∞, we have
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1

C

∫ +∞

−∞
|ψ (εt)|2 e−αt2dt ≤

≤ 2

∫ +∞

−∞
α |ψ (εt)|2 e−αt2dt+ ε2

∫ ∞
−∞
|ψ′ (εt)|2 e−αt2dt.

(13.2.29)

If it were α = 0, then (13.2.29) would be written

1

C

∫ +∞

−∞
|ψ (εt)|2 dt ≤ ε2

∫ ∞
−∞
|ψ′ (εt)|2 dt.

The latter, by the change of variable s = εt, implies

1

C

∫
I

|ψ (s)|2 ds ≤ ε2

∫
I

|ψ′ (s)|2 ds

which, passing to the limit as ε → 0, leads to an absurd (just choose ψ not
identically null). Therefore necessarily we have

α > 0.

At this point, passing to the limit as ε → 0 in (13.2.29), we obtain (by the
Dominated Convergence Theorem)

1

C
|ψ (0)|2

∫ +∞

−∞
e−αt

2

dt ≤ 2 |ψ (0)|2 α
∫ +∞

−∞
e−αt

2

dt.

From which we have trivially

2α ≥ 1

C
.

�

Remark. If 1 < µ ≤ 2, in (13.2.1), then A0 = ∅ i.e. ϕ′(x) 6= 0 for every
x ∈ (−1, 1). As a matter of fact, if µ > 1, we would have, for every K > 0

τKµ−1

∫
I

|u(x)|2 e2τϕ(x)dx ≤ C

∫
I

|u′(x)|2 e2τϕ(x)dx, (13.2.30)

for every u ∈ C∞0 (I) an for every τ ≥ max{τ0, K}. Now, if A0 6= ∅, then
there exists x0 ∈ I such that ϕ′(x0) = 0, hence, by (13.2.23) we have

ϕ′′(x0) ≥ Kµ−1

2C
, ∀K > 0

from which we have
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ϕ′′(x0) = +∞.
which contradicts ϕ ∈ C2

(
I
)
. �

We now consider the first-order operator

P1(∂) =
n∑
j=1

aj∂j = a · ∇. (13.2.31)

where a = (a1, · · · , an) ∈ Rn \ {0} and aj, j = 1, · · · , n are constants. Let us
propose to transfer to operator (13.2.31) what we established above for the
the derivative operator. We will reach a Carleman estimate of the type

τ

∫
|u|2 e2τϕ(x)dx ≤ C

∫
|P1(∂)u|2 e2τϕ(x)dx, (13.2.32)

for every u ∈ C∞0 (Rn) and for every τ large enough, where ϕ is a function
which belongs to C2 (Rn) on which we will make further assumptions later.

Let us suppose, for instance, that

an 6= 0. (13.2.33)

Let, for y ∈ Rn−1, x = X(t, y), the equations of characteristic lines satisfying
∂tX(t, y) = a ·X(t, y),

X(0, y) = (y, 0).

(13.2.34)

We have 

X1(t, y) = a1t+ y1,

· · · ,

Xn−1(t, y) = an−1t+ yn−1,

Xn(t, y) = ant.

(13.2.35)

X is a linear and bijective transformation from Rn in itself since the absolute
value of the determinant of the matrix associated to X is equal to |an| and
by (13.2.33) we have an 6= 0. Moreover, see Section 5.3, setting

z(t, y) = u((X(t, y)), (13.2.36)
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(a · ∇u) ((X(t, y)) = ∂tz(t, y) (13.2.37)

and

ϕ̃(t, y) = ϕ(X(t, y)),

estimate (13.2.32) is equivalent to the estimate

τ

∫
|z|2 e2τϕ̃(t,y)dtdy ≤ C

∫
|∂tz|2 e2τϕ̃(t,y)dtdy, (13.2.38)

for every z ∈ C∞0 (Rn) and for every τ large enough. Of course, if we are
interested in estimate (13.2.32) for u supported in a bounded open Ω then
estimate (13.2.38) will be established for z supported in a bounded open set.
More precisely, set Ω̃ = X−1(Ω), Proposition 13.2.1 yields what follows:

If

∂2
t ϕ̃(t, y) > 0, for every (t, y) such that ∂tϕ̃(t, y) = 0, (13.2.39)

then estimate (13.2.38) and (consequently) estimate (13.2.32) holds true.
Now we have,

∂tϕ̃(t, y) = (∇ϕ) (X(t, y)) · a (X(t, y)) =
n∑
j=1

(∂jϕaj) (X(t, y)) ,

and

∂2
t ϕ̃(t, y) = ∂t

(
n∑
j=1

(∂jϕ) (X(t, y)) aj (X(t, y))

)
=

=
n∑

j,k=1

(
∂2
jkϕ
)

(X(t, y)) (∂tX(t, y)) aj (X(t, y)) +

+
n∑

j,k=1

(∂jϕ) (X(t, y)) (∂xkai) (X(t, y))∂tX(t, y) =

=
n∑

j,k=1

(
∂2
jkϕajak

)
(X(t, y)),

(13.2.40)

(in the second to last step we used that ∂xkai = 0, as a is a constant vector).
Therefore, with respect to the variables x1, · · · , xn, condition (13.2.39) can
be written
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a · ∇ϕ(x) = 0 ⇒
n∑

j,k=1

∂2
jkϕ(x)ajak > 0. (13.2.41)

So if (13.2.41) holds, then for every bounded open set Ω, the following Car-
leman estimate holds

τ

∫
|u|2 e2τϕ(x)dx ≤ C

∫
|P1(∂)u|2 e2τϕ(x)dx, (13.2.42)

for every u ∈ C∞0 (Ω) and for every τ large enough.
Before applying this estimate to study of the uniqueness of the Cauchy

problem we provide a geometric interpretation of condition (13.2.41). Let
x0 ∈ Rn and let us suppose that

∇ϕ(x0) 6= 0. (13.2.43)

Now, the assertion

a · ∇ϕ(x0) = 0,

is equivalento to the assertion that the surface {ϕ(x) = ϕ(x0)} is a charac-
teristic surface for the operator P1(∂) in x0. Regarding the interpretation of
the term

n∑
jk=1

∂2
jkϕ(x0)ajak,

we are helped by the calculations performed in (13.2.40). Actually, denoting
by x = γ(t) the parametric equation of the characteristic line passing through
x0, for instance, set γ(0) = x0, then we have

d2ϕ(γ(t))

dt2 |t=0
=

n∑
jk=1

∂2
jkϕ(x0)ajak.

Therefore, condition (13.2.41) states that if x0 is a characteristic point of the
level surface with respect to the operator P1, then there exists a neighborhood
of 0, J , such that

ϕ(γ(t)) > ϕ(x0), ∀t ∈ J \ {0}

that is, the characteristic line x = γ(t) remains locally confined to the region
{ϕ(x) > ϕ(x0)} or, in other words, does not cross the level surface

{ϕ(x) = ϕ(x0)}

in x0.
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Figure 13.1:

Given Ω, an open set of Rn, x0 ∈ Ω and ψ ∈ C1
(
Ω
)
a real–valued function

such that

∇ψ(x) 6= 0, ∀x ∈ Γ, (13.2.44)

where
Γ = {x ∈ Ω : ψ(x) = ψ(x0)} . (13.2.45)

We will say that a real–valued function ϕ ∈ C0
(
Ω
)
with , enjoys the prop-

erty of convexification with respect to Γ in x0 if ϕ(x0) = ψ(x0) and
there exists r > 0 such that (Figure 13.1)

{x ∈ Br(x0) : ϕ(x) ≥ ϕ(x0)} \ {x0} ⊂
⊂ {x ∈ Br(x0) : ψ(x) > ψ(x0)} .

(13.2.46)

In the next Proposition, we set for a function f ∈ C2(Ω)

Qf (x) =
n∑

j,k=1

∂2
jkf(x)ajak

The following holds true
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Proposition 13.2.4. Let Ω be an open set of Rn and let a ∈ Rn \ {0},
c ∈ L∞(Ω) (with values in C), x0 ∈ Ω and ψ ∈ C2

(
Ω
)
a real–valued function

satisfying the following conditions

∇ψ(x0) 6= 0 (13.2.47)

and let us suppose that

a · ∇ψ(x0) = 0 ⇒ Qψ(x0) > 0. (13.2.48)

Let U ∈ H1(Ω) satisfy
a · ∇U + c(x)U = 0, in Ω,

U(x) = 0 in {x ∈ Ω : ψ(x) > ψ(x0)} .
(13.2.49)

Then there exists a neighborhood Ux0 of x0 such that

U = 0 in Ux0 . (13.2.50)

Proof. It is not restrictive to assume x0 = 0,

ψ(0) = 0

and
|a| = 1.

Let

ϕε(x) = ψ(x)− ε|x|2

2
, (13.2.51)

where ε is a positive number to be chosen later.
Now we check that ϕε satisfies (13.2.41) in a neighborhood of 0. We note,

to this purpose, that (13.2.48) implies that there exists a constant C0 > 0
such that

M0 := C0 (a · ∇ψ(0))2 +Qψ(0) > 0.

We have easily that, for any ε ≤ ε0 = M0

2
,

C0 (a · ∇ϕε(0))2 +Qϕε(0) = M0 − ε ≥
M0

2
. (13.2.52)

Let us choose ε = ε0 and we omit from now on the subscript of ϕ. By
(13.2.52), since ϕ ∈ C2(Ω), there exists R > 0 such that
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C0 (a · ∇ϕ(x))2 +Qϕ(x) ≥ M0

4
> 0, ∀x ∈ B2R. (13.2.53)

Therefore, (13.2.41) applies and, consequently, setting

Pu = a · ∇u+ c(x)u,

we get

τ

∫
|u|2 e2τϕ(x)dx ≤ C

∫
|Pu|2 e2τϕ(x)dx, (13.2.54)

for every u ∈ C∞0 (B2R) and for every τ ≥ τ0. By density (13.2.54) holds for
every u ∈ H1

0 (B2R).
Let η ∈ C∞0 (B2R) be a function such that

0 ≤ η(x) ≤ 1, ∀x ∈ BR; η(x) = 1, ∀x ∈ BR/2

and
supp η = BR.

Let us denote

C1 = ‖∇η‖L∞(BR) .

Now we apply (13.2.54) to
u = ηU,

since

P (ηU) = η (a · ∇U + c(x)U) + (a · ∇η)U,

we have
|P (ηU)| ≤ C1χBR\BR/2 |U |,

where χBR\BR/2 is the characteristic function of BR\BR/2. Hence by (13.2.54)
we obtain

τ

∫
BR

|Uη|2 e2τϕ(x)dx ≤ CC2
1

∫
BR\BR/2

|U |2 e2τϕ(x)dx, (13.2.55)

for every τ ≥ τ0.
Now, let

G =
(
BR \BR/2

)
∩ supp U,

M1 = max
G

ϕ
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and let us prove that
M1 < 0. (13.2.56)

For this purpose we first observe that ϕ is a convexification of

Γ := {x ∈ BR : ψ(x) = 0} .
As a matter of fact, let us note that if

x ∈ {y ∈ BR : ϕ(y) ≥ 0} \ {0} (13.2.57)

then
ψ(x) ≥ ε0|x|2

2
> 0, for x 6= 0.

Now, arguing by contradiction, let us suppose that (13.2.56) is false, i.e.
let us suppose that

M1 ≥ 0.

Let x ∈ G satisfy ϕ (x) = M1. Since G ⊂ BR \ BR/2 we have x 6= 0. Hence,
(13.2.57) implies ψ (x) > 0 from which we get that there exists δ > 0 such
that

ψ(x) > 0, ∀x ∈ Bδ (x)

and, recalling that

{x ∈ Ω : ψ(x) > 0} ⊂ {x ∈ Ω : U(x) = 0} ,
we have Bδ (x) ⊂ {x ∈ Ω : U(x) = 0}. Therefore

x /∈ supp U,

that contradicts x ∈ G ⊂ supp U . Hence (13.2.56) holds true.
Now, by ϕ(0) = 0 and by (13.2.56) we have trivially that 0 is an interior

point of {
x ∈ BR : ϕ(x) > M1

}
,

therefore there exists r, 0 < r ≤ R
2
, such that

Br ⊂
{
x ∈ BR : ϕ(x) > M1

}
. (13.2.58)

Let now
M2 = min

Br

ϕ,

by (13.2.58) we have
M2 > M1.
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Now, let us come back to (13.2.55). We have, trivially,∫
BR\BR/2

|U |2 e2τϕ(x)dx ≤ e2τM1

∫
G

|U |2 dx (13.2.59)

and ∫
BR

|Uη|2 e2τϕ(x)dx ≥
∫
BR∩{ϕ>M1}

|Uη|2 e2τϕ(x)dx ≥

≥
∫
Br

|U |2 e2τϕ(x)dx ≥ e2τM2

∫
Br

|U |2 dx.
(13.2.60)

By (13.2.55), (13.2.59) and (13.2.60) we have∫
Br

|U |2 dx ≤ CC2
1e
−2τ(M2−M1)

∫
G

|U |2 dx

for every τ ≥ τ0, from which, passing to the limit as τ goes to +∞, we obtain
U = 0 in Br. �

Remarks.
1. The geometric part of the proof of Proposition (13.2.4) is to be considered
standard and will occur again even in the case of more general operators than
the ones considered so far. On the contrary, the path that we followed to
arrive to estimate (13.2.42) is not extendable (or, at least, is not easily ex-
tendable) to more general situations. However, the reader can easily repeat,
for the variable coefficient operator

P1(x, ∂) = a(x) · ∇, (13.2.61)

the calculations we did in the case where a is a constant vector. Of course,
assuming, for instance, that

an(0) 6= 0,

instead of (13.2.34), the reader may consider
∂tX(t, y) = a(X(t, y)),

X(0, y) = (y, 0).

obtaining, unlike the case in which a is constant, a local change of coordi-
nates and, instead of (13.2.41), it will be found (compare with (13.2.40)) the
following condition in U0, where U0 is a neighborhood of 0.
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a(x) · ∇ϕ(x) = 0 ⇒

⇒
n∑

j,k=1

∂2
jkϕ(x)aj(x)ak(x) +

n∑
j,k=1

∂kaj(x)ak(x)∂jϕ(x) > 0.
(13.2.62)

By the procedure that we have outlined above, we have that if (13.2.62)
holds then

τ

∫
|u|2 e2τϕ(x)dx ≤ C

∫
|P1(x, ∂)u|2 e2τϕ(x)dx, (13.2.63)

for every u ∈ C∞0 (U0) and for every τ large enough.

2. We now derive estimate (13.2.63) by means of a procedure based on
integrations by parts. This procedure will be extended in the next Sections
to more general operators.

Let

P1,τ (x, ∂)v := eτϕP1(x, ∂)
(
e−τϕv

)
= a · ∇v − τ(a · ∇ϕ)v,

estimate (13.2.63) is equivalent to

τ

∫
|v|2 dx ≤ C

∫
|P1,τ (x, ∂)v|2 dx, (13.2.64)

for every v ∈ C∞0 (U0) and for every τ large enough. Since the coefficients
of P1(x, ∂) are real-valued, to prove the (13.2.64) it suffices to consider v
real-valued. We have

∫
|P1,τ (x, ∂)v|2 dx =

∫
|a · ∇v − τ(a · ∇ϕ)v|2 dx =

=

∫
|a · ∇v|2 dx+ τ 2

∫
|(a · ∇ϕ)v|2 dx−

− 2τ

∫
(a · ∇ϕ) (a · ∇v) vdx.

(13.2.65)

Now, let us consider the third integral on the right hand side in (13.2.62);
Integrating by parts we have

−2τ

∫
(a · ∇ϕ) (a · ∇v) vdx = −τ

∫
a · ∇

(
v2
)

(a · ∇ϕ) dx =

= τ

∫
div ((a · ∇ϕ) a) v2dx.
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By the the just obtained equality and by (13.2.62) we have.∫
|P1,τ (x, ∂)v|2 dx ≥

∫ (
τ 2 (a · ∇ϕ) + τQ̃ϕ

)
v2dx, (13.2.66)

where

Q̃ϕ = div ((a · ∇ϕ) a) =

=
n∑

j,k=1

∂2
jkϕajak +

n∑
j,k=1

∂kajak∂jϕ+ (a · ∇ϕ)(div a).

Now, proceeding as in the proof of Proposition 13.2.1 we have that if

a(x) · ∇ϕ(x) = 0 ⇒ Q̃ϕ > 0, in U0 (13.2.67)

then, taking into account (13.2.66),∫
|P1,τ (x, ∂)v|2 dx ≥ τ

C

∫
|v|2dx,

for every v ∈ C∞0 (U0) and for τ ≥ τ0 (τ0 independent of v). From the latter
(13.2.63) follows. Let us note that (13.2.62) and (13.2.67) are equivalent.

13.3 Quadratic differential form and their inte-
gration by parts

As we have already seen in the simple examples of the previous Section, the
first steps one makes to prove a Carleman estimate consists in setting, for an
arbitrary function u ∈ C∞0 (Ω),

v = eτϕu.

In this way, denoting, for the sake of brevity, by P the differential operator
Pm(x,D) (principal part of the operator P (x,D)) we introduce the conju-
gate operator of P which is defined by

Pτv = eτϕP
(
e−τϕv

)
= eτϕPm(x,D)

(
e−τϕv

)
; (13.3.1)

after that, since ∫
Ω

|Pm(x,D)u|2 e2τϕ(x)dx =

∫
Ω

|Pτv|2 dx,
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we wish to prove a suitable estimate from below of
∫

Ω
|Pτv|2 dx, if τ is large

enough. Of course, it is precisely this estimate from below the most tricky
part of the proof of a Carleman estimate. In the examples we encountered
in the previous Section we first spread the square |Pτv|2 and then we inte-
grate it by parts, but it is evident that unless appropriate arrangements are
made, this procedure leads to great difficulty for the operators just a little
slightly more general than those encountered in the previous Section. These
difficulties also arise in the case of the Laplace operator. As a matter of fact,
set

P = ∆ = −
n∑
j=1

D2
j ,

we have

Pτv = eτϕ∆
(
e−τϕv

)
= ∆v − τ∇ϕ · ∇v − τ∆ϕ+ τ 2 |∇ϕ|2 v, (13.3.2)

and, spreading the square we obtain an expression like∑
|α|,|β|≤2

τ γα,βaαβ(x)∂αv∂βv.

To handle this kind of expressions, in the present Section we will study the
quadratic forms ∑

α,β

aαβ(x)DαuDβu, (13.3.3)

where the sum is finite, aαβ are complex–valued functions. We are particu-
larly interested in the integration by parts of forms (13.3.3).

We recall that a sesquilinear form on a complex vector space V is a
function

Φ : V × V → V

such that f(·, v) is linear for every v ∈ V and Φ(u, ·) is antilinear for every
u ∈ V . We say that a sesquilinear form on V is hermitian, if

Φ(u, v) = Φ(v, u), ∀u, v ∈ V. (13.3.4)

In the sequel of this Section we will denote by V the space of sesquilinear
forms on C∞ (Rn,C) .

Let us consider the sesquilinear forms

Φαβ : C∞ (Rn,C)× C∞ (Rn,C)→ C∞ (Rn,C) , (13.3.5)
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Φαβ(u, v) = DαuDβv, ∀u, v ∈ C∞ (Rn,C) . (13.3.6)
In what follows, for any ζ ∈ Cn, ζ = (ζ1, · · · , ζn) and x ∈ Rn,

x = (x1, · · · , xn), we will denote by

ζ · x =
n∑
j=1

ζjxj.

The following Proposition holds true

Proposition 13.3.1. The family of sesquilinear forms {Φαβ}αβ∈Nn0 is linearly
independent in V.

Proof. Let us consider a finite linear combination of the forms Φαβ,
α, β ∈ Λ, where Λ is a finite subset of Nn

0 × Nn
0 and let us assume that it

vanishes identically. We have, for some cαβ ∈ C,∑
α,β∈Λ

cαβΦαβ = 0. (13.3.7)

Now we prove that

cαβ = 0, ∀α, β ∈ Λ. (13.3.8)
Let us notice that (13.3.7) is equivalent to∑

α,β∈Λ

cαβD
αuDβv = 0, ∀u, v ∈ C∞ (Rn,C) . (13.3.9)

Now, let ζ, η ∈ Cn be arbitrary and put u = eiζ·x, v = eiη·x in (13.3.9). We
get

0 =
∑
α,β∈Λ

cαβD
α
(
eiζ·x

)
Dβ (eiη·x) = eiζ·xeiη·x

∑
α,β∈Λ

cαβζ
αηβ.

Therefore ∑
α,β∈Λ

cαβζ
αηβ = 0, ∀ζ, η ∈ Cn.

From which we obtain (13.3.8). �

Let us denote byW the subspace of V generated by {Φαβ}αβ∈Nn0 . We will
call sesquilinear differential form any element of the space W . Thus an
arbitrary element of W is

Φ(u, v) =
∑
α,β

aαβD
αuDβv, (13.3.10)
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where the sum is finite, and aαβ ∈ C.

The following Proposition holds true.

Proposition 13.3.2. Let Φ ∈ W be given by (13.3.10) the following condi-
tions are equivalent.

Φ is an hermitian form, (13.3.11a)

Φ(u, u) ∈ R, ∀u ∈ C∞ (Rn,C) , (13.3.11b)

aαβ = aβα, ∀α, β ∈ Nn
0 , (13.3.11c)∑

α,β

aαβζ
αζβ ∈ R, ∀ζ ∈ Cn. (13.3.11d)

Proof. We follow the pattern

(13.3.11a)⇐⇒ (13.3.11b)⇐⇒ (13.3.11c)⇐⇒ (13.3.11d).

implication (13.3.11a)=⇒ (13.3.11b) is trivial.

Let us prove that (13.3.11b)=⇒ (13.3.11a).

Let u, v ∈ C∞ (Rn,C) be arbitraries. By (13.3.11b) we have

Φ(u+ v, u+ v) ∈ R, Φ(u+ iv, u+ iv) ∈ R. (13.3.12)

Setting
z = Φ(u, v), w = Φ(v, u),

we get, by (13.3.12),

z + w = Φ(u+ v, u+ v)− Φ(u, u)− Φ(v, v) ∈ R

and

−iz + iw = Φ(u+ iv, u+ iv)− Φ(u, u)− Φ(v, v) ∈ R.

From which we have =(z + w) = 0 and <(z − w) = 0; that is
z + w − (z + w) = 0,

z − w + (z − w) = 0.

and adding member to member we have

2z − 2w = 0.
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Hence

Φ(u, v) = Φ(v, u).

Let us prove that (13.3.11b)=⇒ (13.3.11c).

Let us assume that (13.3.11b) holds true. By the equivalence proved
previously we have

Φ(u, v) = Φ(v, u), ∀u, v ∈ C∞ (Rn,C) .

Hence, for any u, v ∈ C∞ (Rn,C) we get∑
α,β

aαβD
αuDβv =

∑
α,β

aαβDαvDβu =

=
∑
α,β

aαβDαvDβu =
∑
α,β

aβαDβvDαu

(the last step is a mere change of indices). From what just obtained and
setting

cα,β = aαβ − aβα,

we have ∑
α,β

cαβD
αuDβv = 0 (13.3.13)

and Proposition 13.3.1 gives

aαβ − aβα = cα,β = 0

for any α, β ∈ Nn
0 . Therefore (13.3.11c) holds.

Let us prove that (13.3.11c) =⇒ (13.3.11b).

Let us suppose

aαβ = aβα.

Let u ∈ C∞ (Rn,C) be arbitrary. We get

∑
α,β

aαβD
αuDβu =

∑
α,β

aβαD
αuDβu =

=
∑
α,β

aβαDαuDβu =
∑
α,β

aαβDβuDαu = Φ(u, u).
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the implication (13.3.11c)=⇒ (13.3.11d) can be proved in a similar way to
the previous one (just replace ζ to D).

Let us prove that (13.3.11d)=⇒(13.3.11c).
Let us assume that (13.3.11d) holds. Then∑

α,β

aαβζ
αζβ =

∑
α,β

aαβζαζβ =

=
∑
α,β

aαβζαζ
β =

∑
α,β

aβαζβζ
α.

From what obtained above and setting

cα,β = aαβ − aβα,

we get ∑
α,β

cαβζ
αζβ = 0, ∀ζ ∈ Cn.

From which we have, for any γ, δ ∈ Nn
0 ,

γ!δ!cγδ = ∂γζ ∂
δ
ζ

(∑
α,β

cαβζ
αζβ

)
|ζ=0

= 0, (13.3.14)

where, ζ = (ζ1, · · · , zn), zj = ξj + iηj,

∂ζj =
1

2

(
∂ξj − i∂ηj

)
, ∂ζj =

1

2

(
∂ξj + i∂ηj

)
, j = 1, · · · , n.

Finally, (13.3.14) gives (13.3.11c). �

From here on, it is convenient to use the following notations: to denote a
sesquilinear form with constant coefficients we will write

F (D,D)[u, v] := Φ(u, v) =
∑
α,β

aαβD
αuDβv,

where aαβ ∈ C are null except for a finite set of multi–indices.
We will call differential quadratic form with constant coefficients, the

following form

F (D,D)[u, u] := Φ(u, u) =
∑
α,β

aαβD
αuDβu. (13.3.15)
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In what follows we will do the convention of the "regrouped terms" according
to to which the terms with the same indices α and β occur only one time.
With this convention, the following polynomial in ζ and ζ

F (ζ, ζ) =
∑
α,β

aαβζ
αζβ, (13.3.16)

is uniquely associated to the form F . As a matter of fact, it turns out

F (ζ, ζ) = e−2(=ζ)·xF (D,D)
[
eiζ·x, eiζ·x

]
.

Hence, if
F (D,D)[u, u] = 0, ∀u ∈ C∞ (Rn) , (13.3.17)

then
F (ζ, ζ) = 0, ∀ζ ∈ Cn. (13.3.18)

Conversely, if (13.3.18) holds, then we have

γ!δ!aγδ = ∂γζ ∂
δ
ζ

(∑
α,β

aαβζ
αζβ

)
|ζ=0

= ∂γζ ∂
δ
ζ
F (ζ, ζ)|ζ=0 = 0,

from which we get (13.3.17). All in all (13.3.17) and (13.3.18) are equivalent.
We call the polynomial F (ζ, ζ) the symbol of the differential quadratic

form F (D,D).

The following Proposition will be useful later on.

Proposition 13.3.3. Let F (D,D)[u, u] be a differential quadratic form. We
have ∫

Rn
F (D,D)[u, u]dx =

=
1

(2π)n

∫
Rn
F (ξ, ξ) |û(ξ)|2 dξ, ∀u ∈ C∞0 (Rn) .

(13.3.19)

Proof. Let u ∈ C∞0 (Rn) and

F (D,D)[u, u] =
∑
α,β

aαβD
αuDβu.

From the Parseval identity we have
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∫
Rn
F (D,D)[u, u]dx =

∑
α,β

aαβ

∫
Rn
DαuDβudx =

=
1

(2π)n

∑
α,β

aαβ

∫
Rn
D̂αuD̂βudξ =

=
1

(2π)n

∑
α,β

aαβ

∫
Rn
ξα+β |û(ξ)|2 dξ =

=
1

(2π)n

∫
Rn
F (ξ, ξ) |û(ξ)|2 dξ.

�

We are interested to examine under what conditions F (D,D)[u, u]
can be "written as a divergence" of some vector field.

More precisely, we are interested in examining under which conditions
there exist some differential quadratic forms Gk(D,D), k = 1, · · · , n with
constant coefficients, such that

F (D,D)[u, u] =
n∑
k=1

∂k
(
Gk(D,D)[u, u]

)
. (13.3.20)

For this purpose we consider the differential quadratic form with constant
coefficients

G(D,D)[u, u] =
∑
α,β

cαβD
αuDβu

and we wish to express the symbol of ∂k
(
G(D,D)[u, u]

)
through the symbol

of G(D,D)[u, u]. We have

∂k
(
G(D,D)[u, u]

)
=
∑
α,β

cαβ∂k

(
DαuDβu

)
=

=
∑
α,β

cαβ

(
∂kD

αuDβu+Dαu∂kDβu
)

=

=
∑
α,β

cαβ

(
iDkD

αuDβu− iDαuDkDβu
)
.

Hence, the symbol associated to ∂k
(
G(D,D)[u, u]

)
is
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∑
α,β

cαβ

(
iζkζ

αζβ − iζαζkζβ
)

= i
(
ζk − ζk

)∑
α,β

cαβζ
αζβ =

= i
(
ζk − ζk

)
G(ζ, ζ).

Therefore, in order to have (13.3.20) it is necessary that

F (ζ, ζ) = i
n∑
k=1

(
ζk − ζk

)
Gk(ζ, ζ). (13.3.21)

Now, setting ζ = ξ + iη, where ξ, η ∈ Rn, we have

F (ξ + iη, ξ − iη) = −2
n∑
k=1

ηkGk(ξ + iη, ξ − iη). (13.3.22)

In particular, we have

F (ξ, ξ) = 0, ∀ξ ∈ Rn (13.3.23)

and

Gk(ξ, ξ) = −1

2

∂

∂ηk
F (ξ + iη, ξ − iη)|η=0, ∀ξ ∈ Rn. (13.3.24)

Therefore a necessary condition to be true (13.3.20) is that (13.3.23) be
true. Below we will see that this condition is also sufficient, but first we give
the definition of the double and total order of a differential quadratic form.

Definition 13.3.4. Let

F (D,D)[u, u] =
∑
α,β

aαβD
αuDβu, (13.3.25)

be a differential quadratic form with constant coefficients. We say that F
has double order (µ;m) provided

aαβ 6= 0 =⇒ |α|+ |β| ≤ µ; |α|, |β| ≤ m. (13.3.26)

µ is called the total order and m is called the separated order of the
differential quadratic form F .

It is evident that
µ ≤ 2m.

Moreover, when adopting the convention of the grouped terms, the previous
definition uniquely determines the order of the differential quadratic form.
Here and in the sequel we will naturally extend the notions of the double
order and the total order to the symbol of a differential quadratic form.
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Lemma 13.3.5. Let F (D,D)[u, u] be a differential quadratic form with con-
stant copefficients. Let us suppose that

F (ξ, ξ) = 0, ∀ξ ∈ Rn, (13.3.27)

then there exist n differential quadratic forms Gk(D,D)[u, u], k = 1, · · · , n,
such that

F (D,D)[u, u] =
n∑
k=1

∂k
(
Gk(D,D)[u, u]

)
(13.3.28)

and we have

Gk(ξ, ξ) = −1

2

∂

∂ηk
F (ξ + iη, ξ − iη)|η=0, ∀ξ ∈ Rn. (13.3.29)

In addition, let us assume that F (D,D)[u, u] has a double order (µ;m),
m > 0 then

(a) if µ < 2m, the forms Gk, k = 1, · · · , n, can be choosen of double order
(µ− 1;m− 1);

(b) if µ = 2m, the forms Gk, k = 1, · · · , n, can be choosen of double order
(µ− 1;m).

Proof. Let us assume that (13.3.27) holds. Let us consider the polyno-
mial

η → F (ξ + iη, ξ − iη)

and let us apply the Taylor formula at η = 0. We have, for suitable polyno-
mials fk, k = 1, · · · , n,

F (ξ + iη, ξ − iη) =
n∑
k=1

ηkfk (ξ, η) = − i
2

n∑
k=1

(
ζk − ζk

)
fk

(
ζ + ζ

2
,
ζ − ζ

2i

)
.

Set

Gk

(
ζ, ζ
)

= −1

2
fk

(
ζ + ζ

2
,
ζ − ζ

2i

)
,

we get
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F (ζ, ζ) = i
n∑
k=1

(
ζk − ζk

)
Gk(ζ, ζ) = −2

n∑
k=1

ηkGk(ξ + iη, ξ − iη), (13.3.30)

from which we have

∂

∂ηk
F (ξ + iη, ξ − iη) = −2Gk(ξ + iη, ξ − iη), ∀ξ ∈ Rn. (13.3.31)

Hence
Gk(ξ, ξ) = −1

2

∂

∂ηk
F (ξ + iη, ξ − iη)|η=0, ∀ξ ∈ Rn.

Moreover, from the first equality in (13.3.30) (retracing to backward the
calculations that led to (13.3.21)) we have

F (D,D)[u, u] = i
n∑
k=1

(
Dk −Dk

) (
Gk(D,D)[u, u]

)
=

n∑
k=1

∂k
(
Gk(D,D)[u, u]

)
.

Proof of (a) and (b).
Case (a), µ < 2m. Let us show that if α′, α′′, β′, β′′ are multi–indices such
that 

α′ + β′ = α′′ + β′′

|α′|+ |β′| = |α′′|+ |β′′| ≤ µ ≤ 2m− 1

|α′| , |β′| , |α′′| , |β′′| ≤ m,

(13.3.32)

then

ζα
′
ζβ′ = ζα

′′
ζβ′′ + i

n∑
j=1

(
ζj − ζj

)
hj(ζ, ζ), (13.3.33)

where hj(ζ, ζ), j = 1, · · · , n, have the total order less or equal than µ − 1
and the separated order less or equal than m− 1.

Notice that by (13.3.32) we have either |α′| < m or |β′| < m (likewise for
|α′′| and |β′′|).

The proof consists of repeatedly applying both simple identities.
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ζj = ζj −
(
ζj − ζj

)
, (13.3.34a)

ζj = ζj +
(
ζj − ζj

)
. (13.3.34b)

Let us consider ζα′ζβ′ and let us suppose |α′| < m. Identity (13.3.34a) allows
us to move the factors from ζβ′ to ζα′ as long as the exponent of ζ does not
have modulus m, when this occurs identity (13.3.34b) is used. Let us see
more in detail. If |α′| < m e β′ 6= 0, for instance let β′j > 0, then

ζα
′
ζβ′ = ζα

′
ζβ′−ejζj = ζα

′
ζβ′−ej

(
ζj −

(
ζj − ζj

))
=

= ζα
′+ejζβ′−ej −

(
ζj − ζj

)
ζα
′
ζβ′−ej .

Let us notice that ζα′ζβ′−ej has total order |α′| + |β′ − ej| ≤ µ − 1 and
separated order less or equal than m − 1 (recall |α′| < m and |β′| ≤ m). If,
on the other hand |β′| < m (and this includes the case β′ = 0 which was
neglected previously) we use identity (13.3.34b) and proceeding as above we
reach (assuming α′j > 0, for some j) to

ζα
′
ζβ′ = ζα

′−ejζβ′−ej +
(
ζj − ζj

)
ζα
′−ejζβ′ . (13.3.35)

Similarly to the case |α′| < m, we have that ζα′−ejζβ′ has total order less or
equal than µ− 1 and separated order less or equal than m− 1. Repeatedly
applying the procedure used above we arrive to (13.3.33), which in turn
implies that there exists F̃ such that

F (ζ, ζ) = F̃ (ζ, ζ) + i
n∑
j=1

(
ζj − ζj

)
Gj(ζ, ζ), (13.3.36)

where Gj(ζ, ζ), j = 1, · · · , n, has double order (µ− 1;m− 1) and

F̃ (ζ, ζ) =
∑

(α,γ)∈Λ

cγζ
αζγ−α, (13.3.37)

where cγ ∈ C

Λ = {(α, γ) ∈ Nn
0 × Nn

0 : |γ| ≤ m, α ≤ γ}

and also F̃ has double order (µ;m). Notice that, thanks to (13.3.33) and
(13.3.35), the summation in (13.3.37) is written in such a way that for a
given sum of the multi-indices only one addend occurs.

By (13.3.27) and (13.3.36) we have

0 = F̃ (ξ, ξ) =
∑
|γ|≤m

Nγcγξ
γ, ∀ξ ∈ Rn, (13.3.38)



590 Chapter 13. Carleman estimates and the Cauchy problem I

where Nγ is the cardinality of the set {α ∈ Nn
0 : α ≤ γ} , hence, cγ = 0 from

which we have F̃ ≡ 0. Therefore

F (ζ, ζ) = i

n∑
j=1

(
ζj − ζj

)
Gj(ζ, ζ)

and (13.3.28) is proved in case (a).

Case (b), µ = 2m.
Obviously, we can handle the terms of

F (ζ, ζ) =
∑
α,β

aαβζ
αζβ.

satisfying |α|+ |β| < 2m (and |α|, |β| ≤ m) in the same way of case (a). Let
us examine in which a way we can handle the terms such that |α|+ |β| = 2m.
Since |α|, |β| ≤ m we have |α| = |β| = m.

By identities (13.3.34a) and (13.3.34b) we have

ζjζk = ζkζj +
(
ζj − ζj

)
ζk −

(
ζk − ζk

)
ζj,

for j, k = 1, · · · , n.
Now, let us suppose that α′, α′′, β′, β′′ satisfy

α′ + β′ = α′′ + β′′,

|α′| = |β′| = |α′′| = |β′′| = m,

then we have (if α′j > 0 and β′k > 0)

ζα
′
ζβ′ = ζα

′−ejζβ′−ekζjζk = ζα
′−ej+ekζβ′−ek+ej+

+
(
ζj − ζj

)
h1(ζ, ζ) +

(
ζk − ζk

)
h2(ζ, ζ),

where
h1(ζ, ζ) = ζα

′−ejζβ′ , h2(ζ, ζ) = −ζα′−ejζβ′−ek+ej ,

have double order (µ− 1,m). From now on, one may proceed as in case (a)
and we reach the conclusion. �

In the case of a differential quadratic forms with variable coefficients we
have the following
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Lemma 13.3.6. Let

F (x,D,D)[u, u] =
∑
α,β

aαβ(x)DαuDβu (13.3.39)

be a differential quadratic form with variable coefficients aαβ ∈ Cs(Ω), where
s ∈ N. Let us suppose that F has double order (µ;m), m > 0, and that

F (x, ξ, ξ) = 0, ∀x ∈ Ω, ∀ξ ∈ Rn. (13.3.40)

Then there exists a differential quadratic form G(x,D,D)[u, u] whose coeffi-
cients belong to Cs−1(Ω) such that∫

Ω

F (x,D,D)[u, u]dx =

∫
Ω

G(x,D,D)[u, u]dx, ∀u ∈ C∞0 (Ω) (13.3.41)

and such that:

(a) if µ < 2m, then G(x,D,D) can be chosen of double order (µ− 1;m− 1);

(b) if µ = 2m, then G(x,D,D) can be chosen of double order (µ − 1;m).
Moreover

G(x, ξ, ξ) =
1

2

n∑
k=1

∂2
xkηk

F (x, ξ + iη, ξ − iη)|η=0. (13.3.42)

Proof. Let F1, · · · , FN be a basis of the vector space (of finite dimension)
of all quadratic forms H of double order (µ;m) with constant coefficients and
satisfying

H(ξ, ξ) = 0, ∀ξ ∈ Rn.

By Lemma 13.3.5 there exist differential quadratic forms with constant co-
efficients Gk

j , j = 1, · · · , N , k = 1, · · · , n, of double order (µ − 1;m′), with
m′ = m− 1, provided µ < 2m, and m′ = m provided µ = 2m, such that

Fj(D,D)[u, u] =
n∑
k=1

∂xk
(
Gk
j (D,D)[u, u]

)
, j = 1, · · · , N.

Now, (13.3.40) implies that there exist cj ∈ Cs(Ω), j = 1, · · · , N , such that

F (x,D,D)[u, u] =
N∑
j=1

cj(x)Fj(D,D)[u, u].

Hence, if u ∈ C∞0 (Ω), then integration by parts yields
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∫
Ω

F (x,D,D)[u, u]dx =
N∑
j=1

n∑
k=1

∫
Ω

cj(x)∂xk
(
Gk
j (D,D)[u, u]

)
dx =

= −
N∑
j=1

n∑
k=1

∫
Ω

∂xkcj(x)Gk
j (D,D)[u, u]dx.

Thus, we can choose

G(x,D,D)[u, u] =
N∑
j=1

n∑
k=1

−∂xkcj(x)Gk
j (D,D)[u, u].

From which we have

G(x, ξ, ξ) =
N∑
j=1

n∑
k=1

−∂xkcj(x)Gk
j (ξ, ξ). (13.3.43)

On the other hand by (13.3.29) we have

Gk
j (ξ, ξ) = −1

2

∂

∂ηk
Fj(ξ + iη, ξ − iη)|η=0, ∀ξ ∈ Rn.

Now, by the last equality we get

G(x, ξ, ξ) =
n∑
k=1

N∑
j=1

−∂xkcj(x)Gk
j (ξ, ξ) =

=
1

2

n∑
k=1

(
∂2
xkηk

N∑
j=1

cj(x)Fj(ξ + iη, ξ − iη)

)
|η=0

=

=
1

2

n∑
k=1

∂2
xkηk

F (ξ + iη, ξ − iη)|η=0.

�

13.4 The conjugate of Pm(x,D) – Set up of a
Carleman estimate

In this Section we will consider the conjugate of the operator Pm(x,D) which,
we recall, is defined by
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Pτv = eτϕPm(x,D)
(
e−τϕv

)
. (13.4.1)

We first observe that

Pτv = Pm(x,D + iτ∇ϕ(x))v. (13.4.2)

As a matter of fact we have

eτϕDj

(
e−τϕv

)
= Djv − τ(Djϕ)v = Djv + iτ(∂jϕ)v,

eτϕDkDj

(
e−τϕv

)
= eτϕDk

(
e−τϕ(Djv + iτ(∂jϕ)v)

)
= (Dk+iτ(∂kϕ))(Dj+iτ(∂jϕ))v,

...

eτϕDα
(
e−τϕv

)
= (D + iτ∇ϕ(x))α v,

for every α ∈ Nn
0 . Now, since

Pm(x,D) =
∑
|α|=m

aα(x)Dα, (13.4.3)

we have

eτϕPm(x,D)
(
e−τϕv

)
=
∑
|α|=m

aα(x)eτϕDα
(
e−τϕv

)
=

=
∑
|α|=m

aα(x) (D + iτ∇ϕ(x))α v =

= Pm(x,D + iτ∇ϕ(x))v.

Now, let us consider the polynomial Pm(x, ξ + iτ∇ϕ(x)) in the variable
ξ and let us denote by

pm(x,D, τ) the operator whose symbol is Pm(x, ξ + iτ∇ϕ). (13.4.4)

Let us note that, in general, operator (13.4.4) does not equal to the operator
Pm(x,D + iτ∇ϕ). For instance, if

P2(x,D) = D2
1

we have

P2(x,D + iτ∇ϕ(x))v = D2
1v + 2iτ∂1ϕD1v − τ 2(∂1ϕ)2v + τ

(
∂2

1ϕ
)
v

hence
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p2(x,D, τ) = P2(x,D + iτ∇ϕ(x))− τ∂2
1ϕ(x).

In general we have

pm(x,D, τ) =
∑

|α|+j=m

τ jbαj(x)Dα, (13.4.5)

where the coefficients bαj(x) depend on ∇ϕ, on coefficients of Pm(x,D) (but
not on their derivatives) and do not depend on τ . In addition we have

Pm(x,D + iτ∇ϕ(x)) = pm(x,D, τ) +Rm−1,τ (x,D, τ), (13.4.6)

where
Rm−1,τ (x,D) =

∑
|α|+j≤m−1

τ j b̃αj(x)Dα,

the coefficients b̃αj depend on the coefficients of Pm(x,D) (but not on their
derivatives), on ∇ϕ and on the higher-order derivatives of ϕ and do not
depend on τ . The second term on the right–hand side in (13.4.6), as we
will realize soon, may be regarded as a harmless perturbation of the operator
pm(x,D, τ).

Now let us deal with the square in the integral∫
|Pm(x,D + iτ∇ϕ(x))v|2 dx, (13.4.7)

From here on, since v is supported in Ω, we omit the set of integration. First
we notice that by (13.4.6) we have

∫
|Pm(x,D + iτ∇ϕ(x))v|2 dx ≥ 1

2

∫
|pm(x,D, τ)v|2 dx−

−
∫
|Rm−1,τ (x,D)v|2 dx ≥

≥ 1

2

∫
|pm(x,D, τ)v|2 dx−

− C
∑

|α|≤m−1

τ 2(m−|α|)−2

∫
|Dαv|2 dx,

(13.4.8)

where C depends by the L∞ norms of the coefficients of Pm(x,D).
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We need some additional notation. Let M(x, ξ) be a polynomial with
respect to the variable ξ, let us suppose that the coefficients of M(x, ξ) are
differentiable. Let us set

M (j)(x, ξ) = ∂ξjM(x, ξ), M,j(x, ξ) = ∂xjM(x, ξ), j = 1, · · · , n.

Let us denote by
M(x, ξ)

the polynomial in ξ whose coefficients are the complex conjugate of the co-
efficients of M(x, ξ). Keep in mind that if ζ ∈ Cn, then

M(x, ζ) = M
(
x, ζ
)
.

If L(x, ξ) andM(x, ξ) are two polynomials in the variable ξ with differentiable
coefficients, we define their Poisson brackets

{L(x, ξ),M(x, ξ)} =

=
n∑
j=1

(
L(j)(x, ξ)M,j(x, ξ)− L,j(x, ξ)M (j)(x, ξ)

)
.

(13.4.9)

Now we anticipate that in points 3 and 4 of the Remarks of the present
Section, we will observe that pm(x,D, τ) is a suitable approximation of the
adjoint of the operator pm(x,D, τ).

Let

S(x,D, τ) =
1

2
(pm(x,D, τ) + pm(x,D, τ)) , (13.4.10a)

A(x,D, τ) =
1

2
(pm(x,D, τ)− pm(x,D, τ)) , (13.4.10b)

We have trivially

pm(x,D, τ) = S(x,D, τ) + A(x,D, τ). (13.4.11)

Hence ∫
|pm(x,D, τ)v|2 dx =

=

∫
|S(x,D, τ)v|2 dx+

∫
|A(x,D, τ)v|2 dx+

+ 2

∫
<
(
S(x,D, τ)vA(x,D, τ)v

)
dx.

(13.4.12)

A crucial point in the proof of a Carleman estimate consists in
finding an appropriate estimate from below of the third integral on the right
hand side of (13.4.12).



596 Chapter 13. Carleman estimates and the Cauchy problem I

Now, let us consider the differential quadratic form

F (x,D,D, τ) [v, v] = 2<
(
S(x,D, τ)vA(x,D, τ)v

)
, (13.4.13)

whose symbol is

F (x, ζ, ζ, τ) = 2<
(
S(x, ζ, τ)A(x, ζ, τ)

)
, ∀ζ ∈ Cn.

By the definition of pm(x,D, τ) we have that the symbol of pm(x,D, τ) is
given by Pm(x, ξ − iτ∇ϕ), from which we have, for ζ = ξ + iη ∈ Cn

F (x, ζ, ζ, τ) = 2<
(
S(x, ζ, τ)A(x, ζ, τ)

)
=

=
1

2
<
((
Pm(x, ζ + iτ∇ϕ(x)) + Pm(x, ζ − iτ∇ϕ(x))

)
×

×
(
Pm(x, ζ + iτ∇ϕ(x))− Pm(x, ζ − iτ∇ϕ(x))

))
=

=
1

2

(
|Pm(x, ζ + iτ∇ϕ(x))|2 −

∣∣Pm(x, ζ − iτ∇ϕ(x))
∣∣2) .

Hence

F (x, ζ, ζ, τ) =

=
1

2

(
|Pm(x, ζ + iτ∇ϕ(x))|2 −

∣∣Pm(x, ζ − iτ∇ϕ(x))
∣∣2) . (13.4.14)

By this equality we get

F (x, ξ, ξ, τ) =
1

2

(
|Pm(x, ξ + iτ∇ϕ(x))|2 −

∣∣Pm(x, ξ − iτ∇ϕ(x))
∣∣2) =

=
1

2

(
|Pm(x, ξ + iτ∇ϕ(x))|2 −

∣∣∣Pm(x, ξ + iτ∇ϕ(x))
∣∣∣2) = 0.

