
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Analysis of Algorithmic and
Computational Aspects of
Deterministic Network Calculus

Raffaele Zippo

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing

PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Analysis of Algorithmic and
Computational Aspects of
Deterministic Network Calculus

Raffaele Zippo

Advisor:

Prof. Giovanni Stea

Head of the PhD Program:

Prof. Stefano Berretti

Evaluation Committee:
Dr. Anne Bouillard, Huawei
Prof. Marc Boyer, ONERA

XXXV ciclo — January 2023

A Lucrezia

ii

Acknowledgments
This work would have not been possible without the help, support and advice of
many, whom I am grateful to.

I want to thank my family for supporting and encouraging me throughout my
life. I am grateful to my girlfriend, Lucrezia, for being close when I needed it the
most. I am grateful to all my friends for the fun times, the unfun times, and for
bearing with me through both.

I am thankful to my advisor, Prof. Giovanni Stea, for being a great mentor and
example. Your continuous attention and dedication are admirable.

I would like to thank all my coauthors for their collaboration and for sharing
their knowledge and advice, namely Dr. Matteo Andreozzi, Prof. Antonio Fran-
gioni, Prof. Laura Galli, Dr. Paul Nikolaus, Prof. Giovanni Stea.

I want to thank my PhD committee, namely Dr. Anne Bouillard and Prof. Marc
Boyer, for their time and consideration to review this thesis, and their constructive
comments that helped me improve it considerably.
I want to thank the members of my PhD award panel, namely Prof. Enrico Bini,
Prof. Steffen Bondorf and Prof. Enrico Vicario.

I also want to thank Anja, Anja, Eric, Jens, Markus, Matthias, Paul and Vlad for
making me feel so much at home during my time at DISCO lab. It was really fun.

I extendmy thanks to the administrative staff of both Pisa and Florence universi-
ties, for their precious help through the bureaucracy needed formy activities, and in
particular to Simona Altamura and her quick and punctual responses. I also thank
the Regione Toscana, for the Pegaso grant that funded my PhD.

Thank you all,
Raffaele

iii

Abstract

Worst-case analysis of networked systems is gaining importance due to the
emergence of safety-critical applications with real-time requirements in many
engineering applications, such as factory automation within the Industry 4.0
paradigm, automated or tele-operated driving, coordinated unmanned aerial
vehicles, etc. With all these distributed applications, ex-ante certification that
the end-to-end network traversal time is always below a known maximum is
required to guarantee safety for humans and property. Deterministic Network
Calculus (DNC) is a well-known theory that uses (min,+) and (max,+) alge-
bra to infer deterministic worst-case bounds on the delay and backlog of net-
work, representing traffic as a function of time, and network elements (e.g.,
regulators, schedulers, links) as operations that modify said functions. How-
ever, in nontrivial cases, computation of DNC expressions is not viable without
mature software support. Furthermore, some types of DNC expressions are
well known to be hard to compute, however research in the algorithmic aspects
is again impeded without a solid foundation based on extensible software on
which improvements may be developed and tested. Existing software does not
match the above criteria.

In the work presented in this thesis, we filled this gap developing Nancy,
a computational library with rich support for DNC operations and designed
with an extensible, layered software architecture that implements the state of
the art of DNC algorithms, i.e., the framework of Ultimately Pseudo-Periodic
functions. Moreover, the library uses software engineering techniques for effi-
cient use of memory and the parallelism available in multicore systems. This
architecture enables to specialize algorithms to integrate DNC results for per-
formance improvements, as well as perform new research on the algorithmic
aspects of DNC. We show examples of this by discussing our own research on
the topic, where we focus on a few practical use cases and provide novel al-
gorithms and optimizations that improve their computation times by orders
of magnitude. We also discuss the functional and design differences between
Nancy and RTC Toolbox, showing, aided by synthetic benchmarks, the benefits
in stability caused by the use of rational numerical types over floating point.
Lastly, as Nancy is released as an open-source software, it provides to the re-
search community a solid base for future DNC research, from the implementa-
tion of new studies to similar endeavors on the algorithmic aspects.

Contents

Contents 1

Acronyms 5

I Introduction and Background 7
1 Introduction and Motivation 9

2 Selected Use Cases of DNC 13
2.1 Fundamentals of Deterministic Network Calculus 13
2.2 (min,+) and (max,+) algebra . 16
2.3 Networks with flow control . 18
2.4 Round-robin schedulers in DNC . 22
2.5 Real-Time Calculus . 23

3 Mathematical Model 25
3.1 Foreword . 25
3.2 The UPP model . 26
3.3 Minimum of functions in U . 32
3.4 (min,+) convolution of functions in U 33
3.5 Other (min,+) operations . 38
3.6 Subadditive closure . 39
3.7 (max,+) operators . 40
3.8 Plain and ultimately plain functions 42

4 Used Results 45
4.1 Continuity and (•, +) convolution . 45
4.2 Subadditive functions . 46
4.3 Upper and lower pseudoinverses . 47
4.4 Isomorphism between (min,+) and (max,+) algebra 49

5 Related Works 51

1

2 CONTENTS

6 Research Statement 55
6.1 Efficient subadditive convolutions: flow-controlled tandem 57
6.2 Extending the algorithmic toolbox: Interleaved Weighted Round Robin 59
6.3 Improving convolution runtime using isomorphism 60

II Contribution 61
7 Overview 63

8 The Nancy Library 67
8.1 Choice of language and framework . 68
8.2 Numerical types . 70
8.3 Layered architecture . 71
8.4 Implemented operators . 72
8.5 The Cut algorithm . 73
8.6 Implementing the by-curve (min,+) convolution 75
8.7 Implementing the by-sequence (min,+) convolution 77
8.8 Lower envelope algorithm for (min,+) convolution 79
8.9 Inheritance and specialization of algorithms 82
8.10 Testing . 84
8.11 Publication . 85
8.12 Support for notebooks . 86

9 Useful Extensions 87
9.1 Sampling at or near a time t . 87
9.2 Equivalence of two curves . 88
9.3 Properties: continuity, subadditivity, etc. 88
9.4 Closures: non-negative, non-decreasing, etc. 89
9.5 Formatting as JSON, C#, TikZ . 90

10 Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses 95
10.1 Properties of pseudoinverses of functions of U 96
10.2 By-sequence algorithm for pseudoinverses 100
10.3 By-curve algorithm for pseudoinverses 105
10.4 Corner cases: UC and UI functions . 105

11 Extending the Algorithmic Toolbox: Composition 109
11.1 Properties of composition of functions of U 109
11.2 By-sequence algorithm for composition 113
11.3 By-curve algorithm for composition 115
11.4 Example study on IWRR scheduler . 116

CONTENTS 3

12 Representation Minimization 121
12.1 Minimization of the period . 123
12.2 Minimization of the transient . 127
12.3 Performance evaluation . 130

13 Improving (min,+) Convolution of Subadditive Curves 135
13.1 Improving convolution of subadditive functions with dominance . . 136
13.2 Performance evaluation . 141

14 Isospeed: Algorithmic Improvements through Isomorphism 151
14.1 Explaining the algorithmic improvements via isomorphism 152
14.2 Isomorphism for restricted functions 158
14.3 Exploiting the isomorphism to speed up the (min,+) convolution . . 167
14.4 Exploiting the isomorphism to speed up the (max,+) convolution . . 178

15 Comparison With RTC Toolbox 185
15.1 Floating point numbers . 186
15.2 Floating point approximations and hyper-period explosion 187
15.3 Conclusion . 191

16 Conclusion and Future Works 193

IIIAppendices 197
A Generator Pattern and yield 199

A.1 The generator pattern via examples . 199
A.2 The generator pattern in C# . 203

B UPP properties for minimum and (min,+) convolution 207
B.1 Minimum . 207
B.2 (min,+) convolution . 208

C Continuity and (•, +) Convolution 213
C.1 Note on the non-completeness of Q . 213
C.2 Attainability and left-continuity of (min,+) convolution 214
C.3 Attainability and left-continuity of (max,+) convolution 215
C.4 Both functions must be *-continuous 217

D Pseudoinverses 221
D.1 Differences in pseudoinverses definitions 221
D.2 Properties of pseudoinverses . 223
D.3 UPP properties of pseudoinverses . 226

4 CONTENTS

D.4 Calculation of lower and upper pseudoinverses 227

E Composition 231
E.1 UPP properties of composition . 231
E.2 Composition of Ultimately Constant (UC) functions 233

F Algorithmic Improvements through Isomorphism 235
F.1 Isomorphism of convolution for functions of U 235
F.2 Isomorphism of convolution for restricted functions 236
F.3 Exploiting the isomorphism to speed up the (min,+) convolution . . 250
F.4 Exploiting the isomorphism to speed up the (max,+) convolution . . 256

G Other Proofs 263
G.1 Equivalence of UA definitions . 263
G.2 Subadditivity and superadditivity checks 264
G.3 Clarifying steps in Appendix F . 265

H System Configurations 267
H.1 Software configuration . 267
H.2 Hardware configurations . 267

Index of notation 269

Publications 271

Bibliography 273

Acronyms

CPL Concave/Convex Piecewise Linear curves 53

DNC Deterministic Network Calculus 9–14, 16, 18–20, 22, 23, 25–28, 32, 34, 51–56,
59, 67, 83, 89, 151, 193

DRR Deficit Round Robin 22

GPS Generalized Processor Sharing 22

IWRR Interleaved Weighted Round Robin 22, 23, 116–118

lcm least common multiple 36, 53, 55, 135, 187–189

MPA Modular Performance Analysis 185

NC Network Calculus 14, 15, 51, 117

RTC Real-Time Calculus 23, 26, 52, 53, 185

SAC subadditive closure 17, 20, 21, 39, 40, 54, 58, 59, 122, 130, 133

SNC Stochastic Network Calculus 14, 51, 54

UA Ultimately Affine 27, 28, 55, 75, 82, 109, 117, 118, 123–125, 129

UC Ultimately Constant 2, 28, 96–99, 105–107, 109, 226, 233

UI Ultimately Infinite 2, 28, 32–34, 38, 39, 41, 75, 96, 98, 99, 105–107, 109, 207–209,
212, 226, 233

UPP Ultimately Pseudo-Periodic 9–11, 25–28, 31, 32, 38–40, 42, 52, 53, 55, 56, 58–60,
63, 73, 75, 88, 91, 95, 96, 105, 109, 117–119, 151, 152, 161, 163, 168, 173, 178, 186,
187, 193, 208, 211, 212, 237, 238, 253, 255, 259, 262

VCC Variability Characterization Curves 186, 187, 189

WRR Weighted Round Robin 22

5

Part I

Introduction and Background

7

Chapter 1

Introduction and Motivation

Worst-case analysis of networked systems is gaining importance due to the emer-
gence of safety-critical applications with real-time requirements in many engineer-
ing applications, such as factory automation within the Industry 4.0 paradigm, au-
tomated or tele-operated driving, coordinated unmanned aerial vehicles, etc. With
all these distributed applications, ex-ante certification that the end-to-end network
traversal time is always below a knownmaximum is required to guarantee safety for
humans and property. DNC [Cru91a; Cru91b; Cha00; LT01] is a well-known theory
that uses (min,+) and (max,+) algebra [BCOQ92] to infer deterministic worst-case
bounds on the delay and backlog of network traffic. It represents traffic as a function
of time, and network elements (e.g., regulators, schedulers, links) as operations that
modify said functions. Given bounds on the input of a traffic flow (e.g., as enforced
by a traffic shaper at the entrance of a network) and knowledge of minimum ser-
vice given to that flow at network elements (e.g., as enforced by possibly different
per-flow schedulers at every hop), DNC allows one to compute the maximum delay
that traffic from that flow will undergo, under any possible scenario.

Algebraically speaking, DNC relies on few basic operations, such as minimum,
(min,+) convolution and subadditive closure, which can be composed in arbitrary
sequences or nested into one another. However, in less-than-trivial cases, pen-and-
paper computation of DNC expression is not viable, and automated computation
of the relevant performance measures (e.g., a maximum delay for a flow travers-
ing a multi-hop network) is instead required. Defining efficient computational rep-
resentations for functions of time and algorithms implementing DNC operations
thereupon is by no means a simple task. Works [BT08; BBL18] discuss the above
issue at length, identifying UPP functions as the most general class closed with re-
spect to DNC operations. These are piecewise affine functions, that have an ini-
tial “transient” part, followed by a “period” which is repeated an infinite amount
of times. UPP curves arise spontaneously in several practical cases: work [BD22]
shows that they do whenever packetization and finite transmission speeds are fac-

9

10 Introduction and Motivation

tored in. Moreover, flow-controlled networks, currently being envisaged for data
centers [GSSAA19;WCHLL21; GC21], haveUPP service curves, and sodowormhole-
routing networks [QLD10] used in systems architectures.

The complexity of some DNC operations, such as (min,+) convolution, is su-
perquadratic with respect to the number of linear pieces of the operands [BT08,
Table 1]. Others DNC operations, such as the subadditive closure, have exponential
complexity [BT07, p. 41]. This applies to both the number of elementary operations
involved and the number of linear pieces of the result. Thus, it presents a challenge
for the practical use of DNC analysis, as chaining multiple DNC operations can lead
to expressions that are visually and algebraically neat, but computationally infea-
sible, e.g., they may take days to compute, or exhaust the hardware resources and
not compute at all. This highlights the need for efficient software libraries that can
effectively implement DNC operations.

To the best of our knowledge, there are no public, open-source libraries that im-
plement DNC operations working on UPP curves. By “library”, we mean a set of
implementations of (min,+) and (max,+) (henceforth, we will use (•,+) when re-
ferring to both) algebra operations, providing ease of constructing and manipulat-
ing curves, and allowing a user to specialize algorithms for improved efficiency by
adding new code paths or subclasses. The two existing libraries that can handleUPP
curves are the RTC Toolbox [WTa] and the RTaW-Pegase library [RTaWc]. The for-
mer is a publicly available Java library, whose source code is not publicly available.
Thus, one cannot improve on its bugs (e.g., it sometimes cycles indefinitely without
any discernible cause [ZSa]) or lack of features, such as the lack of subadditive clo-
sure or of a function to find the intersection between two curves (which is essential
to speed up several algorithms). RTaW-Pegase is proprietary, and its license does
not allow it to be used for benchmarking or verification purposes. An online inter-
preter is freely available to try its functionalities [RTaWb], but its use is limited by
the browser interface and license. To the best of our knowledge, the COINC library
[BCGHLL09] is no longer available.

There are, instead, several DNC network analysis tools available, which are soft-
ware packages that implement methods for analyzing specific types of networks.
These often implement their own versions of (•,+) algebra operations, which are
typically restricted to classes of curves that match the type of network they are de-
signed to analyze. Many are mentioned in [BBL18], while a review of their ca-
pabilities is reported in [ZHLC20]. For example, DEBORAH [BLMS10] analyzes
FIFO tandems of rate-latency curves traversed by leaky-bucket-shaped flows, and
therefore it only implements (min,+) convolution and subtraction of pseudo-affine
curves, which are algorithmically trivial. The NC-TANDEM-TIGHT tool [BJT10;
BT16] analyzes arbitrary multiplexing tandems by modeling their worst-case delay
computation as a linear programming problem, which implicitly rules out generic

11

UPP curves, which would yield non-convex programs instead. NC-Maude [Boy10]
is a tool written in Maude, a high-performance reflective language. It uses a ratio-
nal numeric type instead of floating point, however it supports only simple func-
tions such as rate-latency and token-bucket as inputs. It was released as an open
and extensible tool, though it appears to be no longer available. The DiscoDNC tool
[BS14], now NCorg DNC, is limited to ultimately concave/convex piecewise affine
curves, forwhichDNCoperations are considerably simpler. Thework [LHL17a] de-
scribes a tool written in the NVIDIA CUDA language that computes convolutions
and deconvolutions using GPUs, claiming improved efficiency over standard CPU-
based computation. However, there seems to be no executable or code available to
go with this paper. Unfortunately, none of these tools provide reusable, extensible,
general-purpose DNC operations. Without such a library, it is difficult to advance
new research in the algorithmic aspects of Deterministic Network Calculus, as one
is limited by the capabilities and exposed APIs of each tool.

We filled the gap above by designing and developing Nancy [ZS22], an open-
source DNC library that works with arbitrary UPP curves. Nancy is coded in C#,
consists ofmore than 32k lines of code, and is natively parallel. It provides a richAPI
with many properties and methods to cover the needs of most DNC research and
applications, which can be easily broadened thanks to its open-source MIT license
and its extensible architecture. It includes a thorough documentation – both in-
code, visible through an IDE, and online [ZSb] – which provides both explanations
on each method and literature references. Furthermore, it is well integrated in the
.NET ecosystem, providing packages via NuGet [ZSc], so that it can be easily added
and used in new projects. Its source code is hosted on GitHub [ZSd], and it uses
CI/CD pipelines to keep the public releases up to date with the code.

These properties were invaluable in our own research, as we were able – when-
ever we found issues, unexpected results or computationally taxing operations – to
use the open nature of Nancy to investigate them, and further adapt the tool to our
needs. This led us to develop novel algorithmic extensions and optimizations, cov-
ering a larger set of operations and properties used in DNC and improving upon the
state of the art to make more studies feasible to run on modern hardware, results
that – we believe – would have not been achieved without developing Nancy first.

In this thesis, we discuss the above results, navigating between the two natures of
them: on one hand, we will discuss the mathematical models, theorems and prop-
erties – both from literature and from our novel research – and on the other hand,
we will discuss the software engineering challenges and solutions involved in the
development of these results into an accessible library that makes efficient use of
memory and the parallelism available in multicore systems. As such, we will not
shy away from discussing implementation details and techniques whenever we be-
lieve they are relevant w.r.t. the observable properties of the Nancy library as an

12 Introduction and Motivation

ongoing, actively maintained project.
We show how, considering a few practical use cases, our optimizations improve

their computation times by orders of magnitude, turning tens of minutes into less
than a second.

We also compare some of the functional features anddesign choices ofNancy and
RTC Toolbox, discussing the choice of floating point numerical types and showing,
aided by synthetic benchmarks, how it leads to instable code.

This thesis is organized as follows. In Part I, which includes this introduction,
we present the existing work and literature background. In Chapter 2, we provide a
small introduction toDeterministicNetworkCalculus, and some applicationswhich
will be useful to contextualize our contributions. In Chapter 3, we detail the math-
ematical model used throughout this thesis. In Chapter 4, we mention a collection
of formal results from the literature, adapted to our mathematical model, that we
are going to use within this thesis. In Chapter 5, we discuss the Related Works. In
Chapter 6, we provide a research statement, summarizing the context and objectives
of our work.

In Part II,wepresent the novel contributions. InChapter 7, wepresent an overview
of the contribution. In Chapter 8, we present the Nancy library and its architecture,
discussing in detail some relevant methods. In Chapter 9, we discuss some useful
algorithms that are implemented in Nancy, which emphasize the benefits of a rich
API for practical uses. In Chapters 10 and 11, we present extensions to the toolbox
to include, respectively, pseudoinverses and composition. In Chapter 12, we present
the representation minimization algorithm, and show its benefits for chained compu-
tations. In Chapter 13, we present the improved (min,+) convolution algorithms for
subadditive curves, and show how they dramatically improve the computation time
in use cases that involve them. In Chapter 14, we present the improved (•,+) con-
volution algorithms based on the isomorphism between the two. In Chapter 15, we
discuss the functional and design differences between Nancy and RTC Toolbox, with
a focus on the choice of numerical type. Finally, Chapter 16 concludes the work.

Chapter 2

Fundamentals and Use Cases of
Deterministic Network Calculus

In this chapter, we discuss the fundamentals of the DNC framework, together with
a selection of use cases which will serve as useful reference to discuss the context
and impact of our contribution.

2.1 Fundamentals of Deterministic Network Calculus
A DNC flow is represented as a non-decreasing, non-negative and left-continuous
cumulative function A : R+ → R+. Function A(t) represents the number of bits
of the flow observed in [0, t[. In particular, A(0) = 0. Flows can be constrained by
arrival curves. A non-decreasing, non-negative and left-continuous function α is an
arrival curve for a flow A if:

∀s ≤ t, A(t)− A(s) ≤ α(t− s).

For instance, a leaky-bucket shaper, with a rate ρ and a burst size σ, enforces the concave
affine arrival curve defined as follows

γσ,ρ(t) =

{
σ + ρt, if t > 0,

0, otherwise,

as shown in Figure 2.1. This means, among other things, that the long-term arrival
rate of the flow cannot exceed ρ.

Let A and D be the functions that describe the same data flow at the input and
output of a lossless network element (or node), respectively. If that node does not
create data internally (which is often the case), causality requires that A ≥ D. We
say that the node behavior can be modeled via a service curve β if

∀t ≥ 0, D(t) ≥ inf
0≤s≤t

{A(s) + β(t− s)} . (2.1)

13

14 Selected Use Cases of DNC

bits

Figure 2.1: Example of leaky-bucket shaper. The traffic process A(t) is always below
the arrival curve α(t) and its translations along A(t).

Figure 2.2: Graphical interpretation of the convolution operation. A is the input
function, βR,θ is a rate-latency service curve, and A ⊗ β is a lower bound on the
output.

In that case, the flow is guaranteed the (minimum) service curve β – which is of-
ten assumed to be non-decreasing, non-negative and left-continuous. The infimum
on the right-hand side of Equation (2.1), as a function of t, is called the (min,+)
convolution of A(t) and β(t), and is denoted by (A⊗ β)(t). The dependency on t is
omitted whenever it is clear from the context. The alert reader can check that con-
volution is commutative and associative. Computing the above convolution entails
sliding β along A and taking the lower envelope of the result (i.e., the infimum for
each time instant). Note that, due to the close relationship between functions (the
mathematical object) and curves (the DNC model), in the following we may use
both interchangeably.

One key strength of NC1 , called scheduling abstraction in [CS12], is that the com-
plexities of several network elements, such as delay elements, schedulers or links,
can be modeled and abstracted away via suitable service curves. A very frequent
case is the one of rate-latency service curves, defined as

βR,θ(t) = R [t− θ]+ ,
1This includes also the stochastic counterpart of DNC, Stochastic Network Calculus (SNC).

2.1 Fundamentals of Deterministic Network Calculus 15

Figure 2.3: Graphical example of a delay bound.

for some θ ≥ 0 (the latency) and R > 0 (the rate). Notation [.]+ denotes max(., 0).
For instance, a constant-rate server (e.g., a wired link) can be modeled as a rate-
latency curve with zero latency. Figure 2.2 shows the lower bound of D obtained by
computing A⊗ β, with β = βR,θ. In the case of scheduling elements, we distinguish
per aggregate and per-flow service curves, i.e., whether the service is provided to all
flows or specifically to one. The latter is also called leftover service curve.

Another point of strength of NC, called convolution-form networks in [CS12], is
that service curves models are composable via the (min,+) convolution: the end-to-
end service curve of a tandem of nodes traversed by the same flow can be computed
as the convolution of the service curves of each node.

For a flow that traverses an element with a known service curve (be it a single
node, or the end-to-end service curve of a tandem, computed as discussed above),
a tight2 upper bound on the delay can be computed by combining its arrival curve α

and the service curve β itself, as follows

h(α, β) = sup
t≥0
{inf {d ≥ 0 | α(t− d) ≤ β(t)}} . (2.2)

The quantity h(α, β) is known as the maximum horizontal distance between α and
β, as shown in Figure 2.3. Therefore, computing the end-to-end service curve of a
flow in a tandem traversal is the crucial step towards obtaining its worst-case delay
bound.

The above introduction uses results which appear simple, and can often be com-
puted with pen and paper. However, in many practical cases, the computations be-
come more contrived, requiring software automation and efficient algorithms. We
discuss here some of these use cases, which we will reference later on to contextu-
alize our contributions and their impact.

2By tightwemean that no better (i.e., smaller) upper bound can be derived given α and β – if the
latter are not tight w.r.t. the entities they model, of course the bound will not be either.

16 Selected Use Cases of DNC

2.2 (min,+) and (max,+) algebra
In the previous section, we introduced the (min,+) convolution, both to bound the
departure process of a flow traversing a server, and an operator to compose service
curves of nodes in a tandem to obtain a service curve for the tandem as awhole. This
operator derives from the (min,+) algebra, which is a dioid where the addition is
replaced with the minimum and the product with the sum.3 The main operations
between functions in this algebra are

• The minimum, f ∧ g,

• The addition, f + g,

• The (min,+) convolution, f ⊗ g = inf0≤s≤t { f (s) + g(t− s)},

• The (min,+) deconvolution, f � g = sups≥0 { f (t + s)− g(s)}.

We also mention the (max,+) algebra, which is defined similarly to (min,+) al-
though replacing minimum with the maximum. Thus, the main operations are

• The maximum, f ∨ g,

• The addition, f + g,

• The (max,+) convolution, f ⊗ g = sup0≤s≤t { f (s) + g(t− s)},

• The (max,+) deconvolution, f�g = infs≥0 { f (t + s)− g(s)}.

We refer to books [Cha00; LT01; BBL18] for a more complete presentation of the
algebraic foundations of DNC, and how these operators map to valuable insights
in network analysis using DNC. For a more complete presentation of (min,+) and
(max,+) algebra, both refer to the pioneering work of [BCOQ92]. To the purposes
of this thesis, we limit the discussion to results that we use as motivating examples.

(max,+) algebra can be used equivalently to (min,+) for system modeling, if
one swaps the usual meaning of the axes, i.e., data for the x-axis, and time for the
y-axis, and functions are assumed to be right-continuous instead of left-continuous.

In [Lie17] it is shown that one can switch from a model to the other using lower
and upper pseudoinverses. While a formal definition is provided later on in Sec-
tion 4.3, pseudoinverses can be explained by observing that the non-decreasing
property does not prevent a function f to be constant on an interval]a, b[, hence
it may not be bijective. Thus, an inverse f−1 may not be defined. Pseudo-inverses
address this issue by “deciding” what f−1(x), for x ∈]a, b[, should be equal to: for

3While commonly called algebras in DNC jargon, (min,+) and (max,+) are semirings [BBL18,
Ch. 2].

2.2 (min,+) and (max,+) algebra 17

the lower, f−1
↓ (x) = a, while for the upper f−1

↑ (x) = b. Furthermore, the f−1
↓ is

left-continuous, while f−1
↑ is right-continuous.

What is shown in [Lie17], then, is that one can switch from a (min,+) model
f to its (max,+) equivalent by computing f−1

↑ ; conversely one can switch from a
(max,+) model f to its (min,+) equivalent by computing f−1

↓ .
Another example of expression using pseudoinverses is in [LT01, p. 128], which

shows that the horizontal deviation can be computed as

h(α, β)= sup
t≥0

{
β−1
↓ (α(t))− t

}
. (2.3)

Lastly, we introduce the subadditive closure and their corresponding (max,+)
operator, the superadditive closure.

Definition 2.1 (SubadditiveClosure). The subadditive closure (SAC) of a non-decreasing
function f is defined as

f (t) = inf
n≥0

{
f (n)(t)

}
, (2.4)

where f (n) denotes the n-fold (min,+) convolution of f with itself, i.e., f (0) = δ0,
f (1) = f , and f (n) =

⊗n
i=1 f for n ≥ 1. Function δ0 is an infinite step in t = 0+, i.e.,

δ0(0) = 0, δ0(t) = +∞, ∀t > 0.

Note that f is subadditive, as the name suggests. The formal definition of sub-
additivity is the following.

Definition 2.2 (Subadditive Function). f is subadditive if and only if f (u) + f (s) ≥
f (u + s) ∀u, s.

Moreover, given a function f such that f (0) = 0, if f is subadditive then f = f .
Otherwise, it is f ≤ f . Convolution does preserve subadditivity, as per the following
property.

Theorem 2.3 (Convolution of Subadditive Functions [LT01, Theorem 3.1.9]). If f
and g are subadditive functions, so is f ⊗ g.

Moreover, the SAC of aminimum is the convolution of the SACs of the operands,
i.e.,

Theorem 2.4 (SAC of a Minimum [LT01, Theorem 3.1.11]). f ∧ g = f ⊗ g

Note that the subadditive closure of a generic curve is a very complex operation:
as we discuss later in Section 3.6, it is NP-hard. An exception is the case of β + W,
where β is a rate-latency curve and W is a function f such that f (0) = 0 and f (t) =
W for all t > 0. For this case, [LT01, pp. 118-9] shows it can be computed in closed
form.

18 Selected Use Cases of DNC

Figure 2.4: Network with static window flow-control.

The corresponding concepts in (max,+) algebra are superadditive closure and su-
peradditivity.

Definition 2.5 (SuperadditiveClosure). The superadditive closure of a non-decreasing
function f is defined as

f (t) = sup
n≥0

{
f (n)(t)

}
, (2.5)

where f (n) denotes the n-fold (max,+) convolution of f with itself, i.e., f (0) = δ0,
f (1) = f , and f (n) = ⊗n

i=1 f for n ≥ 1. Function δ0 is a minus infinite step in t = 0+,
i.e., δ0(0) = 0, δ0(t) = −∞, ∀t > 0.

Note that f is superadditive, as the name suggests. The formal definition of su-
peradditivity is the following.

Definition 2.6 (Superadditive Function). f is superadditive if and only if f (u) +
f (s) ≤ f (u + s) ∀u, s.

In the next subsections we discuss two use-cases of DNC. They present specific
problems regarding algorithms and their computation efficiency, that will serve as
a basis for the contributions of this thesis.

2.3 Networks with flow control
DNC can be used tomodel network elements having flow control [LT01, Chapter 4].
Flow control finds application inwormhole networks-on-chip [QLD09; GM18; GM19],
can be used to model manufacturing systems [BJLL06], and are currently being en-
visaged for data centers [GSSAA19; WCHLL21; GC21]. Consider the network in
Figure 2.4, in which a flow traverses nodes 1 and 2, which have static flow control
due to the limited buffer in 2. Let β1, β2 be the service curves offered by nodes 1
and 2 to the flow that we are observing. Node 1 will thus serve that flow’s traffic,
with service curve β1, only if there is already buffer space available in 2; in turn, the
available part of this buffer space, whose size is W > 0, depends on the ability of
2 to serve that flow’s traffic with its own service curve β2. We also assume that 1 is
instantaneously aware of the current state of the buffer of 2. Thus, we canmodel the
network as in Figure 2.5.

2.3 Networks with flow control 19

W β1 β2
A(t) B(t) C(t)

Figure 2.5: NC model for network with static window flow-control. Circles repre-
sent service curve elements, whereas rectangles represent flow control windows.

Figure 2.6: A tandem of three flow-controlled nodes and its DNC model.

In order to compute an end-to-end service curve for a flow traversing the above
system, we must first get rid of the feedback arc in the NC model, transforming it
into a tandem. This is done by computing first the equivalent service curve of node 1,
β

eq
1 , such that

B(t) ≥ (A⊗ β
eq
1)(t).

The latter takes into account the reduction in the service brought on by the presence
of the subsequent flow control. It is [LT01, Chapter 4]

β
eq
1 = β1 ⊗ β f c,

β f c = β1 ⊗ β2 + W.

Then, the system offers to the flow an end-to-end service curve βeq, so that

C(t) ≥ (A⊗ βeq)(t).

βeq is equal to

βeq = β
eq
1 ⊗ β2 (2.6)

= β1 ⊗ β2 ⊗ β f c.

The extension of the above method to tandems of size n is straightforward: con-
sider for instance the tandem in Section 2.3. Nodes 2 and 3 have limited buffers of

20 Selected Use Cases of DNC

Figure 2.7: Transformation of the DNC model to an equivalent tandem.

size W2 and W3. The resulting DNC model is shown in the figure. To find the end-
to-end service curve of the system, βeq, we iterate the above methodology – starting
from the rightmost node – and compute the following

β
eq
2 = β2 ⊗ (β2 ⊗ β3 + W3),

β
eq
1 = β1 ⊗ (β1 ⊗ β

eq
2 + W2),

βeq = β
eq
1 ⊗ β

eq
2 ⊗ β3.

The above method is also illustrated in Figure 2.7. By expanding the expression of
β

eq
1 , we obtain

β
eq
1 = β1 ⊗ (β1 ⊗ β2 ⊗ (β2 ⊗ β3 + W3) + W2). (2.7)

Equation (2.7) includes a nested SAC. As we will justify in the following chap-
ters, this implies that – even in the simplest cases – this involves NP-hard compu-
tations.

This method can be generalized to a tandem of n nodes, as:

β
eq
n−1 = βn−1 ⊗ βn−1 ⊗ βn + Wn,

β
eq
i = βi ⊗ βi ⊗ β

eq
i+1 + Wi+1,

βeq =

(⊗
i=1...n−1

β
eq
i

)
⊗ βn. (2.8)

This method of analysis (henceforth: the exact method) therefore requires O (n)
nested SACs for a tandem of n nodes. All (except possibly the first) are nontrivial
to compute (see Section 3.6). In practice, despite the apparent conciseness of (2.8),
computing βeq via this method is computationally infeasible.

In [BJLL06], a property was proved that lower bounds β
eq
i with a convolution of

SACs:

β
eq′

i = βi

n−1⊗
j=i

(β j ⊗ β j+1 + Wj+1). (2.9)

2.3 Networks with flow control 21

Then, an end-to-end service curve can be computed as:

βeq′ =
n−1⊗
i=1

β
eq′

i ⊗ βn

=β
eq′
1 ⊗ β

eq′
2 ⊗ · · · ⊗ β

eq′
n−1 ⊗ βn

=

(
β1 ⊗

⊗
i=1...n−1

βi ⊗ βi+1 + Wi+1

)

⊗
(

β2 ⊗
⊗

i=2...n−1

βi ⊗ βi+1 + Wi+1

)
⊗ · · · ⊗ βn

=

(⊗
i=1...n

βi

)
⊗

⊗
i=1...n−1

βi ⊗ βi+1 + Wi+1. (2.10)

The above is a consequence of each βi ⊗ βi+1 + Wi+1 being subadditive, thus f ⊗
f = f .
Authors of [BJLL06] prove that:

β
eq
i ≥ β

eq′

i ∀i = 1 . . . n− 1. (2.11)

From the above, since convolution is isotonic, it follows that:

βeq ≥ βeq′ . (2.12)

Computing βeq′ via (2.10) (henceforth: the approximate method) is computation-
ally more tractable – if all the service curves βi are rate-latency – because it does
away with nested SACs. However, it still requires one to computeO (n) convolutions
of nontrivial subadditive curves.

An exact expression for the service curve of the first node in a tandem of flow-
controlled nodes has been derived in [BPC09]. Its computation requires a chain of
convolutions of subadditive curves, i.e., the same typewhichwe encounter here and
whose computation we will optimize later in this thesis.

22 Selected Use Cases of DNC

2.4 Round-robin schedulers in DNC
As another example, we discuss some results of DNC for Round Robin schedulers,
and in particular the models for IWRR and DRR based on (min,+) algebra expres-
sions.

Round Robin schedulers are packet-based implementation of the ideal GPS pol-
icy. They are used in packet-switched networks and real-time processing systems
to handle resource allocation between multiple flows (or tasks), and are, roughly
speaking, based on the idea of letting each use the service in turn within each round.
WRR assigns, as the name suggests, a weight wi to each flow fi, and gives to each
flow, in each round, the opportunity to send wi packets consecutively – therefore, if
every flow has data to send, we have an average per-flow rate of wi/ ∑j 6=i wj. How-
ever, due to the rotation between waiting and burst transmission, the burstiness of
each flow may be increased. IWRR avoids this issue by, as the name suggests, in-
terleaving the transmission of packets from the different flows, their overall alloca-
tion per-round remaining unchanged. DRR deals with scenarios where some flows
may only transmit infrequently, and provide to those flows more service when this
occurs: the algorithm uses in fact a quantum that, like the weight in WRR, is used to
limit howmuch a flow can transmit each round – however, the quantum is preserved
from a round to the next, acting as a deficit term that will provide more service to
the flow when it will have data to transmit. Moreover, while WRR counts packets,
DRR counts bits.

Several works in DNC literature providemodels to derive leftover service curves
for these schedulers. [BBL18] provides three different curves forWRR, based on dif-
ferent assumptions and computational complexity, while [TLB21] provides a strict
leftover service curve for IWRR.Work [CNS22a; CNS22b] showshow the constraints
on contending flows can be taken into account to improve on these results for WRR
and IWRR. For DRR, [BSS12a] and, lately, [Bou21] and [TB21; TL22] provide strict
per-flow service curves.

What we highlight, for this thesis, are the operations and operands that some
of these studies consider. [BBL18, Theorem 8.6] uses, to compute the per-flow ser-
vice curve for a WRR scheduler, lower pseudoinverse and composition; in [TLB21,
Theorem 1], the result for IWRR scheduler is computed, again, using lower pseu-
doinverse and composition; in [TL22], authors showan iterative process using pseu-
doinverse and non-decreasing closure to iteratively improve a strict per-flow service
curve for DRR.

These results therefore highlight the need of software support for the aforemen-
tioned operators. While the algebraic formulation of these three operations is well
known, their algorithmic aspects have not been addressed, to the best of our knowl-
edge – contrary to, e.g., (min,+) convolution, as we show in the following chapter.

2.5 Real-Time Calculus 23

Furthermore, for many of these studies the resulting curve is staircase shaped –
even if the underlying per aggregate service curve is a rate-latency one. Thus, to use
these results effectively, one needs software support for (min,+) convolution and
horizontal deviation for such nontrivial curves.

As a reference example, we will consider [TLB21, Theorem 1], which we report
here slightly rephrased, and show in Part II how it can be effectively translated into
code using Nancy.

Theorem 2.7 (Strict Per-Flow Service Curves for IWRR). Assume n flows arriving at
a server performing Interleaved Weighted Round Robin with weights w1, . . . , wn. Let lmin

i
and lmax

j denote the minimum andmaximum packet size of the respective flow. Let this server
offer a superadditive strict service curve β to these n flows. Then,

βi(t) := γi (β(t))

is a strict service curve for flow fi, where

γi(t) := β1,0 ⊗Ui(t),

Ui(t) :=
wi−1

∑
k=0

νlmin
i ,Ltot

([
t− ψi

(
klmin

i

)]+)
,

Ltot := wilmin
i + ∑

j:j 6=i
wjlmax

j ,

ψi(x) := x + ∑
j 6=i

φij

(⌊
x

lmin
i

⌋)
lmax
j ,

φij(p) :=
⌊

p
wi

⌋
wj +

[
wj − wi

]+
+ min

{
(p mod wi) + 1, wj

}
,

β1,0 is a constant-rate function with slope 1, and the stair function νh,P(t) is defined as

νh,P(t) := h
⌈

t
P

⌉
, for t ≥ 0.

2.5 Real-Time Calculus
RTC is a mathematical framework for the worst-case analysis of real-time systems.
It is based off DNC, and maintains many similarities with it – the differences are
in fact related to the systems being modeled, composed of processors and tasks,
while the mathematical foundations are the same [TCN00; Wan06], and a formal
link between the two is provided in [BJT09]. In fact, RTC uses (min,+) and (max,+)
algebra models and operations.4

Thus, the results discussed in this thesis, as well as the Nancy library, although
they have roots in DNC, can be also used for and applied to RTC.

4Indeed, both the two other libraries we mention have Real Time in their name.

Chapter 3

Mathematical Model

3.1 Foreword
The DNC literature is rather inhomogeneous in its choice of mathematical model.
For example, [LT01, p. 105] focuses on the set F , which denotes the set of non-
decreasing sequences (t ∈ Z) or functions (t ∈ R) such that f (t) = 0 for t < 0,
and whose range is [0,+∞[. In [BBL18, p. 19], instead, F denotes the functions
defined in R+ → R∪ {+∞}. In bothworks, only the lower pseudoinverse is defined
and denoted as f−1. Then, in [Lie17], both lower and upper pseudoinverses are
defined, and F denotes the set of left-continuous, non-negative and non-decreasing
functions in R → R+ ∪ {+∞}. In each of these works, as well as the others we
reference, the choice is justified as the best fit to address the contribution of the
workwhile excluding uninteresting edge cases. For similar reasons, in this thesis we
introduce yet another set of functions, U , and choice of notation. While the formal
definitions, with examples, follow below, we here wish to highlight the key points
in which our model differs from the above works (and others), and justify why.

First, we consider Q instead of R, for two reasons, which both relate to the fact
that we aim for a mathematical model that is implementable, i.e., that can be trans-
lated in software without introducing formal issues that are not addressed by the
model itself. First, it is shown in [BT08] that the set of UPP functions in R+ → R

is not closed on all operations, i.e., that are edge cases where the result is not a UPP
function again –we have this property, instead, for functions inQ+ → Q (with some
caveats, discussed in Section 8.4.1). This property is fundamental from a software
perspective, as it implies that once we design a type to represent such functions, we
can use this as result type of all implemented operations. The second reason is that,
while they are undoubtedly useful for their formal properties, numbers in R \ Q

cannot have a finite representation, hence could never be faithfully represented in
software. While floating point numbers are broadly used to approximate numbers in
R, the error introduced by such approximation remains something to account for, as

25

26 Mathematical Model

one otherwise risks incurring in either a) compute results that are incorrect bymore
than an acceptable threshold, or b) to incur in cases where an algorithm attempts
to obtain, iteratively, an unrepresentable number, hence never terminating. We will
come back on this point in Chapter 15, where we compare our solution to the RTC
Toolbox, which uses floating point numbers.

A second key difference is that we do not generally assume functions to be non-
decreasing or non-negative. As discussed inChapter 2, the above is a sound assump-
tion for any system model, since cumulative functions are indeed non-decreasing
and non-negative. However, as shown in [BT08], to define algorithms for (•,+) op-
erations it is often mandatory to decompose a function into multiple parts (e.g., its
transient and periodic parts), which may not be non-decreasing. As we show in our
contributions, such as in Chapter 13 and Chapter 14, it is advantageous to have such
parts to be again functions in U , as this allows us to apply algorithmic improvements
also to parts of other algorithms. Furthermore, we allow functions to take negative
values so that our model does not inhibit replication of literature results that use
them, e.g., Lemma 3.26.

Finally, in order to represent functionswith a finite amount ofmemory, we follow
the model of [BT08] and consider functions defined in Q+ and that are piecewise
affine and Ultimately Pseudo-Periodic. As we wish to flexibly represent functions
of both (min,+) and (max,+), we do not assume either left- or right-continuity, and
the range of functions in U is Q∪ {−∞,+∞}.

Such differences do not always come without pain: while for most results in
DNC literature one can trace the same steps of the proof to obtain the equivalent
result for U , in some others we need to deal with new edge cases that alter them, as
is the case with the lower and upper pseudoinverse. Wewill, in general, provide the
results adapted to apply on functions of U , with reference to the original literature,
and provide also the adapted proofs whenever they differ significantly from the
referenced literature.

In the rest of this chapter, we provide an overview of the model and results from
the literature that (be in their original form or via an adaptation) we use in this
thesis. We discuss, instead, the extensions to this model that constitute novel con-
tributions later in Part II.

3.2 The UPP model
To implement DNC and RTC computations in software, one needs to provide finite
representations of functions and well-formed algorithms for (•,+) operations. Ac-
cording to the widely accepted approach described in [BT08; BBL18], a sufficiently
generic class of functions useful for DNC computations is the set U of (i) ultimately

3.2 The UPP model 27

pseudo-periodic (ii) piecewise affine Q+ → Q ∪ {+∞,−∞} functions. We define
both properties (i) and (ii) separately, with reference to [BT08, pp. 8-9].

Definition 3.1 (Ultimately Pseudo-Periodic Function). Let f be a function Q+ →
Q ∪ {+∞,−∞}. Then, f is Ultimately Pseudo-Periodic (UPP) if there exist Tf ∈
Q+, d f ∈ Q+ \ {0}, c f ∈ Q ∪ {+∞,−∞} such that1

f (t + k · d f) = f (t) + k · c f , ∀t ≥ Tf , ∀k ∈N. (3.1)

We call Tf the (pseudo-periodic) start or length of the initial transient, d f the (pseudo-
periodic) length, and c f the (pseudo-periodic) height. We also say that f is UPP from Tf ,
and that is has (pseudo-periodic) slope ρ f := c f /d f .

Definition 3.2 (PiecewiseAffine Function). We say that a function f is piecewise affine
(PA) if there exists an increasing sequence (ai), i ∈ N0, which tends to +∞, such
that a0 = 0 and ∀i ∈ N0, it either holds that f (t) = bi + ρit for some bi, ρi ∈ Q, or
f (t) = +∞, or f (t) = −∞ for all t ∈]ai, ai+1[.

In [BT08], this class of functions is shown (with some caveats, discussed later in
Section 3.8) to be stable w.r.t. all (min,+)- operations, while functions R+ → R ∪
{+∞,−∞} are not.2 As the (max,+) operations can be computed via equivalences
based on (min,+) ([BBL18, p. 33], reported here as Lemma 3.26), these stability
properties extend also to (max,+) operations.

We remark that functions in U are not necessarily non-decreasing. While DNC
functions are usually assumed to be so, in order to implement (min,+) operations it
is sometimes useful to include non-monotonic functions aswell. Similarly, functions
in U can assume infinite values. This is also useful for algebraic manipulations,
e.g., to express a function as a minimum of two or more functions. A subclass of
piecewise affine UPP functions are Ultimately Affine (UA) functions.

Definition 3.3 (UltimatelyAffineFunction). Let f be a functionQ+ → Q∪{+∞,−∞}.
Then, f is Ultimately Affine (UA), if either there exist Ta

f ∈ Q+, ρ f ∈ Q such that

f (t) = f (Ta
f) + ρ f ·

(
t− Ta

f

)
, ∀t ≥ Ta

f , (3.2)

or f (t) = +∞, or f (t) = −∞ for all t ≥ Ta
f .

Note that this definition differs from the one in the literature [BT08], but we
prove their equivalence in Proposition G.1. UA functions are (obviously) UPP as

1We denote the set of non-negative numbers {0, 1, 2, 3, . . . } by N0 and the set of strictly positive
numbers {1, 2, 3, . . . } by N.

2An alternative class of functions with such stability is N → R ∪ {+∞,−∞}, however this is
only useful to model systems where time is discrete, and may not be closed under operators such as
pseudoinverses.

28 Mathematical Model

T

d

c

time

data

(a) f

T

d

c

time

data

(b) R f

Figure 3.1: A continuous ultimately pseudo-periodic piecewise affine function f and
its representation R f .

well, their period being a single segment of slope ρ f and arbitrary length starting
at Ta

f . They have seen many applications in DNC, e.g., the arrival curve of a leaky-
bucket shaper or a rate-latency service curve are both UA. A Ultimately Constant
(UC) function is UA with ρ f = 0. Similarly, a Ultimately Infinite (UI) function is
UA with f (t) = +∞, or f (t) = −∞ for all t ≥ Ta

f . Typical cases in DNC are the
service curves of delay elements. Unlike UPP, the class of UA functions is not closed
with respect to DNC operations. For instance, in Section 2.3 we show that flow-
controlled networks with rate-latency (hence UA) service curves yield closed-loop
service curves that are UPP, but not necessarily UA again. Moreover, in many cases,
the service curves of individual flows served by Round-Robin schedulers are UPP,
but not UA either (see, e.g., [BSS12b; TLB21; TL22]). However, there are cases when
simpler algorithms for DNC operations can be derived if one assumes that operands
are UA. For this reason, there are DNC toolboxes that only consider UA functions,
e.g., NCorg DNC [BS14].

Throughout this thesis, wewill consider all functions to be inU , hence, piecewise
affine and UPP. When appropriate, we will impose that they are neither UC nor UI.
The reason behind this assumption is that some properties do not hold unless we
exclude these two subclasses. This limitation is of negligible practical impact, how-
ever, since (•,+) operations are trivial when operands are UC/UI functions, hence
optimizations are hardly needed for these cases.

For functions in U , it is enough to store a representation of the initial transient
part, i.e., interval T = [0, T[, and of one period, i.e., interval P = [T, T + d[. This
entails storing a description of the function over interval [0, T + d[, which is a finite
amount of information. Figures 3.1 to 3.3 show examples of such functions.

Accordingly, we call a representation R f of a function f the tuple (S, T, d, c), where
T, d, c are the values described above, and S is a sequence of points and open seg-
ments describing f in [0, T + d[. We use both points and open segments in order to

3.2 The UPP model 29

T

d

c

time

data

(a) f

T

d

c

time

data

(b) R f

Figure 3.2: Example of a left-continuous ultimately pseudo-periodic piecewise affine
function f and its representation R f .

T

d

c

time

data

(a) f

T

d

c

time

data

(b) R f

Figure 3.3: Example of a right-continuous ultimately pseudo-periodic piecewise
affine function f and its representation R f .

easily model discontinuities. Moreover, we will use the umbrella term elements to
encompass both when convenient.

Definition 3.4 (Point). We define a point as a tuple

pi := (ti, f (ti)), i ∈ {1, . . . , n} ,

which describes f in ti.