Hence, assuming that the coefficients of Pm(x,D) belong to C1
(
Ω
)
we

can apply Lemma 13.3.6. Using formula (13.3.42) and denoting by

G(x, ξ, ξ, τ) :=
1

2

n∑
k=1

∂2
xkηk

F (x, ξ + iη, ξ − iη, τ)|η=0, (13.4.15)

we have

2

∫
<
(
S(x,D, τ)vA(x,D, τ)v

)
dx =

∫
F (x,D,D, τ)[v, v]dx =

=

∫
G(x,D,D, τ)[v, v]dx,

(13.4.16)
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for every v ∈ C∞0 (Ω).
Now we calculate the expression on the right hand side in (13.4.15). Al-

though the calculation is elementary, let us perform it in detail. We have

∂ηk
1

2

(
|Pm(x, ξ + iη + iτ∇ϕ(x))|2−

−
∣∣Pm(x, ξ + iη − iτ∇ϕ(x))

∣∣2)
|η=0

=

= ∂ηk
1

2

(
|Pm(x, ξ + iη + iτ∇ϕ(x))|2−

− |Pm(x, ξ − iη + iτ∇ϕ(x))|2
)
|η=0

=

= 2<
(
−iPm(x, ξ + iτ∇ϕ(x))P

(k)
m (x, ξ + iτ∇ϕ(x))

)
.

(13.4.17)

Set for short
ζ = ξ + iτ∇ϕ(x)

and let us differentiate what obtained in (13.4.17) w.r.t. xk. By (13.4.15) we
get

G(x, ξ, ξ, τ) =

= τ
n∑

j,k=1

∂2
xjxk

ϕ(x)P (j)
m (x, ζ)P

(k)
m (x, ζ)+

+ =

(
n∑
k=1

Pm,k(x, ζ)P
(k)
m (x, ζ)

)
+

+ =

[
Pm(x, ζ)

(
n∑
k=1

P
(k)
m,k(x, ζ)− iτ

n∑
j,k=1

P
(k,j)
m (x, ζ)∂2

xjxk
ϕ(x)

)]
.

(13.4.18)

Let us observe that we have

Pm(x, ξ + iτ∇ϕ) = 0 ⇒

⇒ G(x, ξ, ξ, τ) =
i

2

{
Pm(x, ξ + iτ∇ϕ), Pm(x, ξ + iτ∇ϕ)

}
,

(13.4.19)

where {·, ·} is the Poisson bracket defined in (13.4.9). In order to check
(13.4.19) it suffices to develop the Poisson bracket in (13.4.19), and to no-
tice that the third term on the right hand side in (13.4.18) vanishes when
Pm(x, ξ + iτ∇ϕ(x)) = 0.
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Let us notice that G(x, ξ, τ) is a homogeneous polynomial of degree 2m−1
in the variables (ξ, τ). However, we will be interested in more precise infor-
mation about the differential quadratic form G(x,D,D, τ) or, equivalently
on its symbol G(x, ζ, ζ, τ), to this end we prove

Proposition 13.4.1. Let Pm(x,D) the differential operator

Pm(x,D) =
∑
|α|=m

aα(x)Dα,

where aα ∈ C1
(
Ω,C

)
, for |α| = m. Let F (x, ζ, ζ, τ) be defined by (13.4.14).

Then there exists a differential quadratic form G
(
x,D,D, τ

)
such that

∫
F
(
x,D,D, τ

)
[v, v]dx =

∫
G
(
x,D,D, τ

)
[v, v]dx. (13.4.20)

Moreover

G
(
x,D,D, τ

)
=

2m−1∑
h=0

τhG(h)
(
x,D,D

)
, (13.4.21)

where G(h)
(
x,D,D

)
is a differential quadratic form which has double order

(2m− h− 1;m), for h = 0, 1 · · · , 2m− 1.
If the coefficients aα, for |α| = m, are real valued functions then

(13.4.20) continues to hold true, but instead of (13.4.21) we have

G
(
x,D,D, τ

)
= τ

2m−2∑
h=0

τhG(h)
(
x,D,D

)
, (13.4.22)

where G(h)
(
x,D,D

)
is a differential quadratic form which has double order

(2m− h− 2;m), h = 0, · · · , 2m− 2.
In any case G(x, ξ, ξ, τ) is given by (13.4.18).

Proof. By the Taylor formula we get

Pm(x, ζ + iτ∇ϕ(x)) =
m∑
k=0

τ kqm−k(x, ζ), ∀ζ ∈ Cn, (13.4.23)

where, for k = 0, 1, · · · ,m, qm−k(x, ζ) are polynomials in the variable ζ of
degree m−k. Moreover the coefficients of qm−k(x, ζ) are of class C1

(
Ω
)
. We

have

|Pm(x, ζ + iτ∇ϕ(x))|2 =
m∑

k,j=0

τ k+jqm−k(x, ζ)qm−j(x, ζ).
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Hence, by (13.4.14) we get

F
(
x, ζ, ζ, τ

)
=

m∑
k,j=0

τ k+jFkj
(
x, ζ, ζ

)
,

where, for j, k = 1, · · · ,m

Fkj
(
x, ζ, ζ

)
= qm−k(x, ζ)qm−j(x, ζ)− qm−k(x, ζ)qm−j(x, ζ). (13.4.24)

Each of the forms Fkj has double order (2m− (k + j);m), furthermore by
(13.4.24), since q00 has degree 0, we have

Fmm
(
x, ζ, ζ

)
= 0, ∀ζ ∈ Cn. (13.4.25)

Moreover

Fkj (x, ξ, ξ) = 0, ∀ξ ∈ Rn

and by Lemma (13.3.6) – case (b) – we have that, for j, k = 1, · · · ,m, where
either j or k are different from m, there exist a differential quadratic form
Gkj which have double order (2m− (k + j)− 1;m) and satisfying

∫
Fkj
(
x,D,D

)
[v, v]dx =

∫
Gkj

(
x,D,D

)
[v, v]dx, ∀v ∈ C∞0 (Ω),

of course, since (13.4.25) holds, we may choose

Gmm ≡ 0.

Therefore, by the last obtained equality and setting

G(h)
(
x,D,D

)
=
∑
k+j=h

Gkj

(
x,D,D

)
, h = 1, · · · , 2m− 1,

G
(
x,D,D, τ

)
[v, v] =

2m−1∑
h=0

τhG(h)
(
x,D,D

)
[v, v],

we have that G(h) is a differential quadratic form which has double order
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(2m− h− 1;m) and∫
F
(
x,D,D, τ

)
[v, v]dx =

m∑
k,j=0

τ k+j

∫
Fkj
(
x,D,D

)
[v, v]dx =

=
m∑

k,j=0

τ k+j

∫
Gjk

(
x,D,D

)
[v, v]dx =

=
2m−1∑
h=0

τh
∫
G(h)

(
x,D,D

)
[v, v]dx =

=

∫
G
(
x,D,D, τ

)
[v, v]dx.

(13.4.26)

If the coefficients of Pm(x,D) are real–valued then also the coeffi-
cients of the polynomials qj(x, ζ) in (13.4.23) are real–valued and (13.4.24)
can be written as

Fkj
(
x, ζ, ζ

)
= qm−k(x, ζ)qm−j(x, ζ)− qm−k(x, ζ)qm−j(x, ζ). (13.4.27)

Hence, besides (13.4.25), we have

F00

(
x, ζ, ζ

)
= 0, ∀ζ ∈ Cn. (13.4.28)

Therefore we have

F
(
x, ζ, ζ, τ

)
= τ

2m−2∑
h=0

τhF (h)
(
x, ζ, ζ

)
,

where
F (h)

(
x, ζ, ζ

)
=

∑
k+j=h+1

Fkj
(
x, ζ, ζ

)
.

Hence F (h), for h = 0, · · · , 2m−2, has double order (2m−h−1;m). Therefore
by applying Lemma (13.3.6) – case (a) – there exist G(h)

(
x,D,D

)
, differ-

ential quadratic forms which have double order (2m − h − 2;m − 1), such
that

∫
F (h)

(
x,D,D

)
[v, v]dx =

∫
G(h)

(
x,D,D

)
[v, v]dx, ∀v ∈ C∞0 (Ω),

and setting

G
(
x,D,D, τ

)
[v, v] = τ

2m−2∑
h=0

τhG(h)
(
x,D,D

)
[v, v]
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we get ∫
F
(
x,D,D, τ

)
[v, v]dx =

∫
G
(
x,D,D, τ

)
[v, v]dx.

�

Now, we broadly outline the main ideas that are involved in proving a
Carleman estimate. We come back, then, to the third integral in (13.4.12).
Let x0 ∈ Ω we have from (13.4.16) and (13.3.19),

2

∫
<
(
S(x,D, τ)vA(x,D, τ)v

)
dx =

∫
G(x,D,D, τ)[v, v]dx =

=

∫
G(x0, D,D, τ)[v, v]dx+

+

∫ (
G(x,D,D, τ)−G(x0, D,D, τ)

)
[v, v]dx =

=
1

(2π)n

∫
G(x0, ξ, ξ, τ) |v̂(ξ)|2 dξ+

+

∫ (
G(x,D,D, τ)−G(x0, D,D, τ)

)
[v, v]dx︸ ︷︷ ︸

R

.

(13.4.29)

The main idea that we will follow consits essentially in what follows:

(a) Choice of ϕ. The choice of ϕ will be made so that we have

Pm(x, ξ + iτ∇ϕ(x)) = 0 ⇒
⇒ G(x, ξ, ξ, τ) > 0, (ξ, τ) ∈ Rn × R \ (0, 0), τ > 0

(13.4.30)

hence, by the homogeneity of G w.r.t. (ξ, τ) we get

Pm(x, ξ + iτ∇ϕ(x)) = 0 ⇒

⇒ G(x, ξ, ξ, τ) ≥ C
(
|ξ|2 + τ 2

)m− 1
2 , ∀x ∈ Ω

(13.4.31)

for every (ξ, τ) ∈ Rn+1, τ > 0.

(b) Next steps. Keeping in mind Lemma 13.1.1, we will exploit the local
character of a Carleman estimate to focus on the case where the support of
v (and hence of u) is sufficiently small. With this expedient, the term R
on the right-hand side in (13.4.29) can be treated as a kind of rest and can be
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efficiently estimated from below by simultaneously exploiting the continuity
of the coefficients of the quadratic form G(x,D,D, τ) and Proposition 13.4.1.
In coarse words, where Pm(x, ξ+iτ∇ϕ(x)) = 0 (13.4.30) is used and where
Pm(x, ξ+iτ∇ϕ(x)) 6= 0 (so where one will not be able to exploit the property
(13.4.30)) we will exploit the specific character of the operator Pm

Remarks.
1. Let us notice that if Pm(x0, ξ + iτ∇ϕ(x0)) has some zero of multiplicity
larger than 1 in (ξ0, τ0) 6= (0, 0), then (13.4.30) cannot be true. As a matter
of fact in this case we have

P (j)
m (x0, ξ0 + iτ0∇ϕ(x0)) = 0, j = 1, , · · · , n,

hence by (13.4.18) we have G(x0, ξ0, ξ0, τ0) = 0.

2. Let us notice that if the coefficients of Pm(x,D) are constant, then we
have

i

2τ

{
Pm(x, ξ + iτ∇ϕ(x)), Pm(x, ξ + iτ∇ϕ(x))

}
=

=
1

τ
G(x, ξ, ξ, τ) =

=
n∑

j,k=1

∂2
xjxk

ϕ(x)P (j)
m (x, ξ + iτ∇ϕ(x))P

(k)
m (x, ξ + iτ∇ϕ(x)).

(13.4.32)

3. Operators (13.4.10a), (13.4.10b) are the "first-order approximations" re-
spectively, of the symmetric and the antisymmetric parts of the operator
pm(x,D, τ). Let us examine this issue in more detail. Let us suppose that
the operator Pm(x,D) has very regular coefficients, say C∞, and let us write
pm(x,D, τ) as follows

pm(x,D, τ) =
∑

|α|+j=m

cα,j(x)τ jDα = τm
∑

|α|+j=m

cα,j(x)
(
τ−1D

)α
.

Let us consider the formal adjoint of pm(x,D, τ) i.e. the operator p?m(x,D, τ)
such that

∫
(pm(x,D, τ)vwdx =

∫
v
(
p?m(x,D, τ)w

)
dx, ∀u,w ∈ C∞0 (Ω).

We have, integrating by parts,
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p?m(x,D, τ)v = τm
∑

|α|+j=m

(
τ−1D

)α
(cα,jv) =

∑
|α|+j=m

τ jDα (cα,jv) .

On the other hand

pm(x,D, τ) =
∑

|α|+j=m

cα,jτ
jDα.

Hence we have

(p?m(x,D, τ)− pm(x,D, τ)) v =

=
1

i

∑
|α|+j=m−1

τ j
n∑
k=1

(
α

ek

)
∂xkcα,j(x)Dα−ekv+

+ rm−2(x,D, τ)v,

(13.4.33)

where
rm−2(x,D, τ)v =

∑
|α|+j≤m−2

τ j c̃αj(x)Dαv

and c̃αj are suitable coefficients. By expressing (13.4.33) by means of the
symbols of the operator, we have

p?m(x, ξ, τ) = pm(x, ξ, τ) +
1

i

n∑
k=1

p
(j)
m,j(x, ξ, τ) + rm−2(x, ξ, τ). (13.4.34)

Relationship (13.4.33) and (13.4.34) expresses in a precise manner that pm(x,D, τ)
approximates p?m(x,D, τ) to the first order.

4. It can be noticed that by spreading the square in (13.4.12) in a standard
way one would leads to conclusions not unlike those seen above, in particular,
with regard to (13.4.18). Here we give a brief mention referring the inter-
ested reader to [50, Ch. 4]. We warn, however, that this approach requires
generally, assumptions of greater regularity on the coefficients of Pm(x,D)
than we will make in this Chapter.

Set

s(x,D, τ) =
1

2
(pm(x,D, τ) + p?m(x,D, τ)) ,

a(x,D, τ) =
1

2
(pm(x,D, τ)− p?m(x,D, τ)) .
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We have trivially

pm(x,D, τ) = s(x,D, τ) + a(x,D, τ). (13.4.35)

Denoting by p, s and a, respectively, pm(x,D, τ), s(x,D, τ), a(x,D, τ) and
denoting by 〈·, ·〉 the scalar product in L2(Ω,C), we have:

‖p(v)‖2
L2(Ω) = 〈p(v), p(v)〉 =

= 〈(s+ a)(v), (s+ a)(v)〉 =

= ‖s(v)‖2
L2(Ω) + ‖a(v)‖2

L2(Ω) + 2<〈s(v), a(v)〉.
(13.4.36)

Let us note that, denoting by

[s, a] = sa− as,

the commutator of a and s and taking into account that

s? = s, a? = −a,

we have

2<〈s(v), a(v)〉 = 〈a(v), s(v)〉+ 〈s(v), a(v)〉 =

= 〈s?a(v), v〉+ 〈a?s(v), v〉 =

= 〈sa(v), v〉 − 〈as(v), v〉 =

= 〈[s, a](v), v〉.

(13.4.37)

Now, by (13.4.36) we have

∫
|pm(x,D, τ)v|2 dx =

∫
|s(x,D, τ)v|2 dx+

∫
|a(x,D, τ)v|2 dx+

+ 2

∫
<
(
s(x,D, τ)va(x,D, τ)v

)
dx.

(13.4.38)

this, by (13.4.37), can be written as∫
|pm(x,D, τ)v|2 dx =

∫
|s(x,D, τ)v|2 dx+

∫
|a(x,D, τ)v|2 dx+

+ 2

∫
([s(x,D, τ), a(x,D, τ)] v) vdx.

(13.4.39)

Now let us compare the integrals
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2

∫
<
(
S(x,D, τ)vA(x,D, τ)v

)
dx, 2

∫
<
(
s(x,D, τ)va(x,D, τ)v

)
dx

which occur, respectively, as the third term on the right hand side in (13.4.12)
and the third term on the right hand side in (13.4.38).

Set

R(x,D, τ) =
1

2

(
1

i

n∑
k=1

p
(j)
m,j(x,D, τ) + rm−2(x,D, τ)

)
,

we have

s(x,D, τ) = S(x,D, τ)+R(x,D, τ) and a(x,D, τ) = S(x,D, τ)−R(x,D, τ)

then

2<
(
s(x,D, τ)va(x,D, τ)v

)
= 2<

(
S(x,D, τ)vA(x,D, τ)v

)
−

− q(x,D,D, τ)[v, v]− |R(x,D, τ)v|2 ,

where

q(x,D,D, τ) = 2<
(
S(x,D, τ)vR(x,D, τ)v −R(x,D, τ)vA(x,D, τ)v

)
.

Recalling (13.4.10a) and (13.4.10b) we get

q(x,D,D, τ)[v, v] = q1(x,D,D, τ)[v, v] + q2(x,D,D, τ)[v, v],

where
q1(x,D,D, τ)[v, v] = 2<

(
pm(x,D, τ)vR(x,D, τ)v

)
and

q2(x,D,D, τ)[v, v] =

= <
(
pm(x,D, τ)vR(x,D, τ)v −R(x,D, τ)v

(
pm(x,D, τ)v

))
= 0.

Therefore

2<
(
s(x,D, τ)va(x,D, τ)v

)
=

= 2<
(
S(x,D, τ)vA(x,D, τ)v

)
−

− 2<
(
pm(x,D, τ)vR(x,D, τ)v

)
− |R(x,D, τ)v|2
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and by (13.4.16) we have

2

∫
<
(
s(x,D, τ)va(x,D, τ)v

)
dx =

=

∫
G(x,D,D, τ)[v, v]dx−

− 2<
∫ (

pm(x,D, τ)vR(x,D, τ)v
)
dx−

−
∫
|R(x,D, τ)v|2 dx.

(13.4.40)

This relationship allows (see Exercise subsequent to the proof of Theorem
13.5.1) to consider equivalent the approach we are following with the one
outlined in this Remark (of course, when the coefficients of the operator are
sufficiently regular). �

We conclude this Section with some lemma that will be useful later on.

Lemma 13.4.2. Let ϕ ∈ C∞
(
Ω
)
. Then for every m ∈ N0 there exists a

constant C > 1 such that

C−1
∑
|α|≤m

τ 2(m−|α|) |Dα (eτϕu)|2 ≤
∑
|α|≤m

τ 2(m−|α|) |Dαu|2 e2τϕ ≤

≤ C
∑
|α|≤m

τ 2(m−|α|) |Dα (eτϕu)|2 ,
(13.4.41)

for every u ∈ C∞
(
Ω
)
and for every τ ≥ 1.

Proof. Both the inequalities are proved easily by means of Leibniz for-
mula. Here we limit ourselves to prove

∑
|α|≤m

τ 2(m−|α|) |Dαu|2 e2τϕ ≤ C
∑
|α|≤m

τ 2(m−|α|) |Dα (eτϕu)|2 . (13.4.42)

We use the induction principle. If m = 0, then (13.4.42) is trivial. Let us
suppose that∑

|α|≤m

τ 2(m−|α|) |Dαu|2 e2τϕ ≤ Cm
∑
|α|≤m

τ 2(m−|α|) |Dα (eτϕu)|2 ,

where Cm ≥ 1 and we have
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∑
|α|≤m+1

τ 2(m+1−|α|) |Dα (eτϕu)|2 =
∑

|α|=m+1

|Dα (eτϕu)|2 +

+ τ 2
∑
|α|≤m

τ 2(m−|α|) |Dα (eτϕu)|2 ≥

≥
∑

|α|=m+1

|Dα (eτϕu)|2 +

+ C−1
m

∑
|α|≤m

τ 2(m+1−|α|) |Dαu|2 e2τϕ.

(13.4.43)

Let δ ∈ (0, 1) be to choose. Using the Leibniz formula we have, for τ ≥ 1,

∑
|α|=m+1

|Dα (eτϕu)|2 ≥ δ
∑

|α|=m+1

|Dα (eτϕu)|2 ≥

≥ δ
∑

|α|=m+1

|Dαu|2 e2τϕ−

− δC̃m
∑
|α|≤m

τ 2(m+1−|α|) |Dαu|2 e2τϕ,

(13.4.44)

where C̃m ≥ 1 is a suitable constant depending on m. By (13.4.43) and
(13.4.44) we get

∑
|α|≤m+1

τ 2(m+1−|α|) |Dα (eτϕu)|2 ≥ δ
∑

|α|=m+1

|Dαu|2 e2τϕ+

+
(
C−1
m − δC̃m

) ∑
|α|≤m

τ 2(m+1−|α|) |Dαu|2 e2τϕ.

Now, we choose δ = 1

2CmC̃m
and we get

∑
|α|≤m+1

τ 2(m+1−|α|) |Dαu|2 e2τϕ ≤ 2Cm
∑

|α|≤m+1

τ 2(m+1−|α|) |Dα (eτϕu)|2 ,

which concludes the proof.�
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Lemma 13.4.3. Let ϕ ∈ C∞
(
Ω
)
. Then for each m ∈ N0 there exists a

constant C > 1 such that for every v ∈ C∞0 (Ω) and for every τ ≥ 1 we have

C−1
∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx ≤

∫ (
|ξ|2 + τ 2

)m |v̂(ξ)|2 dξ ≤

≤ C
∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx.

(13.4.45)

Proof. We start with the first inequality in (13.4.45). By Lemma 13.4.2
and the Parseval identity we have

∑
|α|≤m

∫
τ 2(m−|α|) |Dαv|2 dx =

1

(2π)n

∫ ∑
|α|≤m

τ 2(m−|α|) |ξα|2 |v̂(ξ)|2 dξ ≤

≤ C

∫ (
|ξ|2 + τ 2

)m |v̂(ξ)|2 dξ.

Concerning the second inequality in (13.4.41), we have similarly∫ (
|ξ|2 + τ 2

)m |v̂(ξ)|2 dξ =
m∑
k=0

(
m

k

)
τ 2(m−k)

∫
|ξ|2k |v̂(ξ)|2 dξ ≤

≤ 2m
m∑
k=0

τ 2(m−k)

∫ ∑
|α|=k

|ξα|2 |v̂(ξ)|2 dξ =

= 2m
∫ ∑
|α|≤m

τ 2(m−|α|) |ξα|2 |v̂(ξ)|2 dξ =

= 2m(2π)n
∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx.

�

Lemma 13.4.4. Let us assume that the coefficients of operator (13.4.3) be-
long to C0

(
Ω
)
. Let ϕ ∈ C∞

(
Ω
)
and let pm(x,D, τ) be the operator defined

by (13.4.4). Then for every ε > 0 there exists δ > 0 such that∣∣∣∣ 1

(2π)n

∫
|pm(x0, ξ, τ)|2 |v̂(ξ)|2 dξ −

∫
|pm(x,D, τ)v|2 dx

∣∣∣∣ ≤
≤ ε

∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx,

(13.4.46)

for every v ∈ C∞0 (Bδ(x0) ∩ Ω), for every τ ∈ R and for every x0 ∈ Ω.
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Proof. Let x0 ∈ Ω. Let recall that by (13.4.5) we have

pm(x,D, τ) =
∑

|α|+j=m

τ jbαj(x)Dα, (13.4.47)

by the assumptions on ϕ and on the coefficients of Pm(x,D), we have
bαj ∈ C0

(
Ω
)
, for any α and j such that |α|+ j = m.

Let ε > 0 and δ > 0 be such that for any α and j satisfying |α|+ j = m
we have

|bαj(x)− bαj(x0)| < ε, ∀x ∈ Bδ(x0) ∩ Ω

(δ indipendent of x0). We obtain

|pm(x,D, τ)v − pm(x0, D, τ)v| ≤

≤
∑

|α|+j=m

|τ |j |bαj(x)− bαj(x0)| |Dαv| ≤

≤ Cε
∑

|α|+j=m

|τ |j |Dαv| , ∀x ∈ Bδ(x0) ∩ Ω.

(13.4.48)

On the other hand

|pm(x,D, τ)v| ≤ C
∑

|α|+j=m

|τ |j |Dαv| , ∀x ∈ Ω (13.4.49)

Now, taking into account the elementary inequality∣∣|z|2 − |w|2∣∣ ≤ (|z|+ |w|) |z − w|, ∀z, w ∈ C,

we have by (13.4.48) and (13.4.49), for every x ∈ Bδ(x0) ∩ Ω,

∣∣|pm(x,D, τ)v|2 − |pm(x0, D, τ)v|2
∣∣ ≤ Cε

∑
|α|≤m

τ 2(m−|α|) |Dαv|2 . (13.4.50)

Therefore, for every v ∈ C∞0 (Bδ(x0) ∩ Ω)

1

(2π)n

∫
|pm(x0, ξ, τ)|2 |v̂(ξ)|2 dξ −

∫
|pm(x,D, τ)v|2 dx =

=

∫ (
|pm(x0, D, τ)v|2 − |pm(x,D, τ)v|2

)
dx ≤

≤ Cε
∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx,

(13.4.51)
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and similarly, for every v ∈ C∞0 (Bδ(x0) ∩ Ω),

1

(2π)n

∫
|pm(x0, ξ, τ)|2 |v̂(ξ)|2 dξ −

∫
|pm(x,D, τ)v|2 dx ≥

≥ −Cε
∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx.

(13.4.52)

Finally (13.4.51) and (13.4.52) implies (13.4.46). �

13.5 Carleman estimates for the elliptic opera-
tors

Let m ∈ N, and let Ω be a bounded open set of Rn. Let aα complex–valued
functions. We recall that the operator

P (x,D) =
∑
|α|≤m

aα(x)Dα, (13.5.1)

is elliptic in a point x0 if

Pm(x0, ξ) =
∑
|α|=m

aα(x0)ξα 6= 0, ∀ξ ∈ Rn \ {0}. (13.5.2)

We also say that P (x,D) is elliptic in Ω if (13.5.2) holds for every x0 ∈ Ω.
Let us note that if aα ∈ C0

(
Ω,C

)
, for |α| = m, the ellipticity condition for

the operator P (x,D) is equivalent to the existence of a constant λ > 0 such
that

|Pm(x, ξ)| ≥ λ |ξ|m , ∀ξ ∈ Rn, ∀x ∈ Ω. (13.5.3)

For the sake of brevity, in the proof of Theorem below, for an open ω ⊂ Ω
we will identify C∞0 (ω) with the function space

{u ∈ C∞0 (Ω) : supp u ⊂ ω} .

Theorem 13.5.1 (Carleman–Hörmander). Let ϕ ∈ C∞
(
Ω
)
be a real–

valued function which satisfies

∇ϕ(x) 6= 0, ∀x ∈ Ω. (13.5.4)

Let P (x,D) be an operator of order m whose coefficients belong to L∞(Ω,C).
Let us assume that the coefficients of the principal part Pm(x,D) belong
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to C1
(
Ω,C

)
. Let us suppose that P (x,D) satisfies the ellipticity condition

(13.5.3) and that the following condition is satisfied:

(F) If 

Pm(x, ξ + iσ∇ϕ(x)) = 0,

x ∈ Ω,

(ξ, σ) ∈ Rn+1 \ {(0, 0)},

(13.5.5)

then
i

2σ

{
Pm(x, ξ + iσ∇ϕ(x)), Pm(x, ξ + iσ∇ϕ(x))

}
> 0, (13.5.6)

where {·, ·} is the Poisson bracket defined in (13.4.9).

Then there exist constants C and τ0 such that

∑
|α|≤m

τ 2(m−|α|)−1

∫
|Dαu|2 e2τϕdx ≤ C

∫
|P (x,D)u|2 e2τϕdx, (13.5.7)

for every u ∈ C∞0 (Ω) and for every τ ≥ τ0.
Moreover C and τ0 depend on λ, on the L∞(Ω,C) norms of aα, |α| ≤ m,

on the L∞(Ω,C) norms of ∇aα, |α| = m, and on the moduli of continuity of
∇aα, for |α| = m.

Remark 1. Let us notice that requiring that (ξ, σ) 6= (0, 0) in (13.5.5) is
equivalent to require that both ξ and σ are different from zero. As a matter of
fact, if ξ = 0 then, by Pm(x, ξ+iσ∇ϕ(x)) = 0, we have (iσ)mPm(x,∇ϕ(x)) =
0 in addition, since Pm(x,∇ϕ(x)) 6= 0 and since Pm(x,D) is elliptic and
∇ϕ(x) 6= 0, we have σ = 0. Similarly, if σ = 0 by the ellipticity of Pm(x,D)
we have ξ = 0. �

Remark 2. Taking into account Remark 2 of Section 13.4, if the coef-
ficients of Pm(x,D) are constants (let us rename it Pm(D)), condition (F)
become:

((F) – constant coefficients)
If 

Pm(ξ + iσ∇ϕ(x)) = 0,

(ξ, σ) ∈ Rn+1 \ {(0, 0)},
(13.5.8)



612 Chapter 13. Carleman estimates and the Cauchy problem I

then
n∑

j,k=1

∂2
xjxk

ϕ(x)P (j)
m (ξ + iτ∇ϕ(x))P

(k)
m (ξ + iτ∇ϕ(x)) > 0.

In particular, if the Hessian matrix of ϕ is positive definite then (F) –
constant coefficients is satisfied. �

Proof of Theorem 13.5.1.
Let u ∈ C∞0 (Ω), set

v = e−τϕu.

As observed in the previous Section, we have

eτϕPm(x,D)u = eτϕPm(x,D)
(
e−τϕv

)
= Pm(x,D + iτ∇ϕ(x))v (13.5.9)

and, denoting by pm(x,D, τ) the operator whose symbol is Pm(x, ξ+iτ∇ϕ(x)),
by (13.4.8) we get ∫

|Pm(x,D + iτ∇ϕ(x))v|2 dx ≥

≥ 1

2

∫
|pm(x,D, τ)v|2 dx−

− C1

∑
|α|≤m−1

τ 2(m−|α|)−2

∫
|Dαv|2 dx,

(13.5.10)

where C1 depends by the L∞ norms of the coeifficients of Pm(x,D).
We now derive an appropriate estimate from below of the first term on

the right–hand side in (13.5.10).
By (13.4.12) and (13.4.16) we get (by multiplying both equalities by τ)

τ

∫
|pm(x,D, τ)v|2 dx ≥ 2τ

∫
<
(
S(x,D, τ)vA(x,D, τ)v

)
dx =

= τ

∫
G(x,D,D, τ)[v, v]dx,

(13.5.11)

where G(x,D,D, τ) has been defined in Proposition 13.4.1.
Let now x0 ∈ Ω be a fixed point. We may assume x0 = 0 ∈ Ω. We get
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τ

∫
G(x,D,D, τ)[v, v]dx = τ

∫
G(0, D,D, τ)[v, v]dx+

+ τ

∫ (
G(x,D,D, τ)−G(0, D,D, τ)

)
[v, v]dx =

=
τ

(2π)n

∫
G(0, ξ, ξ, τ) |v̂(ξ)|2 dξ + τR,

(13.5.12)

where

R =

∫ (
G(x,D,D, τ)−G(0, D,D, τ)

)
[v, v]dx.

By (13.4.21) we have

G
(
x,D,D, τ

)
=

2m−1∑
h=0

τhG(h)
(
x,D,D

)
, (13.5.13)

where
G(h)

(
x,D,D

)
[v, v] =

∑
(α,β)∈Λh

c
(h)
αβ (x)DαvDβv

and

Λh = {(α, β) ∈ Nn
0 : |α| ≤ m, |β| ≤ m, |α|+ |β| ≤ 2m− h− 1} ,

for h = 0, 1 · · · , 2m− 1 and, further, c(h)
αβ ∈ C0

(
Ω,C

)
for (α, β) ∈ Λh. Let ε

be a positive number that we will choose later and let ρ1 > 0 be such that

∣∣∣c(h)
αβ (x)− c(h)

αβ (0)
∣∣∣ < ε, ∀x ∈ Bρ1 ∩ Ω, (α, β) ∈ Λh, h = 0, 1 · · · , 2m− 1.

We have, for every τ ≥ 1 and for every x ∈ Bρ1 ∩ Ω,∣∣τh+1
(
G(h)

(
x,D,D

)
−G(h)

(
0, D,D

))
[v, v]

∣∣ ≤
≤

∑
(α,β)∈Λh

τh+1
∣∣∣c(h)
αβ (x)− c(h)

αβ (0)
∣∣∣ |Dαv|

∣∣∣Dβv
∣∣∣ ≤

≤ ε
∑

(α,β)∈Λh

τ 2m−(|α|+|β|) |Dαv|
∣∣Dβv

∣∣ =

= ε
∑

(α,β)∈Λh

(
τm−|α| |Dαv|

) (
τm−|β|

∣∣Dβv
∣∣) ≤

≤ Cε
∑
|α|≤m

τ 2(m−|α|) |Dαv|2 ,
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where C depends on m only. Let us notice that in the second inequality we
have exploited that, for τ ≥ 1,

(α, β) ∈ Λh ⇒ h+ 1 ≤ 2m− (|α|+ |β|)⇒ τh+1 ≤ τ 2m−(|α|+|β|).

Therefore, for every x ∈ Bρ1 ∩ Ω,

∣∣τ (G (x,D,D, τ)−G (0, D,D, τ)) [v, v]
∣∣ ≤ Cε

∑
|α|≤m

τ 2(m−|α|) |Dαv|2 .

Hence, by Lemma 13.4.3 we have for any τ ≥ 1,

|τR| ≤ Cε
∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx ≤

≤ Cε

∫ (
|ξ|2 + τ 2

)m |v̂(ξ)|2 dξ,
(13.5.14)

for every v ∈ C∞0 (Bρ1 ∩ Ω),
Now, by (13.5.11), (13.5.12) and (13.5.14) we get

τ

∫
|pm(x,D, τ)v|2 dx ≥ τ

(2π)n

∫
G(0, ξ, ξ, τ) |v̂(ξ)|2 dξ−

− Cε
∫ (
|ξ|2 + τ 2

)m |v̂(ξ)|2 dξ,
(13.5.15)

for every v ∈ C∞0 (Bρ1 ∩ Ω) and for every τ ≥ 1.

Now we prove the following

Claim.
Set

N = ∇ϕ(0),

there exist two positive constants C1 and C2 such that

C1 |ξ + iσN |2m ≤
≤ σG(0, ξ, ξ, σ) + C2 |Pm (0, ξ + iσN)|2 , ∀(ξ, σ) ∈ Rn+1.

(13.5.16)

Proof of the Claim. Let us denote

Sn =
{

(ξ, σ) ∈ Rn+1 : |ξ + iσN | = 1
}
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and
η =

ξ

|ξ + iσN |
, µ =

σ

|ξ + iσN |
,

let us note that (13.4.18) implies, by homogeneity, that condition (F) is
equivalent to the following one

(F′) If 
Pm(0, η + iµN) = 0,

(η, µ) ∈ Sn,
(13.5.17)

then (recall Remark 1)
µG(0, η, η, µ) > 0.

Furthermore, (13.5.16) is equivalent to

C1 ≤ µG(0, η, η, µ) + C2 |Pm (0, η + iµN)|2 , ∀(η, µ) ∈ Sn. (13.5.18)

Now, by (13.5.3), we have(
µG(0, η, η, µ) + |Pm (0, η + iµN)|2

)
|µ=0
≥ λ, for |η| = 1.

By the compactness of Sn there exists µ0 > 0 such that

µG(0, η, η, µ) + |Pm (0, η + iµN)|2 ≥ λ

2
, (13.5.19)

for every (η, µ) ∈ Sn ∩ {|µ| ≤ µ0}.
Let us denote by K the compact set

K = Sn ∩ {|µ| ≥ µ0}

(of course, if K = ∅ the proof would be concluded). Since (F′) gives trivially

|Pm (0, η + iµN)| = 0, (η, µ) ∈ K =⇒ µG(0, η, η, µ) > 0,

by Lemma 12.5.2 we have that there exists C > 0 such that

µG(0, η, η, µ) + C |Pm (0, η + iµN)|2 > 0, ∀(η, µ) ∈ K. (13.5.20)

By (13.5.19) and (13.5.20) we have

µG(0, η, η, µ) + (C + 1) |Pm (0, η + iµN)|2 > 0, ∀(η, µ) ∈ Sn (13.5.21)
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and (13.5.18) follows with

C1 = min
(η,µ)∈Sn

(
G(0, η, η, µ) + (C + 1) |Pm (0, η + iµN)|2

)
and

C2 = C + 1.

The proof of the Claim is concluded.

Now, we set

γ = min

{
1,min

Ω
|∇ϕ|

}
,

using (13.5.16) in (13.5.15) we get

τ

∫
|pm(x,D, τ)v|2 dx ≥ (2π)−nC1γ

2

∫ (
|ξ|2 + τ 2

)m |v̂(ξ)|2 dξ−

− (2π)−nC2

∫
|pm (0, ξ, τ)|2 |v̂(ξ)|2 dξ−

− Cε
∫ (
|ξ|2 + τ 2

)m |v̂(ξ)|2 dξ,

(13.5.22)

for every v ∈ C∞0 (Bρ1 ∩ Ω) and for every τ ≥ 1. By Lemma 13.4.4 there
exists ρ2 ≤ ρ1 such that for every v ∈ C∞0 (Bρ2 ∩ Ω) and for every τ ≥ 1 we
have

(2π)−n
∫
|pm(0, ξ, τ)|2 |v̂(ξ)|2 dξ ≤

∫
|pm(x,D, τ)v|2 dx+

+ Cε

∫ (
|ξ|2 + τ 2

)m |v̂(ξ)|2 dξ.
(13.5.23)

By (13.5.22) and (13.5.23) we have

τ

∫
|pm(x,D, τ)v|2 dx ≥

≥
(
(2π)−nC1γ

2 − Cε
) ∫ (

|ξ|2 + τ 2
)m |v̂(ξ)|2 dξ−

− (2π)−nC2

∫
|pm (x,D, τ) v|2 dx,

(13.5.24)

for every v ∈ C∞0 (Bρ2 ∩ Ω) . Now, let us choose

ε = ε0 :=
(2π)−nC1γ

2

2C
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and let us denote by ρ the value of ρ2 when ε = ε0. Moving the last integral
of (13.5.24) to the left–hand side and recalling Lemma 13.4.3, we have

C3τ

∫
|pm(x,D, τ)v|2 dx ≥ ε0C

−1
∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx, (13.5.25)

(C3 = 1 + (2π)−nC2) for every v ∈ C∞0 (Bρ ∩ Ω), for every τ ≥ 1.
At this point we use (13.4.8) and we have

C
∑

|α|≤m−1

τ 2(m−|α|)−1

∫
|Dαv|2 dx+

+ 2C3τ

∫
|Pm(x,D + iτ∇ϕ(x))v|2 dx ≥

≥ ε0C
−1
∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx,

(13.5.26)

for every v ∈ C∞0 (Bρ ∩ Ω) and for every τ ≥ 1. Now, in (13.5.26) we move
on the right–hand side the first term which is on the left–hand side and we
get

2C3τ

∫
|Pm(x,D + iτ∇ϕ(x))v|2dx ≥ ε0C

−1
∑
|α|=m

τ 2(m−|α|)
∫
|Dαv|2 dx+

+
∑

|α|≤m−1

τ 2(m−|α|) (C−1ε0 − Cτ−1
) ∫
|Dαv|2 dx,

for every v ∈ C∞0 (Bρ ∩ Ω) and for every τ ≥ 1. Hence, if τ ≥ τ0, where
τ0 = max{2C2ε−1

0 , 1}, we have

2C3τ

∫
|Pm(x,D + iτ∇ϕ(x))v|2dx ≥ ε0C

−1

2

∑
|α|≤m

τ 2(m−|α|)
∫
|Dαv|2 dx,

for every v ∈ C∞0 (Bρ ∩Ω) and for every τ ≥ τ0. By using Lemma 13.4.2 and
by recalling (compare with (13.4.2))

Pm(x,D + iτ∇ϕ(x))v = eτϕ(x)Pm(x,D)u,

we have
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∑
|α|≤m

τ 2(m−|α|)−1

∫
|Dαu|2 e2τϕdx ≤ C

∫
|Pm(x,D)u|2 e2τϕdx. (13.5.27)

Estimate (13.5.7) follows by Lemma 13.1.1 and by the comments made
at the beginning of the introduction to this Chapter. �

Exercise. Prove Theorem 13.5.1 (assuming C∞ coefficients in the prin-
cipal part) by employing decomposition (13.4.35) instead of decomposition
(13.4.11). [Hint: recall (13.4.40) and use

−2< (zw) ≥ −|z|2 − |w|2,

for z, w ∈ C]. ♣

13.5.1 Elliptic operators with Lipschitz continuous co-
efficients and the Cauchy problem

In Theorem 13.5.1 we have assumed that the coefficients of the principal
part are of class C1(Ω) and it turns out that the constants, C and τ0, in the
estimate (13.5.7) depend on the modulus of continuity of the gradients of
these coefficients. We will now see that with a relatively modest effort we can
prove a Carleman estimate for elliptic operators with Lipschitz continuous
coefficients in principal part. In this regard, it is useful to point out that
this assumption cannot be substantially reduced as has been shown in the
counterexamples of Mandache’s Mandache [54] and of Pl̆ıs [64].

For any x ∈ Rn and R > 0 let us denote by

QR(x) = {y ∈ Rn : |yj − xj| < R, j = 1, · · · , n} .

Let us introduce a special partition of unity.

Let ϑ0 ∈ C∞0 (R) satisfy

ϑ0(t) =


1, for |t| ≤ 1,

0, for |t| ≥ 3/2.

Let, further, 0 ≤ ϑ ≤ 1 such that

ϑ(x) = ϑ0(x1) · · ·ϑ0(xn),
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we have

ϑ(x) =


1, for x ∈ Q1(0),

0, for x ∈ Rn \Q3/2(0).

For any µ ≥ 1 and g ∈ Zn, let us denote

xg = g/µ

and
ϑg,µ(x) = ϑ(µ(x− xg)).

Hence, we have
suppϑg,µ ⊂ Q3/2µ(xg) ⊂ Q2/µ(xg)

and

|Dkϑg,µ| ≤ C1µ
k(χQ3/2µ(xg) − χQ1/µ(xg)), k = 0, 1, · · · ,m, (13.5.28)

where C1 ≥ 1 depends on n only.

For any g ∈ Zn, set

Ag = {g′ ∈ Zn | suppϑg′,µ ∩ suppϑg,µ 6= ∅},

then
card(Ag) depends only on n. (13.5.29)

Therefore we can define

ϑ̃µ(x) :=
∑
g∈Zn

ϑg,µ(x) ≥ 1, ∀x ∈ Rn. (13.5.30)

By (13.5.28), we get
|Dkϑ̃µ| ≤ C2µ

k, (13.5.31)

where C2 ≥ 1 depends on n only. Define

ηg,µ(x) = ϑg,µ(x)/ϑ̃µ(x), ∀x ∈ Rn,

we have thus

ηg,µ ≥ 0,

∑
g∈Zn ηg,µ = 1, in Rn,

supp ηg,µ ⊂ Q3/2µ(xg) ⊂ Q2/µ(xg),

|Dαηg,µ| ≤ C3µ
|α|χQ3/2µ(xg), ∀α ∈ Nn, 1 ≤ |α| ≤ m,

(13.5.32)
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where C3 ≥ 1 depends on n only.

Let m ∈ N and let

P (x,D) =
∑
|α|≤m

aα(x)Dα, (13.5.33)

be an elliptic operator. LetM0,M1, λ be positive constants and let us suppose
that

‖aα‖L∞(Q1) ≤M0, for |α| ≤ m, (13.5.34a)

|aα(x)− aα(y)| ≤M1|x− y|, ∀x, y ∈ Q1, for |α| = m, (13.5.34b)

|Pm(x, ξ)| ≥ λ |ξ|m , ∀ξ ∈ Rn, ∀x ∈ Q1. (13.5.34c)

Let ϕ ∈ C∞
(
Q1

)
and for x, y ∈ Q1, (ξ, σ) ∈ Rn+1 set

G(x, y; ξ, σ) =

=
n∑

j,k=1

∂2
xjxk

ϕ(x)P (j)
m (y, ξ + iσ∇ϕ(x))P

(j)
m (y, ξ + iσ∇ϕ(x)).

(13.5.35)

Theorem 13.5.2. Let us assume that operator (13.5.33) satisfies ellipticity
condition (13.5.34c) and that its coefficients satisfy conditions (13.5.34a) and
(13.5.34b). Moreover, let us assume that


Pm(0, ξ + iσ∇ϕ(0)) = 0,

(ξ, σ) ∈ Rn+1 \ {(0, 0)},
=⇒ G(0, 0; ξ, σ) > 0. (13.5.36)

Then there exist R ∈ (0, 1], δ0 ∈ (0, 1] C0 ≥ 1 and τ0 such that∑
|α|≤m

τ 2(m−|α|)−1

∫
|Dαu|2 e2τϕdx ≤ C0

∫
|Pm(δx,D)u|2 e2τϕdx, (13.5.37)

for every δ ∈ (0, δ0], for every u ∈ C∞0 (QR) and for every τ ≥ τ0.

Proof. Since |Pm(0, ξ+ iσ∇ϕ(0))|2 and (|ξ|2 + τ 2)G(0, 0; ξ, σ) are homo-
geneous polynomials of degree 2m, (13.5.36) is equivalent to the following
property: there exist positive constants C1 and C2 such that (Lemma 12.5.2)

C2 |Pm(0, ξ + iσ∇ϕ(0))|2 +
(
|ξ|2 + σ2

)
G(0, 0; ξ, σ) ≥
≥ C1

(
|ξ|2 + σ2

)m
.

(13.5.38)
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for every (ξ, σ) ∈ Rn+1).
Let us denote

H(x, y; ξ, σ) = C2 |Pm(y, ξ + iσ∇ϕ(x))|2 +
(
|ξ|2 + σ2

)
G(x, y; ξ, σ) (13.5.39)

and let us notice that H is a continuous function. Moreover, by (13.5.38) we
have trivially

H(0, 0; ξ, σ) ≥ C1, for all (ξ, σ) such that |ξ|2 + σ2 = 1.

Hence, the continuity of H implies that there exists R1 ∈ (0, 1] such that

H(x, y; ξ, σ) ≥ C1

2
, for all (ξ, σ) such that |ξ|2 + σ2 = 1,

for every x, y ∈ QR1
.

Therefore

C2 |Pm(y, ξ + iσ∇ϕ(x))|2 +
(
|ξ|2 + σ2

)
G(x, y; ξ, σ) ≥

≥ C1

2

(
|ξ|2 + σ2

)m
,

(13.5.40)

for every x, y ∈ QR1
. By the previuos inequality we have that for every

ỹ ∈ QR1
it occurs


Pm(ỹ, ξ + iσ∇ϕ(x)) = 0,

(ξ, σ) ∈ Rn+1 \ {(0, 0)}
=⇒ G(x, ỹ; ξ, σ) > 0. (13.5.41)

Now, for y ∈ QR1
fixed and δ ∈ (0, 1] to be chosen, let us consider the

operator with constant coefficients w.r.t. the variable x

Pm(δy,Dx) =
∑
|α|=m

aα(δy)Dα
x . (13.5.42)

Of course δy ∈ QR1
(as δ ∈ (0, 1]). Now, (13.5.41) (considered for ỹ = δy)

is nothing but (compare Remark 2 after Theorem 13.5.1) condition (F) of
Theorem 13.5.1. Hence there exist C3 > 0 e τ1 such that∑

|α|≤m

τ 2(m−|α|)−1

∫
|Dαu|2 e2τϕ(x)dx ≤

≤ C3

∫
|Pm(δy,D)u|2 e2τϕ(x)dx,

(13.5.43)
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for every u ∈ C∞0
(
QR1

)
and for every τ ≥ τ1. Moreover C3 > 0 and τ1 do

not depend neither on y ∈ QR1
nor on δ ∈ (0, 1].