Definition 3.5 (Segment). We define a segment as a tuple

si :=
(
ti, ti+1, f (t+i), f (t−i+1)

)
, i ∈ {1, . . . , n}

which describes f in the open interval]ti, ti+1[in which it is affine, i.e.,

f (t) = f (t+i) +
f (t−i+1)− f (t+i)

ti+1 − ti
· (t− ti) =: b + r · (t− ti) for all t ∈]ti, ti+1[,

30 Mathematical Model

where we used the following shorthand notation for one-sided limits:

f
(
t+i
)
= lim

t→t+i
f (t) , f

(
t−i
)
= lim

t→t−i
f (t) .

If r = 0, we call si a constant segment.

Definition 3.6 (Sequence). We define a sequence SI
f as on ordered set of elements

e1, . . . , en that alternate between points and segments and describe f in the finite
interval I.

Note that, given R f , one can compute f (t) for all t ≥ 0, and also SI
f , i.e., a se-

quence describing f in the finite interval I for any I ⊂ Q+
0 . Furthermore, being

finite, R f can be used as a data structure to represent f in code. As is discussed in
depth in Chapter 12, R f is not unique, and using a non-minimal representation of
f can affect the efficiency of the computations. Given a sequence S, let n(S) be its
cardinality.

In the following, we will call a sequence SI
f , for a finite I that is, in general, 6=[

0, Tf + d f
[
, a cut of f . As we will show, cuts of functions, and their cardinalities,

are a key part in the algorithms that implement (•,+) operations and their runtime.
We define aswellCut() to be an algorithm that, given R f and an interval I, computes
SI

f . While its basic implementation is fairly obvious, we discuss in Section 8.5 how
one can improve its active memory utilization.

With a little abuse of notation, we use (•,+) operators directly on cuts such as
SI

f . For instance, given the (min,+) convolution, we will write S
I f
f ⊗ SIg

g to express
that we are computing the (min,+) convolution f ⊗ g, limited to the values of f in
interval I f and those of g in interval Ig.

Definition 3.7 (Breakpoint). Let f be a function of U . We say that tb is a breakpoint
of f if f is non-differentiable in tb, i.e., either of the following is true:

• f has a discontinuity at tb;

• the rates of f in t−b and t+b are different.

It follows from the above definition that, for any breakpoint tb internal to the
support a sequence S f , S f must have a point – although it may also contain unneces-
sary points, thus with a larger cardinality n

(
S f
)
than necessary. We call a sequence

well-formed if there are no such unnecessary points. We will pick this concept again
in Chapter 12. It will be useful in the following to consider a function f of U in a
restricted support D.3 This is done as follows.

3Inspired by [BT08, p. 7], we use support D to assign a subset outside which the function is
constantly −∞ or +∞. Note that this does not necessarily mean, in general, that f is finite on D. We
mostly use it to define a set within which the properties of f are observed.

3.2 The UPP model 31

Definition 3.8 (Min and Max Restrictions). Let f be a function of U and let D ⊆ Q.
Then, its min restriction over a support D is defined as

f |∧D :=

{
f (t), if t ∈ D,
+∞, otherwise,

Moreover, its max restriction over a support D is defined as

f |∨D :=

{
f (t), if t ∈ D,
−∞, otherwise.

In this thesis, we will often consider D to be an interval I of the form [0, a[or
[a,+∞[. The above definition also allows us to write f |∧t and f |∨t for the transient
part, i.e, if I =

[
0, Tf

[
, and f |∧p and f |∨p for the respective pseudo-periodic part, i.e.,

I =
[
Tf ,+∞

[
. Henceforth, we will use the shorthand notation f ∧p = f |∧p , f ∨p = f |∨p ,

etc., whenever it clarifies the presentation. Accordingly, one can decompose f as

f = f ∧t ∧ f ∧p ,

f = f ∨t ∨ f ∨p .
(3.3)

A (•,+) operator, under which the set U is stable, can be defined computationally
as an algorithm that takes UPP representations of its input functions and yields a
UPP representation of the result. Considering a generic binary operator [·] ∗ [·], in
order to compute f ∗ g we need an algorithm that computes R f ∗g from R f and Rg,
i.e., R f , Rg → R f ∗g. We call this by-curve algorithm. Such an algorithm consists of
the following steps:

1. compute valid parameters Tf ∗g, d f ∗g and c f ∗g for the result;

2. compute intervals I f and Ig, thus the cuts S
I f
f = Cut(R f , I f) and, likewise, SIg

g ,
such that they are sufficient for the following step;

3. compute S
I f
f , SIg

g → S
I f ∗g
f ∗g where I f ∗g =

[
0, Tf ∗g + d f ∗g

[
, i.e., use an algorithm

that computes the resulting sequence from cuts of the operands. We call this
by-sequence algorithm for operator [·] ∗ [·];

4. return R f ∗g = (S f ∗g, Tf ∗g, d f ∗g, c f ∗g).

An alternative approach, for those caseswhere such algorithm cannot be derived
(e.g., when Tf ∗g cannot be done a priori), is to decompose f ∗ g into an expression
whose operations can be computed via an algorithm of this form.

The by-curve algorithm for operator [·] ∗ [·] allows us to compute the result with
any operands. Unitary operators, such as lower and upper pseudoinverses, follow a

32 Mathematical Model

similar process. Moreover, note that the distinction between by-curve and by-sequence
can be easily reflected in software. In a similar fashion, the by-sequence algorithm
may rely on a by-element version. This will be recalled in Chapter 8, where we use
the example of the (min,+) convolution to discuss the software architecture.

Work [BT08] provides stability, UPP properties and algorithm descriptions for
most DNC operators, which include minimum, addition, subtraction, (min,+) con-
volution and deconvolution, subadditive closure. Following similar steps, one can
derive the same for maximum, (max,+) convolution and deconvolution, superad-
ditive closure.

In the following sections, we provide UPP results for (min,+) operations dis-
cussed in [BT08]. We discuss in detail minimum and (min,+) convolution, since
they both relevant for the following discussion. We also provide the equivalent re-
sult for maximum and (max,+) convolution, which can be easily derived following
the same steps for the minimum and (min,+) convolution. In Chapters 10 and 11
we extend the above toolbox with lower pseudoinverse, upper pseudoinverse and
composition of functions.

Remark 3.9. Parameters Tf ∗g, d f ∗g and c f ∗g, as well as intervals I f and Ig, are sufficient
to compute a representation R f ∗g for f ∗ g. There may be, in general, more than one
way to compute them for an algorithm, resulting in different performance and size
of the result.

Intuitively, dealing with shorter cuts leads to faster by-sequence algorithms. Op-
timized parameters and intervals can be found either bymaking restrictive assump-
tions on the shape of the operands, or by exploiting algebraic properties – we show
multiple examples of this in Part II. Producing smaller representations affects, in-
stead, the performance of its future uses. We discuss in Chapter 12 the representation
minimization algorithm, which can be used a posteriori to improve the efficiency of
chained operations.

3.3 Minimum of functions in U
In this section we report the results from [BT08] about the computation of the min-
imum of functions in U , f ∧ g. First, we exclude the case of UI functions. Indeed, it
is trivial to derive that if f is ultimately −∞ so is f ∧ g, while if f is ultimately +∞
then ultimately f (t)∧ g(t) = g(t). Thus, in the following we assume both ρ f and ρg

to be finite.
We need to treat the following two cases separately:

• ρ f = ρg;

3.4 (min,+) convolution of functions in U 33

• ρ f < ρg.4

Proposition 3.10 (Minimum of Functions with the Same Slope). Let f , g be functions
of U , neither of which is UI. If ρ f = ρg := ρ, f ∧ g is again a function of U with

T = max
(
Tf , Tg

)
,

d = lcm
(
d f , dg

)
,

c = ρ · d.

A proof is given in Appendix B.1.

Proposition 3.11 (Minimumof Functionswith Different Slopes). Let f , g be functions
of U , neither of which is UI. Let, without loss of generality, ρ f < ρg, and let t :=

M f−mg
ρg−ρ f

,
where M f = supTf≤t<Tf +d f

{
f (t)− ρ f · t

}
and mg = infTg≤t<Tg+dg

{
g(t)− ρg · t

}
.

Then, f ∧ g is pseudo-periodic with

T = max
(
Tf , Tg, t

)
,

d = d f ,

c = c f .

A proof is given in Appendix B.1.
The above theorems allow us to compute Tf∧g, d f∧g and c f∧g for any pair of

operands f , g. Thus, it will be sufficient to compute the minimum over the interval
I f∧g =

[
0, Tf∧g + d f∧g

[
. Since, for any t in I f∧g, we need to compute (f ∧ g)(t) =

f (t) ∧ g(t), it follows that I f = Ig = I f∧g.
As for the by-sequence algorithm, it consists in linear comparison of sequences

S
I f
f , SIg

g , similar (in structure) to the algorithm formerging two sorted arrays. Hence,

its complexity is O
(

n
(

S
I f
f

)
+ n

(
SIg

g

))
.

We note that, in both cases, we can find examples where these two cuts are much
larger than the representations of the operands. Indeed, for the case of Proposi-
tion 3.10 we can have lcm

(
d f , dg

)
� max

(
d f , dg

)
, while for the case of Proposi-

tion 3.11 we can find curves with t� max
(
Tf + d f , Tg + dg

)
.

3.4 (min,+) convolution of functions in U
In this sectionwe report the results from [BT08] about the computation of the (min,+)
convolution of functions in U . These results will be instrumental for the following
discussion, in two ways. First, since it is complex enough to touch many aspects

4Without loss of generality, as the minimum is commutative.

34 Mathematical Model

of the software architecture of Nancy, we use it to exemplify it in Chapter 8. At the
same time, being a core operation inDNC,many of our algorithmic results are about
improving it, thus it is worthwhile to provide a strong reference for its base version.

We first recall its definition, mentioning the set U .

Definition 3.12 ((min,+) convolution). Let f and g be functions in U . We define
the (min,+) convolution, for all t ≥ 0, as

f ⊗ g(t) := inf
0≤s≤t

{ f (s) + g(t− s)} (3.4)

As mentioned in [BT08, p. 7], f ⊗ g is not defined if there exist t1, t2 such that
f (t1) = +∞ and g(t2) = −∞, or vice versa (i.e., both are infinite, with opposite
signs). In the following, we will assume f ⊗ g is well-defined.5

3.4.1 By-curve algorithm for (min,+) convolution
The first hurdle for the by-curve algorithm for (min,+) convolution is that we can-
not, in general, compute a priori a valid period start Tf⊗g if ρ f 6= ρg. However, as
discussed in [BT08], the issue can be addressed if one decomposes the operands
into their transient and (pseudo-)periodic parts, according to Equation (3.3). We dis-
cuss an improved result for ρ f = ρg later in this section. In the general case, the
procedure is as follows:

1. Decompose the operands as f = f ∧t ∧ f ∧p and g = g∧t ∧ g∧p .

2. Compute partial convolutions involving at least one transient part: ⊗tt :=
f ∧t ⊗ g∧t , ⊗tp := f ∧t ⊗ g∧p , ⊗pt := f ∧p ⊗ g∧t .

3. Compute the partial convolution of the periodic parts, ⊗pp := f ∧p ⊗ g∧p .

4. Finally, compute f ⊗ g = ⊗tt ∧⊗tp ∧⊗pt ∧⊗pp.

Note that these steps use the property of (min,+) convolution to distribute over
the minimum, i.e., (f ∧ g) ⊗ h = (f ⊗ h) ∧ (g ⊗ h). For each of these four partial
convolutions, [BT08] provides the parameters T, d and c, as well as the cut intervals
I f and Ig, that allow to compute them using the by-sequence algorithm discussed
in the following subsection. We report these results, reorganized and with some
clarifications of our own, here, while proofs are provided in Appendix B.2.

Proposition 3.13 ((min,+) Convolution of Transient Parts). Let f and g be functions of
U . Introducing the shorthand notation⊗tt := f ∧t ⊗ g∧t , it holds that⊗tt is again a function
of U , and is UI with ⊗tt(t) = +∞ for any t ≥ Tf + Tg.

5To be precise, [BBL18, p. 18] solves the above ambiguity, since in the (min,+) dioid+∞ is absorb-
ing, i.e., (+∞) + (−∞) = +∞. However, the implementation in Nancy does not reflect this property,
as it provides both (min,+) and (max,+) operations using a common numerical representation.

3.4 (min,+) convolution of functions in U 35

A proof is provided in Appendix B.2.

Proposition 3.14 ((min,+) Convolution of a Transientwith a Periodic Part). Let f and
g be functions of U . Introducing the shorthand notation ⊗tp := f ∧t ⊗ g∧p , it holds that ⊗tp

is again a function of U with

T⊗tp = Tf + Tg, (3.5)
d⊗tp = dg, (3.6)
c⊗tp = cg. (3.7)

Moreover, ⊗tp(t) = +∞ for any t < Tg.

A proof is provided in Appendix B.2. Note that, the (min,+) convolution being
commutative, Proposition 3.14 applies to both ⊗tp and ⊗pt.

Proposition 3.15 ((min,+) Convolution of Periodic Parts). Let f and g be functions
of U . Introducing the shorthand notation ⊗pp := f ∧p ⊗ g∧p , it holds that ⊗pp is again a
function of U with

T⊗pp = Tf + Tg + lcm
(
d f , dg

)
, (3.8)

d⊗pp = lcm
(
d f , dg

)
, (3.9)

c⊗pp = d⊗pp ·min

(
c f

d f
,

cg

dg

)
. (3.10)

A proof is provided in Appendix B.2. Next, we discuss the cuts of f and g nec-
essary to compute each. For the first three terms, we can easily derive

⊗tt → I f =
[
0, Tf

[
and Ig =

[
0, Tg

[
,

⊗tp → I f =
[
0, Tf

[
and Ig =

[
Tg, Tf + Tg + dg

[
,

⊗pt → I f =
[
Tf , Tf + Tg + d f

[
and Ig =

[
0, Tg

[
.

For the fourth term, we use the following corollary.

Proposition 3.16 (Sufficient Cuts for (min,+) Convolution of Periodic Parts). Let f
and g be functions of U , and let f ∧p and g∧p be their respective periodic parts. Let the interval
I⊗pp be of the form

[
Tf + Tg, Tf + Tg + 2 · d⊗pp

[
. Then, in order to compute f ∧p ⊗ g∧p over

I⊗pp it is sufficient to use

I f =
[

Tf , Tf + 2 · d⊗pp

[
,

Ig =
[

Tg, Tg + 2 · d⊗pp

[
.

36 Mathematical Model

A proof is provided in Appendix B.2. From these cut intervals we can observe
that, while⊗tt,⊗tp and⊗pt are not particularly complex, the convolution of periodic
parts ⊗pp is the one subject to hyper-period explosion. In fact, its intervals depend on
its period length d⊗pp , which depends in turn on the least common multiple (lcm)
of the period lengths of the operands, lcm

(
d f , dg

)
. It follows that the number of

operations required may vary considerably depending on numerical properties of the
operands, since lcm

(
d f , dg

)
can be as small as max

(
d f , dg

)
or as large as the product

of their numerators, pd f
· pdg .

In those cases where d⊗pp � max
(
d f , dg

)
, we can observe a significant impact

on the computation time. Abating this phenomenon is the focus of contributions
such as [GY13; LBSGY17; PLSK11] and our own discussed in Chapters 12 to 14.

As for the last step, where we compute the minimum of these four terms, we
obtain the following.

Proposition 3.17 (Minimum of Decomposed (min,+) Convolution Terms). Let f
and g be functions of U , and let f = f ∧t ∧ f ∧p and g = g∧t ∧ g∧p be their decomposition in
transient and periodic parts. Let⊗tt := f ∧t ⊗ g∧t ,⊗tp := f ∧t ⊗ g∧p ,⊗pt := f ∧p ⊗ g∧t , and
⊗pp := f ∧p ⊗ g∧p . Then

f ⊗ g = ⊗tt ∧⊗tp ∧⊗pt ∧⊗pp. (3.11)

Moreover, f ⊗ g is again a function of U with

d f⊗g = lcm
(
d f , dg

)
,

c f⊗g = min

(
c f

d f
,

cg

dg

)
d′f⊗g = min

(
c f

d f
,

cg

dg

)
· lcm

(
d f , dg

)
.

A proof is provided in Appendix B.2. Algorithm 1 reports the pseudocode for
the (min,+) convolution algorithm, based on the above decomposition.

(min,+) convolution of functions with the same slope
If ρ f = ρg, we derive the following result.

Proposition 3.18 (Convolution of Curves with the Same Slope). Let f and g be func-
tions of U , with ρ := ρ f = ρg. Then f ⊗ g is again a function of U with

T = Tf + Tg + d,

d = lcm
(
d f , dg

)
,

c = ρ · d.

The entire convolution can be computed using sequences SI
f , SI

g with I =
[
0, Tf + Tg + 2 · d

[
,

and then computing the convolution of these sequences SI
f⊗g over the same interval.

A proof is provided in Appendix B.2.

3.4 (min,+) convolution of functions in U 37

Algorithm 1 Pseudocode for (min,+) convolution
Input Functions f and g.
Return Their (min,+) convolution f ⊗ g.

1: Decompose the operands as f = f ∧t ∧ f ∧p and g = g∧t ∧ g∧p
2: Compute htt := f ∧t ⊗ g∧t , htp := f ∧t ⊗ g∧p , hpt := f ∧p ⊗ g∧t as described in [BT08]
3: Compute hpp := f ∧p ⊗ g∧p as follows:
4: Compute d = lcm

(
d f , dg

)
5: Compute c = d ·min

(
ρ f , ρg

)
6: Compute T = Tf + Tg + d
7: Compute

I f∧p =
[
Tf , Tf + 2 · d

[
,

Ig∧p =
[
Tg, Tg + 2 · d

[
,

I⊗pp =
[
Tf + Tg, Tf + Tg + 2 · d

[
8: Compute S

I⊗pp
⊗pp

= S
I f∧p
f∧p
⊗ S

Ig∧p
g∧p

9: Rhpp =
(

S
I⊗pp
⊗pp

, T, d, c
)

10: f ⊗ g = min
(
htt, htp, hpt, hpp

)
3.4.2 By-sequence algorithm for (min,+) convolution
For the following discussion, we will consider the value of a sequence or element e,
of function f ∈ U and with support I, as

e(t) =

{
f (t), t ∈ I,
+∞, otherwise.

Thus, we can decompose a sequence S into its composing elements as

S(t) = e1(t) ∧ · · · ∧ en(t).

Let S f be a sequence of f ∈ U with support I f , and likewise Sg of g with Ig. Then

S f ⊗ Sg =
(

e f
1 ∧ · · · ∧ e f

n

)
⊗
(
eg

1 ∧ · · · ∧ eg
n
)

=
(

e f
1 ⊗ eg

1

)
∧ · · · ∧

(
e f

n ⊗ eg
n

)
=

∧
e f

i ofS f ,
eg

j ofSg

(
e f

i ⊗ eg
j

)
.

Thus, we have decomposed the by-sequence convolution into

38 Mathematical Model

• a set of by-element convolution,

• the lower envelope of the above set.

Recalling that an element can be either a point or a segment, there are three types of
by-element convolution that we need to compute. These are discussed thoroughly in
[BT08, Lemma 2-4], which we omit here for brevity. Suffices to say, for the following
discussion, that the result of such a convolution is, in general, a sequence (of 1 or
3 elements). Thus, the set of by-element convolution results into a set of sequences
with cardinality O

(
n
(
S f
)
· n
(
Sg
))

– let E be the set of elements composing these
sequences. The algorithm to compute the lower envelope of E, which is discussed
in depth in Section 8.8, has complexity O (n(E) · log(n(E))).

We note that the algorithm above can be improved in various ways, both apply-
ing algebraic optimizations and implementation ones. By algebraic optimizations we
mean that the computation is made simpler by means of applying algebraic proper-
ties to filter away terms. For example, as we assume (in this context) elements and
sequences to have value+∞ outside their support, any element that is+∞ within its
support does not affect the result, and can be omitted from the computation. More-
over, while the by-curve algorithm expects a sequence with a specific interval, be it
I, often the cuts I f and Ig can produce by-element convolutions whose support is
outside I. Since these results would be discarded anyway, one can filter in advance
to reduce the number of elements of which we compute the lower envelope. We
mention this since, later in Part II, and in particular Section 8.7, we discuss some
optimizations that are indeed implemented as algebraic filters in this step.

3.5 Other (min,+) operations
We provide here UPP results for other (min,+) operators, again from [BT08].

Proposition 3.19 (Addition). Let f , g be functions of U , neither of which is UI. Then
f + g is again a function of U with

T = max
(
Tf , Tg

)
,

d = lcm
(
d f , dg

)
,

c =
(
ρ f + ρg

)
· d.

Proposition 3.20 (Subtraction). Let f , g be functions of U , neither of which is UI. Then
f − g is again a function of U with

T = max
(
Tf , Tg

)
,

d = lcm
(
d f , dg

)
,

c =
(
ρ f − ρg

)
· d.

3.6 Subadditive closure 39

Definition 3.21 ((min,+) Deconvolution). Let f and g be functions in U . We define
the (min,+) deconvolution, for all t ≥ 0, as

f � g(t) := sup
s≥0
{ f (t + s)− g(s)} . (3.12)

Proposition 3.22 ((min,+) Deconvolution). Let f , g be functions of U , neither of which
is UI. Then f � g is again a function of U with

T = Tf ,

d = d f ,

c = c f .

3.6 Subadditive closure
Similarly to the (min,+) convolution, for the subadditive closure we do not have a
closed expression for its UPP properties – rather, we have an expression whose UPP
properties depend on the operand. The algorithm is based on Theorem 2.4, which
we restate here for functions of U .

Theorem 3.23 (Subadditive Closure of a Minimum). Let f and g be functions of U .
Then,

f ∧ g = f ⊗ g (3.13)

First, we decompose f bymapping each element of its representation into a func-
tion of U . Let ei, i = 1 . . . n, be the elements of S f , each with support Ii = {ti} (if ei
is a point in ti), or in Ii =]ti, ti+1[(if ei is a segment), and let l + 1 be the index of the
first periodic element (i.e., the point in Tf).6 We then map each transient element,
i = 1 . . . l, into a function et

i in U , and each periodic element, i = l + 1 . . . n, into a
function ep

i , where

et
i(t) =

{
f (t) if t ∈ Ii,

+∞ otherwise ,
ep

i (t) =

{
f (t + k · d) if t ∈ Ii + k · d, k ∈N0,

+∞ otherwise .
.

Then, we can write a decomposition of f as f = et
1 ∧ · · · ∧ et

l ∧ ep
l+1 · · · ∧ ep

n. Then,
by Theorem 3.23 we have

f
(3.13)
= et

1 ⊗ · · · ⊗ et
l ⊗ ep

l+1 · · · ⊗ ep
n. (3.14)

Thus, the SAC of f is decomposed into SACs of points, open segments, periodic
points and periodic open segments, for which algorithms are known [BT08]. This

6We assume here, for simplicity, that f has transient elements, thus Tf > 0.

40 Mathematical Model

θ

W

R

time

data

β
W

W

θ

R

time

data

β + W

Figure 3.4: SAC β + W (right) when β is rate-latency and W is the ordinate of a
constant function (both shown on the left).

SAC computation is NP-hard [BT07, p. 41]: the complexity grows exponentially
with the number of elements in the representation. We remark that the above algo-
rithm makes extensive use of the convolution operation.

An exception is when β is a rate-latency curve. In this case, given a constant
function, i.e., a function f such that f (0) = 0, f (t) = W ∀t > 0 where W > 0, SAC
β + f can be computed in closed form [LT01, pp. 118-9]. Typically, W is a buffer
dimension. We use shorthand β + W, i.e., with the ordinate of the constant function
rather than the function name itself, for better readability. As shown in Figure 3.4,
the resulting function is not a rate-latency, but a staircase UPP function.

3.7 (max,+) operators
We can derive similar results for maximum, (max,+) convolution and (max,+) de-
convolution, by following the same steps as the corresponding (min,+) operator
with minor obvious changes – e.g., the decomposition used in the (max,+) convo-
lution is f = f ∨t ∨ f ∨p instead of f = f ∧t ∧ f ∧p . We thus state them here – as they
will be useful later – but omit the proofs. First, we recall the definitions of (max,+)
convolution and deconvolution.

Definition 3.24 ((max,+) Convolution). Let f and g be functions in U . We define
the (max,+) convolution, for all t ≥ 0, as

f ⊗ g(t) := sup
0≤s≤t

{ f (s) + g(t− s)} . (3.15)

3.7 (max,+) operators 41

Definition 3.25 ((max,+) Deconvolution). Let f and g be functions in U . We define
the (max,+) deconvolution, for all t ≥ 0, as

f�g(t) := inf
s≥0
{ f (t + s)− g(s)} . (3.16)

As noted in [BBL18, Equation (2.13)], we can link (min,+) and (max,+) opera-
tors using the opposite.

Lemma 3.26. Let f and g be functions of U . Then

f ⊗ g = − ((− f)⊗ (−g)) ,

f ⊗ g = − ((− f)⊗ (−g)) ,

f � g = − ((− f)�(−g)) ,

f�g = − ((− f)� (−g)) .

Many of the following properties can in fact be derived, other than by adapting
the steps of the proof of (min,+) equivalent, by directly applying Lemma 3.26 to the
(min,+) equivalent.

Proposition 3.27 (Maximum of Functions with the Same Slope). Let f , g be functions
of U , neither of which is UI. If ρ f = ρg := ρ, f ∨ g is again a function of U with

T = max
(
Tf , Tg

)
,

d = lcm
(
d f , dg

)
,

c = ρ · d.

Proposition 3.28 (Maximumof FunctionswithDifferent Slopes). Let f , g be functions
of U , neither of which is UI. Let, without loss of generality, ρ f < ρg. Let t :=

M f−mg
ρg−ρ f

. Then,
f ∨ g is pseudo-periodic with

T = max
(
Tf , Tg, t

)
,

d = dg,

c = cg.

Proposition 3.29 ((max,+) Deconvolution). Let f , g be functions of U , neither of which
is UI. Then f�g is again a function of U with

T = Tf ,

d = d f ,

c = c f .

42 Mathematical Model

For the (max,+) convolution, we provide only two results, that are particularly
useful for the following discussion, i.e., the decomposition into partial (max,+) con-
volutions and the UPP properties of the (max,+) convolution of periodic parts.

Proposition 3.30 (Maximum of Decomposed (max,+) Convolution Terms). Let f
and g be functions of U . Let f = f ∨t ∨ f ∨p and g = g∨t ∨ g∨p be their decomposition in
transient and periodic parts. Let ⊗ tt := f ∨t ⊗ g∨t , ⊗ tp := f ∨t ⊗ g∨p , ⊗ pt := f ∨p ⊗ g∨t ,
and ⊗ pp := f ∨p ⊗ g∨p . Then f ⊗ g = ⊗ tt ∨ ⊗ tp ∨ ⊗ pt ∨ ⊗ pp. Moreover, f ⊗ g is again
a function of U with

d f ⊗ g = lcm
(
d f , dg

)
,

c f ⊗ g = max

(
c f

d f
,

cg

dg

)
d′f ⊗ g = max

(
c f

d f
,

cg

dg

)
· lcm

(
d f , dg

)
.

Proposition 3.31 ((max,+) Convolution of Periodic Parts). Let f and g be functions
of U . Introducing the shorthand notation ⊗ pp := f ∨p ⊗ g∨p , it holds that ⊗ pp is again a
function of U with

T⊗ pp
= Tf + Tg + lcm

(
d f , dg

)
, (3.17)

d⊗ pp
= lcm

(
d f , dg

)
, (3.18)

c⊗ pp
= d⊗ pp

·max

(
c f

d f
,

cg

dg

)
. (3.19)

Proposition 3.32 (Sufficient Cuts for (max,+) Convolution of Periodic Parts). Let f
and g be functions of U , and let f ∨p and g∨p be their respective periodic parts. Let the interval
I⊗ pp

be of the form
[
Tf + Tg, Tf + Tg + 2 · d

[
. Then, in order to compute f ∨p ⊗ g∨p over I⊗ pp

it is sufficient to use

I f =
[
Tf , Tf + 2 · d

[
,

Ig =
[
Tg, Tg + 2 · d

[
.

3.8 Plain and ultimately plain functions
In this chapter, we focused on a class of functions that is representable with a finite
amount of memory, and highlighted the property of stability, which allows one to
write algorithms for operations where both operands and results are of this same
class. However, [BT08] discusses some pathological cases for which this stability
may not be guaranteed.

Take for example, consider the subadditive closures of points or periodic points
used in Section 3.6, e.g, epa and epb , where pa and pb are the points (2, 2) and (3, 1),

3.8 Plain and ultimately plain functions 43

1 2 3 4 5 6 7 8 9 10 11 12

1
2
3
4
5
6
7
8
9
10

time

data

epa

epb

Figure 3.5: Plots of epa and epb , which are neither plain nor ultimately plain. While
epa ∧ epb is not UPP, epa ⊗ epb is.

whose plots are shown in Figure 3.5. Consider then their minimum, epa ∧ epb . We
can find, for any T, ta > T such that epa(ta) < +∞ and epb(tb) = +∞, as well as a
tb > T such that epa(tb) = +∞ and epb(tb) < +∞. This means that neither of the
two is, ultimately, always below the other, and, combinedwith themhavingdifferent
slopes, one cannot find T, d and c such that the UPP property holds. Therefore, epa

and epb are UPP, but their minimum epa ∧ epb is not.
To avoid these cases, [BT08] identifies plain and ultimately plain functions, whose

definitions and properties we report below.

Definition 3.33 (Ultimately plain function). A function f ∈ U is ultimately plain if
∃T ∈ Q+ such that either ∀t > T, f (t) ∈ Q or ∀t > T, f (t) ∈ {−∞,+∞}. In other
words, f is, after T, either always infinite or always finite.

Definition 3.34 (Plain function). A function f ∈ U is plain if either

• f (t) ∈ Q for any t ∈ Q+, or

• exist b = {−∞,+∞}, T ∈ Q+ such that

– for any t < T, f (t) ∈ Q,

– f (T) ∈ Q or f (T) = b,

– for any t > T, f (t) = b

Note that a function that is infinite before T but finite after T is ultimately plain,
but not plain. An example of such function is f ∧p , if f (t) ∈ Q for any t and Tf > 0.
Moreover, a non-decreasing function is ultimately plain, and if f (0) ∈ Q, it is also
plain.

44 Mathematical Model

These classes then provide sufficient conditions for the (•,+) operations to be sta-
ble in U [BT08, Th. 2]. On the other hand, these properties are not necessary. For ex-
ample, epa and epb , discussed above, are neither plain nor ultimately plain, however
[BT08, Prop. 9] shows that the convolution of such functions is ultimately pseudo-
periodic nonetheless, hence epa ⊗ epb ∈ U .

As [BT08, Fig. 14] highlights, only plainUPP, piecewise affine,Q+ → Q∪{+∞,−∞}
functions are, in general, guaranteed stability on all (min,+) operations. Note that,
as summarized by same figure, plain R+ → R∪ {+∞,−∞} functions may still not
retain the UPP property.

In the rest of this thesis, we will consider operations that, under the hypothe-
ses discussed in each context, provide such stability - regardless of whether or not
operands are plain - hence all results are stable in U .

Chapter 4

Used Results

In this chapter we recall the results from the literature that are used within this
thesis. As mentioned in Section 3.1, the results from the literature are often based
on different types of functions, and it needs to be shown if, or with what additional
assumptions, they may apply to functions of U . We will underline this, either by
providing an adapted proof or by highlighting the differences, on a per-result basis.

4.1 Continuity and (•,+) convolution
We report here properties of (min,+) and (max,+) convolutions, which are useful
for the following discussion. We report proofs, adapted for U , in Appendix C. We
start by discussing the (min,+) convolution, recalling its definition.

Definition 3.12 ((min,+) convolution). Let f and g be functions in U . We define
the (min,+) convolution, for all t ≥ 0, as

f ⊗ g(t) := inf
0≤s≤t

{ f (s) + g(t− s)} (3.4)

We highlight, for the followingwork, two important properties: attainability and
left-continuity. These properties are proved for R+ → R∪ {+∞,−∞} functions in,
respectively, [BBL18, Proposition 3.10] and [BBL18, Proposition 3.11]. We adapt
these properties for functions of U , and provide the proofs in Appendix C.1

Proposition 4.1 (Attainability of (min,+)Convolution). Let f and g be left-continuous,
non-decreasing functions of U . Then, for any t ∈ Q+ it exists s∗ ∈ [0, t] such that

f ⊗ g(t) = inf
0≤s≤t

{ f (s) + g(t− s)} = f (s∗) + g(t− s∗).

In other words, the infimum is always attained in [0, t].
1Note that the proofs in [BBL18] use the completeness property of R, which does not apply to

Q. We show in Appendix C that the resulting t∗ ∈ R must be, by construction of f ∈ U , also in Q.

45

46 Used Results

A proof is provided in Appendix C.2.

Proposition 4.2 (Left-Continuity of (min,+)Convolution). Let f and g be left-continuous,
non-decreasing functions of U . Then, f ⊗ g is left-continuous.

A proof is provided in Appendix C.2.
Analogous properties can be derived for the (max,+) convolution.

Definition 3.24 ((max,+) Convolution). Let f and g be functions in U . We define
the (max,+) convolution, for all t ≥ 0, as

f ⊗ g(t) := sup
0≤s≤t

{ f (s) + g(t− s)} . (3.15)

Proposition 4.3 (Attainability of (max,+)Convolution). Let f and g be right-continuous,
non-decreasing functions of U . Then, for any t ∈ Q+ it exists s∗ ∈ [0, t] such that

f ⊗ g(t) = sup
0≤s≤t

{ f (s) + g(t− s)} = f (s∗) + g(t− s∗).

In other words, the supremum is always attained in [0, t].

A proof is provided in Appendix C.3.

Proposition 4.4 (Right-Continuity of (max,+) Convolution). Let f and g be right-
continuous, non-decreasing functions of U . Then, f ⊗ g is right-continuous.

A proof is provided in Appendix C.3.

4.2 Subadditive functions
We recall here the definition and properties of subadditive functions, highlighting
that they still apply in U . Proofs can be found in [LT01], which generally assumes
non-decreasing functions. The alert reader can verify that said proof hold also with-
out this property, hence for functions of U .

Definition 4.5 (Subadditive Function). Let f be a function of U . We say f is subad-
ditive if and only if f (u) + f (s) ≥ f (u + s) ∀u, s ≥ 0.

The following,whichwe alreadymentioned, is reported as Theorem3.1.11 [LT01].

Theorem 3.23 (Subadditive Closure of a Minimum). Let f and g be functions of U .
Then,

f ∧ g = f ⊗ g (3.13)

4.3 Upper and lower pseudoinverses 47

Theorem 4.6 (Convolution of Subadditive Functions). Let f and g be subadditive func-
tions of U . Then, so is f ⊗ g.

The following is reported as Corollary 3.1.1 in [LT01].

Corollary 4.7. Lef f be a subadditive function of U such that f (0) = 0. Then

f ⊗ f = f , (4.1)
f = f . (4.2)

A related property that, although not limited for subadditive functions, we will
use in that context, is reported as Rule 8 in [LT01, p. 113].

Lemma 4.8. Let f and g be functions of U such that f (0) = g(0) = 0. Then

f ∧ g ≥ f ⊗ g (4.3)

4.3 Upper and lower pseudoinverses
Lower and upper pseudoinverses are operators useful in many contexts. For ex-
ample, work [Lie17] shows that (min,+) and (max,+) algebra can be interpreted
as mirror images of each other, as one can use these operators to switch between
the two. Furthermore, they are useful for implementation of algorithms such as the
one for composition that we describe in Chapter 11, and, together with the com-
posion, to compute the horizontal deviation between any two curves as shown by
Equation (2.3).

Definition 4.9 (Lower and Upper Pseudoinverse). Let f ∈ U be non-decreasing.
Then its lower pseudoinverse is defined as

f−1
↓ (y) := inf {t ≥ 0 | f (t) ≥ y} ,

and its upper pseudoinverse is defined as

f−1
↑ (y) := sup {t ≥ 0 | f (t) ≤ y} .

We can find an equivalent definition as follows.

Proposition 4.10. Let f ∈ U be non-decreasing. For all y > f (0), its lower pseudoinverse
is equal to

f−1
↓ (y) = sup {t ≥ 0 | f (t) < y} , (4.4)

and for all y ≥ f (0), its upper pseudoinverse is equal to

f−1
↑ (y) = inf {t ≥ 0 | f (t) > y} . (4.5)

48 Used Results

T

d

c

time

data

(a) f .

T

d

c

time

data

(b) f−1
↓ .

T

d

c

time

data

(c) f−1
↑ .

Figure 4.1: Example of lower and upper pseudoinverse of a function f .

Note that [Lie17] reports a slightly different definition, because functions are
defined in R → R ∪ {+∞,−∞}. Our functions in U are defined in Q+ → Q ∪
{+∞,−∞}, hence our domain is lower bounded. The consequences of this differ-
ence are discussed in Appendix D.1, which also contains a proof of Proposition 4.10.

An example of these operators is provided in Figure 4.1, which shows a function
of U and its lower and upper pseudoinverses.

As shown in [Lie17, p. 64, Lemma 10.1], the lower pseudoinverse is always left-
continuous and the upper pseudoinverse is right-continuous. We restate this result
below, for functions in U .

Lemma 4.11. Let f ∈ U be non-decreasing. Then, f−1
↓ is left-continuous and f−1

↑ is right-
continuous.

A proof is provided in Appendix D.2. The above is consistent with the typi-
cal usage of (•,+) algebra: in (min,+) functions are assumed to be left-continuous,
whereas in (max,+) they are assumed to be right-continuous.

Moreover, as shown in [Lie17, Lemmas 10.1c, 10.1d], upper and lower pseudoin-
verses can be combined to yield something close to involutive properties (again,
proofs for U are provided in Appendix D.2).

Lemma 4.12. Let f ∈ U be non-decreasing and left-continuous. Then,

f =
(

f−1
↑

)−1

↓
. (4.6)

Lemma 4.13. Let f ∈ U be non-decreasing and right-continuous. Then,

f =
(

f−1
↓

)−1

↑
. (4.7)

In [Lie17, p. 61], it is reported for any non-decreasing f : R → R ∪ {+∞,−∞}
that f−1

↓ ≤ f−1
↑ . For the functions discussed therein, it is an obvious property as the

4.4 Isomorphism between (min,+) and (max,+) algebra 49

equivalences in Equations (4.4) and (4.5) always hold. For functions of U , it is less
obvious as the claim is only true for interior points.

Lemma 4.14. Let f be a non-decreasing function of U . Then, for all y ≥ f (0),

f−1
↓ (y) ≤ f−1

↑ (y).

We provide a proof in Appendix D.1.
Lastly, in [Lie17, p. 62] it is shown the following.

Proposition 4.15. Let f be a non-decreasing function of U . Then, for all x, y ∈ Q+

f (x) > y =⇒ f−1
↑ (y) ≤ x, (4.8)

f (x) ≤ y =⇒ f−1
↑ (y) ≥ x, (4.9)

f (x) < y =⇒ f−1
↓ (y) ≥ x, (4.10)

f (x) ≥ y =⇒ f−1
↓ (y) ≤ x. (4.11)

4.4 Isomorphism between (min,+) and (max,+)
algebra

Works [PLSK11; Lie17] show that operations in one algebra can be mapped to the
other via pseudoinversion of operands and results. This isomorphism has also been ob-
served to provide, in some cases, an improvement in computation runtime [PLSK11].
We thus report here the results from [Lie17], adapted to U , which we will use in
Chapter 14 to provide a novel, improved, algorithm for (•,+) convolutions. The
proofs of this section are provided in Appendix F.1. The first result, adapted from
[PLSK11, Theorem 1] and [Lie17, Theorem 10.3b], shows the link between (min,+)
and (max,+) convolution, for left-continuous functions, via upper pseudoinverse.

Theorem 4.16 (Isomorphism of Convolution For Left-Continuous Functions). Let f
and g be functions of U that are left-continuous and non-decreasing. Then,

(f ⊗ g)−1
↑ =

(
f−1
↑

)
⊗
(

g−1
↑

)
. (4.12)

We provide a proof in Appendix F.1.
As a consequence, we can apply Proposition 4.2 and Lemma 4.12 and obtain the

following.

Corollary 4.17 (Alternative Expression for (min,+) Convolution, via its Isomor-
phism). Let f and g be functions of U that are left-continuous and non-decreasing. Then,

f ⊗ g
(4.6)
=
(
(f ⊗ g)−1

↑

)−1

↓

(4.12)
=

(
f−1
↑ ⊗ g−1

↑

)−1

↓
. (4.13)

50 Used Results

The analogous result for right-continuous functions, using the lower pseudoin-
verse, is provided in [Lie17, Theorem 10.4b].

Theorem 4.18 (Isomorphism of Convolution For Right-Continuous Functions). Let
f and g be functions of U that are right-continuous and non-decreasing. Then,

(f ⊗ g)−1
↓ =

(
f−1
↓

)
⊗
(

g−1
↓

)
. (4.14)

We provide a proof in Appendix F.1.
We can apply Proposition 4.4 and Lemma 4.13 and obtain the following.

Corollary 4.19 (Alternative Expression for (max,+) Convolution, via its Isomor-
phism). Let f and g be functions of U that are right-continuous and non-decreasing. Then,

f ⊗ g
(4.7)
=
(
(f ⊗ g)−1

↓

)−1

↑

(4.14)
=

(
f−1
↓ ⊗ g−1

↓

)−1

↑
. (4.15)

(4.16)

We note that the assumptions of these properties are not restrictive: in practice,
it is in fact the norm for curves in (min,+) algebra to be non-decreasing and left-
continuous, while curves in (max,+) algebra are usually non-decreasing and right-
continuous.

Chapter 5

Related Works

The theory of Deterministic Network Calculus dates back to the early 1990s, and it
is mainly due to the work of Cruz [Cru91a; Cru91b], Le Boudec and Thiran [LT01],
and Chang [Cha00]. DNC focuses on finding deterministic upper bounds to the
worst-case performance of systems, e.g., an upper bound to the worst-case delay,
using (min,+) and (max,+) algebra [BCOQ92]. Its stochastic counterpart, Stochas-
tic Network Calculus (SNC), was soon introduced by works [Cha00; CBL06; Fid06;
JL08; CS12], to take advantage of statistical multiplexing and obtain more efficient
dimensioning for use cases where a few violations of the bound are tolerable. In
both, NC provides scheduling abstractions and composable analysis, allowing to
reduce the study of a large network in a more manageable (but not necessarily not
computationally costly) problem.

Since then, a considerable number of papers have extended the DNC frame-
work to include different scheduling algorithms and flowmultiplexing schemes, as
well as network architectures, topologies, and applications. Such works cover FIFO
multiplexing [LMMS06; BLMS10; BLMS12; BS12; BS15], round-robin multiplexing
schemes [BSS12a; BBL18; Bou21; TLB21; TB21; TL22] as well as arbitrary multi-
plexing [SZF08; BJT10; BT16]. Deterministic Network Calculus has been applied to
sensor networks [SR05; SZT07; ZYD11; SBP17], avionic network [CSEF06; BSF09;
BSF10; FE17; SLSF18], networks-on-chip [BSGE09; QLD09; QLD10; GM18; GM19;
BGDM20], manufacturing systems [BJLL06; KGNMP18] as well as Time-Sensitive
Networking (TSN) [ZCWW19; MSB19; MHG20; ZPZDB21; MSB22].

The computational aspects of DNC implementations have been the subject of sev-
eral papers in the past. Problems such as efficient data structures to represent ar-
rival/service curves or functions, or the complexity of DNC operators (e.g., convo-
lution or subadditive closure) have been tackled in thework of Bouillard andThierry
[BT08] and the related technical report [BT07], which discusses the implementation
aspects in more detail. These findings find a thorough exposition in book [BBL18],
which also reviews the implementations of several existing tools. The idea of piece-

51

52 Related Works

wise affine, Q+ → Q ∪ {+∞,−∞}, UPP curves as a class closed with respect to
DNC operations is in fact reported in these works, and we use the DNC algorithms
described therein as a baseline.

A related research field is that of Real-Time Calculus (RTC), developed for real-
time systems [TCN00; Wan06]. RTC uses (min,+) and (max,+) algebra to obtain
the output of a system given its input, similarly to DNC. For this reason, the two
methodologies have often evolved via cross-fertilization, with solutions devised in
one context often being ported to the other. Moreover, a formal link between the two
is provided in [BJT09]. Indeed, we believe that Nancy, as it supports both (min,+)
and (max,+) operations, may be useful also for RTC researchers. Similarly, [RQB22]
shows howResponse TimeAnalysis, another formalism used for verification of real-
time properties, can be linked to DNC.

To the best of our knowledge, there are no public, open-source libraries that im-
plement DNC operations working on UPP curves. By “library”, we mean a set of
reusable implementations of (•,+) algebra operations, providing ease of construct-
ing and manipulating curves, and allowing a user to extend and specialize its al-
gorithms for improved efficiency (e.g, by adding new code paths or subclasses) or
extending its use cases. The COINC library [BCGHLL09] did support operations on
UPP curves, implementing, as we do, the results of [BT08], but it appears that it is
no longer available. The two existing libraries that can handle UPP curves are the
RTC Toolbox [WTa; Wan06] and the RTaW-Pegase library [RTaWc].

The RTC Toolbox library is a publicly available Java library, often used via its
MATLAB integration. While publicly and freely available, its source code is not,
which limits the ability to verify or debug it, or to extend it to cover lack of features.
We discuss its features and provide a comparison, albeit superficial, with Nancy in
Chapter 15.

The RTaW-Pegase library is proprietary commercial product. An online inter-
preter is freely available to try its functionalities [RTaWb]. It is claimed that the li-
brary implements efficiently a large set of operations for UPP curves. However, its
license prohibits to disclose both benchmarking and test results, hence we shall not
provide any comment on such claims or comparison with Nancy.1

There are, instead, several DNC network analysis tools available, which are soft-
ware packages that implement methods for analyzing specific types of networks.
These often implement their own versions of (•,+) algebra operations, which are
typically restricted to classes of curves that match the type of network they are de-
signed to analyze. Many are mentioned in [BBL18], while a review of their capabil-
ities is reported in [ZHLC20]. For example, DEBORAH [BLMS10] analyzes FIFO
tandems using a linear programming approach, which limits the supported inputs

1Customer [...] may not disclose any information regarding any benchmark or tests of the Product to any
third party. [RTaWa, End-user License Agreement]

53

to rate-latency service curves traversed by leaky-bucket-shaped flows. Therefore,
it only implements (min,+) convolution and subtraction of pseudo-affine curves,
which are algorithmically trivial. NC-TANDEM-TIGHT [BJT10; BT16] analyzes ar-
bitrary multiplexing tandems by modeling their worst-case delay computation as a
linear programming problem, which implicitly rules out generic UPP curves, which
would yield non-convex programs instead. Its parallel work on FIFO multiplexing
[BS12; BS15], which improves on the results of DEBORAH, suffers from the same
limitation. NC-Maude [Boy10] is a tool written in Maude, a high-performance re-
flective language. It uses a rational numeric type instead of floating point, how-
ever it supports only simple functions such as rate-latency and token-bucket as in-
puts. It was released as an open and extensible tool, although it appears to be no
longer available. The DiscoDNC tool [BS14], now NCorg DNC, is limited to ulti-
mately concave/convex piecewise affine curves, for which DNC operations are con-
siderably simpler. It supports using RTC Toolbox as its underlying computational
library [SB17], however the latter is used under the same constraints of ultimately
concavity/convexity, without exploiting the broader modelling capabilities. Work
[LHL17b] describes a tool written in the NVIDIA CUDA language that computes
convolutions and deconvolutions using GPUs, claiming improved efficiency over
standard CPU-based computation. However, there seems to be no executable or
code to go with this paper.

Unfortunately, none of these tools, or the other mentioned in [BBL18; ZHLC20]
provide reusable, general-purpose DNC operations.

From the point of view of algorithmic performance, several works discuss on
techniques to improve the runtime of DNC and RTC studies. RTCwork [GY13] first
observed that multi-hop traversal – which entails chained convolutions – is subject
to state explosion, and that the latter makes convolutions exponentially complex.
They proposed a way to mitigate this problem, which relies on inferring the maxi-
mum time beyond which the shape of the resulting functions is immaterial, which
turns out to be considerably smaller than the lcmof the periods, thus leading tomore
efficient operations. This idea of a compact domain is transferred toDNC in [LBS16]
– allowing it to be used in conjunction with DNC service curves. Work [LBSGY17]
further generalizes it to more operations andmore general RTC settings. DNC anal-
ysis limited to compact domains [LBS16] consists in finding finite upper bounds
to the time where operations should be computed. This allows by-sequence opera-
tions to be computed between two finite sets of elements – which one can imagine
as transient parts – disregarding periodicity and the lcm explosion that comes with
it. In these techniques, the upper bound is chosen so that the end-to-end delay and
backlog analysis is not affected. Such a bound can be found by working with lower
and upper approximations of both the arrival curve and the service curves, using
CPL curves, which is computationally inexpensive. However, this method requires

54 Related Works

superadditivity of service curves (Definition 2.6), a property that does not hold in
many settings, e.g., in tandems networks of flow-controlled links, where curves are
subadditive instead (Definition 2.2).