We now use the partition of unity introduced above with

µ =
√
ετ , (13.5.44)

for τ ≥ τ (ε) := max {ε−1, τ1} where ε ∈ (0, 1] is to be chosen.
Let u ∈ C∞0

(
QR1

)
. By the first relation of (13.5.32) we have

u =
∑
g∈Zn

uηg,µ. (13.5.45)

Now we apply (13.5.43) (for y = xg ∈ QR1
). We have, for every τ ≥ τ (ε)

∑
|α|≤m

τ 2(m−|α|)−1

∫
|Dαu|2 e2τϕdx ≤

≤ c
∑
g∈Zn

∑
|α|≤m

τ 2(m−|α|)−1

∫
|Dα (uηg,µ)|2 e2τϕdx ≤

≤ cC3

∑
g∈Zn

∫
|Pm (δxg, D) (uηg,µ)|2 e2τϕdx,

(13.5.46)

where the constant c appearing in the second inequality, by (13.5.29), de-
pends on n only.

Now, let us estimate form above the last term on the right–hand side of
(13.5.46). We have

|Pm (δxg, D) (uηg,µ)|2 ≤ 2 |Pm (δx,D) (uηg,µ)|2 +

+ 2 |(Pm (δxg, D)− Pm (δx,D)) (uηg,µ)|2 .
(13.5.47)

In order to estimate the first term on the right–hand side in (13.5.47)
we notice that

Pm (δx,D) (uηg,µ) = ηg,µ
∑
|α|≤m

aα(δx)Dαu+

+
∑
|α|≤m

aα(δx)
∑
β<α

(
α

β

)
DβuDα−βηg,µ =

= ηg,µPm (δx,D)u+ P̃ (x,D, µ)u

(13.5.48)
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where we set

P̃ (x,D, µ)u =
∑
|α|≤m

aα(δx)
∑
β<α

(
α

β

)
DβuDα−βηg,µ.

Let us note that this operator has order m − 1. Moreover by (13.5.32) and
(13.5.34a) we get∣∣∣P̃ (x,D, µ)u

∣∣∣ ≤ CM0χQ2/µ(xg)

∑
|β|≤m−1

∣∣Dβu
∣∣µm−|β|. (13.5.49)

From (13.5.47), (13.5.49) and recalling (13.5.44) we have (for the first
term on the right we use the trivial inequality η2

g,µ ≤ ηg,µ)

|Pm (δx,D) (uηg,µ)|2 ≤ ηg,µ |Pm (δx,D)u|2 +

+ CM2
0χQ2/µ(xg)

∑
|α|≤m−1

(ετ)m−|α| |Dαu|2 . (13.5.50)

We now estimate the second term on the right–hand side in (13.5.47). Pro-
ceeding in a similar way as above, we have

|(Pm (δxg, D)− Pm (δx,D)) (uηg,µ)| ≤

≤
∑
|α|=m

|(aα(δx)− aα(δxg))| |Dα (uηg,µ)| =

= ηg,µ
∑
|α|=m

|(aα(δx)− aα(δxg))| |Dαu|+

+ CM0χQ2/µ(xg)

∑
|α|≤m−1

|Dαu|µm−|α|.

In order to estimate the second-to-last term, it must be taken into account
that the estimate has to be done in the support of ηg,µ. By (13.5.34b) we
get, therefore,

|(Pm (δxg, D)− Pm (δx,D)) (uηg,µ)|2 ≤

≤ CM2
1 ηg,µ

δ2

ετ

∑
|α|=m

|Dαu|2 +

+ CM2
0χQ2/µ(xg)

∑
|α|≤m−1

(ετ)m−|α| |Dαu|2 .

(13.5.51)

Now, we insert (13.5.50) and (13.5.51) into (13.5.47) and we get
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|Pm (δxg, D) (uηg,µ)|2 ≤ 2ηg,µ |Pm (δx,D)u|2 +

+ CM2
1 ηg,µ

δ2

ετ

∑
|α|=m

|Dαu|2 +

+ CM2
0χQ2/µ(xg)

∑
|α|≤m−1

(ετ)m−|α| |Dαu|2 .

Inserting the latter into (13.5.46) we obtain

∑
|α|≤m−1

τ 2(m−|α|)−1

∫
|Dαu|2 e2τϕdx+

1

τ

∑
|α|=m

∫
|Dαu|2 e2τϕdx ≤

≤ cC3

∫
|Pm (δx,D)u|2 e2τϕdx+

+ C4
δ2

ετ

∑
|α|=m

∫
|Dαu|2 e2τϕdx+

+ C5

∑
|α|≤m−1

∫
(ετ)m−|α| |Dαu|2 e2τϕdx,

where C4 depends on M1 only and C5 depends by M0 only. From which we
have

∑
|α|≤m−1

τ (m−|α|) (τm−|α|−1 − C5ε
m−|α|) ∫ |Dαu|2 e2τϕdx+

+
1

τ

(
1− C4

δ2

ε

) ∑
|α|=m

∫
|Dαu|2 e2τϕdx ≤

≤ cC3

∫
|Pm (δx,D)u|2 e2τϕdx.

(13.5.52)

Let us choose
ε = ε0 :=

1

2C5

,

δ ≤ δ0 :=

√
ε0

2C4

and by (13.5.52) we get∑
|α|≤m

τ 2(m−|α|)−1

∫
|Dαu|2 e2τϕdx ≤ 2cC3

∫
|Pm(δx,D)u|2 e2τϕdx, (13.5.53)



13.5. Carleman estimates for the elliptic operators 625

for every u ∈ C∞0
(
QR1

)
and for every τ ≥ τ (ε0). Estimate (13.5.37) is proved.

�

Remark. Let us notice that (reader check) by the change of variables
X = δx, (13.5.37) si become

∑
|α|≤m

τ 2(m−|α|)−1δm−|α|
∫
|Dαu|2 e2τϕ(δ−1X)dX ≤

≤ C0

∫
|Pm(X,D)u|2 e2τϕ(δ−1X)dX,

(13.5.54)

for every u ∈ C∞0 (QδR) and for every τ ≥ τ0. �

In the following Theorem we will apply estimate (13.5.54) to prove a
uniqueness result for the Cauchy problem.

Theorem 13.5.3. Let ψ ∈ C1
(
Q1

)
be real–valued function such that

∇ψ(0) 6= 0. (13.5.55)

Let P (x,D) be operator (13.5.33) and let us suppose that (13.5.34) holds true.
Let U ∈ Hm (Q1) satisfy

P (x,D)U = 0, in Q1,

U(x) = 0 in
{
x ∈ Q1 : ψ(x) > ψ(0)

}
.

(13.5.56)

Let us suppose that for every ξ ∈ Rn \ {0} we have

σ → Pm(0, ξ + iσ∇ψ(0)) has no real multiple roots . (13.5.57)

Then there exist a neighborhood U0 of 0 such that

U = 0 in U0. (13.5.58)

Remark. As it is easily checked, condition (13.5.57) can be expressed
equivalently as follows

Pm(0, ξ + iτ∇ψ(0)) = 0,

(ξ, τ) 6= (0, 0),

=⇒

=⇒
n∑
j=1

P (j)
m (0, ξ + iτ∇ψ(0))∂jψ(0) 6= 0.

(13.5.59)
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We further observe that if m = 2 and the coefficients of P2(x,D) are real
then the (13.5.57) is satisfied (see Example 4a, Section 12.5). �

Proof of Theorem 13.5.3.
It is not restrictive to assume ψ(0) = 0 and, since ∇ψ(0) 6= 0, we may

reduce to consider, up to isometries, the case where, for an appropriate r0 >
0, we have

{x ∈ Qr0 : ψ(x) = 0} =
{

(x′, f(x′)) : x′ ∈ Q′r0(0)
}
, (13.5.60)

(Q′r0 = (−r0, r0)n−1) where f ∈ C1(Q′r0), f(0) = |∇f(0)| = 0 and

{x ∈ Q1 : ψ(x) > 0} ∩Qr0 = {(x′, xn) ∈ Qr0 : xn < f(x′)} .

Let us notice that in this way condition (13.5.57) becomes.

σ → Pm(0, ξ − iσen) has no real multiple roots . (13.5.61)

Now we use Holmgren transformation introduced in (7.6.22), that is
we consider the transformation

Λ : Rn
x → Rn

y , x→ y = Λ(x′, xn) =

(
x′, xn +

A

2
|x′|2

)
, (13.5.62)

(recall that Λ is a diffeomorphism) where A > 0 satisfies

A >
∥∥∂2f

∥∥
L∞(B′r0 )

(13.5.63)

and where ∂2f is the Hessian matrix of f . Let us fix A that satisfies (13.5.63)
and we recall that, with this choice, the function

g(x′) = f(x′) +
A

2
|x′|2, (13.5.64)

is strictly convex and
g(0) = |∇g(0)| = 0. (13.5.65)

Let us denote by P̃ (y,Dy) the transformed operator of P (x,Dx) by mean of
Λ. Since

Pm(x, ξ) = im
∑
|α|=m

aα(x)ξα

we have (compare with (7.3.4))
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P̃m(y, η) = im
∑
|α|=m

aα(Λ−1(y))
(
(∂xΛ(x))t η

)α
|x=Λ−1(y)

. (13.5.66)

So the condition (13.5.61) is written (reader check)

for fixed ξ ∈ Rn \ {0},
P̃m(0, ξ − iσen) has no real multiple roots.

(13.5.67)

Moreover, (13.5.56) implies
P̃ (y,Dy)Ũ = 0, in Qr0 ,

Ũ(y) = 0 in {(x′, xn) ∈ Qr0 : xn < g(x′)} .
(13.5.68)

where Ũ(y) = U (Λ−1(y)). It turns out Ũ ∈ Hm (Qr0).
We agree from here on to omit " ˜ " from P and U , and to rename "x"

the variable "y". Let

h(xn) = −xn +
x2
n

2

(let us notice that h is strictly decreasing in 0 ≤ xn ≤ 1)
and

ϕ(x) = h(δ0x),

where δ0 is defined in Theorem 13.5.2. We have

∇ϕ(0) = −δ0en.

We have
∇ϕ(0) = −δ0en

and also, (13.5.67) implies that if ξ ∈ Rn \ {0} and

Pm(0, ξ + iσ∇ϕ(0)) = Pm(0, ξ − iσδ0en) = 0,

then

G(0, 0; ξ, σ) =

=
n∑

j,k=1

∂2
xjxk

ϕ(0)P (j)
m (0, ξ + iσ∇ϕ(0))P

(j)
m (0, ξ + iσ∇ϕ(0)) =

= δ2
0

∣∣P (n)
m (0, ξ + iσ∇ϕ(0))

∣∣2 = δ2
0

∣∣P (n)
m (0, ξ − iσδ0en)

∣∣2 > 0.
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Therefore the assumptions of Theorem 13.5.2 are satisfied. Then Carleman
estimate (13.5.54) holds. We may write such a Carleman estimate as (setting
δ = δ0)

∑
|α|≤m

τ 2(m−|α|)−1

∫
|Dαu|2e2τh(xn)dx ≤

≤ C

∫
|P (x,D)u|2 e2τh(xn)dx,

(13.5.69)

for every u ∈ C∞0
(
Qδ0R

)
and for every τ ≥ τ 0 for a certain τ 0 ≥ τ0. Set

r1 = min
{
r0, δ0R

}
and, for ρ > 0,

Eρ = {(x′, xn) ∈ Qr1 : g(x′) < xn < ρ} .

For the strict convexity of g and by (13.5.65), we have that there exists ρ1 > 0
such that

Eρ1 ⊂ Qr1 .

Let ρ2 ∈ (0, ρ1) Let η ∈ C∞ (R) be a function such that

0 ≤ η(xn) ≤ 1, ∀x ∈ R; η(xn) = 1, ∀xn ≤ ρ2; η(x) = 0, ∀xn ≥ ρ1.

Let us assume that

η(k)(xn) ≤ C (ρ1 − ρ2)−k .

By density, (13.5.54) holds for every u ∈ Hm
0 (Qr1), hence, in particular,

(13.5.54) holds for u(x) = U(x)η(xn). From now on, the proof is quite
standard, we present it for completeness. Since P (x,D)U = 0 in Qr1 we
have.

|P (x,D)(Uη)| ≤ CM0χR\(ρ2,ρ1)

∑
|α|≤m−1

(ρ1 − ρ2)−|α||DαU |

and, for any 0 < ρ < ρ2, by (13.5.54), we get
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e2τh(ρ)
∑
|α|≤m

τ 2(m−|α|)−1

∫
Eρ

|DαU |2 dx ≤

≤
∑
|α|≤m

τ 2(m−|α|)−1

∫
Eρ1

|Dα(Uη)|2 e2τh(xn)dx ≤

≤ C

∫
Eρ1

|P (x,D)(Uη)|2 e2τh(xn)dx ≤

≤ CM2
0 e

2τh(ρ2)
∑

|α|≤m−1

∫
Eρ1\Eρ2

(ρ1 − ρ2)−|α||DαU |dx,

for every τ ≥ τ 0. Hence∑
|α|≤m

τ 2(m−|α|)−1

∫
Eρ

|DαU |2 dx ≤

≤ CM2
0 e
−2τ(h(ρ)−h(ρ2))

∑
|α|≤m−1

∫
Eρ1\Eρ2

(ρ1 − ρ2)−|α||DαU |dx

for every τ ≥ τ 0. Passing to the limit as τ → +∞ which goes to infinity,
and and taking into account that h (ρ) − h (ρ2) > 0 we have U = 0 in
Qr1 ∩ {xn ≤ ρ}. Theorem is proved. �





Chapter 14

Carleman estimates and the
Cauchy problems II – Second
order operators

14.1 Introduction
In this Chapter we will consider the second-order operators whose principal
part (not necessarily elliptic) is given by

P2(x, ∂) =
n∑

j,k=1

gjk(x)∂2
xjxk

, (14.1.1)

where the matrix of coefficients
{
gjk(x)

}n
j,k=1

is a symmetric and invertible
matrix, whose entries are the real–valued functions gjk defined on a bounded
open set Ω ⊂ Rn, on which we will make appropriate regularity assumptions.
When we will refer to the symbol of the operator (14.1.1), here we will always
refer to the polynomial in the variable ξ

P2(x, ξ) =
n∑

j,k=1

gjk(x)ξjξk. (14.1.2)

We note that, with the notation for the derivatives used in the previous
Sections, operator (14.1.1) can be written

P2(x, ∂) = −
n∑

j,k=1

gjk(x)D2
xjxk

(14.1.3)

and so polynomial (14.1.2) is simply the symbol of operator (14.1.3) with
the sign changed. This abuse of notation will not create major problems,

631
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in particular, it will not create problems when we compare procedures and
results found in this Section with those in the previous sections.

The purpose of this Section is to derive the Carleman estimates in a more
direct fashion than the last two sections. This will allow us, in particular, to
write down explicitly the quadratic form G(x,D,D, τ) given by Proposition
(13.4.1) making it more easy to obtain estimates for the operators with C0,1

coefficients.

14.2 The case of the Laplace operator
The case of the Laplace operator will serve us somewhat as a model for more
general operators of type (14.1.1).

We begin by the following

Lemma 14.2.1 (The Rellich identity). Let β ∈ C0,1(Ω,Rn), β = (β1, · · · , βn)
and v ∈ C2(Ω), then

2(β · ∇v)∆v = div
(
2(β · ∇v)∇v − β|∇v|2

)
+

+ (div β)|∇v|2 − 2∂kβ
j∂jv∂kv, a.e. x ∈ Ω,

(14.2.1)

(in (14.2.1) we have used the Einstein notation of repeated indices).

Proof. We have

2(β · ∇v)∆v = 2
(
βj∂jv

)
∆v = 2

(
∂k
(
βj∂jv∂kv

)
− ∂k

(
βj∂jv

)
∂kv
)

=

= 2
(
∂k
(
βj∂jv∂kv −

(
∂kβ

j
)
∂jv∂kv − βj∂2

jkv∂kv
))

=

= 2div [(β · ∇v)∇v]− 2
(
∂kβ

j
)
∂jv∂kv − βj∂j

(
|∇v|2

)
=

= 2div [(β · ∇v)∇v]− 2
(
∂kβ

j
)
∂jv∂kv − ∂j(βj|∇v|2) + (div β)|∇v|2 =

= div
[
2(β · ∇v)∇v − β|∇v|2

]
− 2(∂kβ

j)∂jv∂kv + (div β)|∇v|2.

aalmost everywhere in Ω. �

Remark. By (14.2.1) we have immediately

∫
Ω

2(β · ∇v)∆vdx =

∫
Ω

(
(div β)|∇v|2 − 2∂kβ

j∂jv∂kv
)
dx, (14.2.2)

for every v ∈ C∞0 (Ω). On the other hand, as can be easily checked, if v is a
real–valued function we have
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2(β · ∇v)∆v = F (x,D,D) [v, v] ,

where

F (x,D,D) [v, v] = i

n∑
j,k=1

βj
(
D2
kvDjv −DjvD2

kv
)

which satisfies condition (13.3.40) of Lemma 13.3.6. In our case (13.3.41)
takes the form (14.2.2). Let us notice that by (13.3.42) we obtain

G(x, ξ, ξ) = (div β)|ξ|2 − 2∂kβ
jξjξk.

�

Let us review some key steps of the proof of Theorem 13.5.1
using Rellich identity (14.2.1) to perform the integrations by parts.

We begin by rewriting the statement of Theorem 13.5.1 in the case of the
Laplace operator

Theorem 14.2.2. Let Ω be a bounded open set of Rn, and let ϕ ∈ C∞(Ω̄)
be a real–valued function such that ∇ϕ 6= 0 on Ω̄. Let us assume that the
following implication holds true



|ξ|2 = τ 2|∇ϕ(x)|2,

ξ · ∇ϕ(x) = 0,

τ 6= 0,

=⇒ Q(x, ξ, τ) =
n∑

j,k=1

∂2
jkϕ(x)ξjξk+

+ τ 2

n∑
j,k=1

∂2
jk(x)ϕ∂jϕ(x)∂kϕ(x) > 0.

(14.2.3)

Then there exist constants C and τ0 such that

τ 3

∫
Ω

|u|2e2τϕdx+ τ

∫
Ω

|∇u|2e2τϕdx+ τ−1

∫
Ω

|∂2u|2e2τϕdx ≤ C

∫
Ω

|∆u|2e2τϕdx,

for every u ∈ C∞0 (Ω) and for every τ ≥ τ0.

Proof. First, we observe that (14.2.3) is simply the rewriting of condition
(F) of Theorem 13.5.1 in the case of the Laplace operator.
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Let us denote by L the operator ∆. Let u ∈ C∞0 (Ω). Set v = eτϕu. Let
us calculate

∂ju = e−τϕ (∂jv − τ∂jϕv) ,

∂2
ju = e−τϕ

(
∂2
j v − 2τ∂jϕ∂jv − τ∂2

jϕv + τ 2v(∂jϕ)2
)
.

We obtain

Lτv = eτϕL(e−τϕv) = ∆v − τ(∆ϕ)v − 2τ∇ϕ · ∇v + τ 2|∇ϕ|2v. (14.2.4)

Now in the setting provided in Section 13.4, in the first line, (see in particular
(13.4.6)) we have neglected the term −τ(∆ϕ)v and, in the middle part of the
proof of Theorem 13.5.1, we have focused on the operator pm(x,D, τ), which
in this special case is given by

L̃τv = ∆v − 2τ∇ϕ · ∇v + τ 2|∇ϕ|2v. (14.2.5)

Consequently, operators (13.4.10a) and (13.4.10b) in the case of the Laplace
operator, are, respectively, given by

Sτv = ∆v + τ 2|∇ϕ|2v,

Aτv = −2τ∇ϕ · ∇v.

Of course,
L̃τv = Sτv + Aτv,

which implies∫ ∣∣∣L̃τv∣∣∣2 dx =

∫
|Sτv|2dx+

∫
|Aτv|2dx+ 2

∫
SτvAτvdx, (14.2.6)

(for brevity, we omit the domain of integration). As we saw, a crucial point
in the proof of Theorem 13.5.1 consists to handle the third integral to the
right–hand side of (14.2.6), which we will pursue here using the identity
(14.2.2), where

β = ∇ϕ.

We have

2

∫
(∇ϕ · ∇v)∆v dx =

∫
[∆ϕ|∇v|2 − 2∂2

jkϕ∂jv∂kv] dx.
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Integrating by parts, we get

2

∫
SτvAτvdx = −2τ

∫ (
2(∇ϕ · ∇v)∆v + 2τ 2|∇ϕ|2(∇ϕ · ∇v)v

)
dx =

= −2τ

∫ (
∆ϕ|∇v|2 − 2∂2

jkϕ∂jv∂kv + τ 2|∇ϕ|2∇ϕ · ∇(v2)
)
dx =

= −2τ

∫ (
∆ϕ|∇v|2 − 2∂2

jkϕ∂jv∂kv − 2τ 2∂2
jkϕ∂jϕ∂kϕv

2 − τ 2|∇ϕ|2∆ϕv2
)
dx =

= −2τ

∫ (
∆ϕ(|∇v|2 − τ 2|∇ϕ|2v2)− 2∂2

jkϕ∂jv∂kv − 2τ 2(∂2
jkϕ∂jϕ∂kϕ)v2

)
dx.

Hence

2

∫
SτvAτvdx = 4τ

∫ (
∂2
jkϕ∂jv∂kv + τ 2(∂2

jkϕ∂jϕ∂kϕ)v2
)
dx−

− 2τ

∫
∆ϕ(|∇v|2 − τ 2|∇ϕ|2v2)dx := I.

(14.2.7)

At this point one could continue without involving the Fourier transform,
but for this approach we refer to [10].

Now, for any x0 ∈ Ω, the integral on the right–hand side (14.2.7), which
we denoted by I, can be written as

I = Ix0 +Rx0 ,

where

Ix0 = 4τ

∫ (
∂2
jkϕ(x0)∂jv∂kv + τ 2∂2

jkϕ(x0)∂jϕ(x0)∂k(x0)v2
)
dx−

− 2τ

∫
∆ϕ(x0)(|∇v|2 − τ 2|∇ϕ(x0)|2v2)dx,

and, of course,
Rx0 = I − Ix0 .

Now, for ε > 0 to be chosen, there exists ρ1 > 0 such that

|Rx0| ≤ ε

∫ (
τ |∇v|2 + τ 3|v|2

)
dx, ∀v ∈ C∞0 (Bρ1(x0) ∩ Ω).

Now by the Parseval identity we have

(2π)nIx0 =

∫
q(ξ, τ) |v̂(ξ)|2 dξ,
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where

q(ξ, τ) = 4τ
(
∂2
jkϕ(x0)ξjξk + τ 2∂2

jkϕ(x0)∂jϕ(x0)∂k(x0)
)
−

− 2τ∆ϕ(x0)(|ξ|2 − τ 2|∇ϕ(x0)|2).

Now (14.2.2) implies there exist positive constants C1 and C2, such that

C1 |ξ + iτ∇ϕ(x0)|4 ≤ τq(ξ, τ) + C2

∣∣∣∣∣
n∑
j=1

(ξ + iτ∂jϕ(x0))2

∣∣∣∣∣
2

, ∀(ξ, τ) ∈ Rn+1.

(as in (13.5.16)). At this point the most challenging part of the proof is done
and it is not difficult to put the together the various "pieces" as in the proof
of Theorem 13.5.1, we invite the reader to do so. �

Examples. Let us examine some example of function satisfying (14.2.3).

Example 1. Let ϕ ∈ C∞
(
Ω̄
)
satisfy ∇ϕ 6= 0 in Ω̄ and let Ω be a

bounded open set of R2. We wish to prove that condition (14.2.3) holds for
each and only the functions ϕ which satisfy

∆ϕ > 0, ∀x ∈ Ω. (14.2.8)

Let us denote

N(x) =
∇ϕ(x)

|∇ϕ(x)|
and

Q(x, ξ, τ) =
2∑

j,k=1

∂2
jkϕ(ξjξk +NjNk).

It is clear that (14.2.3) is equivalent to the following condition

(F′′) if 
|ξ|2 = 1,

N(x) · ξ = 0,

(14.2.9)

then
Q(x, ξ, τ) > 0.

Let us suppose, then, that (14.2.9) is true.
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Since ∇ϕ 6= 0, we may assume N1 6= 0. Recalling that |N | = 1, by
(14.2.9) we obtain

ξ2
1 + ξ2

2 = 1,

ξ1N1 + ξ2N2 = 0,

⇐⇒


ξ2

2

(
N2

2

N2
1

+ 1
)

= 1,

ξ1 = − ξ2N2

N1
,

⇐⇒


|ξ2| = |N1|,

ξ1 = − ξ2N2

N1
.

Let us suppose that ξ2 = |N1|, which implies ξ1 = −N2

N1
|N1|, we have

Q = ∂2
1ϕξ

2
1 + 2∂2

12ϕξ1ξ2 + ∂2
2ϕξ

2
2 + ∂2

1ϕN
2
1 + 2∂2

12ϕN1N2 + ∂2
2ϕN

2
2 =

= ∂2
1ϕN

2
2 + 2∂2

12ϕ

(
−N2

N1

|N1|
)
|N1|+ ∂2

2ϕN
2
1 + ∂2

1ϕN
2
1 + 2∂2

12ϕN1N2 + ∂2
2ϕN

2
2 =

= ∂2
1ϕ− 2∂2

12ϕN1N2 + ∂2
2ϕ+ 2∂2

12ϕN1N2 = ∆ϕ.

If ξ2 = −|N1|, we get a similar result. Therefore (F′′) is equivalent to
(14.2.8). ♠

Example 2. Let ϕ = eλψ, where λ ∈ R and

|∇ψ(x)| 6= 0, ∀x ∈ Ω̄.

Let us look at whether there are any λ for which (14.2.3) applies.
Let us calculate

∂jϕ = λeλψ∂jψ,

∂2
jkϕ = λeλψ∂2

jkψ + λ2eλψ∂jψ∂kψ.

Hence (14.2.3) becomes

|ξ|2 = τ 2λ2e2λψ|∇ψ|2,

∇ψ · ξ = 0,

τ 6= 0,

=⇒ Qλ(x, ξ, τ) > 0, (14.2.10)

where

Qλ(x, ξ, τ) =
n∑

j,k=1

λeλψ∂2
jkψξjξk + τ 2

n∑
j,k=1

λ3e3λψ∂2
jkψ∂jψ∂kψ+

+ λ2eλψ(∇ψ · ξ)2 + τ 2λ4e3λψ|∇ψ|2.
(14.2.11)
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In order to examine (14.2.10) let us suppose

|ξ|2 = τ 2λ2e2λψ|∇ψ|2,

∇ψ · ξ = 0,

τ 6= 0,

(14.2.12)

from which we have ∇ψ · ξ = 0. Hence, if (14.2.12) holds true, we have

Qλ =
n∑

j,k=1

λeλψ
(
∂2
jkψξjξk + λ2τ 2e2λψ∂2

jkψ∂jψ∂kψ
)

+ τ 2λ4|∇ψ|2e3λψ.

Set
η =

ξ

τλeλψ|∇ψ|
.

In this way (14.2.12) it is rewritten as
|η|2 = 1

∇ψ · η = 0

=⇒ Q̃λ =
n∑

j,k=1

λ

(
∂2
jkψηjηk + ∂2

jkψ
∂jψ

|∇ψ|
∂kψ

|∇ψ|

)
+ λ2 > 0.

It is clear now that if |λ| is sufficiently large, then (14.2.10) is satisfied.
More precisely, set

M = max
|η|=1

∣∣∣∣∣
n∑

j,k=1

∂2
jkψ

(
ηjηk +

∂jψ

|∇ψ|
∂kψ

|∇ψ|

)∣∣∣∣∣ ,
we have that, if

|λ| > M

then condition (14.2.3) of Theorem 14.2.2 is satisfied. ♠

Example 3. Let us consider a radial function

ϕ(x) = f(|x|), (14.2.13)

in Ω = B1 \Br, r ∈ (0, 1).
We would like to find some functions f such that ϕ satisfies condition

(14.2.3). We will see that in some cases this is not possible. Let us proceed
in a similar manner to the previous example. Let us calculate

∂jϕ(x) =
xj
|x|
f ′(|x|),
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∂2
jkϕ(x) =

(
δjk
|x|
− xjxk
|x|3

)
f ′(|x|) +

xjxk
|x|2

f ′′(|x|),

∂2
jkϕ(x)ξjξk =

(
|ξ|2

|x|
− (ξ · x)2

|x|3

)
f ′(|x|) +

(ξ · x)2

|x|2
f ′′(|x|),

∂2
jkϕ(x)∂jϕ(x)∂kϕ(x) =

(
|∇ϕ(x)|2

|x|
− (∇ϕ(x) · x)2

|x|3

)
f ′(|x|)+

+
(∇ϕ(x) · x)2

|x|2
f ′′(|x|).

Since
|∇ϕ(x)|2 = f ′2(|x|)

and
∇ϕ(x) · x = |x|f ′(|x|)

we have
∂2
jkϕ(x)∂jϕ(x)∂kϕ(x) = (f ′(|x|))2f ′′(|x|).

Then by (14.2.3) we can write Q as follows

Q =

(
|ξ|2

|x|
− (ξ · x)2

|x|3

)
f ′(|x|) +

(ξ · x)2

|x|2
f ′′(|x|) + τ 2(f ′(|x|))2f ′′(|x|).

Let us suppose that the antecedent of condition (14.2.3) holds, i.e., let us
suppose that 

|ξ|2 = τ 2|∇ϕ(x)|2 = τ 2(f ′(|x|))2,

τ∇ϕ(x) · ξ = τ (ξ·x)2

|x|2 f
′(|x|) = 0,

τ 6= 0,

namely 

|ξ|2 = τ 2(f ′(|x|))2,

ξ · x = 0,

τ 6= 0,

Hence Q can be written as follows

Q =
τ 2(f ′(|x|))2

|x|
f ′(|x|) + τ 2(f ′(|x|))2f ′′(|x|).



640 Chapter 14. Carleman estimates and the Cauchy problem II

We get

τ−2Q =
(f ′(|x|))2

|x|
f ′(|x|) + (f ′(|x|))2f ′′(|x|).

We characterize the functions

f : (0, 1)→ (0,+∞)

which satisfy (14.2.3) and for which we have

lim
t→0

f(t) = +∞

and
f ′ < 0, in (0, 1).

The condition Q > 0, for t ∈ (0, 1), becomes

Q =
f ′

t
+ f ′′ > 0.

To solve this differential inequality we set

f(t) = ψ(log t),

from which we have
f ′(t) = ψ′(log t)

1

t
,

f ′′(t) = ψ′′(log t)
1

t2
− ψ′(log t)

1

t2
.

Hence the differential inequality can be written

f ′

t
+ f ′′ =

1

t2
ψ′′(log t) > 0⇐⇒ ψ′′(log t) > 0.

Let s = log t. Then, as t ∈ (0, 1), s ∈ (−∞, 0), condition Q > 0 becomes:

ψ′′(s) > 0⇐⇒ d2

ds2
(f(es)) > 0 ∀s ∈ (−∞, 0).

Let us observe that there are functions that do not satisfy this condition.
For α > 0, we consider functions f(t) of the type

f(t) =

(
log

1

t

)α
.

Let us calculate

f ′(t) = α

(
−1

t

)(
log

1

t

)α−1

,
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f ′(t) =
α

t2

(
log

1

t

)α−1

+
α(α− 1)

t2

(
log

1

t

)α−2

,

from which it follows that the condition on Q can be written as

Q =
f ′

t
+ f ′′ =

α(α− 1)

t2

(
log

1

t

)α−2

> 0.

Consequently if α < 1, we have

f ′

t
+ f ′′ < 0.

If α = 1, we have

ϕ = log
1

|x|
,

Therefore
Q = 0.

♠

Exercise. Prove that if U ∈ H2(B1) is a solution to the equation

∆U = b(x) · ∇U + c(x)U = 0, in B1,

where b ∈ L∞(B1;Rn) and c ∈ L∞(B1) then the following three sphere
inequalityT holds true

‖U‖L2(B%(0)) ≤ C ‖U‖ϑL2(Br)
‖U‖1−ϑ

L2(B1) , (14.2.14)

for 0 < r ≤ % ≤ C−1, where C ≤ 1 e ϑ ∈ (0, 1) are constants depending on
‖b‖L∞(B1;Rn), ‖c‖L∞(B1), on % and on r.

[Hint: apply Theorem 14.2.2 where ϕ is a suitable radial function.] ♣

14.3 Second order operators I – constant coef-
ficients in the principal part

We now consider a more general case related to the operator (14.1.1). Let
M0 and let us M1 be positive numbers given and let us assume that∥∥gjk∥∥

L∞(Ω)
≤M0, for j, k = 1, · · · , n, (14.3.1a)∣∣gjk(x)− gjk(y)

∣∣ ≤M1|x− y|, for j, k = 1, · · · , n, ∀x, y ∈ Ω. (14.3.1b)
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Let us note that with conditions (14.3.1a) and (14.3.1b), operator (14.1.1) is
not necessarily elliptic. As we noted in Section 13.1, to establish a Carleman
estimate for operator (14.1.1), under assumption (14.3.1b), is equivalent to
establish a Carleman estimate for the operator

Lgu = ∂j
(
gjk(x)∂ku

)
. (14.3.2)

As a matter of fact we have

(Lg − P2)u = ∂j
(
gjk(x)

)
∂ku,

which is a first order operator with bounded coefficients.
We begin by establishing an identity analogous to (14.2.1). To this pur-

pose we introduce some notations. We set

ξ(g) =
{
gjk(x)ξk

}n
j=1

and for any function v, sufficiently regular, we set

∇(g)v =
{
gjk(x)∂kv

}n
j=1

.

We further set,

g(ξ, η) = gjk(x)ξjηk.

Using these notations we have

Lgu = div
(
∇(g)u

)
. (14.3.3)

Let us notice that if gjk(x) = δjk then g(ξ, η) = ξ · η and Lg = ∆ and, if{
gjk(x)

}n
j,k=1

= diag (1, · · · , 1,−1),

then
g(ξ, η) = ξ′ · η′ − ξnηn

and
Lgu = ∆x′u− ∂2

nu = �u.

Lemma 14.3.1 (generalized Rellich identity). Let β ∈ C0,1(Ω,Rn), β =
(β1, · · · , βn) and v ∈ C2(Ω), then we have

2g (β,∇v)Lgv = div (2g (β,∇v)∇v − g (∇v,∇v) β) +

+ (div β)g (∇v,∇v)− 2∂lβ
kglj∂jv∂kv+

+ βk
(
∂kg

lj
)
∂lv∂jv, a.e. x ∈ Ω

(14.3.4)
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and

2

∫
Ω

g (β,∇v)Lgvdx =

∫
Ω

(div β)g (∇v,∇v)− 2∂lβ
kglj∂jv∂kv+

+

∫
Ω

βk
(
∂kg

lj
)
∂lv∂jvdx,

(14.3.5)

Proof. First, we observe that identity (14.3.5) is am immediate conse-
quence of (14.3.4) after its integration over Ω. Hence, it suffices to prove
(14.3.4).

We have

2g (β,∇v)Lgv = 2(βk∂kv)∂l
(
glj∂jv

)
=

= 2∂l
(
βk∂kvg

lj∂jv
)
− 2∂l

(
βk∂kv

)
glj∂jv =

= div
(
2g (β,∇v)∇(g)v

)
− 2∂l

(
βk∂kv

)
glj∂jv =

= div
(
2g (β,∇v)∇(g)v

)
− 2

(
∂lβ

kv
)
glj∂kv∂jv−

− 2βkglj∂2
lkv∂jv.

(14.3.6)

Now, we notice that

∂k
(
glj∂lv∂jv

)
= glj∂2

lkv∂jv + glj∂lv∂
2
jkv + ∂k

(
glj
)
∂lv∂jv =

= 2glj∂2
lkv∂jv + ∂k

(
glj
)
∂lv∂jv,

from which we have

2glj∂2
lkv∂jv = ∂k

(
glj∂lv∂jv

)
− ∂k

(
glj
)
∂lv∂jv.

Using this identity, we transform the last term on the right–hand side of
(14.3.6). We have

−2βkglj∂2
lkv∂jv = −βk∂k

(
glj∂lv∂jv

)
+ βk∂kg

lj∂lv∂jv =

= −∂k
(
βkglj∂lv∂jv

)
+ (div β)glj∂lv∂jv + βk∂kg

lj∂lv∂jv.

Hence

−2βkglj∂2
lkv∂jv = −div (g (∇v,∇v)) +

+ (div β)g (∇v,∇v) + βk∂kg
lj∂lv∂jv

and using the just obtain equality in (14.3.6) we obtain (14.3.4). �
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In the present Subsection we consider the case of constant coefficients.
In this case the operator is given by

P2(∂) = gjk∂2
jk, (14.3.7)

where gjk = gkj are real constants. We begin by giving some definitions
whose geometric meaning will be explained later (see Section 14.6).

Definition 14.3.2 (pseudo–convex functions). Let Ω be a bounded open
set of Rn and let φ ∈ C2

(
Ω
)
satisfy

∇φ(x) 6= 0, ∀x ∈ Ω. (14.3.8)

We say that φ is pseudo–convex w.r.t. the operator (14.3.7) in the point
x ∈ Ω, if we have



P2(ξ) = 0,

P
(j)
2 (ξ)∂jφ(x) = 0,

ξ 6= 0,

=⇒ ∂2
jkφ(x)P

(j)
2 (ξ)P

(k)
2 (ξ) > 0. (14.3.9)

We say that φ is pseudo–convex w.r.t. operator P2(∂) if (14.3.9) holds
true for every x ∈ Ω.

Remark. Using the notations introduced above, (14.3.9) can be written

g(ξ, ξ) = 0,

g(ξ,∇φ(x)) = 0,

ξ 6= 0,

=⇒ ∂2φ(x)ξ(g) · ξ(g) > 0. (14.3.10)

Let us notice that if the matrix
{
gjk
}n
j,k=1

is singular do not exist any
pseudo–convex functions because there exists ξ ∈ Rn \ {0} such that
ξg = g · ξ = 0. It should also be noticed that if the operator P2(∂) is elliptic,
then condition (14.3.9) is trivially satisfied since the antecedent is false. �
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Definition 14.3.3 (strong pseudo–convex functions). Let Ω, φ and
P2(∂) be as in Definition 14.3.2. We say that φ is strongly pseudo–convex
w.r.t. the operator P2 in the point x ∈ Ω if φ is pseudo–convex w.r.t. P2

and, further, we have



P2(ξ + iτ∇φ(x)) = 0,

P
(j)
2 (ξ + iτ∇φ(x))∂jφ(x) = 0,

τ 6= 0,

=⇒

=⇒ ∂2
jkφ(x)P

(j)
2 (ξ + iτ∇φ(x))P

(k)
2 (ξ + iτ∇φ(x)) > 0.

(14.3.11)

We say that φ is strongly pseudo–convex w.r.t. the operator P2(∂), if
it is strongly pseudo–convex w.r.t. the operator P2(∂) in each point x ∈ Ω.

Remarks.

1. With the notations introduced above, (14.3.11) can be written



g(ξ, ξ) = τ 2g(∇φ(x),∇φ(x)),

g(ξ,∇φ(x)) = 0,

g(∇φ(x),∇φ(x)) = 0,

τ 6= 0

=⇒

=⇒ ∂2φ(x)ξ(g) · ξ(g) + τ 2∂2φ(x)∇(g)φ(x) · ∇(g)φ(x) > 0.

(14.3.12)

2. As we will easily check, in the case of the real coefficients we are con-
sidering, the definitions of pseudo–convexity and strong pseudo–
convexity are equivalent. As a matter of fact, if φ is strongly pseudo-
convex with respect to P2(∂), it is trivially pseudo–convex. We prove that
if φ is pseudo–convex then it is strongly pseudo–convex. Let us suppose,
hence, that (14.3.9) is satisfied in x0 ∈ Ω and let us prove that (14.3.12) is
satisfied in x0. If g(∇φ(x0),∇φ(x0)) 6= 0, then (14.3.12) is trivially satisfied
as the antecedent of the implication (14.3.12) is false. If, on the other hand,
we have
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g(∇φ(x0),∇φ(x0)) = 0,

then the antecedent of condition (14.3.12) becomes (in x0)

g(ξ, ξ) = 0,

g(ξ,∇φ(x0)) = 0,

g(∇φ(x0),∇φ(x0)) = 0,

τ 6= 0.

(14.3.13)

Now, by the first two conditions in (14.3.13) and the pseudo–convexity of
φ we have

∂2φ(x0)ξ(g) · ξ(g) > 0. (14.3.14)

Moreover, since g(∇φ(x0),∇φ(x0)) = 0 and∇φ(x0) 6= 0, setting ξ0 = ∇φ(x0)
we get by (14.3.9) trivially

g(ξ0, ξ0) = 0,

g(ξ0,∇φ(x0)) = 0,

ξ0 6= 0,

hence by (14.3.10) we have

∂2φ(x0)∇(g)φ(x0) · ∇(g)φ(x0) > 0

and taking into account that (by (14.3.13)) τ 6= 0, we have

τ 2∂2φ(x0)∇(g)φ(x0) · ∇(g)φ(x0) > 0. (14.3.15)

Now, by (14.3.14) and (14.3.15) we have

∂2φ(x0)ξ(g) · ξ(g) + τ 2∂2φ(x0)∇(g)φ(x0) · ∇(g)φ(x0) > 0.

Hence, we have proved that (14.3.12) is satisfied and, therefore, we have the
equivalence of the definitions 14.3.2 and 14.3.3

Let us note that in the elliptic case, each φ ∈ C2
(
Ω
)
such that

∇φ(x) 6= 0, ∀x ∈ Ω
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is trivially pseudo–convex (hence, it is strongly pseudo–convex). �

Warning about definitions 14.3.2 and 14.3.3. It is important to point
out that generally the definitions of pseudo–convexity and strong pseudo–
convexity are referred to the level surfaces {φ(x) = φ(x0)}, where x0 ∈ Ω.
And using the term "surface" we also want to emphasize the invariant char-
acter of the definition (see [34, §8.6]). Our modification of the terminology
is only due to the purpose of to lighten the exposition a little. N

To obtain the Carleman estimate of Theorem 14.3.7 (see below) we need
a condition more stringent than the strong pseudo-convexity. This condition,
has the same form of condition (F) of Theorem 13.5.1.

Definition 14.3.4. Let Ω, φ and P2 as in Definition 14.3.3 We say that φ
satisfies condition (S) w.r.t. the operator P2(∂), if φ is pseudo–convex w.r.t.
P2(∂) and we have

{
P2(ξ + iτ∇φ(x)) = 0,

τ 6= 0,
=⇒

=⇒ ∂2
jkφ(x)P

(j)
2 (ξ + iτ∇φ(x))P

(k)
2 (ξ + iτ∇φ(x)) > 0.

(14.3.16)

Remark. With the notations introduced above (14.3.11), we write con-
dition (14.3.16) as follows



g(ξ, ξ) = τ 2g(∇φ(x),∇φ(x)),

g(ξ,∇φ(x)) = 0,

τ 6= 0,

=⇒

=⇒ Qφ := ∂2φ(x)ξ(g) · ξ(g) + τ 2∂2φ(x)∇(g)φ(x) · ∇(g)φ(x) > 0.

(14.3.17)

�

It is evident that if φ satisfies condition (S) then it is strongly pseudo-
convex. However, the converse does not hold. Let us consider, for instance,
the function φ(x) = log 1

|x| ; this function is strongly pseudo–convex, but, as
we saw in Example 3 of this Section, it does not satisfy condition (S).

However the following Proposition holds
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Proposition 14.3.5. Let Ω be a bounded open set of Rn and let φ ∈ C2
(
Ω
)

strongly pseudo–convex w.r.t. operator (14.3.7), then ϕ = eλφ satisfies con-
dition (S) if λ is large enough.

Proof. If P2(∂) is elliptic we can readily reduce to what we have done in
Example 2. Hence let us suppose that P2(∂) is not elliptic. We first prove
that ϕ = eλφ is pseudo–convex. Let us calculate

∇ϕ = λeλφ∇φ,

∂2
jkϕ = λeλφ∂2

jkφ+ λ2eλφ∂jφ∂kφ, j, k = 1, · · · , n

and
∂2
jkϕ(x)P

(j)
2 (ξ)P

(k)
2 (ξ) =

= λeλφ
[
∂2
jkϕ(x)P

(j)
2 (ξ)P

(k)
2 (ξ) + λ

∣∣∣P (j)
2 (ξ)∂jφ

∣∣∣2] . (14.3.18)

Set

X = Ω× {ξ ∈ Rn : P2(ξ) = 0, |ξ| = 1} .

Since P2(∂) is not ellptic we have that X is a nonempty compact subset of
R2n. Now, by the definition of pseudo–convexity in Ω we have

(x, ξ) ∈ X, P
(j)
2 (ξ)∂jφ(x) = 0 =⇒ ∂2

jkφ(x)P
(j)
2 (ξ)P

(k)
2 (ξ) > 0

and this, by Lemma 12.5.2, implies that there exists λ0 > 0 such that

λ0

∣∣∣P (j)
2 (ξ)∂jφ(x)

∣∣∣2 + ∂2
jkφ(x)P

(j)
2 (ξ)P

(k)
2 (ξ) > 0, (14.3.19)

for every (x, ξ) ∈ X.
Inequality (14.3.19), in turn, implies (taking into account that the poli-

nomial (in ξ) on the left–hand side is homogeneous of degree 2)

λ
∣∣∣P (j)

2 (ξ)∂jφ(x)
∣∣∣2 + ∂2

jkφ(x)P
(j)
2 (ξ)P

(k)
2 (ξ) > 0 (14.3.20)

for every x ∈ Ω, for every ξ ∈ Rn \ {0} and for every λ ≥ λ0. By (14.3.18)
and (14.3.20) we have that (14.3.9) is satisfied by the function ϕ.

Now we prove (14.3.16). Let us introduce the following notation. For
every ξ ∈ Rn, for every t ∈ R and for every function f ∈ C2

(
Ω
)
such that

∇f 6= 0, in Ω, set
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ζt,f = ξ + it∇f.

Similarly to (14.3.18) we have

∂2
jkϕP

(j)
2 (ζτ,ϕ)P

(k)
2 (ζτ,ϕ) =

= λeλφ
[
∂2
jkφ(x)P

(j)
2 (ζτλ,φ)P

(k)
2 (ζτλ,φ) + λ

∣∣∣P (j)
2 (ζτλ,φ)∂jφ

∣∣∣2] . (14.3.21)

Set

X1 =
{

(x, ξ, t) ∈ Ω× Rn : P2(ζt,φ(x)) = 0, |ζt,φ(x)| = 1
}
. (14.3.22)

It turns out that X1 6= ∅ and that X1 is a compact of R2n+1 (since ∇φ(x) 6= 0
in Ω). We now check that we have

(x, ξ, t) ∈ X1, P
(j)
2 (ζt,φ(x))∂jφ(x) = 0 =⇒

=⇒ ∂2
jkφ(x)P

(j)
2 (ζt,φ(x))P

(k)
2 (ζt,φ(x)) > 0.

(14.3.23)

As a matter of fact, for t = 0, (14.3.23) is nothing but (14.3.9) and so it
is satisfied. Now, if t 6= 0 then (14.3.23) is satisfied because φ is strongly
pseudo–convex. Hence by Lemma 12.5.2, there exists λ1 ≥ λ0 such that

λ1

∣∣∣P (j)
2 (ζt,φ(x))∂jφ(x)

∣∣∣2 + ∂2
jkφ(x)P

(j)
2 (ζt,φ(x))P

(k)
2 (ζt,φ(x)) > 0,

for every (x, ξ, t) ∈ X1, which in turn implies

λ
∣∣∣P (j)

2 (ζt,φ(x))∂jφ(x)
∣∣∣2 + ∂2

jkφ(x)P
(j)
2 (ζt,φ(x))P

(k)
2 (ζt,φ(x)) > 0, (14.3.24)

for every λ ≥ λ1, for every x ∈ Ω and for every (ξ, t) ∈ Rn\{(0, 0)}. Trivially
(14.3.24) holds true for t = τλeλφ(x), τ 6= 0. Hence, recalling (14.3.21), we
have that ϕ satisfies the condition


P2(ξ + iτ∇ϕ(x)) = 0,

τ 6= 0,

=⇒

=⇒ ∂2
jkϕ(x)P

(j)
2 (ξ + iτ∇ϕ(x))P

(k)
2 (ξ + iτ∇ϕ(x)) > 0.