Another approach, introduced in [LCH14], uses containers and inclusion func-
tions. This approach provides, for the result of a computation, an upper convex
bound and a lower concave bound, trading off the accuracy of computing the actual
result with the efficiency of computing such bounds, as the algorithm complexity
becomes linear for the convolution and quasi-linear for the subadditive closure.

Systemswith flowcontrol have traditionally been analyzedusingMarkovChains
[Bal11], under the name of “queueing systems with blocking”. That method allows
one to findmean performance indexes (and, possibly, distributions), starting from a
stochastic characterization of input traffic and service. The first works analyzing flow
control in the framework of DNC have been [Cha97], [ACOR99]. The exact method
– i.e., the one using nested SACs – is a direct application of these results. The ap-
proximate method – i.e., the one using convolution of SACs – is instead shown in
[BJLL06]. This paper, however, does not assess the gain in efficiency warranted by
the approximate method, nor it acknowledges the fact that it seems to preserve ac-
curacy. We argue that this may be due to the fact that the computational problems
addressed in this thesis were in the way of such an evaluation. A different use case
with hop-by-hop flow control is studied in [BPC09], which focuses on Stream Pro-
cessing Systems in Real-Time Calculus. It is shown therein [BPC09, Theorem 3] that
an effective service curve for the first node in a tandem can be computed via a chain
of convolutions of subadditive expressions, i.e., the same type whose computation
we optimize in this thesis. Paper [PS20] uses a DNC model with flow control to
model Denial-of-Service (DOS) attacks. Flow control is also addressed in [BS17],
in the framework of SNC.

Work [PLSK11]was first to observe the isomorphismbetween (min,+) and (max,+)
convolution and its utility in reducing computation time. They observed that, to
compute (min,+) convolutions of event-based service curves, replacing this with
(max,+) convolutions using pseudoinverses was considerably faster. They were,
however, unable to discern whether the improvement was due to algebraic proper-
ties or inefficiencies in the implementation of RTC Toolbox. In Chapter 14, we discuss
the algebraic properties that justify their observations, and expand themwith novel
results.

Chapter 6

Research Statement

In the previous chapters, wehave shown someDNCresults, themathematicalmodel
we use and associated useful results. We can now state the objectives of this thesis
with more clarity than in Chapter 1.

In Deterministic Network Calculus, it is often the case that studies involve sys-
tems and processes that can bemodelledwith simple non-decreasing, non-negative,
convex or concave models – such as the rate-latency service curve and the token-
bucket arrival curve. However, it is also often the case that the service curve de-
scribing a node, such as a round-robin scheduler or a flow-controlled link, is not
a simple convex curve, or not even a Ultimately Affine one. Thus, complex UPP
curves naturally occur in nontrivial systems. Performing operations on these is com-
plex from a computational standpoint: state explosion (see Chapter 3) tend to occur,
due to the lcm operation required to compute the hyperperiod.

Of course, one can envisage a simple, but crude approach that computes approx-
imated end-to-end service curves that lower bound each resulting UPP curve with a
rate-latency curve. This would certainlymake computations considerably faster, but
may entail a considerable loss of accuracy. We exemplify this using a simple UPP
curve β = βR,θ ⊗ βR,θ + h, with R · θ > h, i.e., the equivalent service curve of a flow-
controlled link. In this case, such lower bound bβcrl would have θlb = θ, Rlb = h

θ ,
and the error introduced by it is upper bounded by θ − h

R .
As shown in Figure 6.1, the impact of such error on the end-to-end delay de-

pends on the characteristic of the input traffic. Notably, small messages would incur
relatively larger penalty than largemessages, and the loss in accuracywould be non-
negligible. A similar result is obtained using the container approach discussed in
[LCH14], which is based on convex and concave bounds.

In other cases, though, this complexity is part of the result itself, and cannot
be simply avoided with such a lower bound. Consider for example the results of
[TLB21], in particular the per-flow strict service curve of an IWRR scheduler that
we reported in Theorem 2.7. In this case, the service of the scheduler is computed

55

56 Research Statement

L

θ − h
R

θ

h R

time

data

β

bβcrl

(a) Delay bound for a long message of
length L. The one obtained using bβcrl is
overestimated by θ − h

R , 6% w.r.t. the one
obtained using β.

l

θ − h
R

θ

h

R

time

data

β

bβcrl

(b) Delay bound for a short message of
length l. The one obtained using bβcrl is
overestimated by θ − h

R , 20% w.r.t. the one
obtained using β.

Figure 6.1: Delay overestimation introduced by lower-bounding a staircase UPP
curve with a rate-latency curve.

through multiple steps that involve UPP curves.
However, the software support publicly available is quite lacking, with few op-

tions to researchers to perform or reproduce such studies, and even fewer if one
seeks to extend such software towards specific research interests. Thus, we sought
out to implement the popular UPP algorithmic toolbox, described in [BT07; BT08;
BBL18], into an extensible open source library, Nancy. Such library is meant to be
accessible and verifiable by the research community.

However, even with the software at hand, some studies still appear to be unfea-
sible due to their computational cost. This calls for more research in the algorith-
mic aspects of DNC. On one hand, this involves improving the implementation so
that the capabilities of the hardware is fully realized, e.g., by identifying paralleliz-
able parts of the code and avoiding performance loss due to saturation of available
memory. On the other hand, this involves research into the algebraic aspects, so that
properties of the operands – other than the simple fact of being UPP – can be used
to improve the runtime of our computations.

Moreover, some operators, like pseudoinverses and composition, were not ad-
dressed within the UPP algorithmic toolbox, which leaves important gaps towards
implementation of many recent studies that make of them – like the [TLB21] result
that we just recalled. Thus, we sought out the additional goal of extending the UPP
algorithm toolbox both to improve the algorithmic properties of some operations
of practical interest, like chains of (min,+) convolutions, and to provide support –
backed by formal results – to the mentioned operators. This is done leveraging the

6.1 Efficient subadditive convolutions: flow-controlled tandem 57

aforementioned extensibility of Nancy.
In the following sections, we restate the use cases that we will use as motivating

examples to address, and how we plan to improve upon them in Part II.

6.1 Efficient subadditive convolutions:
flow-controlled tandem

Consider a flow traversing a tandem network of n flow-controlled nodes. Each node
i offers to that flow a service curve βi. After node i, i < n, there is a flow control
window Wi+1. We initially assume that the flow control is instantaneous. Our goal
is to compute an end-to-end service curve of the above tandem network. This will
allow one to compute a bound on the end-to-end delay and backlog, if the flow itself
has an arrival curve. We want to be able to do this efficiently.

We first show that computing an end-to-end service curve, whether the exact
(Equation (2.8)) or the approximate one (Equation (2.10)), incurs state explosion
and may require very long computation times, even when n is small (e.g., three
nodes).

The experimental setup we use to show this uses a four-hop tandem of flow-
controlled nodes. We assume that nodes have rate-latency service curves, βi =

βRi,θi , and their parameters are those in Table 6.1.
We chose to use two different sets of parameter values to better highlight the is-

sues – and, later, the impact of the optimizations. As the length and/or feasibility of
the computations depend on the parameters chosen, we found that a setting that can
be solved with the exact method is often trivial with the approximate one, and a set-
ting that is hard with the approximate method is often computationally intractable
with the exact one. Therefore, a single set of parameters would not suffice to clearly
demonstrate both.

We attempt to compute the end-to-end equivalent service curves, via the exact
and approximate methods, using the algorithms described in [BT08], on a desktop
PC (System 1 in Appendix H). We report computational results in, respectively, Ta-
ble 6.2 and Table 6.3, where we highlight both the representation size of the results
and the time it takes to compute them. The alert reader will notice that the results
reported in the tables are intermediate results towards the equivalent end-to-end
service curves via (2.8) and (2.10), respectively. We cap computation times at 24
hours.

The above results show that computation times are significant, and that state
explosion does occur, even with the approximate method. As mentioned in Chap-
ter 5, we cannot abate these computation times by working on compact domains, as

58 Research Statement

Table 6.1: Parameters of the example tandem network.

Exact Approximate
i βi rate βi latency Wi+1 βi rate βi latency Wi+1
1 8 5 3 21 15 23
2 11 7 7 30 17 29
3 12 4 3 7 27 20
4 1 5 21 20

Table 6.2: Computational results, exact method.

comp. time of β2 ⊗ β
eq
3 + W3 6 h 24 m

n
(

β2 ⊗ β
eq
3 + W3

)
→ n

(
β2 ⊗ β

eq
3 + W3

)
10→ 10600

comp. time of β1 ⊗ β
eq
2 + W2 > 24 h

n
(

β1 ⊗ β
eq
2 + W2

)
→ n

(
β1 ⊗ β

eq
2 + W2

)
unknown

Table 6.3: Computational results, approximate method.

comp. time of β{1,3} = β1 ⊗ β2 + W2 ⊗ β2 ⊗ β3 + W3 0.14 s

n
(

β1 ⊗ β2 + W2
)

, n
(

β2 ⊗ β3 + W3
)
→ n

(
β{1,3}

)
6, 6→ 270

comp. time of β{1,4} = β{1,3} ⊗ β3 ⊗ β4 + W4 6 h 13 m

n
(

β{1,3}
)

, n
(

β3 ⊗ β4 + W4
)
→ n

(
β{1,4}

)
270, 6→ 1456

suggested in [LBS16]. In fact, that method requires that the service curves involved
are superadditive. In ourmodel, the operands of these tough convolutions are instead
subadditive, because they are the result of SACs. We are not aware of anymethod that
allows one to limit the domains in this case.

Our approach to gaining efficiency is to abate both the number and the compu-
tation runtime of the convolutions of subadditive UPP curves. This operation, in
fact, lies at the core of both the exact and the approximate methods (recall that the
SAC of a UPP curve can be computed as a convolution the SACs of its elements, as
explained in Section 3.6). Reducing their number and making them as fast as pos-
sible is therefore going to make both methods more efficient. We do this without
introducing approximations: our computations are always exact. In the contribution
of this thesis, we show how we accomplish this, leveraging both representation mini-
mization and algebraic tools: first, we show that minimizing the representation R f of
the functions f involved in the operations may provide remarkable benefits. Then,
we present three theorems that can be used to reduce the computation time of con-
volutions, leveraging subadditivity of the operands.

We spend a few words discussing the generality of this example. With flow-

6.2 Extending the algorithmic toolbox: Interleaved Weighted Round Robin 59

controlled networks, different models can be envisaged as far as:

1. the exact place where flow control stops traffic when the flow control window
is closed, w.r.t. to the service curve modeling the sending node. For example,
this may be an input buffer of the sending node, or an output buffer instead.
The alert reader can check that using one or the other will lead to slightly dif-
ferent expressions for both the exact and the approximate end-to-end service
curves. However, they will still be of the same type as (2.8) and (2.10), re-
spectively, i.e., with either nested SACs or convolutions of subadditive UPPs.
Therefore, any computational issue thatwe address throughout this thesiswill
still be present;

2. whether or not the return path, i.e., the flow control credit feedback, is in-
stantaneous. Depending on how such feedback is implemented, other models
may, for instance, include a service curve on the return path as well. Again,
this does not change the structure of the expressions that we seek to compute
efficiently.

6.2 Extending the algorithmic toolbox: Interleaved
Weighted Round Robin

In Section 2.4, we recalled various results from the literature that make use of pseu-
doinverses and composition, operators whose UPP properties are not discussed in
the work of Bouillard et al. [BT07; BT08; BBL18]. This includes an expression for
computing the horizontal deviation (Equation (2.3)) and many models for round-
robin schedulers, among which we highlighted [TLB21, Theorem 1]. We selected
this result as it provides a multistep process that applies various operations on UPP
curves, including composition which, as we will show, in turn requires pseudoin-
verses. It is thus a proper use case to exemplify our software support for DNC re-
sults, and show its capabilities also by comparing the expressiveness of the code to
that of the mathematical result.

Lastly, the curves produced by such model, being non subadditive UPP func-
tions, may still lead, based on numerical properties, to computationally taxing con-
volutions. So, there is still a need for further optimizations that address a more
generic case than the one discussed in previous section.

60 Research Statement

6.3 Improving convolution runtime using
isomorphism

Moreover, we also researched improvement of convolutions thatwere not addressed
by the work on flow-controlled tandems, i.e., non-subadditive UPP curves. As men-
tioned, the work [PLSK11] was the first to observe that the isomorphism between
(min,+) and (max,+) convolution (Theorem 4.16) can be exploited to reduce the
runtime of (min,+) convolutions, in particular when chained. They were, however,
unable to discern whether the improvement was due to algebraic properties or in-
efficiencies in the implementation of RTC Toolbox.

Thus, we set out to investigate and identify, exploiting the insights gained on
pseudoinverses ofUPP functions, the algebraic roots of this improvement. We found
out that, on one hand, the improvement was algebraically explainable – and thus
not a quirk of the RTC Toolbox – but on the other hand, that the improvement was
not guaranteed, and counterexamples can be built that suffer worse runtime if the
isomorphism is applied. We then produce a novel technique, which exploits prop-
erties of both the “(min,+) computation” and the “(max,+) computation” to obtain
an algorithm that is, in most cases, better than both, and is at worse as good as the
best of the two (plus a negligible overhead).

Note that these results hold regardless of the shape of the curves – whether sub-
additive or not. Compared to the optimizations described in Section 6.1, though,
these still require to perform a convolution (even if with improved parameters)
while the improvements on subadditive convolutions largely avoid them, replacing
them instead with minima. Thus, in practice, these optimizations do not overlap.

Part II

Contribution

61

Chapter 7

Overview

In the second part of this thesis, we outline our contribution. As mentioned in the
introduction, this contribution has two natures, as it is, on one hand, a product of
software engineering, addressing the challenges that arise in the implementation of
an efficient and extendable computational library, and, on the other hand, it pro-
vides novel algebraic results, which extend the mathematical framework leading
to significant algorithmic optimizations. We try, then, to put these aspects side by
side, to show the direct link between formal results and an efficient implementation
in software.

In Chapter 8, we introduce the core design choices and architecture of theNancy
library and its project. We discuss a few core algorithms (from Cut() to (min,+) C c
onvolution()) and show, using simplified code (but not pseudocode), the process of
optimizing them with respect to memory utilization and parallelization. We then
mention how Nancy is made publicly available, its testing process, its documenta-
tion, its support for notebooks – aspects that are, if hardly significant from a purely
theoretical point of view, of fundamental nature for a software project that aims to
satisfy its design goals.

In Chapter 9, we discuss some features of Nancy that, while outside the core set
of operations described by the UPP algorithmic toolbox, are highly useful to a user.
The use cases considered include the implementation of newoperations, verification
of properties and/or hypothesis, writing tests, advance new research. These are
relevant examples of the larger rich API we refer to.

In Chapters 10 and 11, we extend the algorithmic toolbox presented in [BT08]
with, respectively, pseudoinverses and composition. We do so by providing, on one
hand, the formal results for stability of the set of function U over these operators
and their UPP properties, and on the other, the algorithmic steps to compute them.

In Chapter 12, we discuss the representation minimization, outlining the issue of
non-minimal representations and their effects on computation time, and providing
an algorithm to reduce any representation to their minimal equivalent.

63

64 Overview

In Chapter 13, we discuss the (min,+) convolution of subadditive curves, and
provide novel formal results that allows us to abate its computational cost signifi-
cantly – in some cases, avoiding the convolution entirely. We show that in the use
case of flow control tandems, presented in Section 6.1, these optimizations reduce
the computation times by several orders of magnitude.

In Chapter 14, we discuss the use of the isomorphism between (min,+) and
(max,+) convolution to improve both algorithms. We discuss the results of a previ-
ous work [PLSK11] that first observed this optimization but did not provide an ex-
planation –we fill the above gap, using the results on pseudoinverses given in Chap-
ter 10. Then, we further extend themathematical framework, introducing pseudoin-
verses and the isomorphism result for restricted functions, which are then used to
outline a novel algorithmic optimization for (min,+) and (max,+). We show that
these optimizations improve again computation times by several orders of magni-
tude – however, they do not overlapwith the subadditive convolution improvements
in Chapter 13.

In Chapter 15, we compare some of the functional features and design choices of
Nancy and RTC Toolbox. We discuss the choice of floating point numerical types and
the potential pitfalls of software that use them, then we show, aided by synthetic
benchmarks, how anomalies in RTC Toolbox suggest that these pitfalls apply there
– making the library generally more unstable the larger are the numbers used. We
also show, through these benchmarks, that thanks to the rational numerical types
Nancy does not suffer from the same issues, while the optimizations discussed in
the previous chapters allow it to surpass RTC Toolbox in many cases – against what
the hardware support for floating point numbers would suggest.

Finally, in Chapter 16, we provide some closing remarks and discuss promising
future venues of research stemming from this thesis, including on one hand, inves-
tigation of algorithmic properties, related to the ones discussed in this thesis, which
may also provide similar performance benefits, and on the other hand, further de-
velopment on the Nancy library and its toolset, providing new tools to the research
community.

Note on experimental setups
In the following chapters, we discuss our contribution using experimental results.
In these experiments, we define a parametrized type curve and then randomly gen-
erate such parameters. We use then this set of randomly generated curves to per-
form operations and compare how they behavewith andwithout our optimizations.
These experiments share, in general, the software setup described in detail in Ap-
pendix H.1 – we will mention how each experiment may deviate from this when
appropriate.

65

Moreover, we used multiple hardware configurations throughout our experi-
ments. We provide a detailed description of each system in Appendix H.2, and
will mention when appropriate which of these systems has been used for a given
experiment.

Chapter 8

The Nancy Library

The Nancy software library has been presented in [ZS22], coauthored with Giovanni Stea.

In this chapter, we discuss software architecture of the Nancy library, and the
approaches taken while facing the challenge of developing a library that allows, at
the same time, for ease of use of existing state of the art results and research and
development of new ones.

The library is designed with different goals in mind. First, from the perspective
of an external user, the interface is supposed to appear minimal and intuitive, and
be able to optimize computations by employing, transparently, the best suited algo-
rithms by default. Second, the internal architecture should, on one hand, allow for
extensibility via specialization of algorithms, on the other hand, have an intuitive
organization that, matching the mathematical model implemented, enables formal
verification of said implementation.

Similarly, different objectives guide the choice of programming language and
framework. On one hand, the library should be usable in a variety of contexts, from
command line applications to fully featured graphical interfaces, as well as interac-
tive environments, such as notebooks, best suited for research applications. Simi-
larly, such usability should not come with excessive learning load for the user, as
the syntax to use the library should appear, if not already familiar, easy to learn
and based only on the most language features that are commonly understood. On
the other hand, the language used for the library should not be overly simplistic, as
this could impede the use of advanced techniques for optimizing the library. For
example, the language should support ease of parallelization of algorithms, as well
as the use of generator pattern (a thorough introduction is provided in Appendix A)
to reduce active memory utilization while performing algorithms that involve large
collections, which are frequent, in practice, in DNC.

In this chapter, we discuss the choices done inNancywith reference to the above

67

68 The Nancy Library

goals. We discuss the architecture and implementation through simplified snippets
of code. Moreover, we provide an extensive example through the (min,+) convo-
lution, showing how different parts of these operations are implemented and opti-
mized in the layers of the architecture.

8.1 Choice of language and framework
Nancy is coded in C# 11 and .NET 7.01, and consists in more than 32k lines of code,
including in-code documentation and tests. C# is an object-oriented, statically and
strongly typed compiled language. Both build tools and runtime are cross-platform
and open source.

As a .NET library, Nancy can be used in a variety of context supported by .NET,
spanning from console to GUI applications and web services. It can be used also
from other languages that can interface with .NET, including F#, a functional pro-
gramming language, and Visual Basic. Moreover, .NET Interactive Notebooks en-
ables to write and test code usingNancy and see its results on a short feedback loop,
which is in particular useful for research.

The C# base syntax is very close to other imperative and object-oriented lan-
guages such as C++ and Java, thus it can be expected to look familiar to most users.
On the other hand, the language offers advanced syntax that is used within the li-
brary to improve the readability of the code and its performance.

One such feature is LINQ2, which enables the user to write efficiently algorithms
that involve large collections. We provide an example in Listing 8.1. LINQ imple-
ments the generator pattern, and togetherwith the yield syntax this can be leveraged
to minimize memory allocations during computations at a near zero cost in pro-
gramming effort. How this is achieved is shown in Appendix A, which discusses
the pattern at length.

Listing 8.1 Example of LINQ code to get naturals multiples of 6 and less than 100.

var list = GetMultiplesOf2()
.Where(n => n < 100)
.Where(n => n % 3 == 0)
.ToList();

Moreover, C# classes can be coded so that objects are immutable, meaning that
any instance method of an object may not change the object itself, rather it will re-

1These were released during the writing of this thesis. The version of Nancy used for the results
discussed here was based on C# 10 and .NET 6.0.

2Language INtegrated Query.

8.1 Choice of language and framework 69

turn a new modified one.3 While this technique may appear to inefficiently use
memory in some contexts4, it has the strong advantage of ensuring that each object
and operation is thread safe, meaning that the same object can be used by multiple
algorithms running in parallel.

This can be exploited together with another C# feature, PLINQ (Parallel LINQ).
The latter enables one to make LINQ code to run using multiple cores, if available
at runtime, as exemplified in Listing 8.2.

Listing 8.2 Example of PLINQ code: the numbers are now checked using multiple
cores.

var list = GetMultiplesOf2()
.AsParallel()
.Where(n => n < 100_000)
.Where(n => n % 3 == 0)
.ToList();

The main downside of using PLINQ is the risk of high overhead cost if the num-
ber of items that can be processed in parallel is low. We avoid this in Nancy by
using thresholds to decide whether a given query should be executed using stan-
dard LINQ or PLINQ. These thresholds were set based on benchmarking results,
although we note that such performance results may vary with the algorithm being
run, system architecture, memory availability, etc.

In the following, wewill mention algorithms in which we exploit this to improve
performance, e.g., in the LowerEnvelope() algorithm discussed in Section 8.8. From
the perspective of a user, though, exploiting the parallelism of Nancy is as simple as
turning a switch on – or rather, not turning it off. This, and many other optimiza-
tions, are in fact controlled with a ComputationSettings object that the user can pass,
optionally, to most methods of the library to control its behavior.

The ComputationSettings class provides many switches for many parts of the li-
brary, and is planned to be expanded to provide more control to the user. Being
already quite large, we will only mention, when appropriate, the relevant toggles
to the discussion at hand. For parallelism, many switches control whether differ-
ent methods should exploit parallelism or not, and with which thresholds, plus a
catch-all UseParallelism field that can enable or disable all at once – by default Use c
Parallelism = true, so users of the library do not need to do anything to gain from
this.

3Our definition focuses on immutability from an external point of view: the object may cache
results to improve future computations.

4In these cases, however, one can expect the garbage collector tomanage and reclaim thememory
as needed.

70 The Nancy Library

8.2 Numerical types

As discussed in Part I, the mathematical model focuses on rational numbers, Q. For
this library, we chose to avoid using approximate types such as floating point num-
bers, to avoid the inconsistencies and issues that arise from these approximations
and operations such as lcm. In Chapter 15, we further discuss this point and how,
we believe, these issues affect the RTC Toolbox [WTa].

The native types provided in C# do not include one that accurately represents
rational numbers, thus we defined a custom type, Rational, including all the oper-
ations needed. We provide two implementations of this type, whose choice can be
changed with a compiler flag.

The first implementation uses two long integers (64 bit) to store the numerator
and the denominator, respectively. While this provides a very large set of repre-
sentable numbers, without any loss of accuracy, one may still find edge cases for
which such bit length is not enough, causing an overflow exception at runtime.
The Rational type uses this implementation if the LONG_RATIONAL compile flag is used.
Moreover, LongRational type provides the same implementation, regardless of com-
pile flag used.

The second implementation uses instead the BigInteger type. This type uses an
efficient list data structure to use as many bits needed to represent the required re-
sult, so that, as long as enough memory is physically available, any integer may be
represented. As a non-primitive type, it can be expected to incur in overhead com-
pared to using long, even if small numbers are being represented. The Rational type
uses this implementation if the BIG_RATIONAL compile flag is used, while BigRational

provides it regardless of compile flag used.

In micro-benchmarks, such as the one discussed in Figure 15.1 of Chapter 15, we
observed LongRational to be up to 5x faster tan BigRational. However, in practical use
within the library, the difference is usually smaller, and the comparison is compli-
cated by the fact that larger studies tend to push LongRational towards overflowing.
Sincewe show that higher performance gains can be achievedwithout compromises
on accuracy and computability, we believe the tradeoff to be in favor of BigRational.

Note that, in cases where using long produces an overflow, the library will throw
an exception and stop computations. Since the two libraries provide the samenames-
paces and classes, it is sufficient to then change the library loaded to the BigRational

one and recompile, without further changes to the user code.

The drawback of this approach is that one cannot compile code that uses both at
the same time. Onewould need, instead, to use the trickier approach of dynamic (i.e.,
at runtime) loading of the library.

8.3 Layered architecture 71

8.3 Layered architecture
The Nancy library is organized in layers which reflect the mathematical model de-
scribed in Chapter 3. These are:

• The Curve layer, which represents functions of U ,

• The Sequence layer, which represents functions of U over a finite interval,

• The Element layer, which is composed of Points and open Segments.

A schema of the Curve class is shown in Listing 8.3. It implements the represen c
tation of a function f ∈ U : the BaseSequence contains the values of f in the interval
[0, T + d[, while PseudoPeriodStart, PseudoPeriodLength and PseudoPeriodHeight provide
the values of, respectively, Tf , d f and c f .

Listing 8.3 Schema of the Curve class.

public class Curve
{

Sequence BaseSequence;
Rational PseudoPeriodStart;
Rational PseudoPeriodLength;
Rational PseudoPeriodHeight;
[...]

}

A schema of the Sequence class is shown in Listing 8.4. It implements a sequence as
defined in Definition 3.6: Elements is in fact an ordered set of elements that alternate
between points and segments, so that they provide the values of a function f in a
finite interval I (which could be, on both sides, either open or closed).

Listing 8.4 Schema of the Sequence class.

public class Sequence
{

List<Element> Elements;
[...]

}

Lastly, the Element class is an abstract class, which is implemented by Point and
Segment, as is shown in Listing 8.5. Again, these provide an implementation to the
formal definitions provided in Definitions 3.4 and 3.5.

Each class provides a rich API that allows to implement other algorithms. Given
an operation to implement, the task is divided between these layers. On one hand,

72 The Nancy Library

Listing 8.5 Schema of the Element, Point and Segment classes.

public abstract class Element
{

[...]
}

public class Point : Element
{

Rational Time;
Rational Value;
[...]

}

public class Segment : Element
{

Rational StartTime;
Rational EndTime;
Rational RightLimitAtStartTime;
Rational Slope;
[...]

}

this has the advantage of establishing clear responsibilities that ease code naviga-
tion, maintenance and extensibility; on the other hand, given the nature of imple-
menting a mathematical library, this allows also to focus on the individual opera-
tions to verify, formally, their correctness.

In the following sections, we discuss the example of the (min,+) convolution,
mentioning all the parts thewere designed towork together to efficiently implement
the results of [BT07; BT08]. This discussion will be also useful for the following
chapters, where we provide improvements to this same algorithm, as well as the
implementation of other operations according to the same overall strategy.

8.4 Implemented operators
The main operators that are implemented by the library are

• Addition and Subtraction

• Minimum and Maximum

• (min,+) Convolution and Deconvolution

• MaxPlusConvolution and MaxPlusDeconvolution

• SubAdditiveClosure, SuperadditiveClosure

8.5 The Cut algorithm 73

• LowerPseudoInverse, UpperPseudoInverse

• Composition

For most of the above, the algorithm is either discussed in [BT08; BBL18] or can
be derived along the same steps (e.g., Maximum and MaxPlusConvolution). As already
mentioned, of these we will discuss in depth only the (min,+) Convolution operator,
since it is relevant both to present the architecture and for the algorithmic improve-
ments discussed in the following chapters.

The algorithms for pseudoinverses and composition are instead novel results,
discussed in Chapters 10 and 11.

8.4.1 Note on plain and ultimately plain functions
As mentioned in Section 3.8, for some of these operators, such as minimum and
convolution, [BT08] shows that the operands being in U , alone, is not sufficient to
assert that the result is again in U . A sufficient condition is instead obtained under
additional hypotheses such as operands being plain or ultimately plain. On the other
hand, these are not necessary, i.e., one can construct a case where operands that are
not ultimately plain still produce a result in U .

Lacking, to the best of our knowledge, a set of conditions that are both sufficient
and necessary, the library leaves to the user the task to check that the operation is
meaningful. To aid them with this task, the library implements the IsPlain and Is c
UltimatelyPlain checks.

8.5 The Cut algorithm
An important part of the U mathematical model is that UPP functions allow us to
store the representation of a function f over a finite interval

[
0, Tf + d f

[
, and to de-

rive the values for any t in
[
Tf + d f ,+∞

[
only when needed, using Equation (3.1).

While intuitively simple, it is worth taking some time discussing how this can be
efficiently implemented, as this also affects how the rest of the library may be built
on top of it.

Assume that an algorithm needs the values of f in [ta, tb[, where ta < Tf + d f
and Tf + 2 · d f < tb < Tf + 3 · d f . With reference to Figure 8.1, we can regard f as
being composed of a transient and a period (already stored in memory, as BaseSeque c
nce), followed by an infinite amount of period replicas, to be computed on the fly as
needed.

A first implementation may consider a method, say GetPeriodReplica(int i), that
returns the elements that compose the i-th period replica. Then one can bound the
latest i thatwill be used by computing imax =

⌈
tb−Tf

d f

⌉
, and construct a list containing

74 The Nancy Library

transient period

BaseSequence

period replica #1

period replica #2

Figure 8.1: View of a cut of f and the required period replicas.

all elements from the BaseSequence and all period replicas i = 1 . . . imax. Then, a
filtering step (assume it is implemented by Sequence.Cut()) can remove the parts for
t < ta and t ≥ tb from said list, the result from this step can then be returned. This
process is summarized in the (simplified) code of Listing 8.6.5

Listing 8.6 Scheme of the Curve.Cut() method

Sequence Cut(Rational t_a, Rational t_b) {
var i_max = Math.Ceil((t_b - this.T) / this.d);
var elements = new List<Element> { this.BaseSequence.Elements };
for(int i = 1; i <= i_max; i++) {

elements.AddRange(GetPeriodReplica(i));
}
var sequence = new Sequence(elements);
return sequence.Cut(t_a, t_b);

}

There are some inefficiencies in this approach. The first obvious one is that per-
forming the filtering after allocating all elements involves more active memory uti-
lization, which can be detrimental due to the high number of elements than may be
involved in some computations. The second, less obvious, one is that many algo-
rithms require elements up to tb, but may, for many reasons, terminate earlier and
never process elements after some t – thus their allocation is unnecessary in the first
place.

Both can be addressed by implementing Cut as a generator method, that returns
elements one at a time and allocates them only when necessary. To be efficient, this
requires also GetPeriodReplica() to be a generator method, so that we only retrieve
the parts of replica imax that are within tb. This is summarized in Listing 8.7, where
we assume for simplicity that ta and tb are breakpoints (Definition 3.7).

5Given two Lists a and b, a.AddRange(b) appends all elements of b to a.

8.6 Implementing the by-curve (min,+) convolution 75

Listing 8.7 Scheme of the Curve.CutAsEnumerable() method

IEnumerable<Element> CutAsEnumerable(Rational t_a, Rational t_b) {
var i_max = Math.Ceil((t_b - this.T) / this.d);
foreach(var element in this.BaseSequence.Elements) {

if (element.StartTime < t_a)
continue;

else
yield return element;

}
for(int i = 1; i <= i_max; i++) {

foreach(element in GetPeriodReplica(i)) {
if (element.StartTime < t_b)

yield return element;
else

yield break;
}

}
}

On the other hand, this approach of allocating one replica at a time may not
take advantage of parallelization. In fact, it the number of replicas needed is large
enough, it may be useful to parallelize their computation. To do this efficiently, one
would have to provide an algorithm that mixes the two strategies, where batches of
elements are allocated in advance and in parallel, yet returned only as necessary.

Finally, the semantics of the two methods, Cut and CutAsEnumerable, are clearly
different: most users may still expect a method that simply returns a Sequence, rather
than an IEnumerable<Element>, which will require an introduction on generators to
most. Hence, Nancy provides both.

8.6 Implementing the by-curve (min,+) convolution
We discuss now how the (min,+) convolution, presented in Chapter 3, can be im-
plemented. We assume for simplicity, that f and g are neither UA nor UI, and such
that ρ f 6= ρg, i.e., we avoid those cases where optimization opportunities – which
we do take in Nancy – would complicate our discussion. Another assumption is
that this convolution is well-defined, i.e., there are no t1, t2 such that f (t1) = +∞ and
g(t2) = −∞, or vice versa [BT08, p. 7] – in such case, our implementationwill throw
a runtime exception.

As discussed in Section 3.4, to compute the (min,+) convolution of two generic
UPP functions we need to decompose the convolution into four terms, compute
them separately, and then compute their minimum. This is summarized in List-
ing 8.8.

76 The Nancy Library

Listing 8.8 Scheme of the Curve.Convolution() method

Curve Convolution(Curve f, Curve g)
{

var h_tt = ConvolutionTransientTransient(f, g);
var h_tp = ConvolutionTransientPeriodic(f, g);
var h_pt = ConvolutionTransientPeriodic(g, f);
var h_pp = ConvolutionPeriodicPeriodic(f, g);
return Minimum(h_tt, h_tp, h_pt, h_pp);

}

We mention in particular the algorithm for the fourth term, i.e., the convolu-
tion between periodic parts, as it is also the focus of the optimizations discussed in
Chapter 14. The method uses the results of Proposition 3.15 to compute f ∧p ⊗ g∧p .
We provide a first implementation of it in Listing 8.9, which we then discuss for
improvements.

Listing 8.9 Scheme of the Curve.ConvolutionPeriodicPeriodic() method

Curve ConvolutionPeriodicPeriodic(Curve f, Curve g)
{

var d = Rational.LeastCommonMultiple(f.d, g.d);
var c = d * Rational.Min(f.rho, g.rho);
var T = f.T + g.T + d;
var fCut = f.Cut(f.T, f.T + 2 * d);
var gCut = g.Cut(g.T, g.T + 2 * d);
var seq = Sequence.Convolution(fCut, gCut)
var resultSeq = seq

.Cut(f.T + g.T, f.T + g.T + 2 * d)

.PrependWithPlusInfinity(0, f.T + g.T);
return new Curve(resultSeq, T, d, c);

}

We stress the use of Sequence.Cut in this code: in fact, note that from the by-
sequence convolution, wemay obtain a larger sequence than that we are interested in.
In fact, consider the case of an element e f whose support is ⊂

[
Tf + d, Tf + 2 · d

[
,

and similarly for eg whose support is ⊂
[
Tg + d, Tg + 2 · d

[
. While, as shown in

Proposition 3.16, these elements are both needed for the correct computation of the
convolution, their convolution e f ⊗ eg has support I where I∩

[
Tf + Tg, Tf + Tg + 2 · d

[
=

∅. Thus, due to e f ⊗ eg and similar cases, the by-sequence convolution may have a
larger support than needed, and needs to be filtered according to the interval that,
via the formal results, we are sure to be correct.

On the other hand, we note that computing e f ⊗ eg is unnecessary in the first
place, and we can optimize the by-sequence convolution by skipping this and other
similar cases. We discuss this in the following section.

8.7 Implementing the by-sequence (min,+) convolution 77

8.7 Implementing the by-sequence (min,+)
convolution

As described formally in Section 3.4.2, in the by-sequence convolution we decompose
each sequence into their constituting elements, and compute the set of by-element
convolutions (i.e., point with point, point with segment, segment with segment).
These are discussed thoroughly in [BT08, Lemma 2-4] and, being trivial to imple-
ment, wewill omit their discussion. Then, given E, the set of elements resulting from
these by-element convolutions, we compute their lower envelope, which concludes
the algorithm. We provide a first version of this in the following.

Listing 8.10 Scheme of the Sequence.Convolution() method

Sequence Convolution(Sequence sf, Sequence sg)
{

var convolutionElements = new List<Element>();
foreach(var e_f in sf){

foreach(var e_g in sg){
convolutionElements.AddRange(Element.Convolution(e_f, e_g));

}
}
var le = LowerEnvelope(convolutionElements);
return le;

}

The code abovewill compute the by-element convolution resulting from every pair
of elements from sequences s f and sg. However, as we mentioned, there are many
caseswherewe can check a prioriwhether the convolution of a given pair of elements
is of any interest for the result. We thus restructure the code in order to support
such instances where the pairs need filtering, and we do so taking advantage of the
generator pattern. In Listing 8.11, we implement two of these filters, leaving out a
pair of elements when either is equal to+∞, or when the convolution between them
ends up outside the interval of interest (as discussed in the previous section).6

6In C#, syntax (Element ef, Element eg) denotes a tuple. Tuples can be seen as a shorthand
for classes whose only purpose is to group values together.

78 The Nancy Library

Listing 8.11 Scheme of the Sequence.Convolution() method, restructured to use filters

Sequence Convolution(Sequence sf, Sequence sg, Rational cutEnd = Rational.PlusInfinity) {
var convolutionPairs = GetFilteredElementPairs(sf, sg, cutEnd);
var convolutionElements = new List<Element>();
foreach(var pair in convolutionPairs)

convolutionElements.AddRange(Element.Convolution(pair.ef, pair.eg));
var le = LowerEnvelope(convolutionElements);
return le;

}

IEnumerable<(Element ef, Element eg)> GetFilteredElementPairs(
Sequence sf, Sequence sg, Rational cutEnd) {
return GetElementPairs(sf, sg)

.Where(pair => pair.ef.IsFinite && pair.eg.IsFinite)

.Where(pair => pair.ef.StartTime + pair.eg.StartTime < cutEnd);
}

IEnumerable<(Element ef, Element eg)> GetElementPairs(Sequence sf, Sequence sg) {
foreach(var ef in sf)

foreach(var eg in sg)
yield return (ef, eg);

}

In this version, Sequence.Convolution() has a third, optional argument, withwhich
the caller can specify the end of its interval of interest – so that unuseful convolutions
may not be computed. This structure can be efficiently extended to add more cases
for which by-element convolutions may be removed – as discuss in Chapter 14.

The process of computing the by-element convolutions is also highly paralleliz-
able, as it is a (usually) large number of operations that are independent of each
other and without side effects. Since the number of pairs is crucial for the tradeoff
between serial and parallel operations, we do a counting step beforehand, using the
LINQ LongCount() method.

var pairsCount = GetFilteredElementPairs(sf, sg, cutEnd).LongCount();

Note that this line – being based on generators – has no allocation cost and, in our
benchmarks, takes very little time compared to the runtime gain between the two
methods. In Nancy, the use of a parallel by-sequence convolution is controlled by
the settings UseParallelConvolution and ConvolutionParallelizationThreshold, i.e., the
parallel algorithm is used only when pairsCount is above the threshold.

The by-sequence convolution may easily produce, in our experiments with more
complex convolutions, millions of elements. Storing them in memory at the same
time to compute their lower envelope may be taxing for the physical memory, and
we recall that onmodern systems performancemay degrade by orders ofmagnitude
when the operating system is left with little available memory left.

8.8 Lower envelope algorithm for (min,+) convolution 79

However, we note that, in our experience, the large majority of elements of E do
not end up being part of the lower envelope, i.e., n(E) � n(

∧
E). Moreover, the

lower envelope of set E can be partitioned, as
∧

E = (
∧

E1) ∧ · · · ∧ (
∧

En), where
each Ei is a partition of E with more manageable cardinality. We can exploit, for
this, the fact that the pairsCount can be computed cheaply and without allocating
the entire set at once – i.e., we can check beforehand if, even with filters in mind,
we risk saturating the memory. If UseConvolutionPartitioning is true and the count
is above ConvolutionPartitioningThreshold, we proceed with the partitioned convolu-
tion algorithm. We use the LINQ Chunk() method to allocate and retrieve the pairs
by partitions (or chunks) of ConvolutionPartitioningThreshold. For each of these parti-
tions we proceed with the usual algorithm, computing the by-element convolutions
and then their lower envelope – which can be parallelized, using the same settings
discussed just before. Then, we compute the minimum of these partial lower en-
velopes – which can also be parallelized, using UseParallelListLowerEnvelope. In the
following section, we close the only remaining gap, discussing the implementation
of the lower envelope algorithm.

8.8 Lower envelope algorithm for (min,+)
convolution

In this subsection we discuss the algorithm to compute the lower envelope of a set
E of elements resulting from by-element convolutions. Such set is in general not or-
dered andwith varying overlap patterns, as shown in Figure 8.2a. Hence, differently
from the case of the minimum, where we have two perfectly overlapping sequences,
it would be inefficient to attempt to compute the lower envelope by direct compari-
son – given n(E) the number of elements, this would have O

(
n(E)2

)
complexity.

Instead, we obtainO (n(E) · log(n(E))) complexity by grouping the elements in
E by intervals of overlap, and compute the lower envelope as the juxtaposition of per-
interval lower envelopes. The result of such process, which we describe in detail in
the following, is exemplified in Figure 8.2b. Considering the interval]5, 6[, the lower
envelope over such interval is equal to the lower envelope of only those segments
whose support contains]5, 6[. The same can be said for point-sized intervals such
as {3} and {6}.

Definition 8.1. Let e1 and e2 be elementswith, respectively, support I1 and I2. We say
that they share interval of overlap I if I = I1 ∩ I2 6= ∅, and that e1 and e2 belong to I.7
We say I is point-sized if it is of the form {t}; we say instead it is segment-sized if it is
of the form]ta, tb[.

7An element, more precisely a segment, may belong to more than one interval of overlap.

80 The Nancy Library

1 2 3 4 5 6 7 8
0

1

2

3

4

(a)

1 2 3 4 5 6 7 8
0

1

2

3

4

(b)

Figure 8.2: Intervals for a set of elements (a) and their lower envelope (b).

Note that, given Ii the support of element i, i = 1, . . . , n, the set of intervals of
overlap forms a partition of their union

⋃
i=1...n Ii. Then, the process is as follows

• collect the start and end times of all the elements in E and order them. Let the
result be t0, t1, . . . , tN;

• derive point- and segment-sized intervals for and between each of these times,
i.e., {t0},]t0, t1[, {t1}, . . . ;

• associate to each of the above interval the set of elements that belong to it, ini-
tially empty;

• for each element e ∈ E, find all the intervals I belongs to, and add e to their
lists.

We underline that the element-interval relationship is many-to-many: the same
element may span multiple intervals, and an interval may include several elements.
Afterwards, we compute the lower envelope over each interval I, and we concate-
nate these to obtain the overall lower envelope of E.
As for the algorithm costs, we note that

1. finding which intervals an element belongs to is O (n · log(n)), where n is the
number of intervals, if one uses an interval tree;

2. inserting an element in the lists of all the intervals it belongs to, instead, depends
on the number of intervals an element belongs to (something which we show
to be highly variable in a few lines), and is O (n) in a worst case;

8.8 Lower envelope algorithm for (min,+) convolution 81

3. computing the per-interval lower envelope of I costs O (m) if I is point-sized,
O (m · log(m)) if segment-sized, where m is the cardinality of EI ;

4. the concatenation of the per-interval results is O (n).

Of the above steps, we note that steps 2 and 3 are independent of the number
of elements, but instead depend on how much overlap there is between them. In
fact, the more overlap there is between the elements of E, the higher the cost of this
algorithm is. Some of the overlaps – actually, most – will not yield segments that
end up being part of the lower envelope. This phenomenon can lead to large differ-
ences in the actual computation time between lower envelopes of sets with similar
cardinality. We highlight one such case in Section 13.2.

This algorithm is implemented in Nancy as the Sequence.LowerEnvelope() static
method, which uses the Interval and InteralTree classes internally. An Interval rep-
resents an interval of overlap and the set of Elements that belong to it, while IntervalTree

implements an efficient and thread safe query method to obtain the set of Intervals
an Element overlaps with.

Given the set of elements, elements, Sequence.LowerEnvelope() does the following:

1. uses the Interval.ComputeIntervals() static method to get the ordered set of in-
terval of overlap, each with the elements that belong to it;

2. for each interval, it uses interval.LowerEnvelope() to obtain the per-interval lower
envelope. This is done independently for each interval, hence it can be paral-
lelized;

3. returns the lower envelope by concatenating, in order, the per-interval lower
envelopes.

Moreover, the Interval.ComputeIntervals() static method does the following.

1. collects the set times of start and end times of all elements, ordered anddistinct.
This can be parallelized using PLINQ,

2. instantiates the set intervals of Interval based on this set, and an IntevalTree

over said set,

3. for each element, it uses the IntervalTree to obtain the set of Intervals it overlaps
with; and then adds the element to their respective sets,

4. returns the set intevals.

Step 3 of the above algorithm is composed of independent operations, although
parallelizing it can be tricky. In fact, while the queries to IntervalTree can be run in
parallel, appending elements to the collection of each Interval requires a thread-safe

82 The Nancy Library

collection (e.g., ConcurrentBag<T>), which is much slower than a List<T> when not ac-
tually used concurrently. The alternative approach we take is instead to expand the
result of the IntervalTree, i.e., from each (Element, List<Interval>) result we get a L c
ist<(element, interval)>. Collecting together all these overlaps, we can then group
them by inteval, obtaining then a set of (interval, List<Element>) tuples. Then the
insertion of these Elements into the corresponding intervals can be executed in par-
allel and thread-safely using the performant List<T> as backing storage.

We remark that the tradeoff between a) concurrent insertion using ConcurrentBag c
<T> and b) doing the extra groupingwork for thread safe parallel insertion using Lis c
t<T> depends, other than the number of elements and overlaps, also on the hardware
and its support for efficient concurrent data structures.

The parallelization of Sequence.LowerEnvelope() is controlled by the setting UseP c
arallelLowerEnvelope, while the parallelization of Interval.ComputeIntervals() is con-
trolled by settings UseParallelComputeIntervals and settings.ParallelComputeInterval c
sThreshold (the algorithm is not parallelized unless the number of elements is above
the threshold).

8.9 Inheritance and specialization of algorithms
Asmentioned, the algorithms need to be specializable, i.e., to allow for extensionwith
more efficient algorithms for particular cases (e.g., when additional hypotheses on
the operands are available). We do this in two ways: within the standard algorithm
and through subclasses.

An example of the first strategy are the optimizations for Ultimately Affine func-
tions. In this case, the main source of optimization is that there are no breakpoints
within the pseudo-periodic part of the function, and, more importantly, the period
length is immaterial. Thus, whenever we are computing the hyperperiod of two
functions where one is UA, we set their period length to be 1, i.e., the identity ele-
mentw.r.t. the lcm. This property is simple and cheap to verify, while the algorithms
are mostly unchanged, aside from the hyperperiod optimization mentioned above.
Thus, reaping the benefits ofUltimatelyAffine functions requires no extra code from
the user.

The subclassing approach is, instead, meant for the different case of properties
that are harder to verify on-the-fly, that alter algorithms significantly, or that are
simply of particular significance from a modeling perspective.

An example of the first two is the SubAdditiveCurve class, which is used to mark
curves that are subadditive and have f (0) = 0. Computing the (min,+) convolu-
tion of such curves can then benefit from the optimizations discussed in Chapter 13.
Similarly, ConcaveCurve marks curves that are concave and have f (0) = 0, for which
is known that f ⊗ g = f ∧ g ([BBL18, Prop. 3.12]). These optimizations are then

8.9 Inheritance and specialization of algorithms 83

implemented by overriding the Curve.Convolution() method, e.g., with SubadditiveC c
urve.Convolution(), taking into account these properties to try and avoid computing
the convolution at all.

However, verifying that a function is subadditive, as discussed in detail in Sec-
tion 9.3, comes at a significant computational cost. Testing for concavity is cheaper (a
linear scan), but would still add a significant overhead. Thus, we leave to the user to
check these properties when deemed appropriate, andmanuallymark known prop-
erties of functions using the corresponding subclass. Similar classes, with similar
optimizations and concerns, are available for superadditive and convex functions.

We clarify the above with some examples. Suppose that we compute a curve f
that is known to be subadditive. We can make this explicit using the following code:

// if doTest is true, the property is tested,
// and an exception is thrown if the curve is not actually subadditive
// if doTest is false, the library 'trusts' the user and skips checking
var f = new SubAdditiveCurve(/* parameters */ , doTest: false);

The above is done automatically when performing computations that are known to
produce subadditive functions, e.g., the subadditive closure or convolution between
subadditive functions.