(14.3.25)
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The proof is concluded. �

In the sequel we will need some notations and a Lemma.

Let k ∈ R and let N ∈ Rn \ {0}. For any f ∈ C∞0 (Ω), let us denote by

‖f‖2
k,τ =

1

(2π)n

∫
Rn
|ξ + iτN |2k

∣∣∣f̂(ξ)
∣∣∣2 dξ. (14.3.26)

Remark. By (14.3.26) and by the Parseval identity we have

‖f‖−1,τ ≤ |τN |
−1 ‖f‖L2(Ω) , (14.3.27)

for every f ∈ C∞0 (Ω). �

The following Lemma holds

Lemma 14.3.6. Let ρ > 0 and let h be a Lipschitz continuous function
defined in Bρ(x0). Let

A = [h]0,1,Bρ(x0),

the Lipschitz constant of h. Let us suppose that

h(x0) = 0.

We have, for every w ∈ C∞0 (Bρ(x0))

‖h(∂jw − τNjw)‖−1,τ ≤ A
(
ρ+ |τN |−1

)
‖w‖L2(Bρ(x0)) . (14.3.28)

Proof. We have

h(x)(∂jw − τNjw) = (∂j − τNj)(hw)− w∂jh.

Hence

‖h(∂j − τNjw)‖−1,τ ≤ ‖(∂j − τNj)(hw)‖−1,τ + ‖w∂jh‖−1,τ . (14.3.29)

Let us notice that

|h(x)| = |h(x)− h(x0)| ≤ Aρ, ∀x ∈ Bρ(x0). (14.3.30)
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Now, the triangle inequality and (14.3.30) yield

‖(∂jw − τNj)(hw)‖2
−1,τ =

=
1

(2π)n

∫
Rn

|ξj + iτNj|2
∣∣∣ĥw(ξ)

∣∣∣2
|ξ + iτN |2

dξ ≤

≤ 1

(2π)n

∫
Rn

∣∣∣ĥw(ξ)
∣∣∣2 dξ =

=

∫
Rn
|h(x)w(x)|2 dx ≤ A2ρ2 ‖w‖2

L2(Bρ(x0)) .

(14.3.31)

On the other hand

‖w∂jh‖2
−1,τ =

1

(2π)n

∫
Rn

∣∣∣ŵ∂jh(ξ)
∣∣∣2

|ξ + iτN |2
dξ ≤

≤ |τN |
−2

(2π)n

∥∥∥ŵ∂jh∥∥∥2

L2(Rn)
=

= |τN |−2 ‖w∂jh‖2
L2(Bρ(x0)) ≤

≤ A2|τN |−2 ‖w‖2
L2(Bρ(x0)) .

(14.3.32)

Therefore, by (14.3.29), (14.3.31) and (14.3.32) we get (14.3.28). �

We now state and prove the following

Theorem 14.3.7. Let Ω be a bounded open set of Rn and let

P2(∂) = gjk∂2
jk,

where the matrix
{
gjk
}n
j,k=1

is real, constant and symmetric. Let us suppose
that ϕ ∈ C2(Ω̄) satisfies condition (S) w.r.t. P2(∂).

Then there exist constants C and τ0 such that

τ 3

∫
Ω

|u|2e2τϕdx+ τ

∫
Ω

|∇u|2e2τϕdx ≤ C

∫
Ω

|P2(∂)u|2e2τϕdx, (14.3.33)

for every u ∈ C∞0 (Ω) and for every τ ≥ τ0.

Proof. Let us denote
L = P2(∂).

Let u ∈ C∞0 (Ω) and set v = eτϕu. We have

P2,τv := eτϕL(e−τϕv) =

= L(v) + τ 2g(∇ϕ,∇ϕ)v − 2τg(∇ϕ,∇v)− τL(ϕ)v.
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let us define
Sτv = L(v) + τ 2g(∇ϕ,∇ϕ)v

and
Aτv = −2τg(∇ϕ,∇v)

and set
p2(x, ∂, τ)v = Sτv + Aτv, (14.3.34)

Let us note that
P2,τv − p2(x, ∂, τ)v = −τL(ϕ)v. (14.3.35)

In what follows, for the sake of brevity, we will omit the domain and the
element of integration.

Let µ be a positive number which we will choose later, we have trivially

∫
|p2(x, ∂, τ)v|2 e2µϕ =

=

∫
|Sτv|2e2µϕ +

∫
|Aτv|2e2µϕ+

+ 2

∫
(SτvAτv) e2µϕ ≥

≥ 2

∫
(SτvAτv) e2µϕ =

= −2τ

∫
2
(
L(v) + τ 2g(∇ϕ,∇ϕ)v

)
g(∇ϕ,∇v)e2µϕ :=

:= −2τJ1 − 2τ 3J2,

(14.3.36)

where

J1 =

∫
2L(v)g(∇ϕ,∇v)e2µϕ (14.3.37)

and
J2 =

∫
2g(∇ϕ,∇ϕ)g(∇ϕ,∇v)ve2µϕ. (14.3.38)

Let us examine J1.

Let us apply (14.3.4) with

β = e2µϕ∇(g)ϕ.
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We get

J1 =

∫ (
div (e2µϕ∇(g)ϕ)

)
g (∇v,∇v)−

− 2∂l
(
e2µϕgkj∂jϕ

)
gls∂sv∂kv =

=

∫ (
e2µϕ(L(ϕ))g (∇v,∇v) + 2µe2µϕg (∇ϕ,∇ϕ)g (∇v,∇v)−

−2e2µϕgkj∂2
ljϕg

ls∂sv∂kv − 4µe2µϕ∂lϕg
kj∂jϕg

ls∂sv∂kv
)

=

=

∫
e2µϕ

(
(L(ϕ))g (∇v,∇v)− 2∂2ϕ∇(g)v · ∇(g)v+

+2µg (∇ϕ,∇ϕ)g (∇v,∇v)− 4µ (g (∇ϕ,∇v))2) .

(14.3.39)

Let us examine J2.

J2 =

∫
2e2µϕg(∇ϕ,∇ϕ)g(∇ϕ,∇v)v =

=

∫
e2µϕg(∇ϕ,∇ϕ)gls∂lϕ∂s(v

2) =

= −
∫
∂s
(
e2µϕg(∇ϕ,∇ϕ)gls∂lϕ

)
v2 =

= −
∫
e2µϕ

(
2∂2ϕ∇(g)ϕ · ∇(g)ϕ+ g(∇ϕ,∇ϕ)L(ϕ) + 2µ (g(∇ϕ,∇ϕ))2) v2.

By the above obtained equality and by (14.3.39) we have

2

∫
(SτvAτv) e2µϕ = −2τJ1 − 2τ 3J2 =

= 2τ

∫
e2µϕqµ(x, v,∇v, τ),

(14.3.40)

where

qµ(x, v,∇v, τ) = q0(x, v,∇v, τ) + µq1(x, v,∇v, τ), (14.3.41)

q0(x, v,∇v, τ) =

= 2
[
∂2ϕ(x)∇(g)v · ∇(g)v + τ 2∂2ϕ(x)∇(g)ϕ(x) · ∇(g)ϕ(x)v2

]
+

+ L(ϕ)
[
τ 2g(∇ϕ(x),∇ϕ(x))v2 − g(∇v,∇v)

]
,

(14.3.42)
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and

q1(x, v,∇v, τ) =

= −2g(∇ϕ(x),∇ϕ(x))g(∇v,∇v) + 4 (g(∇ϕ(x),∇v))2 +

+ 2τ 2 (g(∇ϕ(x),∇ϕ(x)))2 v2.

(14.3.43)

Trivially, for any x0 ∈ Ω, the right–hand side of (14.3.40) can be written

2τ

∫
e2µϕqµ(x, v,∇v, τ) = Ix0 +Rx0 ,

where
Ix0 = 2τe2µϕ(x0)

∫
qµ(x0, v,∇v, τ), (14.3.44)

and

Rx0 = 2τ

∫ (
e2µϕ(x)qµ(x, v,∇v, τ)− e2µϕ(x0)qµ(x0, v,∇v, τ)

)
. (14.3.45)

Now, let ρ ∈ (0, 1], to be chosen. We get easily

|Rx0| ≤ Cρ(µ+ 1)2e2µΦ0

∫ (
τ |∇v|2 + τ 3|v|2

)
dx, (14.3.46)

for every v ∈ C∞0 (Bρ(x0) ∩ Ω), where

Φ0 = max
x∈Ω
|ϕ|,

C does not depend by µ, but depends on the C2
(
Ω
)
norm of ϕ and by

M0 = max
1≤j,k≤n

∣∣gjk∣∣ .
Now, the Parseval identity gives

Ix0 =
2τe2µϕ(x0)

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ, (14.3.47)

where
Qµ(ξ, τ) = Q0(ξ, τ) + µQ1(ξ, τ), (14.3.48)

Q0(ξ, τ) =2
[
∂2ϕ(x0)ξ(g) · ξ(g) + τ 2∂2ϕ(x0)∇(g)ϕ(x0) · ∇(g)ϕ(x0)

]
+

+ L(ϕ)(x0)
[
τ 2g(∇ϕ(x0),∇ϕ(x0))− g(ξ, ξ)

]
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and

Q1(ξ, τ) =− 2g(∇ϕ(x0),∇ϕ(x0))
(
g(ξ, ξ)− τ 2g(∇ϕ(x0),∇ϕ(x0))

)
+

+ 4 (g(∇ϕ(x0), ξ))2 .

Claim.
There exist C1, C2 and µ, positive number, such that

|ξ + iτ∇ϕ(x0)|2 ≤ C1Qµ(ξ, τ) + C2
|P2(ξ + iτ∇ϕ(x0))|2

|ξ + iτ∇ϕ(x0)|2
, (14.3.49)

for every (ξ, τ) ∈ Rn+1.

Proof of the Claim.

If P2 is elliptic, we can proceed in a manner similar to what we did in
the proof of Theorem 13.5.1. For completeness we provide the proof. First,
we notice that if ξ = 0 then (14.3.16)–(14.3.17) are trivially satisfied in x0,
because P2 is elliptic and if we had ξ = 0 we would have in the first condition
of (14.3.16)–(14.3.17), P2(iτ∇ϕ(x0)) = 0 from which we would have τ = 0
arriving to a contradiction.

Then for ξ = 0 the antecedent of (14.3.16)–(14.3.17) is false. Now, we
choose µ = 0 and set

Σ̃ =
{

(ξ, τ) ∈ Rn+1 : |ξ + iτ∇ϕ(x0)| = 1
}
.

By (14.3.16) we have

(ξ, τ) ∈ Σ̃, P2(ξ + iτ∇ϕ(x0)) = 0 =⇒ Q0(ξ, τ) > 0.

Hence, by Lemma 12.5.2 we have that there exists B > 0 such that

B |P2(ξ + iτ∇ϕ(x0))|2

|ξ + iτ∇ϕ(x0)|2
+Q0(ξ, τ) > 0, ∀(ξ, τ) ∈ Σ̃ (14.3.50)

and, by homogeneity, (14.3.49) follows, with µ = 0.

If P2 is not elliptic, the set

K1 = {ξ ∈ Rn : g(ξ, ξ) = 0, |ξ| = 1} ,

is nonempty. Let us denote

K2 = {ξ ∈ K1 : g(ξ,∇ϕ(x0)) = 0} .
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If K2 = ∅, then we have trivially

|g(ξ,∇ϕ(x0))| > 0, ∀ξ ∈ K1

hence, by the compactness of K1, there exists m1 > 0 such that

|g(ξ,∇ϕ(x0))| ≥ m1, ∀ξ ∈ K1.

Now we set

C0 = 1 + max
|ξ|=1

∣∣∂2ϕ(x0)ξ(g) · ξ(g)
∣∣

abd we have, for any ξ ∈ K1 and

µ = µ0 :=
C0

m2
1

,

Qµ(ξ, 0) = 2∂2ϕ(x0)ξ(g) · ξ(g) + 4µ (g(∇ϕ(x0), ξ))2 ≥
≥ −2C0 + 4µm2

1 ≥ 2C0.
(14.3.51)

Let us fix µ = µ0 and let (ξ, τ) ∈ Σ̃ satisfy

P2(ξ + iτ∇ϕ(x0)) = 0;

we have what follows:
(a) if τ = 0 then we have, by (14.3.51), Qµ(ξ, 0) > 0;
(b) if τ 6= 0, then we have, by (14.3.16), Qµ(ξ, τ) > 0.

Hence

(ξ, τ) ∈ Σ̃, P2(ξ + iτ∇ϕ(x0)) = 0 =⇒ Qµ(ξ, τ) > 0

and by Lemma 12.5.2 we derive that there exists B > 0 such that

B |P2(ξ + iτ∇ϕ(x0))|2

|ξ + iτ∇ϕ(x0)|2
+Qµ(ξ, τ) > 0, ∀(ξ, τ) ∈ Σ̃. (14.3.52)

Hence, if K2 = ∅, then (14.3.49) is satisfied for µ = µ0.

Now, let us suppose that K2 6= ∅. By (14.3.10) we have

ξ ∈ K2 =⇒ Q0(ξ, 0) > 0. (14.3.53)
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Since Q0 is continuous and K2 is compact, there exists δ1 > 0 such that

ξ ∈ K2 =⇒ Q0(ξ, 0) ≥ δ1. (14.3.54)

By compactness of K2, by continuity of Q0 and by (14.3.54) it follows that
there exists d0 > 0 such that

ξ ∈ K1, |g(ξ,∇ϕ(x0))| ≤ d0 =⇒ Q0(ξ, 0) ≥ δ1

2
. (14.3.55)

Let us denote, like before,

C0 = 1 + max
|ξ|=1

∣∣∂2ϕ(x0)ξ(g) · ξ(g)
∣∣ .

We notice that if

ξ ∈ K1 e |g(ξ,∇ϕ(x0))| ≥ d0,

then, for any µ ≥ C0

d2
0
we have

Qµ(ξ, 0) = 2∂2ϕ(x0)ξ(g) · ξ(g) + 4µ (g(∇ϕ(x0), ξ))2 ≥
≥ −2C0 + 4µd2

0 ≥ 2C0 > 0.
(14.3.56)

Now, let us fix

µ = µ1 :=
C0

d2
0

and by (14.3.55) and (14.3.56) we obtain

ξ ∈ K1 =⇒ Qµ(ξ, 0) ≥ δ2 > 0, (14.3.57)

where
δ2 = min

{
2C0,

δ1

2

}
.

From now on, we proceed as we already did to prove the (14.3.52). The
proof of the Claim is concluded.

From now on, we fix a value µ for which (14.3.49) is satisfied (recalling
that, however, µ depends on x0). Set N = ∇ϕ(x0). Using the notations
introduced in (14.3.26), we have by (14.3.49)

‖v‖2
1,τ ≤

C1

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ + C2 ‖p2(x0, ∂, τ)v‖2

−1,τ , (14.3.58)
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where p2(x, ∂, τ) is defined in (14.3.34). We have easily

|p2(x, ∂, τ)v − p2(x0, ∂, τ)v| ≤ Cρ
(
τ |∇v|+ τ 2|v|

)
, (14.3.59)

for every v ∈ C∞0 (Bρ(x0) ∩ Ω). Now, by (14.3.27), (14.3.59) and by the
triangle inequality, we get

‖p2(x0, ∂, τ)v‖−1,τ ≤
1

τ |∇ϕ(x0)|
‖p2(x0, ∂, τ)v‖L2(Ω) ≤

≤ 1

τ |∇ϕ(x0)|

(
‖p2(·, ∂, τ)v − p2(x0, ∂, τ)v‖L2(Ω) + ‖p2(·, ∂, τ)v‖L2(Ω)

)
≤

≤ 1

τ |∇ϕ(x0)|

[
Cρτ ‖|∇v|+ τ |v|‖L2(Ω) + ‖p2(·, ∂, τ)v‖L2(Ω)

]
≤

≤ Cρ ‖v‖1,τ +
1

τ |∇ϕ(x0)|
‖p2(·, ∂, τ)v‖L2(Ω) .

In sum, we have that

‖p2(x0, ∂, τ)v‖−1,τ ≤ C

(
ρ ‖v‖1,τ +

1

τ
‖p2(·, ∂, τ)v‖L2(Ω)

)
, (14.3.60)

for every v ∈ C∞0 (Bρ(x0) ∩ Ω), where C depends on C1
(
Ω
)
norm of ϕ, on

M0 and on

m2 = min
Ω
|∇ϕ|.

By (14.3.60) and by (14.3.58) we obtain

2τ ‖v‖2
1,τ ≤

2τC1

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ+

+ 2τCρ2 ‖v‖2
1,τ + Cτ−1 ‖p2(·, ∂, τ)v‖2

L2(Ω) ,

(14.3.61)

for every v ∈ C∞0 (Bρ(x0) ∩ Ω).
Now we need to estimate the first term on the right–hand side in (14.3.61).

From (14.3.44), (14.3.45) and (14.3.48) we have
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2τ

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ = 2τ

∫
qµ(x0, v,∇v, τ)dx =

= 2τe−2µϕ(x0)

∫
e2µϕ(x0)qµ(x0, v,∇v, τ)dx =

= 2τe−2µϕ(x0)

∫ (
e2µϕ(x0)qµ(x0, v,∇v, τ)−

−e2µϕ(x)qµ(x, v,∇v, τ)
)
dx+

+ 2τe−2µϕ(x0)

∫
e2µϕ(x)qµ(x, v,∇v, τ)dx =

= Rx0 + 2τe−2µϕ(x0)

∫
e2µϕ(x)qµ(x, v,∇v, τ)dx.

(14.3.62)

From what we have just obtained, from (14.3.40) and from (14.3.46) we
have (recall that we have fixed µ)

2τ

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ ≤

≤ Cρ(µ+ 1)2e2µΦ0

∫ (
τ |∇v|2 + τ 3|v|2

)
dx+

+ C

∫
(SτvAτv) e2µϕdx ≤

≤ Cρτ ‖v‖2
1,τ + C

∫
|p2(x, ∂, τ)v|2 e2µϕdx,

(14.3.63)

for every v ∈ C∞0 (Bρ(x0)∩Ω). In the last estimate from above we used that
(see (14.3.36))

2

∫
(SτvAτv) e2µϕdx ≤

∫
|p2(x, ∂, τ)v|2 e2µϕdx.

By (14.3.61) and (14.3.63) (recalling that τ ≥ 1) we get

2τ ‖v‖2
1,τ ≤ Cρτ ‖v‖2

1,τ + C
(
1 + τ−1

) ∫
|p2(x, ∂, τ)v|2 dx,

for every v ∈ C∞0 (Bρ(x0) ∩ Ω). Now, let us choose

ρ = ρ0 := min

{
1

C
, 1

}
and we get
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τ ‖v‖2
1,τ ≤ C

∫
|p2(x, ∂, τ)v|2 dx,

for every v ∈ C∞0 (Bρ0(x0) ∩ Ω) and for every τ ≥ 1.
Now, recalling (14.3.35) and applying Lemmas 13.4.2 and 13.4.3 we obtain

τ 3

∫
Ω

|u|2e2τϕdx+ τ

∫
Ω

|∇u|2e2τϕdx ≤ C

∫
Ω

|P2(∂)u|2e2τϕdx, (14.3.64)

for every u ∈ C∞0 (Bρ0(x0) ∩ Ω) and for every τ ≥ τ ∗, where C and τ ∗ are
suitable positive numbers depending by x0. At this point we have only to
apply Lemma 13.1.1 to conclude the proof. �

14.4 Second order operators II – Lipschitz co-
efficients in the principal part

In the following Theorem we will consider the operator

P2(x, ∂) = gjk(x)∂2
jk, in B1, (14.4.1)

where
{
gjk(x)

}n
j,k=1

is a real symmetric matrix–valued function. Recall that
φ ∈ C2

(
Ω
)
satisfies

∇φ(x) 6= 0, ∀x ∈ B1.

Moreover, φ satisfies condition (S) in 0 w.r.t. the operator P2(x, ∂) if we
have 

P2(0, ξ) = 0,

P
(j)
2 (ξ)∂jφ(0) = 0,

ξ 6= 0,

=⇒

=⇒ ∂2
jkφ(0)P

(j)
2 (0, ξ)P

(k)
2 (0, ξ) > 0

(14.4.2)

and 
P2(0, ξ + iτ∇φ(0)) = 0,

τ 6= 0,

=⇒

=⇒ ∂2
jkφ(0)P

(j)
2 (0, ξ + iτ∇φ(0))P

(k)
2 (0, ξ + iτ∇φ(0)) > 0.

(14.4.3)
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Concerning (14.4.2) and (14.4.3), keep in mind, respectively, the Remarks
that follow definitions 14.3.2 and 14.3.4.

Theorem 14.4.1. Let P2(x, ∂) be operator (14.4.1). Let us assume that
(14.3.1a) and (14.3.1b) are satisfied with Ω = B1. Let us suppose that ϕ ∈
C2
(
B1

)
satisfies condition (S) w.r.t. P2(x, ∂) in x = 0.

Then there exist ρ0 ∈ (0, 1], δ0 ∈ (0, 1], C ≥ 1 and τ0 ≥ 1 such that

τ 3

∫
B1

|u|2e2τϕdx+ τ

∫
B1

|∇u|2e2τϕdx ≤

≤ C

∫
B1

|P2(δx, ∂)u|2e2τϕdx,

(14.4.4)

for every δ ∈ (0, δ0], for every u ∈ C∞0 (Bρ0) and for every τ ≥ τ0.

Proof. For the most part of the proof we repeat the steps we did in the
proof of Theorem 14.3.7 by paying special attention to the additional terms
that come up because now the coefficients of the operator are variables.

Let us denote

gjkδ (x) = gjk(δx), j, k = 1, · · · , n.
Let u ∈ C∞0 (B1) and set v = eτϕu. We have

P2(δx, ∂, τ)v := eτϕP2(δx, ∂)(e−τϕv) =

= P2(δx, ∂)v − τ(P2(δx, ∂)ϕ)v + τ 2gδ(∇ϕ,∇ϕ)v − 2τgδ(∇ϕ,∇v) =

= ∂j

(
gjkδ (x)∂k

)
− 2τgδ(∇ϕ,∇v)−

− τ(P2(δx, ∂)ϕ)v − ∂j
(
gjkδ (x)

)
∂kv.

Let us denote
Lδ(v) = ∂j

(
gjkδ (x)∂kv

)
, (14.4.5)

p2(x, ∂, τ)v = Sτv + Aτv, (14.4.6)

where
Sτv = L(v) + τ 2gδ(∇ϕ,∇ϕ)v

and
Aτv = −2τgδ(∇ϕ,∇v).

Let us notice that

P2(δx, ∂, τ)v − p2(x, ∂, τ)v = −τ(P2(δx, ∂)ϕ)v − ∂j
(
gjkδ (x)

)
∂kv. (14.4.7)
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For the sake of brevity, we omit the domain and the element of integration.
Let µ be a positive number that we will choose later. We have trivially

∫
|p2(x, ∂, τ)v|2 e2µϕ =

∫
|Sτv|2e2µϕ +

∫
|Aτv|2e2µϕ+

+ 2

∫
(SτvAτv) e2µϕ ≥

≥ 2

∫
(SτvAτv) e2µϕ.

(14.4.8)

Set

J1 =

∫
2 (Lδv)gδ(∇ϕ,∇v)e2µϕ (14.4.9)

and
J2 =

∫
2gδ(∇ϕ,∇ϕ)gδ(∇ϕ,∇v)ve2µϕ, (14.4.10)

we have

2

∫
(SτvAτv) e2µϕ = −2τJ1 − 2τ 3J2. (14.4.11)

Now, to handle J1, we apply (14.3.4) with

βδ = e2µϕ∇(gδ)ϕ.

It should be kept in mind that now, with respect to proof of the Theorem
14.3.7, the coefficients of the operator P2(δx, ∂) depend on x, more precisely
they are of the type f(δx) where f is a Lipschitz continuous function. Hence
we have

J1 ≤
∫
e2µϕ

(
(Lδ(ϕ))gδ (∇v,∇v)− 2∂2ϕ∇(gδ)v · ∇(gδ)v+

+2µgδ (∇ϕ,∇ϕ)gδ (∇v,∇v)− 4µ (gδ (∇ϕ,∇v))2)+ Cδ

∫
e2µϕ|∇v|2

and, similarly,

J2 ≤−
∫
e2µϕ

(
2∂2ϕ∇(gδ)ϕ · ∇(gδ)ϕ+ gδ(∇ϕ,∇ϕ)Lδ(ϕ)+

+2µ (gδ(∇ϕ,∇ϕ))2) v2 + Cδ

∫
e2µϕv2,
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in the last two inequalities, C depends on M0, M1 and ‖ϕ‖C2(B1), but does
not depend on µ. By these inequalities and by (14.4.11) we get

2

∫
(SτvAτv) e2µϕ = −2τJ1 − 2τ 3J2 ≥

≥ 2τ

∫
e2µϕq(δ)

µ (x, v,∇v, τ)−

− Cδτ
∫
e2µϕ

(
τ 2v2 + |∇v|2

)
,

(14.4.12)

where

q(δ)
µ (x, v,∇v, τ) = q

(δ)
0 (x, v,∇v, τ) + µq

(δ)
1 (x, v,∇v, τ), (14.4.13)

q
(δ)
0 (x, v,∇v, τ) =

= 2
[
∂2ϕ(x)∇(gδ)v · ∇(gδ)v+

τ 2(∂2ϕ(x)∇(gδ)ϕ(x) · ∇(gδ)ϕ(x))v2
]

+

+ Lδ(ϕ)
[
τ 2gδ(∇ϕ(x),∇ϕ(x))v2 − gδ(∇v,∇v)

] (14.4.14)

and

q
(δ)
1 (x, v,∇v, τ) =

= −2gδ(∇ϕ(x),∇ϕ(x))gδ(∇v,∇v) + 4 (gδ(∇ϕ(x),∇v))2 +

+ 2τ 2 (gδ(∇ϕ(x),∇ϕ(x)))2 v2.

(14.4.15)

Now we examine the first addend on the right–hand side of (14.4.12),
namely

2τ

∫
e2µϕq(δ)

µ (x, v,∇v, τ).

Likewise to the proof of Theorem 14.3.7 we write

2τ

∫
e2µϕq(δ)

µ (x, v,∇v, τ) = I0 +R0,

where
I0 = 2τe2µϕ(0)

∫
q(δ)
µ (0, v,∇v, τ) (14.4.16)

and

R0 = 2τ

∫ (
e2µϕ(x)q(δ)

µ (x, v,∇v, τ)− e2µϕ(0)q(δ)
µ (0, v,∇v, τ)

)
. (14.4.17)
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Let ρ ∈ (0, 1], to be chosen; we get easily (recall δ ≤ 1)

|R0| ≤ Cρ(µ+ 1)2e2µΦ0

∫ (
τ |∇v|2 + τ 3|v|2

)
dx, (14.4.18)

for every v ∈ C∞0 (Bρ), where

Φ0 = max
x∈B1

|ϕ|,

C does not depend on µ, but depends on the C2
(
B1

)
norm of ϕ and on M0.

Let us denote
gjk0 = gjk(0).

By the Parseval identity we have

I0 =
2τe2µϕ(0)

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ, (14.4.19)

where
Qµ(ξ, τ) = Q0(ξ, τ) + µQ1(ξ, τ), (14.4.20)

Q0(ξ, τ) =2
[
∂2ϕ(0)ξ(g0) · ξ(g0) + τ 2∂2ϕ(0)∇(g0)ϕ(0) · ∇(g0)ϕ(0)

]
+

+ L0(ϕ)(0)
[
τ 2g0(∇ϕ(0),∇ϕ(0))− g0(ξ, ξ)

]
and

Q1(ξ, τ) =− 2g0(∇ϕ(0),∇ϕ(0))
(
g0(ξ, ξ)− τ 2g0(∇ϕ(0),∇ϕ(0))

)
+

+ 4 (g0(∇ϕ(0), ξ))2 .

Similarly to what was done in the proof of Theorem 14.3.7 can be proved the
existence of constants C1, C2 and µ such that

|ξ + iτ∇ϕ(0)|2 ≤ C1Qµ(ξ, τ) + C2
|P2(0, ξ + iτ∇ϕ(0))|2

|ξ + iτ∇ϕ(0)|2
, (14.4.21)

for every (ξ, τ) ∈ Rn+1.
From now on we fix a value µ for which (14.4.21) is satisfied.

Adopting the notations introduced in (14.3.26) with N = ∇ϕ(0), by (14.4.21)
we have
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2τ ‖v‖2
1,τ ≤

≤ 2τC1

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ + 2τC2 ‖p2(0, ∂, τ)v‖2

−1,τ .
(14.4.22)

Now, we estimate from above the last term on the right–hand
side in (14.4.22). For this purpose, we will repeatedly use the triangle
inequality and Lemma 14.3.6.

First of all, set

p̃2(x, ∂, τ)v = gjkδ (x)∂2
jkv − 2τgjkδ (x)∂jϕ(0)∂kv + τ 2gjkδ (x)∂jϕ(0)∂kϕ(0)v

and let us note that

p̃2(0, ∂, τ) = p2(0, ∂, τ).

By this equality and by the triangle inequality we have

‖p2(0, ∂, τ)v‖2
−1,τ = ‖p̃2(0, ∂, τ)v‖2

−1,τ ≤ 2 ‖p̃2(·, ∂, τ)v‖2
−1,τ +

+ 2 ‖p̃2(·, ∂, τ)v − p̃2(0, ∂, τ)v‖2
−1,τ .

(14.4.23)

Let us estimate from above the first term on the right–hand side in (14.4.23).
By the triangle inequality and by the definition of ‖·‖−1,τ we obtain

‖p̃2(·, ∂, τ)v‖2
−1,τ ≤ Cτ−2 ‖p̃2(·, ∂, τ)v‖2

L2(B1) ≤
≤ Cτ−2 ‖p̃2(·, ∂, τ)v − p2(·, ∂, τ)v‖2

L2(B1) +

+ Cτ−2 ‖p2(·, ∂, τ)v‖2
L2(B1) ,

(14.4.24)

on the other hand,

p̃2(x, ∂, τ)v − p2(x, ∂, τ)v =

= −∂j
(
gjkδ (x)

)
∂kv + 2τgjkδ (x) (∂jϕ(x)− ∂jϕ(0)) ∂kv+

+ τ 2gjkδ (x) (∂jϕ(x)∂kϕ(x)− ∂jϕ(0)∂kϕ(0)) v.

From the latter and the triangle inequality, we deduce easily that

τ−2 ‖p̃2(·, ∂, τ)v − p2(·, ∂, τ)v‖2
L2(B1) ≤

≤ Cδ2τ−2 ‖∇v‖2
L2(B1) + Cρ2 ‖v‖2

1,τ

(14.4.25)
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for every v ∈ C∞0 (Bρ).

By (14.4.24) and (14.4.25) we get

‖p̃2(·, ∂, τ)v‖2
−1,τ ≤ Cτ−2 ‖∇v‖2

L2(B1) + Cρ2 ‖v‖2
1,τ +

+ Cτ−2 ‖p2(·, ∂, τ)v‖2
L2(B1) .

(14.4.26)

Now, let us estimate from above the second term on the right–hand side
in (14.4.23).
We notice

p̃2(x, ∂, τ)v − p̃2(0, ∂, τ)v =

=
(
gjkδ (x)− gjkδ (0)

)
(∂j − τ∂jϕ(0)) (∂k − τ∂kϕ(0)) v.

and, for a fixed k = 1, · · · , n, we set

wk = (∂k − τ∂kϕ(0)) v.

By applying Lemma 14.3.6 we have, for every v ∈ C∞0 (Bρ),

∥∥∥(gjkδ (x)− gjkδ (0)
)

(∂j − τ∂jϕ(0))wk

∥∥∥2

−1,τ
≤

≤ C
(
M2

1 δ
2ρ2 + |τ∇ϕ(0)|−2

)
‖wk‖2

L2(B1) .
(14.4.27)

On the other hand, for k = 1, · · · , n,

‖wk‖2
L2(B1) = ‖(∂k − τ∂kϕ(0)) v‖2

L2(B1) ≤ C ‖v‖2
1,τ .

By the latter and by (14.4.27) we get

‖p̃2(·, ∂, τ)v − p̃2(0, ∂, τ)v‖2
−1,τ ≤ C

(
M2

1ρ
2 + τ−2

)
‖v‖2

1,τ . (14.4.28)

By (14.4.23), (14.4.26) and (14.4.28) we have

‖p2(0, ∂, τ)v‖2
−1,τ ≤ C

(
ρ2 + τ−2

)
‖v‖2

1,τ + Cτ−2 ‖p2(·, ∂, τ)v‖2
L2(B1) ,

for every v ∈ C∞0 (Bρ), where C depends on M0 and M1.
By the latter and by (14.4.22) we have

2τ ‖v‖2
1,τ ≤

2τC1

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ+

+ C
(
ρ2τ + τ−1

)
‖v‖2

1,τ + Cτ−1 ‖p2(·, ∂, τ)v‖2
L2(B1) ,

(14.4.29)
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for every v ∈ C∞0 (Bρ).

In order to estimate from above the first term on the right–hand side in
(14.4.29) we proceed as in the proof of Theorem 14.3.7 (see (14.3.62)) and
by (14.4.18), (14.4.19) we get

2τ

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ = R0 + 2τe−2µϕ(0)

∫
e2µϕ(x)q(δ)

µ (x, v,∇v, τ)dx ≤

≤ Cρτ ‖v‖2
1,τ + 2τe−2µϕ(0)

∫
e2µϕ(x)q(δ)

µ (x, v,∇v, τ)dx,

on the other hand, by (14.4.12) we have

2τ

∫
e2µϕq(δ)

µ (x, v,∇v, τ)dx ≤ Cδτ ‖v‖2
1,τ + 2

∫
(SτvAτv) e2µϕ,

hence, recalling (14.4.8),

2τ

(2π)n

∫
Qµ(ξ, τ) |v̂(ξ)|2 dξ ≤ C(δ + ρ)τ ‖v‖2

1,τ + C

∫
|p2(x, ∂, τ)v|2 e2µϕ,

for every v ∈ C∞0 (Bρ). By inserting the latter in (14.4.29) we have

2τ ‖v‖2
1,τ ≤ C

(
(ρ+ δ)τ + τ−1

)
‖v‖2

1,τ + C
(
1 + τ−1

)
‖p2(·, ∂, τ)v‖2

L2(B1) ,

for every v ∈ C∞0 (Bρ). Let

ρ0 = δ0 =
1

4C
,

then

τ ‖v‖2
1,τ ≤ 2C ‖p2(·, ∂, τ)v‖2

L2(B1) , (14.4.30)

for every v ∈ C∞0 (Bρ0), for every τ ≥ 2 and for every δ ≤ δ0. Taking into
account (14.4.7), by (14.4.30) we easily deduce that there exists τ∗ such that

τ ‖v‖2
1,τ ≤ 2C ‖P2(x, ∂, τ)v‖2

L2(B1) ,

for every v ∈ C∞0 (Bρ0) and for every τ ≥ τ∗. Finally, applying Lemmas
13.4.2 and 13.4.3 we obtain (14.4.4). �
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14.4.1 Application to the Cauchy problem

By Carleman estimate (14.4.4), we can obtain an uniqueness result for the
Cauchy problem for the operator

P (x, ∂)u = gjk(x)∂2
jku+ bk(x)∂ku+ c(x)u, (14.4.31)

where matrix
{
gjk
}

has real entries and satisfy conditions (14.3.1a) and
(14.3.1b), bk ∈ L∞(B1,C), k = 1, · · · , n, c ∈ L∞(B1,C). Below we state
the theorem; the proof is only briefly mentioned as it is carried out in an
analogous way to that of Theorem 13.5.3. Theorem 14.4.2 has been proved
by Calderón in 1957 for more general (but with coefficients C∞) than those
considered here (for further discussion, we refer to [50, Ch. 3]).

Theorem 14.4.2 (Calderón). Let ψ ∈ C1
(
B1

)
be a real–valued function

such that
∇ψ(0) 6= 0.

Let P (x, ∂) be operator (14.4.31). Let U ∈ H2 (B1) such that
P (x, ∂)U = 0, in B1,

U(x) = 0, in {x ∈ B1 : ψ(x) > ψ(0)} .

Let us suppose that 
P2(0, ξ + iτ∇ψ(0)) = 0,

(ξ, τ) 6= (0, 0),

=⇒

=⇒ P
(j)
2 (0, ξ + iτ∇ψ(0))∂jψ(0) 6= 0,

(14.4.32)

(P2(x, ξ) = gjk(x)ξjξk).
Then there exists a neighborhood U0 of 0 such that

U = 0 in U0.

Proof. The proof is carried out in a manner similar to that of Theorem
13.5.3. Therefore, first of all we write Carleman estimate (14.4.4) in the form

τ 3δ4

∫
|u|2 e2τϕ(δ−1X)dX + τδ2

∫
|∇u|2 e2τϕ(δ−1X)dX ≤

≤ C0

∫
|P2(X, ∂)u|2 e2τϕ(δ−1X)dX,
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for every δ ∈ (0, δ0], for every u ∈ C∞0 (Bρ̃0(0)) and for every τ ≥ τ̃0.
Next, by means of a diffeomorphism we reduce to the case in which

{x ∈ Br0 : ψ(x) ≤ 0} is the epigraph of a function f strictly convex and
such that f(0) = |∇f(0)| = 0. Like the proof of Theorem 13.5.3 we introduce
the function

ϕ(x) = h(δ0x),

where

h(xn) = −xn +
x2
n

2

and we check that ϕ satisfies condition (S). To check this, first we check that
ϕ is pseudo–convex. For this purpose, it suffices to notice that by (14.4.32)
we have that if τ = 0 then ξ 6= 0. Therefore

P2(0, ξ) = 0,

ξ 6= 0,

=⇒ P
(n)
2 (0, ξ) 6= 0,

the latter, in particular, implies that the antecedent of implication (14.4.2)
is not satisfied by ϕ in 0 which, in turn, implies that the condition (14.3.9)
holds. Regarding (14.4.3), we have that if (recall ∇ϕ(0) = −δ0en)

P2(0, ξ − iτδ0en) = 0,

τ 6= 0,

then, (14.4.32) implies

P
(n)
2 (0, ξ − iτδ0en) 6= 0,

hence

∂2
jkϕ(0)P

(j)
2 (0, ξ − iτδ0en)P

(k)
2 (ξ − iτδ0en) = δ2

0

∣∣∣P (n)
2 (0, ξ − iτδ0en)

∣∣∣2 > 0.

The remaining part of the proof is identical to that of Theorem 13.5.3. �

Let us examine condition (14.4.32).
Let us first notice that if N := ∇ψ(0) satisfies (14.4.32), then N cannot

be a characteristic direction. As a matter of fact, let us suppose the opposite,
that is let us suppose that
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P2(0, N) = 0. (14.4.33)

Let ξ = 0, then for every τ 6= 0 we have

P2(0, 0 + iτN) = 0,

hence the antecedent of (14.4.32) holds true, but (by Euler Theorem on
homogeneous function)

P
(j)
2 (0, 0 + iτN)Nj = 2iτP2(0, N) = 0.

Therefore, a necessary condition in order that (14.4.32) holds true is
that the surface {ψ(x) = ψ(0)} is noncharacteristic in 0. Nevertheless,
as we are going to see, the converse is not true, i.e. the condition P2(0, N) 6= 0
is not sufficient for the validity of (14.4.32).

Let us start with the following

Proposition 14.4.3. If N := ∇ψ(0) satisfies

P2(0, N) 6= 0. (14.4.34)

then condition (14.4.32) is equivalent to (we set gjk = gjk(0), j, k = 1, · · · , n)
g(ξ, ξ) = 0,

ξ ∦ N,
=⇒ g(ξ,N) 6= 0, (14.4.35)

ξ ∦ N mean "ξ and N linearly independent" .

Proof. We begin by noticing that the (14.4.32) is equivalent to

P2(0, ξ + iτN) = 0,

ξ ∦ N,

(ξ, τ) 6= (0, 0),

=⇒ P
(j)
2 (0, ξ + iτN)Nj 6= 0. (14.4.36)

Indeed, if (14.4.32) holds then trivially (14.4.36) holds. Let us suppose now
that (14.4.36) is true, we have again that (14.4.32) is trivially satisfied, for
any ξ ∦ N . Instead, if ξ = λN , λ ∈ R, we have that

P2(0, ξ + iτN) = 0,
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implies
0 = P2(0, λN + iτN) = (λ+ iτ)2P2(0, N)

from which, taking into account that P2(0, N) 6= 0, we have τ = λ = 0, that
is ξ = 0 and τ = 0, consequently the antecedent of (14.4.32) is false and thus
the condition (14.4.32) is satisfied.

Now we prove that (14.4.35) and (14.4.36) are equivalent. Let us begin
assuming that (14.4.36) holds true. To prove (14.4.35) let us suppose that
ξ ∦ N and that

g(ξ, ξ) = 0.

Now, if it were

g(ξ,N) = 0, (14.4.37)

we would have at the same time

ξ ∦ N,

P2(0, ξ + i0N) = g(ξ, ξ) = 0

and
P j

2 (0, ξ + i0N)Nj = 2g(ξ,N) = 0.

So there would be a contradiction with (14.4.36), therefore (14.4.37) does not
hold. Thus, if (14.4.36) holds true then (14.4.35) holds true.

Now let us suppose that (14.4.35) holds and let us suppose that

P2(0, ξ + iτN) = 0,

ξ ∦ N,

(ξ, τ) 6= (0, 0).

(14.4.38)

If τ = 0, then, (14.4.38) implies ξ ∦ N and g(ξ, ξ) = P2(0, ξ + i0N) = 0,
moreover (14.4.35) implies g(ξ,N) 6= 0. Hence

P
(j)
2 (0, ξ + i0N) = 2g(ξ,N) 6= 0.

If τ 6= 0, recalling that N is a noncharacteristic direction – so that g(N,N) =
P2(0, N) 6= 0 – we have

P
(j)
2 (0, ξ + iτN)Nj = 2g(ξ,N) + iτg(N,N) 6= 0.
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All in all, if (14.4.35) holds then (14.4.36) holds. The proof is complete. �

Remarks and Examples.

1. If P2(x, ∂) is ellipic (with real coefficients), then (14.4.32) is satisfied, as
already proved in Example 4a of Section 12.5.

2. Let us consider the wave operator

P2(∂) = ∆x′ − ∂2
xn . (14.4.39)

Let us check for which N 6= 0 condition (14.4.32) is satisfied. It is not
restrictive to assume

|N | = 1. (14.4.40)

We first need to assume that N is a noncharacteristic direction for P2(∂), i.e.

P2(N) = |N ′|2 −N2
n 6= 0. (14.4.41)

Now, let us see when (14.4.35) is satisfied (which, we recall, is equivalent to
(14.4.32)). This condition can be written

|ξ′|2 − ξ2
n = 0,

ξ ∦ N,
=⇒ ξ′ ·N ′ − ξnNn 6= 0. (14.4.42)

Let us first examine the case n = 2. In this case condition (14.4.41) can be
written

N2
1 −N2

2 6= 0. (14.4.43)

the first condition of the antecedent of (14.4.42) can be written ξ2
1 − ξ2

2 = 0
and it is equivalent to

ξ2 = ±ξ1.

From which, by (14.4.41) and ξ 6= 0, we have

ξ1N1 − ξ2N2 = ξ1 (N1 ∓N2) 6= 0.

Therefore, if n = 2, (14.4.32) is satisfied for all N ∈ R2 that satisfy
(14.4.43), i.e. that are not a characteristic direction.

Let us consider now the case n ≥ 3. Since the scalar product in Rn−1 is
invariant w.r.t. the rotations, we may assume that

N = N1e1 +Nnen.
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In this way, conditions (14.4.40) and (14.4.41), can be written, respectively;

N2
1 +N2

n = 1

and

N2
1 −N2

n 6= 0.

Let us distinguish two cases

(a) N2
1 −N2

n < 0, i.e. |N ′| < |Nn|;

(b) N2
1 −N2

n > 0, i.e. |N ′| > |Nn|;

Case (a). Let ξ ∦ N such that

|ξ′|2 − ξ2
n = 0.

In particular, we have ξn 6= 0 and ξ′ 6= 0 (as a matter of fact, if one of them
is zero the other is also zero) moreover

|ξ′| = |ξn|.

Hence

|ξ′ ·N ′| ≤ |ξ′||N ′| = |ξ′||N1| < |ξ′||Nn| = |ξn||Nn|,

from which we have

ξ′ ·N ′ − ξnNn 6= 0.

Therefore, in case (a), (14.4.35) is satisfied.
In case (b) it is simple to check that (14.4.35) is not satisfied. To check

this, Let

ξ0 = e1Nn + e2

√
N2

1 −N2
n + enN1.

We have 
|ξ′0|2 − ξ2

0,n = 0,

ξ0 ∦ N,

but
ξ′ ·N ′ − ξnNn = NnN1 −N1Nn = 0.
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Now it is interesting to point out (we refer to [50, Ch. 6]) that it has been
proved that there exist u, q ∈ C∞(R3,C) such that

∂2
t u− ∂2

x1
u− ∂2

x2
u+ q(x, t)u = 0,

supp u = {x2 ≥ 0} ,
(14.4.44)

or, in other words, does not hold uniqueness for the Cauchy problem with
initial surface Γ := {x2 = 0}, for the equation

∂2
t u− ∂2

x1
u− ∂2

x2
u+ q(x, t)u = 0

where
q ∈ C∞(R3,C).

Keep in mind that, when q is analytic, the Holmgren Theorem provides
uniqueness for the Cauchy problem for the equation

∂2
t u− ∂2

x1
u− ∂2

x2
u+ q(x, t)u = 0,

with initial surface Γ (as it is a noncharacteristic surface).

3. We check that if θ ∈ (0, 1), then

φ(x) =
1

2

(
|x′|2 − θ2x2

n

)
, (14.4.45)

is a pseudo–convex function w.r.t. wave operator (14.4.39) in the open set

Ω =
(
BR \Br

)
× (−T, T ),

for every 0 < r < R and T > 0.
We only need to check (14.3.10). Calculate

∇φ(x) =
(
x′,−θ2xn

)
6= 0, in Ω,

∂2φ(x) = diag
(
1, · · · , 1,−θ2xn

)
.

Now let us suppose 

|ξ′|2 − ξ2
n = 0,

ξ′ · x′ + θ2ξnxn = 0,

ξ 6= 0

(14.4.46)
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and let us check that
∂2φ(x)ξ̃ · ξ̃ > 0, (14.4.47)

where
ξ̃ =

(
ξ′,−θ2ξn

)
.

We have
∂2φ(x)ξ̃ · ξ̃ = |ξ′|2 − θ2ξ2

n.

On the other hand, by the first condition of (14.4.46) we have |ξ′|2 = ξ2
n

hence, taking into account that if ξ satisfies at the same time ξ 6= 0 and
|ξ′|2 − ξ2

n = 0, then ξ′ 6= 0, we have

∂2φ(x)ξ̃ · ξ̃ = |ξ′|2
(
1− θ2

)
> 0.

Therefore, we have proved that (14.4.46) implies (14.4.47). Hence ϕ is a
pseudo–convex function in Ω. �

In the following Theorem we prove the uniqueness for a Cauchy problem
under the assumption of pseudo-convexity of the initial surface.