// f will be automatically marked as SubAdditiveCurve
var f = (/** some other curve **/).SubAdditiveClosure();

Consider now, instead, that we have a curve g that might be subadditive and, if that
is the case, we desire to exploit this property for optimizations when we compute
its convolution with f. Then we may use the following:

var g = /* some code */ ;
if(g.ValueAt(0) == 0 && g.IsSubAdditive) { // may be an expensive check

g = new SubAdditiveCurve(g, doTest: false); // mark it as subadditive using the subclass
}

// the following convolution may use the standard algorithm or the optimized one,
// depending on the result of the above check
var h = Curve.Convolution(f, g);

On the other hand, classes such as RateLatencyServiceCurve serve the purpose of
simplifying the construction and management of curves that are common in DNC
studies. Moreover, one can provide overrides to make the operator result more spe-
cific. For example, the addition of a RateLatencyServiceCurve, βR,θ, with a ConstantCu c
rve 8 , W, yields a RaisedRateLatencyServiceCurve, βR,θ + W. Then we exploit the fact
that, as discussed in Section 3.6, for this expression we can compute the subadditive

8As demonstrated later, when performing the addition of a curve with an int, the latter is im-
plicitly cast into a ConstantCurve.

84 The Nancy Library

Listing 8.12 Example of unit test used in Nancy.

[Fact]
public void FlowControlExpressionTest()
{

var f = (new RateLatencyServiceCurve(2, 1) + 1).SubAdditiveClosure();
// test properties
Assert.False(curve.IsContinuous); // there is a right-discontinuity at 0
Assert.False(curve.IsRightContinuous);
Assert.True(curve.IsLeftContinuous);
Assert.True(curve.IsContinuousExceptOrigin);
Assert.True(curve.IsNonDecreasing);
Assert.True(curve.IsSubAdditive);
// test some function values
Assert.Equal(0, f.ValueAt(0));
Assert.Equal(1, f.RightLimitAt(0));
Assert.Equal(1, f.ValueAt(2));
Assert.Equal(2, f.ValueAt(3));

}

closure in closed form. In fact, RaisedRateLatencyServiceCurve overrides the Curve.S c
ubAdditiveClosure() method, and computes the result using said closed form rather
than the generic NP-hard algorithm.

The abovemeans that a user can compute the result of expressions such as β2,1 + 1
writing code that intuitively resembles it and is efficient to execute, as shown below.

// this code is O(1)
var b = new RateLatencyServiceCurve(2, 1);
var f = (b + 1).SubAdditiveClosure();

8.10 Testing
For a software implementation, it is important to have a sound testing procedure
to a) catch bugs in new features earlier, and b) avoid creating new ones in existing
features, i.e., regressions. Nancy comes with a large library of tests, that have been
collected during its development and use to verify its correctness and dealwith edge
cases. These tests are collected in Nancy.Tests, using the XUnit unit test framework.

For example, one may check that the code closing the previous section yields the
correct the result. Using the handy properties and methods discussed in Chapter 9,
one can easily check that the object has the expected mathematical properties, i.e.,
those of β2,1 + 1. The code for such test would then look as in Listing 8.12. When
run, the XUnit framework will then execute these test, and report any assertion that
is not verified.

8.11 Publication 85

There are many ways we used to gather the tests that make up the current col-
lection. The first are hand-picked examples whose computation is simple enough to
perform using pen and paper, as is indeed the case for the example in Listing 8.12.
Then we have the algebraic equivalences, i.e., relationships between the operators
that we verify to hold within Nancy as it is expected from the formal proofs – e.g.,
Lemma 3.26. Lastly, we have the use cases that came frompractical use of the library,
which highlighted edge cases or outright bugs in the past. In those cases, we would
first isolate the issue into one or more failing tests. Fixing the root issue would then
naturally turn those tests into passing ones and, afterwards, they remained useful
to make sure future changes do not revert the behavior into an incorrect one – what
is usually called a regression.

In the approachmentioned above, wemanually checked the results of the library
looking for inconsistencies and, ultimately, the root causes of the issues at hand.
However, recent results [RRB21; BRD22] show that mathematical properties can be
leveraged to build a verifier of tools, i.e., a tool that can be used to test if a given
result is correct. It would then be valuable to apply such automated verification on
the results of this library, to more easily identify issues and further build confidence
on the correctness of the implementation.

8.11 Publication
The Nancy library is distributed both as source code, on GitHub [ZSd], and as pre-
compiled binaries, on NuGet [ZSc]. On the latter, it is distributed in two forms,
distinguished by numerical type: the Unipi.Nancy package uses the BigInteger imple-
mentation, while the Unipi.Nancy.LongRational package uses the long one. It is pro-
vided with the MIT license, a standard license for open source that, differently from
free software licenses such as the GPL, allows for wide adoption within commercial
and industrial contexts.

In the publication process of the library, we adopted many principles and prac-
tices that, in the last decade, have become the standard for quality of open source
software. Using GitHub Actions, we set up a CI/CD pipeline that, for any new
commit marking a release, will automatically run the tests, build the packages and
publish them on NuGet, minimizing the attrition and manual actions required to
bring the latest changes to the users. A similar process is followed for the documen-
tation website, whose contents are built directly from the in-code comments of the
library.9

9While many of the tools used to build the website were already available, the process to extract
the documentation and format it into Markdown required some coding, an effort in tooling that we
plan to share, again, as open source.

86 The Nancy Library

Figure 8.3: Example of use of notebooks, where the call plot(...) generates the im-
age below the notebook cell.

8.12 Support for notebooks
Lastly, wemention thework to supportNancywithin .NETNotebooks. For research,
it is particularly useful to be able to quickly experiment with expressions and see
what their results look like, hence we sought an environment that allowed us just
that, with the least friction possible.

.NET Notebooks (like other forms of notebooks that have surfaced in the past
decade) allow one to write and execute code within an interactive environment.
Thanks to the addition of plot() function – which we provide via our notebook tem-
plates – one can also plot the curves. Of course this would be incomplete without
handy methods to “poke” the curve for algebraic properties and values, as well as
the ability to retrieve high-quality plots for scientific publication – we discuss these,
among other extensions, in the following chapter.

Wewish to emphasize that, in our experience, this featurewas critical for coming
up with, or fixing the issues of, many of the results we discuss within this thesis, or
at the very least, to reduce dramatically the time required to do so.

Chapter 9

Useful Extensions

In this chapter, we present some smaller results that – we believe – are of interest
towards the implementation of a software library, yet by themselves too small to
deserve publication (compared, e.g., to the results discussed in the following chap-
ters). To the best of our knowledge, these results and algorithms have not been dis-
cussed in the literature, yet we believe they are easy to derive from, e.g., the model
provided in [BT07; BT08; BBL18]. These are both useful to the purpose of imple-
menting the other results discussed in this thesis, but also to enrich the API pro-
vided to the user – in our own experience, having these available has far improved
the research experience and productivity.

9.1 Sampling at or near a time t

Often, the first step into debugging a mathematical object is to observe its values.
While most algorithms, as discussed here, are usually focused on processing sets
of values, too much information is usually overbearing to a user. Moreover, it is
easier to write tests for the software if one can sample the result at known points
and compare with its expected value computed by pen-and-paper means.

The instance methods ValueAt(), RightLimitAt() and LeftLimitAt() provide this
functionality across all layers. The most interesting one is the Sequence layer: here
the algorithm becomes a search for the Segment or Point whose support contains the
required t. This is implemented as a binary search. Given a sequence s and the cur-
rent index range [a, b], the algorithm checks the elements s[a], s[(a+b)/2] and s[b]

to decide its next index range, halving the search range until the target is found.
At the Curve layer, the algorithm only checks if t < T + d or otherwise, to find the

least initial range of search – if [0, T + d[the search uses the baseSequence, otherwise
the proper pseudo-period replica must be computed and used. In any case, let S be
the sequence within which we search (either the base sequence or a pseudo-period
replica), the algorithmic complexity is O (log n(S)).

87

88 Useful Extensions

The alert reader may note that, given how the search works, the same algorithm
can be (and is) used to implement GetSegmentBefore(), GetElementAt() and GetSegmen c
tAfter().

9.2 Equivalence of two curves
As mentioned in Chapter 3, a function f of U may have multiple equivalent repre-
sentations. For example, given R1 = (S, T, d, c), one can easily derive that R2 =

(S′, T + 5, 2d, 2c), with S′ = Cut(R1, 0, T + 5 + 2d), is another valid, if inefficient,
representation of the same function.

It is then useful to have a Curve.Equivalent() method that tells whether two differ-
ent objects, say c1 and c2, are equivalent representations of the same function. The
method is implemented according to the following simple result.

Lemma 9.1. Let f and g be functions of U . Then, f = g if and only if

(f − g)(t) = 0 ∀t ≥ 0.

Since the subtraction operator isUPP frommax
(
Tf , Tg

)
withperiod length lcm

(
d f , dg

)
(Proposition 3.20), we derive that for the above test it is sufficient to limit the com-
parison to [0, M[, M := max

(
Tf , Tg

)
+ lcm

(
d f , dg

)
. Thus, given sf = f.Cut(0, M) and

sg = g.Cut(0, M), we can iterate over the two comparing elements one by one, and
return true if we keep finding equivalent elements until we reach the end of both
at the same time, false in any other case. Lastly, this is an example of an operator
that can greatly benefit from the generator pattern, using Curve.CutAsEnumerable() to
improve its efficiency.

9.3 Properties: continuity, subadditivity, etc.
It is useful to distinguish, for the purpose of an efficient implementation, those prop-
erties of a function f that may be checked via a single, left-to-right (or vice versa)
scan of its representation or an extended view of it, from more complex ones such
as sub- and superadditivity. Checks such as Curve.NonDecreasing, Curve.IsLeftCont c
inuous can be trivially implemented as linear scans that check if the representation
violates or not the properties in [0, T + d]. In fact, we are guaranteed, via the UPP
property, that the represented function f will not violate them unless it does within
such range.

A more complex matter is instead to check sub- and superadditivity. For those,
we use the following results – we wish to thank Paul Nikolaus for the help in their
formalization.

9.4 Closures: non-negative, non-decreasing, etc. 89

Definition 9.2. Let f be a function of U . Then we define f ◦ as

f ◦(t) :=

{
0, if t = 0,

f (t), otherwise.

Lemma 9.3. Let f be a function of U such that f (0) ≥ 0. Then, f is subadditive if and only
if f ◦ = f ◦ ⊗ f ◦.

Lemma 9.4. Let f be a function of U such that f (0) ≤ 0. Then, f is superadditive if and
only if f ◦ = f ◦⊗ f ◦.

We provide proofs in Appendix G.2. These properties allow one to get very use-
ful insights for a DNC study using f . For example, we show in Chapter 13 how the
(min,+) convolution of subadditive functions can benefit from an improved algo-
rithm with large performance improvements. We expect that a symmetrical result
should hold for the (max,+) convolution of superadditive functions. We have not
had time to investigate this, though, and we leave it for future work. Moreover,
works such as [GY13; LBS16; LBSGY17] provide an improved algorithm for study-
ing end-to-end delays of tandems involving superadditive service curves.

The properties implemented in the library cover many use cases. We list here
some of them:

• IsFinite

• IsPlusInfinite

• IsMinusInfinite

• IsContinuous

• IsLeftContinuous

• IsRightContinuous

• IsNonNegative

• IsNonDecreasing

• IsUltimatelyInfinite

• IsUltimatelyPlain

• IsPlain

• IsUltimatelyAffine

• IsUltimatelyConstant

• IsConcave

• IsConvex

Similarly, the library provides continuity checks at a given t, i.e.,

• IsContinuousAt • IsLeftContinuousAt • IsRightContinuousAt

9.4 Closures: non-negative, non-decreasing, etc.
Another useful extension to the toolbox is the direct support for closures such as
non-negative and non-decreasing ones. These are operators used in literature to
ensure that, even if partial results may have negative parts or decreasing segments,
we can reconstruct from them regular non-negative and non-decreasing functions.

90 Useful Extensions

As reported in [BBL18, p. 45], the non-negative closure can be implemented as
a simple maximum between the function f and a constant zero function, i.e., f ∨ 0,
while the non-decreasing closure can be computed using the (max,+) convolution
with a constant zero function, i.e., f ⊗ 0. InNancy, we provide for the latter amore ef-
ficient implementation, which only considers the components of said (max,+) con-
volution that affect the result. Moreover, this provides a non-decreasing function
that is larger than the output. For this reason, we distinguish and implement the up-
per non-decreasing closure and the lower non-decreasing one. Similarly, the library
provides left-continuous and right-continuous closures. The methods correspond-
ing to the above are

• ToUpperNonDecreasing

• ToLowerNonDecreasing

• ToLeftContinuous

• ToRightContinuous

• ToNonNegative

9.5 Formatting as JSON, C#, TikZ
In our research experience, it has proven valuable to be able to move or replicate a
result between different contexts, be it to continue testing an intermediate result of
a process, to derive a visualization with a different tool, to export a neat result from
notebook experimentation into a figure in a scientific article. This process can be
greatly improved by appropriate software support, as we discuss here.

JSON: cross-language data representation
In all public classes of Nancy, the ToString() method will provide a JSON represen-
tation of the object, while the FromJson() static method will construct an object from
its JSON representation. JSON is a human-readable text-based data representation
format that, inspired by the JavaScript syntax, has expanded to be a standard for
data sharing between applications due its language agnostic nature, widely avail-
able support, and human readability.

Thus, this feature brings the important benefit of a native entry point to build
a cross-application and cross-language workflow, that integrates Nancy with other
tools.

C# code: export objects for further study
In all public classes of Nancy, the ToCodeString() method will provide a string with
C# code that can be used to build the object. The target use case for this feature is
retrieving an intermediate result from an application (for example, through a de-

9.5 Formatting as JSON, C#, TikZ 91

bugger instance), so that the same result can be then reconstructed and studied in
a .NET Notebook or a test.

TikZ: high quality plots for UPP curves
It would be surely unnecessary to justify, in a scientific work such as this thesis, the
value of proper visualization using figures to clearly show a result to the reader.
TikZ is a native LaTeX tool to produce high quality figures, however its high com-
plexity can quickly become detrimental towards such goal. Although its text-based
nature makes it readable and adjustable by a human1, it is clearly better suited to be
written by an algorithm than by hand. Producing TikZ plot of UPP curves can be in
fact a quite tedious and error-prone process.

The ToTikzPlot() methods, in fact, address this very problem: they provide an
easy interface to obtain TikZ code representing one or more Nancy curves, which
does away with most of the tedious work, leaving only the fine tuning to the user.
Most of the figures provided in this thesis are result of TikZ code written, at least
initially, by these methods.

As an example, consider the flow-control service curve β1,2 + 1. We can compute
the expression and its TikZ plot with the code in Listing 9.1. The resulting TikZ code

Listing 9.1 Example of code to compute and plot a function through TikZ.

var f = (new RateLatencyServiceCurve(1, 2) + 1).SubAdditiveClosure();
var tikz = f.ToTikzPlot(settings: new TikzLayoutSettings()
{

CurveLayout = CurveLayout.SimplifyContinuous,
GridTickLayout = GridTickLayout.SquareGrid

});

is shown in Listing 9.2, and its plot, as rendered by LaTeX, is shown in Figure 9.1.
The library represents, by default, all curves up to to the higher Ti + 2 · di, with

some fallbacks in case of UA curves and similar corner cases, or to the argument
upTo if the user manually specifies it. Moreover, the library allows to customize how
the grid is generated, whether to highlight all breakpoints or to only do so on dis-
continuities, etc.

1If one ignores how easy it is to incur in obscure error messages, that is.

92 Useful Extensions

1 2 3 4 5 6 7

1

2

3

4

Tf

d f

c f

time

data

Figure 9.1: The resulting plot.

9.5 Formatting as JSON, C#, TikZ 93

Listing 9.2 The resulting TikZ code.

\begin{tikzpicture}
\begin{axis}[

font = \small,
clip = true,
grid = major,
grid style = {draw=gray!30},
axis lines = left,
axis equal image,
xlabel = time,
ylabel = data,
x label style = {at={(axis description cs:1,0)},anchor={north west}},
y label style = {at={(axis description cs:0,1)},rotate=-90,anchor=south},
xmin = 0,
ymin = 0,
xmax = 7,
ymax = 4,
xtick = { 1, 2, 3, 4, 5, 6, 7 },
ytick = { 1, 2, 3, 4 },
minor xtick = {},
minor ytick = {}

]
\addplot [color = green!60!black, thick, only marks, mark size = 1pt]

coordinates { (0,0) };
\addplot [color = green!60!black, thick,)-, solid, shorten < = 1pt]

coordinates { (0, 1) (2, 1) (3, 2) (4, 2) (5, 3) (6, 3) };
\addplot [color = green!60!black, thick, only marks, mark size = 1pt]

coordinates { (6,3) };
\addplot [color = black!60, thick, densely dashed]

coordinates { (2, 0) (2, 1) };
\node [anchor = south west] at (axis cs:2, 0) {T_{f}};
\addplot [color = black!60, thick, densely dashed]

coordinates { (4, 2) (4, 2.5) };
\addplot [color = black!60, thick, densely dashed]

coordinates { (2, 1) (2, 2.5) };
\addplot [color = black!60, thick, <->]

coordinates { (2, 2.5) (4, 2.5) };
\node [anchor = south] at (axis cs:3, 2.5) {d_{f}};
\addplot [color = black!60, thick, densely dashed]

coordinates { (2, 1) (5, 1) };
\addplot [color = black!60, thick, densely dashed]

coordinates { (4, 2) (5, 2) };
\addplot [color = black!60, thick, <->]
coordinates { (5, 1) (5, 2) };
\node [anchor = west] at (axis cs:5, 1.5) {c_{f}};

\end{axis}
\end{tikzpicture}

Chapter 10

Extending the Algorithmic Toolbox:
Lower and Upper Pseudoinverses

The work described in this chapter is part of the contributions in [ZNS23c], coauthored with
Paul Nikolaus and Giovanni Stea.

In this chapter, we discuss the extension of the U algorithmic toolbox to include
lower and upper pseudoinverse operators. Henceforth, we will omit the lower or
upper attributewhen the discussion applies to both. Moreover, in the follow-upwork
that is discussed later on in Chapter 14, we introduced amore general version of this
operator, i.e., pseudoinverses over interval.

First, we recall their formal definitions from Section 4.3.

Definition 4.9 (Lower and Upper Pseudoinverse). Let f ∈ U be non-decreasing.
Then its lower pseudoinverse is defined as

f−1
↓ (y) := inf {t ≥ 0 | f (t) ≥ y} ,

and its upper pseudoinverse is defined as

f−1
↑ (y) := sup {t ≥ 0 | f (t) ≤ y} .

In DNC, both pseudoinverses are useful to switch from (min,+) to (max,+) al-
gebra and vice versa [Lie17]. They are also used in many results, such as mod-
els for round-robin schedulers, as shown in Section 2.4, to compute the horizontal
deviation, as shown in Equation (2.3), or as part of the algorithm to compute the
composition, as we show in Chapter 11.

The rest of this chapter is organized as follows. In Section 10.1 we show that the
pseudoinverse of a function of U is again in U , and provide expressions to compute
its UPP parameters a priori. In Section 10.2 we discuss, first through a visual exam-
ple and then via pseudocode, how to algorithmically compute the pseudoinverse.

95

96 Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses

Then, in Section 10.3 we conclude with a summary of the by-curve algorithm, some
observations on the algorithmic complexity of this operator. Finally, in Section 10.4
we discuss corner cases.

10.1 Properties of pseudoinverses of functions of U
We discuss our properties for a generic function f , excluding the cases of UC and
UI functions. These two cases are treated separately for ease of presentation. At
the end of this section, we report the necessary information for the alert reader to
retrace the steps exposed hereafter to include these two corner cases. We remark
that the Nancy library computes pseudoinverses of generic (non-decreasing) UPP
functions, including UC and UI ones.

Lemma 10.1. Let f be a non-decreasing function of U , then its pseudoinverses f−1
↓ and f−1

↑
are again in Q+ → Q∪ {+∞,−∞} and piecewise affine.

Proof. Consider first f to be neither UC nor UI. We first observe that for any t where
f is linear with slope > 0, it is f−1

↓ (f (t)) = t (it behaves as a normal inverse). It
also follows from the definition that f−1

↓ (x) has a breakpoint in x with value t if f
has either a breakpoint in t with value x, or a jump in t from or to x. Since f has
breakpoints and limits in Q, it follows that f−1

↓ is in Q+ → Q∪ {+∞,−∞}.
Moreover, as is discussed thoroughly in Section 10.2, f−1

↓ is composed of jumps
(corresponding to intervals inwhich f is constant), constant segments (correspond-
ing to breakpoints inwhich f has a jump) or non-constant segments (corresponding
to intervals in which f is non-constant, with inverse slope). Thus, f−1

↓ is also piece-
wise affine.

The case of UC and UI functions is discussed at length in Section 10.4. From that
discussion we receive that if f is UC with value x, then f−1

↓ is UI from x; and if f is
UI from t and last finite value x, then f−1

↓ is UC from x with value t. Again, these
values are in Q (due to f).

The same steps can be followed for f−1
↑ .

Theorem 10.2 (UPP properties of Lower Pseudoinverse). Let f be a function of U
that is non-decreasing and neither UC nor UI. Then, its lower pseudoinverse f−1

↓ (x) =

inf {t | f (t) ≥ x} is again a function of U with

Tf−1
↓

= f
(
Tf + d f

)
, (10.1)

d f−1
↓

= c f , (10.2)

c f−1
↓

= d f . (10.3)

10.1 Properties of pseudoinverses of functions of U 97

Proof. Let t1 ≥ Tf + d f and x := f (t1). Moreover, we define

t0 := f−1
↓ (x) = inf {t | f (t) ≥ x} = inf {t | f (t) ≥ f (t1)} .

By definition, it is clear that t0 ≤ t1 (t1 satisfies the condition inside the infimum,
and t0 is its largest lower bound), and that f (t0) = f (t1).

Moreover, since it holds that f (t+ d f) = f (t)+ c f for all t ≥ Tf , we can conclude
that, for all τ ≥ Tf + d f ,

f (τ) = f
(
(τ − d f) + d f

)
= f (τ − d f) + c f .

Thus,
f (τ − d f) = f (τ)− c f . (10.4)

Since f is non-UC (i.e., c f > 0), and we have by definition t1 ≥ Tf + d f , it follows
that

f (Tf) ≤ f (t1 − d f)
(10.4)
= f (t1)− c f < f (t1) = f (t0),

where we used in the strict inequality that f is not UC. Thus, since f (t0) > f (Tf),
t0 > Tf .

Therefore, for any k ∈N,

f−1
↓

(
x + k · d f−1

↓

)
= inf

{
t | f (t) ≥ x + k · d f−1

↓

}
(10.2)
= inf

{
t | f (t) ≥ x + k · c f

}
= inf

{
t | f (t) ≥ f (t1) + k · c f

}
= inf

{
t | f (t) ≥ f (t0) + k · c f

}
= inf

{
t | f (t) ≥ f (t0 + k · d f)

}
= t0 + k · d f

(10.3)
= f−1

↓ (x) + k · c f−1
↓

.

Combined with Lemma 10.1, f−1
↓ ∈ U .

It follows from Theorem 10.2 that, in order to compute a representation R f−1
↓
, it

is sufficient to compute SI′
f−1
↓

where

I′ =
[

0, Tf−1
↓

+ d f−1
↓

[
=
[
0, f (Tf + d f) + c f

[
.

We use then the following lemma.

98 Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses

Lemma 10.3 (Sufficient Cut for Lower Pseudoinverse). Let f be a function of U that is
non-decreasing and neither UC nor UI. Then, in order to compute f−1

↓ (x) with x ∈ I′ :=

[0, x′[, where x′ ≥ 0, it is sufficient to use f (t) with t ∈ [0, t′], where t′ := f−1
↓ (x′).

We provide a proof in Appendix D.3. Using Lemma 10.3, we derive that to com-
pute SI′

f−1
↓

with I′ =
[
0, f (Tf + d f) + c f

[
, it is sufficient to use S

I f
f with

I f =
[
0, Tf + 2 · d f

]
. (10.5)

A similar result can be derived for the upper pseudoinverse.

Theorem 10.4 (UPP properties of Upper Pseudoinverse). Let f be a function of U
that is non-decreasing and neither UC nor UI. Then, the upper pseudoinverse f−1

↑ (x) =

sup {t | f (t) ≤ x} is again a function of U with

Tf−1
↑

= f
(
Tf
)

, (10.6)

d f−1
↑

= c f , (10.7)

c f−1
↑

= d f . (10.8)

Proof. The proof follows the same steps as the one for the lower pseudoinverse. Let
t0 ≥ Tf and x := f (t0). Moreover, we define

t1 := f−1
↑ (x) = sup {t | f (t) ≤ x} = sup {t | f (t) ≤ f (t0)}

By definition, it is clear that t0 ≤ t1 (t0 satisfies the condition in the supremum, and
t1 is the largest to satisfy it). Since f is non-UC, and we have by definition t0 ≥ Tf ,
it follows that

f (t0 + d f)
(3.1)
= f (t0) + c f > f (t0) = f (t1),

where we used in the strict inequality that f is not ultimately constant and thus
t1 < t0 + d f < ∞. Therefore, for any k ∈N,

f−1
↑

(
x + k · d f−1

↑

)
= sup

{
t | f (t) ≤ x + k · d f−1

↑

}
(10.7)
= sup

{
t | f (t) ≤ x + k · c f

}
= sup

{
t | f (t) ≤ f (t0) + k · c f

}
= sup

{
t | f (t) ≤ f (t1) + k · c f

}
= sup

{
t | f (t) ≤ f (t1 + k · d f)

}
= t1 + k · d f

(10.8)
= f−1

↑ (x) + k · c f−1
↑

.

Combined with Lemma 10.1, f−1
↑ ∈ U .

10.1 Properties of pseudoinverses of functions of U 99

Tf

d f

c f

time

data

(a) f

f (Tf) + c f

c f

d f

time

data

(b) f−1
↓

f (Tf)

c f

d f

time

data

(c) f−1
↑

Figure 10.1: Example of f such that f−1
↓ is not UPP from f (Tf).

Similar to the previous theorem, it follows from Theorem 10.4 that, in order to
compute a representation R f−1

↑
, it is sufficient to compute SI′

f−1
↑
, where

I′ =
[

0, Tf−1
↑

+ d f−1
↑

[
=
[
0, f (Tf) + c f

[
.

We use then the following lemma.

Lemma 10.5 (Sufficient Cut for Upper Pseudoinverse). Let f be a function of U that is
non-decreasing and neither UC nor UI. Then, in order to compute f−1

↑ (x) with x ∈ I′ :=

[0, x′[, where x′ ≥ 0, it is sufficient to use f (t) with t ∈ [0, t′], where t′ := f−1
↑ (x′).

We provide a proof in Appendix D.3. Using Lemma 10.5, we derive that to com-
pute SI′

f−1
↑

with I′ =
[
0, f (Tf) + c f

[
, it is sufficient to use S

I f
f with

I f =
[
0, Tf + d f

]
.

The alert reader will notice that Tf−1
↓

and Tf−1
↑

differ, for which we can provide
the following intuitive explanation. Consider a function f so that f (t) = k, ∀t ∈
]a, T + b[with a < T, b > 0, as in Figure 10.1. Then f−1

↓ (k) = a, as the lower pseu-
doinverse “goes backwards” to the start of the constant segment. However, since
a < T, the pseudo-periodic property does not apply for f (a), i.e., we cannot say
anything about f (a + d). So, in general, we cannot say f−1

↓ is pseudo-periodic from
f (T), and we instead need to “skip” to the second pseudo-period so that, as in the
proof, T < a < T + d.
The same does not apply for f−1

↑ , however, since f−1
↑ (k) = T + b as the upper pseu-

doinverse “goes forward” to the end of the constant segment and T + b > T, thus
we can rely on the pseudo-periodic property of f .

100 Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses

The above is what can be achieved without information on the shape of f . A
stronger result can be instead obtained if one goes to the length of checking the
values of f at and around T and T + d, such as to avoid, e.g., the case described
above. This result is discussed as Lemma 14.11 in Chapter 14, as it is a required
building block for the results therein.

Moreover, from Lemmas 4.12 and 4.13 we can derive the following corollaries.

Corollary 10.6. Let f ∈ U be non-decreasing and left-continuous. Then,
(

f−1
↑

)−1

↓
is UPP

from Tf , i.e.,
T(

f−1
↑

)−1

↓

= Tf .

Corollary 10.7. Let f ∈ U be non-decreasing and right-continuous. Then,
(

f−1
↓

)−1

↑
is

UPP from Tf , i.e.,
T(

f−1
↓

)−1

↑

= Tf .

Note that these provide better lower bounds to the pseudo-period start than ap-
plying Theorems 10.2 and 10.4 in sequence.

10.2 By-sequence algorithm for pseudoinverses
In this section we discuss the by-sequence algorithms for pseudoinverses. We recall
that with “by-sequence” we mean that the operand, and thus its result, has a finite
interval as its support. Without loss of generality, we will focus on a sequence S
representing a function f over an interval [0, t[, with f (0) = 0. Then, S−1

↓ is the
sequence representing f−1

↓ over interval [0, f (t−)[. The same applies to S−1
↑ .

The simplest case is when S is continuous and strictly increasing, hence bijective.
In this case, both S−1

↓ and S−1
↑ are the classic inverse of S, and the algorithm consists of

drawing, for each point and segment of S, its reflection over the line y = x. However,
when S includes discontinuities and/or constant segments, the algorithm becomes
slightly more complicated: a discontinuity in S “maps” to a constant segment in
both S−1

↓ and S−1
↑ , while a constant segment in S “maps” to a right-discontinuity in

S−1
↓ and a left-discontinuity in S−1

↑ . This is exemplified in Figure 10.2.
We describe Algorithm 2 for the lower pseudoinverse (the one for the upper

pseudoinverse differs in few details which we briefly discuss later). Algorithm 2
linearly scans S considering one element at a time. Based on the type of element
(point or segment), as well as on its topological relationship with its predecessor, it
decides what to add to S−1

↓ .
More in detail, there are eight possible cases, shown in Table 10.1, which require

zero, one, two, or three elements to be added to S−1
↓ . These are reported in the

10.2 By-sequence algorithm for pseudoinverses 101

t1 t2 t3 t4
f (t1)

f (t2)

f (t4)

ρ1

ρ2

ρ3

time

data

(a) S

t1

t2

t3

t4

f (t1) f (t2) f (t4)
1/ρ1

1/ρ3

time

data

(b) S−1
↓

t1 t2 t3 t4
f (t1)

f (t2)

f (t4)

ρ1

ρ2

ρ3

time

data

(c)
(

S−1
↓

)−1

↓

Figure 10.2: Example of lower pseudoinverse of a sequence S. Since S is left-

continuous, S =
(

S−1
↓

)−1

↓
.

same order in Algorithm 2. The rigorous (though cumbersome) mathematical jus-
tification for each case is instead postponed to Appendix D.4 for the benefit of the
interested reader.

We exemplify the above algorithm with reference to the example in Figure 10.2.
For each of the considered steps, we will reference the case in Table 10.1, the line
of Algorithm 2, and the relevant equations from Appendix D.4 proving the result.
Processing each element from left to right, we calculate:

• The origin (t1, f (t1)) = (0, 0) for f−1
↓ (0).

• For the segment s1 and its predecessor point p1 = (t1, f (t1)): this corresponds
to Line 22 of the algorithm. Since s1 has a positive slope, we continue in Line 31.
As the function is right-continuous at t1, we are in case c8. We go to Line 36
and add a segment s =

(
f (t+1), f (t−2), t1, t2

)
to O. It can be verified that this

follows Equation (D.15).

• For the point p2 = (t2, f (t2)) and its preceding segment s1, we are in case c4,
corresponding to Line 18, and we therefore append the point p := (f (t2), t2)

to O. It can be verified that this follows Equation (D.7).

• For the constant segment s2 with preceding point p2 = (t2, f (t2)), we are in
case c6, corresponding to Line 28, and no element is added. This follows Equa-
tion (D.11).

• For the point p3 = (t3, f (t3)) with preceding constant segment s2, we are in
case c2, corresponding to Line 10, and no element is added. This follows Equa-
tion (D.3).

102 Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses

• For a segment s3 with preceding point (t3, f (t3)), we are in case c8, Line 36,
and append s :=

(
f (t+3), f (t−4), t3, t4

)
to O (verified in Equation (D.15)).

Wenote that, since S−1
↓ is left-continuous, when a continuous sequence of a point,

a constant segment, and a point is encountered in S, they all “map” to the inverse
of the first (leftmost) point of this sequence. This justifies the fact that nothing has
to be added to S−1

↓ in these cases (e.g., 2 and 6). As Algorithm 2 performs a linear
scan of its input S, its complexity is O (n(S)).

The algorithm for S−1
↑ , that we omit here for brevity, differs from the one pro-

vided only in how constant segments are handled, that is, by appending the inverse
of the last (rightmost) point instead of the first (recall that the upper pseudoinverse
is right-continuous). This requires the algorithm for S−1

↑ to look ahead to the next
element during the linear scan. We leave the (tedious, but simple) task of spelling
out the minutiae of this algorithm to the interested reader.

10.2 By-sequence algorithm for pseudoinverses 103

Table 10.1: Cases to be considered in the by-sequence algorithm to compute S−1
↓

Considered
Element

Constant
segment

Discontinuity
in S

Example of S Append to
S−1
↓

Case #

Point
after segment

Yes Yes t1 t2

b1

b2

0 b1 b2

t1

t2

0
c1

No t1 t2

b1

0 nothing
to append c2

No Yes t1 t2

b1

b2

b3

0 b1 b2 b3

t1

t2

0
c3

No t1 t2

b1

b2

0 b1 b2

t1

t2

0
c4

Segment
after point

Yes Yes t1 t2

b1

b2

0 b1 b2

t1

t2

0
c5

No t1 t2

b1

0 nothing
to append c6

No Yes t1 t2

b1

b2

b3

0 b1 b2 b3

t1

t2

0
c7

No t1 t2

b1

b2

0 b1 b2

t1

t2

0
c8

104 Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses

Algorithm 2 Pseudocode for lower pseudoinverse of a finite sequence
Input Finite sequence of elements S, consisting of ek, k ∈ {1, . . . , n} that is either

a point or a segment. Moreover, e1 is a point at the origin (0, 0).
Return Lower pseudoinverse S−1

↓ of S, consisting of a sequence of elements O =

{o1, . . . , om}.
1: Define an empty sequence of elements O := { }
2: Append p := (0, 0) to O . f−1

↓ (e0)

3: for ek in (e2, . . . , en) do . The for loop starts after the origin
4: if ek == pi then . The element is a point
5: ek−1 is a segment si−1
6: if si−1 is constant then
7: if f (t−i) < f (ti) then . f is not left-cont. at ti
8: Append s :=

(
f (t−i), f (ti), ti, ti

)
to O . (c1)

9: Append p := (f (ti), ti) to O
10: else . f is left-cont. at ti
11: Nothing to append . (c2)
12: end if
13: else . si−1 is not constant
14: if f (t−i) < f (ti) then . f is not left-cont. at ti
15: Append p :=

(
f (t−i), ti

)
to O . (c3)

16: Append s :=
(

f (t−i), f (ti), ti, ti
)
to O

17: Append p := (f (ti), ti) to O
18: else . f is left-cont. at ti
19: Append p := (f (ti), ti) to O . (c4)
20: end if
21: end if
22: else . The element is a segment si
23: ek−1 is a point pi
24: if ek = si is constant then
25: if f (ti) < f (t+i) then . f is not right-cont. at ti
26: Append s :=

(
f (ti), f (t+i), ti, ti

)
to O . (c5)

27: Append p :=
(

f (t+i), ti
)
to O

28: else . f is right-cont. at ti
29: Nothing to append . (c6)
30: end if
31: else . si is not constant
32: if f (ti) < f (t+i) then . f is not right-cont. at ti
33: Append s :=

(
f (ti), f (t+i), ti, ti

)
to O . (c7)

34: Append p :=
(

f (t+i), ti
)
to O

35: Append s :=
(

f (t+i), f (t−i+1), ti, ti+1
)
to O

36: else . f is right-cont. at ti
37: Append s :=

(
f (t+i), f (t−i+1), ti, ti+1

)
to O . (c8)

38: end if
39: end if
40: end if
41: end for

10.3 By-curve algorithm for pseudoinverses 105

10.3 By-curve algorithm for pseudoinverses
We can now discuss the by-curve algorithm by combining the results presented in
Sections 10.1 and 10.2. In Algorithm 3, we show the pseudocode to compute f−1

↓
for a function f of U . The analogous for upper pseudoinverse, which we omit for
brevity, can be similarly derived from the results in the sections above.

Algorithm 3 Pseudocode for lower pseudoinverse of a function of U
Input Representation R f of a non-decreasing function f of U , consisting of se-

quence S f and parameters Tf , d f and c f .
Return Representation R f−1

↓
of f−1

↓ .

1: Compute the UPP parameters for the result . Theorem 10.2
2: Tf−1

↓
← f

(
Tf + d f

)
3: d f−1

↓
← c f

4: c f−1
↓
← d f

5: Compute SI
f . Equation (10.5)

6: D ←
[
0, Tf + 2 · d f

[
7: SI

f ← Cut(R f , D)

8: Compute S f−1
↓
←
(

SI
f

)−1

↓
. Algorithm 2

9: R f−1
↓
←
(

S f−1
↓

, Tf−1
↓

, d f−1
↓

, c f−1
↓

)

Regarding the complexity of Algorithm 3, we note that the main cost is comput-

ing
(

SI
f

)−1

↓
. Since Algorithm 2 is a linear scan of the input sequence, the resulting

complexity is O
(

n
(

SI
f

))
.

10.4 Corner cases: UC and UI functions
We conclude this section by discussing the two corner cases that we had initially
left out, i.e., those when f is either Ultimately Constant (UC) or Ultimately Infinite
(UI). To obtain a representation of a UC or UI function, it is enough to find any Tf
for which f (t) = C, C ∈ Q, (UC) or f (t) = +∞ (UI) for any t ≥ Tf .1 However,
as we show in this section, the infima of the infinitely many points that verify the
above play an important role in computing their pseudoinverses. We provide formal
definitions below.

1The definition of UI includes also f (t) = −∞ for all t ≥ Tf . However, since the pseudoinverse
operations only apply to non-decreasing functions, we do not consider such case here.

106 Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses

Definition 10.8. Let f ∈ U be UC, and let C := limt→+∞ f (t), C ∈ Q, be its (ulti-
mately) constant value. Then, we define

TC := inf{T | f (t) = C, ∀t ≥ T}

to be the infimum of its pseudo-periodic starts.

Note that we use an infimum, instead of aminimum, because f may not be right-
continuous in TC. In that case f (t) = C, ∀t > TC, but f (TC) 6= C.

Definition 10.9. Let f ∈ U be UI. Then, we define:

TI := inf{T | f (t) = +∞, ∀t ≥ T},

and

L =

f (TI), if f (TI) < +∞,
f (T−I), if f (TI) = +∞ and TI > 0,
0, otherwise,

i.e., L is the rightmost finite value of f .

Again, we use the infimum to include functions such that f (t) = +∞, ∀t > TI ,
but f (TI) = L < +∞.

As we assume in this section all functions to be non-decreasing, using Defini-
tion 10.8 we have that a UC function is such that

f (t) < C, ∀t < TC,

f (t) = C, ∀t > TC,

whereas using Definition 10.9 a UI function is such that

f (t) < +∞, ∀t < TI ,

f (t) = +∞, ∀t > TI .

For these, some mathematical inconsistencies need be resolved first. For exam-
ple:

• if f is UC, Algorithm 3 would yield d f−1
↓

= 0,

• if f is UI, it would yield Tf−1
↓

= +∞.

We treat these two cases in the following propositions.

10.4 Corner cases: UC and UI functions 107

Proposition 10.10. Let f ∈ U be a non-decreasing, UC function with TC ∈ Q+. If
f (TC) < C, its lower pseudoinverse f−1

↓ (y) is

f−1
↓ (y) =

inf {x | f (x) ≥ y} = TC, if f (TC) < y < C,

inf {x | f (x) ≥ y} = TC, if y = C,

sup {x | f (x) < y} = +∞, if y > C,

and its upper pseudoinverse f−1
↑ (y) is

f−1
↑ (y) =

inf {x | f (x) > y} = TC, if f (TC) < y < C,

sup {x | f (x) ≤ y} = +∞, if y = C,

sup {x | f (x) ≤ y} = +∞, if y > C.

Otherwise, i.e., if f (TC) = C, its lower pseudoinverse f−1
↓ (y) is

f−1
↓ (y) =

inf {x | f (x) ≥ y} ≤ TC, if y < C,

inf {x | f (x) ≥ y} = TC, if y = C,

sup {x | f (x) < y} = +∞, if y > C,

and its upper pseudoinverse f−1
↑ (y) is

f−1
↑ (y) =

sup {x | f (x) ≤ y} ≤ TC, if y < C,

sup {x | f (x) ≤ y} = +∞, if y = C,

sup {x | f (x) ≤ y} = +∞, if y > C.

In other words, both pseudoinverses are UI with TI = C.

Proposition 10.11. Let f ∈ U be a non-decreasing, UI function with TI ∈ Q+. Then, its
lower pseudoinverse f−1

↓ (y) is

f−1
↓ (y) =

inf {x | f (x) ≥ y} < TI , if y < L,
inf {x | f (x) ≥ y} ≤ TI , if y = L,
inf {x | f (x) ≥ y} = TI , if y > L,

and its upper pseudoinverse f−1
↑ (y) is

f−1
↑ (y) =

sup {x | f (x) ≤ y} < TI , if y < L,
sup {x | f (x) ≤ y} = TI , if y = L,
sup {x | f (x) ≤ y} = TI , if y > L.

In other words, both pseudoinverses are UC with TC = L.2
2The only exception being the (uninteresting) case of f such that f (0) > 0 and TI = 0, for which

f−1
↓ (y) = 0 ∀y ≥ 0.

108 Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses

Starting from the above results, one can derive the few modifications to the al-
gorithms described so far in this section to include these two corner cases. We leave
this simple (yet tedious) task to the interested reader.

Chapter 11

Extending the Algorithmic Toolbox:
Composition

The work described in this chapter is part of the contributions in [ZNS23c], coauthored with
Paul Nikolaus and Giovanni Stea.

In this chapter, we discuss the extension of the U algorithmic toolbox to include
the composition operator, i.e., (f ◦ g)(t) = f (g(t)).

This chapter is organized as follows. In Section 11.1 we show that the composi-
tion of functions in U is again a function of U , and provide expressions to compute
its UPP parameters a priori. In Section 11.2 we discuss, first via an example and
then via pseudocode, how to compute the composition algorithmically. Finally, in
Section 11.3 we conclude with a summary of the by-curve algorithm and some ob-
servations on the algorithmic complexity of this operator.

11.1 Properties of composition of functions of U
We assume that the inner function g is not UI.1 We initially provide the result for
generic f and g. Later on, we show that, if either or both are UA or UC, we can
improve upon this result.

Theorem 11.1 (UPP properties of Composition). Let f and g be two functions of U
with g being non-negative, non-decreasing and not UI. Then, their composition h := f ◦ g
is again a function of U with

Th = max
(

g−1
↓ (Tf), Tg

)
, (11.1)

dh = pd f
· dg · qcg , (11.2)

1If, for t > TI , g(t) = +∞ then f (g(t)) = limy→+∞ f (y). The fact that f is inU does not guarantee
that such limit exists, e.g., when f is periodic.

109

110 Extending the Algorithmic Toolbox: Composition

ch = qd f
· pcg · c f , (11.3)

where pd f
, pcg ∈N0, and qd f

, qcg ∈N such that d f =
pd f
qd f

, and cg =
pcg
qcg

. Note that cg ≥ 0

as g is non-decreasing.

Proof. It is trivial to see that, being f and g piecewise affine Q+ → Q ∪ {+∞,−∞}
functions, their composition f ◦ g is again piecewise affine Q+ → Q ∪ {+∞,−∞}.
This point is further stressed in Section 11.2, were we describe an algorithm to get
the points and segments composing f ◦ g.

Let kh ∈N be arbitrary but fixed. Since g is UPP, it holds for all t ≥ Tg that

h(t + kh · dh) = f (g(t + kh · dh))

= f
(

g
(

t + kh ·
dh
dg
· dg

))
(3.1)
= f

(
g(t) + kh ·

dh
dg
· cg

)
,

where we used the UPP property of g in the last line. Note that kg := kh · dh
dg
∈ N,

since dh
dg

(11.2)
= pd f

· qcg ∈N, where we used the fact that d f > 0. Moreover, since f is
UPP, too, we have under this additional assumption of g(t) ≥ Tf that

h(t + kh · dh) = f
(

g(t) + kh ·
dh
dg
· cg

)
= f

(
g(t) + kh ·

dh · cg

dg · d f
· d f

)
(3.1)
= f (g(t)) + kh ·

dh · cg

dg · d f
· c f

= h(t) + kh ·
dh · cg · c f

dg · d f

(11.3)
= h(t) + kh · ch.

Note that k f := kh ·
dh·cg
dg·d f

∈ N0, since
dh·cg
dg·d f

(11.2)
=

pd f
d f
· qcg · cg = qd f

· pcg ∈ N0 and we
used that cg ≥ 0.

We set t ≥ Tg and g(t) ≥ Tf , thus ensuring that both f and g are in their periodic
part. Exploiting the notion of a lower pseudoinverse and g being non-decreasing, the
latter expression implies that t ≥ g−1

↓ (Tf) (Equation (4.9)). Therefore, we require

t ≥ Th
(11.1)
= max

(
g−1
↓ (Tf), Tg

)
.

This concludes the proof.

11.1 Properties of composition of functions of U 111

Remark 11.2. Note that the above is also true for the particular case in which d f ∈
N, cg ∈N0. In fact, it follows that pd f

= d f and qcg = 1 and thus

dh
(11.2)
= pd f

· qcg · dg = d f · dg,

and the properties are then verified since dh
dg

= d f ∈ N and dh·cg
dg·d f

= cg ∈ N0. The
corresponding ch is c f · cg.

It follows from Theorem 11.1 that to compute a representation Rh, it is sufficient
to compute SIh

h , where

Ih = [0, Th + dh[=
[
0, max

(
g−1
↓ (Tf), Tg

)
+ pd f

· dg · qcg

[
.

It follows that
SIh

h = S
I f
f ◦ SIg

g ,

where
Ig = [0, Th + dh[,

I f =
[
g(0), g

(
(Th + dh)

−)] .
(11.4)

The reason I f needs to be right-closed is that SIg
g may end with a constant seg-

ment. If this happens, ∃t ∈ Ig such that g(t) = g ((Th + dh)
−), thus we will need to

compute f
(

g
(
t
))

= f (g ((Th + dh)
−)), and that is in fact the right boundary of I f .

On the other hand, if SIg
g ends with a strictly increasing segment, it is safe to have I f

right-open.
Hereafter, we show that the above result can be improved when either or both

functions are UA. First, we consider the case when only g is UA.

Proposition 11.3. Let f and g be two functions ∈ U that are not UI, with g being non-
negative, non-decreasing, UA, with ρg > 0 (hence not UC). Then, their composition h :=
f ◦ g is again a function ∈ U with

Th = max
(

g−1
↓ (Tf), Tg

)
,

dh =
d f

ρg
, (11.5)

ch = c f . (11.6)

We provide a proof in Appendix E.1. To compute the Rh it is sufficient to use

Ih = [0, Th + dh[=

[
0, max

(
g−1
↓ (Tf), Tg

)
+

d f

ρg

[
.

It follows that
SIh

h = S
I f
f ◦ SIg

g ,

112 Extending the Algorithmic Toolbox: Composition

where
Ig = [0, Th + dh[

(11.5)
=

[
0, Th +

d f

ρg

[
,

I f =
[

g(0), g
(
(Th + dh)

−
)[

(11.5)
=

[
g(0), g

(
Th +

d f

ρg

)[
=
[
g(0), g (Th) + d f

[
.

(11.7)

Here, we observe that interval I f is smaller than the one obtained by applying di-
rectly Theorem 11.1, due to the disappearance of a factor qd f

· pcg ≥ 1. In fact, with
Theorem 11.1 we would have:

Ig = [0, Th + dh[

(11.2)
=

[
0, Th + pd f

· dg · qcg

[
=

[
0, Th + qd f

· pcg ·
d f

ρg

[
,

I f =
[

g(0), g
(
(Th + dh)

−
)[

(11.2)
=

[
g(0), g

((
Th + pd f

· dg · qcg

)−)[
=
[

g(0), g(Th) + qd f
· pcg · d f

[
.

As specified in the statement of Proposition 11.3, we exclude the case when g is
UC. This is because of Equation (11.5) where ρg is in the denominator, hence cannot
be zero. However, if g is UC, a stronger proposition can be found as reported in
Appendix E.2. Next, we consider the case when only f is UA.

Proposition 11.4. Let f ∈ U be UA and g ∈ U be non-negative, non-decreasing and not
UI. Then, their composition h := f ◦ g is again ∈ U with

Th = max
(

g−1
↓ (Tf), Tg

)
,

dh = dg, (11.8)
ch = cg · ρ f . (11.9)

We provide a proof in Appendix E.1. To compute Rh it is sufficient to use

Ih = [0, Th + dh[=
[
0, max

(
g−1
↓ (Tf), Tg

)
+ dg

[
.

It follows that
SIh

h = S
I f
f ◦ SIg

g ,

11.2 By-sequence algorithm for composition 113

where
Ig = [0, Th + dh[

(11.8)
=

[
0, Th + dg

[
,

I f =
[

g(0), g
(
(Th + dh)

−
)]

(11.8)
=

[
g(0), g

((
Th + dg

)−)] .

(11.10)

Again, interval Ig is smaller than the one that Theorem 11.1 would yield, due to the
disappearance of a factor pd f

· qcg ≥ 1. For comparison, Theorem 11.1 yields

Ig = [0, Th + dh[

(11.2)
=

[
0, Th + pd f

· qcg · dg

[
,

I f =
[

g(0), g
(
(Th + dh)

−
)]

(11.2)
=

[
g(0), g

((
Th + pd f

· dg · qcg

)−)]
.

When both functions are UA, we obtain a stronger result by showing that the
composition is UA again.

Proposition 11.5. Let f ∈ U and g ∈ U be UA functions with g being non-negative,
non-decreasing and not UI. Then, their composition h := f ◦ g is again UA with

Ta
h = max

(
g−1
↓ (Ta

f), Ta
g

)
,

ρh = ρ f · ρg. (11.11)

We provide a proof in Appendix E.1. Considering Equation (11.4), we observe
how taking these results into account will yield tighter I f , Ig than what we obtain
with Theorem 11.1.

Finally, we mention that, if either or both f and g are UC, then the composition
can be simplified further, even with respect to the above properties. We report the
results in Appendix E.2.

11.2 By-sequence algorithm for composition
In this section, we discuss the by-sequence algorithm for the composition. Without
loss of generality, we focus on sequences Sg, representing a non-negative and non-
decreasing function g over an interval [0, t[, and S f , representing a function f defined
over the interval [g(0), g(t−)].2 Then, Sh = S f ◦ Sg is the sequence representing

2We consider I f to be always right-closed since it yields the correct result for both cases discussed
in the previous section. The right boundary of I f is never used as a breakpoint in the algorithm
anyway, as imposed by the condition ym < g(b−) discussed below.

114 Extending the Algorithmic Toolbox: Composition

0 1 2 4

1

3

4

time

data

(a) S f

0 1 4 6

2

4

time

data

(b) Sg

0 1 4 6

1

3
4

time

data

(c) S f ◦ Sg

Figure 11.1: Example of composition of two sequences.

h = f ◦ g over the interval [0, t[. We use the example shown in Figure 11.1, where
t = 6 and g(t−) = 4.

First, we consider the shape of f ◦ g on an interval]a, b[⊂ [0, t[, a, b ∈ Q+.
Consider the case in which, for this interval, there exist ρg, ρ f ∈ Q+ so that

g(x) = g(a+) + ρg · (x− a), ∀x ∈]a, b[,

f (x) = f
(

g(a+)+
)
+ ρ f ·

(
x− g(a+)

)
, ∀x ∈

]
g(a+), g(b−)

[
,

(11.12)

where we use the shorthand notation

f
(

g(a+)+
)
= lim

x→a+
f (g(x)) = lim

y→y0
f (y),

with y0 := limx→a+ g(x).
More broadly speaking, we have a segment of g mapping to a segment of f . In

the example of Figure 11.1,]4, 6[is such an interval. Then, in this interval we can
apply the chain rule and find that h′(x) = f ′(g(x)) · g′(x) = ρg · ρ f for all x ∈]a, b[.
Thus, h is also a segment on]a, b[.

If either of the equations in (11.12) does not apply, it means that one function has
one or more breakpoints over this interval. Assume initially that this is g. Let this
finite sets of breakpoints be t0, . . . , tn, with a < t0 < · · · < tn < b. Then, the intervals
]a, t0[, . . . ,]tn, b[verify the properties in Equation (11.12) while for any breakpoint
ti we can just compute f (g(ti)). A similar reasoning can be done for f : consider the
finite set of breakpoints y0, . . . , ym, with g(a+) < y0 < · · · < ym < g(b−). Then,
we can use the lower pseudoinverse of g to find the corresponding ti = g−1

↓ (yi).3

The set {t1, . . . , tn} ∪
{

t1, . . . , tm
}
, preserving the ascending order, defines a finite

set of breakpoints for f ◦ g. Then, we have again a finite set of points (ti, f (g(ti))),
and open intervals for which we compute h as a segment with ρh = ρ f · ρg. In the
example of Figure 11.1,]0, 4[is such an interval:

3Following the discussion in Section 4.3,
(
Sg
)−1
↓ is sufficient for this computation.

11.3 By-curve algorithm for composition 115

• for Sg we find the set {t1 = 1};

• for S f we find the set {y1 = 1} →
{

t1 = 1
2

}
;

• the combined set of breakpoints is then
{

1
2 , 1
}
, and the open intervals that

verify Equation (11.12) is
{]

0, 1
2

[
,
]

1
2 , 1
[

,]1, 4[
}
.

By generalizing this reasoning, we obtain Algorithm 4.

Algorithm 4 Pseudocode for the composition of finite sequences
Input Two finite sequences of elements, S f of f and Sg of g, so that Sg defined

on [0, a[and S f defined on [g(0), g(a−)].
Return Composition Sh = S f ◦ Sg consisting of a sequence of elements O =

{o1, . . . , om}.
1: Define an empty sequence of elements O := { }
2: Let T be an empty, but ordered set of distinct rationals
3: Let Pg be the set of points of Sg
4: for pi in Pg do
5: Add the time ti of pi to T

6: end for
7: Let Pf be the set of points of S f , excluding the last point g(a−)
8: for pi in Pf do
9: Given time ti of pi, add ti = g−1

↓ (ti) to T . preserving the order in T

10: end for
11: for each pair of consecutive (ti, ti+1) in T do
12: Append p := (ti, f (g(ti))) to O
13: Append s :=

(
ti, ti+1, f

(
g(t+i)

+
)

, f
(

g(t−i+1)
−)) to O

14: end for

11.3 By-curve algorithm for composition
We can now discuss the by-curve algorithm, by combining the results presented in
Sections 11.1 and 11.2. In Algorithm 5 we show the pseudocode to compute the
composition h = f ◦ g of functions f and g of U , in the most general case. The
analogous for themore specialized cases, i.e., ultimately affine or ultimately constant
operands, which here we omit for brevity, can be similarly derived by adjusting the
parameter and interval computations.

Regarding the complexity of Algorithm 5, we note that the main cost is comput-
ing Sh ← S

I f
f ◦ SIg

g . Note that Algorithm 4 can be implemented as a linear scan of

S
I f
f and SIg

g . In fact, even though sampling a function or its pseudoinverse has, in

116 Extending the Algorithmic Toolbox: Composition

Algorithm 5 Pseudocode for composition of UPP functions.
Input Representation R f of a UPP function f , consisting of sequence S f and

parameters Tf , d f and c f ; Representation Rg of a non-negative and non-decreasing
UPP function g, consisting of sequence Sg and parameters Tg, dg and cg.

Return Representation Rh of h = f ◦ g.
1: Compute the UPP parameters for the result . Theorem 11.1
2: Th ← max

(
g−1
↓ (Tf), Tg

)
3: dh ← pd f

· dg · qcg

4: ch ← qd f
· pcg · c f

5: Compute S
I f
f and SIg

g . Equation (11.4)
6: I f ← [g(0), g ((Th + dh)

−)[

7: S
I f
f ← Cut(R f , I f)

8: Ig ← [0, Th + dh[

9: SIg
g ← Cut(Rg, Ig)

10: Compute Sh ← S
I f
f ◦ SIg

g . Algorithm 4
11: Rh ← (Sh, Th, dh, ch)

general, logarithmic cost (see Section 9.1), in Algorithm 4 these queries can be done
in increasing order, thus it can be implemented as an iteration over the values of the
two sequences. The resulting complexity is therefore O

(
n
(

S
I f
f

)
+ n

(
SIg

g

))
.

Note that given the expressions in Theorem 11.1, this computational cost highly
depends on the numerical properties of the operands, i.e., numerators and denom-
inators of UPP parameters, rather than simply the cardinalities of R f and Rg. Thus,
using the specialized properties of Propositions 11.3 to 11.5 yields performance im-
provements, since I f and Ig are smaller.

We remark again that the result of the composition may have a non-minimal
representation (see the discussion at the end of Section 10.1).

11.4 Example study on IWRR scheduler
In this section, we recall the discussion in Section 2.4 and Section 6.2, where we
discussed examples of literature result that require multiple computation steps in-
volving operators such as pseudoinverse and composition. In particular, we use the
example provided by [TLB21, Theorem 1], which uses the composition operator to
compute the per flow strict service curve for an Interleaved Weighted Round Robin
scheduler.

We recall the contents of this theorembelow, though for the purpose of this proof
of concept, we focus on the steps of the computations which will then translate into

11.4 Example study on IWRR scheduler 117

code. Computing this service curve for a flow involves computing a function γi that
takes into account flow i’s characteristics (e.g., weight, packet lengths), and then,
given β as the (strict) service curve of the server regulated by IWRR, computing the
(strict) per-flow service curve for flow i as βi = γi ◦ β.4 We restate here Theorem 2.7,
while its code translation usingNancy is in Listing 11.1. Figure 11.2 shows the result-
ing plot, obtained running the code with .NET Notebook. It should be easy for the
reader to check that the code maps easily to the mathematical expressions, attesting
to the design goals we aimed for in Chapter 8.

Theorem 2.7 (Strict Per-Flow Service Curves for IWRR). Assume n flows arriving at
a server performing Interleaved Weighted Round Robin with weights w1, . . . , wn. Let lmin

i
and lmax

j denote the minimum andmaximum packet size of the respective flow. Let this server
offer a superadditive strict service curve β to these n flows. Then,

βi(t) := γi (β(t))

is a strict service curve for flow fi, where

γi(t) := β1,0 ⊗Ui(t),

Ui(t) :=
wi−1

∑
k=0

νlmin
i ,Ltot

([
t− ψi

(
klmin

i

)]+)
,

Ltot := wilmin
i + ∑

j:j 6=i
wjlmax

j ,

ψi(x) := x + ∑
j 6=i

φij

(⌊
x

lmin
i

⌋)
lmax
j ,

φij(p) :=
⌊

p
wi

⌋
wj +

[
wj − wi

]+
+ min

{
(p mod wi) + 1, wj

}
,

β1,0 is a constant-rate function with slope 1, and the stair function νh,P(t) is defined as

νh,P(t) := h
⌈

t
P

⌉
, for t ≥ 0.

In the example in [TLB21, Figure 3], β is a constant-rate service curve, thus UA,
while γi is, in general, a UPP function. On one hand, this confirms that limiting NC
algorithms to UA curves only is severely constraining – in this example, one could
not compute flow i’s service curve without an algorithm that handles UPP curves.
On the other hand, itmeans thatwe can obtain the same result by applying both The-
orem 11.1 and its specialized version for UA inner functions, Proposition 11.3, and

4Recall that composition requires the lower pseudoinverse of the inner function to be computed,
hence this example makes use of both the algorithms presented in this thesis.

118 Extending the Algorithmic Toolbox: Composition

Listing 11.1 Code used to replicate the results of [TLB21, Theorem 1].

var weights = new []{4, 6, 7, 10};
var l_min = new []{4096, 3072, 4608, 3072};
var l_max = new []{8704, 5632, 6656, 8192};
var beta = new RateLatencyServiceCurve(

rate: 10000, // 10 Mb/s, but using ms as time unit
latency: 0

);
var unit_rate = new RateLatencyServiceCurve(1, 0);

int Phi_i_j(int i, int j, int x) {...}
int Psi_i(int i, int x) {...}
int L_tot(int i) {...}

int i = 0; // the flow of interest
var stairs = new List<Curve>();
for(int k = 0; k < weights[i]; k++)
{

var stair = new StairCurve(l_min[i], L_tot(i));
var delayed_stair = stair.DelayBy(Psi_i(i, k * l_min[i]));
stairs.Add(delayed_stair);

}
var U_i = Curve.Addition(stairs); // summation of min-plus curves
var gamma_i = Curve.Convolution(unit_rate, U_i);
var beta_i = Curve.Composition(gamma_i, beta);

Table 11.1: Performance comparison of compositionwith andwithout UA optimiza-
tion.

Runtime Not optimized Optimized
75th percentile 1117.72 ms 0.67 ms
median 1105.01 ms 0.55 ms
25th percentile 1088.61 ms 0.50 ms

that we can expect the latter to be more efficient due to the tighter I f , as explained
below Equation (11.7).

Our experiments confirm the above intuition. We run the computation using
the same parameters of the example in [TLB21, Figure 3], on System 4. As shown
in Table 11.1, when using Theorem 11.1, computing the result took a median of 1.11
seconds. On the other hand, using Proposition 11.3 the same result is obtained in
0.55 milliseconds in the median, an improvement of three orders of magnitude.

Since the output of this model is a UPP curve, on needs support for UPP con-
volutions to use it in studies that involve other nontrivial models. We exemplify
this with study involving two IWRR schedulers in tandem.5 We use a function that

5The same example is available as a tutorial on the documentation website [ZSb] and as .NET

11.4 Example study on IWRR scheduler 119

Figure 11.2: Plot of the resulting service curve βi.

Listing 11.2 Signature of the function generalizing the IWRR service curve compu-
tation.

Curve IwrrServiceCurve(
int foi, int[] weights, int[] l_min, int[] l_max, SuperAdditiveCurve beta

)

generalizes Listing 11.1, with the signature in Listing 11.2.
Thus, once we specify the parameters of our example, we can compute the ser-

vice curves for the schedulers and derive and equivalent service curve for the tan-
dem – using which we can upper bound the worst-case delay and backlog, as we
show in Listing 11.3. We show plots of the curve obtained in Figure 11.3, obtained
running the code with .NET Notebook.

The convolution shown in this example involves two generic UPP curve which,
as we mentioned, can become quite computationally costly depending on the nu-
merical properties of the inputs. Moreover, these curves are not subadditive, so the
optimizations discussed inChapter 13 cannot be applied. They can benefit, however,
from the optimizations discussed in Chapter 14: we will reconsider this example
there, and discuss the performance improvement.

Notebook on Github [ZSd].

120 Extending the Algorithmic Toolbox: Composition

Listing 11.3 Example study of a tandem of IWRR schedulers.

// ms as time unit, bit as data unit
// the flow has a max arrival rate of 10 Mbps, and is guaranteed such bandwidth at each node
var foi_ac = new SigmaRhoArrivalCurve(1024, 10000);

// 100 Mb/s, 1 ms of latency
// 3 cross flows
var b1 = new RateLatencyServiceCurve(100000, 1);
var weights_1 = new []{10, 30, 40, 20};
var l_min_1 = new []{512, 512, 512, 512};
var l_max_1 = new []{1024, 1024, 1024, 1024};

// 200 Mb/s, 1 ms of latency
// 5 cross flows
var b2 = new RateLatencyServiceCurve(200000, 1);
var weights_2 = new []{10, 20, 40, 50, 30, 50};
var l_min_2 = new []{512, 512, 512, 512, 512, 512};
var l_max_2 = new []{1024, 1024, 1024, 1024, 1024, 1024};

var b_eq_1 = IwrrServiceCurve(0, weights_1, l_min_1, l_max_1, b1);
var b_eq_2 = IwrrServiceCurve(0, weights_2, l_min_2, l_max_2, b2);

var b_eq = Curve.Convolution(b_eq_1, b_eq_2);
var delay_bound = Curve.HorizontalDeviation(foi_ac, b_eq);
// Output: 3,46 ms
var backlog_bound = Curve.VerticalDeviation(foi_ac, b_eq);
// Output: 34900 bit

(a) Service curves computed for the IWRR
schedulers.

(b) Tandem service curve vs.
flow of interest arrival curve.

Figure 11.3: Plots of the curves, obtained running the code with .NET Notebook

Chapter 12

Representation Minimization

The work described in this chapter is part of the contributions in [ZS23], coauthored with
Giovanni Stea. We wish to thank Paul Nikolaus for the help on improving the formalization
of this work.

In this chapter, we present representation minimization, i.e., a set of algorithms that
seeks to minimize the complexity and memory occupation of a Curve object by min-
imizing the representation of its function f . As mentioned, given a representation
R f = (S, T, d, c) of a function f of U , its cardinality n(S) and parameters d and T are
the main factors for the algorithmic complexity of operations involving it. We can
see this by observing that n(S) is directly correlated with the memory occupied by
the Sequence object, while, as discussed before, the parameters T and d are used to
compute values, such as the cut intervals, which are positively correlated with the
performance cost of operations. A first way to abate computation times is therefore
to find the minimal representation of f .
We say that two representations R f and Rg are equivalent if they represent the same
function, i.e., f (t) = g(t) ∀t ≥ 0. A minimal representation R̃ is such that, given any
equivalent representation R, then n

(
S̃
)
≤ n(S). We note that more than one mini-

mal representation may exist, as in some cases we can have representations with the
same minimal n

(
S̃
)
but different d and T. For the cases for which this is attainable, it

is desirable to have the minimal representation that minimizes also d and T. As we
will show, our algorithm does exactly this: it yields a minimal representation and,
if that is attainable, this will also be the representation with minimal d and T.

Unfortunately, the generic algorithms for operations on functions of U (such as
the ones described in [BT08; BBL18] and recalled in Chapter 3, or the ones we intro-
duce in Chapters 10 and 11) do not yield minimal representations, even when the
representations of their operands are minimal. The steps described in Chapter 3,
in fact, compute the smallest values that can be formally proved to be valid a priori,
with no knowledge of the shape of the result. These values can be much larger than

121

122 Representation Minimization

T

d

c

time

data

(a) First operand f .

T

d

c

time

data

(b) Second operand g.

T

d

c

time

data

(c) Result of f ∧ g.

Figure 12.1: Example of non-minimal result of a minimum operation.

those of a minimal representation.
A simple example is given in Figure 12.1. Starting from the parameters of the

operands f and g, the algorithm computes T = 7 for the result f ∧ g. However,
we can see that the result is actually a rate-latency curve that can be described with
T = 5. This phenomenon – that we have just exemplified using a minimum oper-
ation – affects convolution as well, and it is especially impactful when many con-
volutions are required, such as in a SAC or in (2.9), where the result of one is in
fact the operand of the next. In fact, we recall that the cost of the convolution is su-
perquadratic with the size of the extended representations of the operands (Chap-
ter 3 and section 8.8).

Note that there is no efficient way – that we know of – to predict the minimum
representation a priori, i.e., before the operation is computed. This is basically be-
cause the result depends on unpredictable numerical properties of the operands
(e.g., the segment endpoints). We therefore introduce an algorithm to minimize
the representation a posteriori, i.e., after the result of the operation has been com-
puted. We will show later that minimization is computationally cheap, and may
yield considerable speedups.

We note that [BT07, p. 41] first observed this problem, showing that the com-
pressed form of a function (which should be the same as what we call minimal repre-
sentation, although this is not formally defined therein) can be computed in linear
time. With respect to that work, we provide a sound definition of minimal repre-
sentation, discuss if and when it is attainable, we devise algorithms to obtain it, and
we investigate the impact of representation minimization on the efficiency of NC
computations.

Definition 3.7 (Breakpoint). Let f be a function of U . We say that tb is a breakpoint
of f if f is non-differentiable in tb, i.e., either of the following is true:

• f has a discontinuity at tb;

12.1 Minimization of the period 123

• the rates of f in t−b and t+b are different.

A first thing to do is to ensure that the sequence in a representation iswell-formed.
We say that S is awell-formed sequence if the abscissa of any point in S is a breakpoint
of f . In other words, in a well-formed sequence there are no unnecessary points.1

As we anticipated, the generic algorithms for minimum and convolution may
not yield well-formed sequences, even when the sequences of their operands are
well-formed. However, recovering well-formedness only takes a simple O (n(S))
check of the resulting sequence S, to find segment-point-segment triplets that can
bemerged, i.e., replaced with a single segment. This is done on-the-fly inNancy, us-
ing the generator method IEnumerable<Element>.Merge(). From now on, we will there-
fore assume that sequences are well-formed, without loss of generality. We describe
below a minimization algorithm consisting of two phases:

• minimization of the period;

• minimization of the transient.

Hereafter, we denote with ST the transient part of a sequence S (i.e., in interval T =

[0, T[) and with SP its periodic part (i.e., in interval P = [T, T + d[).

12.1 Minimization of the period
We set to finding the minimal period d̃, defined as follows:

Definition 12.1. Aminimal period d̃ for f is such that R f = (S, T, d̃, c̃) is a represen-
tation of f , and there exists no q ∈ (0, 1) ⊂ Q such that

f (t + q · d̃) = f (t) + q · c̃ for all t ≥ T.

Period minimization is only relevant if the function is notUltimately Affine (UA).
Recalling its definition (Definition 3.3), a UA function ends, graphically, with a half-
line. This is equivalent to saying that f has no breakpoint for any t > T and, con-
versely, any f ∈ U having a breakpoint tb > T is not UA.

Note that it is important that inequality t > T is strict. In fact, whether T itself is
a breakpoint or not may depend on the transient behavior. On the other hand, we
are interested in the periodic behavior. Therefore, we check if T + d is a breakpoint,
i.e., if point (T, f (T)), repeated after a period in (T + d, f (T) + c), breaks the linear
behavior between one pseudo-period and the next. Figure 12.2 shows two exam-
ples to illustrate the above. For this reason, in the following we will focus on the
breakpoints in]T, T + d].

1An exception must be made at T, where a point has to be inserted regardless, marking the end
of the transient and the beginning of the periodic part, because this simplifies the implementation.
Such an exception has no impact on the rest of our discussion.

124 Representation Minimization

f (T)

f (T) + c

f (T) + 2c

T T + d T + 2d time

data

(a) Example of function f with a breakpoint in T, but not in T + k · d.

f (T)

f (T) + c

f (T) + 2c

T T + d T + 2d time

data

(b) Example of function without a breakpoint in T, but with breakpoints in T + k · d.

Figure 12.2: Breakpoints in T vs. in T + d.

A UA function has no minimal period. In fact, its period has an arbitrary length
d > 0. Accordingly, its SP only consists of point (T, f (T)) and a segment of length
d and slope ρ f , hence c = ρ f · d. For UA functions, then, there is just nothing to do.
Conversely, any f which is not UA has a minimal period. In fact, call tb the leftmost
breakpoint such that tb > T (we know that there is at least one): then, the interval
]T, T + d] must include tb, since it must include at least one breakpoint if f is not
UA. Then, d ≥ tb − T > 0.

The next question, then, is what characterizes non-minimal periods and howwe
can find the minimal one, given a representation. The first step is recognizing that
non-minimal periods are integer multiples of the minimal one. We provide both
visual examples – such as Figure 12.3, discussed later on – and a formal proof.

Proposition 12.2. Let f ∈ U be a non-UA function, and let d̃ be its minimal period. Then,
for any period d, it holds that

d/d̃ ∈N.

Proof. We define the integer part of d/d̃ as k := bd/d̃c and the fractional part of d/d̃
as q := d/d̃− bd/d̃c ∈ [0, 1[, thus d/d̃ = k + q. Then, it holds that

f (t + d) = f (t + (k + q)d̃)

= f (t + qd̃ + k · d̃)

12.1 Minimization of the period 125

(3.1)
= f (t + qd̃ + (k− 1) · d̃) + c

(3.1)
= . . .

(3.1)
= f (t + qd̃) + k · c.

As the period d̃ is assumed to be minimal, if 0 < q < 1 then we observe f (t + qd̃) =
f (t) + qc̃ cannot apply, thus the UPP property does not hold for d. Thus, d cannot
be an equivalent representation unless q = 0.

Then, given R f = (S, T, d, c), if f also admits a minimal period d′, it must hold
that d/d′ = c/c′ = p, where p ∈ N. Such p also divides SP in p matching parts, i.e.,
such that ∀t ∈

]
T, T + d

p

]
and k ∈N it holds that f (t + k · d

p) = f (t) + k · c
p . Hence,

we call p a divisor of SP . We exemplify this in Figure 12.3. Figure 12.3a shows f and
its representation, with breakpoints in]T, T + d] highlighted as circles. Figure 12.3b
shows that d/3 is also a (minimal) period, and that – accordingly – SP consists of
p = 3 consecutive replicas of a smaller periodic part SP

′ , which is highlighted in red
in the figure. Thus, in order to minimize the period of a non-UA function, we need
to find the possible divisors of SP , i.e., to test if the latter is in fact the juxtaposition
of matching parts. This can be done efficiently by observing the following.

Lemma 12.3. Let f ∈ U be nonUA, and let b be the number of its breakpoints in]T, T + d].
Then, if p ∈N, p > 1, is a divisor of SP , it is also a divisor of b.

Proof. Let d̃ be the minimal period for f , and let b̃ be the number of breakpoints in]
T, T + d̃

]
. Now, by definition, d = p · d̃ for some p ∈ N. By construction, then, if

p > 1, SP consists of p matching parts, hence p is a divisor of SP . By Equation (3.1),
if tb ∈

]
T, T + d̃

]
is a breakpoint, then tb + d̃ is also a breakpoint. Then, it is b = p · b̃,

i.e., p is also a divisor of b.

For instance, in Figure 12.3b, p = 3 is a divisor of SP , and there are in fact 6
breakpoints in]T, T + d]. Lemma 12.3 states that, in order to minimize the period,
we can limit ourselves to testing if the divisors of b are also divisors of SP . This allows
us to formulate an efficient algorithm thatminimizes the period d of a representation
R f :

• Count b as the number of breakpoints of f in]T, T + d];

• Find the prime factorization of b;

• Exhaustively test if the prime factors of b are also divisors of SP : if they are,
update SP , d and c accordingly.

126 Representation Minimization

c

T T + d time

data

(a) f with breakpoints in]T, T + d] highlighted as circles.

1
3 c

2
3 c

c

T T + 1
3 d T + 2

3 d T + d time

data

(b) Factorization of SP with p = 3. We can replace d, c and SP , defined in]T, T + d], with,
respectively, d

3 ,
c
3 , and SP

′ , defined in
]

T, T + d
3

]
and highlighted in red. The latter is an

equivalent, but more compact, representation of f .

Figure 12.3: Example of factorization of the pseudo-periodic part.

We exemplify this algorithmon the function in Figure 12.3. FromFigure 12.3awe
observe that b = 6, whose prime factorization is 2 · 3. Therefore, we test these two
primes as possible divisors of SP , as shown in Figure 12.4. Testing a factor p consists,
in general, in dividing the sequence in p parts, defined in

]
T + i · d

p , T + (i + 1) · d
p

]
for i = 0 . . . p − 1, and checking whether, after shifting them down by d

p and left
by c

p , they all match. Figure 12.4a shows that the test with p = 2 fails, whereas
Figure 12.4b shows that the test with p = 3 succeeds. After a division succeeds, it
is convenient to immediately replace SP , d and c with their smaller equivalents SP

′ ,
d
p and c

p , so that the upcoming tests with other factors of b are more efficient. In

particular, n
(

SP
′
)
< n

(
SP
)
. The test is run exhaustively for all prime factors of b. If

a prime factor p has multiplicity m > 1, it is tested as a divisor of SP up to m times.
Obtaining number b requires counting breakpoints of f in]T, T + d], which is

a simple O
(
n
(
SP
))

check. To find the prime factorization of b, we will need the
prime numbers in 2...

√
b. Computing primes until a given x is something that can

be done offline – we use an offline list of 1000 primes in our implementation, which

12.2 Minimization of the transient 127

1
2 c

c

T T + 1
2 d T + d time

data

(a) Test of prime factor 2. The last half is translated (down by 1
2 c, left by 1

2 d) on top of the
first half. Since they do not match, 2 is not a divisor of SP .

1
3 c

2
3 c

c

T T + 1
3 d T + 2

3 d T + d time

data

(b) Test of prime factor 3. The last third is translated (down by 1
3 c, left by 1

3 d) on top of the
second one, and then again on top of the first one. As they all match, 3 is a divisor of SP .

Figure 12.4: Example of the factorization algorithm.

is enough for periods exceeding 62 millions. Lastly, testing if a prime factor p is a
divisor of SP entails a linear comparison between its parts. Let np be the number of
prime divisors of b. In the worst-case, the algorithm will test, unsuccessfully, all np

divisors, thus the complexity of this last step is O
(
np · n

(
SP
))
.

12.2 Minimization of the transient
In a non-minimal representation, the period start T can be overestimated, making
the transient part longer than strictly necessary. This algorithm aims at removing
this excess transient by bringing forward the period start. We exemplify this process
starting from the representation in Figure 12.5.

As a first step, which we call by-period, we check if the rightmost end of the tran-
sient part contains sequences thatmatchwith the (alreadyminimized) periodic part
itself – and remove them, in case. In the example of Figure 12.5 we can see that the

128 Representation Minimization

T

d̃

c̃

time

data

Figure 12.5: Example of a non-minimal representation.

T

d̃

c̃

time

data

Figure 12.6: Representation reduced by a whole number of periods.

representation is equivalent to the one in Figure 12.6. We can obtain this result al-
gorithmically by comparing the sequence in

]
T, T + d̃

]
with the transient sequence

immediately before, i.e., in
]
T − d̃, T

]
. If the two are matching, then the period start

can be brought forward to T′ = T − d̃, while the other parameters stay the same.
This operation removes a period’s worth of elements from ST . We repeat this pro-
cess iteratively until the comparison fails. The end result is a reduction of the rep-
resentation by a number of periods k ∈N0, and an earlier period start T′ = T− k · d̃.

As a second step, which we call by-segment, we test if parts of a period, instead of
whole periods, can be found at the right end of the transient part. In the example we
can see that the representation of Figure 12.6 is equivalent to the one in Figure 12.7.
We can algorithmically obtain this result by comparing the last pair (point, segment)
of the periodic part, say in

]
T + d̃− l, T + d̃

]
, thus of length l, with the transient part

of the same length immediately before the period start, thus in]T − l, T]. If the two
are matching, then the period start is brought forward to T′ = T− l, while the other
parameters stay the same.

12.2 Minimization of the transient 129

T

d̃

c̃

time

data

Figure 12.7: Representation reduced by a segment, altering the pseudo-period se-
quence.

TL T

d̃

c̃

time

data

Figure 12.8: Example of function with a right-discontinuity before the period start:
TL is an infimum for T, but not its minimum.

While this appears close to the by-period step, an important difference is that SP

needs also be altered as a result (although d̃ will remain the same).

The above steps are repeated until no further changes can be made. Transient
minimization can also be applied to UA functions. For these, one should just check
if the tail of the transient is aligned with the period half-line.

Our transient minimization algorithm always achieves the minimum T, if one
exists. In fact, some functions do not admit a minimum T. Figure 12.8 shows a func-
tion which is not right-continuous in TL, and whose periodic part must start after TL
(recall that Equation (3.1) includes a weak inequality), hence admits nominimum T.
In this particular case, our by-segment step yields the representation in Figure 12.8.
We observe that using any T′ in]TL, T], by removing a fragment of the rightmost seg-
ment in the periodic part, would yield an equivalent representation with the same
n(S) anyway.

Regarding the algorithmic complexity of this algorithm, note that the linear check

130 Representation Minimization

involves, at most, the entire ST , then the complexity is O
(
n
(
ST
))
. Thus the cost of

the entire representation minimization algorithm is O
(
n
(
ST
)
+ np · n

(
SP
))
.

12.3 Performance evaluation
In this section, wediscuss the results obtained by implementing this algorithmwithin
Nancy.

The algorithm is implemented via the Curve.Optimize() method, which runs the
two algorithms discussed above, implemented internally as Curve.PeriodFactoriza c
tion() and Curve.TransientReduction(). This method is called automatically by most
methods before returning their result, if the settings object passed has UseRepresen c
tationMinimization set to true. Note that this is the default setting, hence most users
will experience the performance benefits shown below without further actions.

12.3.1 Impact on flow control use case
We first show the impact in the example we presented in Section 6.1. We repeated
the same computations, this time adding representation minimization in between
each operation (both minima and convolutions) – i.e., with UseRepresentationMinim c
ization set to true.
The new results are in Table 12.1 and Table 12.2, which highlight both speedups and
reductions in representation size up to three orders of magnitude.
An important aspect that links both is that a larger representation size translates di-
rectly to a higher memory occupancy during computations. As the occupied mem-
ory approaches the maximum allowed by the computer system, the performance
is also affected. We do believe that the reason why some SACs do not terminate
(within a reasonable time) with the exact method is that they end up occupying all
the available memory, hence disk swaps start kicking in.

Table 12.1: Computational results, exact method.

unoptimized results with minimization

comp. time of β2 ⊗ β
eq
3 + W3 6 h 24 m 6 s

n
(

β2 ⊗ β
eq
3 + W3

)
→ n

(
β2 ⊗ β

eq
3 + W3

)
10→ 10600 10→ 10

comp. time of β1 ⊗ β
eq
2 + W2 > 24 h 13 s

n
(

β1 ⊗ β
eq
2 + W2

)
→ n

(
β1 ⊗ β

eq
2 + W2

)
unknown 14→ 6

12.3 Performance evaluation 131

Table 12.2: Computational results, approximate method.

unoptimized results with minimization

comp. time of β{1,3} = β1 ⊗ β2 + W2 ⊗ β2 ⊗ β3 + W3 0.14 s 0.11 s

n
(

β1 ⊗ β2 + W2
)

, n
(

β2 ⊗ β3 + W3
)
→ n

(
β{1,3}

)
6, 6→ 270 6, 6→ 42

comp. time of β{1,4} = β{1,3} ⊗ β3 ⊗ β4 + W4 6 h 13 m 13.47 s

n
(

β{1,3}

)
, n
(

β3 ⊗ β4 + W4
)
→ n

(
β{1,4}

)
270, 6→ 1456 42, 6→ 6

12.3.2 Extended study
In this study, we use curves of the form βR,θ,h = βR,θ + h, where βR,θ is a rate-latency
curve, with latency θ and rate R, and h is the ordinate of a constant function. We
consider, in each experiment, the convolution of three of such curves, (βa⊗ βb)⊗ βc,
whose parameters are randomly generated.

First, we computed the convolutions without any improvement. Then, we com-
puted the same convolutions using representation minimization both on the re-
sults and in between any intermediate step: for instance, when we compute Equa-
tion (3.11), we minimize the result of each of the four partial convolutions. Note
that the algebraic properties discussed in Chapter 13 were not used in this study.

We first report in Figure 12.9 the reduction in the number of elements of the
result. Each experiment is reported as a point on a Cartesian plane (with logarith-
mic scales): its ordinate is the number of elements of the minimized result, and
its abscissa is the number of elements of the unoptimized one. The dashed line is
the bisector, below which the representation reduction factor is larger than 1. This
makes it easier to visualize the order of magnitude of the reduction, which is in fact
the horizontal (or vertical) distance between a point and the bisector. Figure 12.9
highlights representation reductions of one to three orders ofmagnitude. A box plot
of the representation reduction is shown in Figure 12.10.
In the previous section, we have shown that in the flow control example the repre-
sentationminimization also yielded a speedup of orders ofmagnitude. We therefore
evaluate the cost of the above operations in Figure 12.11, which compares the opti-
mized and unoptimized runtimes, and in Figure 12.12, which reports a box plot of
the reduction in computation times.

Our results show that – while some gains are certainly there in most cases – a
high reduction in the state occupancy does not always yield a similar reduction in
computation times. The median time reduction is in the order of 10%. This can be
explained by observing that the impact of period minimization on the lcm is variable.
Consider for example two curves, f and g, and their respective representations with
d f = 30 and dg = 30, such that by performing period minimization on these repre-
sentations we obtain d̃ f = 5, d̃g = 6. While the reduction in size is noticeable, the

132 Representation Minimization

101 102 103

101

102

103

Unoptimized result size (n(S))

O
pt
im

iz
ed

re
su

lt
si
ze

(n
(S
))

Figure 12.9: Cardinality of the results of the convolution of three subadditive func-
tions, with and without minimization.

0

0.1

0.2

Figure 12.10: Convolution of three subadditive functions: reduction of the cardinal-
ity of the result due to minimization.

10ms 100ms 1s 10s 1m. 5m.10m.
10ms

100ms

1s

10s
1m.
5m.10m.

Unoptimized computation time

O
pt
im

iz
ed

co
m
pu

ta
tio

n
tim

e

Figure 12.11: Computation times of the convolution of three subadditive functions,
with and without minimization.

12.3 Performance evaluation 133

0

0.5

1

Figure 12.12: Convolution of three subadditive functions: reduction of computation
times due to minimization.

same cannot be said about computing f ⊗ g, since lcm(30, 30) = lcm(5, 6). Thus, the
more substantial speedups are obtained when minimization succeeds in removing
a common factor from both operands (e.g., factor 5 from both f and g). Note that
these cases (to which the example of Section 12.3.1 belongs) depend on numerical
properties of the operands, hence are hard to obtain using random generation of the
input (but not impossible – check the outliers at the bottom of Figure 12.12).

We stress that the most remarkable benefits of representation minimization lie
in enabling the computation of SACs, hence the analysis of flow control networks
via the exact method (Equation (2.8)). In this case, representation minimization is
indispensable, since the complexity of the SAC algorithm is exponential with the
number of elements. Unfortunately, we are not able to produce a speedup figure for
the SACs, since unoptimized SACs with random parameters hardly ever terminate
at all.

On the other hand, the above experiments highlight that applying minimization
always yields a significant size reduction, which helps with memory management;
it yields at least a moderate time reduction, most of the time, and – even in the rare
cases when it fails to provide a speedup – the time spent on applying it is negligible.

Chapter 13

Improving (min,+) Convolution of
Subadditive Curves

The work described in this chapter is part of the contributions in [ZS23], coauthored with
Giovanni Stea. We wish to thank Paul Nikolaus for the help on improving the formalization
of this work.

As we presented in Section 3.4, in a (min,+) convolution the resulting period
grows like the least common multiple (lcm) of the period of the operands, and the
complexity of the by-sequence algorithm is superquadratic with the length of the
sequences. Thus, it is possible to find instances where a single (min,+) convolution
may take very long.
It is however possible to leverage algebraic properties to reduce the complexity of
this operation. It is already well known, for example, that the (min,+) convolution
of concave curves is equal to their minimum. In this chapter, we discuss similar
properties for subadditive functions, that have a large on the complexity of their
(min,+) convolution. To the best of our knowledge, this has never been observed
before.

Before continuing, we add a note on the symmetrical property to subadditiv-
ity, i.e., superadditivity. In principle, we believe that similar properties as the ones
discussed in this chapter may be obtained for (max,+) convolution of superadditive
functions and, therefore, for the computation of superadditive closure. The only rea-
sonwe did not include such result in this thesis is lack of time to properly go over the
related formalization and practical experiments – this is shared to the many other
paths of future research discussed in Chapter 16.

135

136 Improving (min,+) Convolution of Subadditive Curves

13.1 Improving convolution of subadditive functions
with dominance

We first observe that dominance can be leveraged to abate the complexity of convo-
lutions. We say that g dominates f if g(t) ≥ f (t) ∀t ≥ 0. In this case, the following
property applies.

Theorem 13.1 (Convolution of subadditive functions with dominance). Let f and
g be functions ∈ U such that g(0) = 0, g(t) ≥ f (t) ∀t, f is subadditive, and f ⊗ g is
well-defined.1 Then,

f ⊗ g = f . (13.1)

Proof. Since f is subadditive, f (u) + f (s) ≥ f (u + s) ∀u, s. Then, for any t = u + s,
f (u) + g(s) ≥ f (u) + f (s) ≥ f (t). Thus, (f ⊗ g)(t) = infu+s=t{ f (u) + g(s)} =

f (t) + g(0) = f (t).

In order to apply this theorem algorithmically, we first need to compare f and g.
Dominance can be verified by checking statements f = f ∧ g, g = f ∧ g. Both the
minimum and the equivalence check have linear costs as discussed in Section 9.2.
When either is true, Theorem 13.1 allows us to bypass the convolution altogether,
which is instead superquadratic. Note that this theorem (as well as the following
one) requires only the dominated function f to be subadditive, whereas the dominant
function g can have any shape, as long as g(0) = 0.

When dominance does not hold, we can test a weaker property, asymptotic dom-
inance. We say that g dominates f asymptotically if it exists t∗ > 0 such that g(t) ≥
f (t) ∀t ≥ t∗. Note that ρg > ρ f is a sufficient condition for this to occur, but not a
necessary one. In this case, we can resort to a “simpler” convolution as follows.

Theorem 13.2 (Convolution of subadditive functions with asymptotic dominance).
Let f and g be functions ∈ U such that f (0) = g(0) = 0, g(t) ≥ f (t) ∀t ≥ t∗, f is
subadditive and f (t) > −∞ ∀t ≥ 0.

Let g = ga ∧ gb be a decomposition of g where

ga(t) =

{
g(t) if t ∈ [0, t∗[,

+∞ if t ≥ t∗,
gb(t) =

0 if t = 0,

+∞ if t ∈]0, t∗[,

g(t) if t ≥ t∗.

Then
f ⊗ g = f ⊗ ga ∧ f .

1As mentioned in [BT08, p. 7] and recalled in Chapter 3, convolution f ⊗ g, with f , g ∈ U , is not
defined if there exist t1, t2 such that f (t1) = +∞ and g(t2) = −∞, or vice versa (i.e., both are infinite,
with opposite signs).

13.1 Improving convolution of subadditive functions with dominance 137

Proof. Decompose g as per the hypothesis. Then

f ⊗ g = f ⊗ (ga ∧ gb)

= f ⊗ ga ∧ f ⊗ gb.

For the latter part, we observe that gb ≥ f ∀t, and that gb(0) = 0. We can therefore
apply Theorem 13.1, for which f ⊗ gb = f . Thus

f ⊗ g = f ⊗ ga ∧ f ⊗ gb

(13.1)
= f ⊗ ga ∧ f .

If g dominates f only asymptotically, then f is above g at some point, but will
eventually fall below it. Accordingly, there exists t∗ such that f (t) ≤ g(t) ∀t ≥ t∗,
and by algorithmic construction of f ∧ g we can say that Tf∧g is in fact such t∗.2
Therefore, we can apply Theorem 13.2, and compute f ⊗ g by:

• Computing h = f ⊗ ga. Since ga(t) = +∞ ∀t ≥ t∗, computing this convolu-
tion will involve d = d f rather than d = lcm

(
d f , dg

)
, thus smaller D and SI

f ,
reducing the cost of computation.

• Computing f ⊗ g = h ∧ f . Being a minimum, it has a linear cost, but again
d = lcm

(
dh, d f

)
= lcm

(
d f , d f

)
= d f , hence the number of operations is greatly

reduced.

The main benefit of applying Theorem 13.2 lies in dispensing with computing
the representation of f and g over a possibly very long period d = lcm

(
d f , dg

)
.

If neither of the above theorems can be applied, we can resort to the following
result.

Theorem 13.3 (Convolution of subadditive functions as self-convolution of the min-
imum). Let f and g be subadditive functions ∈ U such that f (0) = g(0) = 0, and f ⊗ g
is well-defined. Then,

f ⊗ g = (f ∧ g)⊗ (f ∧ g).

Proof. We recall that if f is subadditive with f (0) = 0, then f ⊗ f = f (Equa-
tion (4.1) in Corollary 4.7); and if f (0) = g(0) = 0, then f ∧ g ≥ f ⊗ g (Equa-

2The alert reader may note that this is not true if minimization of the transient is applied to f ∧ g –
we indeed back up Tf∧g beforehand.

138 Improving (min,+) Convolution of Subadditive Curves

tion (4.3) in Lemma 4.8). Then

(f ∧ g)⊗ (f ∧ g) = (f ⊗ f) ∧ (f ⊗ g) ∧ (g⊗ f) ∧ (g⊗ g)
(4.1)
= f ∧ (f ⊗ g) ∧ (f ⊗ g) ∧ g

= f ∧ g ∧ (f ⊗ g)

= (f ∧ g) ∧ (f ⊗ g)
(4.3)
= f ⊗ g.

To exploit this theorem, we would first need to compute f ∧ g. However, this
computation is also a prerequisite for testing Theorem 13.1, which one would try
first anyway. Theorem 13.3 transforms a convolution into a self-convolution. Self-
convolutions can be computed more efficiently than standard convolutions. In fact,
we can bypassmore thanhalf of the elementary convolutionswithin the by-sequence
algorithm, as per the following properties:

Proposition 13.4 (Avoiding duplicates in self-convolutions). A self-convolution h⊗ h,
h ∈ U , can be computed through a single by-sequence convolution with SI

h ⊗ SI
h, with D =

[0, 2 · Th + 2 · dh[.
Since this by-sequence convolution is symmetric, we can reduce the number of its elementary
convolutions to

n2 − n
2

< n2,

where n = n
(
SI

h
)
.

Proof. Since the two operands of the convolution have the same ρh, from [BT08] we
know that

• T = Th + Th + d = 2 · Th + d3;

• d = lcm(dh, dh) = dh;

• c = ρ · d = ch.

Consider then SI
h, D = [0, T + d[= [0, 2 · Th + 2 · dh[, and its composing elements

ei, 1 ≤ i ≤ n. It is:

SI
h = e0 ∧ e1 ∧ · · · ∧ en;

SI
h ⊗ SI

h =
∧
ei,ej

ei ⊗ ej.

3When combined with Theorem 13.3, we can use T = min(2 · Tf∧g, Tf + Tg).

13.1 Improving convolution of subadditive functions with dominance 139

The by-sequence convolution entails n2 elementary convolutions. However, con-
volution being commutative, many of these are computed twice, e.g., e1 ⊗ e2 and
e2 ⊗ e1. This can be avoided by computing instead

SI
h ⊗ SI

h =
∧

ei,ej :i,j∈[0..n−1]

ei ⊗ ej

=

 ∧
ei,ej :i,j∈[0..n−1],i<j

ei ⊗ ej

 ∧
 ∧

ei :i∈[0..n−1]

ei ⊗ ei

 ,

which results in n + (n− 1) + · · ·+ 1 = n2−n
2 elementary convolutions.

Therefore, in a self-convolution (such as the one of Theorem 13.3) one can halve
the number of elementary convolutions. On top of that, a further improvement is
warranted by the following proposition:

Proposition 13.5 (Reducing the number of convolutions by element coloring). Let
f and g be subadditive functions ∈ U such that f (0) = g(0) = 0, and h = f ∧ g (thus,
h(0) = 0). Let SI

h be the sequence necessary to compute h⊗ h. Given colors { f , g}, for an
element ek ∈ SI

h defined in interval Ik, we define its color as

color(ek) =

{
f if ek(t) = f (t) ∀t ∈ Ik,

g otherwise.

An element’s color is thus the function (f or g) it belongs to. Then, we can compute SI
h⊗ SI

h
as:

SI
h ⊗ SI

h =

∧

ei,ej∈SI
h

color(ei) 6=color(ej)

ei ⊗ ej

 ∧ SI
h, (13.2)

i.e., we can omit computing elementary convolutions of elements of the same color.

Proof. Since h(0) + h(t) = h(t), we can write the convolution as

(h⊗ h)(t) = inf
0≤s≤t

{h(s) + h(t− s)}

= inf
0<s<t

{h(s) + h(t− s)} ∧ h(t).

Thus, we can ignore in the computation any pair (ti, tj), such that ti + tj = t, for
which h(ti) + h(tj) ≥ h(t). We show that elements of the same color fall in such
category.

Let ei, ej be elements of SI
h defined, respectively, on intervals Iei , Iej and such that

color(ei) = color(ej) = f . Let Iei⊗ej =
{

t = ti + tj | ti ∈ Iei , tj ∈ Iej

}
.

140 Improving (min,+) Convolution of Subadditive Curves

Then, for any t ∈ Iei⊗ej and ti ∈ Iei , tj ∈ Iej such that t = ti + tj, we have that

(h⊗ h)(t) ≤ h(ti) + h(tj)

= f (ti) + f (tj),

since color(ei) = color(ej) = f . On the other hand, due to subadditivity of f ,

f (ti) + f (tj) ≥ f (t) ≥ h(t).

Thus, (ei ⊗ ej)(t) ≥ h(t). Obviously, the same holds if color(ei) = color(ej) = g.
Therefore, in order to compute SI

h ⊗ SI
h, it is sufficient to include in the compu-

tation of the lower envelope the sequence SI
h and the convolutions of elements with

different colors, hence Equation (13.2).

The idea behind Proposition 13.5 can be visualized through the example in Fig-
ure 13.1. Take f and g (Figure 13.1a), which intersect infinitely many times – hence
their convolution cannot be simplified leveraging dominance. Figure 13.1b and Fig-
ure 13.1c report SI

f∧g against elementary convolutions ei ⊗ ej, where ei and ej have
the same color (f and g, respectively). These figures show that the results of these
elementary convolutions are always above f ∧ g. Instead, in Figure 13.1d we see
how convolutions of elements of different colors may yield elements below f ∧ g.