Theorem 14.4.4. Let us suppose that the coefficients of the principal part
P2(∂), of operator (14.4.31) are costants. Let U ∈ H2 (B1(x0)) satisfy

P (∂)U = 0, in B1(x0)

U(x) = 0 in {x ∈ B1(x0) : ψ(x) > ψ(x0)} .

Let ψ ∈ C2
(
B1(x0)

)
be a real–valued function and pseudo–convex w.r.t.

P2(∂) in x0. Then there exists a neighborhood Ux0 of 0 such that

U = 0 in Ux0 .

Proof. The proof is very similar to that of Proposition 13.2.47. There-
fore, here we merely point out the most important differences inviting the
reader to care the details.

It is not restrictive to assume that x0 = 0 and

ψ(0) = 0.

Since ψ is pseudo–convex in 0, by Proposition 14.3.5 we have that the function

ϕ(x) = eλψ(x) − 1,

satisfies condition (S) in 0 for any λ large enough. Let
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ϕε(x) = ϕ(x)− ε|x|2

2
, (14.4.48)

where ε is a positive number that can be chosen in such a way that ϕε satisfies
condition (S) (the reader cure the details). We fix this ε and from Theorem
14.3.7 we have that there exists R ∈ (0, 1/2) and there exist two constants
C and τ0 such that

τ 3

∫
B1

|u|2e2τϕεdx+ τ

∫
B1

|∇u|2e2τϕεdx ≤ C

∫
B1

|P2(∂)u|2e2τϕεdx,

(14.4.49)
for every u ∈ C∞0 (B2R(0)) and for every τ ≥ τ0. Starting from this point one
repeats, with obvious modifications, what we did in the proof of Proposition
13.2.4. �

14.5 Stability estimate for the wave equation
in a cylinder

In this Section we adopt the traditional notations: the "spatial coordinates"
are denoted by x1, · · · , xn, the time coordinate is denoted by t and, therefore,
the wave operator is

� = ∂2
t −∆x = ∂2

t −
(
∂2
x1

+ · · ·+ ∂2
x1

)
. (14.5.1)

Let us denote by

∇x = (∂x1 , · · · , ∂x1) , ∇x,t = (∇x, ∂t).

Let T > 1, set
ST = Rn × (−T, T ).

The following Theorem holds true (see also [66])

Theorem 14.5.1 (stability estimate for the wave equation). Let a ∈
L∞ (ST ,Rn), b ∈ L∞ (ST ) and c ∈ L∞ (ST ). Let M ≥ 1. Let us assume that

‖a‖L∞(ST ,Rn) + ‖b‖L∞(ST ) + ‖c‖L∞(ST ) ≤M. (14.5.2)

Let F ∈ L2 (ST ) and U ∈ C∞ (ST ) satisfy
�U + a · ∇xU + b∂tU + cU = F, in ST ,

U(x, t) = 0, for |x| > 1, t ∈ (−T, T ).

(14.5.3)
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Then∫ T

−T

∫
B1

(
|U |2 + |∇x,tU |2

)
dxdt ≤ C ‖F‖2

L2(B1×(−T,T )) , (14.5.4)

where C depends on M and T .

The proof of Theorem 14.5.1 is based on what follows:
(a) an energy estimate for the equation in (14.5.3)
(b) Carleman estimate (14.3.33).

Lemma 14.5.2 (energy estimate). Let U ∈ C2
(
B1 × (−T, T )

)
satisfy


�U + a · ∇xU + b∂tU + cU = F, in B1 × (−T, T ),

U(x, t) = 0, for (x, t) ∈ ∂B1 × (−T, T ),

(14.5.5)

where a, b, c and F satisfy the same assumption of Theorem 14.5.1, then the
following inequality holds true

∫ T

−T

∫
B1

(
U2(x, t) + U2

t (x, t) + |∇xU(x, t)|2
)
dxdt ≤

≤ CTδ−1

∫ δ

−δ

∫
B1

(
U2(x, t) + U2

t (x, t) + |∇xU(x, t)|2
)
dxdt+

+ C ‖F‖2
L2(B1×(−T,T )) ,

(14.5.6)

where C depends on M and T only.

Proof of Lemma 14.5.2. By applying Lemma 14.3.1 with

β = (0, · · · , 0, 1)

and
g = diag (−1, · · · ,−1, 1),

we get

(�U)Ut =
1

2
∂t
(
U2
t + |∇xU |2

)
− div x (Ut∇xU) . (14.5.7)

Moreover, by (14.5.5) and taking into account (14.5.2) we have easily
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|(�U)Ut| ≤ C(M + 1)
(
U2 + U2

t + |∇xU |2 + F 2
)
. (14.5.8)

Let s, σ ∈ (−T, T ), s ≤ σ. By integrating both the sides of (14.5.7) over
B1 × [s, σ], we have from the divergence Theorem and from (14.5.8)

∫
B1

(
U2
t (x, σ) + |∇xU(x, σ)|2

)
dx−

−
∫
B1

(
U2
t (x, s) + |∇xU(x, s)|2

)
dx =

=

∫ σ

s

∫
B1

∂t
(
U2
t + |∇xU |2

)
dxdt =

= 2

∫ σ

s

∫
B1

(�U)Utdxdt ≤

≤ C(M + 1)

∫ σ

s

∫
B1

(
U2 + U2

t + |∇xU |2 + F 2
)
dxdt.

(14.5.9)

Let us note that by the first Poincaré inequality (Theorem 3.4.2) we have

C−1
∗

∫
B1

|∇xU(x, t)|2 dx ≤
∫
B1

(
U2(x, t) + |∇xU(x, t)|2

)
dx ≤

≤ C∗

∫
B1

|∇xU(x, t)|2 dx,
(14.5.10)

for every t ∈ (−T, T ), where C ≥ 1 is a constant. Therefore, setting

E(t) =

∫
B1

(
U2
t (x, t) + |∇xU(x, t)|2

)
dx,

by (14.5.9) e (14.5.10) we have

E(σ) ≤ E(s) + C1 ‖F‖2
L2(B1×(−T,T )) + C1

∫ σ

s

E(t)dt

(C1 = C∗C(M + 1)) and by the Gronwall inequality we obtain

E(σ) ≤
(
E(s) + C1 ‖F‖2

L2(B1×(−T,T ))

)
e2C1T . (14.5.11)

We notice that if σ ≤ s we obtain similarly the previous estimate if that we
integrate both the sides of (14.5.7) over B1× [σ, s] and we interchange σ and
s. Therefore we have, for each s, σ ∈ (−T, T ),
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E(σ) ≤
(
E(s) + C1 ‖F‖2

L2(B1×(−T,T ))

)
e2C1T . (14.5.12)

Now, by integrating with respect to s both members of (14.5.12) over (−δ, δ),
where δ ∈ (0, T ), we have, for each σ ∈ (−T, T ),

2δE(σ) ≤ 2C2

∫ δ

−δ
E(s)ds+ 2δC2 ‖F‖2

L2(B1×(−T,T ))
(14.5.13)

(C2 = e2C1T ). Finally, by integrating both the sides of (14.5.13) with respect
to σ over (−T, T ) and taking into account (14.5.10), we obtain (14.5.6). �

Remark 4. As can be seen immediately from the proof, it is not neces-
sary for Lemma 14.5.6 that T be greater than 1. �

Proof of Theorem 14.5.1. In Remark 3 of the previous Section we
have proved that

φ(x, t) = −θ2t2 + |x|2,
is a pseudo–convex funtion if θ ∈ (0, 1) in

(
BR \Br

)
× (−T, T ) for every

0 < r < R. Let us fix θ in such a way that

1

T
< θ < 1. (14.5.14)

(recall that T > 1) and let ρ ∈ (0, 1/10) satisfy

ρ <
θT − 1

8
. (14.5.15)

Proposition 14.3.5 implies that if λ is sufficiently large, then the functions

ϕ0(x, t) = eλφ(x,t), ϕ1(x, t) = eλφ(x−8ρe1,t), (14.5.16)

satisfy condition (S) in
(
BR \Br

)
× (−T, T ) for every 0 < r < 1 < R.

Let us fix λ > 0 in such a way that ϕ0 satisfy condition (S) in
(
B2 \Bρ

)
×

(−T, T ) (and, consequently ϕ1 satisfies condition (S) in
(
B2(8ρe1) \Bρ(8ρe1)

)
×

(−T, T )).
For any s > 0 set

Z0,s =
{

(x, t) ∈ B1 × (−T, T ) : ϕ0(x, t) ≥ eλs
}

and

Z1,s =
{

(x, t) ∈ B1 × (−T, T ) : ϕ1(x, t) ≥ eλs
}
.
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Let us check that

ϕ0(x,±T ) ≤ 1, ϕ1(x,±T ) ≤ 1, ∀x ∈ B1, (14.5.17a)

B1 × [−2ρ, 2ρ] ⊂ Z0,s ∪ Z1,s, ∀s ∈ (0, 12ρ2]. (14.5.17b)

The first of (14.5.17a) is an immediate consequence of (14.5.14). Con-
cerning the second of (14.5.17a), we observe that from (14.5.15) we have, for
each x ∈ B1

|x− 8ρe1| ≤ 1 + 8ρ < θT

which implies

ϕ1(x,±T ) = eλ(−θ
2T 2+|x−8ρe1|2) ≤ 1,

for every x ∈ B1.
Now let us check (14.5.17b). Set

ψ(x) = max
{
|x|2, |x− 8ρe1|2

}
,

we obtain easily

Z0,s ∪ Z1,s =
{

(x, t) ∈ B1 × (−T, T ) : eλ(−θ2t2+ψ(x)) ≥ eλs
}
. (14.5.18)

Let us note now that ψ can be written as

ψ(x) =


|x|2, for x1 ≥ 4ρ,

(x1 − 8ρ)2 + x2
2 + · · ·+ x2

n, for x1 < 4ρ,

from which we have
ψ(x) ≥ 16ρ2, ∀x ∈ Rn.

Now, if (x, t) ∈ B1 × [−2ρ, 2ρ], then

−θ2t2 + ψ(x) ≥ −θ2t2 + 16ρ2 > −4ρ2 + 16ρ2 = 12ρ2 ≥ s, ∀s ∈ (0, 12ρ2],

by the latter and by (14.5.18), we get (x, t) ∈ Z0,s ∪ Z1,s for 0 ≤ s ≤ 12ρ2.
Hence (14.5.17b) is proved.
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Let us apply Carleman estimate (14.3.33) to the operator� where ϕ = ϕ0.
Set

QT = B1 × (−T, T ),

we get

τ 3

∫
QT

|u|2e2τϕ0dxdt+ τ

∫
QT

|∇x,tu|2e2τϕ0dxdt ≤

≤ C

∫
QT

|�u|2e2τϕ0dxdt,

(14.5.19)

for every u ∈ C∞0 (Rn+1), such that supp u ⊂ QT = B1 × (−T, T ) and for
every τ ≥ τ0. Let η̃ ∈ C∞(R) satisfy

η̃(r) = 0, r ≤ 9ρ2; 0 ≤ η̃(r) ≤ 1, 9ρ2 < r < 10ρ2; η̃(r) = 1, r ≥ 10ρ2;∣∣∣∣dη̃dr
∣∣∣∣ ≤ Cρ−2,

∣∣∣∣d2η̃

dr2

∣∣∣∣ ≤ Cρ−4, (14.5.20)

where C is a constant (independent by ρ). Set

η(x, t) = η̃(−θ2t2 + |x|2)

and let us apply estimate (14.5.19) to Uη. By (14.5.2) we have

|�(ηU)| = |η�U + 2 (∂tη∂tU −∇xη · ∇xU) + U(�η)| ≤
≤ ηM(|∇x,tU |+ |U |) + η|F |+ Cρ−2χZ0,9ρ2\Z0,10ρ2

|∇x,tU |+
+ Cρ−4χZ0,9ρ2\Z0,10ρ2

|U |,

where C depends on T . Let us observe that (by inserting what was obtained
in (14.5.19)), we have∫

QT

(
τ 3|Uη|2 + τ |∇x,t(ηU)|2

)
e2τϕ0dxdt ≤

≤ CM2

∫
QT

η2
(
|∇x,tU |2 + |U |2

)
e2τϕ0dxdt+

+ C

∫
QT

|F |2e2τϕ0dxdt+

+ Cρ−8

∫
Z0,9ρ2\Z0,10ρ2

|U |2e2τϕ0dxdt+

+ Cρ−4

∫
Z0,9ρ2\Z0,10ρ2

|∇x,tU |2e2τϕ0dxdt,

(14.5.21)
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for every τ ≥ τ0.
Now, let us estimate from below the left–hand side of (14.5.21)∫

QT

(
τ 3|Uη|2 + τ |∇x,t(ηU)|2

)
e2τϕ0dxdt ≥

≥ τ

∫
Z0,10ρ2

(
|U |2 + |∇x,tU |2

)
e2τϕ0dxdt

(14.5.22)

and let us estimate from above first integral on the right–hand side as follows∫
QT

η2
(
|∇x,tU |2 + |U |2

)
e2τϕ0dxdt =

=

∫
Z0,10ρ2

(
|∇x,tU |2 + |U |2

)
e2τϕ0dxdt+

+

∫
Z0,9ρ2\Z0,10ρ2

η2
(
|∇x,tU |2 + |U |2

)
e2τϕ0dxdt ≤

≤
∫
Z0,10ρ2

(
|∇x,tU |2 + |U |2

)
e2τϕ0dxdt+

+ e2τe10λρ2
∫
Z0,9ρ2\Z0,10ρ2

(
|∇x,tU |2 + |U |2

)
dxdt.

(14.5.23)

Using (14.5.22) and (14.5.23) in (14.5.21), we obtain, by simple calculations
(recall ρ < 1)

(τ − CM2)

∫
Z0,10ρ2

(
|U |2 + |∇x,tU |2

)
e2τϕ0dxdt ≤

≤ C

∫
QT

|F |2e2τϕ0dxdt+

+ Cρ−8e2τe10λρ2
∫
Z0,9ρ2\Z0,10ρ2

(
(
|U |2 + |∇x,tU |2

)
dxdt,

(14.5.24)

for every τ ≥ τ0. We set τ1 = max {τ0, (2CM
2)−1} and by (14.5.24) we

obtain

∫
Z0,10ρ2

(
|U |2 + |∇x,tU |2

)
e2τϕ0dxdt ≤ C

∫
QT

|F |2e2τϕ0dxdt+

+ Cρ−8e2τe10λρ2
∫
Z0,9ρ2\Z0,10ρ2

(
(
|U |2 + |∇x,tU |2

)
dxdt,

(14.5.25)
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for every τ ≥ τ1. Now, in (14.5.25), we estimate trivially from below the
integral on the left–hand side and we estimate trivially the integrals on the
right–hand side. We get

e2τe12λρ2
∫
Z0,12ρ2

(
|U |2 + |∇x,tU |2

)
dxdt ≤

≤
∫
Z0,10ρ2

(
|U |2 + |∇x,tU |2

)
e2τϕ0dxdt ≤

≤ Ce2τeλ
∫
QT

|F |2e2τϕ0dxdt+

+ Cρ−8e2τe10λρ2
∫
Z0,9ρ2\Z0,10ρ2

(
(
|U |2 + |∇x,tU |2

)
dxdt,

which implies

∫
Z0,12ρ2

(
|U |2 + |∇x,tU |2

)
dxdt ≤

≤
∫
Z0,10ρ2

(
|U |2 + |∇x,tU |2

)
e2τϕ0dxdt ≤

≤ Ce
2τ
(
eλ−e12λρ2

) ∫
QT

|F |2dxdt+

+ Cρ−8e
2τ
(
e10λρ2−e12λρ2

) ∫
Z0,10ρ2\Z0,9ρ2

(
(
|U |2 + |∇x,tU |2

)
dxdt ≤

≤ Ce
2τ
(
eλ−e12λρ2

) ∫
QT

|F |2dxdt+

+ Cρ−8e
2τ
(
e10λρ2−e12λρ2

) ∫
QT

(
|U |2 + |∇x,tU |2

)
dxdt,

(14.5.26)

for every τ ≥ τ1. By Lemma 14.5.2 and by (14.5.26) we have

∫
Z0,12ρ2

(
|U |2 + |∇x,tU |2

)
dxdt ≤ Ce

2τ
(
eλ−e12λρ2

)
‖F‖2

L2(B1×(−T,T )) +

+ Cρ−9e
2τ
(
e10λρ2−e12λρ2

) ∫ 2ρ

−2ρ

∫
B1

(
|U |2 + |∇x,tU |2

)
dxdt,

(14.5.27)
for every τ ≥ τ1, where C depends on M and T . At this point we note that,
by using (14.3.33) for operator � with ϕ = ϕ1, we obtain an estimate similar
to (14.5.27) . More precisely we have
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∫
Z1,12ρ2

(
|U |2 + |∇x,tU |2

)
dxdt ≤

≤ Ce
2τ
(
eλ−e12λρ2

)
‖F‖2

L2(B1×(−T,T )) +

+ Cρ−9e
2τ
(
e10λρ2−e12λρ2

) ∫ 2ρ

−2ρ

∫
B1

(
|U |2 + |∇x,tU |2

)
dxdt,

(14.5.28)

for every τ ≥ τ1. By (14.5.17b), (14.5.27) e (14.5.28) we have∫ 2ρ

−2ρ

∫
B1

(
|U |2 + |∇x,tU |2

)
dxdt ≤

≤ Ce
2τ
(
eλ−e12λρ2

)
‖F‖2

L2(B1×(−T,T )) +

+ Cρ−9e
2τ
(
e10λρ2−e12λρ2

) ∫ 2ρ

−2ρ

∫
B1

(
|U |2 + |∇x,tU |2

)
dxdt,

For every τ ≥ τ1.
Let us choose τ = τ2 ≥ τ1, where τ2 satisfies

Cρ−9e
2τ2
(
e10λρ2−e12λρ2

)
≤ 1

2
.

By this choice of τ the second term on the right–hand side of (14.5.27) is
absorbed on the left–hand side, and we get (14.5.4). �

Remark. Theorem 14.5.1 can be proved under less restrictive assump-
tions on U , but here we do not go into this question. Instead, we want to
illustrate a simple and direct application to the proof of the uniqueness
of the following inverse problem – which we discuss here only at the
formal level – let F a function depending only on the variable x, let U be
the solution to the following direct problem



∂2
tU −∆U = F (x), in (x, t) ∈ B1 × (−T, T ),

U(x, t) = h0, for (x, t) ∈ ∂B1 × (−T, T ),

U(x, 0) = U0(x), Ut(x, 0) = U1(x), for x ∈ B1,

(14.5.29)

where h0, U0, U1 and F given functions. The proof of the uniqueness and the
existence of solution to the direct problem (14.5.29), for a given F ∈ L2(B1),
can be found, for instance, in [23, Ch. 7]. Let us assume now to know also
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∂U

∂ν |∂B1×(−T,T )
= h1,

we wish to determine F . Here we give a sketch of the proof of the uniqueness
for the problem of determining F (inverse problem) by mean of h0, h1, U0, U1.
Since the problem is linear, it is enough to prove that if

U0 = U1 = 0, h0 = h1 = 0,

then F ≡ 0.
Let U satisfy

∂2
tU −∆U = F (x), in (x, t) ∈ B1 × (−T, T ),

U(x, t) = 0, ∂U
∂ν

= 0 for (x, t) ∈ ∂B1 × (−T, T ),

U(x, 0) = 0, Ut(x, 0) = 0, for x ∈ B1

(14.5.30)

Set
w = ∂tU

and differentiate both the sides of the equazion with respect to t. Since F
does not depend on t we have


∂2
tw −∆w = 0, in (x, t) ∈ B1 × (−T, T ),

w(x, t) = 0, ∂w
∂ν

= 0 for (x, t) ∈ ∂B1 × (−T, T ).

(14.5.31)

Applying to w estimate (14.5.4) we get

w ≡ 0, in B1 × (−T, T ).

Hence

U(x, t) = U(x, 0) +

∫ t

0

w(x, s)ds = 0, in B1 × (−T, T ).

Therefore by (14.5.30) we have

F (x) = ∂2
tU −∆U = 0.

This proves the uniqueness for the inverse problem. The idea that we have
outlined is only a miniature of a more general method of proving uniqueness
and stability results for inverse problems related to evolution equations in
which it is required the determination of the time iondepent coefficients of
some equation. For further study we refer to [37], [39]. �
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14.6 Geometric meaning of the pseudo – con-
vexity. Some remarks on the necessary
conditions.

In this Section we briefly discuss some necessary conditions on the weight
exponent for a Carleman estimate to be valid. We state without proof a
Hörmander Theorem [34, Theorem 8.1.1]. In some sense, Proposition 13.2.2
is a "miniature" of such a Theorem

Theorem 14.6.1 (necessary condition for the Carleman estimate).
Let Ω be a bounded open set of Rn. Let ϕ ∈ C∞

(
Ω̄
)
satisfy ∇ϕ 6= 0 in Ω̄.

Let
P (x,D) =

∑
|α|≤m

aα(x)Dα, (14.6.1)

be a linear differential operator of order m, such that aα ∈ L∞(Ω), |α| ≤ m
and aα ∈ C1

(
Ω̄
)
, |α| = m.

Let us suppose that there exist K1 > 0 and τ0 such that for every u ∈
C∞0 (Ω,C) and for everey τ ≥ τ0 we have

τ
∑

|α|≤m−1

(
m− 1

α

)∫
Ω

|Dαu|2e2τϕdx ≤ K1

∫
Ω

|P (x,D)u|2e2τϕdx. (14.6.2)

Then, setting ζ = ξ + iσ∇ϕ(x) where x ∈ Ω, ξ ∈ Rn, σ ∈ R, we have
Pm(x, ζ) = 0

σ 6= 0

=⇒

=⇒ |ζ|2 ≤ 2K1

[
n∑

j,k=1

∂2
jkϕ(x)P (j)

m (x, ζ)P
(k)
m (x, ζ)+

+σ−1=
n∑
k=1

Pm,k(x, ζ)P
(k)
m (x, ζ)

]
.

(14.6.3)

As already noted in (13.4.18) the expression on the right–hand side of the
implication (14.6.3) can be written by Poisson brackets and it is equal to

i

2σ

{
Pm(x, ξ + iσ∇ϕ), Pm(x, ξ + iσ∇ϕ)

}
.
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Remark. Let us observe that if P (x,D) is an elliptic operator and
estimate (14.6.2) holds true, then Theorem 14.6.1 implies that necessary
condition (14.6.3) holds true in any open set Ω̃ compactly contained in Ω

this, in turn, implies that condition (F) of Theorem 13.5.1 is satisfied in Ω̃.
Therefore such a Theorem 13.5.1 gives the estimate∑

|α|≤m

τ 2(m−|α|)−1

∫
|Dαu|2 e2τϕdx ≤ C

∫
|P (x,D)u|2 e2τϕdx,

for every u ∈ C∞0 (Ω̃) and for every τ large enough. �

In Theorem 14.6.1 we provided necessary conditions for the validity of
Carleman estimates. To establish necessary conditions for the unique con-
tinuation property we would need deeper the exploration of the notion of
pseudo–convexity which we mentioned in the previous Section for second-
order operators. For this kind of further investigation we refer to Chapters
4, 5, 6 of the book [50].

Geometric interpretation of pseudo–convexity condition.
Let

P2(x, ξ) =
n∑

j,k=1

gjk(x)ξjξk. (14.6.4)

where
{
gjk
}n
j,k=1

is a nonsingular symmetric matrix, whose entries are real
constants. Let φ ∈ C2(Ω̄) where Ω is a bounded open set of Rn, and let us
suppose that ∇φ 6= 0 in Ω̄. Let x0 ∈ Ω and set

ξ0 = ∇φ(x0). (14.6.5)

Let us consider the Hamiltonian system associated to P2(x, ξ) which, as op-
erator P2 has constant coefficients, is

·
x
j

= P
(j)
2 (ξ(t)), j = 1, · · · , n,

·
ξj = −P2,j(ξ(t)) (= 0), j = 1, · · · , n.

(14.6.6)

A solution to (14.6.6) on an interval J is the line (x(t), ξ(t)) of Rn
x×Rn

ξ which
is called bicharacteristic line of the operator P2(D). Let us note that by
(14.6.6) we have

d

dt
P2(ξ(t)) =

·
ξjP

(j)
2 (x(t), ξ(t)) = 0, ∀t ∈ J. (14.6.7)
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If
P2(ξ(t)) = 0, ∀t ∈ J,

we say that (x(t), ξ(t)) is a null bicharacteristic line. In particular, we
have that if (x(t), ξ(t)) is a null bicharacteristic line in a point t0 then it is
null bicharacteristic line in the whole interval J . As a matter of fact, if

P2(ξ(t0)) = 0,

then (14.6.7) implies P2(ξ(t)) = 0, for every t ∈ J . Let us notice that in
each point (x(t), ξ(t)) of a null bicharacteristic line, ξ(t) is a characteristic
direction for operator P2 in the point x(t). The projection x(·), on Rn

x of a
null bicharacteristic line is called ray of P2 (see Section 5.5). Now, if x(t) is
a ray of P2, then

d

dt
φ(x(t)) = ∂jφ(x(t))

dxj

dt
= P

(j)
2 (ξ(t))∂jφ(x(t)) (14.6.8)

and

d2

dt2
φ(x(t)) =

d

dt

(
P

(j)
2 (ξ(t))∂jφ(x(t))

)
=

= ∂2
jkφ(x(t))

dxk

dt
P

(j)
2 (ξ(t)) + P

(jk)
2 (ξ(t))

dξk
dt
∂jφ(x(t)) =

= ∂2
jkφ(x(t))P

(j)
2 (ξ(t))P

(k)
2 (ξ(t)).

(14.6.9)

Let us suppose that in ξ0 ∈ Rn \ {0} we have

P2(ξ0) = 0, (14.6.10)

let x0 ∈ Ω and let us consider the solution (x(t), ξ(t)) of system (14.6.6)
satisfying the initial condition in t0 ∈ J

x(t0) = x0, ξ(t0) = ξ0. (14.6.11)

We quickly notice that (14.6.8) allows us to write condition (14.4.32) of
Theorem 14.4.2 (see also Proposition 14.4.3) assuming there (14.6.10) and
(14.6.11) as follows

d

dt
φ(x(t))|t=t0 6= 0. (14.6.12)

This is equivalent to the fact that the ray x(t) passing through x0 is transverse
to the level surface

Γφ = {x ∈ Ω : φ(x) = φ(x0)} .
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Furthermore, (14.6.8) and (14.6.9) allow us to write the (14.3.9) (in x0)
in the form

d

dt
φ(x(t))|t=t0 = 0 =⇒ d2

dt2
φ(x(t))|t=t0 > 0, (14.6.13)

this implies that if t0 is a critical point of φ(x(t)) then it is a proper minimum
point of the function φ(x(t)). Condition (14.6.13) can also be formulated in
the following manner: let us consider the above defined level surface Γφ and
the level set

Ω+
φ = {x ∈ Ω : φ(x) > φ(x0)} ,

then (14.6.13) says that if the ray x(t) is tangent in x0 to the level surface Γφ
(this is expressed by the antecedent of implication (14.6.13)), then for every
t in a neighborhood of t0, we have, for t 6= t0, x(t) ∈ Ω+

φ . In other words, the
ray x(t) cannot "cross" the level surface Γφ at points where x(t) is tangent
to Γφ.





Chapter 15

Optimal three sphere and
doubling inequality for second
order elliptic equations

15.1 Introduction
In this Chapter we will prove the strong unique continuation property
for the second order elliptic equations with real coefficients (in the principal
part). Now we recall briefly this property and provide an introduction to the
Chapter.

Let {aij(x)}ni,j=1 be a symmetric matrix of real–valued functions.
We assume that the following uniform ellipticity condition is satisfied

λ−1 |ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ λ |ξ|2 , ∀ξ ∈ Rn, ∀x ∈ B1,

where λ ≥ 1. Let us assume that the function aij, i, j = 1, · · · , n are Lipschitz
continuous

∣∣aij(x)− aij(y)
∣∣ ≤ Λ|x− y|, for i, j ∈ {1, · · · , n} , ∀x, y ∈ B1. (15.1.1)

Let bi ∈ L∞ (B1), i = 1, · · · , n and c ∈ L∞ (B1) (these coefficients can
also be complex–valued) satisfy∥∥bi∥∥

L∞(B1)
≤M, for i = 1, · · · , n

and
‖c‖L∞(B1) ≤M. (15.1.2)

691
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We recall that the equation

Lu =
n∑

i,j=1

aij(x)∂2
xixju+

n∑
i=1

bi(x)∂xiu+ c(x)u = 0, in B1, (15.1.3)

enjoys the strong unique continuation property provided that any so-
lution u to (15.1.3) satisfying the conditions∫

Br

|u|2dx = O (rm) , as r → 0, ∀m ∈ N, (15.1.4)

identically vanishes. We will prove the strong unique continuation property
as a consequence of an optimal three sphere inequality. A prototype of
such an inequality is the Hadamard three circle inequality for the holomorphic
functions that we first encountered in Section 10.4.

Generally speaking, a three sphere inequality for solutions to the equation
(15.1.3) is an inequality of the type∫

Bρ

|u|2dx ≤ C

(∫
BR

|u|2dx
)1−θ (∫

Br

|u|2dx
)θ

, (15.1.5)

where 0 < r < ρ < R ≤ 1, C and θ ∈ (0, 1) depend by λ, Λ, M and R, ρ (C
and θ do not depend on u).

We say that (15.1.5) is an optimal three spheres inequality provided C
does not depend on r and, for fixed R, ρ, we have

θ ∼ |log r|−1 , as r → 0. (15.1.6)

We recall that by f(r) ∼ g(r), as r → 0 we means

0 < lim
r→0

f(r)

g(r)
< +∞.

First author that proved (15.1.5) was Landis in [45].
Arguing like in Remark 5 of Section 10.4, it is easy to check that if

a function u satisfies an optimal three sphere inequality, then whenever u
satisfies (15.1.4) it vanishes identically. Therefore, if an optimal three sphere
inequality holds true for equation (15.1.4) then such an equation satisfies the
strong unique continuation property.

Another type of inequality that implies the strong unique continuation
property is the so-called doubling inequality. Such an inequality occurs
in the form
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∫
B2r

|u|2dx ≤ K

∫
Br

|u|2dx, ∀r ∈
(

0,
1

2

)
, (15.1.7)

where K depends on u but does not depend on r. We will prove later
on in which a way (15.1.7) implies the strong unique continuation property.
The main idea may be expressed as follows. Iterating inequality (15.1.7) we
have, for every j ∈ N∫

B1/2

|u|2dx ≤ K

∫
B1/4

|u|2dx ≤ · · · ≤ Kj−1

∫
B

1/2j

|u|2dx

which, together with (15.1.4), provides, for each j,m ∈ N (Cm depends on
m only), ∫

B1/2

|u|2dx ≤ Kj−1Cm

(
1

2j

)m
= CmK

−1

(
K

2m

)j
. (15.1.8)

Let now m satisfy
2m > K

and passing to the limit as j →∞, we get by (15.1.8)∫
B1/2(0)

|u|2dx = 0.

Both the optimal three sphere inequality and the doubling inequality will
be obtained from an appropriate Carleman estimate for the elliptic oper-
ator L (or, equivalently, for the principal part of that operator). We will
approach this question in two phases: first we will study the case of the
Laplace operator ∆ and then we will study the case of equations with vari-
able coefficients. In both the cases, the proofs of the Carleman estimates will
start from rewriting the elliptic operators in polar coordinates: in the case
of Laplace operator, in Euclidean polar coordinates; in the case of variable
coefficients, in geodesic polar coordinates w.r.t. the Riemannian structure
induced by a metric conforming to

aijdx
i ⊗ dxj,

({aij(x)}ni,j=1 is the inverse of the matrix {aij(x)}ni,j=1). We warn that through-
out this Chapter we will use the Einstein convention of repeated indices. We
will, in addition, adhere more scrupulously to the notation on indices of the
components of a tensor. Actually, these notations are mostly needed in the
Sections 15.6 and 15.7, but we will adopt it in the preceding sections as well.
The proof in the case of the Laplace operator presents most of the main
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difficulties that we will encounter in the case of variable coefficient, which,
of course, presents additional technical difficulties. In addition to the proofs
that we give here, There exist other proofs in the literature, e.g. [22], [35].

15.2 Formulas for the change of variables of
second order operators

We begin by deriving a formula to the change of variables of the operator

div (A(x)∇u(x)) , (15.2.1)

where A(x) = {aij(x)}ni,j=1 is a symmetric matrix, aij are sufficiently smooth
functions for i, j = 1, · · · , n (will suffice aij ∈ C0,1 (Rn)).

Let us consider the case where A(x) is the identity matrix. Let Λ be an
open set of Rn and let Φ ∈ C1

(
Λ,Rn

)
be a injective map such that

det(JΦ(x)) 6= 0, ∀x ∈ Λ, (15.2.2)

where JΦ(x) is the jacobian matrix of Φ in x

JΦ(x) =

 ∂x1Φ1((x) · · · ∂xnΦ1((x)
... . . . ...

∂x1Φn((x) · · · ∂xnΦn((x)

 .

Set
Ω = Φ(Λ)

and
Ψ = Φ−1,

consequently Ψ ∈ C1
(
Ω,Rn

)
. Let us prove that, if u ∈ C2

(
Λ
)
, then

(∆u)(Ψ(y)) =
1

|det(JΨ(y))|
div (B(y)v(y)) , (15.2.3)

where
v(y) = u(Ψ(y)) (15.2.4)

and
B(y) = |det(JΨ(y))| (JΨ(y))−1

(
(JΨ(y))−1

)T
. (15.2.5)

More generally, for operator (15.2.1) we have

div (A(x)∇u(x))|x=Ψ(y) =
1

|det(JΨ(y))|
div
(
Ã(y)v(y)

)
, (15.2.6)
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where v is given by (15.2.4) and

Ã(y) = |det(JΨ(y))| (JΨ(y))−1A(Ψ(y))
(
(JΨ(y))−1

)T
. (15.2.7)

Since (15.2.6) can be proved similarly, we limit ourselves to prove (15.2.3).

Proof of (15.2.3). Let w ∈ C∞0 (Ω) and let

w̃(x) = w(Φ(x)), ∀x ∈ Λ.

Integrating by parts, we have

−
∫

Λ

∆u(x)w̃(x)dx =

∫
Λ

∇u(x) · ∇w̃(x)dx (15.2.8)

and by the formula of change of variables for multiple integrals, we have∫
Λ

∇xu(x) · ∇xw̃(x)dx =

=

∫
Ω

(∇xu) (Ψ(y)) · (∇xw̃) (Ψ(y)) |det(JΨ(y))| dy.
(15.2.9)

Now, (15.2.4) gives

∇yv(y) = (JΨ(y))T (∇xu) (Ψ(y)),

(∇xu and ∇yv are column vectors). Hence

(∇xu) (Ψ(y)) =
(
(JΨ(y))−1

)T ∇yv(y), (15.2.10)

similarly

(∇xw̃) (Ψ(y)) =
(
(JΨ(y))−1

)T ∇yw(y). (15.2.11)

Substituting (15.2.10) and (15.2.11) into the integral on the right–hand side
of (15.2.9) and recalling (15.2.8), we have

−
∫

Λ

∆u(x)w̃(x)dx =

∫
Ω

B(y)∇yv(y) · ∇yw(y)dy =

= −
∫

Ω

divy (B(y)∇yv(y))w(y)dy.

(15.2.12)

Now, we change the variables in the integral on the left–hand side of (15.2.12)
and we find
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−
∫

Ω

(∆u)(Ψ(y))w(y) |det(JΨ(y))| dy = −
∫

Ω

divy (B(y)∇yv(y))w(y)dy.

Since w is arbitrary in C∞0 (Ω), we get (15.2.3).

Exercise 1. Apply formula (15.2.3) to write the Laplace operator, in R2,
in polar coordinates showing that, setting

(x1, x2) = Ψ(%, ϑ) = (% cosϑ, % sinϑ), (%, ϑ) ∈ (0,+∞)× [0, 2π)

and
v(%, ϑ) = u(Ψ(%, ϑ)) = u(% cosϑ, % sinϑ),

we have

(∆u)(% cosϑ, % sinϑ) = ∂2
%v +

1

%
∂%v +

1

%2
∂2
ϑv. (15.2.13)

♣

Exercise 2. Apply formula (15.2.3) to write the Laplace operator, in R3,
in polar coordinates showing that, setting

(x1, x2, x3) = Ψ(%, ϑ, φ) = (% sinϑ cosφ, % sinϑ sinφ, % cosϑ), (15.2.14)

where for (%, ϑ, φ) ∈ (0,+∞)×)(0, π)× (0, 2π) and

v(%, ϑ, φ) = u(Ψ(%, ϑφ)) = u(% sinϑ cosφ, % sinϑ sinφ, % cosϑ),

we have

(∆u)(% sinϑ cosφ, % sinϑ sinφ, % cosϑ) =

= ∂2
%v +

2

%
∂%v +

1

%2 sinϑ
∂ϑ (sinϑ∂ϑv) +

1

%2 sin2 ϑ
∂2
φv.

(15.2.15)

♣

15.3 Polar coordinates in Rn. The Laplace–
Beltrami operator on the sphere

In the n–dimensional case, it is possible to express the Laplace operator in po-
lar coordinates by means some formulas similar to (15.2.13) and to (15.2.15).
Neverthless, in this way we come to write quite cumbersome formulas . For
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this reason we present here a procedure, which consists, first of all, in defining
the Laplace operator on the sphere

Σ = {x ∈ Rn| |x| = 1} .

Concerning the polar coordinates in Rn if one wishes to follow the path
suggested in Exercise 1 and 2 of the previous Section, it would be convenient
to write a transformation similar to (15.2.14). For this purpose it would
suffice to use the following recursive formula

rn = |x|

xn = rn cosϑn, ϑn ∈ [0, 2π),

rn−1 = rn sinϑn, ϑn ∈ [0, 2π),

xn−1 = rn−1 cosϑn−1, ϑn−1 ∈ [0, π)

· · ·

x1 = r1 cosϑ2, ϑ2 ∈ [0, π).

(15.3.1)

In this way, the "angular coordinates" are (ϑ2, ϑ3, · · · , ϑn). By using (15.3.1)
one reaches to the following formula of change of variables in polar coordi-
nates (f integrable function)∫

BR

f(x)dx =

∫ R

0

(∫
Σ

f(ρω)ρn−1dS

)
dρ =

=

∫ R

0

(∫
∂Bρ

f(y)dSy

)
dρ,

(15.3.2)

where R > 0.
In order to write the Laplace operator in polar coordinates we proceed in

two steps:

Step I. We will write the Laplace–Beltrami operator on the sphere Σ;

Step II. We will complete the transformation begun in Step I and we will
prove Theorem 15.3.6.

Step I. Let u(ω) be a real–valued function on Σ. We associate to u the
homogeneous function of degree 0 defined by

ũ : Rn \ {0} → R.
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ũ(x) = u

(
x

|x|

)
, x ∈ Rn \ {0}. (15.3.3)

If ũ ∈ Ck (Rn \ {0}), we say that u belongs to Ck(Σ). We define the
scalar product of two functions u, v ∈ C0(Σ) as

(u, v)Σ =

∫
Σ

u(ω)v(ω)dω (15.3.4)

(dω := dS) and we set

‖u‖L2(Σ) =

∫
Σ

|u(ω)|2 dω; (15.3.5)

Hence C0(Σ), equipped with the scalar scalar product (15.3.4), is a prehilber-
tian space and L2(Σ) is the completion of that space.

For any 1 ≤ i ≤ n we define the operator di as follows. Let u ∈ C1(Σ),
let us denote

(diu) (ω) = (∂xiũ(x))| x=ω , ω ∈ Σ. (15.3.6)
Other symbols which are used in literature to denote diu are: Ωiu, ∂ωiu.

Remarks.
1. By (15.3.6) we have for j, k = 1, · · · , n

(diu) (ω) =

((
∂xi

xk

|x|

)
(∂xk ũ)

(
x

|x|

))
| x=ω

=

=
1

|x|

(
(∂xiũ)

(
x

|x|

)
− xi

|x|
xk

|x|
(∂xk ũ)

(
x

|x|

))
| x=ω

.

(15.3.7)

Let us note that the function written in the brackets in the second line is the
i–th component of

(∇ũ)

(
x

|x|

)
− x

|x|

(
x

|x|
· (∇ũ)

(
x

|x|

))
, (15.3.8)

which, in turn, is the i–th tangential component on {|x| = 1} of the gradient
of ũ.

2. The operators di, 1 ≤ i ≤ n, are not independent. As a matter of fact,
by (15.3.6) and by the fact that ũ is a homogeneous function of degree 0, we
have

n∑
i=1

ωi (diu) (ω) =
n∑
i=1

(
xi

|x|
(∂xiũ)

(
x

|x|

))
)| x=ω = 0. (15.3.9)
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Moreover, by (15.3.6) we have, for every u, v ∈ C1(Σ),

di(uv) = (diu) v + u (div) , 1 ≤ i ≤ n. (15.3.10)

Also let us note

∂xiũ(x) =
1

|x|
(diu)

(
x

|x|

)
, x ∈ Rn \ {0}, 1 ≤ i ≤ n. (15.3.11)

As a matter of fact, by homogeneity we have

ũ(x) = ũ(λx) ∀λ ∈ R \ {0}.

Hence

∂xiũ(x) = λ (∂xiũ) (λx), 1 ≤ i ≤ n

from which, choosing λ = 1
|x| , we get

∂xiũ(x) =
1

|x|
(∂xiũ)

(
x

|x|

)
=

1

|x|
(diu)

(
x

|x|

)
, 1 ≤ i ≤ n,

from which (15.3.11) follows. �

Proposition 15.3.1. Let n > 1. We have

(diu, v)Σ = (u, d∗i v)Σ , ∀u, v ∈ C1(Σ), 1 ≤ i ≤ n, (15.3.12)

where

d∗i = (n− 1)ωi − di, 1 ≤ i ≤ n. (15.3.13)

d∗i is the formal adjoint of di with respect to the scalar product (15.3.4).

Proof. First, let us notice that, for any 1 ≤ i ≤ n, ∂xiũ(x) is integrable
over B1 because

|∂xiũ(x)| ≤ 1

|x|
max

Σ
|∇ũ| , 1 ≤ i ≤ n

and n > 1.
Now, let us check that, for any 1 ≤ i ≤ n, we have∫

Σ

diu(ω)v(ω)dω = (n− 1)

∫
B1

∂xiũ(x)ṽ(x)dx. (15.3.14)
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We check (15.3.14). If ε ∈ (0, 1) and 1 ≤ i ≤ n, we have by (15.3.2) and by
(15.3.11),∫

B1\Bε
∂xiũ(x)ṽ(x)dx =

∫
B1\Bε

1

|x|
(diu)

(
x

|x|

)
v

(
x

|x|

)
dx =

=

∫ 1

ε

ρn−2

∫
Σ

diu(ω)v(ω)dω =

=
1− εn−1

n− 1

∫
Σ

diu(ω)v(ω)dω.

Passing to the limit as ε→ 0 we obtain (15.3.14).
Now, by (15.3.14) and integrating by parts we have

1

n− 1
(diu, v)Σ =

∫
B1

∂xiũ(x)ṽ(x)dx =

= lim
ε→0

∫
B1\Bε

∂xiũ(x)ṽ(x)dx =

= lim
ε→0

∫
B1\Bε

(∂xi (ũṽ)− ũ∂xi ṽ) dx =

=

∫
Σ

u(ω)v(ω)ωidω−

− lim
ε→0

(∫
∂Bε

ũ(x)ṽ(x)
xi

|x|
dS +

∫
B1\Bε

ũ(x)∂xi ṽ(x)dx

)
.

(15.3.15)

On the other hand∫
∂Bε

ũ(x)ṽ(x)
xi

|x|
dS = O

(
εn−1

)
, as ε→ 0,

hence we have

lim
ε→0

∫
∂Bε

ũ(x)ṽ(x)
xi

|x|
dS = 0.

Therefore (15.3.15) gives

1

n− 1
(diu, v)Σ =

∫
Σ

u(ω)v(ω)ωidω −
∫
B1

ũ(x)∂xi ṽ(x)dx

and employing (15.3.14) (interchange u with v in the latter) we get
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1

n− 1
(diu, v)Σ =

∫
Σ

u(ω)

(
v(ω)ωi − 1

n− 1
div(ω)

)
dω =

=
1

n− 1

(
u, (n− 1)ωiv − div

)
Σ
.

By the just obtained equality, (15.3.12) immediately follows . �

Definition 15.3.2 (Laplace – Beltrami operator on the sphere). The
Laplace–Beltrami operator on the sphere is defined as

∆Σ =
n∑
i=1

d2
i . (15.3.16)

Proposition 15.3.3. We have

(∆Σu, v)Σ = −
n∑
i=1

(diu, div)Σ , ∀u, v ∈ C2(Σ). (15.3.17)

Proof. By (15.3.9) and (15.3.12) we get

(∆Σu, v)Σ =
n∑
i=1

(
d2
iu, v

)
Σ

=
n∑
i=1

(diu, d
∗
i v)Σ =

=
n∑
i=1

(
diu, (n− 1)ωiv − div

)
Σ

=

= (n− 1)

(
n∑
i=1

ωidiu, v

)
Σ

−
n∑
i=1

(diu, div)Σ =

= −
n∑
i=1

(diu, div)Σ .

�

Remark. Proposition (15.3.3) implies

(∆Σu, u)Σ = −
n∑
i=1

‖diu‖2
L2(Σ) ≤ 0, ∀u ∈ C2(Σ) (15.3.18)
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and ∫
Σ

∆Σu(ω)dω = (∆Σu, 1)Σ = 0. (15.3.19)

�

Proposition 15.3.4. Si ha, per i, j = 1, · · · , n,

djdiu− didju = ωjdiu− ωidju, ∀u ∈ C2(Σ). (15.3.20)

Proof. By (15.3.11) we have

(diu)

(
x

|x|

)
= |x|∂xiũ(x), 1 ≤ i ≤ n, ∀x ∈ Rn \ {0}.

Hence

djdiu(ω) = ∂xj (|x|∂xiũ(x))| x=ω =

=
(
(∂xj |x|) ∂xiũ(x) + |x|∂2

xixj ũ(x)
)
| x=ω

=

=

(
xj

|x|
∂xiũ(x)

)
| x=ω

+
(
∂2
xixj ũ

)
(ω) =

= ωjdiu(ω) +
(
∂2
xixj ũ

)
(ω)

(15.3.21)

and, similarly,

didju(ω) = ωidju(ω) +
(
∂2
xjxiũ

)
(ω). (15.3.22)

Subtracting (15.3.22) by (15.3.21) we obtain (15.3.20).�

Step II. We associate to u ∈ C2 (BR \ {0}), where R > 0, the function
U ∈ C2 ((0, R)× (Rn \ {0}))

U(ρ, y) = u

(
ρ
y

|y|

)
, ρ ∈ (0, R), y ∈ Rn \ {0}. (15.3.23)

It is obvious that if ρ = |x| and ω = x
|x| , then we have

U(ρ, ω) = u

(
|x| x
|x|

)
= u(x). (15.3.24)

Proposition 15.3.5. Let U be defined by (15.3.23). Then we have, for any
i = 1, · · · , n,

∂xiu(x) = ωi∂ρU(ρ, ω) +
1

ρ
diU(ρ, ω). (15.3.25)

where ρ = |x| and ω = x
|x|
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Proof. By (15.3.24) we have

∂xiu(x) = (∂xi |x|) ∂ρU
(
|x|, x
|x|

)
+

+
n∑
k=1

∂xi

(
xk
|x|

)
∂ykU

(
|x|, x
|x|

)
=

=
xi

|x|
∂ρU

(
|x|, x
|x|

)
+

+
n∑
k=1

[
δik

|x|
− xixk

|x|3

]
∂ykU

(
|x|, x
|x|

)
.