The above two properties allow one tomake the computation of (f ∧ g)⊗ (f ∧ g)
as efficient as possible, skipping many elementary convolutions. However, it re-
mains to be seen whether computing the above is faster than computing f ⊗ g di-
rectly. Our results, reported in Section 13.2.2, show that this is indeed the case in the
vast majority of cases: the ensuing time reduction ranges from sizeable percentages
to 10 times. Counterintuitively, this is not due to a reduction in the number of ele-
mentary convolutions (which is instead of the same order of magnitude in the two
cases, despite the optimizations of Proposition 13.4 and Proposition 13.5). Rather,
it is due to the different topological properties of the ensuing elements. A thorough
discussion of this phenomenon is reported in Section 13.2.2.

13.2 Performance evaluation 141

time

data

SI
f

SI
g

(a) SI
f and SI

g.

time

data

ei ⊗ ej

SI
f∧g

(b) SI
f∧g vs. ei ⊗ ej,

with color(ei) = color(ej) = f .

time

data

ei ⊗ ej

SI
f∧g

(c) SI
f∧g vs. ei ⊗ ej,

with color(ei) = color(ej) = g.

time

data

ei ⊗ ej

SI
f∧g

(d) SI
f∧g vs. ei ⊗ ej,

with color(ei) 6= color(ej).

Figure 13.1: Coloring example.

13.2 Performance evaluation
In this section, we show the impact of these optimizations, whichwere implemented
in Nancy.

The improved algorithm is implemented through the SubadditiveCurve class, which
inherits from Curve and overrides some of itsmethods. Namely, the SubadditiveCurve c
.Convolution() method attempts to apply the optimizations of Theorems 13.1 to 13.3,
checking if the operands are subadditive and if the assumptions of these theorems
are verified. This behavior can be controlled via the settings argument: the opti-

142 Improving (min,+) Convolution of Subadditive Curves

mizations are applied only if UseSubadditiveConvolutionOptimizations is set to true (it
is, by default).

Note that – unless obtained via methods known to return a subadditive curve,
such as Curve.SubAdditiveClosure(), a user has to actively indicate that a given curve
is subadditive by using the SubadditiveCurve class instead of Curve. This is due to the
fact that the test for subadditivity of a generic curve f , as discussed in Section 9.3,
is implemented as the self convolution f ◦ ⊗ f ◦ followed by the test that this result
is equal to f ◦ again (see Lemma 9.3). Since this operation is not cheap in general, it
would be detrimental to perform it without user interaction.

On the other hand, if the use case does involve subadditive curves marked as
such with the SubadditiveCurve class, the user is not required to do anything more in
order to benefit from the performance improvements shown here.

13.2.1 Impact on flow control use case
We first show the impact in the example we presented in Section 6.1. We repeated
the same computations, this time exploiting also the theorems proved in this section.
The new results are in Table 13.1 and Table 13.2, which highlight further reductions
in computation time.

Table 13.1: Computational results, exact method.

w/o optimizations minimization minimiz. + Th. 1,2,3

comp. time of β2 ⊗ β
eq
3 + W3 6 h 24 m 6 s 0.47 s

n
(

β2 ⊗ β
eq
3 + W3

)
→ n

(
β2 ⊗ β

eq
3 + W3

)
10→ 10600 10→ 10 10→ 10

comp. time of β1 ⊗ β
eq
2 + W2 > 24 h 13 s 0.18 s

n
(

β1 ⊗ β
eq
2 + W2

)
→ n

(
β1 ⊗ β

eq
2 + W2

)
unknown 14→ 6 14→ 6

Table 13.2: Computational results, approximate method.

w/o optimizations minimization minimiz. + Th. 1,2,3
comp. time of β{1,3} = β1 ⊗ β2 + W2 ⊗ β2 ⊗ β3 + W3 0.14 s 0.11 s 0.09 s

n
(

β1 ⊗ β2 + W2
)

, n
(

β2 ⊗ β3 + W3
)
→ n

(
β{1,3}

)
6, 6→ 270 6, 6→ 42 6, 6→ 42

comp. time of β{1,4} = β{1,3} ⊗ β3 ⊗ β4 + W4 6 h 13 m 13.47 s 0.003 s
n
(

β{1,3}
)

, n
(

β3 ⊗ β4 + W4
)
→ n

(
β{1,4}

)
270, 6→ 1456 42, 6→ 6 42, 6→ 6

13.2 Performance evaluation 143

10ms 100ms 1s 10s 1m. 10m.

10ms

Unoptimized computation time

O
pt
im

iz
ed

co
m
pu

ta
tio

n
tim

e

Figure 13.2: Results of the convolution of subadditive functions with dominance.

13.2.2 Extended study
Convolution of subadditive functions with dominance

We now test the impact of Theorem 13.1. We compute βR1,θ1,h1 ⊗ βR2,θ2,h2 , where the
operands are randomly generated and matching the hypotheses of Theorem 13.1.
Tomake the comparisonmore insightful, in these and the following experiments we
apply representation minimization to all intermediate computations in the baseline
unoptimized algorithm.

The benefits of using Theorem 13.1 can be seen in Figure 13.2, which clearly
shows that most speedups are in the region of 105 times. In many cases the un-
optimized convolution lasted more than 10 minutes, while the optimized version
seldom lasted more than 1 ms. This means that dominance is a property worth
checking.

Convolution of subadditive functions with asymptotic dominance

We compute βR1,θ1,h1 ⊗ βR2,θ2,h2 , where the operands are randomly generated and
matching the hypotheses of Theorem 13.2. The impact of Theorem 13.2 is shown in
Figure 13.3, which still highlights speedups in the order of 105 times: unoptimized
convolutions taking severalminutes are often reduced to fractions of a second. How-
ever, some lengthy computations still take a sizable time even after the optimization.
This is because the effect of Theorem 13.2 is to use the time of last intersection, rather
than lcm

(
d f , dg

)
, to determine the sequences to be convolved. In few cases, the for-

mer may exceed the latter, hence Theorem 13.2 may instead increase the cost (see
the point above the bisector in the bottom-left corner of Figure 13.3). However, such
cases are rare – and easy to avoid. In fact, we can compare the extremes of the cut
intervals of the operands, computedwith the standard algorithm and Theorem 13.2,

144 Improving (min,+) Convolution of Subadditive Curves

10ms 100ms 1s 10s 1m. 10m.

10ms

100ms

1s

10s

Unoptimized computation time

O
pt
im

iz
ed

co
m
pu

ta
tio

n
tim

e

Figure 13.3: Results of the convolution between subadditive functions with
asymptotic dominance.

and then run the algorithm that will involve fewer elementary convolutions.

Convolution of subadditive functions as self-convolution of the minimum
A first assessment of the impact of Theorem 13.3 (coupled with Propositions 13.4
and 13.5) is reported in Figure 13.4. It is evident from the figure that the speedup
is less prominent in this case – the maximum that we get is 30 times. Note that
the higher speedups are obtained when the unoptimized computations take more
time (see the top-right cluster of points). However, there is a speedup in almost all
cases – we only found one outlier at 0.99 times, meaning that using our theorem
takes a little more time than using the basic convolution algorithm. The obtained
speedup is mostly within one order of magnitude. For this reason, we report in
Figure 13.5 a box plot of the reduction of computation times (which is the inverse of
the speedup). With our method, computation times can be expected to be 30% to
80% of the unoptimized times.

13.2 Performance evaluation 145

10ms 100ms 1s 10s 1m. 5m.20m.1h 5h
10ms

100ms

1s

10s
1m.
5m.

20m.

Unoptimized computation time

O
pt
im

iz
ed

co
m
pu

ta
tio

n
tim

e

Figure 13.4: Results of the convolution between subadditive functions without
asymptotic dominance.

0

0.5

1

Figure 13.5: Reduction of computation times of the convolution between subad-
ditive functions without asymptotic dominance.

Intuitively, one might expect the above speedup to be related to the number of
elementary convolutions. However, Figure 13.6 shows that this is not the case: the
number of elementary convolutions is roughly the same, regardless of the achieved
speedup. In more than a few cases, applying Theorem 13.3 entails computing more
elementary convolutions (i.e., all the points having abscissa smaller than 1), yet the
optimized version yields a non-negligible speedup nonetheless.

The root cause of the speedups lies elsewhere. Recalling the lower envelope algo-
rithm described in Section 8.8, its computation cost depends not only on the number
of elements, but also depend on how much overlap there is between the elements.
In fact, the more overlap there is between the elements of E, the higher the cost of
this algorithm is. Some of the overlaps – actually, most – will not yield segments
that end up being part of the lower envelope.

We show through a relevant example that computing (f ∧ g) ⊗ (f ∧ g) yields
considerably less populated intervals than computing f ⊗ g. The parameters are as

146 Improving (min,+) Convolution of Subadditive Curves

0 1 2 3 4 5 6

100

101

Ratio of elementary convolutions (non opt. count / opt. count)

Sp
ee
du

p
(n

on
op

t.
tim

e
/
op

t.
tim

e)

Figure 13.6: Ratio of elementary convolutions vs. speedup.

in Table 13.3.

Table 13.3: Parameters of the example convolution

R θ h

f 901 499 192

g 806 36 6912
499

In the non-optimized convolution algorithm,weneed to compute the lower enve-
lope of 810k elements, forwhich 220k intervals are used. In the optimized algorithm,
we find instead 910k elements and 320k intervals. However, as Figure 13.7a high-
lights, there is a significant difference in how many intervals each element spans.
This affects the cost of step 2, which takes 180s in the non-optimized algorithm vs.
42s in the optimized one. Moreover, as Figure 13.7b highlights, there is also a signif-
icant difference in how many elements a given interval list includes, which affects
the cost of computing the per-interval lower-envelope. In fact, step 3 takes 370s in
the non-optimized algorithm, against 70s in the optimized one.
Overall, applying the optimizations discussed produces, in this example, a fivefold
speedup – which is counter-intuitive if one considers only the number of convolu-
tions.

13.2 Performance evaluation 147

0

2,000

4,000 non optimized
optimized

(a) Number of intervals per element.

0

2,000

4,000
non optimized
optimized

(b) Number of elements per interval.

Figure 13.7: Relationship between elements and intervals, in a relevant example.

3 4 5 6 7 8 9 10

10−2

10−1

100

101

102

nodes

C
om

pu
ta
tio

n
tim

e
(s
)

Approximate, optimized
Approximate, non optimized

Exact, optimized

Figure 13.8: Performance comparison of the exact and approximate methods.

13.2.3 A case study
We now show how our method allows one to analyze flow-controlled networks.
We consider a tandem of n nodes, n = 2 . . . 10, where all nodes are described by
the same rate-latency service curve β16,2, and with input buffers of increasing size
W = 13, 15, . . . , 29. In Figure 13.8 we compare the runtimes of the exact method
(2.8) and the approximate method (2.10), with and without the optimizations de-
scribed in this thesis. We observe that the exact method can only be run with our
optimizations: without them, the computations for a three-node tandem had not
completed after 24 hours. The graph clearly shows that the approximate method
is orders of magnitude faster than even the optimized exact one. However, our op-
timizations still take away one order of magnitude of computations in that as well.
The experimentswere run five times in independent conditions, and 95% confidence
intervals were always within 1% of the average. For that reason, they are not re-
ported in the graph.

148 Improving (min,+) Convolution of Subadditive Curves

3 4 5 6 7 8 9 10

10−1

100

101

102

nodes

C
om

pu
ta
tio

n
tim

e
(s
)

Approximate, optimized
Approximate, non optimized

Figure 13.9: Performance comparison of the optimized/unoptimized approxi-
mate method.

We found that the computation times (whichever themethod) are very sensitive
to the actual parameters of the network: changing the numbers in the above example
is likely to change the vertical scale of the above graph considerably. However, the
same pattern still emerges: the unoptimized exact method is just unfeasible most of
the times; the optimized exact method comes second; the approximate method is
considerably faster, and even faster with our optimizations.
To support the above claim, we present another scenario in Figure 13.9, where the
computation times for the approximatemethod are sensibly higher. To obtain such a
difference, all it tookwas tomodify rates to R = 1600, latencies to θ = 200, and buffer
sizes to W = 1300, 1305, . . . , 1340. In this case, the approximate method takes up to
hundreds of seconds, whereas our optimizations curb the computations at fractions
of a second. It is interesting to observe that our optimization yield times that are
non monotonic with the tandem length (see, e.g., around n = 8). This is because a
more favorable optimization kicks in at n = 8 and further abates computation times.

What our optimizations allow – for the first time, to the best of our knowledge
– is an assessment of the accuracy of the approximate method. In fact, this requires
being able to complete exact computations, which just cannot be donewithout these
very optimizations (unless one handpicks very trivial scenarios and parameter val-
ues, with the obvious risk of undermining generality). Our results here are quite
surprising. They show that the end-to-end service curves obtained via the approxi-
mate method are always equal to the exact ones. This occurs not only in the tandems
described in this thesis, but in all the cases we analyzed, including many (several
tens) with randomized configurations.

One may legitimately wonder if this is due to the fact that equality should hold
in Equation (2.11), but so far no one was able to prove it. We show that this is not

13.2 Performance evaluation 149

the case, i.e., there are cases when β
eq
i > β

eq′

i . Consider the three-node tandem in
Section 2.3, and assume that nodes have the same rate-latency service curve β16,2,
and with input buffers W2 = 20 and W3 = 13.

When computing the equivalent service curve at the first node, i.e., β
eq
1 , β

eq′
1 , we

obtain different results using the exact and approximate method, as shown in Fig-
ure 13.10a. It is β

eq
1 > β

eq′
1 . The difference can be explained by observing that, since

W2 > W3, it is expected that the worst-case performance will be initially constrained
by the larger buffer W2 (see the first step of the exact β

eq
1 in Figure 13.10a), then by

the smaller buffer downstream (see the second step onwards of β
eq
1 , in the same

figure). The exact computation reflects this phenomenon, while the approximate
method does not (see the steps of the approximate β

eq′
1 , having all steps of equal

size, in Figure 13.10a).
However, despite this, Figure 13.10b shows that this difference is irrelevantwhen

computing the equivalent service curve for the whole tandem. As we compute the
convolution of all β

eq
i (respectively, β

eq′

i), we obtain in fact βeq = βeq′ , i.e., there is no
information given by the exact method that is not captured from the approximate
one as well. A similar phenomenon was observed in all our experiments.

The above observations cast the approximate method in a new – andmore favor-
able – light. They suggest that the approximate method is as accurate as the exact
one in an end-to-end context, enabling one to compute the exact same worst-case
bounds with only a fraction of the computational cost, by avoiding costly computa-
tions that have no end effect on these results.

We stress the importance of such a finding – were it formally proven – since one
can always find cases where, despite our optimizations, the exact method will just
be too costly to execute, while the approximate one remains feasible.

150 Improving (min,+) Convolution of Subadditive Curves

0 5 10 15 20
0

20

40

60

time

data
Approximate

Exact

(a) Comparison of equivalent service
curves at node 1, i.e., β

eq
1 and β

eq′
1 .

0 5 10 15 20
0

10

20

30

40

50

time

data
Approximate

Exact

(b) Comparison of equivalent end-to-end
service curves of the tandem, i.e., βeq and
βeq′ .

Figure 13.10: Comparison of the results of the exact and approximate method.

Chapter 14

Isospeed: Improving Algorithms for
(min,+) and (max,+) Convolution by
Exploiting their Isomorphism

The work described in this chapter is the result of the most recent collaboration with Paul
Nikolaus and Giovanni Stea.
An article discussing the (min,+) convolution and an earlier version of the by-sequence
heuristic has been presented at ECRTS 2023 [ZNS23a; ZNS23b]. We are also working on
an extended article, mentioning the due changes for (max,+) convolution and the improved
by-sequence heuristic discussed here, to be submitted for peer-review sooner rather than later.
This work is inspired by the results [PLSK11] – we wish to thank Steffen Bondorf for point-
ing out this paper to us, as well as Raul-Paul Epure for suggestions with respect to some
proofs.

The optimizations discussed in Chapter 13 improve dramatically the computa-
tional cost of a single convolution, though, as we pointed out, they apply only to
subadditive curves. In practice, many instances of DNC can incur in long convolu-
tions involving UPP curves which are not subadditive. We mentioned an example
in Section 6.2, where the convolution of IWRR per-flow service curves is not subad-
ditive and potentially complex.

The work in this chapter has been inspired by the work in [PLSK11], which first
observed this form of performance optimizations, although theywere unable to dis-
cern its root cause. Here, we expand on said result, discussing those root causes and
provide improved algorithms based on this.

This chapter is organized as follows. In Section 14.1, we discuss the observations
of [PLSK11], provide an explanation for the phenomenon, and discuss the oppor-
tunity of further improvements – which require some extensions to the mathemat-
ical framework. In Section 14.2, we provide such extension, outlining an isomor-

151

152 Isospeed: Algorithmic Improvements through Isomorphism

phism property that applies also to restricted functions. In Sections 14.3 and 14.4,
we use the extended mathematical framework to provide and evaluate improved
algorithms for, respectively, (min,+) and (max,+) convolution.

14.1 Explaining the algorithmic improvements via
isomorphism

First, we recall inAlgorithms 6 and 8 the standard algorithms for (min,+) and (max,+)
convolution of UPP functions, aswe have described them so far. Henceforth, wewill
refer to this as direct approach.

Algorithm 6 Pseudocode for (min,+) convolution
Input Functions f and g.
Return Their (min,+) convolution f ⊗ g.

1: Decompose the operands as f = f ∧t ∧ f ∧p and g = g∧t ∧ g∧p
2: Compute htt := f ∧t ⊗ g∧t , htp := f ∧t ⊗ g∧p , hpt := f ∧p ⊗ g∧t as described in Sec-

tion 3.4
3: Compute hpp := f ∧p ⊗ g∧p as follows:
4: Compute d = lcm

(
d f , dg

)
5: Compute c = d ·min

(
ρ f , ρg

)
6: Compute T = Tf + Tg + d
7: Compute

I f∧p =
[
Tf , Tf + 2 · d

[
,

Ig∧p =
[
Tg, Tg + 2 · d

[
,

I⊗pp =
[
Tf + Tg, Tf + Tg + 2 · d

[
8: Compute S

I⊗pp
⊗pp

= S
I f∧p
f∧p
⊗ S

Ig∧p
g∧p

using Algorithm 7

9: Rhpp =
(

S
I⊗pp
⊗pp

, T, d, c
)

10: f ⊗ g = htt ∧ htp ∧ hpt ∧ hpp

As wementioned in Section 4.4, it is possible to replace the (min,+) convolution
of left-continuous non-decreasing functions with a (max,+) convolution, by means
of pseudoinverses.

Corollary 4.17 (Alternative Expression for (min,+) Convolution, via its Isomor-
phism). Let f and g be functions of U that are left-continuous and non-decreasing. Then,

f ⊗ g
(4.6)
=
(
(f ⊗ g)−1

↑

)−1

↓

(4.12)
=

(
f−1
↑ ⊗ g−1

↑

)−1

↓
. (4.13)

14.1 Explaining the algorithmic improvements via isomorphism 153

Algorithm 7 Pseudocode for by-sequence (min,+) convolution
Input Sequences S f and Sg, and interval I⊗.
Return The (min,+) convolution SI⊗

⊗ = S f ⊗ Sg.
1: Initialize E as an empty set
2: for all e f ∈ S f , eg ∈ S f do
3: E← e f ⊗ eg

4: end for
5: Compute S as the lower envelope of the set E
6: Compute SI⊗

⊗ as the restriction of S to I⊗

Algorithm 8 Pseudocode for (max,+) convolution
Input Functions f and g.
Return Their (max,+) convolution f ⊗ g.

1: Decompose the operands as f = f ∨t ∨ f ∨p and g = g∨t ∨ g∨p
2: Compute htt := f ∨t ⊗ g∨t , htp := f ∨t ⊗ g∨p , hpt := f ∨p ⊗ g∨t as described in Sec-

tion 3.7
3: Compute hpp := f ∨p ⊗ g∨p as follows:
4: Compute d = lcm

(
d f , dg

)
5: Compute c = d ·max

(
ρ f , ρg

)
6: Compute T = Tf + Tg + d
7: Compute

I f∨p =
[
Tf , Tf + 2 · d

[
,

Ig∨p =
[
Tg, Tg + 2 · d

[
,

I⊗ pp
=
[
Tf + Tg, Tf + Tg + 2 · d

[
8: Compute S

I⊗ pp

⊗ pp
= S

I f∨p
f∨p
⊗ S

Ig∨p
g∨p

using Algorithm 9

9: Rhpp =

(
S

I⊗ pp

⊗ pp
, T, d, c

)
10: f ⊗ g = htt ∨ htp ∨ hpt ∨ hpp

Note that Algorithms 6 and 8 share the same algorithmic structure and complex-
ity. In both, the most impactful operation is the by-sequence convolution (Line 8 of
Algorithm 6 and Line 8 of Algorithm 8), whose complexity is superquadratic with
the size of the cuts, i.e,

O
(

n
(

S
I f∧p
f∧p

)
· n
(

S
Ig∧p
g∧p

)
· log

(
n
(

S
I f∧p
f∧p

)
· n
(

S
Ig∧p
g∧p

)))
,

O
(

n
(

S
I f∨p
f∨p

)
· n
(

S
Ig∨p
g∨p

)
· log

(
n
(

S
I f∨p
f∨p

)
· n
(

S
Ig∨p
g∨p

)))
.

154 Isospeed: Algorithmic Improvements through Isomorphism

Algorithm 9 Pseudocode for by-sequence (max,+) convolution
Input Sequences S f and Sg, and interval I⊗.
Return The (max,+) convolution SI⊗

⊗ = S f ⊗ Sg.
1: Initialize E as an empty set
2: for all e f ∈ S f , eg ∈ S f do
3: E← e f ⊗ eg

4: end for
5: Compute S as the upper envelope of the set E
6: Compute SI⊗

⊗ as the restriction of S to I⊗

0 2 4
0

1

2

3

time

events

Figure 14.1: Example of event-based service curve.

In both, such sizes depend on lcm
(
d f , dg

)
, meaning they can vary considerably de-

pending on numerical properties of the operands.
Due to these similarities and being the pseudoinverses, albeit cheap, not free to

execute, one would intuitively expect that applying Equation (4.13) (which wewill,
henceforth, refer to as inverse approach) would incur in longer computations. How-
ever, [PLSK11] observed that it is not the case, rather the computation time can be
reduced this way by orders of magnitude. This work was based off the RTC Toolbox,
and due to parts of the algorithm being written outside this tool and its closed-
source nature, the authors were not able to discern whether the improvement was
due to algebraic properties or inefficiencies in the implementation of RTC Toolbox.

We provide here an explanation that supports the first hypothesis. The use case
addressed by the authors of [PLSK11] is the (min,+) convolution of a series of event-
based service curves. Such curves, as exemplified in Figure 14.1, have time in Q+

on the x-axis and on the y-axis the number of events served in N0.
In the (min,+) convolution the dominant factor for the computational cost, as

mentioned, is the size of the cuts S f∧p and S f∧p , which depend in turn on d f⊗g =

lcm
(
d f , dg

)
, hence the numerical properties of d f and dg. In fact, let lcm

(
d f , dg

)
=

kd f
· d f = kdg · dg, then S f∧p contains 2 · kd f

pseudo-periods of f , and Sg∧p contains

14.1 Explaining the algorithmic improvements via isomorphism 155

2 · kdg pseudo-periods of g. We call kd f
and kdg extensions multipliers.1

However, we show that using Equation (4.13) the computational cost depends
instead on the numerical properties of c f and cg, which may be more favorable.

Proposition 14.1. Let f and g be left-continuous, non-decreasing UPP functions. Then,

d f⊗g = max

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
, (14.1)

c f⊗g = lcm
(
c f , cg

)
(14.2)

are sufficient period length and height for f ⊗ g.

Proof. Since f and g are left-continuous, it holds by Equation (4.13) that

f ⊗ g =
(

f−1
↑ ⊗ g−1

↑

)−1

↓
.

Combining this with Proposition 3.30, we obtain for the inner function f−1
↑ ⊗ g−1

↑

d f−1
↑ ⊗ g−1

↑
= lcm

(
d f−1
↑

, dg−1
↑

)
,

c f−1
↑ ⊗ g−1

↑
= max

 c f−1
↑

d f−1
↑

,
cg−1
↑

dg−1
↑

 · d f−1
↑ ⊗ g−1

↑
.

Using Theorem 10.4, we obtain for the period-length and height of the upper pseu-
doinverse

d f−1
↑ ⊗ g−1

↑
= lcm

(
c f , cg

)
,

c f−1
↑ ⊗ g−1

↑
= max

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
.

Combining this with the outer function (·)−1
↓ , due to Theorem 10.2, we eventually

obtain for
(

f−1
↑ ⊗ g−1

↑

)−1

↓
that

d f⊗g
(4.13)
= d(

f−1
↑ ⊗ g−1

↑

)−1

↓

= max

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
,

c f⊗g
(4.13)
= c(

f−1
↑ ⊗ g−1

↑

)−1

↓

= lcm
(
c f , cg

)
.

This finishes the proof.
1By definition of lcm, kd f

, kdg ∈N.

156 Isospeed: Algorithmic Improvements through Isomorphism

1ms 10ms 100ms 1s 10s
100µs

1ms

10ms

100ms

1s

10s

1m.

inverse

di
re
ct

Figure 14.2: Extract from the following performance evaluation: (4.13) does not
always improve runtime.

Note that this theorem gives us an alternative solution to the period length com-
pared to the state of the art in Proposition 3.17. In this new expression, we see that
the period length of the result is related to lcm

(
c f , cg

)
, instead of lcm

(
d f , dg

)
. This

can provide vastly different performance, if the latter lcm(·) is significantly closer to
its operands than lcm

(
d f , dg

)
, i.e., if the extensionmultipliers kc f and kcg are smaller

than, respectively, kd f
and kdg . This is likely the case in [PLSK11]: as we mentioned,

their event-based service curve have c f , cg ∈ N0 and d f , dg ∈ Q+, which justifies
the improved performance the authors observe when applying the transformation
of Equation (4.13).

However, thismay not be generally the case. For example, if one construct curves
having breakpoints inN0 on the x-axis and inQ+ on the y-axis, usingEquation (4.13)
would, in most cases, actually result in degraded performance. This is exemplified
in Figure 14.2, which is an extract of the following performance evaluation, compar-
ing the two approaches for curves with randomized parameters.

Furthermore, we note that a similar isomorphism can be exploited for (max,+)
convolutions.

Corollary 4.19 (Alternative Expression for (max,+) Convolution, via its Isomor-
phism). Let f and g be functions of U that are right-continuous and non-decreasing. Then,

f ⊗ g
(4.7)
=
(
(f ⊗ g)−1

↓

)−1

↑

(4.14)
=

(
f−1
↓ ⊗ g−1

↓

)−1

↑
. (4.15)

Thus, we can envisage a similar improvement for (max,+) convolution, which
we show providing the analogous property of Proposition 14.1.

14.1 Explaining the algorithmic improvements via isomorphism 157

Proposition 14.2. Let f and g ∈ U which are neither UC nor UI, and are right-continuous
and non-decreasing. Then,

d f ⊗ g = min

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
, (14.3)

c f ⊗ g = lcm
(
c f , cg

)
(14.4)

are sufficient period length and height for f ⊗ g.

A proof is provided in Appendix F.4.
These properties suggest that we can predict which method (direct or inverse)

is going to be more performant based on a comparison between lcm
(
d f , dg

)
and

lcm
(
c f , cg

)
. However, this comparison would not always appear as clear-cut. Let

for example d f = 1, dg = 7, c f = 3, cg = 2. Then, we can compute that extension
multipliers are kd f

= 7, kdg = 1, kc f = 2, kcg = 3. Thus, we can expect to either a)
use the direct approach, which will extend f by 14 pseudo-periods and g by only 2,
or b) use the inverse one, which will extend f by 4 pseudo-periods and g by 6.

It is not a simple task, then, to compare the two choices and pick the better one,
without inspecting the shapes of f and g. Moreover, as Sections 3.4 and 3.7 highlight,
we cannot predict directly how a convolution is going to turn out in its entirety – we
can only do so for the parts of its decomposition.

It is then on this decomposition that we focus in the following sections, as we
can derive an isomorphism property that applies to f ∧p ⊗ g∧p (and, for the case of the
(max,+) convolution, f ∨p ⊗ g∨p) enabling us to provide better insights on the overall
runtime. Moreover, we use this to outline a new algorithm, which we call isospeed,
that provides us the best parameters from both the direct and inverse approaches,
which leads to better performance than both without requiring to actually perform
the pseudoinverses.

14.1.1 Note on the by-sequence convolution
While the discussion above addresses only the by-curve algorithm and the extension
multipliers, we note that also the by-sequence one can be affected by the inversion.
We recall, as is discussed in Chapter 10, that the cardinality of a pseudoinverse can
differ from that of the operand, due to plateaus and discontinuities. We show this
with the example in Figure 14.3, where we can see that, even if the same “view”
of f is used in both instances ([t1, t4[on one axis, [f (t1), f (t4)[on the other), the
sequence in Figure 14.3b ends up having less elements, since plateaus “map” to a
height difference, which is immaterial w.r.t. the computational cost of a by-sequence
convolution.

158 Isospeed: Algorithmic Improvements through Isomorphism

t1 t2 t3 t4
f (t1)

f (t2)

f (t4)

ρ1

ρ2

ρ3

time

data

(a) S f

t1

t2

t3

t4

f (t1) f (t2) f (t4)

1/ρ1

1/ρ3

time

data

(b) S f
−1
↑

Figure 14.3: Example of upper pseudoinverse of a sequence S f .

This can reflect also on the runtime of convolutions. In fact, since the inverse
approach, in this example, would result in a shorter runtime compared to the direct
approach.

Hence, even if one optimizes the number of extensions in the by-curve algorithm–
aswewill describe in the following sections – itmay still be advantageous to perform
the by-sequence convolution via the inverse approach in order to reduce the number
of elements to be processed.

On the other hand, the number of elements is only one factor for the effective
runtime of the by-sequence convolution. As is discussed in depth in Section 8.8,
the runtime is also affected by topological properties that are difficult to understand
ex ante. Thus, later in Section 14.3.1 we only provide a heuristic approach to this
choice, that picks the direct or inverse by-sequence convolution based on the number
of plateaus and jumps.

In the performance evaluation sections of this chapter, we will compare shapes
of curves that are advantageous for this heuristic, i.e., with clearly more jumps than
plateaus, or vice versa, and disadvantageous ones, i.e., with unclear tradeoffs be-
tween the two approaches. As these comparisons show, our approach still offers a
significant improvement in the majority of cases.

14.2 Isomorphism for restricted functions
In the main results of this chapter, we exploit properties analogue to the isomor-
phisms proved in [Lie17], such as Corollary 4.17, which are applied however to
functions restricted over a support, e.g., f ∧p . The first obstacle is that the pseudoin-
verses are defined for non-decreasing functions, while the functions we consider are
not. Thus, in this section we provide a generalization of the concept of pseudoin-

14.2 Isomorphism for restricted functions 159

verses.

Definition 14.3 (Non-decreasing over Support). Let f ∈ U , and let D ⊆ Q+. We
say f is non-decreasing over D if and only if f (s) ≤ f (t) for any s, t ∈ D such that
s ≤ t.

Naturally, if f ∈ U is non-decreasing, f ∧I is non-decreasing over I.

Definition 14.4 (Left-continuous over Support). Let f ∈ U and D ⊆ Q+. We say
that f is left-continuous over D if, for any at t0 ∈ D such that exists δ0 > 0 so that
]t0 − δ0, t0] ⊆ D, and for any ε > 0, there exists some 0 < δ < δ0 such that for all t
with t0 − δ < t < t0, it holds that

| f (t)− f (t0)| < ε.

We also write limt↗t0 f (t) = f (t0).

For example, consider a function f ∈ U that is left-continuous and finite for all t
and UPP from Tf > 0. Then, f ∧p will not be left-continuous, since f ∧p (t) = +∞ for
all t < Tf and f ∧p (Tf) < +∞. It will, however, be left-continuous over

[
Tf ,+∞

[
.

Definition 14.5 (Right-continuous over Support). Let f ∈ U and D ⊆ Q+. We say
that f is right-continuous over D if, for any at t0 ∈ D such that exists δ0 > 0 so that
[[t0, t0 + δ0 ⊆ D, and for any ε > 0, there exists some 0 < δ < δ0 such that for all t
with t0 < t < t0 + δ, it holds that

| f (t)− f (t0)| < ε.

We also write limt↘t0 f (t) = f (t0).

Naturally, if f ∈ U is right-continuous, f ∧I is right-continuous over I.

Definition 14.6 (Lower and Upper Pseudoinverse over an Interval). Let f ∈ U be
non-decreasing over I, where I = [a,+∞[⊂ Q. Then, its lower pseudoinverse over
(the interval) I is defined as

f−1
↓,I (y) :=

{
inf {t ∈ I | f (t) ≥ y} , if y ≥ f (a),
+∞, otherwise,

(14.5)

and its upper pseudoinverse over (the interval) I is defined as

f−1
↑,I (y) :=

{
sup {t ∈ I | f (t) ≤ y} , if y ≥ f (a),
−∞, otherwise.

(14.6)

160 Isospeed: Algorithmic Improvements through Isomorphism

As discussed in Section 4.3, it does not hold in general that

inf {t ∈ I | f (t) ≥ y} = sup {t ∈ I | f (t) < y} ,

for the lower pseudoinverse as well as

sup {t ∈ I | f (t) ≤ y} = inf {t ∈ I | f (t) > y}

for the upper pseudoinverse. However, given I = [a,+∞[, the two equations hold
for y > f (a) and y ≥ f (a), respectively. We state the above in the following propo-
sition, whose proof can be derived by following the steps for Proposition 4.10 for a
general a ≥ 0 rather than 0.

Proposition 14.7. Let f ∈ U be non-decreasing over interval I = [a,+∞[. For all y >

f (a), its lower pseudoinverse is equal to

f−1
↓ (y) = sup {t ∈ I | f (t) < y} , (14.7)

and for all y ≥ f (a), its upper pseudoinverse is equal to

f−1
↑ (y) = inf {t ∈ I | f (t) > y} . (14.8)

We also note that, since these pseudoinverses consider only values of f (t) for
t ∈ I, it follows that f−1

↓,I =
(

f |∧I
)−1
↓,I =

(
f |∨I
)−1
↓,I , and similarly for f−1

↑,I .

Lemma 14.8. Let f ∈ U be non-decreasing over I, where I = [a,+∞[⊂ Q. Let f (I) :=
[f (a),+∞[. Then, the lower pseudoinverse over I is left-continuous over f (I), and the upper
pseudoinverse over I is right-continuous over f (I).

The proof is easily derived from the one for Lemma 4.11, replacing 0 with a.

Theorem 14.9 (UPP properties of Lower Pseudoinverse over an Interval). Let I be
an interval of the form [a,+∞[. Let f ∈ U be neither UC nor UI, and non-decreasing over
I. Then, its lower pseudoinverse over I, f−1

↓,I , is again a function of U with

Tf−1
↓,I

=

{
f
(
Tf + d f

)
, if a ≤ Tf ,

f
(
a + d f

)
, if a > Tf ,

(14.9)

d f−1
↓,I

= c f , (14.10)

c f−1
↓,I

= d f . (14.11)

14.2 Isomorphism for restricted functions 161

Theorem 14.10 (UPP properties of Upper Pseudoinverse over an Interval). Let I be
an interval of the form [a,+∞[. Let f ∈ U be neither UC nor UI, and non-decreasing over
I. Then, its upper pseudoinverse over I, f−1

↑,I , is again a function of U with

Tf−1
↑,I

=

{
f
(
Tf
)

, if a ≤ Tf ,
f (a) , if a > Tf ,

(14.12)

d f−1
↑,I

= c f (14.13)

c f−1
↑,I

= d f . (14.14)

Theproofs are easily derived following the steps of those of Theorems 10.2 and 10.4.
The only difference is that, since we are considering values of f (t) only for t ∈
[a,+∞[, we can only consider f (t) to be UPP from max

(
Tf , a

)
. Note that, in the

rest of this chapter, we will always use a ≤ Tf , thus only the first branch of Equa-
tions (14.9) and (14.12) apply.

As brieflymentioned in Section 10.1, one can improve the result of Equation (14.9)
using additional assumptions on the shape of f . As thiswill be useful in this chapter,
we derive these results explicitly for pseudoinverses over interval.

Lemma 14.11 (Improved period start for Lower Pseudoinverse over Interval). Let
f ∈ U be neither UC nor UI, right-continuous, and non-decreasing over the interval I =

[a,+∞[, where a ≤ Tf . Let

T∗f := f−1
↓,I (f (Tf))

= inf
{

t ≥ a | f (t) ≥ f (Tf)
}

= inf
{

t ≥ a | f (t) = f (Tf)
}

,

(14.15)

and
T∗∗f := f−1

↓,I (f (T∗1 + d f))

= inf
{

t ≥ a | f (t) = f (T∗1 + d f)
}

.
(14.16)

Then, if f is UPP from T∗f and if T∗∗f = T∗f + d f , the pseudo-periodic start Tf−1
↑

in Equa-
tion (14.9) can be improved into

Tf−1
↓,I

= f (Tf). (14.17)

A proof is provided inAppendix F.2. We note that, due to theway T∗f and T∗∗f are
defined, the property can be verified with any period-start of f , be itminimal or not.
The core issue in Lemma 14.11 is exemplified in Figure 14.4. In this example, the
pseudo-period of f ends with a constant segment, with value 2. Hence, f−1

↓,p (f (Tf +

d f)) = f−1
↓,p (2) = 4 < Tf + d f . As we can see in Figure 14.4b, this translates in a

jump between (2,4) and (2,5), which results in f−1
↓,p being UPP from f (Tf + d f) = 2

rather than from f (Tf) = 1.

162 Isospeed: Algorithmic Improvements through Isomorphism

2 3 4 5 6 7

1

2

3

Tf

d f

c f

time

data

(a) f ∨p

0 1 2 3 4
2

3

4

5

6

7

8

f (Tf) f (Tf + d f)

d f−1
↓,p

c f−1
↓,p

time

data

(b) f−1
↓,p

Figure 14.4: Example of lower pseudoinverse with T∗∗f < Tf + d f .

4 5 6 7 8
1

2

3

4

Tf

d f

c f

time

data

(a) f ∨p

1 2 3 4

4

5

6

7

8

Tf−1
↓,p

d f−1
↓,p

c f−1
↓,p

time

data

(b) f−1
↓,p

Figure 14.5: Example of lower pseudoinverse with T∗∗f = Tf + d f .

The opposite case can be seen in the example of Figure 14.5, where the con-
stant segment is at the start rather than the end of the pseudo-period of f . In fact,
f−1
↓,p (f (Tf + d f)) = f−1

↓,p (3) = 6 = Tf + d f . Thus, in Figure 14.5b we can see that
the jump is present already at f (Tf) = 2, and the UPP property of f−1

↓,p holds for
Tf−1
↓,p

= f (Tf).

Remark 14.12. If the assumptions of Lemma 14.11 are not satisfied, we can alter the
representation to make it so. In fact is trivial to verify that if we replace Tf with T∗∗f ,
then Lemma 14.11 will always apply.

14.2 Isomorphism for restricted functions 163

Lemma 14.13. Let f ∈ U be neither UC nor UI, left-continuous, and non-decreasing over
the interval I = [a,+∞[, where a ≤ Tf . Moreover, let f−1

↑,I be its upper pseudoinverse
over I. Then, f−1

↑,I satisfies the conditions of Lemma 14.11. Thus, its lower pseudoinverse(
f−1
↑,I

)−1

↓,[f (a),+∞[
is UPP from f−1

↑,I (Tf−1
↑,I
) = Tf .

A proof is provided in Appendix F.2.

Lemma 14.14 (Sufficient Cut for Lower Pseudoinverse over Interval). Let f ∈ U be
neither UC nor UI, and is right-continuous and non-decreasing over I = [a,+∞[. Then,
in order to compute f−1

↓,I (x) with x ∈ [x1, x2] ⊂ [f (a),+∞[and x1 < x2, it is sufficient to
use f (t) with t ∈ [t1, t2], where t1 := f−1

↓,I (x1) and t2 := f−1
↓,I (x2).

A proof is provided in Appendix F.2.

Lemma 14.15 (Sufficient Cut for Upper Pseudoinverse over Interval). Let f ∈ U be
neither UC nor UI, and is left-continuous and non-decreasing over I = [a,+∞[. Then, in
order to compute f−1

↑,I (x) and x ∈ [x1, x2] ⊂ [f (a),+∞[with x1 < x2, it is sufficient to
use f (t) with t ∈ [t1, t2], where t1 := f−1

↑,I (x1) and t2 := f−1
↑,I (x2).

A proof is provided in Appendix F.2. These results provide the necessary frame-
work to derive similar results to Corollaries 4.17 and 4.19 for the convolution of pe-
riodic parts – which is the operation that we target to optimize. We derive these
results in the following subsections, while in Sections 14.3 and 14.4 we use these
results to explore their algebraic properties and derive improved algorithms.

14.2.1 Isomorphism of restricted (min,+) convolution
We provide a generalization of Theorem 4.16 for functions restricted to the pseudo-
periodic part. Proofs for the following results are provided in Appendix F.2.1.

Lemma 14.16. Let f ∈ U be non-decreasing over I = [a,+∞[⊂ Q+. Let x ∈ I. If
f (x) ≤ y, then f−1

↑,I (y) ≥ x.

A proof is provided in Appendix F.2.1. Next, we generalize Proposition 4.1.

Proposition 14.17. Let f ∧p , g∧p ∈ U be left-continuous and non-decreasing, respectively,
over

[
Tf ,+∞

[
and

[
Tg,+∞

[
. Then, for any t ∈

[
Tf + Tg,+∞

[
it exists s∗ ∈ [Tf , t− Tg]

such that

(f ∧p ⊗ g∧p)(t) = inf
0≤s≤t

{
f ∧p (s) + g∧p (t− s)

}
= inf

Tf≤s≤t−Tg

{
f ∧p (s) + g∧p (t− s)

}
= f ∧p (s

∗) + g∧p (t− s∗).

164 Isospeed: Algorithmic Improvements through Isomorphism

0 1 2 3 4 5

1

2

3

time

data

f |∧[a,+∞[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

(a) f |∧[a,+∞[vs.
(

f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

0 1 2 3 4

1
2
3
4
5
6
7
8

time

data

f−1
↑,[a,+∞[

(b) f−1
↑,[a,+∞[

Figure 14.6: Example of loss of information when computing pseudoinverses over
an interval.

In other words, the infimum is attainable.

A proof is provided in Appendix F.2.1.

Theorem 14.18. Let f ∧p , g∧p ∈ U be left-continuous and non-decreasing, respectively, over[
Tf ,+∞

[
and

[
Tg,+∞

[
. Then

(
f ∧p ⊗ g∧p

)−1

↑,
[

Tf +Tg,+∞
[= (f−1

↑,p ⊗ g−1
↑,p

)
. (14.18)

A proof is provided in Appendix F.2.1. Next, we also generalize Lemma 4.12.

Proposition 14.19. Let f ∈ U be left-continuous and non-decreasing on the interval I =

[a,+∞[. Let a′ := sup {t ≥ a | f (t) = f (a)} ≥ a. Then(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[
= f |∧[a′,+∞[.

A proof is provided in Appendix F.2.1. Note that Proposition 14.19 implies that
performing the lower pseudoinverse (over an interval) of an upper pseudoinverse
(over an interval) does not reconstitute f over that same interval, but only a subset
of it: in fact, we obtain f |∧[a′,+∞[instead of f |∧[a,+∞[, where a′ ≥ a. We exemplify how
this information loss happens in Figure 14.6, where a = 1, f (a) = 1 and a′ = 2.
We can see that f (Figure 14.6a) has a constant segment in [a, a′[, which is then
represented in f−1

↑,[a,+∞[
(Figure 14.6b) as the point (f (a), a′). Since this point is also

the left boundary of the finite part of f−1
↑,[a,+∞[

, we lose information that would help

14.2 Isomorphism for restricted functions 165

reconstitute this constant segment, i.e., that there should be a jump from (f (a)−, a)
to (f (a), a′).

On the other hand, if the value a is known, it is easy to reconstitute f |∧[a,+∞[by
observing that the missing values of f in [a, a′[are all f (a′), which is part of the
result. Again referencing Figure 14.6a, we can see how the constant segment in red
is the missing piece that can be reconstituted by knowing a = 1.

We formalize this process through the reconstruction operator, [f]a. Given a func-
tion f that is either +∞ or −∞ in [0, a′[, and finite in [a′,+∞[, then

[f]a (t) =

f (t), if t ∈ [0, a[,
f (a′), if t ∈ [a, a′[,
f (t), if t ∈ [a′,+∞[.

(14.19)

With the help of the reconstruction operator, we can state a stronger version of
Proposition 14.19.

Proposition 14.20. Let f ∈ U be left-continuous and non-decreasing on the interval I =

[a,+∞[. Let a′ := sup {t ≥ a | f (t) = f (a)} ≥ a. Then[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a
= f |∧[a,+∞[. (14.20)

A proof is provided in Appendix F.2.1. Generalizing Corollary 10.6, we can de-
rive an improved start of the pseudo-periodic part under left-continuity. The proof
is a direct consequence of Proposition 14.20.

Corollary 14.21. Let f be a function of U which is left-continuous and non-decreasing.
Define I := [a,+∞[⊂ Q. Then,

T[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a

= T f |∧[a,+∞[
. (14.21)

Combining these results, we can derive an alternative expression for the compu-
tation of f ∧p ⊗ g∧p , analogous to Corollary 4.17 for restricted functions.

Corollary 14.22 (Alternative Expression for (min,+) Convolution of Periodic Parts).
Let f ∧p and g∧p be functions of U that are left-continuous and non-decreasing over, respec-
tively,

[
Tf ,+∞

[
and

[
Tg,+∞

[
. Then,

f ∧p ⊗ g∧p =

[(
f−1
↑,p ⊗ g−1

↑,p

)−1

↓,
[

f (Tf)+g(Tg),+∞
[
]

Tf +Tg

. (14.22)

Corollary 14.22 is the critical result we will further explore in Section 14.3 to
derive the algebraic properties driving our improved algorithm for the computation
of f ∧p ⊗ g∧p . In the following subsection, we derive the analogous results for the
(max,+) convolution.

166 Isospeed: Algorithmic Improvements through Isomorphism

14.2.2 Isomorphism of restricted (max,+) convolution
Similar properties can be derived for the (max,+) side, i.e., to derive an alterna-
tive expression for f ∨p ⊗ g∨p . We thus provide a generalization of Theorem 4.18 for
functions restricted to the pseudo-periodic part.

Proofs for the following results are provided in Appendix F.2.2.

Lemma 14.23. Let f ∈ U be non-decreasing and I = [a,+∞[⊂ Q+. Let x ∈ I and
y ≥ f (a). If f (x) ≥ y, then f−1

↓,I (y) ≤ x.

A proof is provided in Appendix F.2.2. The following lemma generalizes Propo-
sition 4.3.

Proposition 14.24. Let f and g be non-decreasing and right-continuous functions of U .
Then, for any t ∈

[
Tf + Tg,+∞

[
it exists s∗ ∈ [Tf , t− Tg] such that

(f ∨p ⊗ g∨p)(t) = sup
0≤s≤t

{
f ∨p (s) + g∨p (t− s)

}
= sup

Tf≤s≤t−Tg

{
f ∨p (s) + g∨p (t− s)

}
= f (s∗) + g(t− s∗)

In other words, the supremum is attainable.

A proof is provided in Appendix F.2.2.

Theorem 14.25. Let f and g be right-continuous, non-decreasing UPP functions. Then(
f ∨p ⊗ g∨p

)−1

↓,
[

Tf +Tg,+∞
[= (f−1

↓,p ⊗ g−1
↓,p

)
. (14.23)

A proof is provided in Appendix F.2.2. Next, we also generalize Lemma 4.13.

Proposition 14.26. Let f ∈ U be right-continuous and non-decreasing on the interval
I = [a,+∞[. Then (

f−1
↓,[a,+∞[

)−1

↑,[f (a),+∞[
= f |∨[a,+∞[. (14.24)

Aproof is provided inAppendix F.2.2. Unlike Proposition 14.19, Proposition 14.26
does not imply any loss of information. In fact, even if there is a constant segment
such as in Figure 14.6, the starting point a is preserved:

f−1
↓,[a,+∞[

(f (a)) = inf {t ≥ a | f (t) ≥ f (a)} = a.

Generalizing Corollary 10.7, we can derive an improved start of the pseudo-
periodic part under right-continuity. The proof is a direct consequence of Propo-
sition 14.26.

14.3 Exploiting the isomorphism to speed up the (min,+) convolution 167

Corollary 14.27. Let f : Q → Q ∪ {+∞,−∞} be a right-continuous, non-decreasing
UPP function. Define I := [a,+∞[⊂ Q. Then,

T(
f−1
↓,[a,+∞[

)−1

↑,[f (a),+∞[

= T f |∨[a,+∞[
. (14.25)

Combining these results, we can derive an alternative expression for the compu-
tation of f ∨p ⊗ g∨p , analogous of Equation (4.15) for restricted functions.

Corollary 14.28 (Alternative Expression for (max,+)Convolution of Periodic Parts).
Let f ∨p and g∨p be functions of U that are right-continuous and non-decreasing over, respec-
tively,

[
Tf ,+∞

[
and

[
Tg,+∞

[
. Then,

f ∨p ⊗ g∨p =
(

f−1
↓,p ⊗ g−1

↓,p

)−1

↓,
[

f (Tf)+g(Tg),+∞
[(14.26)

Corollary 14.28 is the critical result we will further explore in Section 14.4 to
derive the algebraic properties driving our improved algorithm for the computation
of f ∨p ⊗ g∨p .

14.3 Exploiting the isomorphism to speed up the
(min,+) convolution

Proposition 14.1 gives us an idea on how to exploit the isomorphism in the sense
of deriving UPP properties for the (min,+) convolution through its (max,+) coun-
terpart. However, the result cannot be directly applied in an algorithm, aside from
actually doing the transformation as it was done in [PLSK11] – i.e., the inverse ap-
proach. Given the isomorphismof restricted functionswe introduced in Section 14.2,
we can now derive a similar result that enables us directly apply the optimization
to the computation of f ∧p ⊗ g∧p . Moreover, we even show that a combination of di-
rect together with the inverse approach is feasible. This combination, which we call
isospeed approach, exploits the parameter improvements from both sides and is able
to outperform both. Last, but not least, we introduce an algorithmic description of
the entire improved calculation.

For the following theorems,weuse in the following the shorthandnotation⊗pp :=
f ∧p ⊗ g∧p , ⊗

−1
p := f−1

↑,p ⊗ g−1
↑,p, and f−1

↑,p := f−1
↑,
[

Tf ,+∞
[whenever it clarifies the presen-

tation.

168 Isospeed: Algorithmic Improvements through Isomorphism

Theorem 14.29. Let f , g ∈ U be left-continuous and non-decreasing functions. Let

kc f :=
lcm

(
c f , cg

)
c f

, (14.27)

kcg :=
lcm

(
c f , cg

)
cg

. (14.28)

Then, f ∧p ⊗ g∧p is again ∈ U with

T⊗pp = sup
{

t ≥ Tf + Tg | f ∧p ⊗ g∧p (t) ≤ f (Tf) + g(Tg) + lcm
(
c f , cg

)}
, (14.29)

d⊗pp = max

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
= max

(
kcg · dg, kc f · d f

)
, (14.30)

c⊗pp = lcm
(
c f , cg

)
. (14.31)

A proof is provided in Appendix F.3. The theorem provides alternative UPP
properties for f ∧p ⊗ g∧p through the isomorphism that links this computation to f−1

↑,p ⊗ g−1
↑,p.

For d⊗pp and c⊗pp , we can therefore combine these results togetherwith the direct ap-
proach to leverage from both. Let d′⊗pp

be the result from Equation (3.9), and d′′⊗pp

be the result of Equation (14.30). Then we can use

d⊗pp = min
(

d′⊗pp , d′′⊗pp

)
, (14.32)

c⊗pp = d⊗pp ·min

(
c f

d f
,

cg

dg

)
. (14.33)

For T⊗pp , however, we have that the alternative expression (Equation (14.29))
cannot be computed a priori, i.e., without performing the computation of f ∧p ⊗ g∧p
first. However, we can still leverage its insight to optimize the convolution as we
compute it, since we can check the result and cut away any part of the by-sequence
convolution with value over f (Tf) + g(Tg) + 2 · lcm

(
c f , cg

)
. Moreover, since for any

by-element convolution e f ⊗ eg(t) ≥ f ⊗ g, we can anticipate such filter to the by-
element convolutions, omitting them from the lower envelope. We show how this
is implemented, together with the rest of the optimization technique, later on in
Section 14.3.1. The isomorphism can be further explored as in the following results,
to discuss the cuts of f and g required for the computation.

Corollary 14.30. Let f and g ∈ U which are neither UC nor UI, and are left-continuous

and non-decreasing in
[
Tf ,+∞

[
and

[
Tg,+∞

[
, respectively. Let kc f :=

lcm
(

c f ,cg

)
c f

, kcg :=

lcm
(

c f ,cg

)
cg

. Then, to compute f ∧p ⊗ g∧p via the (max,+) isomorphism (Equation (14.22)), it

14.3 Exploiting the isomorphism to speed up the (min,+) convolution 169

is sufficient to use S
I f∧p
f∧p

and S
Ig∧p
g∧p

with

I f∧p =
[

Tf , T′f + 2 · kc f · d f

]
,

Ig∧p =
[

Tg, T′g + 2 · kcg · dg

]
.

(14.34)

where we used2

T′f = sup
{

t ≥ Tf | f (t) = f (Tf)
}

,

T′g = sup
{

t ≥ Tg | g(t) = g(Tg)
}

.

A proof is provided in Appendix F.3. Corollary 14.30 states that, instead of com-
puting f ∧p ⊗ g∧p using the intervals I f∧p and Ig∧p described in Proposition 3.16, by ex-
ploiting the isomorphism we can use instead the alternative expressions provided
by Equation (14.34). As before, these intervals can be much smaller, and therefore
muchmore efficient to do computationswith, since their size depends on lcm

(
c f , cg

)
rather than lcm

(
d f , dg

)
.

However, this link is proved by using the (max,+) convolution, thus the proof
does not establish that we can use these intervals as a direct replacement within
the (min,+) convolution. Moreover, replacing both intervals is something we could
already do (through the inverse approach) while in Section 14.1 we have shown,
through an example, that it may be the case where, e.g., f ∧p has a smaller interval
using the direct approach and g∧p through the inverse approach – we would thus
prefer to be able to mix and match these intervals to minimize the cuts taken of both
functions. We address these issues in the following theorem.

Theorem 14.31 (Mix and Match ((min,+) Convolution)). Let f and g ∈ U which are
neither UC nor UI, and are left-continuous and non-decreasing in

[
Tf ,+∞

[
and

[
Tg,+∞

[
,

respectively. Let I f∧p , Ig∧p be the intervals sufficient to compute f ∧p ⊗ g∧p according to Propo-
sition 3.16, and let I′f∧p , I′g∧p be the intervals sufficient to compute f−1

↑,p ⊗ g−1
↑,p according to

Corollary 14.30.
Then I f∧p ∩ I′f∧p , Ig∧p ∩ I′g∧p are intervals sufficient to compute f ∧p ⊗ g∧p .

A proof is provided in Appendix F.3. The above theorem states that, given dif-
ferent cut intervals for f ∧p and g∧p computed with the two methods, we can pick the
shortest of each pair for our computations. As we recall that the by-sequence convo-
lution complexity is (Section 3.4.2)

O
(

n
(

S f∧p

)
· n
(

Sg∧p

)
· log

(
n
(

S f∧p

)
· n
(

Sg∧p

)))
,

2The suprema are attainable since the functions are left-continuous over the respective intervals.

170 Isospeed: Algorithmic Improvements through Isomorphism

being able to use I f∧p , I′g∧p allows us then to outperform both methods. This is con-
firmed empirically in Section 14.3.2, wherewe show the performance improvements
obtained.

14.3.1 Improved algorithm for (min,+) convolution
We now show, gathering the previous results, how we can improve the algorithm
for the computation of the (min,+) convolution of left-continuous, non-decreasing
functions. We note that, compared to the algorithm whose implementation we dis-
cussed in Section 8.6, we will only change its f ∧p ⊗ g∧p component, whose simplified
code is shown in Listing 8.9.

The results above provide two improvements: an improved d⊗pp and an im-
proved T⊗pp . Both can be used to reduce the cuts of the functions, f ∧p and g∧p , that
are used during the by-sequence algorithm. However, the improved T⊗pp cannot be
computed a priori, as we recall (Equation (14.29))

T⊗pp = sup
{

t ≥ Tf + Tg | f ∧p ⊗ g∧p (t) ≤ f (Tf) + g(Tg) + lcm
(
c f , cg

)}
.

We can use information, though, during the convolution. In fact, we can compute
the by-sequence convolution (let it be S) and then compute T⊗pp as the minimum
between Tf + Tg + d⊗pp (Equation (3.8)) and the earliest time S reaches f (Tf) +

g(Tg) + lcm
(
c f , cg

)
. Furthermore, for this computation we can use using the opti-

mized cuts provided by Theorem 14.31.
The resulting algorithm is shown inAlgorithm 10, which emphasizes thatwe can

improve the cuts of both the operands and the result using the improvedparameters.
As mentioned, we can further improve this algorithm by anticipating the re-

moval of the tail end of S
I⊗pp
⊗pp

as a filter in the by-element convolutions, omitting
them from the lower envelope. Recalling the implementation of the by-sequence con-
volution in Listing 8.11, we extend it as shown in Listing 14.1.3 We can therefore use
the insights from both the direct and inverse approaches to filter the convolutions
“horizontally”, with Tf + Tg + 2 · d as cutEnd, and “vertically”, with f (Tf) + g(Tg) +

2 · lcm
(
c f , cg

)
as cutCeiling. Note that this can be done safely since the convolution

computes the lower envelope, hence the convolutions that are removed this way do
not affect its result in any way.

The last phenomenon to address is then the effect of plateaus and discontinu-
ities under pseudoinversion. Using the results above, we end up with optimal cuts

S f and Sg. Intuitively, onewould expected that computing
(

S f
−1
↑ ⊗ Sg

−1
↑

)−1

↓
(inverse

by-sequence (min,+) convolution) rather than S f ⊗ Sg (direct by-sequence (min,+)
3We are omitting, for simplicity, the other improvements discussed in Section 8.7, such as paral-

lelization and partitioning.

14.3 Exploiting the isomorphism to speed up the (min,+) convolution 171

Algorithm 10 Improved pseudocode for (min,+) convolution of periodic parts
Input Functions f ∧p and g∧p , which are both left-continuous and non-decreasing

over their respective support.
Return Their (min,+) convolution f ∧p ⊗ g∧p .

1: if f ∧p , g∧p are not left-continuous and non-decreasing then
2: Continue with the usual algorithm (see Algorithm 6)
3: else
4: Compute kc f

(14.27)
=

lcm
(

c f ,cg

)
c f

and kcg

(14.28)
=

lcm
(

c f ,cg

)
cg

5: Compute d = min
(

lcm
(
d f , dg

)
, max

(
kc f d f , kcg dg

))
6: Compute c = d ·min

(
c f
d f

, cg
dg

)
7: Compute T1 = Tf + Tg + d

I fp =
[

Tf , Tf + min
(

lcm
(
d f , dg

)
, kc f d f

)[
,

Igp =
[

Tg, Tg + min
(

lcm
(
d f , dg

)
, kcg dg

)[
8: Compute S

I⊗pp
⊗pp

= S
I fp
fp
⊗ S

Igp
gp

9: Compute T2 = sup
{

t ≥ Tf + Tg | S
I⊗pp
⊗pp

(t) ≤ f (Tf) + g(Tg) + lcm
(
c f , cg

)}
10: Compute T = min (T1, T2)

11: Remove from S⊗pp
⊗pp

elements whose support is after T + d

12: hpp := fp ⊗ gp =
(

S⊗pp
⊗pp

, T, d, c
)

13: end if

convolution)would be inefficient. However, asmentioned at the start of this chapter,
pseudoinversion maps plateaus (which count as elements in the convolution run-
time) into discontinuities (which do not), and vice versa. Thus, it may be the case
that, given a by-sequence convolution applying the isomorphism or not to compute
it has still a measurable impact on runtime.

On the other hand, this impact is difficult to accurately predict, since elements
affect the runtime differently based on topological properties (see Section 8.8). Our
heuristic algorithm estimates the computational cost of the two approaches by ig-
noring this last point, and considering instead each element in the convolution as
having the same impact. We thus compute the number of elements involved as
C := n

(
S f
)
· n
(
Sg
)
and D := n

(
S f
−1
↑

)
· n
(

Sg
−1
↑

)
. Then, if D < C, we use the

inverse approach, and the direct one if C ≤ D. Note that we do not need to com-
pute the pseudoinverses to perform this check: following the procedure described
in Table 10.1, one can devise a simple (yet tedious) algorithm to derive both n

(
S f
)

and n
(

S f
−1
↑

)
with a single linear scan of S f . The resulting algorithm is sketched in

172 Isospeed: Algorithmic Improvements through Isomorphism

Listing 14.1 Scheme of a Sequence.Convolution()method that filters both vertically and
horizontally

Sequence Convolution(
Sequence sf, Sequence sg,
Rational cutEnd = Rational.PlusInfinity,
Rational cutCeiling = Rational.PlusInfinity)

{
var convolutionPairs = GetFilteredElementPairs(sf, sg, cutEnd, cutCeiling);
var convolutionElements = new List<Element>();
foreach(var pair in convolutionPairs)

convolutionElements.AddRange(Element.Convolution(pair.ef, pair.eg));
var le = LowerEnvelope(convolutionElements);
return le;

}

IEnumerable<(Element ef, Element eg)> GetFilteredElementPairs(
Sequence sf, Sequence sg, Rational cutEnd, Rational cutCeiling)

{
return GetElementPairs(sf, sg)

.Where(pair => pair.ef.IsFinite && pair.eg.IsFinite)

.Where(pair => pair.ef.StartTime + pair.eg.StartTime < cutEnd)

.Where(pair => pair.ef.ValueAtStart + pair.eg.ValueAtStart <= cutCeiling);
}

IEnumerable<(Element ef, Element eg)> GetElementPairs(Sequence sf, Sequence sg) {
foreach(var ef in sf)

foreach(var eg in sg)
yield return (ef, eg);

}

Algorithm 11.
The above heuristic has linear complexity, hence is quite inexpensive, and can be

expected to identify the fastest way to perform a by-sequence convolution most of
the times. However, it may not be accurate when operands have both plateaus and
discontinuities, as we will highlight in the performance evaluation section.

These algorithmic components all attempt to reduce the number of unnecessary
elementary convolutions computed, in order to improve runtime. We sketched here
each individually, for the sake of conciseness. The interested reader can find their
full integration, together with the other optimizations discussed in this thesis, in the
source code of Nancy [ZSd].

14.3 Exploiting the isomorphism to speed up the (min,+) convolution 173

Algorithm 11 Pseudocode for by-sequence (min,+) convolution, with heuristic
Input Sequences S f and Sg.

Return The (min,+) convolution SIh
⊗
⊗ = S f ⊗ Sg.

1: Compute n
(
S f
)
, n
((

S f
)−1
↑

)
, n
(
Sg
)
and n

((
Sg
)−1
↑

)
2: C ← n

(
S f
)
· n
(
Sg
)

3: D ← n
((

S f
)−1
↑

)
· n
((

Sg
)−1
↑

)
4: if D > C then
5: Use the standard algorithm, computing S f ⊗ Sg
6: else
7: Use the by-sequence isomorphism, computing

((
S f
)−1
↑ ⊗

(
Sg
)−1
↑

)−1

↓
8: end if

14.3.2 Performance evaluation
In this subsection we show the performance improvements obtained from imple-
menting these optimizations in Nancy.

First, we discuss the use case of a tandem of IWRR schedulers, mentioned in
Section 11.4 and, in particular, Listing 11.3. As it is often the case, depending on
the numerical properties of the operands a study like this, where we compute the
(min,+) convolution of generic UPP curves, can become computationally demand-
ing. It takes little tweaking of the parameters to find such case, as those in List-
ing 14.2. Moreover, as the service curves modelling IWRR nodes are not subaddi-
tive, the optimizations in Chapter 13 do not apply. Running this examplewithNancy
(on System 3) using the direct approach took 11 minutes and 12 seconds. However,
using the isospeed approach the same computation took 0.8 seconds, a significant
improvement that aligns with the first observations from [PLSK11]. However, as
we mentioned before, there are instances where using the inverse approach as sug-
gested in [PLSK11], would incur in worse performance than the direct approach.
As we show, the isospeed approach instead uses the best combination of parameters
from both, thus improving the parameters of the by-curve algorithm in all cases.

However, there are two phenomena thatmay counter-balance this statement. On
one hand, we have that checking the hypotheses, computing the improved param-
eters, as well as performing the “vertical” filter in the by-sequence convolution, are
an overhead over the standard algorithm that will appear as a loss of performance
in those cases where they do not produce beneficial results. On the other hand, we
have the phenomenon of plateaus and discontinuitiesmentioned in Section 14.1.1. It
is to be expected that if we havemany plateaus and fewdiscontinuities, or vice versa,
our heuristic will accurately pick which of the two approaches (direct or inverse) will
produce a muchmore efficient by-sequence convolution, since discontinuities are im-

174 Isospeed: Algorithmic Improvements through Isomorphism

Listing 14.2 Parameters for a computationally demanding tandem of IWRR sched-
ulers.

// ms as time unit, bit as data unit

// the flow has a max arrival rate of 10 Mbps,
// and is guaranteed such bandwidth at each node
var foi_ac = new SigmaRhoArrivalCurve(1024, 10000);

// 100 Mb/s, 1 ms of latency
// 3 cross flows
var b1 = new RateLatencyServiceCurve(100000, 1);
var weights_1 = new []{10, 30, 40, 20};
var l_min_1 = new []{512, 512, 1024, 1024};
var l_max_1 = new []{1024, 1024, 2048, 2048};

// 200 Mb/s, 1 ms of latency
// 5 cross flows
var b2 = new RateLatencyServiceCurve(200000, 1);
var weights_2 = new []{10, 20, 40, 50, 30, 50};
var l_min_2 = new []{1024, 1024, 1024, 1240, 1240, 1240};
var l_max_2 = new []{1240, 1240, 1240, 2480, 2480, 2480};

var b_eq_1 = IwrrServiceCurve(0, weights_1, l_min_1, l_max_1, b1);
var b_eq_2 = IwrrServiceCurve(0, weights_2, l_min_2, l_max_2, b2);

var b_eq = Curve.Convolution(b_eq_1, b_eq_2); // we measure this step

material from the point of view of algorithmic complexity.
Hence, in the following performance tests, we will compare the performance of

the three methods on three different kinds of curves, so that we can have a clearer
view of these forces and the tradeoff in general. These three kinds of curves, de-
picted in Figure 14.7, provide different characteristics from the point of view of
plateaus and discontinuities. We can expect that horizontal curves favor the inverse
approach, while vertical favor the direct one. However, the distinction is clear enough
that the heuristic will work in the majority cases, highlighting all the benefits of the
isospeed algorithm. On the other hand, balanced curves will hard to predict for the
heuristic, thus we expect to see that the optimization gains are in some instances
cancelled out.

We run the experiments on System 2, using randomly generated parameters
for the shapes discussed above. The results of our tests are shown in Figures 14.8
to 14.10. Note that, in each of this, the same experiments have been run in all three
methods, and their results are being compared two approaches at a time. Thus, each
point represents a set of parameters and the time took by one approach (its value
over the x-axis) vs. the time it took with the other (its value over the y-axis). Then,

14.3 Exploiting the isomorphism to speed up the (min,+) convolution 175

time

data

(a) Horizontal curve.

time

data

(b) Vertical curve.

time

data

(c) Balanced curve.

Figure 14.7: Shapes used for performance evaluation of (min,+) convolution.

we also compare the isospeed algorithm against the best between direct and inverse.
This last comparison highlights, on one hand, that our improvements successfully
identify the reasons making one approach better than the other a priori, and on the
other hand, that it can also beat both by avoiding trade-offs and taking the best pa-
rameters from each.

First, we notice that in many cases observed the isospeed approach introduces
very significant improvements. From Figures 14.8a, 14.9a and 14.10a, we note that
the experiments are generally well distributed in favor of either the direct or inverse
approach – thus suggesting that blindly applying either of the twowould not be a fa-
vorable choice. However, as the other figures show, the isospeed approach generally
improves on both. Furthermore, we can notice that even in those cases where the
direct approach was faster than the inverse one, isospeed still provided an improve-
ment. This is thanks to Theorem 14.31, as we select the best cut for both operands
independently.

We observe that those cases where isospeed did not provide significant improve-
ments over another approach form, in the figures, a line on or parallel to the bisector:
from the distance of this line we can assess the overhead cost that the algorithm in-
troduces, which is minimal. Finally, we note from Figure 14.8 that even when the
heuristic is likely to fail, the isospeed algorithm can still provide runtime improve-
ment that are generally much more impactful than the loss of performance in the
unfavorable cases.

176 Isospeed: Algorithmic Improvements through Isomorphism

1m
s

10
m

s

10
0m

s 1s 10
s

100µs
1ms

10ms
100ms

1s
10s
1m.

inverse

di
re
ct

(a) inverse vs. direct.
10

0µ
s

1m
s

10
m

s
10

0m
s 1s 10
s

1m
.

100µs
1ms

10ms

100ms

1s

10s

direct

is
os
pe

ed

(b) direct vs. isospeed.

1m
s

10
m

s

10
0m

s 1s 10
s

100µs
1ms

10ms

100ms

1s

10s

inverse

is
os
pe

ed

(c) inverse vs. isospeed.

10
0µ

s

1m
s

10
m

s

10
0m

s 1s 10
s

100µs
1ms

10ms

100ms

1s

10s

best

is
os
pe

ed

(d) isospeed vs. best.

Figure 14.8: Performance comparison of the three algorithms for the (min,+) con-
volution of balanced curves.

10
0m

s 1s 10
s

1m
.

10
m

.
30

m
.

1ms

10ms

100ms

1s

10s
1m.

inverse

di
re
ct

(a) inverse vs. direct.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s
1m.

direct

is
os
pe

ed

(b) direct vs. isospeed.

10
0m

s 1s 10
s

1m
.

10
m

.
30

m
.

1ms

10ms

100ms

1s

10s
1m.

inverse

is
os
pe

ed

(c) inverse vs. isospeed.
1m

s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s
1m.

best
is
os
pe

ed

(d) isospeed vs. best.

Figure 14.9: Performance comparison of the three algorithms for the (min,+) con-
volution of vertical curves.

10
m

s

10
0m

s 1s 10
s

1m
.

10
m

.

100ms

1s

10s

1m.

10m.

inverse

di
re
ct

(a) inverse vs. direct.

10
0m

s 1s 10
s

1m
.

10
m

.

10ms

100ms

1s

10s
1m.

10m.

direct

is
os
pe

ed

(b) direct vs. isospeed.

10
m

s

10
0m

s 1s 10
s

1m
.

10
m

.

10ms

100ms

1s

10s
1m.

10m.

inverse

is
os
pe

ed

(c) inverse vs. isospeed.

10
m

s

10
0m

s 1s 10
s

1m
.

10
m

.

10ms

100ms

1s

10s
1m.

10m.

best

is
os
pe

ed

(d) isospeed vs. best.

Figure 14.10: Performance comparison of the three algorithms for the (min,+) con-
volution of horizontal curves.

14.3 Exploiting the isomorphism to speed up the (min,+) convolution 177

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms
10ms

100ms
1s

10s
1m.

10m.

inverse

di
re
ct

(a) inverse vs. direct.

1m
s

10
m

s
10

0m
s 1s 10
s

1m
.

10
m

.

1ms

10ms

100ms

1s

10s
1m.

direct

is
os
pe

ed

(b) direct vs. isospeed.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s
1m.

inverse

is
os
pe

ed

(c) inverse vs. isospeed.
1m

s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s
1m.

best
is
os
pe

ed

(d) isospeed vs. best.

Figure 14.11: Performance comparison of the three algorithms for (min,+) convolu-
tion. Operands are horizontal curves, and their parameters are set so that comparing
extension multipliers is inconclusive.

178 Isospeed: Algorithmic Improvements through Isomorphism

14.4 Exploiting the isomorphism to speed up the
(max,+) convolution

The insights used in the previous section can be exploited to prove an improved al-
gorithm for (max,+) convolutions as well. Proposition 14.2 suggests how the com-
putation may be improved, but does not give an algorithm aside from applying the
transformation (i.e., the inverse approach).

For the following theorems, we will use the shorthand notation⊗ pp := f ∨p ⊗ g∨p ,
⊗−1

p := f−1
↓,p ⊗ g−1

↓,p, and f−1
↓,p := f−1

↓,
[

Tf ,+∞
[whenever it clarifies the presentation.

We will discuss functions that satisfy the condition of Lemma 14.11, i.e., such
that Tf−1

↓,p
= f (Tf), Tg−1

↓,p
= g(Tg). When such assumption does not hold, we can use

Remark 14.12 to obtain a new decomposition that satisfies Lemma 14.11. We will
discuss how this can be done in practice in Section 14.4.1.

Theorem 14.32. Let f and g ∈ U which are neither UC nor UI, and are right-continuous
and non-decreasing. Moreover, let f and g satisfy the assumptions of Lemma 14.11, such
that Tf−1

↓,p
= f (Tf), Tg−1

↓,p
= g(Tg). Let

kc f :=
lcm

(
c f , cg

)
c f

, (14.35)

kcg :=
lcm

(
c f , cg

)
cg

. (14.36)

Then, f ∨p ⊗ g∨p is again a function of U with

T⊗ pp
= inf

{
t ≥ Tf + Tg | f ∨p ⊗ g∨p (t) ≥ f (Tf) + g(Tg) + lcm

(
c f , cg

)}
, (14.37)

d⊗ pp
= min

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
= min

(
kcg · dg, kc f · d f

)
, (14.38)

c⊗ pp
= lcm

(
c f , cg

)
. (14.39)

A proof is provided in Appendix F.4. The theorem provides alternative UPP
properties for f ∨p ⊗ g∨p through the isomorphism that links this computation to f−1

↓,p ⊗
g−1
↓,p. For d⊗ pp

and c⊗ pp
, we can therefore combine these results together with the di-

rect approach to leverage from both. Let d′⊗ pp
be the result from Equation (3.18),

and d′′⊗ pp
be the result of Equation (14.38). Then we can use

d⊗ pp
= min

(
d′⊗ pp

, d′′⊗ pp

)
, (14.40)

c⊗ pp
= d⊗ pp

·max

(
c f

d f
,

cg

dg

)
. (14.41)

14.4 Exploiting the isomorphism to speed up the (max,+) convolution 179

For T⊗ pp
, however, we have that the alternative expression (Equation (14.37))

cannot be computed a priori, i.e., without performing the computation of f ∨p ⊗ g∨p
first. However, we can still leverage its insight to optimize the convolution as we
compute it, since we can check the result and cut away any part of the by-sequence
convolution with value over T⊗−1

p
+ d⊗−1

p
. This is shown, together with the rest of

the optimization technique, later on in Section 14.4.1.
The isomorphism can be further explored as in the following results, to discuss

the cuts of f and g required for the computation.

Corollary 14.33. Let f and g ∈ U which are neither UC nor UI, and are right-continuous
and non-decreasing in

[
Tf ,+∞

[
and

[
Tg,+∞

[
, respectively. Moreover, let f and g satisfy

the assumptions of Lemma 14.11, such that Tf−1
↓,p

= f (Tf), Tg−1
↓,p

= g(Tg).

Let kc f :=
lcm
(

c f ,cg

)
c f

, kcg :=
lcm
(

c f ,cg

)
cg

. Then, to compute f ∨p ⊗ g∨p via the (min,+)

isomorphism (Equation (14.26)), it is sufficient to use S
I′

f∨p
f∨p

and S
I′
g∨p

g∨p
with

I f∨p =
[

Tf , Tf + 2 · kc f · d f

]
,

Ig∨p =
[

Tg, Tg + 2 · kcg · dg

]
.

(14.42)

A proof is provided in Appendix F.4. Corollary 14.33 states that, instead of com-
puting f ∨p ⊗ g∨p using the intervals I f∨p and Ig∨p described in Proposition 3.32, by ex-
ploiting the isomorphism we can use instead the alternative expressions provided
by Equation (14.42). As before, these intervals can be much smaller, and therefore
muchmore efficient to do computationswith, since their size depends on lcm

(
c f , cg

)
rather than lcm

(
d f , dg

)
. However, this link is proved by using the (min,+) convo-

lution, thus the proof does not establish that we can use these intervals as a direct
replacement within the (max,+) convolution. Moreover, replacing both intervals is
somethingwe could already do (through the inverse approach)while in Section 14.1
we have shown, through an example, that it may be the case where, e.g., f ∨p has a
smaller interval using the direct approach and g∨p through the inverse approach – we
would thus prefer to be able to mix and match these intervals to minimize the cuts
taken of both functions. We address these issues in the following theorem.

Theorem 14.34 (Mix and Match ((max,+) Convolution)). Let f and g ∈ U which
are neither UC nor UI, and are right-continuous and non-decreasing in

[
Tf ,+∞

[
and[

Tg,+∞
[
, respectively. Moreover, let f and g satisfy the assumptions of Lemma 14.11,

such that Tf−1
↓,p

= f (Tf), Tg−1
↓,p

= g(Tg). Let I f∨p , Ig∨p be the intervals sufficient to compute
f ∨p ⊗ g∨p according to Proposition 3.32, and let I′f∨p , I′g∨p be the intervals sufficient to compute

f−1
↓,p ⊗ g−1

↓,p according to Corollary 14.33.
Then, I f∨p ∩ I′f∨p , Ig∨p ∩ I′g∨p are sufficient intervals to compute f ∨p ⊗ g∨p .

180 Isospeed: Algorithmic Improvements through Isomorphism

A proof is provided in Appendix F.4. The above theorem states that, given dif-
ferent cut intervals for f ∨p and g∨p computed with the two methods, we can pick the
shortest of each pair for our computations. We recall that the (max,+) by-sequence
convolution complexity is – similarly to the (min,+) one (Section 3.4.2)

O
(

n
(

S f∨p

)
· n
(

Sg∨p

)
· log

(
n
(

S f∨p

)
· n
(

Sg∨p

)))
,

being able to use I f∨p , I′g∨p allows us then to outperform both methods. This is con-
firmed empirically in Section 14.4.2, wherewe show the performance improvements
obtained.

14.4.1 Improved algorithm for (max,+) convolution
We can apply the previous results to improve the (max,+) convolution algorithm,
similarly to what is shown in Section 14.3.1. Though, one notable difference is that
the results discussed in Section 14.4 apply to functions which satisfy the assump-
tions of Lemma 14.11. However, as pointed out in Remark 14.12 and assuming it is
f ∨p that does not satisfy the Lemma, we can use T∗∗f in place of Tf to obtain a new de-
composition of f that does, i.e., f ∨p = f ∨[

Tf ,T∗∗f
[∨ f ∨[

T∗∗f ,+∞
[, where f ∨[

T∗∗f ,+∞
[satisfies

Lemma 14.11. We show this process in Algorithm 12.
As in the (min,+) case, Algorithm 12 emphasizes that we can improve the cuts

of both the operands and the result using the improved parameters. However, im-
plementing the same filtering optimization on the by-sequence (max,+) convolution,
skipping unnecessary by-element convolutions both “horizontally” and “vertically”,
can be tricky. In fact, since the (max,+) convolution computes an upper envelope,
applying the vertical filter would remove the elements that belong to the result, leav-
ing incorrect elements in.

Finally, the heuristic algorithm, that chooses between direct and inverse by-sequence
convolution, applies mostly unchanged for the (max,+) convolution as well.

14.4.2 Performance evaluation
In this section, we discuss the performance improvements introduced by the isospeed
approach for (max,+) convolution. Most of the observations from Section 14.3.2
also apply in this case – the main difference being only that curves are now right-
continuous rather than left-continuous. Hence, the three shapes of curves we con-
sider in our experiments are those shown in Figure 14.12. We run the experiments
on System 2, using randomly generated parameters for the shapes discussed above.

The results of our tests are shown in Figures 14.13 to 14.15. We note that the
same considerations apply, mostly unchanged, in this case too. We can observe, in
fact, that the isospeed approach improves the performance over both methods, aside

14.4 Exploiting the isomorphism to speed up the (max,+) convolution 181

time

data

(a) Horizontal curve.

time

data

(b) Vertical curve.

time

data

(c) Balanced curve.

Figure 14.12: Shapes used for performance evaluation of (max,+) convolution.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s

inverse

di
re
ct

(a) inverse vs. direct.

1m
s

10
m

s

10
0m

s 1s 10
s

1ms

10ms

100ms

1s

10s

direct

is
os
pe

ed

(b) direct vs. isospeed.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s

inverse

is
os
pe

ed

(c) inverse vs. isospeed.

1m
s

10
m

s

10
0m

s 1s 10
s

1ms

10ms

100ms

1s

10s

best

is
os
pe

ed

(d) isospeed vs. best.

Figure 14.13: Performance comparison of the three algorithms for the (max,+) con-
volution of balanced curves.

1s 10
s

1m
.

10
m

.
30

m
.

1h

1ms

10ms

100ms

1s

10s
1m.

inverse

di
re
ct

(a) inverse vs. direct.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s
1m.

direct

is
os
pe

ed

(b) direct vs. isospeed.

1s 10
s

1m
.

10
m

.
30

m
.

1h

1ms

10ms

100ms

1s

10s
1m.

inverse

is
os
pe

ed

(c) inverse vs. isospeed.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s
1m.

best

is
os
pe

ed

(d) isospeed vs. best.

Figure 14.14: Performance comparison of the three algorithms for the (max,+) con-
volution of vertical curves.

from an overhead effect (similar to the one discussed in Section 14.3.2) that appears
negligible compared to the benefits obtained inmost cases. Moreover, we notice that
the improvement happens over both the direct and inverse approaches, even in cases
when one was already better than the other. Thanks to Theorem 14.34, in fact, we
select the best cut for both operands independently.

182 Isospeed: Algorithmic Improvements through Isomorphism

10
m

s

10
0m

s 1s 10
s

1m
.

10
m

.
30

m
.

100ms

1s

10s

1m.

10m.

inverse

di
re
ct

(a) inverse vs. direct.

10
0m

s 1s 10
s

1m
.

10
m

.

10ms

100ms

1s

10s
1m.

10m.

direct

is
os
pe

ed

(b) direct vs. isospeed.

10
m

s

10
0m

s 1s 10
s

1m
.

10
m

.
30

m
.

10ms

100ms

1s

10s
1m.

10m.

inverse

is
os
pe

ed

(c) inverse vs. isospeed.

10
m

s

10
0m

s 1s 10
s

1m
.

10
m

.

10ms

100ms

1s

10s
1m.

10m.

best

is
os
pe

ed

(d) isospeed vs. best.

Figure 14.15: Performance comparison of the three algorithms for the (max,+) con-
volution of horizontal curves.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms
10ms

100ms
1s

10s
1m.

10m.

inverse

di
re
ct

(a) inverse vs. direct.

1m
s

10
m

s
10

0m
s 1s 10
s

1m
.

10
m

.

1ms

10ms

100ms

1s

10s
1m.

direct

is
os
pe

ed

(b) direct vs. isospeed.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s
1m.

inverse

is
os
pe

ed

(c) inverse vs. isospeed.

1m
s

10
m

s

10
0m

s 1s 10
s

1m
.

1ms

10ms

100ms

1s

10s
1m.

best

is
os
pe

ed

(d) isospeed vs. best.

Figure 14.16: Performance comparison of the three algorithms for (max,+) convolu-
tion. Operands are horizontal curves, and their parameters are set so that comparing
extension multipliers is inconclusive.

14.4 Exploiting the isomorphism to speed up the (max,+) convolution 183

Algorithm 12 Improved pseudocode for (max,+) convolution of periodic parts
Input Functions f ∨p and g∨p , which are both right-continuous andnon-decreasing

over their respective support.
Return Their (max,+) convolution f ∨p ⊗ g∨p .

1: if f ∨p , g∨p are not right-continuous and non-decreasing then
2: Continue with the usual algorithm (see Algorithm 8)
3: else
4: if f ∨p or g∨p do not satisfy Lemma 14.11 then

. We assume both do not, for simplicity
5: Decompose again f ∨p = f ∨[

Tf ,T∗∗f
[∨ f ∨[

T∗∗f ,+∞
[

6: Decompose again g∨p = g∨[Tg,T∗∗g
[∨ g∨[T∗∗g ,+∞

[
7: Compute ⊗ ′tt, ⊗ ′tp and ⊗ ′pt as usual
8: Compute ⊗ ′pp = f ∨[

T∗∗f ,+∞
[⊗ g∨[T∗∗g ,+∞

[using the improved algorithm

below
9: Return ⊗ ′tt ∨⊗ ′tp ∨⊗ ′pt ∨⊗ ′pp

10: else
11: Compute kc f

(14.35)
=

lcm
(

c f ,cg

)
c f

and kcg

(14.36)
=

lcm
(

c f ,cg

)
cg

12: Compute d = max
(

lcm
(
d f , dg

)
, max

(
kc f d f , kcg dg

))
13: Compute c = d ·max

(
c f
d f

, cg
dg

)
14: Compute T1 = Tf + Tg + d

I fp =
[

Tf , Tf + max
(

lcm
(
d f , dg

)
, kc f d f

)[
,

Igp =
[

Tg, Tg + max
(

lcm
(
d f , dg

)
, kcg dg

)[
15: Compute S

I⊗ pp

⊗ pp
= S

I fp
fp
⊗ S

Igp
gp

16: Compute T2 = sup
{

t ≥ Tf + Tg | S
I⊗ pp

⊗ pp
(t) ≤ f (Tf) + g(Tg) + lcm

(
c f , cg

)}
17: Compute T = max (T1, T2)

18: Remove from S⊗ pp

⊗ pp
elements whose support is after T + d

19: hpp := fp⊗ gp =
(

S⊗ pp

⊗ pp
, T, d, c

)
20: end if
21: end if

Chapter 15

Comparison With RTC Toolbox

In this chapter, we compare Nancy with RTC Toolbox, in particular on the functional
features and design choices related to the numerical types used. We discuss, in par-
ticular, how the inaccuracies of floating point numbers affect the runtime, causing
it to grow unpredictably, as well as the ability to assess properties such as left- or
right-continuity.

The RTC Toolbox [WTa; Wan06] is a publicly available Java-based library, also
available as a MATLAB toolbox, that implements many (min,+) and (max,+) alge-
bra operators. It is designed, as the name suggests, for Real-Time Calculus studies,
and provides also functions forModular PerformanceAnalysis (MPA). Through the
MATLAB environment, one can use it to build curves, compute expressions, and
plot their results – Nancy provides a similar experience with .NET Interactive Net-
books. Work [SB17] integrated RTC ToolboxwithNCorg DNC, leveraging the shared
Java runtime. However, the source code of RTC Toolbox is not publicly available,
which impedes researchers from extending its functionalities, verifying its correct-
ness or fixing its bugs.

For example, [ZHLC20] notes that the toolbox does not provide a function for
computing the time of intersection of an arrival and a service curve, which compli-
cates the implementation of studies relying on it. Moreover, the toolbox provides
only one inversion operator, with the rtcinvert function. The documentation does
not clarify whether it conforms to lower or upper pseudoinverse. Work [PLSK11],
which first observed the runtime improvements involved with the isomorphism be-
tween (min,+) and (max,+), notes that many steps needed to be implemented out-
side the toolbox and, combined with lack of insights on its internal implementation,
the authors were therefore unable to discern the cause of the observed improve-
ments. Moreover, the RTC Toolbox requires new curves to be constructed with an
integer period length, most likely in order to address some issues that we discuss
below. On one hand, we believe this to be a very restrictive assumption, which leads
to additional work in order to study a system which does not fit this model (e.g.,

185

186 Comparison With RTC Toolbox

a heterogeneous system with multiple clock domains). On the other hand, as we
show, this is not enough to preserve numerical stability.

As for its mathematical model, RTC Toolbox works on Variability Characteriza-
tion Curves (VCC), which appear to be very similar to UPP ones. However, [BT08]
notes that the two classes treat discontinuities differently, as it seems from the doc-
umentation that VCC are assumed to be left- or right-continuous based on the oper-
ation being used.1 Moreover, [RRB21] remarks that the UPP and VCCmodels were
never formally compared.

Finally, we remark that RTC Toolbox uses doubles as its base numeric type. We be-
lieve this to be a reason of concern, and the main cause of some unexpected behav-
iors that we observed – which include non-terminating computations. Note though
that, due to the aforementioned lack of source code, we can validate neither the
toolbox nor these statements, which should therefore be taken as conjectures.

In the rest of this chapter, we discuss this point further, and provide a compari-
son, albeit superficial, with Nancy – highlighting the computational instability risks
in RTC Toolbox which are, to the best of our understanding, to be ascribed to its
mathematical model and numerical type.

15.1 Floating point numbers
First, we recall what a floating point number is – and what is not. Standard IEEE
754 [IEEE754] defines both their numerical representation and algorithms, which
can be, generally speaking, ascribed to the following design goals: implement fast,
approximate operations, to be supported directly in hardware.

Simplifying for the sake of discussion, they can be seen as numbers in the form
±b · 2m, where the base b ∈ N and the mantissa m ∈ Z have pre-determined bit
lengths. Note that such a number is obviously in Q, since numbers in R \Q do not
have a finite number of digits in any base.

As mentioned, the standard does not aim for accurate operations, rather for ac-
ceptable error margins for the operations directly supported by the standard. To
explain this point more formally, let x ∈ R. Then its representation as floating point
number is xε ∈ Q, such that x − ε ≤ xε ≤ x + ε. Moreover, computing the sum,
multiplication, division, etc. the IEEE 754 standard specifies the error ε introduced
by those. On one hand, keeping track of these errors, their propagation and the
effect on the overall result, so that it can be still trusted within a desired tolerance,
is a typical, well-understood problem in engineering, physics and so on – after all,
the very concept of error is unavoidable when one has to deal with measurements.
On the other hand, if one does not carefully consider this, numerical inconsistencies

1“However, the various functions of the RTC Toolbox will interpret a discontinuity correctly as
either left- or right-continuous depending on the context of the curve.” [WTb]

15.2 Floating point approximations and hyper-period explosion 187

can occur. For example, it is easy to create, in many languages, instances of com-
putations involving integer numbers and results that can, in a few iterations using
floating point operations, yield a non-integer number instead, e.g., incrementing an
integer with 1.0 to eventually obtain a non-integer.

The other objective of the standard, efficiency, is very important as well: it is easy
to verify that the same program using floating point computations, instead of cus-
tom types like our LongRational and BigRational ones, will reap the benefits of mature
hardware support and run much faster. To give a perspective of this difference, we
created a simple benchmark (Listing 15.1)which compares the performance of these
numerical types for the computation of the intersection between two segments. The

Listing 15.1 Simple benchmark for a perspective on performance difference between nu-
merical types.

// T is either float, BigRational or LongRational
public T Benchmark<T>(int x_0, int y_0, int r, int y_1)
{

T x_0_T = (T) x_0;
T y_0_T = (T) y_0;
T r_T = (T) r;
T y_1_T = (T) y_1;

var intersection = x_0_T + ((y_1_T - y_0_T) / r_T);
return intersection;

}

results of the comparison are in Figure 15.1, which highlights the ratio of computa-
tion time between our custom rational types and double (the red lines mark the me-
dian, first and third quartile). These results show a difference of up to 550x between
using double and BigRational. While this benchmark is focused only the individual
operation and executed entirely in C#, one can expect the same order of magnitude
of difference when the same computation is done in RTC Toolbox – that is, until the
approximation issues start interfering.

15.2 Floating point approximations and hyper-period
explosion

As mentioned, we believe that the use of floating point in the implementation of
RTC Toolbox is in fact the root cause for the issues that we observed and discuss
below. VCC curves have, like UPP ones, a period length, and operations such as the
(min,+) convolution will, at some point, compute the hyper-period of its operands,
lcm

(
d f , dg

)
. However, the least common multiple is not a linear operator, and is

188 Comparison With RTC Toolbox

0 20 40 60 80 100

450

500

550

600

Test cases

Bi
gR

at
io
na

lt
im

e
/
do

ub
le

tim
e

(a) Ratio of computation time with
BigRational vs. double.

0 20 40 60 80 100

80

100

120

140

Test cases

Lo
ng

Ra
tio

na
lt
im

e
/
do

ub
le

tim
e

(b) Ratio of computation time with
LongRational vs. double.

Figure 15.1: Comparison of computation time for intersections between segments,
by numerical type used.

highly susceptible to inaccuracies in its operands: it is not simply bounded by a
tolerance, like other operations in the IEEE 754 standard are. One can see it with
the simple example of 1000± 1: while lcm(1000, 1000) = 1000, 1000 and 1001 are
coprime, hence lcm(1000, 1001) = 1001000. While the tolerance of an actual double

implementation would make this example highly unlikely, these kinds of issues can
still occur, depending also on how the lcm is implemented.

Technical report [SPLT10, Section 2.1.1] mentions, in fact, something to this ef-
fect: it states that “due to cutoff errors when using floating point data types” it is
often the case that the resulting curve has a period length longer than the theoretical
lcm

(
d f , dg

)
. As mentioned, likely to abate this issue, the RTC Toolbox requires new

curves to be constructed with an integer period length. We show that this assump-
tion, while highly restrictive, is not sufficient to avoid the issue.

In the following experiments we define curves based on the static window flow
control, which we discussed in Section 6.1 and provided optimizations for in Chap-
ter 13, and compute their (min,+) convolution, i.e.,

βr1,d1 + h1 ⊗ βr2,d2 + h2.

We compute the above convolution using both RTC Toolbox and Nancy. Note that to
do so, we limit parameters to be integers. A relevant example, for which we provide
the code in [ZSa], occurs with the following parameters:

int delay_1 = 17*19;
int height_1 = 17*19;
int rate_1 = 4000*17*19;

15.2 Floating point approximations and hyper-period explosion 189

int delay_2 = 20;
int height_2 = 20;
int rate_2 = 5000*20;

While theNancy implementation terminates in 22 seconds (without any subadditive
optimization involved, using System 4), the RTC Toolbox does not terminate within
24 hours (using System 3) and, from the appearing lack of memory activity, we
speculate it would never do so.

As expected from the comparison of numerical types in the previous section,
we observed that in most cases where these anomalies do not arise, RTC Toolbox
would perform the computation faster than Nancy under similar conditions, i.e.,
single-threaded andwithout any of the optimizations discussed in Part II. However,
it is easy to show that RTC Toolbox becomes more unstable the larger the involved
numbers are.

Using the same shape of curves as in the previous example, we setup an exper-
iment comprised of a set of 100 convolutions of 5 curves each, with parameters h, d
and r randomly generated as integers between 1 and 100. We then run the exper-
iment using both RTC Toolbox and Nancy (representation minimization always on,
with and without subadditive optimizations), with each convolution capped at 10
minutes of runtime, using System 5. If no anomaly was observed, we multiplied all
parameters by 10 and rerun the experiment – and so on until said anomalies would
occur. We did not have to try for long, as they appeared already at the x1000 step.

Figures 15.2 and 15.3 show the result for the last two steps of the experiment,
i.e., where the randomly generated parameters were multiplied by 100 vs. when the
same were multiplied by 1000. In Figure 15.2a we see a positive scenario for RTC
Toolbox, where it reaps the benefit of the hardware support for double operations to
achieve 100x faster computation when running – we assume – a similar algorithm to
the one run by Nancy. However, Figure 15.3a shows that the algorithmic optimiza-
tions provided in this thesis have a large effect on these results.

Figure 15.2b paints a very different scenario, though: in most cases, RTC Toolbox
sees its computation grow much more than those of Nancy, reversing the situation
observed before already without optimizations. In particular, we see cases that take
a second or less with Nancy, and exceed the 10 minutes timeout for RTC Toolbox.
The effects of the subadditive optimizations, as Figure 15.3b shows, only further
emphasize the benefits of Nancy in this scenario.

We note that the approximation issue does not affect just the computation of
the lcm. Consider a VCC function f , then for some threshold ε > 0, fε is what is
actually stored by RTC Toolbox, which is such that given t ∈ R+, it computes fε(tε),
where t − ε ≤ tε ≤ t + ε and f (tε) − ε ≤ fε (tε) ≤ f (tε) + ε. In other words, we
highlight that both the time of sampling and the value taken by the function, being
both represented with floating point numbers, are subject to approximation errors.

190 Comparison With RTC Toolbox

1s 10s 1m. 5m.

100ms

1s

10s

Nancy, standard algorithms

RT
C
To

ol
bo

x

(a) Parameters x100

100ms 1s 10s 1m. 5m.
100ms

1s

10s

1m.

5m.
10m.
20m.

Nancy, standard algorithms

RT
C
To

ol
bo

x

(b) Parameters x1000

Figure 15.2: Comparison of Nancy and RTC Toolbox for chained convolutions.

10ms 100ms 1s 10s

100ms

1s

10s

Nancy, optimized SA convolutions

RT
C
To

ol
bo

x

(a) Parameters x100

10ms100ms 1s 10s 1m.5m.
100ms

1s

10s

1m.

5m.
10m.
20m.

Nancy, optimized SA convolutions

RT
C
To

ol
bo

x

(b) Parameters x1000

Figure 15.3: Comparison of Nancy and RTC Toolbox for chained subadditive con-
volutions.