(15.3.26)

Now, (15.3.7) implies

n∑
k=1

[
δik

|x|
− xixk

|x|3

]
∂ykU

(
|x|, x
|x|

)
=

1

|x|
diU(ρ, ω).

By the latter and by (15.3.26) we get (15.3.25).�

Theorem 15.3.6. Let u ∈ C2 (BR \ {0}) and let U be defined by (15.3.23).
Set

U(ρ, ω) = u(ρω), ∀(ρ, ω) ∈ (0, R)× Σ. (15.3.27)

We have v ∈ C2 ((0, R)× Σ) and

(∆u)(ρω) = ∂2
ρv(ρ, ω) +

n− 1

ρ
∂ρv(ρ, ω) +

1

ρ2
∆Σv(ρ, ω) (15.3.28)

Proof. We denote, for the sake of brevity,

ρ(x) = |x|, ω(x) =
x

|x|
.

Let i ≤ i ≤ n; (15.3.25) implies

∂2
xiu(x) = ∂xi

(
ωi(x)∂ρU(ρ(x), ω(x))

)︸ ︷︷ ︸
J1

+ ∂xi

(
1

ρ(x)
diU(ρ(x), ω(x))

)
︸ ︷︷ ︸

J2

.

(15.3.29)

Computation of J1.
We have
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J1 = ∂xi
(
ωi(x)

)
∂ρU(ρ(x), ω(x)) + ωi(x)∂xi (∂ρU(ρ(x), ω(x))) =

=

(
1

|x|
− (xi)2

|x|3

)
∂ρU(ρ(x), ω(x))+

+ ωi(x)

[
ωi(x)∂2

ρU(ρ(x), ω(x)) +
1

ρ(x)
(di∂ρU) (ρ(x), ω(x))

]
=

=

(
1

ρ(x)
− ω2

i (x)

ρ(x)

)
∂ρU(ρ(x), ω(x))+

+ (ωi(x))2∂2
ρU(ρ(x), ω(x)) +

ωi(x)

ρ(x)
(di∂ρU) (ρ(x), ω(x)).

(15.3.30)

Computation of J2.
We have

J2 = ∂xi

(
1

ρ(x)

)
diU(ρ(x), ω(x)) +

1

ρ(x)
∂xi ((diU)(ρ(x), ω(x))) =

= −ω
i(x)

ρ2(x)
diU(ρ(x), ω(x))+

+
ωi(x)

ρ(x)
∂ρ (diU) (ρ(x), ω(x)) +

1

ρ2(x)

(
d2
iU
)

(ρ(x), ω(x)),

(15.3.31)

in the last equality we have applied (15.3.25) to (diU)(ρ(x), ω(x)).

Computation of ∆.
Now, adding up (15.3.30) and (15.3.31) we obtain (we omit, the variables)

∆u =
n∑
i=1

∂2
xiu =

=
n− 1

ρ
∂ρU + ∂2

ρU +
1

ρ

n∑
i=1

ωidi (∂ρU)−

− 1

ρ2

n∑
i=1

ωidiU +
1

ρ

n∑
i=1

ωi∂ρ (diU) +
1

ρ2
∆ΣU.

(15.3.32)

Now, (15.3.9) implies

n∑
i=1

ωidiU = 0,
n∑
i=1

ωidi (∂ρU) = 0;
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by the first equality we get

n∑
i=1

ωi∂ρ (diU) = ∂ρ

(
n∑
i=1

ωidiU

)
= 0.

Therefore, (15.3.32) gives

∆u(x) = ∂2
ρU(ρ(x), ω(x))+

n− 1

ρ(x)
∂ρU(ρ(x), ω(x))+

1

ρ2(x)
(∆ΣU) (ρ(x), ω(x))

and by (15.3.27) we get (15.3.28). �

Remarks.
1. Generally speaking, even if u ∈ C2 (BR), U(ρ, ω) is not differentiable
w.r.t. ρ in 0. However (15.3.9) and (15.3.25) give

∂ρU(ρ(x), ω(x)) = ∇u(x) · ω(x), (15.3.33)

from which we have

|∂ρU(ρ, ω)| ≤ max
Br

|∇u|, for ρ ≤ r ≤ R. (15.3.34)

2. Let us observe that

∂2
ρU(ρ(x), ω(x)) =

n∑
ij=1

∂2
xixju(x)

xixj

|x|2
=
∑
|α=2|

2!

α!
∂αu(x)

(
x

|x|

)α
=

= ∂2u(x)︸ ︷︷ ︸
Hessian matrix

x

|x|
· x
|x|
.

(15.3.35)

Indeed we have

∂2
ρU(ρ(x), ω(x)) =

n∑
k=1

ωk(x)∂xk

(
n∑
j=1

ωj(x)∂xju

)
=

=
n∑
k=1

xk

|x|

n∑
j=1

[(
δjk

|x|
− xjxk

|x|3

)
∂xju+

xj

|x|
∂2
xjxku

]
=

=
n∑
k=1

xk

|x|

[
1

|x|
∂xku−

xk

|x|2

(
x

|x|
· ∇u

)
+

n∑
j=1

xj

|x|
∂2
xjxku

]
=

=
n∑

ij=1

∂2
xixju(x)

xixj

|x|2
.
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Similarly can be checked that

∂mρ U(ρ(x), ω(x)) =
1

|x|m
∑
|α|=m

m!

α!
∂αu(x)xα. (15.3.36)

3. Of course, by (15.3.33) we have (for r ≤ R)

∂u

∂ν
(x) = ∂ρU(r, ω), for x ∈ ∂Br, (15.3.37)

where ν is the unit outward normal to ∂Br. Similarly we have by (15.3.36),

∂mu

∂νm
(x) :=

dm

dtm
u(x+ tν)|t=0 = ∂mρ U(r, ω).

�

Exercise 1. Let u ∈ C2 (BR) and U(ρ, ω) = u(ρω). Apply formula
(15.3.28) to prove that for any r < R we have∫

Σ

∂ρU(ρ, ω)dω =
1

rn−1

∫
Br

∆u(x)dx.

♣

Exercise 2. Let u be a harmonic function in BR. Prove that for any
r < R we have ∫

∂Br

∂mu

∂νm
(x)dS = 0.

♣

15.4 The case of Laplace leading operator
In this Section and in the sequel we will use the followingHardy inequality,
[33], [72].

Lemma 15.4.1 (the Hardy inequality). If f ∈ C∞0 (0,+∞), then∫ +∞

0

f 2(s)

s2
ds ≤ 4

∫ +∞

0

(f ′(s))2ds. (15.4.1)

Note. the number 4 on the right–hand side of (15.4.1) is the best con-
stant.
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Proof. We set
g(s) = s−

1
2f(s). (15.4.2)

and we have

f(s) = s
1
2 g(s), f ′(s) =

1

2
s−

1
2 g(s) + s

1
2 g′(s).

Hence (15.4.1) is equivalent to

∫ +∞

0

s−1g2(s)ds ≤ 4

∫ +∞

0

(
1

2
s−

1
2 g(s) + s

1
2 g′(s)

)2

ds. (15.4.3)

Now, we have

4

∫ +∞

0

(
1

2
s−

1
2 g(s) + s

1
2 g′(s)

)2

ds =

= 4

∫ +∞

0

(
1

4
s−1g2(s) + g(s)g′(s) + s (g′(s))

2

)
ds =

= 4

∫ +∞

0

(
1

4
s−1g2(s) +

1

2

(
g2
)′

(s) + s (g′(s))
2

)
ds =

=

∫ +∞

0

(
s−1g2(s) + 4s (g′(s))

2
)
ds ≥

≥
∫ +∞

0

s−1g2(s)ds.

The proof is complete. �

Theorem 15.4.2 (Carleman estimate for ∆). Let ε ∈ (0, 1]. Let us define

ρ(x) = φε (|x|) , for x ∈ B1, (15.4.4)

where
φε(s) =

s

(1 + sε)1/ε
. (15.4.5)

Then there exist τ1 > 1 and C > 1, depending on ε only, such that

τ 3

∫
ρε−2τ |u|2dx+τ

∫
ρ2+ε−2τ |∇u|2dx ≤

≤ C

∫
ρ4−2τ |∆u|2dx,

(15.4.6)
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for every u ∈ C∞0 (B1 \ {0}) and for every τ ≥ τ1 .
Moreover, there exist τ2 > 1, C > 1, depending on ε only, such that

τ 3

∫
ρε−2τ |u|2dx+τ

∫
ρ2+ε−2τ |∇u|2dx+

+ τ 2r

∫
ρ−1−2τu2dx ≤ C

∫
ρ4−2τ |∆u|2dx,

(15.4.7)

for every r ∈ (0, 1), for every u ∈ C∞0
(
B1 \Br/4

)
and for every τ ≥ τ2.

Remark. We have

|x|
21/ε
≤ ρ(x) ≤ |x|, ∀x ∈ B1. (15.4.8)

�

Proof. It is not restrictive to assume that u is a real–valued function.
First we prove (15.4.6), afterwards, with a few modifications we will prove
(15.4.7).

Let u be an arbitrary function of C∞0 (B1 \ {0}) and let us consider the
n-dimensional Laplace operator in the polar coordinates (%, ω), that is (re-
calling that Σ = ∂B1)

∆u = u%% +
n− 1

%
u% +

1

%2
∆Σu, ∀(%, ω) ∈ (0,∞)× Σ. (15.4.9)

Let us perform the following change of variables

% = et, ũ(t, ω) = u
(
et, ω

)
, ∀(t, ω) ∈ (−∞, 0)× Σ.

We have, for every (t, ω) ∈ (−∞, 0)× Σ,

e2t(∆u)(et, ω) = Lũ := ũtt + (n− 2)ũt + ∆Σũ. (15.4.10)

For the sake of brevity, for any function h ∈ C∞0 (B1 \ {0}) we will write h′,
h′′, ... instead of ht, htt, ... .

By (15.4.4) we have (we omit the subscript ε from now on)

ϕ(t) := log(φ(et)) = t− ε−1 log
(
1 + eεt

)
, ∀t ∈ (−∞, 0). (15.4.11)

We get

ϕ′(t) =
1

1 + eεt
, ϕ′′(t) = − εeεt

(1 + eεt)2
, ∀t ∈ (−∞, 0). (15.4.12)
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Let
f(t, ω) = e−τϕũ(t, ω), ∀(t, ω) ∈ (−∞, 0)× Σ.

We have

Lτf := e−τϕL(eτϕf) = b0f + b1f
′︸ ︷︷ ︸

Aτf

+ a0f + f ′′ + ∆Σf︸ ︷︷ ︸
Sτf

, (15.4.13)

where

a0 = τ 2ϕ′
2

+ τ(n− 2), b0 = τϕ′′, b1 = 2τϕ′ + (n− 2). (15.4.14)

Let us denote by
∫

(·) the integral
∫ 0

−∞

∫
Σ

(·)dωdt and set

γ :=
1

ϕ′
= 1 + eεt. (15.4.15)

We obtain ∫
γ |Lτf |2 ≥ 2

∫
γAτfSτf +

∫
γ |Aτf |2 (15.4.16)

and
2

∫
γAτfSτf = 2

∫
γ (b0f + b1f

′) ∆Σf︸ ︷︷ ︸
I1

+

+ 2

∫
γ (b0f + b1f

′) (a0f + f ′′)︸ ︷︷ ︸
I2

.

(15.4.17)

We examine I1.
For any function f , g on ∈ C∞0 (B1 \ {0}), let us denote by

〈∇Σf,∇Σg〉 =
n∑
i=1

difdig, |∇Σf |2 = 〈∇Σf,∇Σf〉.

Integraing by parts, using Proposition (15.3.3) and taking into account
(15.4.15), we have

I1 = 2

∫
(γb0f∆Σf + γb1f

′∆Σf) =

= 2

∫ (
−γb0 |∇Σf |2 − γb1 〈∇Σf,∇Σf

′〉
)

=

= 2

∫ (
−γb0 |∇Σf |2 −

1

2
γb1

(
|∇Σf |2

)′)
=

= 2

∫ (
−γb0 +

1

2
(γb1)′

)
|∇Σf |2 .
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By (15.4.12), (15.4.14) and (15.4.15) we obtain

−γb0 +
1

2
(γb1)′ = −γτϕ′′ + 1

2
γb′1 +

1

2
γ′b1 =

= −γτϕ′′ + γτϕ′′ +
1

2
(2τϕ′ + n− 2) γ′ =

=
εeεt

2

(
2τ

1 + eεt
+ n− 2

)
≥ τ

2
εeεt, ∀τ > 0.

(15.4.18)

Hence, we have

I1 ≥
∫
τεeεt |∇Σf |2 , ∀τ > 0. (15.4.19)

Now we examine I2.
Integration by parts gives

I2 = 2

∫
γ (b0f + b1f

′) (a0f + f ′′) =

= 2

∫
γ
(
a0b0f

2 + b0ff
′′ + b1a0f

′f + b1f
′f ′′
)

=

= 2

∫
γa0b0f

2 − (γb0f)′ f ′ +
1

2
γb1a0

(
f 2
)′

+
1

2
γb1

(
f ′

2
)′

=

= 2

∫ [
γa0b0 −

1

2
(γb1a0)′

]
f 2 − (γb0)′ ff ′−

−
∫
γb0f

′2 +
1

2
(γb1)′ f ′

2

=

= 2

∫ [
γa0b0 −

1

2
(γb1a0)′ +

1

2
(γb0)′′

]
︸ ︷︷ ︸

H1

f 2−

−
∫ [

γb0 +
1

2
(γb1)′

]
︸ ︷︷ ︸

H2

f ′
2

.

(15.4.20)

Let now examine H1.
Since by (15.4.14), H1 is a polynomial of third degree w.r.t. τ , we begin

by evaluating the coefficient of τ 3.
Let us notice that the terms of H1 have the following behavior, as τ →

+∞

γa0b0 = O
(
τ 3
)
,

− 1

2
(γb1a0)′ = O

(
τ 3
)
,

1

2
(γb0)′′ = O (τ) .
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Hence, let us first examine the term

H̃1 := γa0b0 −
1

2
(γb1a0)′ .

By (15.4.12), (15.4.14) and (15.4.15) we have

H̃1 = γa0b0 −
1

2
(γb1a0)′ =

= γ
(
τ 2ϕ′

2

+ τ(n− 2)ϕ′
)
τϕ′′ − 1

2
b′1 (γa0)− 1

2
b1 (γa0)′ =

= γ
(
τ 2ϕ′

2

+ τ(n− 2)ϕ′
)
τϕ′′−

− 1

2
(2τϕ′ + (n− 2))

′
γ
(
τ 2ϕ′

2

+ τ(n− 2)ϕ′
)
− 1

2
b1 (γa0)′ =

= −1

2
b1 (γa0)′ =

= −1

2

(
2τ

1 + eεt
+ n− 2

)[
γ
(
τ 2ϕ′

2

+ τ(n− 2)ϕ′
)]′

=

= −
(

τ

1 + eεt
+
n− 2

2

)(
τ 2 1

1 + eεt
+ τ(n− 2)

)′
=

=

(
τ 3 1

1 + eεt
+ τ 2n− 2

2

)
εeεt

(1 + eεt)2
.

(15.4.21)

Then, using the trivial inequality

1

1 + eεt
≥ 1

2
, ∀t ∈ (−∞, 0),

we have (for t ∈ (−∞, 0))

H̃1 ≥
τ 3

8
εeεt, ∀τ > 0. (15.4.22)

and

1

2
(γb0)′′ =

τ

2

(
−εeεt

1 + eεt

)′′
= −τ

2

ε3eεt (1− eεt)
(1 + eεt)3

≥ −τ
2
ε3eεt, ∀τ > 0. (15.4.23)

Inequalities (15.4.22) and (15.4.23) give

H1 = H̃1 +
1

2
(γb0)′′ ≥ τ 3

8
εeεt − τ

2
ε3eεt ≥ τ 3

16
εeεt, ∀τ >

√
8ε. (15.4.24)
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Now, let us consider H2.

H2 = γb0 +
1

2
(γb1)′ =

= τ(1 + eεt)ϕ′′ +
1

2

[
2τ(1 + eεt)ϕ′ + (n− 2)(1 + eεt)

]′
=

= −τ εeεt

1 + eεt
+

1

2

[
2τ + (n− 2)(1 + eεt)

]′
=

= −τ εeεt

1 + eεt
+

(n− 2)εeεt

2
.

(15.4.25)

Hence
− 2H2 ≥

τ

2
εeεt, ∀τ ≥ 2(n− 2). (15.4.26)

By (15.4.20), (15.4.24) and (15.4.26) we have

I2 ≥
∫
τ 3

8
εeεtf 2 +

τ

2
εeεtf ′

2

, ∀τ ≥ τ1, (15.4.27)

where τ1 = max{
√

8ε, 2(n− 2)}.
Now, (15.4.17), (15.4.19) and (15.4.27) give

2

∫
γAτfSτf ≥

ε

8

∫ (
τ 3f 2 + τ

(
f ′

2

+ |∇Σf |2
))

eεt, ∀τ ≥ τ1. (15.4.28)

By (15.4.16) and (15.4.28) we have∫
γ |Lτf |2 ≥

ετ 3

8

∫
f 2 +

ετ

8

∫ (
f ′

2

+ |∇Σf |2
)
eεt, (15.4.29)

for every τ ≥ τ1 and for every f ∈ C∞0 ((−∞, 0)× Σ).
Now, in order to obtain (15.4.6) we come back to u and to the origi-

nal variables. Let us recall that f(t, ω) = e−τϕu(et, ω). By using (15.4.4),
(15.4.10) and (15.4.13), we get

∫ 0

−∞

∫
Σ

|Lτf |2 dωdt =

∫ 0

−∞

∫
Σ

e−2τϕ(t)e4t|(∆u)(et, ω)|2dωdt =

=

∫ 1

0

∫
Σ

e−2τϕ(log %)%3|(∆u)(%, ω)|2dωd% =

=

∫
B1

ρ−2τ |x|4−n|∆u|2dx.

(15.4.30)
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Similarly, we get∫ 0

−∞

∫
Σ

f 2eεtdωdt =

∫
B1

ρ−2τ |x|ε−nu2dx. (15.4.31)

Concerning the second integral on the right–hand side of (15.4.29), let δ ∈
(0, 1) be a number that we will choose later, we have∫ 0

−∞

∫
Σ

eεt
(
f ′

2

+ |∇Σf |2
)
dωdt ≥

≥ δ

∫ 0

−∞

∫
Σ

eεt
(
f ′

2

+ |∇Σf |2
)
dωdt ≥

≥ δ

2

∫ 0

−∞

∫
Σ

eεte−2τϕ(t)
(
|u%(et, ω)|2e2t+

+
∣∣∇Σu(et, ω)

∣∣2 − 2τ 2|u(et, ω)|2
)
dωdt =

=
δ

2

∫
B1

ρ−2τ |x|ε−n
(
|x|2|∇u|2 − 2τ 2|u|2

)
dx.

(15.4.32)

Now, let us choose δ = 1
2
so that, by (15.4.29) and (15.4.30)–(15.4.32),

we have

∫
B1

ρ−2τ |x|4−n|∆u|2dx ≥ετ
16

∫
B1

ρ−2τ |x|ε+2−n|∇u|2dx+

+
ετ 3

16

∫
B1

ρ−2τ |x|ε−nu2dx,

(15.4.33)

for every u ∈ C∞0 (B1 \ {0}) and for every τ ≥ τ1. Finally, by (15.4.8), we
substitute in (15.4.33) τ by (τ − n

2
) and we find inequality (15.4.6).

Let us now look at (15.4.7). Let u ∈ C∞0 (B1 \Br/4).
By (15.4.16) and (15.4.29) we have

∫
|Lτf |2 ≥

ε

8

∫ (
τ 3f 2 + τ

(
f ′

2

+ |∇Σf |2
))

eεt +

∫
γ |Aτf |2 . (15.4.34)

To obtain the first term on the left–hand side of (15.4.7) we estimate from
below the last term on the right–hand side of (15.4.34).

Let us note that by the trivial inequality (a + b)2 ≥ 1
2
a2 − b2 and by

(15.4.12), (15.4.15) we have
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∫
γ |Aτf |2 ≥

1

2

∫
γ (2τϕ′ + n− 2)

2
f ′

2 −
∫
γτ 2ϕ′′

2

f 2 ≥

≥ τ 2

∫
f ′

2 − ε2τ 2

∫
e2εtf 2, ∀τ > 0

(15.4.35)

Using inequality (15.4.35) in (15.4.34), we have∫
|Lτf |2 ≥τ 2

∫
f ′

2

+ ετ 3

∫ (
1

8
− ετ−1eεt

)
eεtf 2+

+
ε

8
τ

∫ (
f ′

2

+ |∇Σf |2
)
eεt, ∀τ ≥ τ1.

(15.4.36)

Now, since
(

1
8
− ετ−1eεt

)
≥ 1

16
for every τ ≥ 4ε, by (15.4.36), we get∫

|Lτf |2 ≥τ 2

∫
f ′

2

+
ετ 3

16

∫
eεtf 2 +

ε

8
τ

∫ (
f ′

2

+ |∇Σf |2
)
eεt, (15.4.37)

for every τ ≥ τ2, where τ2 = max{4ε, τ1}.
Proposition 15.4.1 implies∫ 0

−∞
f 2(t, ω)e−tdt =

∫ 1

0

s−2f 2(log s, ω)ds ≤

≤ 4

∫ 1

0

∣∣∣∣ ∂∂sf(log s, ω)

∣∣∣∣2 ds =

= 4

∫ 0

−∞
f ′

2

(t, ω)e−tdt, ∀ω ∈ Σ.

(15.4.38)

On the other hand, since u ∈ C∞0 (B1 \ Br/4), we have f(t, ω) = 0 for
every t ≤ log(r/4) and for every ω ∈ Σ, (15.4.38) gives∫ 0

−∞
f 2(t, ω)e−tdt ≤ 4

∫ log r
4

−∞
f ′

2

(t, ω)e−tdt ≤ 16

r

∫ 0

−∞
f ′

2

(t, ω)dt, ∀ω ∈ Σ.

Let us integrate over Σ both the sides of the just obtained inequality and let
us use (15.4.37) to obtain∫

f 2e−t ≤ 16

r

∫
f ′2 ≤ 16

τ 2r

∫
|Lτf |2 , ∀τ ≥ τ2. (15.4.39)

By (15.4.39) and (15.4.37) we have

C

∫
|Lτf |2 ≥ ετ 3

∫
eεtf 2 + ετ

∫ (
f ′

2

+ |∇Σf |2
)
eεt+

+ τ 2r

∫
f 2e−t, ∀τ ≥ τ2,

(15.4.40)
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where C is a constant.
Finally, by (15.4.33), (15.4.8) and by∫ 0

−∞

∫
Σ

f 2e−tdωdt =

∫
B1

ρ−2τ |x|−1−nu2dx, (15.4.41)

we obtain (15.4.7). �

15.5 Proof of the optimal three sphere and the
doubling inequality

In the next Theorem we will consider the equation

∆U = b(x) · ∇U + c(x)U, in B1, (15.5.1)

where b ∈ L∞ (B1;Rn) and c ∈ L∞ (B1). Moreover, set

M = max
{
‖b‖L∞(B1;Rn) , ‖c‖L∞(B1)

}
. (15.5.2)

Theorem 15.5.1 (optimal three sphere and doubling inequality). Let
us assume that U ∈ H2 (B1) is a solution to equation (15.5.1). Let x0 ∈ B1

and 0 < R0 ≤ 1− |x0|. Then there exists C > 1 depending on M only, such
that, if 0 < 2r < R < R0

2
then

∫
BR(x0)

U2 ≤ C

(
R0

R

)C (∫
Br(x0)

U2

)θ(∫
BR0

(x0)

U2

)1−θ

, (15.5.3)

where

θ =
log R0

2R

log 2R0

r

. (15.5.4)

Moreover, if U does not vanish identically in BR0/4(x0) then the following
doubling inequality holds∫

B2r(x0)

U2 ≤ CN3
x0,R0

∫
Br(x0)

U2, (15.5.5)

where

Nx0,R0 =

∫
BR0

(x0)
U2∫

BR0/4
(x0)

U2
. (15.5.6)
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In order to prove Theorem 15.5.1 we need the following

Lemma 15.5.2. Under the same assumption of Theorem 15.5.1 we have,
for every x0 ∈ B1, R and for every R, r such that 0 < 2r < R < R0

2
, where

R0 ≤ 1− |x0|,

R(2r)−2τ

∫
B2r(x0)

U2 +R1−2τ

∫
BR(x0)

U2 ≤

≤ CM
2

[(r
4

)−2τ
∫
Br(x0)

U2 +

(
R0

2

)−2τ ∫
BR0

(x0)

U2

]
,

(15.5.7)

for every τ ≥ τ̃2, where τ̃2 and C ≥ 1 depend on M only.

Proof of Lemma. By a translation we may assume that x0 = 0. Let
r, R satisfy

0 < 2r < R <
R0

2
. (15.5.8)

Let η ∈ C∞0 ((0, R0)) satisfy
0 ≤ η ≤ 1, (15.5.9)

η = 0, in
(

0,
r

4

)
∪
(

2R0

3
, R0

)
; η = 1, in

[
r

2
,
R0

2

]
, (15.5.10)∣∣∣∣dkηdtk (t)

∣∣∣∣ ≤ Cr−k, in
(r

4
,
r

2

)
, for 0 ≤ k ≤ 2, (15.5.11)∣∣∣∣dkηdtk (t)

∣∣∣∣ ≤ CR−k0 , in
(
R0

2
,
2R0

3

)
, for 0 ≤ k ≤ 2. (15.5.12)

We define
ξ(x) = η(|x|). (15.5.13)

Exploiting Carleman estimate (15.4.7) and fixing there ε = 1, we get

τ 3

∫
BR0

ρ1−2τu2dx+ τ

∫
BR0

ρ3−2τ |∇u|2+

+ τ 2r

∫
BR0

ρ−1−2τu2 ≤ C

∫
BR0

ρ4−2τ |∆u|2,
(15.5.14)

for every u ∈ C∞0
(
BR0 \Br/4

)
and for every τ ≥ τ2 (we recall that τ2 and C

depend neither on r nor on R0 and that the value C may change from line
to line).
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Since ξU ∈ H2
0 (BR0), by density we can apply Carleman estimate (15.5.14)

to u = ξU . Hence we find

τ 3

∫
BR0

ρ1−2τξ2U2 + τ

∫
BR0

ρ3−2τ |∇(ξU)|2+

+ τ 2r

∫
BR0

ρ−1−2τξ2U2 ≤ C

∫
BR0

ρ4−2τ |∆(ξU)|2,
(15.5.15)

for every τ ≥ τ2.
Since we have

|∆(ξU)|2 ≤ 2ξ2 |∆U |2 + C
(∣∣∂2ξ

∣∣2 U2 + |∇ξ|2 |∇U |2
)
, (15.5.16)

setting

J0 =

∫
Br/2\Br/4

ρ4−2τ
(
r−4U2 + r−2|∇U |2

)
, (15.5.17)

J1 =

∫
B2R0/3

\BR0/2

ρ4−2τ
(
U2 + |∇U |2

)
, (15.5.18)

we get

τ 3

∫
BR0

ρ1−2τξ2U2dx+ τ

∫
BR0

ρ3−2τ |∇(ξU)|2dx+ τ 2r

∫
BR0

ρ−1−2τξ2U2dx ≤

≤ C

∫
BR0

ρ4−2τ |∆U |2 + C (J0 + J1) ,

(15.5.19)
for every τ ≥ τ2.

Now we perform what follows: we use (15.5.8)–(15.5.13) and (15.5.16), we
estimate trivially from below the left–hand side of (15.5.19) and we estimate
trivially from above the right–hand side of (15.5.19), obtaining

τ 3

∫
BR0/2

\Br/2
ρ1−2τU2 + τ

∫
BR0/2

\Br/2
ρ3−2τ |∇U |2+

+ τ 2r

∫
BR0

ρ−1−2τξ2U2dx ≤

≤ CM2

∫
BR0/2

\Br/2
ρ4−2τ

(
U2 + |∇U |2

)
+

+ CM
2
(J0 + J1),

(15.5.20)
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for every τ ≥ τ2, where M =
√
M2 + 1.

By (15.5.20), we get∫
BR0/2

\Br/2

(
τ 3 − CM2ρ3

)
ρ1−2τU2+

+

∫
BR0/2

\Br/2

(
τ − CM2ρ

)
ρ3−2τ |∇U |2+

+ τ 2r

∫
BR0

ρ−1−2τξ2U2 ≤ CM
2
(J0 + J1).

(15.5.21)

By the latter, taking into account that ρ ≤ 1 in BR0 , we have

τ 3

2

∫
BR0/2

\Br/2
ρ1−2τU2 +

τ

2

∫
BR0/2

\Br/2
ρ3−2τ |∇U |2+

+ τ 2r

∫
BR0

ρ−1−2τξ2U2dx ≤ CM
2
(J0 + J1),

(15.5.22)

for every τ ≥ τ̃2, where (recall τ ≥ 1)

τ̃2 = min
{

2CM2, τ2

}
.

Now, we estimate from above J0 and J1. By the Caccioppoli inequality
(Theorem 4.5.1) and recalling (15.4.8), we have

J0 =

∫
Br/2\Br/4

ρ4−2τ
(
r−4U2 + r−2|∇U |2

)
≤

≤ C
(r

4

)−2τ
∫
Br/2

(
U2 + r2|∇U |2

)
≤ C

(r
4

)−2τ
∫
Br

U2,

(15.5.23)

where C depends on M only.
Similarly we get

J1 ≤ C

(
R0

2

)−2τ ∫
BR0

U2. (15.5.24)

By (15.5.22) – (15.5.24) we have

τ 2r

∫
BR0

ρ−1−2τξ2U2 + τ 3

∫
BR0/2

\Br/2
ρ1−2τU2dx ≤

≤ CM
2

((r
4

)−2τ
∫
Br

U2 +

(
R0

2

)−2τ ∫
BR0

U2

)
,

(15.5.25)
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for every τ ≥ τ̃2.

Now, recalling that 2r < R < R0

2
, by (15.5.10) we have

τ 2r

∫
BR0

ρ−1−2τξ2U2 ≥ (2r)−2τ

∫
B2r\Br/2

U2, (15.5.26)

and
τ 3

∫
BR0/2

\Br/2
ρ1−2τU2 ≥ R1−2τ

∫
BR\Br/2

U2. (15.5.27)

By (15.5.25), (15.5.26) and (15.5.25) we have

(2r)−2τ

∫
B2r\Br/2

U2 +R1−2τ

∫
BR\Br/2

U2 ≤

≤ CM
2

[(r
4

)−2τ
∫
Br

U2 +

(
R0

2

)−2τ ∫
BR0

U2

]
,

(15.5.28)

for every τ ≥ τ̃ . Now, we add to both the sides of (15.5.28) the quantity

R(2r)−2τ

∫
Br/2

U2 + (R)1−2τ

∫
Br/2

U2,

and we find (15.5.7) for r < R/2 and R < R0/2. �

Proof of Theorem 15.5.1.
Let us suppose x0 = 0, (15.5.7) gives, for 0 < 2r < R < R0

2
,

R1−2τ

∫
BR

U2 ≤ CM
2

[(r
4

)−2τ
∫
Br

U2 +

(
R0

2

)−2τ ∫
BR0

U2

]
, (15.5.29)

for every τ ≥ τ̃2.
Set

A(s) =

∫
Bs

U2.

By (15.5.29) we have

A(R) ≤ CR−1M
2

[(
4R

r

)2τ

A(r) +

(
2R

R0

)2τ

A(R0)

]
, (15.5.30)

for every τ ≥ τ̃2. Let
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τ̂ =
log A(R0)

A(r)

2 log 2R0

r

. (15.5.31)

If
τ̂ ≥ τ̃2, (15.5.32)

we choose τ = τ̂ in (15.5.30) and since(
4R

r

)2τ̂

A(r) =

(
2R

R0

)2τ̂

A(R0),

we have

A(R) ≤ CR−1M
2

[(
4R

r

)2τ̂

A(r) +

(
2R

R0

)2τ̂

A(R0)

]
=

= 2CR−1M
2
(

4R

r

)2τ̂

A(r) = R−1M
2

(A(r))θ (A(R0))1−θ ,

(15.5.33)

where θ is given by (15.5.4). Whereas, if (15.5.32) does not hold, then

log A(R0)
A(r)

log 2R0

r

≤ 2τ̃2

and multiplying both the sides of the last inequality by log R0

2R
, we have

(A(R0))θ ≤
(
R0

2R

)2τ̃2

(A(r))θ , (15.5.34)

from which we have trivially

A(R) ≤ A(R0) = (A(R0))θ (A(R0))1−θ ≤

≤
(
R0

2R

)2τ̃2

(A(r))θ (A(R0))1−θ ,
(15.5.35)

which, togheter with (15.5.33), gives (15.5.3).

Now we prove (15.5.5).
Let us fix R = R0

4
in (15.5.7). We have

(2r)−2τ

4

∫
B2r

U2 +

(
R0

4

)1−2τ ∫
BR0/4

U2 ≤

≤ CM
2

[(r
4

)−2τ
∫
Br

U2 +

(
R0

2

)−2τ ∫
BR0

U2

]
,

(15.5.36)
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for every τ ≥ τ̃2.
Now, by choosing τ = τ0, where

τ0 = τ̃ + log4

(
4CM

2
N
)

and

N =

∫
BR0

U2∫
BR0/4

U2
, (15.5.37)

we have (
R0

4

)1−2τ0 ∫
BR0/4

U2 ≥ CM
2
(
R0

2

)−2τ0 ∫
BR0

U2.

Hence, by (15.5.36), we obtain

(2r)−2τ0

4

∫
B2r

U2 ≤ CM
2
(r

4

)−2τ0
∫
Br

U2. (15.5.38)

By using (15.5.37) and (15.5.38), we have∫
B2r

U2 ≤ CN3

∫
Br

U2, (15.5.39)

where C depends on M only.
The proof is complete. �

Corollary 15.5.3 (strong unique continuation for Laplace operator).
Let U ∈ H2 (B1) be a solution to equation (15.5.1). Let x0 ∈ B1 and 0 <
R0 ≤ 1− |x0|.

If U does not vanish identically in BR0/4(x0), then we have, for every
r < s ≤ R0

16
,∫
Bs(x0)

U2 ≤ CN3
x0,R0

(s
r

)log2(CN3
x0,R0

)
∫
Br(x0)

U2, (15.5.40)

where Nx0,R0 is defined by (15.5.6).
Moreover, if∫

Br(x0)

U2 = O (rm) , as r → 0, ∀m ∈ N, (15.5.41)

then

U ≡ 0, in B1. (15.5.42)
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Proof. We prove (15.5.40). Let us suppose that x0 = 0 and let r < s ≤
R0

16
. Set j = [log2 (sr−1)] (we recall that [a] is the integer part of a). We have

2jr ≤ s < 2j+1r

and applying repeatedly (15.5.5) we obtain

∫
Bs

U2 ≤
∫
B

2j+1r

U2 ≤
(
CN3

)j+1
∫
Br

U2 ≤ CN3
(s
r

)log2(CN3)
∫
Br

U2.

From which we get (15.5.40).
Now, let us suppose that (15.5.41) holds true. Hence let us suppose that

there exists a sequence Cm such that∫
Br

U2 ≤ Cmr
m, for r < 1, ∀m ∈ N. (15.5.43)

Set

r0 = sup

{
r ∈ [0, 1] :

∫
Br

U2 = 0

}
(15.5.44)

(let us note that in (15.5.44) the "sup" is, actually, the maximum).
We distinguish two cases

(i) r0 = 0,

(ii) r0 ∈ (0, 1].

In case (i) we have ∫
Br

U2 > 0, ∀r ∈ (0, 1]. (15.5.45)

Hence, setting

K = log2(CN3
0,1)

by (15.5.40) and (15.5.43), we get, for r, s such that r < s ≤ 1
4∫

Bs

U2 ≤ CN3
0,1

(s
r

)K ∫
Br

U2 ≤ CCmN
3
0,1s

Krm−K . (15.5.46)

Let m > K. Passing to the limit in (15.5.46) as r goes to 0. We obtain∫
Bs

U2 = 0, for s ≤ 1

4
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which contradicts (15.5.45).
Let us consider case (ii).
If r0 = 1 there is nothing to prove. Let, therefore, r0 ∈ (0, 1). By the

definition of r0 we have ∫
Br0

U2 = 0. (15.5.47)

Let

δ < min

{
r0,

1− r0

15

}
and let x be a point such that |x| = r0 − δ. Setting R = 1− |x| we have

r1 := r0 − δ +
R

16
= r0 +

1− r0 − 15δ

16
> r0.

Now, since (15.5.47) trivially implies∫
Br(x)

U2 = O (rm) , as r → 0, ∀m ∈ N,

repeating the argument of case (i) in the ball BR (x), we reach∫
BR/16(x)

U2 = 0.

Finally, since this equality holds for each x such that |x| = r0−δ, taking into
account (15.5.47), we have ∫

Br1

U2 = 0,

which, as r1 > r0, contradicts the definition of r0 given in (15.5.44).�

Remarks and comments.
1. The optimal three sphere inequality can be obtained by the doubling
inequality, (15.5.40), in a simple and direct way. As a matter of fact, by
(15.5.40), using the elementary properties of the logarithmic function, we
have, for 2r ≤ s ≤ R0

16
,∫

Bs(x0)

U2 ≤
(
CN3

x0,R0

)2 log2
s
r

∫
Br(x0)

U2. (15.5.48)

Now, by (15.5.6) we have trivially
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Nx0,R0 =

∫
BR0

(x0)
U2∫

BR0/4
(x0)

U2
≤

∫
BR0

(x0)
U2∫

Bs(x0)
U2

.

By the latter and by (15.5.48) we get(∫
Bs(x0)

U2

)1+6 log s
r

≤

(
C

∫
BR0

(x0)

U2

)6 log2
s
r ∫

Br(x0)

U2,

which gives

∫
Bs(x0)

U2 ≤

(
C

∫
BR0

(x0)

U2

)1−θ̃ (∫
Br(x0)

U2

)θ̃
where

θ̃ =
1

1 + 6 log2
s
r

.

Let us notice that also θ̃ is an optimal exponent in the sense that, for fixed
s, (15.1.6) holds.

2. Let us observe that three sphere inequality (15.5.3) has been proved using
Carleman estimate (15.4.6), while to prove the doubling inequality we have
used Carleman estimate (15.4.7), which differs from the estimate (15.4.6) for
the occurrence of the term

τ 2r

∫
ρ−1−2τu2dx.

The idea of including this term is indebted to Bakri [8], [9] and this idea
simplifies the proof of the doubling inequality with respect to the previous
proofs based on the Carleman estimates. It should also be pointed out that
in the literature there are other methods to prove the doubling inequality,
see for instance [27] , [42]. We will briefly discuss the main ideas underlying
such methods in 16.3.1. �

15.6 The geodesic polar coordinates
In this Section we give the definitions and the main properties of geodesic
polar coordinates introduced by Aronszajn, Krzywicki and Szarski in [7].

Let n be an integer number, n ≥ 2. For any r > 0 we denote by B̃r the
set Br \ {0}.
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For any A = {aij}ni,j=1 real matrix, we denote by |A| the norm of A, i.e.

|A|2 =
n∑

i,j=1

a2
ij.

In what follows we will use the Einstein convention of the repeated indices.
By In we denote the n× n identity matrix. Given two vectors x, y ∈ Rn,

x = (x1, · · · , xn), y = (y1, · · · , yn) we denote by

x · y = δijxiyj = xiyi,

their Euclidean scalar product and by |x| =
√
x · x the Euclidean norm.

Let λ, λ ≥ 1, Λ be positive numbers. Let G (x) = {gij (x)}ni,j=1 be a
nonsingular symmetric real matrix whose entries are functions that belong
to C∞

(
B2

)
. Let us denote by G−1 (x) = {gij (x)}ni,j=1 the inverse of G(x).

Let us suppose that

λ−1 |ξ|2 ≤ G (x) ξ · ξ ≤ λ |ξ|2 , ∀ξ ∈ Rn, ∀x ∈ B2, (15.6.1)

|∂xkG| ≤ Λ, for k ∈ {1, · · ·n} , in B2. (15.6.2)

Set
r(x) = |x|

and let us denote by

µ0(x) = G−1(x)∇r(x) · ∇r(x), for x ∈ B̃2, (15.6.3)

and
G̃(x) = µ0(x)G(x), for x ∈ B̃2. (15.6.4)

Let us denote by g̃ij(x), i, j ∈ {1, · · · , n} the entries of the matrix G̃ (x).

We wish to introduce the geodesic polar coordinates with respect to the
metric tensor

g̃ij(x)dxi ⊗ dxj.

Then we will express in such geodesic polar coordinates the Laplace–Beltrami
operator

∆g(·) =
1√
g(x)

∂xi
(√

g (x)gij(x)∂xj ·
)
, in B2, (15.6.5)

where
g(x) = detG(x).
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To perform the above mentioned transformation we assume also

G(0) = In, (15.6.6)

For any x ∈ B1 \ {0} let us denote by Γ(σ;x) the global solution of the
following Cauchy problem

·
Γ(σ;x) = G̃−1(Γ(σ;x))∇r(Γ(σ;x)),

Γ(r(x), x) = x,

(15.6.7)

where
·
Γ is the derivative of Γ(σ;x) w.r.t. σ.

Remark. Let us observe that for any x ∈ B1 \ {0}, Γ is a geodesic
line w.r.t. the Riemannian metric g̃ij (x) dxi ⊗ dxj. Indeed, by (15.6.3) and
(15.6.4) we have trivially that function r(·) is a solution to eikonal equation

g̃ij (x) ∂xir∂xjr = 1.

Hence, denoting by p(σ) = ∇r(Γ(σ;x)) we have that, see Section 5.5, (Γ, p)
is a solution to Hamilton-Jacobi equations

·
Γ = ∇pH (Γ, p) ,

·
p = −∇xH (Γ, p) ,

where
H (x, p) =

1

2
g̃ij (x) pipj

is the Hamiltonian. Therefore Γ solves the Euler equation, see Section 5.6,

d

dσ
∇qL

(
Γ,
·
Γ

)
= Lx

(
Γ,
·
Γ

)
,

where
L (x, q) =

1

2
g̃ij (x) qiqj.

Hence Γ(·, x) is a geodesic line w.r.t. the metric

g̃ij (x) dxi ⊗ dxj.

�

The following Proposition holds true.
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Proposition 15.6.1. Let Γ(·;x) be the global solution to Cauchy problem
(15.6.7). Then

Γ (·;x) is defined in the interval (0, 2), (15.6.8)

and
r (Γ (σ;x)) = σ, for every σ ∈ (0, 2) . (15.6.9)

Proof. The proof is the same of that given in the Remark after Theorem
5.6.5, we repeat with different notation for the reader’s convenience. Let us
denote by J the interval on which Γ (·;x) is defined.

Claim.
We have

r (Γ (σ;x)) = σ, ∀σ ∈ J. (15.6.10)

Proof of the Claim
To prove (15.6.10) we note that equation (15.6.7) gives (we omit x in Γ)

d

dσ
r (Γ(σ)) =

dΓi(σ)

dσ
∂xir(Γ(σ)) = g̃ij(Γ(σ))∂xir(Γ(σ))r∂xjr(Γ(σ)) = 1,

for every σ ∈ J . Therefore, there exists a constant c, such that

r (Γ (σ)) = σ + c, ∀σ ∈ J.

By initial condition we have

Γ(r(x), x) = x,

hence
r (x) = r(Γ(r(x), x)) = r (x) + c,

consequently c = 0 which implies (15.6.10). Claim is proved.

By (15.6.10) and by standard results of general theory of ordinary differ-
ential equations we have that Γ can be defined in the whole interval (0, 2)
hence (15.6.8) is proved. �

In order to introduce the geodesic polar coordinates we need some addi-
tional notations. Set Σ = ∂B1. Let {Uα, ϕα}α∈J be a finite family of local
maps which define an oriented C∞ differentiable structure on Σ. For any
α ∈ J , set Vα = ϕα (Uα). Let us denote by Φ the map

Φ : B1 \ {0} → (0, 1)× Σ, (15.6.11)
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such that
Φ (x) = (|x| ,Γ (1;x)) , ∀x ∈ B1 \ {0} . (15.6.12)

By (15.6.7) we have easily that Φ is bijective, moreover

Φ−1 (%, p) = Γ (%; p) , ∀ (%, p) ∈ (0, 1)× Σ. (15.6.13)

For any α ∈ J , let us consider the following geodesic sector

I (Uα) = {Γ (%; p) : % ∈ (0, 1) , p ∈ Uα} , (15.6.14)

let us denote by Φα the map Φ expressed in the local coordinates, i.e.

Φα : I (Uα)→ (0, 1)× Vα, (15.6.15)

Φα (x) = (|x| , ϕα (Γ (1;x))) , ∀x ∈ I (Uα) . (15.6.16)

For any α ∈ J let us denote by

Γα (%, θ) = Γ
(
%, ϕ−1

α (θ)
)
, ∀ (%, θ) ∈ (0, 1)× Vα. (15.6.17)

We have

Φ−1
α (%, θ) = Γα (%, θ) , ∀ (%, θ) ∈ (0, 1)× Vα. (15.6.18)

Let us note that, for any α, α′ ∈ J , we have

(Φα ◦ Φ−1
α′ ) (%, θ) =

(
%,
(
ϕα ◦ ϕ−1

α′

)
(θ)
)
, ∀ (%, θ) ∈ Φα (I (Uα ∩ Uα′)) .

Let us note that I(Uα) ∩ I(Uα′) = I (Uα ∩ Uα′), hence {I (Uα) ,Φα}α∈J de-
fines an oriented C∞ differentiable structure on B1 \ {0}.
Let us observe that by (15.6.7) and (15.6.17) we have

∂%Γα(%, θ) = G̃−1(Γα(%, θ))∇r(Γα(%, θ)) =

=
1

%
G̃−1(Γα(%, θ))Γα(%, θ)

(15.6.19)

and
Γα (1, θ) = ϕ−1

α (θ). (15.6.20)

Moreover, by (15.6.9) we have

|Γα(%, θ)| = %. (15.6.21)

To save the sum index convention, in the next Proposition and in the
sequel, we denote by θj+1 the j−th component of θ, so θ = (θ2, · · · , θn).
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Let α ∈ J be fixed. Let η =
{
ηh
}n
h=2

a vector, set

yη (%, θ) =
1

%
∂θΓα(%, θ)η, (15.6.22)

where ∂θ(·) denotes the jacobian matrix w.r.t. the variables θ2, · · · , θn. Let
us check that by (15.6.19) and (15.6.20) we obtain, respectively,

∂%yη =
1

%

(
G̃−1 (Γα)− In

)
yη +

1

%
(∂xkG̃

−1(Γα))ykηΓα, (15.6.23)

and
yη(1, θ) = ∂θϕ

−1
α (θ)η. (15.6.24)

Equality (15.6.24) is an immediate consequence of (15.6.20). Concerning
(15.6.23), first we set

ỹh =
1

%
∂θhΓα(%, θ), h = 2, · · · , n,

and we have, for h = 2, · · · , n,

∂%ỹh = ∂%

(
1

%
∂θhΓα(%, θ)

)
=

= − 1

%2
∂θhΓα(%, θ) +

1

%
∂2
%θhΓα(%, θ) =

= −1

%
ỹh +

1

%
∂θh (∂%Γα(%, θ)) =

= −1

%
ỹh +

1

%2
∂θh
(
G̃−1(Γα(%, θ))Γα(%, θ)

)
=

= −1

%
ỹh +

1

%2
∂θh
(
G̃−1(Γα(%, θ))

)
Γα(%, θ)+

+
1

%2
G̃−1(Γα(%, θ))∂θhΓα(%, θ) =

= −1

%
ỹh +

1

%2

(
∂xkG̃

−1(Γα(%, θ))∂θhΓkα(%, θ)
)

Γα(%, θ)+

+
1

%
G̃−1(Γα(%, θ))ỹh.

.

Hence, for h = 2, · · · , n, we have

∂%ỹh =
1

%

(
G̃−1(Γα(%, θ))− In

)
ỹh +

1

%2

(
∂xkG̃

−1(Γα(%, θ))∂θhΓkα(%, θ)
)

Γα(%, θ).
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By multlying both the sides of the last equality by ηh and adding up the
index h, we obtain (15.6.23). �

Lemma 15.6.2. Let us assume that (15.6.1), (15.6.2) and (15.6.6) hold true.
Let Γα, α ∈ J be defined by (15.6.17). We have

C−1
∣∣∂θϕ−1

α (θ)η
∣∣ ≤ |yη(%, θ)| ≤ C

∣∣∂θϕ−1
α (θ)η

∣∣ , (15.6.25)

for every (%, θ) ∈ (0, 1) × Vα and for every η ∈ Rn−1, where C and C ≥ 1,
depend on λ and Λ only (here and in the sequel we omit the dependence on
n).

Proof. Let us omit the index α. By (15.6.1), (15.6.4), (15.6.6), and
(15.6.21) we have ∣∣∣∂xkG̃−1(Γ)ykη

∣∣∣ ≤ C |yη| ,∣∣∣G̃−1(Γ)− In
∣∣∣ ≤ C%,

where C depends on λ and Λ only. Therefore, by (15.6.23) we have

|∂%yη| ≤ C |yη| , (15.6.26)

where C depends on λ and Λ only.
By (15.6.24) and (15.6.26) we have

|yη (%, θ)| ≤
∣∣∂θϕ−1(η

∣∣+ C

∫ 1

%

|yη (s, θ)| ds, ∀% ∈ (0, 1], (15.6.27)

By (15.6.27) and by the Gronwall inequality we get the second inequality of
(15.6.25).

Now we prove the first inequality of (15.6.25). Let % be fixed in (0, 1).
We have

|yη(%, θ)| ≤ |yη(%, θ)|+
∫ %

%

|∂syη(s, θ)| ds, ∀% ∈ [%, 1],

hence by (15.6.26) we get

|yη(%, θ)| ≤ |yη (%, θ)|+ C

∫ %

%

|yη(s, θ)| ds, ∀% ∈ [%, 1] .

By the Gronwall inequality we have

|yη (%, θ)| ≤ |yη (%, θ)| eC , ∀% ∈ [%, 1] , (15.6.28)
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where C depends on λ and Λ only. By (15.6.24) and (15.6.28) we have∣∣∂θϕ−1(θ)η
∣∣ e−C ≤ |yη (%, θ)| ,

that gives the first inequality of (15.6.25). �

The following Proposition holds true.

Proposition 15.6.3. For any α ∈ J let us denote by b̃α,hk, h, k ∈ {1, · · · , n},
the components of the metric tensor g̃ij (x) dxi⊗ dxj with respect to the local
coordinates (I (Uα) ,Φα) . We have

b̃α,hk (%, θ) = g̃ij (Γα (%, θ)) ∂θhΓiα∂θkΓ
j
α, for h, k ∈ {2, · · · , n} , (15.6.29)

b̃α,h1 (%, θ) = b̃α,1h (%, θ) = 0, for h ∈ {2, · · · , n} (15.6.30)

and
b̃α,11 (%, θ) = 1. (15.6.31)

Proof. To simplify the notazion, in what follows we omit the index α.
Equality (15.6.29) are nothing but the rule of transformation of the compo-
nents of the metric tensor.

Let us prove (15.6.30).
By (15.6.19) and (15.6.21) we get, for every h ∈ {2, · · ·n},

b̃h1 = g̃ij(Γ)∂θhΓi∂%Γ
j = g̃ij(Γ)∂θhΓig̃jk(Γ)∂xkr(Γ) =

= δki ∂θhΓi∂xkr(Γ) = ∂θk (r(Γ)) = ∂θk% = 0,

since b̃ij is symmetric, we obtain (15.6.30).
Now, let us prove (15.6.31). We have

b̃11 = g̃ij(Γ)∂%Γ
i∂%Γ

j = g̃ij(Γ)g̃ik(Γ)∂xkr(Γ)g̃jh(Γ)∂xhr(Γ) =

= δkj g̃
jh(Γ)∂xkr(Γ)∂xhr(Γ) = g̃kh(Γ)∂xkr(Γ)∂xhr(Γ) = 1.

�

In formulas (15.6.32)–(15.6.37) below, we introduce some notations.
Set, for any α ∈ J ,

µα = µ0 ◦ Φ−1
α , (15.6.32)

b̃α = det
{
b̃α,ij

}n
i,j=1

, (15.6.33)

βα,hk =
1

%2
b̃α,hk, for h, k ∈ {2, · · · , n} , (15.6.34)
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{
βhkα
}n
h,k=2

=
(
{βα,hk}nh,k=2

)−1

, (15.6.35)

βα = det {βα,hk}nh,k=2 . (15.6.36)

In addition, let
βα = %−2(n−1)b̃α. (15.6.37)

The following Proposition holds true.

Proposition 15.6.4. For every % ∈ (0, 1), βα,hk (%, θ) , h, k ∈ {2, · · · , n},
are the components of a metric tensor on Σ with respect to the local maps
(Uα, ϕα).

Proof. Let p ∈ Σ and let (Uα, ϕα), (Uα′ , ϕα′) be two coordinate neigh-
borhoods such that p ∈ Uα ∩ Uα′ . Let p be an arbitrary point of Uα ∩ Uα′ .
Set

θ(p) = ϕα(p), θ̂(p) = ϕα′(p).

We have trivially,
p = ϕ−1

α

(
θ(p)
)

= ϕ−1
α′

(
θ̂(p)
)
.

Moreover, since Γα
(
·, θ(p)

)
and Γα′

(
·, θ̂(p)

)
are solutions to equation (15.6.19)

and
Γα
(
1, θ(p)

)
= Γα′

(
1, θ̂(p)

)
= p,

we have
Γα
(
·, θ(p)

)
= Γα′

(
·, θ̂(p)

)
.

Therefore
Γα′
(
%, θ̂(p)

)
= Γα

(
%,
(
ϕα ◦ ϕ−1

α′

) (
θ̂(p)
))

.

Hence, if
θ ∈ ϕα′ (Uα ∩ Uα′) ,

then
Γα′ (%, θ) = Γα

(
%,
(
ϕα ◦ ϕ−1

α′

)
(θ)
)
.

Differentiating w.r.t. θl both the sides of the last equality, we obtain

∂θlΓα′ (%, θ) = (∂θkΓα)
(
%,
(
ϕα ◦ ϕ−1

α′

)
(θ)
)
∂θl
(
ϕα ◦ ϕ−1

α′

)k
(θ), (15.6.38)

for every l ∈ {2, · · · , n}, θ ∈ ϕα′ (Uα ∩ Uα′).
Now

βα′,lm (%, θ) = %−2g̃ij (Γα′ (%, θ)) ∂θlΓ
i
α′∂θmΓjα′ , (15.6.39)
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for l,m ∈ {2, · · · , n}, θ ∈ ϕα′ (Uα ∩ Uα′).
Therefore by (15.6.38) and (15.6.39) we obtain

βα′,lm (%, θ) =

= βα′,ks
(
%,
(
ϕα ◦ ϕ−1

α′

)
(θ)
)
∂θl
(
ϕα ◦ ϕ−1

α′

)k
(θ)∂θm

(
ϕα ◦ ϕ−1

α′

)s
(θ),

(15.6.40)

for every l,m ∈ {2, · · · , n} and for every θ ∈ ϕα′ (Uα ∩ Uα′).
Equality (15.6.40) proves that βα,hk (%, θ) , h, k ∈ {2, · · · , n}, are the com-

ponents of a tensor which is a metric tensor because the matrix {βα,hk (%, θ)}nh,k=2

is symmetric and positive. The proof is complete. �

Now we begin to derive the expression of operator (15.6.5) in the polar
coordinates introduced above.

Let u ∈C∞ (B2) and let us denote by w the function

(0, 1)× Σ 3 (%, p)→ w (%, p) = u (Γ (%, p)) . (15.6.41)

Set
wα = u ◦ Φ−1

α , (15.6.42)

by (15.6.18) we have

w
(
%, ϕ−1

α (θ)
)

= wα (%, θ) , ∀ (%, θ) ∈ (0, 1)× Vα, (15.6.43)

hence, for any fixed % ∈ (0, 1), wα (%, ·) is the expression of w (%, ·) in the
local coordinates (Uα, ϕα).

Now, for any fixed % ∈ (0, 1), Proposition 15.6.4 allows us to define on Σ
the Riemannian structure, [11], induced by metric tensor whose components
with respect coordinate neighborhood (Uα, ϕα) are equals to βα,hk (%, θ) for
h, k ∈ {2, · · · , n}.

Let us denote by 〈·, ·〉 and |·|Σ, respectively, the inner product and the
associated norm on the above defined Riemannian structure. Let us denote
by ∇Σ and divΣ the gradient and the divergence operators on Σ respectively.

We have

(∇Σw (%, ·)) ◦ ϕ−1
α (θ) =

{
βhkα (%, θ) ∂θkwα (%, θ)

}n
h=2

, ∀θ ∈ Vα. (15.6.44)

Set
µ (%, p) = µ0 (Γ (%, p)) , ∀ (%, θ) ∈ (0, 1)× Σ,

we have

divΣ

(
µ1−n

2 (%, ·, )∇Σw(%, ·)
)
◦ ϕ−1

α (θ) =

=
1√

βα (%, θ)
∂θh
(
µ

1−n
2

α (%, θ)
√
βα (%, θ)βhkα (%, θ) ∂θkwα (%, θ)

)
,

(15.6.45)
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for every θ ∈ Vα.
Let us note that Proposition (15.6.3) implies that the derivatives

∂% log
√
βα(%, θ), for α ∈ J ,

are the expression in the coordinate neighborhoods of a C∞ function on Σ.
Let us observe that by the equality

Γα (%, θ) = Γα′
(
%,
(
ϕα ◦ ϕ−1

α′

)
(θ)
)
∀θ ∈ ϕα′ (Uα ∩ Uα′) ,

we get

∂θhΓα (%, θ) = ∂θkΓα′
(
%,
(
ϕα ◦ ϕ−1

α′

)
(θ)
)
∂θh
(
ϕα ◦ ϕ−1

α′

)k
(θ).

Let us denote, respectively, by L1, L2 and L the operators

L1w = µ

(
∂2w

∂%2
+
n− 1

%

∂w

∂%
+

1

%2µ1−n/2divΣ

(
µ1−n/2∇Σw

))
, (15.6.46)

L2w = µ
∂

∂%

(
log
(
µ1−n/2

√
β
))

∂%w (15.6.47)

and
L = L1 + L2. (15.6.48)

We have the following

Proposition 15.6.5. (Tranformation of the operator ∆g) The following
equality holds true(

(∆gu) ◦ Φ−1
α

)
(%, θ) = (Lw)

(
%, ϕ−1

α (θ)
)
, ∀(%, θ) ∈ (0, 1)× Vα. (15.6.49)

Proof. Let us denote by {bijα }
n
i,j=1 the inverse matrix of

{
µ−1
α b̃α,ij

}n
i,j=1

(recall that
{
b̃α,ij

}n
i,j=1

is defined in Proposition (15.6.3)). Let us recall that

wα = u ◦ Φ−1
α . By (15.6.4) and (15.6.30) we have

(∆gu)
(
Φ−1
α (%, θ)

)
=

=
1√
bα

(
∂%

(√
bαµα∂%wα

)
+ ∂θh

(√
bαb

hk
α ∂θkwα

))
,

(15.6.50)

where bα = det
{
µ−1
α b̃α,ij

}n
i,j=1

.
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We have
bα = µ−nα %2(n−1)βα, (15.6.51)

bhkα = %−2µαβ
hk
α , for h, k ∈ {2, . . . , n} . (15.6.52)

By (15.6.45), (15.6.50), (15.6.51) and (15.6.52) we get

(∆gu) ◦ Φ−1
α =

=

(
µ

(
∂2
%w +

n− 1

%
∂%w +

1

%2µ1−n/2divΣµ
1−n/2∇Σw

))
◦ ϕ−1

α

+
(
µ∂%

(
log µ1−n/2

√
β
)
∂%w

)
◦ ϕ−1

α .

�

In the next propositions we will estimate the tensors which occur in the
transformed operator L.

Proposition 15.6.6. Let µα, {βα,hk}nh,k=2, βα be defined by (15.6.32), (15.6.34),
(15.6.37). For any α ∈ Γ and (%, θ) ∈ (0, 1)× Vα, we have

λ−1 ≤ µα(%, θ) ≤ λ, (15.6.53)∣∣∂%βα,hkηhηk∣∣ ≤ Cβα,hk(%, θ)η
hηk, for η ∈ Rn−1, (15.6.54)∣∣∣∂% log

√
βα

∣∣∣ ≤ C, (15.6.55)

|∂%µα(%, θ)| ≤ C, (15.6.56)

where C depends on λ and Λ only.

Proof. Let us omit the index α. By (15.6.2) and (15.6.3) we have

λ−1 ≤ µ0(x) ≤ λ,

by these inequalities and by (15.6.32) we obtain (15.6.53).
Now, we prove (15.6.54). For any vector

{
ηh
}n
h=2

, let yη be defined by
(15.6.22).

By (15.6.22), (15.6.29) and (15.6.34) we have

βhk (%, θ) ηhηk = G̃ (Γ (%, θ)) yη · yη. (15.6.57)

Therefore

∂%βhk(%, θ)η
hηk = 2G̃(Γ)∂%yη · yη +

(
∂xkG̃(Γ)∂%Γ

kyη

)
· yη. (15.6.58)
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Let us recall that
|∂%yη| ≤ C |yη| .

By (15.6.1)), (15.6.2) (15.6.4), (15.6.21), (15.6.58) and by the last inequality
we get ∣∣∂%βhk(%, θ)ηhηk∣∣ ≤ C |yη|2 ≤

≤ Cλ2G̃(Γ)yη · yη =

= Cλ2βhk (%, θ) ηhηk,

(15.6.59)

where C depends on λ and Λ only. Therefore (15.6.54) is proved.
In order to prove (15.6.55), recall that if A(s) is a matrix–valued function

of class C1 such that detA(s) 6= 0 then we have the following equality (we
denote by tr(·) the trace of the matrix in the brackets)

d

ds
log |detA (s)| = tr

(
dA (s)

ds
A−1 (s)

)
.

This equality and (15.6.54) give∣∣∣∂% log
√
β
∣∣∣ =

1

2

∣∣(∂%βij)βji∣∣ =
1

2

∣∣(∂%βhk)δhi δkj βlmδilδjm∣∣ ≤
≤ Cβhkδ

h
i δ

k
j β

lmδilδ
j
m = Cβijβ

ji = C (n− 1) ,

where C depends on λ and Λ only. Therefore (15.6.55) follows. �

In order to prove Propositions 15.6.7 and 15.6.8 stated below we need a
partition of unity {ζα}α∈J subordinate to the (finite) covering {(Uα, ϕα)}α∈J .
By this, we mean that for each α ∈ J , ζα ∈ C∞ (Σ), ζα ≥ 0, supp ζα ⊂ Uα
and ∑

α∈J

ζα(p) = 1, ∀p ∈ Σ.

Let us denote by ζ̂α the function ζα ◦ ϕ−1
α and set ζ̃α(x) = ζα (Γ(1;x, )). We

have ∑
α∈J

ζ̃α(x) = 1, ∀x ∈ B̃1.

Proposition 15.6.7. For every % ∈ (0, 1), let us denote by dΩ% the element
of volume on Σ.

Let f be a function belonging to C0(B1). We have∫
B1

f(x)
√
g̃(x)dx =

∫ R0

0

d%

∫
Σ

f(Γ(%, p))%n−1dΩ%. (15.6.60)
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Proof. For any σ ∈ (0, 1) we have∫
B1\Bσ

f (x)
√
g̃(x)dx =

∑
α∈J

∫
I(Uα)\Bσ

f(x)
√
g̃(x)ζ̃α(x)dx. (15.6.61)

Now, in the integral on the right–hand side of (15.6.61), we perform the
following change of variables:

x = Φ−1
α (%, θ).

By such a change of variables and by (15.6.18), (15.6.33), (15.6.37) we get∫
I(Uα)\Bσ

f(x)
√
g̃(x) ζ̃α (x) dx =

=

∫ 1

σ

∫
Vα

f(Γα(%;ϕ−1
α (θ))%n−1

√
βα(%, θ) ζ̂α(θ)dθd%.

(15.6.62)

By (15.6.61) and (15.6.62) we get∫
B1\Bσ

f(x)
√
g̃(x)dx =

=

∫ 1

σ

d%
∑
α∈J

∫
Vα

f
(
Γ
(
%;ϕ−1

α (θ)
))
%n−1

√
βα (%, θ) ζ̂α (θ) dθ =

=

∫ 1

σ

d%

∫
Σ

f (Γ (%, p)) %n−1dΩ%.

Finally, by the latter we have∫
B1

f(x)
√
g̃(x)dx = lim

σ→0

∫
B1\Bσ

f(x)
√
g̃(x)dx =

=

∫ 1

0

d%

∫
Σ

f (Γ(%, p)) %n−1dΩ%.

�

For any % ∈ (0, 1) denotes by Ξ(%) the covariant tensor of order 2 whose
components with respect to coordinate neighborhoods (Uα, ϕα) are equal to

∂%β
lm
α (%, ·)βα,lh(%, ·)βα,mk(%, ·), for h, k = 2, · · · , n.
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Let us denote by `(%, ·) the C∞(Σ) function whose expressions with respect
to the coordinate neighborhoods (Uα, ϕα) are equal to

∂% log
√
βα(%, ·).

In the following Proposition we will denote by
∫

(·) the integral
∫ %0

0
d%
∫

Σ
(·)dΩ%.

Proposition 15.6.8. Let v1, v2 ∈ C∞((0, %0)× Σ). Let us suppose either v1

or v2 of compact support. Let h ∈ C∞((0, %0)).
Then we have ∫

v1∂%v2 = −
∫

(v1`+ ∂%v1) v2. (15.6.63)

If v1 has compact support then∫
h (%) ∂%v1divΣ

(
µ1−n

2∇Σv1

)
=

=
1

2

∫
h (%)µ1−n

2 Ξ(%) (∇Σv1,∇Σv1) +

+
1

2

∫ (
∂%
(
h(%)µ1−n

2

)
+ h(%)µ1−n

2 `
)
|∇Σv1|2Σ .

(15.6.64)

Proof. For every α ∈ J we denote, respectively, by v1,α(%, θ) and
v2,α (%, θ), the funzctions v1 (%, ϕ−1

α (θ)) and v2 (%, ϕ−1
α (θ)).

Let us prove (15.6.63).
We have∫ %0

0

d%

∫
Σ

v1,α∂%v2,αdΩ% =
∑
α∈J

∫ %0

0

d%

∫
Vα

v1,α(∂%v2,α)
√
βαζ̂αdθ =

= −
∑
α∈J

∫ %0

0

d%

∫
Vα

(
v1,α∂% log

√
βα + ∂%v1,α

)
v2,α

√
βαζ̂αdθ =

= −
∫ %0

0

d%

∫
Σ

(v1`+ ∂%v1) v2dΩ%.

Let us prove (15.6.64). Let us suppose v1 with compact support. By the
divergence Theorem on the Riemannian manifold Σ we have∫ %0

0

d%

∫
Σ

f(%)∂%v1divΣ

(
µ1−n

2∇Σv1

)
dΩ% =

= −
∫ %0

0

d%

∫
Σ

f (%)µ1−n
2 〈∇Σv1,∇Σ∂%v1〉 dΩ%.

(15.6.65)
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Now

〈∇Σv1,∇Σ∂%v1〉 =
1

2
∂% 〈∇Σv1,∇Σv1〉 −

1

2
Ξ(%) (∇Σv1,∇Σv1) ,

that, with (15.6.63) gives (15.6.64). �

15.7 The case of variable coefficients
In this Section we will prove the Carleman estimate of Aronszajn–Krzywicki–
Szarski, [7]. Basically we will proceed in a similar way to Section 15.4,
however, instead of the Euclidean polar coordinates we will use the geodesic
polar coordinates introduced in Section 15.6. Compared with the original
proof of [7], the one we will prove here has some simplification.

Precisely we prove

Theorem 15.7.1 (Carleman estimate for ∆g). Let us suppose that the
matrix G = {gij (x)}ni,j=1 satisfies to (15.6.1), (15.6.2), (15.6.6) and gij ∈
C∞ (B2), for i, j = 1, · · · , n.

Let ε ∈ (0, 1].We define

ρ(x) = φε (|x|) , ∀x ∈ B1 \ {0}, (15.7.1)

where
φε(s) =

s

(1 + sε)1/ε
. (15.7.2)

Then there exist r0 ∈ (0, 1), τ > 1 and C > 1, which depend on ε, λ and Λ
only, such that

τ 3

∫
ρε−2τ |u|2dx+ τ

∫
ρ2+ε−2τ |∇u|2dx+

+ τ 2r

∫
ρ−1−2τu2dx ≤ C

∫
ρ4−2τ |∆gu|2dx,

(15.7.3)

for every r ∈ (0, r0), for every τ ≥ τ and for every u ∈ C∞0
(
Br0 \Br/4

)
.

We start by the following simple estimation of the first order operator L2

defined in (15.6.47).

Proposition 15.7.2. The following estimate holds true

|L2w| ≤ C |∂%w| ∀w ∈ C∞ ((0, 1)× Σ) , (15.7.4)

where C depends on λ and Λ only.
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Proof. By (15.6.55) and (15.6.56) we have∣∣(L2w)
(
%, ϕ−1

α (θ)
)∣∣ =

=
∣∣∣µα ((1− n

2

)
∂% log µα + ∂% log

√
βα

)
∂%wα

∣∣∣ ≤
≤
(∣∣∣µα (1− n

2

)
∂% log µα

∣∣∣+
∣∣∣∂% log

√
βα

∣∣∣) |∂%wα| ≤
≤ C |∂%wα| ,

where C depends on λ and Λ only. �

Let u be an arbitrary function that belongs to C∞0 (B1 \ {0}) and let us
denote by w the function (recall (15.6.41))

(0, 1)× Σ 3 (%, p)→ w (%, p) = u (Γ (%, p)) . (15.7.5)

where Γ is defined in Proposition 15.6.1.
Now, we carry out the following change of variables

% = et, w̃(t, p) = w
(
et, p

)
, ∀(t, p) ∈ (−∞, 0)× Σ

and we adopt the following conventions: for any function h(%, ·) (or for every
tensor) in which the variable % occurs , we denote by h̃(t, ·) the function (or
tensor) h(et, ·). We will continue to denote by 〈·, ·〉 and |·|Σ, respectively, the
inner product and the norm associated with it in the Riemannian structure
induced by the metric tensor {

β̃α,hk

}n
h,k=2

.

We will still denote by ∇Σ, divΣ and dΩt, respectively, the gradient, the di-
vergence operators and the element of volume on Σ in the above mentioned

structure. In particular, the local expression of dΩt is equal to
√
β̃αdθ. More-

over we set
M(·) = divΣ

(
µ̃1−n

2∇Σ·
)
. (15.7.6)

We have

e2tµ̃−1(L1w)(et, p) = Pw̃(t, p), ∀(t, p) ∈ (−∞, 0)× Σ, (15.7.7)

where
Pw̃ = w̃tt + (n− 2)w̃t +

1

µ̃1−n/2Mw̃. (15.7.8)

For the reader’s convenience, we reformulate Propositions 15.6.6 and
15.6.8 in the Riemannian structure induced by the metric tensor

{
β̃α,hk

}n
h,k=2

.
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Recall that {Uα, ϕα}α∈J is a (finite) family of coordinate neighborhoods
defining on Σ a structure of C∞ oriented differentiable manifold, where, for
any α ∈ J , we set Vα = ϕα (Uα).

Proposition 15.7.3. For any α ∈ J and for any (t, θ) ∈ (−∞, 0)× Vα, we
have ∣∣∣∂tβ̃α,hkηhηk∣∣∣ ≤ Cetβ̃α,hk(%, θ)η

hηk, ∀η ∈ Rn−1, (15.7.9)∣∣∣∣∂t log

√
β̃α

∣∣∣∣ ≤ Cet, (15.7.10)

|∂tµ̃α(t, θ)| ≤ Cet, (15.7.11)

where C depends on λ and Λ only.

By the convention introduced above, for any t ∈ (−∞, 0), let us denote
by Ξ̃(t) the covariant tensor satisfying

Ξ̃(t) = Ξ(et)

and let us denote by ˜̀(t, ·) = `(et, ·).

In the next Proposition let us denote by
∫

(·) the integral
∫ t0
−∞ dt

∫
Σ

(·)dΩt.

Proposition 15.7.4. Let v1, v2 ∈ C∞((−∞, t0)×Σ). Let us suppose either
v1 or v2 of compact support. Let h ∈ C∞((−∞, t0)). Then we have∫

v1∂tv2 = −
∫ (

etv1
˜̀+ ∂tv1

)
v2. (15.7.12)

If v1 has compact support then∫
h(t)∂tv1divΣ

(
µ̃1−n

2∇Σv1

)
=

=
1

2

∫
eth(t)µ̃1−n

2 Ξ̃(t) (∇Σv1,∇Σv1) +

+
1

2

∫ [
∂t
(
h(t)µ̃1−n

2

)
+ eth(t)µ̃1−n

2 ˜̀] |∇Σv1|2Σ .

(15.7.13)

Proposition 15.7.5. We have∣∣∣˜̀(t, p)∣∣∣ ≤ C, ∀(t, p) ∈ (−∞, 0)× Σ, (15.7.14)∣∣∣Ξ̃(t)(∇Σv,∇Σv)
∣∣∣ ≤ C |∇Σv|2Σ , ∀v ∈ C

∞((−∞, 0)× Σ), (15.7.15)

where C depends on λ and Λ only.
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Proof. Inequalities (15.7.14) and (15.7.15) are an immediate conse-
quences of Proposition 15.6.6.�

Proof of Theorem 15.7.1.
For any smooth function v we write v′, v′′, ... instead of ∂tv, ∂ttv, ... .
By (15.4.11) we have, similarly to the proof of Theorem 15.7.1 (here and

in the sequel we omit the subscript ε)

ϕ(t) := log(φ(et)) = t− ε−1 log
(
1 + eεt

)
, ∀t ∈ (−∞, 0) (15.7.16)

and

ϕ′(t) =
1

1 + eεt
, ϕ′′(t) = − εeεt

(1 + eεt)2
, ∀t ∈ (−∞, 0). (15.7.17)

Let
f(t, p) = e−τϕw(t, p), ∀(t, p) ∈ (−∞, 0)× Σ, (15.7.18)

where w is defined in (15.7.5).
We have

Pτf := e−τϕP(eτϕf) = b0f + b1f
′︸ ︷︷ ︸

Aτf

+ a0f + f ′′ +
1

m
Mf︸ ︷︷ ︸

Sτf

, (15.7.19)

where

m = µ̃1−n
2

and

a0 = τ 2ϕ′
2

+ τ(n− 2), b0 = τϕ′′, b1 = 2τϕ′ + (n− 2). (15.7.20)

Let us note that (15.6.53) gives

λ
n
2
−1 ≤ m ≤ λ1−n

2 . (15.7.21)

Set
γ :=

1

ϕ′
= 1 + eεt. (15.7.22)

We have ∫
mγ |Pτf |2 ≥ 2

∫
mγAτfSτf +

∫
mγ |Aτf |2 , (15.7.23)
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2

∫
mγAτfSτf = 2

∫
γ (b0f + b1f

′)Mf︸ ︷︷ ︸
I1

+

+ 2

∫
mγ (b0f + b1f

′) (a0f + f ′′)︸ ︷︷ ︸
I2

.

(15.7.24)

We examine I1.
We have

I1 = 2

∫
(γb0fMf + γb1f

′Mf) = 2

∫
γb0fMf︸ ︷︷ ︸
I11

+ 2

∫
γb1f

′Mf︸ ︷︷ ︸
I12

. (15.7.25)

By the divergence Theorem we obtain

I11 = 2

∫
γb0fdivΣ (m∇Σf) = −2

∫
mγb0 |∇Σf |2Σ . (15.7.26)

By (15.7.13) we get

I12 = 2

∫
γb1f

′Mf =

∫ [
(mγb1)′ + etmγb1

˜̀] |∇Σf |2Σ +

+

∫
etmγb1Ξ̃(t) (∇Σf,∇Σf) .

(15.7.27)

By (15.7.25), (15.7.26) and (15.7.27) we have

I1 = I11 + I12 =

∫ {
−2mγb0 +

[
(mγb1)′ + etmγb1

˜̀]} |∇Σf |2Σ +

+

∫
etmγb1Ξ̃(t) (∇Σf,∇Σf) .

(15.7.28)

We get (compare with (15.4.18))

− 2mγb0 +
[
(mγb1)′ + etmγb1

˜̀] =

= 2m

(
−γb0 +

1

2
(γb1)′

)
+m′γb1 + etmγb1

˜̀≥
≥ τεeεt + +m′γb1 + etmγb1

˜̀.
(15.7.29)

Now, by (15.7.11) we have

|m′| ≤ Cet, (15.7.30)
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where C depends on λ and Λ only. By this inequality, by (15.7.15) and by
(15.7.28), taking into account (15.7.14), we have

I1 ≥ τ

∫
eεt
(
ε− C?e(1−ε)t) |∇Σf |2Σ , ∀τ ≥ 1, (15.7.31)

where C? depends on λ and Λ only.
Now, for every t ≥ T1 := 1

1−ε log ε
2C?

we have

ε− C?e(1−ε)t ≥ ε

2

By this inequality and by (15.7.31) we have, for every f ∈ C∞0 ((−∞, T1)×Σ),

I1 ≥
ετ

2

∫
eεt |∇Σf |2Σ , ∀τ ≥ 1. (15.7.32)

We examine I2.
By (15.7.12) we have

I2 = 2

∫
mγ (b0f + b1f

′) (a0f + f ′′) =

= 2

∫
mγ

(
a0b0f

2 + b0ff
′′ + b1a0f

′f + b1f
′f ′′
)

=

= 2

∫
mγa0b0f

2 − (mγb0f)′ f ′ +
1

2
mγb1a0

(
f 2
)′

+
1

2
mγb1

(
f ′

2
)′
−

− 2

∫
etmγb0

˜̀ff ′ =
= 2

∫
mγa0b0f

2 − (mγb0f)′ f ′ − 1

2
(mγb1a0)′ f 2 − 1

2
(mγb1)′ f ′

2−

− 2

∫
etmγ ˜̀(b0ff

′ +
1

2
b1a0f

2 +
1

2
b1f
′2
)

== 2

∫
m

[(
γa0b0 +

1

2
(γb1a0)′

)
f 2+

+

(
γb0 +

1

2
(γb1)′

)
f ′

2 − (γb0)′ ff ′
]
−

− 2

∫
etmγ ˜̀(b0ff

′ − 1

2
b1a0f

2 − 1

2
b1f
′2
)
−

− 2

∫
m′γ

(
b0ff

′ +
1

2
b1a0f

2 +
1

2
b1f
′2
)

=
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= 2

∫
m

[(
γa0b0 +

1

2
(γb1a0)′

)
f 2+

+

(
γb0 +

1

2
(γb1)′

)
f ′

2 − (γb0)′ ff ′
]
−

− 2

∫
γ
(
met˜̀+m′

)(
b0ff

′ +
1

2
b1a0f

2 +
1

2
b1f
′2
)

= I21 + I22.

Where we set
I21 = 2

∫
m

[(
γa0b0 +

1

2
(γb1a0)′

)
f 2+

+

(
γb0 +

1

2
(γb1)′

)
f ′

2 − (γb0)′ ff ′
]

and
I22 = −2

∫
γ
(
met˜̀+m′

)(
b0ff

′ +
1

2
b1a0f

2 +
1

2
b1f
′2
)

Now, let us estimate I21 e I22.
We have (compare with (15.4.21) and (15.4.22)), for every τ > 0

γa0b0 −
1

2
(γb1a0)′ =

(
τ 3 1

1 + eεt
+ τ 2n− 2

2

)
εeεt

(1 + eεt)2
≥ τ 3

8
εeεt, (15.7.33)

and (compare with (15.4.25) and (15.4.26)) fpr every τ > 2(n− 2)

−
(
γb0 +

1

2
(γb1)′

)
= τ

εeεt

1 + eεt
− (n− 2)εeεt

2
≥ ετ

4
eεt. (15.7.34)

Moreover

|(γb0)′ff ′| = τ
εeεt

(1 + eεt)2 |ff
′| ≤ εeεt

(
τ 2f 2 + f ′

2
)
.

By this inequality and by (15.7.33), (15.7.34) we have

I21 ≥ ε

∫
meεt

(
τ 3

8
f 2 +

τ

4
f ′

2

)
, ∀τ ≥ τ 1, (15.7.35)

where τ 1 = max{16, 2(n− 2)}.
Now we estimate I22 e I23.
By (15.7.14), (15.7.20), (15.7.21), and (15.7.30) we have

|I22| ≤ C∗

∫
et
(
τ 3f 2 + τf ′

2
)
, ∀τ ≥ τ 1, (15.7.36)

where C∗ depends on λ and Λ only.
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By (15.7.35) and (15.7.36) we have, for every τ ≥ τ 1

I2 ≥ I21 − |I22| ≥
∫
eεt
(
ελ

n
2
−1

8
− C∗e(1−ε)t

)(
τ 3f 2 + τf ′

2
)
. (15.7.37)

Notice that for every

t ≥ T2 :=
1

1− ε
log

(
ελ

n
2
−1

16C∗

)
we have

ελ
n
2
−1

8
− C∗e(1−ε)t ≥ ελ

n
2
−1

16
,

this inequality and (15.7.37) imply that

I2 ≥
ελ

n
2
−1

16

∫
eεt
(
τ 3f 2 + τf ′

2
)
, (15.7.38)

for every f ∈ C∞0 ((−∞, T2)×Σ) and for every τ ≥ τ 1. By (15.7.24), (15.7.32)
and (15.7.38) we have,

2

∫
mγAτfSτf ≥

ετ

2

∫
eεt |∇Σf |2Σ +

ελ
n
2
−1

16

∫
eεt
(
τ 3f 2 + τf ′

2
)
, (15.7.39)

for every τ ≥ τ 1 and for every f ∈ C∞0 ((−∞, T3)×Σ), where T3 = min{T1, T2}.

Set

ε0 = εmin{1

2
,
λ
n
2
−1

16
},

by (15.7.23) and (15.7.39) we get∫
mγ |Pτf |2 ≥

≥ ε0

∫ (
τ 3f 2 + τ

(
f ′

2

+ |∇Σf |2Σ
))

eεt +

∫
mγ |Aτf |2 ,

(15.7.40)

for every τ ≥ τ1 and for every f ∈ C∞0 ((−∞, T3)× Σ).

In order to obtain the third term on the left–hand side of (15.7.3) we
argue as in the proof of Theorem 15.4.2. For the sake of clarity, we repeat
the most important steps.
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By the trivial inequality (a+ b)2 ≥ 1
2
a2 − b2 we have

∫
mγ |Aτf |2 ≥

λ
n
2
−1

2

∫
γ (2τϕ′ + n− 2)

2
f ′

2 − λ
n
2
−1

∫
γτ 2ϕ′′

2

f 2 ≥

≥ λ
n
2
−1τ 2

∫
f ′

2 − ε2λ
n
2
−1τ 2

∫
e2εtf 2, ∀τ > 0.

Plugging this inequality into (15.7.40) we have

∫
mγ |Pτf |2 ≥ λ

n
2
−1τ 2

∫
f ′

2

+ τ 3

∫ (
ε0 − ελ

n
2
−1τ−1eεt

)
eεtf 2+

+ ε0τ

∫ (
f ′

2

+ |∇Σf |2
)
eεt,

(15.7.41)

for every τ ≥ τ1 and for every f ∈ C∞0 ((−∞, T3)× Σ).
By (15.7.41) we have

∫
mγ |Pτf |2 ≥

≥ λ
n
2
−1τ 2

∫
f ′

2

+
ε0τ

3

2

∫
eεtf 2 + ε0τ

∫ (
f ′

2

+ |∇Σf |2Σ
)
eεt,

(15.7.42)

for every τ ≥ τ 2, where τ 2 = max{2εε−1
0 λ

n
2
−1, τ 1} and for every f ∈ C∞0 ((−∞, T3)×

Σ).
Let r ≤ 4eT3 . Since u = 0 in Br/4 we have f(t, p) = 0 for every t ≤

log(r/4) and for every p ∈ Σ. Proceeding as in the proof of (15.4.40) we
obtain

C

∫
|Pτf |2 ≥τ 3

∫
eεtf 2 + τ

∫ (
f ′

2

+ |∇Σf |2Σ
)
eεt+

+ τ 2r

∫
f 2e−t, ∀τ ≥ τ 2

(15.7.43)

where C depends on ε, λ and Λ only.

Now we come back to the original coordinates. By (15.7.5), (15.7.7),
(15.7.18) and (15.7.19) we have
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∫ 0

−∞
dt

∫
Σ

|Pτf |2 dΩt =

=

∫ 0

−∞
dt

∫
Σ

e−2τϕ(t)e4t|µ̃−1(L1w)(et, p)|2dΩt =

=

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)%3|µ−1L1w(%, p)|2dΩ%.

(15.7.44)

By proposizions 15.6.5 and 15.7.2 and by (15.7.44) we have

∫ 0

−∞
dt

∫
Σ

|Pτf |2 dΩt ≤ C

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)%3|Lw|2dΩ%+

+ C

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)%3|∂%w|2dΩ%,

(15.7.45)

where C depends on λ and Λ only.
Moreover we have∫ 0

−∞
dt

∫
Σ

f 2e−tdΩt =

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)%−2|w|2dΩ% (15.7.46)

and ∫ 0

−∞
dt

∫
Σ

f 2eεtdΩt =

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)%ε−1|w|2dΩ%. (15.7.47)

Concerning the second integral on the right–hand side of (15.7.44), let δ ∈
(0, 1) be to choose later, we get∫ 0

−∞
dt

∫
Σ

eεt
(
f ′

2

+ |∇Σf |2Σ
)
dΩt ≥

≥ δ

∫ 0

−∞
dt

∫
Σ

eεt
(
f ′

2

+ |∇Σf |2Σ
)
dΩt ≥

≥ δ

2

∫ 0

−∞
dt

∫
Σ

eεte−2τϕ(t)
(
|w%(et, p)|2e2t+

+
∣∣∇Σw(et, p)

∣∣2
Σ
− 2τ 2|w(et, p)|2

)
dΩt =

=
δ

2

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)
(
|w%(%, p)|2+

+%−2 |∇Σw(%, p)|2Σ
)
%ε+1dΩ%−

− δτ 2

2

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)|w(%, p)|2%ε−1dΩ%.

(15.7.48)



15.7. The case of variable coefficients 749

Now, plugging (15.7.45), (15.7.46), (15.7.47) and (15.7.48) into (15.7.43), we
have

τ 3

(
1− δ

2

)∫ 1

0

d%

∫
Σ

e−2τϕ(log %)|w|2%ε−1dΩ%+

+ τ 2r

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)|w|2%−2dΩ%+

+
δ

2
τ

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)
(
|w%|2 + %−2 |∇Σw|2Σ

)
%ε+1dΩ% ≤

≤ C

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)%3|Lw|2dΩ%+

+ C

∫ 1

0

d%

∫
Σ

e−2τϕ(log %)%3|∂%w|2dΩ%,

(15.7.49)

for every τ ≥ τ2 and for every f ∈ C∞0 ((0, r0) × Σ), where r0 = eT3 . Now,
let us choose δ = 1

2
. It turns out that the last integral on the right–hand

side of (15.7.49) can be absorbed by the third integral on the left–hand
side. Finallly, applying Proposition 15.6.7 and, taking into account that
2−1/ε|x| ≤ ρ(x) ≤ |x| and replacing τ by (τ − n

2
), we obtain inequality

(15.7.3).�

Corollary 15.7.6. Let us assume that the entries of the matrix G = {gij (x)}ni,j=1

are of class C0,1 (B2) and that G satisfies (15.6.1), (15.6.6) and (instead of
(15.6.2)) satisfies

|G(x)−G(y)| ≤ Λ |x− y| , ∀x, y ∈ B2, (15.7.50)

then Carleman estimate (15.7.3) continue to hold.
More precisely, there exist C and τ̂∗, depending on λ and Λ only, such

that

τ 3

∫
ρε−2τ |u|2dx+ τ

∫
ρ2+ε−2τ |∇u|2dx+

+ τ 2r

∫
ρ−1−2τu2dx ≤ C

∫
ρ4−2τ |∆gu|2dx,

(15.7.51)

for every r ∈ (0, r0), for every τ ≥ τ̂∗ and for every u ∈ C∞0
(
Br0 \Br/4

)
.

Proof. Let ψ ∈ C∞0 (Rn) satisfy supp ψ ⊂ B1, ψ ≥ 0 and
∫
Rn ψdx = 1.

Set
ψν(x) = νnψ(νx), ν ∈ N
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and

Gν(x) = (G ? ψν) (x) =

∫
Rn
G(x− y)ψν(y)dy, ν ∈ N.

We have that Gν satisfies to (15.6.1), (15.6.2), (15.6.6). Moreover

Gν ∈ C∞ (B2)

and

‖Gν −G‖L∞(B1) → 0, as ν →∞. (15.7.52)

Let r ∈ (0, r0) and let u be an arbitrary function belonging to C∞0
(
Br0 \Br/4

)
.

By (15.7.3) we have, for every ν ∈ N and for every τ ≥ τ ,

τ 3

∫
ρε−2τ |u|2dx+ τ

∫
ρ2+ε−2τ |∇u|2dx+

+ τ 2r

∫
ρ−1−2τu2dx ≤ C

∫
ρ4−2τ |∆gνu|

2 dx.

(15.7.53)

On the other hand, by (15.6.2) we have (by using the convention of repeated
index)

∫
ρ4−2τ |∆gνu|

2 dx ≤ 2

∫
ρ4−2τ

∣∣gijν ∂2
xixju

∣∣2 dx+ C

∫
ρ4−2τ |∇u|2 dx,

where C depends only on λ and Λ. By the just obtained inequality and
by (15.7.53) we have, for every ν ∈ N,

τ 3

∫
ρε−2τ |u|2dx+

∫
ρ2+ε−2τ

(
τ − Cρ2−ε) |∇u|2dx+

+ τ 2r

∫
ρ−1−2τu2dx ≤ C

∫
ρ4−2τ

∣∣gijν ∂2
xixju

∣∣2 dx, (15.7.54)

where C depends on λ and Λ only. Now let τ ∗ ≥ τ satisfy (recall that ρ ≤ 1
in B1) for every τ ≥ τ ∗,

τ − Cρ2−ε ≥ τ

2
.

By (15.7.54) we have, for every ν ∈ N,

τ 3

∫
ρε−2τ |u|2dx+

τ

2

∫
ρ2+ε−2τ |∇u|2dx+

+ τ 2r

∫
ρ−1−2τu2dx ≤ C

∫
ρ4−2τ

∣∣gijν ∂2
xixju

∣∣2 dx. (15.7.55)
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Passing to the limit as ν →∞ in (15.7.55) we obtain

τ 3

∫
ρε−2τ |u|2dx+

τ

2

∫
ρ2+ε−2τ |∇u|2dx+

+ τ 2r

∫
ρ−1−2τu2dx ≤ C

∫
ρ4−2τ

∣∣gij∂2
xixju

∣∣2 dx.
By the just obtained inequality, employing

∫
ρ4−2τ

∣∣∣gij∂2
xixj

u
∣∣∣2 dx ≤ 2

∫
ρ4−2τ |∆gu|2 dx+ C

∫
ρ4−2τ |∇u|2 dx

and repeating the arguments already used above, we have that there exists
τ̂∗ ≥ τ ∗, where τ̂∗ depends on λ and Λ only, such that

τ 3

∫
ρε−2τ |u|2dx+ τ

∫
ρ2+ε−2τ |∇u|2dx+

+ τ 2r

∫
ρ−1−2τu2dx ≤ C

∫
ρ4−2τ |∆gu|2dx,

for every r ∈ (0, r0), for every τ ≥ τ̂∗ and for every u ∈ C∞0
(
Br0 \Br/4

)
. �

Now we can state the analog of Theorem (15.5.1) and of Corollary 15.5.3
for the solutions U ∈ H2 (B1) to the equation

LU =
n∑

i,j=1

aij(x)∂2
xixjU +

n∑
i=1

bi(x)∂xiU + c(x)U = 0, in B1, (15.7.56)

where A(x) = {aij(x)}ni,j=1 is a symmetric matrix whose entries are real–
valued functions, such that

λ−1 |ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ λ |ξ|2 , ∀ξ ∈ Rn, ∀x ∈ B1, (15.7.57)

where λ ≥ 1. Also we assume∣∣aij(x)− aij(y)
∣∣ ≤ Λ|x− y|, for i, j ∈ {1, · · · , n} , ∀x, y ∈ B1. (15.7.58)

Moreover, bi ∈ L∞ (B1), i = 1, · · · , n and c ∈ L∞ (B1) (these may be
complex–valued coefficients) and set

M = max
{
‖b‖L∞(B1,Rn) , ‖c‖L∞(B1)

}
, (15.7.59)

where b = (b1, · · · , bn).
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Theorem 15.7.7. Let us assume that U ∈ H2 (B1) is a solution to the
equation (15.7.57). Let x0 ∈ B1 and 0 < R0 ≤ 1 − |x0|. Then there exist
C1 ≥ C ≥ 1 depending on λ, Λ and M only, such that, if 0 < r < R

C
< R0

C1

then

∫
BR(x0)

U2 ≤ C

(
R0

R

)C (∫
Br(x0)

U2

)θ(∫
BR0

(x0)

U2

)1−θ

, (15.7.60)

where

θ =
log R0

C1R

log C1R0

r

. (15.7.61)

Moreover, if U does not vanish identically in BR0/C(x0) the following
doubling inequality holds true∫

B2r(x0)

U2 ≤ CNk
x0,R0

∫
Br(x0)

U2, (15.7.62)

where

Nx0,R0 =

∫
BR0

(x0)
U2∫

BR0/C
(x0)

U2
(15.7.63)

and k is a positive number (k ≥ 3).

Proof. For fixed x0 ∈ B1, since A(x0) is a symmetric matrix, there exists
a linear map S such that

SA(x0)ST = In.

Hence, we may perform the change of variables y = S−1(x − x0) in the
equation (15.7.56) that allows to apply, after some simple modifications, the
Carleman estimate (15.7.51) in a manner quite similar to what was done in
the proof of Theorem (15.5.1). To obtain the analogon of Lemma 15.5.2, we
may fix, for instance ε = 1

2
. We leave the details to the reader. �

Also, the following Corollary can be proved similarly to Corollary 15.5.3

Corollary 15.7.8 (strong unique continuation for elliptic equations).
Let U ∈ H2 (B1) be a solution to equation (15.7.57). Let x0 ∈ B1 and
0 < R0 ≤ 1− |x0|. There exists C depending on λ, Λ and M only such that
we have what follows. If U does not vanish identically in BR0/C(x0) then we
have, for every r < s ≤ R0

C
,∫

Bs(x0)

U2 ≤ CNk
x0,R0

(s
r

)log2(CNk
x0,R0

)
∫
Br(x0)

U2, (15.7.64)
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where Nx0,R0 is defined by (15.7.63) and k is the same number that occurs in
(15.7.62).

Moreover, if∫
Br(x0)

U2 = O (rm) , as r → 0, ∀m ∈ N, (15.7.65)

then

U ≡ 0, in B1. (15.7.66)





Chapter 16

Miscellanea

16.1 Introduction

In this final Chapter we will first give (Section 16.3) a brief outline of two
methods, alternative to the Carleman estimates, for dealing within the unique
continuation issue. These methods are generally called the log – convexity
and the frequency function method. We will see that they are intimately
related. Next, in Section 16.4 , we will give a little mention of Ap weights,
pointing out some applications of them to inverse problems. In Section 16.5
we will consider the Runge property for the Laplace operator.

16.2 The backward problem for the heat equa-
tion

Let us consider a rod of heat conducting material. Let π be the length of
the rod, let us assume that its temperature is zero at its extremes and that
the heat flows only in the direction of the axis of the rod. Let u(x, t) be
the temperature of the rod at the point x and the time t. If the initial
temperature is f(x), then u is a solution of the following + initial–boundary
value problem for the heat equation

ut − uxx = 0, for (x, t) ∈ (0, π)× (0,+∞),

u(0, t) = u(π, t) = 0, for t ∈ [0,+∞),

u(x, 0) = f(x), for x ∈ [0, π].

(16.2.1)

755
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Also, we assume

f ∈ C1([0, π]), and f(0) = f(π) = 0. (16.2.2)

Let us recall that, [77], there exists an unique solution to problem (16.2.1)
in the class C0([0, π]× [0,+∞)) ∩ C2((0, π)× (0,+∞)) and it is given by

u(x, t) =
∞∑
k=1

fk sin kxe−k
2t, (16.2.3)

where
fk =

2

π

∫ π

0

f(x) sin kxdx. (16.2.4)

Moreover we have∫ π

0

u2(x, t)dx ≤ π

2

∫ π

0

f 2(x)dx, ∀t ≥ 0

and, more generally∫ π

0

|∂mx u(x, t)|dx ≤ Cm,t

∫ π

0

f 2(x)dx, ∀t > 0.

These inequalities imply a continuous dependence of the solution of problem
(16.2.1) by the initial datum f .

In the backward problem we are interested in determining the temper-
ature u, if we know, instead of initial temperature, the temperature at an
instant t > 0, say t = 1. Set

g(x) = u(x, 1), in [0, π]. (16.2.5)

It is evident that, for t > 1 by the translation t′ = t−1 we reduce to problem
(16.2.1). when t < 1 we will examine what happens for what concerns the
uniqueness and continuous dependence of u by g.

Uniqueness. By the linearity of the problem, it suffices to check that if
g ≡ 0 then u ≡ 0. Now, since u is given by (16.2.3), we may consider the
equation (of the unkwnown f)

∞∑
k=1

fk sin kxe−k
2

= 0, ∀x ∈ [0, π], (16.2.6)

from which, multiplying both the sides by sinmx, for m ∈ N and integrating
over [0, π], we obtain

π

2
fme

−m2

= 0, ∀m ∈ N.
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Therefore fm = 0 for every m ∈ N. Hence

u ≡ 0.

Continuous dependence and conditional stability. Let us consider
the sequence of functions

gν(x) = eν sin πνx, ν ∈ N.

It is easily checked that

uν(x, t) = eν
2(1−t)eν sin πνx, ν ∈ N, ν ∈ N.

Hence ∥∥g(n)
ν

∥∥
L2(0,π)

→ 0, as ν →∞, ∀n ∈ N,

(g(n)
ν is the n–th derivative of g), but

‖uν(·, t)‖L2(0,π) → +∞, as ν →∞, ∀t ∈ (0, 1).

In plain words, even if we had the estimates of the error of all derivatives of
the datum g we could not control the error on u(·, t) when t < 1.

Let us denote by

ε := ‖g‖L2(0,π) (16.2.7)

and let us suppose the temperature at the initial time is bounded (in the
L2(0, π) norm) by a known constant. More precisely, we suppose that

‖f‖L2(0,π) = ‖u(·, 0)‖L2(0,π) ≤ E, (16.2.8)

where E > 0 is known. By (16.2.3) and (16.2.5) we have

∞∑
k=1

fk sin kxe−k
2

= g(x), ∀x ∈ [0, π],

from which we have

fm =
2

π
gme

−m2

, ∀m ∈ N,

where
gm =

2

π

∫ π

0

f(x) sinmxdx, ∀m ∈ N.
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Therefore (16.2.7) and condition (16.2.8) are expressed, respectively, by

π

2

∞∑
k=1

f 2
ke
−2k2

= ε2

and
π

2

∞∑
k=1

f 2
k ≤ E2.

On the other hand, we are interested in estimating

‖u(·, t)‖2
L2(0,π) =

π

2

∞∑
k=1

f 2
ke
−2k2t

for t ∈ (0, 1).
Applying the Hölder inequality we get

π

2

∞∑
k=1

f 2
ke
−2k2t =

π

2

∞∑
k=1

|fk|2(1−t)
(
|fk|2 e−2k2

)t
≤

≤ π

2

(
∞∑
k=1

|fk|2
)1−t( ∞∑

k=1

|fk|2 e−2k2

)t

≤

≤ E2(1−t)ε2t.

Hence we have proved the following conditional stability estimate

‖u(·, t)‖L2(0,π) ≤ E1−tεt, ∀t ∈ (0, 1). (16.2.9)

Remark. It is easily checked that estimate (16.2.9) cannot be improved.
Furthermore, (16.2.9) implies the log–convexity of the function

[0, π] 3 t→ ‖u(·, t)‖L2(0,π)

By this we mean that the function

F (t) = log ‖u(·, t)‖L2(0,π) ,

is convex. �
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16.3 The log–convexity method and the frequency
function method

16.3.1 The log–convexity method

At the base of the log–convexity method there are the following simple
considerations.

Let us suppose that F ∈ C2([0, 1]) is a nonnegative function, F ′′ ≥ 0 in
[0, 1] and let us suppose

F ′′(t)F (t)− F ′2(t) ≥ 0, ∀t ∈ [0, 1]. (16.3.1)

It is immediately checked that this inequality is equivalent to

F ′′(t)(F (t) + γ)− F ′2(t) ≥ 0, ∀t ∈ [0, 1], ∀γ > 0

which, in turn, is equivalent to the log–convexity of F + γ in [0, 1]. As a
matter of fact we have,

d2

dt2
log(F (t) + γ) =

F ′′(t)(F (t) + γ)− F ′2(t)

F 2(t)
≥ 0.

Now, the log–convexity of F + γ is equivalent to inequality

F (t) + γ ≤ (F (0) + γ)1−t(F (1) + γ)t, ∀t ∈ [0, 1], ∀γ > 0

hence
F (t) ≤ (F (0))1−t(F (1))t, ∀t ∈ [0, 1]. (16.3.2)

By the latter inequality we derive that if one of values F (0), F (1) is zero
then F vanishes identically.

Let us at once see an application of the aforementioned idea for proving
the uniqueness and a conditional stability estimate for the following backward
problem

ut − (a(x)ux)x = 0, for (x, t) ∈ (0, 1)× (0, T ),

u(0, t) = u(1, t) = 0, for t ∈ [0, T ],

u(x, T ) = g(x), for x ∈ [0, 1]

(16.3.3)

where T > 0. Let us suppose that a ∈ C1([0, 1]) and that there exists
u ∈ C2([0, 1]× [0, T ]) solution to (16.3.3).
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We define

F (t) =

∫ 1

0

u2(x, t)dx, t ∈ [0, T ] (16.3.4)

and we have

F ′(t) = 2

∫ 1

0

u(x, t)ut(x, t)dx. (16.3.5)

Now, by the equation ut − (a(x)ux)x = 0, taking into account that u(0, t) =
u(1, t) = 0 and integrating by parts, we get

2

∫ 1

0

u(x, t)ut(x, t)dx = 2

∫ 1

0

u(x, t) (a(x)ux)x dx = −2

∫ 1

0

a(x)u2
x(x, t)dx.

Hence

F ′(t) = −2

∫ 1

0

a(x)u2
x(x, t)dx.

By using the just obtained equality, we calculate the second derivative of F

F ′′(t) = −4

∫ 1

0

a(x)ux(x, t)uxt(x, t)dx.

Now we integrate by parts, and we recall that ut(0, t) = ut(1, t) = 0 (which
is obtained by differentiating u(0, t) = u(1, t) = 0 with respect to t), by using
again the equation, we get

−4

∫ 1

0

a(x)ux(x, t)uxt(x, t)dx = 4

∫ 1

0

(a(x)ux(x, t))x ut(x, t)dx =

= 4

∫ 1

0

u2
t (x, t)dx.

Hence

F ′′(t) = 4

∫ 1

0

u2
t (x, t)dx ≥ 0. (16.3.6)

Now, by (16.3.4), (16.3.5) and (16.3.6) we have

F ′′(t)F (t)− F ′2(t) = 4

∫ 1

0

u2
t (x, t)dx

∫ 1

0

u2(x, t)dx−

− 4

(∫ 1

0

u(x, t)ut(x, t)dx

)2

≥ 0,

where the last inequality follows by the Cauchy–Schwarz inequality. Hence,
by (16.3.2) we have
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∫ 1

0

u2(x, t)dx ≤
(∫ 1

0

u2(x, 0)dx

)1− t
T
(∫ 1

0

u2(x, T )dx

) t
T

, ∀t ∈ [0, T ]

from which, recalling u(x, T ) = g(x) in [0, 1],∫ 1

0

u2(x, t)dx ≤
(∫ 1

0

u2(x, 0)dx

)1− t
T
(∫ 1

0

g2(x)dx

) t
T

, (16.3.7)

for every t ∈ [0, T ]. By the last estimate we obtain the uniqueness for the
backward problem (16.3.3). As a matter of fact, if g ≡ 0 then (16.3.7) implies
u ≡ 0. Moreover, if we have the information∫ 1

0

g2(x)dx ≤ ε2, (error)

and ∫ 1

0

u2(x, 0)dx ≤ E2, (a priori information)

then we get the following conditional stability estimate(∫ 1

0

u2(x, t)dx

)1/2

≤ E1− t
T ε

t
T , ∀t ∈ [0, T ]. (16.3.8)

Remark. Unlike the method based on the Carleman estimates, in the
log–convexity method, the equation and the initial and boundary data are
used directly. We refer to [1] and [61] for more details on this topic. The
elegance of the method and the simplicity of the proof that we have just given
should not lead us to believe that the procedure does not have its asperities.
To make a rough comparison with the method based on Carleman estimates,
one could say that as, in the latter, the choice of weight is crucial (and non
trivial), in the log–convexity method, the choice of the function F is crucial
(and non trivial). �

We reconsider the backward problem with a depending on x and t. That
is, we consider



ut − (a(x, t)ux)x = 0, for (x, t) ∈ (0, 1)× (0, T ),

u(0, t) = u(1, t) = 0, for t ∈ [0, T ],

u(x, T ) = g(x), for x ∈ [0, 1]

(16.3.9)
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where a ∈ C1([0, 1]× [0,+∞)). We denote

λ = min
(x,t)∈[0,1]×[0,T ]

a(x, t) > 0 (16.3.10)

and

M = max
(x,t)∈[0,1]×[0,T ]

|at(x, t)| . (16.3.11)

We are searching for a function µ, such that

µ : [0, 1]→ [0, T ], (16.3.12)

bijective, increasing, which satisfies µ ∈ C2([0, 1]) and such that

[0, 1] 3 s→ Φ(s) := F (µ(s)),

is log–convex, where F is given by

F (t) =

∫ 1

0

u2(x, t)dx, t ∈ [0, T ].

We get
·
Φ(s) = F ′(µ(s))

·
µ(s), ∀s ∈ [0, 1],

where
·
Φ denotes the derivative of Φ w.r.t. s. In addition
··
Φ(s) = F ′′(µ(s))

·
µ

2
(s) + F ′(µ(s))

··
µ(s), ∀s ∈ [0, 1]. (16.3.13)

Hence

··
Φ(s)Φ(s)−

·
Φ

2

(s) =
(
F ′′(µ(s))F (µ(s))− F ′2(µ(s))

) ·
µ

2
(s)(s)+

+ F ′(µ(s))F (µ(s))
··
µ(s), ∀s ∈ [0, 1].

(16.3.14)

Now, by the equation ut = (a(x, t)ux)x, we get

F ′(t) = 2

∫ 1

0

u(x, t)ut(x, t)dx =

= 2

∫ 1

0

u(x, t) (a(x, t)ux(x, t))x dx =

= −2

∫ 1

0

a(x, t)u2
x(x, t)dx
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and

F ′′(t) = −4

∫ 1

0

a(x, t)ux(x, t)uxt(x, t)dx− 2

∫ 1

0

at(x, t)u
2
x(x, t)dx =

= 4

∫ 1

0

ut(x, t) (a(x, t)ux(x, t))x dx− 2

∫ 1

0

at(x, t)u
2
x(x, t)dx =

= 4

∫ 1

0

u2
t (x, t)dx− 2

∫ 1

0

at(x, t)u
2
x(x, t)dx.

Recalling (16.3.11), we have

F ′′(t) ≥ 4

∫ 1

0

u2
t (x, t)dx− 2M

∫ 1

0

u2
x(x, t)dx, ∀t ∈ [0, T ]. (16.3.15)

By the last equality and by (16.3.14) we get (for the sake of brevity, we omit
the variables)

··
Φ(s)Φ(s)−

·
Φ

2

(s) ≥
[(

4

∫ 1

0

u2
tdx− 2M

∫ 1

0

u2
xdx

)(∫ 1

0

u2dx

)
−

−4

(∫ 1

0

utudx

)2
]
·
µ

2
(s)+

+ 2

(∫ 1

0

utudx

)(∫ 1

0

u2dx

)
··
µ(s) =

= 4

[(∫ 1

0

u2
tdx

)(∫ 1

0

u2dx

)
−
(∫ 1

0

utudx

)2
]
·
µ

2
(s)+

+

[
−4M

·
µ

2
(s)

∫ 1

0

u2
xdx+ 2

(∫ 1

0

utudx

)
··
µ(s)

](∫ 1

0

u2dx

)
.

By applying the the Cauchy–Schwarz inequality to the expression in the first
square bracket, we obtain

··
Φ(s)Φ(s)−

·
Φ

2

(s) ≥
[
−4M

·
µ

2
(s)

∫ 1

0

u2
xdx+

+2

(∫ 1

0

utudx

)
··
µ(s)

](∫ 1

0

u2dx

)
.

(16.3.16)

On the other hand∫ 1

0

utudx =

∫ 1

0

(a(x, t)ux)x udx = −
∫ 1

0

a(x, t)u2
xdx ≥ −λ

∫ 1

0

u2
xdx.
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Now, proposing to find µ concave, by the last inequality and by (16.3.16)
we have

··
Φ(s)Φ(s)−

·
Φ

2

(s) ≥ −2
[
2M

·
µ

2
(s) + λ

··
µ(s)

](∫ 1

0

u2dx

)(∫ 1

0

u2
xdx

)
.

Hence, in order to
··
Φ(s)Φ(s)−

·
Φ

2

(s) ≥ 0 (16.3.17)

it suffices that µ satisfies the following conditions

2M
·
µ

2
(s) + λ

··
µ(s) ≤ 0, ∀s ∈ [0, T ],

·
µ(s) ≥ 0, ∀s ∈ [0, T ],

··
µ(s) ≤ 0, ∀s ∈ [0, T ],

µ(0) = 0, µ(1) = T.

(16.3.18)

Let us notice that the condition ··µ ≤ 0 implies (see (16.3.13))
··
Φ ≥ 0.

Setting

α =
2M

λ
,

it is simple to check that

µ(s) = T +
1

α
log
[
e−αT +

(
1− e−αT

)]
, s ∈ [0, 1], (16.3.19)

satyisfies all conditions (16.3.18). In particular we get

2M
·
µ

2
(s) + λ

··
µ(s) = 0, ∀s ∈ [0, T ].

All in all, if we have ∫ 1

0

g2(x)dx ≤ ε2

and ∫ 1

0

u2(x, 0)dx ≤ E2,

we obtain the conditional stability estimate
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(∫ 1

0

u2(x, t)dx

)1/2

≤ E1−µ−1(t)εµ
−1(t), ∀t ∈ [0, T ]. (16.3.20)

where

µ−1(t) =
e−α(T−t) − e−αt

1− e−αT
.

Let us note that as α goes to 0 (corresponding to the case in which a does
not depend on t) µ−1(t) goes to t

T
, i.e. the exponent of the estimate (16.3.8).

The log–convexity method can also be applied to prove the uniqueness
and conditional stability for the Cauchy problem. Perhaps, the first author
to use it was M. M. Lavrent’ev in 1956, [47]. He applied the method to the
Cauchy problem for the Laplace equation in a convex region. With some
minor simplification, the situation considered is as follows (we consider only
the uniqueness)



uyy(x, y) + ∆xu(x, y) = 0, ∀(x, y) ∈ B1 × (0, 1),

u(x, y) = 0 ∀(x, y) ∈ ∂B1 × [0, 1],

u(x, 0) = uy(x, 0) = 0, ∀x ∈ B1,

(16.3.21)

where

∆xu(x, y) =
n∑
j=1

uxjxj(x, y)

and we suppose that u ∈ C2
(
B1 × [0, 1]

)
.

Set
F (y) =

∫
B1

u2(x, y)dx. (16.3.22)

We have
F ′(y) = 2

∫
B1

u(x, y)uy(x, y)dx (16.3.23)

and
F ′′(y) = 2

∫
B1

(
u2
y(x, y) + u(x, y)uyy(x, y)

)
dx. (16.3.24)

Now, let us prove∫
B1

u(x, y)uyy(x, y)dx =

∫
B1

u2
y(x, y)dx. (16.3.25)
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First, we note that, by the equation uyy + ∆xu = 0 and by the condition
u(x, y) = 0 on ∂B1 × [0, 1] we have

∫
B1

u(x, y)uyy(x, y)dx = −
∫
B1

∆xu(x, y)u(x, y)dx =

=

∫
B1

|∇xu(x, y)|2dx.
(16.3.26)

On the other hand

d

dy

∫
B1

u2
ydx = 2

∫
B1

uyyuydx =

= −2

∫
B1

(∆xu)uydx =

= −2

∫
B1

[divx (∇xuuy)−∇xu · ∇xuy] dx =

= 2

∫
B1

∇xu · ∇xuydx =
d

dy

∫
B1

|∇xu(x, y)|2dx.

By the just obtained equality and by (16.3.26) we get

d

dy

(∫
B1

u2
y(x, y)dx−

∫
B1

|∇xu(x, y)|2dx
)

= 0. (16.3.27)

Now, since we have
u(x, 0) = uy(x, 0) = 0

, we get ∫
B1

u2
y(x, 0)dx−

∫
B1

|∇xu(x, 0)|2dx = 0

and by (16.3.27) we have∫
B1

u2
y(x, y)dx =

∫
B1

|∇xu(x, y)|2dx, ∀y ∈ (0, 1).

By the latter and by (16.3.26) we have (16.3.25) which, in turn (recall
(16.3.24)), gives

F ′′(y) = 4

∫
B1

u2
y(x, y)dx.
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By the just obtained equality, by (16.3.22), (16.3.23) and by the Cauchy–
Schwarz inequality we have

F ′′(y)F (y)− F ′2(y) = 4

(∫
B1

u2
ydx

)(∫
B1

u2dx

)
− 4

(∫
B1

uuydx

)2

≥ 0.

Hence F (y) is a log–convex function, consequently we have∫
B1

u2(x, y)dx ≤
(∫

B1

u2(x, 0)dx

)y (∫
B1

u2(x, 1)dx

)1−y

= 0

for every y ∈ [0, 1].
Therefore

u ≡ 0.

16.3.2 The frequency function method

In Section 10.4 we saw various versions of the Hadamard three circle in-
equality for the holomorphic functions and for the harmonic functions in two
variables (for the latter, see (10.4.24) and (10.4.25)). In Chapter 15, using
the Carleman estimates, we have extended this inequality to the solutions
of the second-order elliptic equations and we proved the doubling inequality.
The frequency function method was used for the first time in [27] for the
second-order elliptic equations with variable coefficients. Here, in order to
present the main ideas of this method, we consider the case of the Laplace
equation.

Let us propose to prove inequality (10.4.24) for the harmonic functions
of n variables. Then, let u be a solution of the Laplace equation.

∆u = 0, in BR0 ⊂ Rn. (16.3.28)

The inequality we are interested in can be written

H (r2) ≤ (H (r1))θ0 (H (r3))1−θ0 , (16.3.29)

for 0 < r1 < r2 < r3 < R0, where

H(r) =

∫
∂Br

u2dS, (16.3.30)

and

ϑ =
log
(
r3
r2

)
log
(
r3
r1

) . (16.3.31)
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Now it is important to observe that (16.3.29) is equivalent to the log–convexity
of

F (t) = H
(
et
)
, t ∈ (−∞, logR0) . (16.3.32)

Therefore the derivative of logF (t) needs to be increasing. Let us calculate
such a derivative

d

dt
logF (t) =

F ′(t)

F (t)
=
etH ′ (et)

H (et)
, t ∈ (−∞, logR0) .

This equality implies that (16.3.29) is equivalent to the fact that the function

rH ′ (r)

H (r)
, r ∈ (0, R0) , (16.3.33)

is increasing. Now we calculate H ′ (r). First we notice that

H(r) =
1

r

∫
Br

div(xu2)dx, (16.3.34)

as a matter of fact, by the divergence Theorem we obtain

H(r) =
1

r

∫
∂Br

(
x · x
|x|

)
u2dS =

1

r

∫
∂Br

(x · ν)u2dS =
1

r

∫
Br

div(xu2)dx.

Now, set

I(r) =

∫
Br

|∇u|2dx, r ∈ (0, R0) (16.3.35)

and let us notice that

I(r) =

∫
Br

∇u · ∇udx =

∫
Br

div (u∇u) dx =

∫
∂Br

u
∂u

∂ν
dS. (16.3.36)

We have

H ′(r) =
1

r

∫
∂Br

div(xu2)dS − 1

r2

∫
Br

div(xu2)dx

=
1

r

{
n

∫
∂Br

u2dS + 2

∫
∂Br

(x · ∇u)udS

}
− 1

r
H(r)

=
n− 1

r

∫
∂Br

u2dS + 2

∫
∂Br

u
∂u

∂ν
dS =

n− 1

r
H(r) + 2I(r).

Therefore
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H ′(r) =
n− 1

r
H(r) + 2I(r), r ∈ (0, R0). (16.3.37)

Hence, function (16.3.33) can be written

rH ′ (r)

H (r)
= n− 1 + 2

rI(r)

H(r)
, r ∈ (0, R0)

In sum, the log–convexity of F is equivalent to the fact that the function

N(r) =
rI(r)

H(r)
, r ∈ (0, R0) (16.3.38)

is increasing. N(·) is called the frequency function of u. The frequency
function was introduced by Almgren (1977), [5] and has yaken this name
because for a homogeneous harmonic polynomial of degree m, we have
N(r) = m for all r. For instance, in dimension 2, the homogeneous harmonic
polynomials of degree m are (in polar coordinates) of the type

pm(%, θ) = A%m cosmφ+B%m sinmφ

and it is easy to verify what has been asserted.
In the sequel, we will assume that H(r) > 0 for every r ∈ (0, R0), other-

wise we can employ the device shown at the beginning of Section 16.3.1. We
can also notice that if there exists r ∈ (0, R0) such that H (r) = 0 then u = 0
on ∂Br from which, u = 0 in Br and by the unique continuation property
we have u ≡ 0, which make the (16.3.29) trivial. The second device (i.e.,
assuming a unique continuation property) is certainly legitimate, but it is
somewhat reductive because by the method we are illustrating we can obtain
independent proof of unique continuation property.

At this point, we state and prove the following.

Proposition 16.3.1. If u is a non identically zero solution to (16.3.28) then
N(r) is an increasing function.

Proof. First we prove that

I ′(r) = 2

∫
∂Br

(
∂u

∂ν

)2

dS +
n− 2

r
I(r). (16.3.39)

For this purpose we use the Rellich identity (Lemma 14.2.1) for v ∈ C2 (BR0)
and β(x) = x,

2(x · ∇v)∆v = div[2(x · ∇v)∇v − x|∇v|2] + (n− 2)|∇v|2. (16.3.40)
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We get by (16.3.35)

I ′(r) =

∫
∂Br

|∇u|2dS. (16.3.41)

Now we apply identity (16.3.40) to the function u, we integrate both the
sides of (16.3.40) over Br and we recall that ∆u = 0, obtaining

0 =

∫
∂Br

{
2(x · ∇u)∇u · x

|x|
− x · x

|x|
|∇u|2

}
dS + (n− 2)

∫
Br

|∇u|2dx

=

∫
∂Br

{
2r

(
∂u

∂ν

)2

− r|∇u|2
}
dS + (n− 2)

∫
Br

|∇u|2dx,

from which, taking into account (16.3.41), we have

I ′(r) =

∫
∂Br

|∇u|2dS = 2

∫
∂Br

(
∂u

∂ν

)2

dS +
n− 2

r

∫
Br

|∇u|2dx

= 2

∫
∂Br

(
∂u

∂ν

)2

dS +
n− 2

r
I(r).

(16.3.42)

hence (16.3.39) is proved.

Differentiating both the sides of (16.3.38), we get

N ′(r) =
I(r)

H(r)
+ r

I ′(r)

H(r)
− rI(r)H ′(r)

H2(r)
. (16.3.43)

Unless u is constant (and, therefore (16.3.29) becomes trivial) we have

N(r) > 0

and we divide both the sides of (16.3.43) by N(r), obtaining

N ′(r)

N(r)
=

1

r
+
I ′(r)

I(r)
− H ′(r)

H(r)
,

from which, taking into account (16.3.37) and (16.3.39), we have

N ′(r)

N(r)
=

1

r
+
I ′(r)

I(r)
−

n−1
r
H(r) + 2I(r)

H(r)
=

=
2− n
r

+
I ′(r)

I(r)
− 2

I(r)

H(r)
=

= 2

{∫
∂Br

(
∂u
∂ν

)2
dS

I(r)
− I(r)

H(r)

}
.

(16.3.44)
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Now we express I(r) by means of (16.3.36) and, by (16.3.44), we get

N ′(r)

N(r)
= 2

{∫
∂Br

(
∂u
∂ν

)2
dS∫

∂Br
∂u
∂ν
udS

−
∫
∂Br

∂u
∂ν
udS∫

∂Br
u2dS

}
=

=
2

I(r)H(r)

{(∫
∂Br

(
∂u

∂ν

)2

dS

)(∫
∂Br

u2dS

)
−
(∫

∂Br

∂u

∂ν
udS

)2
}
.

Now, by the Cauchy–Schwarz inequality we have(∫
∂Br

(
∂u

∂ν

)2

dS

)(∫
∂Br

u2dS

)
−
(∫

∂Br

∂u

∂ν
udS

)2

≥ 0

from which the thesis follows. �

Let us summarize what has been obtained so far. By Proposition 16.3.1 we
get the log–convexity of function (16.3.32), from which inequality (16.3.29)
follows. By the latter, proceeding as done to prove (10.4.22) and using by
(16.3.29), we obtain,

∫
Br2

u2dx ≤

(∫
Br1

u2dx

)θ0 (∫
Br3

u2dx

)1−θ0

, (16.3.45)

for 0 < r1 < r2 < r3 < R0, where θ is given by (16.3.31).

By the properties of the frequency function we derive a doubling inequal-
ity. Indeed the following holds true.

Proposition 16.3.2. Let u be a non identically zero solution to (16.3.28)
then ∫

B2r

u2dx ≤ 22nN(R0)+1

∫
Br

u2dx, ∀r ∈
(

0,
R0

2

]
(16.3.46)

and ∫
B2r

u2dx ≤
2
∫
BR0

u2dx∫
BR0/4

u2dx

∫
Br

u2dx, ∀r ∈
[
0,
R0

4

]
, (16.3.47)

In the proof of Proposition 16.3.2 we use
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Lemma 16.3.3. Let u be a solution to (16.3.28) then we have

1

r

∫
Br

u2dx ≤
∫
∂Br

u2dS ≤ C

r

∫
B2r

u2dx, r ∈
(

0,
R0

2

]
, (16.3.48)

where C depends on n only.

Proof of Lemma. Let us prove the first inequality of (16.3.48). By
(16.3.37) we have H ′(r) ≥ 0. Hence∫

Br

u2dx =

∫ r

0

(∫
∂Bt

u2dS

)
dt ≤

≤
∫ r

0

(∫
∂Br

u2dS

)
dt =

= r

∫
∂Br

u2dS.

(16.3.49)

Concerning the second inequality of (16.3.48), by (16.3.34) and by the
Caccioppoli inequality, (4.5.1), we have

H(r) =
1

r

∫
Br

div(xu2)dx =

=
n

r

∫
Br

u2dx+
1

r

∫
Br

u (x · ∇u) dx ≤

≤ n

r

∫
Br

u2dx+

(∫
Br

u2dx

)1/2(∫
Br

|∇u|2dx
)1/2

≤

≤ n

r

∫
Br

u2dx+
C̃

r

(∫
Br

u2dx

)1/2(∫
B2r

u2dx

)1/2

≤

≤ C̃ + n

r

∫
B2r

u2dx,

where C̃ depends on n only. The second inequality in (16.3.48) is proved
with C = C̃ + n. �

Proof of Proposition 16.3.2. By (16.3.37) and (16.3.38) we get

d

dr

(
log

H(r)

rn−1

)
=

2N(r)

r
. (16.3.50)

Let ρ ∈
(
0, R0

2

]
. Integrating both the sides of (16.3.50) over [ρ, 2ρ] and

recalling that N is increasing, we have
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log

(
H(2ρ)

2n−1H(ρ)

)
= 2

∫ 2ρ

ρ

2N(r)

r
≤ (2 log 2)N(R0).

Hence

H(2ρ) ≤ 22nN(R0)H(ρ), ∀ρ ∈
(

0,
R0

2

]
,

Integrating over [0, r], r ∈
(
0, R0

2

]
, we get (16.3.46).

Let now prove (16.3.47). Let ρ ∈
(
0, R0

4

]
and R ∈

[
R0

4
, R0

2

]
. Integrating

both the sides of (16.3.50) over [ρ, 2ρ] and recalling that N is an increasing
function, we have

log

(
H(2ρ)

2n−1H(ρ)

)
≤ (2 log 2)N(R).

By the just obtained inequality, taking into account (16.3.50), we have

1

R
log

(
H(2ρ)

2n−1H(ρ)

)
≤ (2 log 2)

N(R)

R
= (log 2)

d

dR

(
log

H(R)

Rn−1

)
.

Again we integrate both the sides of the last inequality w.r.t. R over
[
R0

4
, R0

2

]
so that we have

log

(
H(2ρ)

2n−1H(ρ)

)
≤ log

(
H
(
R0

2

)
2n−1H

(
R0

4

)) .
Now, Lemma 16.3.3 gives

H(2ρ) ≤

∫
BR0

u2dx∫
BR0/4

u2dx
H(ρ), ∀ρ ∈

(
0,
R0

4

]
.

From which integration of both the sides over [0, r], r ∈
[
0, R0

4

]
, of last

inequality gives∫
B2r

u2dx ≤
2
∫
BR0

u2dx∫
BR0/4

u2dx

∫
Br

u2dx, ∀r ∈
[
0,
R0

4

]
.

Therefore, we get (16.3.47). �

Final Remark. The proof of Proposition 16.3.1, based on the Rellich
identity, differs from the proof given in [27] which is based on the transfor-
mation of the elliptic operator in polar coordinates. The proof based on the
Rellich identity was given by [42] for the second–order elliptic operators. �
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16.4 A brief review about the Ap weights.
In this Section we will provide a brief summary of the Ap weights by referring
to [17] and [25, Chapter 4] for further reading. In Section 2.5.10 we have
introduced the maximal function related to a function f ∈ L1 (Rn). Basically
equivalent to it is the following definition. In what follows we will denote by
Q a closed cube whose sides are parallel to the axes. Let f ∈ L1 (Rn). We
define the maximal Hardy-Littlewood function as

M(f)(x) = sup

{
−
∫
Q

|f(y)|dy : Q 3 x
}
, (16.4.1)

where, we recall,

−
∫
Q

|f(y)|dx =
1

|Q|

∫
Q

|f(y)|dy.

It is simple to check that

ωn
2nn

M(f)(x) ≤M(f)(x) ≤ ωnn
1
2
n−1M(f)(x), ∀x ∈ Rn, (16.4.2)

where M(f) is defined in (2.5.10). From inequalities (16.4.2) one can prove
forM(f) properties similar to those ofM(f) some of which have been proved
or presented in Section 2.5. In particular, the following apply (compare with
Lemma 2.5.4 and (2.5.15), respectively)

|Et| ≤
Cn
t

∫
Rn
|f(x)|dx, ∀f ∈ L1 (Rn) ,∀t > 0

(Cn depends on n only), where

Et = {x ∈ Rn : M(f)(x) > t}

and
‖M(f)‖Lp(Rn) ≤ Cn,p ‖f‖Lp(Rn) , ∀f ∈ Lp (Rn) .

(Cn,p depends on n and p only).

The Ap weight were introduced by Mucknhoupt, [58], and by Coifman
and Fefferman, [17] to answer to the following question:

Let p ∈ (1,+∞), determine all measurable and nonnegative functions w
such that

∫
Rn
|M(f)(x)|pw(x)dx ≤ C

∫
Rn
|f(x)|pw(x)dx, ∀f ∈ Lp (Rn) , (16.4.3)
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where C depends on w only. The functions w which enjos property (16.4.3)
are called Ap weight . If p = 1, then we say that w is an A1 weight if∫

Ẽt

w(x)dx ≤ C

∫
Rn
|f(x)|w(x)dx, ∀f ∈ L1 (Rn) ,

where
Ẽt = {x ∈ Rn : M(f)(x) > t} .

The following Theorem can be proved ([25, Chap. 4, Sect 2]).

Theorem 16.4.1. Let w ∈ L1
loc (Rn), w ≥ 0. The following conditions are

equivalent
(a) there exists p ∈ [1,+∞) such that w ∈ Ap;
(b) if p ∈ (1,+∞), then there exists C > 0 such that(
−
∫
Q

w(x)dx

)(
−
∫
Q

w−
1
p−1 (x)dx

)p−1

≤ C, for every cube Q (16.4.4)

if p = 1, then we have(
−
∫
Q

w(x)dx

)
ess sup

(
w−1

)
≤ C, for every cube Q; (16.4.5)

(c) there exist δ > 0 and C > 0 such that

(
−
∫
Q

w1+δ(x)dx

) 1
1+δ

≤ C−
∫
Q

w(x)dx for every cube Q; (16.4.6)

(d) there exist s > 0 and C > 0 such that, for every cube Q and for every
E ⊂ Q, E Lebesgue measurable set, we have

|E|
|Q|
≤ C

(∫
E
w(x)dx∫

Q
w(x)dx

)s

. (16.4.7)

Comments and Remarks. An inequality like (16.4.6) is called "re-
verse Hölder inequality". It can be proved that Theorem 16.4.1 can be
reformulated for weight functions w defined on an open set Ω, as long as we
replace, in (b), (c) and (d) "for every cube Q" by "for every cube Q ⊂ Ω.
The following remark turns out to be very useful in proving quantitative es-
timates in inverse problems. Below we illustrate this idea in a simplified way.
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In Theorem 15.7.7 we proved that a nonzero if u is a solution of the elliptic
equation

n∑
i,j=1

aij(x)∂2
xixju+

n∑
i=1

bi(x)∂xiu+ c(x)u = 0, (16.4.8)

whose coefficients satisfy the hypotheses (15.7.57), (15.7.58) and (15.7.59)
then u satisfies doubling inequality (15.7.62). Let us suppose that u satisfies
(16.4.8) in BR, R > 1 and let us write inequality (15.7.62) in the form∫

B2r(x0)

u2 ≤ CNk
x0

∫
Br(x0)

u2, x0 ∈ B1. (16.4.9)

Nx0 =

∫
B1(x0)

u2dx∫
Br0 (x0)

u2dx
. (16.4.10)

where r0 is a suitable point of (0, 1) (here, R0 = 1 and r0 = 1/C, in (15.7.62)).
Let us assume for simplicity

R = max{1 + 2
√
n, 16}.

Let us denote by

F =

∫
BR
u2dx∫

Br0/2
u2dx

. (16.4.11)

By the Caccioppoli inequality and the Sobolev Embedding Theorem, pro-
ceeding similarly to what was done in Lemma 4.8.5, we have

(
−
∫
Qr(x0)

|u|qdx
)1/q

≤
(
−
∫
Q2r(x0)

u2dx

)1/2

, ∀x0 ∈ Br0/2, (16.4.12)

where q is an arbitrary number of (1,+∞) when n = 2, and it is equal to
2n
n−2

when n ≥ 3 . On the other hand (see Corollary 15.7.8),

(
−
∫
Q2r(x0)

u2dx

)1/2

≤

(
−
∫
B2
√
nr(x0)

u2dx

)1/2

≤

≤ (CNx0)k̃
(
−
∫
Br(x0)

u2dx

)1/2

≤

≤ (CNx0)k̃
(
−
∫
Qr(x0)

u2dx

)1/2

, ∀x0 ∈ Br0/2,
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where k̃ = k
2

(
1 + log2(2

√
2n)
)
. By the just obtained inequality and by

(16.4.12), we have(
−
∫
Qr(x0)

|u|qdx
)1/q

≤ (CNx0)k̃
(
−
∫
Qr(x0)

u2dx

)1/2

, ∀x0 ∈ Br0/2.

Moreover, by (16.4.11) we have trivially

Nx0 =

∫
B1(x0)

u2dx∫
Br0 (x0)

u2dx
≤

∫
BR
u2dx∫

Br0/2
u2dx

.

Therefore we have, in particular, for any cube Q ⊂ Br0/2(
−
∫
Q

|u|qdx
)1/q

≤ F k̃

(
−
∫
Q

u2dx

)1/2

. (16.4.13)

Recalling that q > 2, we get by (16.4.13) that u2 satisfies a reverse Hölder
inequality, consequently u2 is an Ap weight. In particular, Theorem 16.4.1
yields that for every Q ⊂ Br0/2 and for every E ⊂ Q, E Lebesgue measurabile
set, we have

|E|
|Q|
≤ C

(∫
E
u2dx∫

Q
u2dx

)s

, (16.4.14)

where C depends by F . Let us suppose, now that the set E has positive
measure, then, if we have some bounds on F (generally obtainable from
values at the boundary of u), estimate (16.4.14) can be trivially rewritten∫

Q

u2dx ≤
(
C|Q|
|E|

)1/s ∫
E

u2dx (16.4.15)

This estimate implies, in particular, that if u vanishes on a set E of
positive measure then u vanishes identically in BR. Actually, (16.4.15) also
allows us to control, in terms of the measure E only, the propagation of the
error ∫

E

u2dx ≤ ε2

On a "small" cube Q and from there on the whole BR.
Another trivial translation of (16.4.14) is

|E| ≤ C|Q|

(∫
E
u2dx∫

Q
u2dx

)s

,
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which allows us to estimate the Lebesgue measure of E by the integral of
u2 on E itself. The latter observation is useful for finding size estimates
of unknown inclusions in problems of the type considered in Section 4.8 (for
details, see [3]). �

16.5 The Runge property
As an introduction to the main topic of this Section, we show by an example
that it is not always possible to extend a harmonic function u from B1 to
an open set, Ω, such that B1 b Ω The example we present here is due
to Hadamard, [31]. Let us consider the function whose expression in polar
coordinates is given by

u(ρ, φ) =
∞∑
n=1

2−nρ4n sin(4nφ). (16.5.1)

It is simple to check that u ∈ C0
(
B1

)
∩ C2 (B1) and that u is harmonic in

B1. Now we check that
u /∈ C1

(
B1

)
.

For this purpose we show that

lim
r→1−

∫
Br

|∇u|2dxdy = lim
r→1−

∫ r

0

dρ

∫ 2π

0

(
u2
ρ + ρ−2u2

φ

)
ρdφ = +∞. (16.5.2)

We get ∫ 2π

0

(
u2
ρ + ρ−2u2

φ

)
ρdφ = 2π

∞∑
n=1

4nρ2·4n−1

Hence ∫ r

0

dρ

∫ 2π

0

(
u2
ρ + ρ−2u2

φ

)
ρdφ = π

∞∑
n=1

r2·4n ,

from which (16.5.2) follows. It is therefore evident that u cannot be extended
to a harmonic function in an open set containing B1.

However, it is of interest to know whether u can be approximated by
functions that are harmonic in an open set containing B1. A property of
this kind is called Runge property for the operator ∆. This issue has been
studied for operators which are more general than the Laplace operator, but
here we limit ourselves to the Laplace operator operator only, referring to
the final comments for hints on further consideration.

We have
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Theorem 16.5.1. Let Ω1 b Ω2 be two open sets of Rn, where ∂Ω2 is of class
C1,1. Let us assume that Ω2 \ Ω1 connected. Then for every u such that

∆u = 0, in Ω1

and for every ε > 0 there exists v ∈ H1(Ω2) such that

∆v = 0, in Ω2

and
‖u− v‖L2(Ω1) < ε.

Proof. Set
S1 =

{
u ∈ H1 (Ω1) : ∆u = 0 in Ω1

}
and

S2 =
{
v|Ω1

: ∆v = 0 in Ω2

}
. (16.5.3)

The property that we wish to prove is equivalent to the fact that S2 is dense
in S1, with respect to the topology induced by L2 (Ω1). We now prove this
density property. To this aim, it suffices to prove that if u ∈ S1 and∫

Ω1

uvdx = 0, ∀v ∈ S2, (16.5.4)

then
u ≡ 0, in Ω1.

Let ũ

ũ(x) =


u, in Ω1,

0, in Ω2 \ Ω1.

and let w satisfy 
∆w = ũ, in Ω2,

w ∈ H1
0 (Ω2) .

(16.5.5)

Since ũ ∈ L2 (Ω2) and ∂Ω2 is of class C1,1, by Theorem 4.6.5 we have

w ∈ H2 (Ω2) .
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Now for an arbitrary v ∈ S2 we have

0 =

∫
Ω1

uvdx =

∫
Ω2

ũvdx =

∫
Ω2

∆wvdx =

=

∫
∂Ω2

∂w

∂ν
vdS +

∫
Ω2

w∆vdx =

=

∫
∂Ω2

∂w

∂ν
vdS.

(16.5.6)

Hence ∫
∂Ω2

∂w

∂ν
vdS = 0, ∀v ∈ S2.

By the latter and by Theorem 4.3.1 we have∫
∂Ω2

∂w

∂ν
ϕdS = 0, ∀ϕ ∈ H1/2 (∂Ω2) , (16.5.7)

hence for ϕ = ∂w
∂ν

we have

∂w

∂ν
= 0, on ∂Ω2.

Therefore we have 

∆w = ũ, in Ω2 \ Ω1,

w = 0, on ∂Ω2,

∂w
∂ν

= 0, on ∂Ω2.

(16.5.8)

Now, since Ω2 \Ω1 is connected, (16.5.8) implies, by the unique continuation
property,

w ≡ 0, in Ω2 \ Ω1.

By this relationship, recalling that w ∈ H2 (Ω2) we have that w ∈ H2
0 (Ω1)

from which we have∫
Ω1

u2dx =

∫
Ω1

u∆wdx =

∫
Ω1

∆uwdx = 0

Hence
u ≡ 0, in Ω1.
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As we desired to prove. �

Remarks.

1. Theorem 16.5.1 continues to be true also if, instead of ∂Ω2 ∈ C1,1, we
assume only ∂Ω2 ∈ C0,1 To prove this, one must first keep in mind that in
(16.5.6) occurs

〈∂w
∂ν

, v〉H−1/2(∂Ω2),H1/2(∂Ω2)

instead of ∫
∂Ω2

∂w

∂ν
vdS

and, consequently, instead of (16.5.7), we have

〈∂w
∂ν

, ϕ〉H−1/2(∂Ω2),H1/2(∂Ω2) = 0, ∀ϕ ∈ H1/2 (∂Ω2) .

Therefore, we likewise have that ∂w
∂ν

= 0. However, since ∂w
∂ν
∈ H−1/2(∂Ω2),

it will be necessary to first reformulate Cauchy problem (16.5.8) in a weak
form and then to prove the uniqueness for such a Cauchy problem, for both
of which we refer the reader to the paper [2].

2. The assumption that Ω2 \ Ω1 is connected cannot be dropped as the
following simple counterexample shows. Let

Ω1 =
(
B7 \B5

)
∪
(
B3 \B1

)
, Ω2 = B8,

let us notice that Ω2 \ Ω1 is not connected.
Let u be the following function

u(x) =


1, for x ∈ B3 \B1,

0, for x ∈ B7 \B5,

(16.5.9)

of course u is harmonic in Ω1. Let ε be a given positive number which we
will choose later and let v ∈ H1 (Ω2) be a harmonic function satisfying

‖u− v‖L2(Ω1) < ε. (16.5.10)

Let x0 ∈ ∂B2, taking into account that B1(x0) ⊂ Ω1, by (16.5.10) we have
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|v(x0)− 1| =
∣∣∣∣ 1

|B1(x0)|

∫
B1(x0)

(v − 1)dx

∣∣∣∣ ≤
≤ 1

|B1(x0)|1/2

(∫
B1(x0)

(v − 1)2dx

)1/2

≤

≤ ε

cn
,

where cn = |B1|1/2. Hence we have

1− ε

cn
< v(x) < 1 +

ε

cn
, ∀x ∈ ∂B2. (16.5.11)

Similarly we get
− ε

cn
< v(x) <

ε

cn
, ∀x ∈ ∂B6. (16.5.12)

Now, by (16.5.11), (16.5.12) and by using maximum principle we have

1− ε

cn
< v(x) ≤ max

x∈∂B6

v <
ε

cn
, ∀x ∈ ∂B6,

that leads to a contradiction provided ε < cn
2
.

3. Theorem 16.5.1 can be extended to a large class of operators; in
particular, it can be extended to the second-order elliptic operators with real
coefficients whose formal adjoint enjoys the unique continuation property.
Let us specify this a little. Let us consider, for instance, the operator

Lu = div (A(x)∇u) , (16.5.13)

where A ∈ L∞ (Rn;M(n)) is a not necessarily symmetric matrix and such
that (λ ≥ 1)

λ−1|ξ|2 ≤ A(x)ξ · ξ, ∀ξ ∈ Rn, ∀x ∈ Rn.

Then the formal adjoint of L is the operator

L?u = div
(
AT (x)∇u

)
. (16.5.14)

We say that L enjoys the Runge property provided it occurs what follows.
Let Ω1 b Ω2 be two open sets of Rn, like Theorem 16.5.1, then for every

u such that
Lu = 0, in Ω1

and for every ε > 0 there exists v ∈ H1(Ω2) such that

Lv = 0, in Ω2
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and
‖u− v‖L2(Ω1) < ε.

Lax in [49] has proved that the following conditions are equivalent
(a) L enjoys Runge property
(b) L? enjoys the unique continuation property.
The proof of (b) =⇒ (a) is analogous to the proof of Theorem 16.5.1 and

it s left to the reader as an exercise. Concerning the implication (a) =⇒ (b),
we refer to [49].

4. The quantitative versions of the Runge property are also of interest
(especially in the stability issue of inverse problems). That is, it is of interest
to estimate appropriately from above in terms of ε, the quantity

‖v‖H1/2(∂Ω2) ,

(by Hadamard example, illustrated at the beginning of this Section, we
should expect that, in general, as ε goes to 0 we should have ‖v‖H1/2(∂Ω2)

goes to infinity). A result in this regard is proven in [70]. �
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