On one hand, to the best of our knowledge, it has never been formally discussed
how such approximation affects (min,+) and (max,+) operations, e.g., withwhich ε

onemay bound the result of fε⊗ gε. On the other hand, these effects can be observed
in practice too. In fact, we observed that the convolutions from the experiment above
often return curves such that, given a non-constant segment ending at te, followed
by a constant segment starting at te, limt↗te f (t) > f (te). Thus, as shown visually
exaggerated in Figure 15.4, the resulting curve is neither left-continuous nor non-
decreasing, even though the inputs are.

These issues would also impede the implementation of some features of Nancy,
such as checks for left- and right-continuity based on the values of the representation

15.3 Conclusion 191

fε(b)
fε(a) + ρε · (b − a)

a b

ρ

ρε

time

data

fε

f

Figure 15.4: Visually exaggerated example of approximation affecting curve prop-
erties. The actual function f , shown dotted, is non-decreasing and continuous, but
since fε(a) + ρε · (b− a) > fε(b), it appears not to.

at hand – rather than by assumption.

15.3 Conclusion
We highlighted two particular differences between RTC Toolbox and Nancy. On one
hand, there are functional differences such as richness of API, extensibility, open-
source and verifiability; on the other hand, the two libraries have different numerical
models which affect their performance and accuracy.

However, a thorough comparison will have to also consider the maturity of the
two libraries and their use. In fact, RTC Toolbox has seen wide use in the research
community, with tools such asNCorg DNC [BS14] and CyNC [SSH07] built using it,
while Nancy, being a quite recent endeavor, has only seen applications in our own
work, e.g., [ACSZ20; RSLSSZZAH21; AFGSZ22].

As shown, a synthetic benchmark, such as convolution of randomly generated
functions, will appear skewed based on the numerical properties of the generated
cases, i.e., it may be skewed in favor of RTC Toolbox if the numbers are “simple”
enough, in favor ofNancy if not. Thus, an interesting question is how are these tools
used, and how frequently such differences may arise in practice.

A fair comparison should therefore focus on a library of “real world” test scenar-
ios, i.e., examples of studies (and numbers) that actually occur in the practical cases
these tools may be used in.

Chapter 16

Conclusion and Future Works

In this thesis, we presented our work on the algorithmic aspects of Deterministic
Network Calculus. We showed, through use case examples, that mature software
support for (min,+) and (max,+) algebra is needed for the advancement of DNC
research, and that the set of functions U is a good, general model to be implemented
is such software – thanks, also, to its use of rationals.

We then discussed the requirements and design goals of such software, which
we then developed into Nancy, an open source, extensible and efficient library. We
discussed how such properties are achieved through its software architecture and
the techniques used – including, e.g., generators and immutable objects – and the
variety of use cases supported by its rich API.

Using then such properties for our own research, we introduced novel formal
results, that we proved formally and implemented in Nancy, from the extension of
UPP toolbox to include pseudoinverses and composition, to the introduction of op-
timization algorithms such as representation minimization, improved (min,+) con-
volution for subadditive curves, improved (min,+) and (max,+) convolution using
their isomorphism. Lastly, we compared the functional features and design choices
of Nancy and RTC Toolbox, discussing the issues with the use of floating point nu-
merical types and highlighting instances in which this caused anomalies in the RTC
Toolbox runtime.

The result of this contribution is a software library,Nancy, and a collection of new
algebraic results implemented in said library. Due to the user-centered design goals
we set for this project, rather than just demonstrating the results of our research
on the algorithmic properties of DNC, we believe Nancy will be a useful tool for
future research in the space of deterministic worst-case analysis, on both networks
and real-time systems. It implements a mathematical model that can be broadly
adapted to many use cases, some of which we used as examples in this thesis, and
it does so in an organized manner, providing extensive documentation and verifia-
bility, so that it can be easily included in existing and future research projects with

193

194 Conclusion and Future Works

minimal attrition. The algorithmic improvements, provided to the user by default,
ensure that the library achieves state-of-the-art performance, improving over base-
line algorithms by several orders of magnitude, with a strong formal background
validating its results. Nancy also provides the user withmany knobs for fine-tuning,
to optimize the many tradeoffs such an implementation incurs into. Our improved
algebraic and algorithmic results allow convolution - which is perhaps the most fre-
quent DNC operation - to run considerably faster, by orders of magnitude in several
cases. Improving a frequent operation this much is not just a matter of increased
efficiency: especially in conjunction with a usable software tool, it allows scientists
and practitioners working on DNC to perform studies that were considered beyond
the realm of tractable, so far. An example is the case of flow-controlled networks
(Section 13.2.3), where our results allow one to study non-trivial tandems and ob-
tain their end-to-end equivalent service curve. The improvements brought about by
the isospeed algorithms (Chapter 14) are of similar impact. It is our hope that these
results will stimulate new research in the future.

Of course, such a project is far from being “finished”. While we focused mainly
on results involving convolutions – likely the most used operation in DNC studies –
theremay be room to improve the performance of other operations, by either discov-
ering inefficiencies in the current algorithms or providing completely novel results.
For example, in the provided algorithms for pseudoinverses and composition, we
did not find opportunities for obvious parallelization, while the non-obvious ones
would require time for proper comparison and evaluation of tradeoffs. Another op-
erator for which we found challenging use cases is the horizontal deviation, calling
for further investigation and profiling, seeking algorithmic or implementation im-
provements, or both. The algorithmic improvements we provided for the (min,+)
convolution of subadditive curves may, as suggested by their general symmetrical
behavior, likely to apply also to (max,+) convolution of superadditive curves. On
the same note, [Lie17] provides an isomorphism property between the (min,+) and
(max,+) deconvolution as well, suggesting that a similar algorithmic improvement
could be gained for this operator, too.

As for the library itself, many extensions appear feasible and further beneficial
to the research community. Works such as [SB17] highlighted the benefits of in-
tegrating network analysis tools with computational libraries, where both benefit
from the focus of scope of the other project. IntegratingNancy into existing tools in-
curs into challenges such as difference of language and runtime, as well as internal
mathematical model.

While discussing the optimization for (min,+) convolution of subadditive curves,
we highlighted how practical use cases benefit greatly from it since the convolution
of two subadditive curves is again subadditive – a propertywhich is simple to reflect
in code through our class structure. However, many similar properties in literature

195

apply to larger expressions, which can hardly be fully captured by a single object or
operation. An interesting further development is then the extension to symbolic ex-
pressions, which would allow the user to construct entire expressions ahead of time
so that its algebraic properties can be observed “top to bottom” before running com-
putations “bottom to top”. This would also provide support for parametric expres-
sions, which are frequently used for numerical solutions, e.g., in [BLMS12; SSB22].

Part III

Appendices

197

Appendix A

Generator Pattern and yield

In this Appendix we present the generator pattern, which is an implementation op-
timization that allows one to minimize the active memory utilization of algorithms
iterating over large collections, i.e., the amount of memory that is occupied concur-
rently during its execution. Moreover, we discuss the language facilities in C#, such
as IEnumerable, yield, extension methods and LINQ, to support ease of implementation
of this pattern. Wefirst discuss, via examples, the pattern and the issues it addresses.
Then, we introduce the facilities in C# that improve its usage.

A.1 The generator pattern via examples
Let List<int> Range(int start, int n) be a function that returns a list of n integers
starting from start; let a Predicate<int> be a check that, provided an int, returns
either true or false; and let List<int> Where(List<int> numbers, Predicate<int> p) be
a function that filters the integers, returning only those that pass the check p. For
example, these could be used as in Listing A.1. The code in this example allocates
three lists, the first with a thousand elements, the secondwith half of that, and so on.
When we compute the second, the first list fully resides in memory; when we com-
pute the third both the first and the second do; and by the time we get to print the
numbers, all elements of all three lists reside in memory. We can see the print is just
a linear scan, which processes one number at a time. While it is processing a num-
ber, it does not need either its precedent or its successor to be in memory: in fact, a
number is only needed when it is its turn to be printed. In other words, the memory
utilization of this code is wasteful, and can limit the scalability of the program given
more initial elements or filtering steps. We can in fact solve the same problem, stor-
ing just one number at a time, if we rewrite the above, e.g., as in Listing A.2. While
effective, optimizing the code as done in this example requires one to understand
what is being done and alter the code significantly, implementing something very
different with the same result. Moreover, such an approachmay be significantly im-

199

200 Generator Pattern and yield

Listing A.1 Example code: filter and then print a large list of numbers.

List<int> upToOneThousand = Range(1, 1000);

Predicate<int> isOdd = (n => n % 2 == 1);
List<int> oddUpToOneThousand = Where(upToOneThousand, isOdd);

Predicate<int> isMultipleOfThree = (n => n % 3 == 0);
List<int> isOddAndMultipleOfThreeUpToOneThousand =

Where(oddUpToOneThousand, isMultipleOfThree);

// print the numbers
foreach(int n in numbers) {

Console.WriteLine(n);
}

Listing A.2 The example rewritten for a more efficient use of memory.

Predicate<int> isOdd = (n => n % 2 == 1);
Predicate<int> isMultipleOfThree = (n => n % 3 == 0);
for(int n = 1; n <= 100; n++)
{

if(isOdd(n) && isMultipleOfThree(n))
Console.WriteLine(n);

}

peded by the software architecture, e.g., if the filters are being applied in multiple
steps in different parts of the code; or the use of Where() is crucial for the organiza-
tion of the business logic within the codebase, and disrupting it may require a costly
redesign (which is the same, just from the opposite point of view).

The generator pattern thus attempts to provide a scheme to avoid the issue above
without significant changes to how the code is written. The core concept is that in-
stead of a function, where a single call returns an entire set, we use an objectwith an
internal state and current() and next() methods which allow iterating over the same
elements allocating one at a time. In particular, a user would first call next() and then
access the element using current(). For example, we could replace List<int> Rang c
e(int start, int n) with RangeGenerator Range(int start, int n), implemented as in
Listing A.3, which can then be used as in Listing A.4. The pattern shines, though,
when we observe that generators can be composed. Consider the Where() method: it
had another list List<int> as an argument, which we can now replace with a gener-
ator, as shown in Listing A.5. Combining these new functions, we obtain the code
in Listing A.6. This is very close to the code we started with in Listing A.1, so much
that if we used var instead of declaring the types explicitly, they would appear to be
identical. Figure A.1 shows how the generators are organized in this example: each

A.1 The generator pattern via examples 201

Listing A.3 Example of generator: Range.

class RangeGenerator : Generator<int> {
int state;
int remaining;

public RangeGenerator(int start, int n) {
state = start - 1;
remaining = n;

}

public bool next() {
if(remaining > 0) {

state++;
remaining--;
return true

}
else

return false;
}

public int current() {
return state;

}
}

Generator<int> Range(int start, int n) {
return new RangeGenerator(start, n);

}

Listing A.4 Use of Range generator.

var generator = Range(int start, int n);
while(generator.next()) {

Console.WriteLine(generator.current());
}

next() while(next()) {

 print(current())

}

 Where(

 isMultipleOfThree

)

Where(isOdd)Range(0, 1000)

current()

Figure A.1: Schema of generators and print block in Listing A.6

will call next() to the generator above, processing its elements one at a time. Thus,
we see a reduced memory usage, very close to Listing A.2, the only tradeoff being
the generators object themselves.

202 Generator Pattern and yield

Listing A.5 Example of generator: Where.

class WhereGenerator : Generator<int> {
Generator<int> other;
Predicate<int> predicate;

public WhereGenerator(Generator<int> numbers, Predicate<int> p) {
other = numbers;
predicate = p;

}

public bool next() {
bool lastNext;
do {

lastNext = other.next()
} while(lastNext && !predicate(other.current))

return lastNext;
}

public int current() {
return other.current();

}
}

Generator<int> Where(Generator<int> numbers, Predicate<int> p) {
return new WhereGenerator(numbers, p);

}

Listing A.6 The example using the generator pattern: efficient use of memory, while
leaving the code organization untouched.

Generator<int> upToOneThousand = Range(1, 1000);

Predicate<int> isOdd = (n => n % 2 == 1);
Generator<int> oddUpToOneThousand = Where(upToOneThousand, isOdd);

Predicate<int> isMultipleOfThree = (n => n % 3 == 0);
Generator<int> isOddAndMultipleOfThreeUpToOneThousand =

Where(oddUpToOneThousand, isMultipleOfThree);

while(isOddAndMultipleOfThreeUpToOneThousand.next()) {
Console.WriteLine(isOddAndMultipleOfThreeUpToOneThousand.current());

}

A.2 The generator pattern in C# 203

A.2 The generator pattern in C#
The pattern described above, while not reaching the efficiency of Listing A.2 due
to the object overhead, gets really close to it with minor code changes. Moreover,
this can be done without changing the code architecture – we note that in many
cases the highest obstacle to improving performance does not lie in the availability
of better algorithms, but in the cost, in time and effort, to implement them. But as
we have shown, there is still an effort to be made to introduce a class architecture
that implements the pattern. The C# language provides instead facilities that reduce
the above effort, making writing new generators no harder than writing the List<>

equivalent.
First, we introduce the real type that corresponds to the Generator<T> type that

we introduced in the example: the IEnumerable<T> interface. One would thus define
functions such as IEnumerable<T> Where(IEnumerable<T>, Predicate<T>) and classes that
implement IEnumerable<T>.

However, looking closely to Listings A.3 and A.5, we note that most of it is boil-
erplate, i.e., repetitive code that introduces little new information. In fact, the main
point of interest of a generator is not how it stores and manages its state, which is
what the class syntax is oriented towards, but how it uses its parameters and the logic
throughwhich it derives the next element. The latter, though, is what a function syn-
tax is oriented towards. We can see it with the Where filter: we show in Listing A.7 an
implementation for its List<int> version seen in Listing A.1, which is much simpler
than the Generator<int> shown in Listing A.5.

Listing A.7 Implementation of Where() as seen in Listing A.1.

List<int> Where(List<int> numbers, Predicate<int> p) {
List<int> result = new List<int>();
foreach(var n in numbers)

if(p(n))
result.Add(n);

return result;
}

To be able to write a generator with as simple code as the function in the example
above, C# introduces the yield keyword. Using the yield keywordwe can thus focus
on the code to return a single element. We use yield return to return a value, and
yield break to signal the exhaustion of the generator. The compiler will then do the
rest, translating this code into a class with proper state management, where each
instance of yield return will correspond to next() returning true, and yield break will
correspond to next() returning false. This not only saves the programmer effort to
implement Listing A.5 by themselves, as we show in Listing A.8, but also makes it

204 Generator Pattern and yield

Listing A.8 Implementation of Where() as a generator, using yield.

IEnumerable<int> Where(IEnumerable<int> numbers, Predicate<int> p) {
foreach(var n in numbers)

if(p(n))
yield return n;

yield break; // can be implicit in this case
}

Listing A.9Marking Where() as an extension method.

public static class WhereExtension {
public static IEnumerable<T> Where(this IEnumerable<T> elements, Predicate<T> predicate)
{...}

}

Listing A.10 The example of Listing A.6 written using Where() as an extension
method.

var isOddAndMultipleOfThreeUpToOneThousand = Range(1, 1000)
.Where(n => n % 2 == 1)
.Where(n => n % 3 == 0);

foreach(var n in isOddAndMultipleOfThreeUpToOneThousand)
Console.WriteLine(n);

feasible to write more complex logic, with branching and nested loops, as a single
generator function, which would otherwise be highly error-prone.

A.2.1 Extension methods
One further improvement, particularly useful for this pattern, is the ability to mark
user defined methods as extension methods of another class, even of a system class,
which can be then called as naturally as an instance method. We show this via the
example of Listing A.9. Note the this keyword before the first argument: it indicates
that one can call this method as an instance method of any object of type IEnum c
erable<T>. This allows us to greatly simplify code without actually changing the
compiled result. We show this in ListingA.10, whichwill compile to the same binary
as Listing A.6.

It should not surprise the reader, then, to know that LINQ is actually a large set of
generator functions, implemented exploiting IEnumerable<T> and yield, and defined
as extension methods for IEnumerable<T> itself. This gives the programmer, right out
of the box, a large toolset of easy-to-exploit algorithms with reduced allocations,

A.2 The generator pattern in C# 205

together with the language facilities to efficiently and effectively add their own.
Wedo so at large inNancy, wheremultiple algorithms are implemented as gener-

ators so that, even though the codebase grows more and more interconnected and
a solution such as Listing A.2 unfeasible to implement, the various operators are
naturally optimized to minimize the active memory utilization. For example, the
f.Cut(a, b) method, which returns a Sequence containing the values of f in [a, b[, is
provided also as f.CutAsEnumerable(a, b), which returns the elements of the would-
be-sequence one at time, as an IEnumerable<Element>. This can be leveraged, for exam-
ple, in methods such as Curve.Equivalent() or Curve.IsNonDecreasing, which perform
checks iterating one element at a time andmay terminate early – using the generator
pattern, when that happenswe avoid that unnecessary elements are ever computed,
allocated or processed.

Appendix B

UPP properties for minimum and
(min,+) convolution

We report below the proofs for the properties of minimum and (min,+) convolution
for functions in U . These proofs are adapted from those in [BT07; BT08], with a few
clarifications of our own.

B.1 Minimum
Proposition 3.10 (Minimum of Functions with the Same Slope). Let f , g be functions
of U , neither of which is UI. If ρ f = ρg := ρ, f ∧ g is again a function of U with

T = max
(
Tf , Tg

)
,

d = lcm
(
d f , dg

)
,

c = ρ · d.

Proof. First, we observe that f ∧ g is again a piecewise affine function in Q+ →
Q ∪ {+∞,−∞}, since any two functions in U intersect at a rational point ([BT08,
Proposition 6]). Then, for any t ≥ max

(
Tf , Tg

)
,

(f ∧ g)(t + d) = f (t + d) ∧ g(t + d)

=

(
f (t) +

d
d f
· c f

)
∧
(

g(t) +
d
dg
· cg

)
= (f (t) + ρ · d) ∧ (g(t) + ρ · d)
= f (t) ∧ g(t) + ρ · d.

We observe that, in order to be able to leverage the pseudo-periodicity property for
both f and g in this proof:

207

208 UPP properties for minimum and (min,+) convolution

• it is enough that t is the largest between Tf and Tg, i.e., t = max
(
Tf , Tg

)
;

• it is necessary that d = lcm
(
d f , dg

)
, as both d

d f
and d

dg
need to be ∈N.

Proposition 3.11 (Minimumof Functionswith Different Slopes). Let f , g be functions
of U , neither of which is UI. Let, without loss of generality, ρ f < ρg, and let t :=

M f−mg
ρg−ρ f

,
where M f = supTf≤t<Tf +d f

{
f (t)− ρ f · t

}
and mg = infTg≤t<Tg+dg

{
g(t)− ρg · t

}
.

Then, f ∧ g is pseudo-periodic with

T = max
(
Tf , Tg, t

)
,

d = d f ,

c = c f .

Proof. First, we observe that f ∧ g is again a piecewise affine function in Q+ →
Q ∪ {+∞,−∞}, since any two functions in U intersect at a rational point ([BT08,
Proposition 6]). Since ρ f < ρg, it exists t∗ : ∀t ≥ t, f (t) ≤ g(t), hence f ∧ g(t) = f (t)
for any t ≥ t∗. Let t∗ < max

(
Tf , Tg

)
, then f ∧ g is UPP from max

(
Tf , Tg

)
. Other-

wise, since t∗ ≥ max
(
Tf , Tg

)
, we can use the UPP properties of f and g to upper-

bound t∗. Let U f (t) be the upper boundary of the pseudo-periodic behavior of f ,
i.e., the line such that f (t) ≤ U f (t) ∀t ≥ Tf . Let Lg(t) be the lower boundary of the
pseudo-periodic behavior of g, i.e., the line such that g(t) ≥ Lg(t) ∀t ≥ Tg. Then, t∗

is upper-bounded by min
(
t | U f (t) ≤ Lg(t)

)
, i.e., t∗ ≤ t :=

M f−mg
ρg−ρ f

.
Combining both cases, we obtain that f ∧ g is UPP from Tf∧g = max

(
Tf , Tg, t

)
.

Moreover, for any t ≥ Tf∧g

(min(f , g))(t + d f) = min(f (t + d f), g(t + d f))

= f (t + d f)

= f (t) + c f

= min(f (t), g(t)) + c f ,

which concludes the proof.

B.2 (min,+) convolution
In this section, we provide proofs for the UPP properties of (min,+) convolution of
functions in U , starting from the convolutions between transient and periodic parts.
We recall the definition of (min,+) convolution.

B.2 (min,+) convolution 209

Definition 3.12 ((min,+) convolution). Let f and g be functions in U . We define
the (min,+) convolution, for all t ≥ 0, as

f ⊗ g(t) := inf
0≤s≤t

{ f (s) + g(t− s)} (3.4)

Proposition 3.13 ((min,+) Convolution of Transient Parts). Let f and g be functions of
U . Introducing the shorthand notation⊗tt := f ∧t ⊗ g∧t , it holds that⊗tt is again a function
of U , and is UI with ⊗tt(t) = +∞ for any t ≥ Tf + Tg.

Proof. First, we observe that ⊗tt is again a piecewise affine function in Q+ → Q ∪
{+∞,−∞}, as shown in [BT08, Proposition 7]. Since f ∧t (t) = +∞ for any t ≥ Tf
and g∧t (t) = +∞ for any t ≥ Tg, it follows that for any t ≥ Tf + Tg and 0 ≤ s ≤ t we
obtain

f (s) + g(t− s) = +∞,

hence the inf is in turn +∞, which concludes the proof.

Proposition 3.14 ((min,+) Convolution of a Transientwith a Periodic Part). Let f and
g be functions of U . Introducing the shorthand notation ⊗tp := f ∧t ⊗ g∧p , it holds that ⊗tp

is again a function of U with

T⊗tp = Tf + Tg, (3.5)
d⊗tp = dg, (3.6)
c⊗tp = cg. (3.7)

Moreover, ⊗tp(t) = +∞ for any t < Tg.

Proof. First, we observe that ⊗tp is again a piecewise affine function in Q+ → Q ∪
{+∞,−∞}, as shown in [BT08, Proposition 7]. Since f ∧t (t) = +∞ for all t ≥ Tf , we
can write, for all t ≥ 0,

(f ∧t ⊗ g∧p)(t) = inf
0≤s<Tf

(f ∧t (s) + g∧p (t− s)).

Then, for t ≥ Tf + Tg, if 0 ≤ s < Tf it follows that t− s ≥ Tg, and

(f ∧t ⊗ g∧p)(t + dp) = inf
0≤s<Tf

(f ∧t (s) + g∧p (t + dp − s))

= inf
0≤s<Tf

(f ∧t (s) + g∧p (t− s)) + cg

= (f ∧t ⊗ g∧p)(t) + cg,

which concludes the proof.

210 UPP properties for minimum and (min,+) convolution

Proposition 3.15 ((min,+) Convolution of Periodic Parts). Let f and g be functions
of U . Introducing the shorthand notation ⊗pp := f ∧p ⊗ g∧p , it holds that ⊗pp is again a
function of U with

T⊗pp = Tf + Tg + lcm
(
d f , dg

)
, (3.8)

d⊗pp = lcm
(
d f , dg

)
, (3.9)

c⊗pp = d⊗pp ·min

(
c f

d f
,

cg

dg

)
. (3.10)

Proof. First, we observe that ⊗pp is again a piecewise affine function in Q+ → Q ∪
{+∞,−∞}, as shown in [BT08, Proposition 7]. It holds for all t ≥ Tf + Tg + d =

Tf + Tg + lcm
(
d f , dg

)
that

f ∧p ⊗ g∧p (t + d)

= inf
0≤s≤t+d

{
f ∧p (s) + g∧p (t + d− s)

}
(

s≥Tf ,t+d−s≥Tg

)
= inf

Tf≤s≤t+d−Tg
{ f (s) + g(t + d− s)}

= inf
Tf≤s≤t−Tg

{ f (s) + g(t + d− s)}

∧ inf
t−Tg≤s≤t+d−Tg

{ f (s) + g(t + d− s)}
(

t−Tg≥Tf +d
)

= inf
Tf≤s≤t−Tg

{ f (s) + g(t + d− s)}

∧ inf
Tf +d≤s≤t+d−Tg

{ f (s) + g(t + d− s)}

(u=t+d−s)
= inf

Tf≤s≤t−Tg
{ f (s) + g(t + d− s)}

∧ inf
Tg≤u≤t−Tf

{ f (t + d− u) + g(u)}
(

t−s≥Tg,t−u≥Tf

)
= inf

Tf≤s≤t−Tg

{
f (s) + g(t− s) +

d
dg

cg

}
∧ inf

Tg≤u≤t−Tf

{
f (t− u) +

d
d f

c f + g(u)

}

=min

(
f ∧p ⊗ g∧p (t) +

d
dg

cg, f ∧p ⊗ g∧p (t) +
d
d f

c f

)

= f ∧p ⊗ g∧p (t) + min

(
d
dg

cg,
d
d f

c f

)

B.2 (min,+) convolution 211

= f ∧p ⊗ g∧p (t) + min

(
cg

dg
,

c f

d f

)
· d.

Thus, f ∧p ⊗ g∧p is Ultimately Pseudo-Periodic from Tf + Tg + d⊗pp with period length

d⊗pp = lcm
(
d f , dg

)
and height min

(d⊗pp
dg

cg,
d⊗pp

d f
c f

)
= min

(
cg
dg

,
c f
d f

)
d.

Proposition 3.16 (Sufficient Cuts for (min,+) Convolution of Periodic Parts). Let f
and g be functions of U , and let f ∧p and g∧p be their respective periodic parts. Let the interval
I⊗pp be of the form

[
Tf + Tg, Tf + Tg + 2 · d⊗pp

[
. Then, in order to compute f ∧p ⊗ g∧p over

I⊗pp it is sufficient to use

I f =
[

Tf , Tf + 2 · d⊗pp

[
,

Ig =
[

Tg, Tg + 2 · d⊗pp

[
.

Proof. The corollary follows directly from the proof of Proposition 3.15. Consider
t = sup I⊗pp = Tf + Tg + 2 · d. Then, we observe that the proof of Proposition 3.15
computes f (s) over s ∈

[
Tf , Tf + 2 · d

]
and g(u) over u ∈

[
Tg, Tg + 2 · d

]
Proposition 3.17 (Minimum of Decomposed (min,+) Convolution Terms). Let f
and g be functions of U , and let f = f ∧t ∧ f ∧p and g = g∧t ∧ g∧p be their decomposition in
transient and periodic parts. Let⊗tt := f ∧t ⊗ g∧t ,⊗tp := f ∧t ⊗ g∧p ,⊗pt := f ∧p ⊗ g∧t , and
⊗pp := f ∧p ⊗ g∧p . Then

f ⊗ g = ⊗tt ∧⊗tp ∧⊗pt ∧⊗pp. (3.11)

Moreover, f ⊗ g is again a function of U with

d f⊗g = lcm
(
d f , dg

)
,

c f⊗g = min

(
c f

d f
,

cg

dg

)
d′f⊗g = min

(
c f

d f
,

cg

dg

)
· lcm

(
d f , dg

)
.

Proof. First, we prove the decomposition using the distributivity of the (min,+) con-
volution.

f ⊗ g =
(

f ∧t ∧ f ∧p
)
⊗
(

g∧t ∧ g∧p
)

=
(

f ∧t ⊗
(

g∧t ∧ g∧p
))
∧
(

f ∧p ⊗
(

g∧t ∧ g∧p
))

=
(

f ∧t ⊗ g∧t
)
∧
(

f ∧t ⊗ g∧p
)
∧
(

f ∧p ⊗ g∧t
)
∧
(

f ∧p ⊗ g∧p
)

.

Then, we can derive the UPP properties of f ⊗ g using Propositions 3.10 and 3.11
and Propositions 3.13 to 3.15.

212 UPP properties for minimum and (min,+) convolution

Since ⊗tt is UI, it does not affect this discussion. Then, ⊗tp has ρtp = ρg, and
similarly ⊗pt has ρpt = ρ f . Lastly, ⊗pp has ρpp = min

(
ρ f , ρg

)
. Without loss

of generality, let ρ f > ρg. Then we can derive that ⊗tp ∧ ⊗pp is UPP with T =

max
(

T⊗tp , T⊗pp

)
= Tf + Tg + d⊗pp , d = lcm

(
d⊗tp , d⊗pp

)
= d⊗pp = lcm

(
d f , dg

)
, and

ρ = ρg. However, for ⊗pt ∧
(
⊗tp ∧⊗pp

)
we have that, since ρ⊗pt = ρ f > ρg, to

compute its pseudo-period start, we would need to bound the intersection point t∗

(Proposition 3.11). Since this depends on the shape of these functions, we cannot
predict a valid T a priori. We can compute, though, d⊗ = d⊗tp∧⊗pp = lcm

(
d f , dg

)
and c⊗ = d⊗ ·min

(
ρ f , ρg

)
.

Proposition 3.18 (Convolution of Curves with the Same Slope). Let f and g be func-
tions of U , with ρ := ρ f = ρg. Then f ⊗ g is again a function of U with

T = Tf + Tg + d,

d = lcm
(
d f , dg

)
,

c = ρ · d.

The entire convolution can be computed using sequences SI
f , SI

g with I =
[
0, Tf + Tg + 2 · d

[
,

and then computing the convolution of these sequences SI
f⊗g over the same interval.

Proof. The proof follows the same steps of Proposition 3.17. Since ρ f = ρg, we obtain
for the last step that T⊗ = Tf + Tg + d. Moreover, it follows that it is sufficient to
compute f ⊗ g in I⊗ =

[
0, Tf + Tg + 2 · d

[
. Then, since

f ⊗ g(t) = inf
0≤s≤t

{ f (s) + g(t− s)} ,

we derive that f (s) and g(t− s) are computed over I f = Ig = I⊗.

Appendix C

Continuity and (•,+) Convolution

C.1 Note on the non-completeness of Q

Many of the results and proofs from the literature, that here we use and report, use
the set of real numbers R and its completeness property, also known as least-upper-
bound property. This property states that given any set S ⊂ R, then inf S ∈ R,
same for sup S. This is in contrast with Q, e.g., S =

{
x ∈ Q|x2 ≥ 2

}
⊂ Q, while

inf {S} =
√

2 /∈ Q.
Thus, those proof cannot be applied as-is also for functions of U . However,

we can prove and use weaker results that are based on the following observation.
We defined functions of U as Q+ → Q ∪ {+∞,−∞}, piecewise and composed of
points and segments, which in turn are defined to have breakpoints, values, limits
and slopes in Q (see Definitions 3.4 and 3.5). It follows that all the infima and
suprema operations used, i.e., those in convolutions and pseudoinverses, which
use linear combinations of breakpoints and values of such functions, are again in
Q ∪ {+∞,−∞}. Moreover, whenever such infima or suprema would be attained
for a given t∗, it must be that t∗ ∈ Q.

Lemma C.1. Let (tn)n∈N be a sequence ∈ Q+ and let f ∈ U . Then, for any limit ∈ Q of
f (tn) such that t∗ ∈ R+ attains this limit, i.e., limn→∞ f (tn) = f (t∗) ∈ Q, it holds that
t∗ is already ∈ Q+.

Proof. We proceed with a proof by contradiction. Assume that the rational limit is
attained by t∗ ∈ R+ \Q+. As f ∈ U , there exists bi, ρi, qi ∈ Q such that f (t∗) =

bi + ρi · t∗ = qi ∈ Q. But this is a contradiction, since qi−bi
ρi
∈ Q, where we used that

a subtraction and a division of rational numbers is, again, rational.

Thus, we show that the results are mathematically solid also for functions in U .

213

214 Continuity and (•, +) Convolution

C.2 Attainability and left-continuity of (min,+)
convolution

We can now prove the left-continuity and attainability of (min,+) convolution of
left-continuous functions.

Proposition 4.1 (Attainability of (min,+)Convolution). Let f and g be left-continuous,
non-decreasing functions of U . Then, for any t ∈ Q+ it exists s∗ ∈ [0, t] such that

f ⊗ g(t) = inf
0≤s≤t

{ f (s) + g(t− s)} = f (s∗) + g(t− s∗).

In other words, the infimum is always attained in [0, t].

Proof. The proof follows along the lines of [BBL18, p. 48]. Fix t ≥ 0 and define
Ft(s) := f (s)+ g(t− s). Let (sn)n∈N be a sequence such that Ft(sn) is decreasing and
converges to inf0≤s≤t { f (s) + g(t− s)}. Note, that the limit inf0≤s≤t { f (s) + g(t− s)}
is in Q, as it is true for (min,+) convolution of two piecewise affine functions in gen-
eral [BT08, Proposition 7]. As for all n, it holds that sn ∈ [0, t]. In other words,
we have an infinite sequence on a closed and bounded interval. Therefore, by the
Bolzano-Weierstrass theorem for real sequences, there exists a subsequence un that
converges to ū ∈ [0, t] ⊂ R+. Moreover, by the LemmaC.1, this limit ū ∈ Q+. By the
Monotone Subsequence Theorem, there exists a monotonic subsequence (vn)n∈N

(of this subsequence un) with the same limit ū. Without loss of generality, this se-
quence is increasing (if this sequence is decreasing, we can exchange the role of f
and g and replace vn with t − vn). As f is left-continuous, limn→∞ f (vn) = f (ū),
and, as g is non-decreasing, limn→∞ g(t− vn) ≥ g(t− ū). Therefore,

lim
n→∞

Ft(vn) = lim
n→∞

f (vn) + g(t− vn) ≥ f (ū) + g(t− ū) = F(ū).

Thus, Ft reaches its minimum on [0, t].

Proposition 4.2 (Left-Continuity of (min,+)Convolution). Let f and g be left-continuous,
non-decreasing functions of U . Then, f ⊗ g is left-continuous.

Proof. The proof followsmostly along the lines of Proposition 3.11 in [BBL18, p. 49].
For all s ≥ 0, define Fs : t→ f (s)+ g

(
[t− s]+

)
. The left-continuity of Fs directly

follows from that of g and for all t ≥ 0,

f ⊗ g(t) = inf
0≤s≤t

{Fs(t)}

= inf
s≥0
{Fs(t)} .

The last equality is because f is non-decreasing. Note that from Proposition 4.1, this
is a minimum, and we denote one value by ut ∈ [0, t] such that f ⊗ g(t) = Fut(t).

C.3 Attainability and left-continuity of (max,+) convolution 215

Fix t ≥ 0 and let tn be a non-decreasing sequence converging to t. To prove the
left-continuity of f ⊗ g(t), we need to show that Fun(tn) converges to Fut(t), with
un = utn .

By the Monotone Subsequence Theorem, there exists a monotonic subsequence
(vtn)n∈N (of un) with the same limit ut. Without loss of generality, this sequence is
increasing (if this sequence is decreasing, we can exchange the role of f and g and
replace vtn with tn − vtn). Since both sequences, tn and vtn , are increasing, we only
know that tn − vtn converges to t− ut, but not how. The sequence g (tn − vtn) either
has an increasing subsequencewith tn− vtn ≥ 0 (in this case, limn→∞ g

(
[tn − vtn]

+
)
=

g (t− ut) by left-continuity) or a decreasing subsequence (then, limn→∞ g (tn − vtn) =

g ((t− ut)+) with g(t+) := limε↘0 g(t + ε)). Either way, it holds that

lim
n→∞

f ⊗ g(tn) = lim
n→∞

Fvtn (tn)

= lim
n→∞

f (vtn) + g (tn − vtn)

≥ f (ut) + g (t− ut)

= Fut(t)

= f ⊗ g(t),

where we used in the inequality that g is non-decreasing.
Moreover, by Lemma 2.3 in [BBL18, p. 22], the (min,+) convolution of non-

decreasing functions is, again, non-decreasing, hence, f ⊗ g(tn) ≤ f ⊗ g(t). Com-
bining both inequalities finishes the proof.

C.3 Attainability and left-continuity of (max,+)
convolution

The proofs for Propositions 4.3 and 4.4 follow a similar approach.

Proposition 4.3 (Attainability of (max,+)Convolution). Let f and g be right-continuous,
non-decreasing functions of U . Then, for any t ∈ Q+ it exists s∗ ∈ [0, t] such that

f ⊗ g(t) = sup
0≤s≤t

{ f (s) + g(t− s)} = f (s∗) + g(t− s∗).

In other words, the supremum is always attained in [0, t].

Proof. The proof follows by adapting the steps in the proof of Proposition 4.1 to the
(max,+) convolution. Fix t ≥ 0 and define Ft(s) := f (s) + g(t− s). Let (sn)n∈N be a
sequence such that Ft(sn) is increasing and converges to sup0≤s≤t { f (s) + g(t− s)}.
Similar to the (min,+) convolution [BT08, Proposition 7], one can show that the
limit, the (max,+) convolution sup0≤s≤t { f (s) + g(t− s)}, is in Q. As for all n, it

216 Continuity and (•, +) Convolution

holds that sn ∈ [0, t]. In other words, we have an infinite sequence on a closed
and bounded interval. Therefore, by the Bolzano-Weierstrass theorem for real se-
quences, there exists a subsequence un that converges to ū ∈ [0, t] ⊂ R+. More-
over, by the Lemma C.1, this limit ū ∈ Q+. By the Monotone Subsequence Theo-
rem, there exists a monotonic subsequence (vn)n∈N (of this subsequence un) with
the same limit ū. Without loss of generality, this sequence is decreasing (if this
sequence is increasing, we can exchange the role of f and g and replace vn with
t− vn). As f is right-continuous, limn→∞ f (vn) = f (ū), and, as g is non-decreasing,
limn→∞ g(t− vn) ≤ g(t− ū). Therefore,

lim
n→∞

Ft(vn) = lim
n→∞

f (vn) + g(t− vn) ≤ f (ū) + g(t− ū) = F(ū).

Thus, Ft reaches its maximum on [0, t].

Proposition 4.4 (Right-Continuity of (max,+) Convolution). Let f and g be right-
continuous, non-decreasing functions of U . Then, f ⊗ g is right-continuous.

Proof. The proof is inspired by Proposition 3.11 in [BBL18, p. 49].
We extend the function g by

g̃(t) :=

{
g(t), if t ≥ 0,
−∞, otherwise.

For all t ≥ 0, it holds that f ⊗ g(t) = f ⊗ g̃(t) and thus, f ⊗ g(t) is right-continuous
if and only if f ⊗ g̃(t) is right-continuous for all t ≥ 0.

For all s ≥ 0, define Fs : t → f (s) + g̃(t− s). The right-continuity of Fs directly
follows from that of g̃ and for all t ≥ 0,

f ⊗ g(t) = sup
0≤s≤t

{Fs(t)}

= sup
s≥0
{Fs(t)} ,

where we used that the supremum is never attained for negative arguments of g̃.
Note that from Proposition 4.3, this is a maximum, and we denote one value by
ut ∈ [0, t] such that f ⊗ g(t) = Fut(t).

Fix t ≥ 0 and let tn be a non-increasing sequence converging to t. To prove the
right-continuity of f ⊗ g(t), we need to show that Fun(tn) converges to Fut(t), with
un = utn .

By the Monotone Subsequence Theorem, there exists a monotonic subsequence
(vtn)n∈N (of un) with the same limit ut. Without loss of generality, this sequence
is decreasing (if this sequence is increasing, we can exchange the role of f and g
and replace vtn with t− vtn). Since both sequences, tn and vtn , are decreasing, we

C.4 Both functions must be *-continuous 217

only know that tn − vtn converges to t− ut, but not how. The sequence g̃ (tn − vtn)

either has a decreasing subsequence from above (in this case, limn→∞ g (tn − vtn) =

g (t− ut) by right-continuity) or an increasing subsequence with tn − vtn ≥ 0 from
below (then, limn→∞ g (tn − vtn) = g ((t− ut)−) with g(t−) := limε↘0 g(t − ε)).
Either way, it holds that

lim
n→∞

f ⊗ g(tn) = lim
n→∞

Fvtn (tn)

= lim
n→∞

f (vtn) + g(tn − utn)

≤ f (vt) + g (t− ut)

= Fut(t)

= f ⊗ g(t),

where we used in the inequality that g is non-decreasing.
Moreover, by Lemma 4.1 in [Lie17, p. 17], the (max,+) convolution of non-

decreasing functions is, again, non-decreasing, hence, f ⊗ g(tn) ≥ f ⊗ g(t) (tn is
assumed to be a decreasing sequence). Combining both inequalities finishes the
proof.

C.4 Both functions must be *-continuous
[Lie17, p. 134] provides a result for the right-continuity of the (max,+) convolution
that requires only one of the functions to be right-continuous. One may wonder if
this results also applies to functions in U .

The main step of [Lie17, p. 134], is the following equivalence, where the respec-
tive limit and supremum are exchanged:

lim
ε↘0

sup
s∈R

{
f (s) + g

(
[t− s− ε]+

)}
= sup

s∈R

{
f (s) + g

(
[t− s]+

)}
.

However, this step is, for functions of U , generally an inequality “≥”. Consider the
following example. Let

f (t) =

{
0, t ≤ 1,
2, else

and

g(t) =

0, t < 0,
t, 0 ≤ t < 1,
1, else.

It is easy to check that f is not right-continuous (it is, in fact, left-continuous) and g is
continuous; in particular, it is also right-continuous. Yet, their (max,+) convolution

218 Continuity and (•, +) Convolution

0 1 2
0

2

time

data

(a) f , not right-continuous.

0 1 2
0

1

time

data

(b) g, right-continuous.

0 1 2 3
0

1

2

3

time

data

(c) f ⊗ g, not right-
continuous.

Figure C.1: Example for the (max,+) convolution.

is not right-continuous anymore, as it holds that

f ⊗ g(1) = sup
0≤s≤1

 f (s)︸︷︷︸
=0

+g(1− s)

=g(1) = 1,

while for any ε > 0, we have

f ⊗ g(1 + ε) = sup
0≤s≤1+ε

{ f (s) + g(1− s)}

= sup
1<s≤1+ε

 f (s)︸︷︷︸
=2

+g(1− s)

 = 2 + ε.

The above is visualized in Figure C.1.
On the other hand, if one considers t ∈ R as in [Lie17], with g(t) = 0 for t ≤ 0,

we obtain

f ⊗ g(1) = sup
s∈R

{ f (s) + g(1− s)}

= f (2) + g(−1) = 2.

Thus, the result may apply only for convolutions of functions with unbounded sup-
port as discussed in [Lie17]. We can provide a similar example for the (min,+)
convolution. This is given in Figure C.2.

C.4 Both functions must be *-continuous 219

0 1 2
0

1

time

data

(a) f , not left-continuous.

0 2
0

1

3

time

data

(b) g, left-continuous.

0 1 2
0

1

time

data

(c) f ⊗ g, not left-continuous.

Figure C.2: Example for the (min,+) convolution.

Appendix D

Pseudoinverses

D.1 Differences in pseudoinverses definitions
In this section we discuss differences between the definition used in this work and
[Lie17], and the impact on the results from thatwork thatwe use here. Wenote, also,
that recently [PS22] provided a more general definition of pseudoinverses, which
generalizes the sets of functions, properties such as Lemma 4.14, and does not re-
quire functions to be non-decreasing.

In [Lie17, p. 60], which considers functions from R→ R, lower and upper pseu-
doinverses are introduced as

f−1
↓ (y) = inf {t | f (t) ≥ y} = sup {t | f (t) < y} ,

f−1
↑ (y) = sup {t | f (t) ≤ y} = inf {t | f (t) > y} .

However, when one considers a domain bounded from below by 0, such as in
our case, the rightmost equalities do not hold for y ≤ f (0). As a counterexample,
consider y = f (0). Then,

f−1
↓ (y) = inf {x ≥ 0 | f (x) ≥ y} = 0,

f−1
↓ (y) = sup {x ≥ 0 | f (x) < y} = sup {∅} = −∞.

Proposition 4.10 states a weaker form of equivalence for functions in U . We pro-
vide here a proof.

Proposition 4.10. Let f ∈ U be non-decreasing. For all y > f (0), its lower pseudoinverse
is equal to

f−1
↓ (y) = sup {t ≥ 0 | f (t) < y} , (4.4)

and for all y ≥ f (0), its upper pseudoinverse is equal to

f−1
↑ (y) = inf {t ≥ 0 | f (t) > y} . (4.5)

221

222 Pseudoinverses

Proof. The proof follows mostly along the lines of Lemma 3.2 in [BBL18, pp. 46].1

1. Lower pseudoinverse: first, note that {t ≥ 0 | f (t) < y} and {t ≥ 0 | f (t) ≥ y}
formapartition ofQ+. Moreover, as f is non-decreasing and y > f (0), {t ≥ 0 | f (t) ≥ y}
is a non-empty interval of the form [b,+∞[or]b,+∞[for some b > 0. As a
consequence, {t ≥ 0 | f (t) < y} is a non-empty interval of the form [0, b[or
[0, b]. Thus, we have b = inf {t ≥ 0 | f (t) ≥ y} = sup {t ≥ 0 | f (t) < y}.

2. Upper pseudoinverse: for y > f (0), the proof is the almost same as in 1., we
just replace {t ≥ 0 | f (t) < y} by {t ≥ 0 | f (t) ≤ y} and {t ≥ 0 | f (t) ≥ y} by
{t ≥ 0 | f (t) > y}. Then, b = sup {t ≥ 0 | f (t) ≤ y} = inf {t ≥ 0 | f (t) > y}.
Next, consider the case y = f (0). Let us define t1 := sup {t ≥ 0 | f (t) = f (0)} ∈
Q+ ∪ {+∞}. It holds that

sup {t ≥ 0 | f (t) ≤ y} = sup {t ≥ 0 | f (t) ≤ f (0)}
= t1

as well as

inf {t ≥ 0 | f (t) > y} = inf {t ≥ 0 | f (t) > f (0)}
= inf {t ≥ t1 | f (t) > f (0)}
= t1,

whereweused in the second line that t1 is a lower bound for the set {t ≥ 0 | f (t) > f (0)}.

Note that the discussion above applies to any bounded domain – see the more
general discussion regarding pseudoinverses over a support, in Chapter 14. The
same applies for the following property.

Lemma 4.14. Let f be a non-decreasing function of U . Then, for all y ≥ f (0),

f−1
↓ (y) ≤ f−1

↑ (y).

Proof. We distinguish cases. For y > f (0), the claim follows immediately, since we
can apply Proposition 4.10:

f−1
↓ (y) = sup {t ≥ 0 | f (t) < y}

≤ sup {t ≥ 0 | f (t) ≤ y}
= f−1

↑ (y).

1We note however that Lemma 3.2 in [BBL18, pp. 46] is incomplete, since it does not account for
the case y ≤ f (0) – see our counterexample above.

D.2 Properties of pseudoinverses 223

For y = f (0), we calculate for the lower pseudoinverse

f−1
↓ (y) = inf {x ≥ 0 | f (x) ≥ y} = 0,

while the upper pseudoinverse yields

f−1
↑ (y) = sup {t ≥ 0 | f (t) ≤ y} = 0.

Combining both cases finishes the proof.

Note that, for y ∈ [0, f (0)[, this is not the case. Then, we obtain for the lower
pseudoinverse

f−1
↓ (y) = inf {x ≥ 0 | f (x) ≥ y} = 0,

while the upper pseudoinverse yields

f−1
↑ (y) = sup {t ≥ 0 | f (t) ≤ y} = −∞,

which is obviously strictly less than f−1
↓ (y).

D.2 Properties of pseudoinverses
Lemma 4.11. Let f ∈ U be non-decreasing. Then, f−1

↓ is left-continuous and f−1
↑ is right-

continuous.

Proof. The proof follows mostly along the lines of Lemma 10.1 in [Lie17, p. 65].
First, we prove the claim for the upper pseudoinverse. Let y < f (0). Then,

f−1
↑
(
y+
)
= lim

x↘y,
x< f (0)

sup {t ≥ 0 | f (t) ≤ x}

= sup {∅}
=−∞

= sup {t ≥ 0 | f (t) ≤ y}
= f−1
↑ (y) .

Now, let y ≥ f (0). Using Proposition 4.10, we derive

f−1
↑
(
y+
)
= lim

x↘y
sup {t ≥ 0 | f (t) ≤ x}

(4.5)
= lim

x↘y
inf {t ≥ 0 | f (t) > x}

(f non-decr.)
= inf

x>y
inf

t
{t ≥ 0 | f (t) > x}

= inf
t,x
{t ≥ 0 | f (t) > x, x > y}

= inf {t ≥ 0 | f (t) > y}
= f−1
↑ (y) .

224 Pseudoinverses

The first line expresses the limit from the right of the upper pseudoinverse for an
arbitrary value y ≥ f (0). This finishes the proof for the upper pseudoinverse.

Let us now consider the lower pseudoinverse. Let y ≤ f (0). Then,

f−1
↓
(
y+
)
= lim

x↗y
inf {t ≥ 0 | f (t) ≥ x}

(x< f (0))
= 0

(y≤ f (0))
= inf {t ≥ 0 | f (t) ≥ y}

= f−1
↓ (y) .

Last, let y > f (0). Using Proposition 4.10, we derive

f−1
↓
(
y+
)
= lim

x↗y
inf {t ≥ 0 | f (t) ≥ x}

(4.4)
= lim

x↗y
sup {t ≥ 0 | f (t) < x}

(f non-decr.)
= sup

x<y
sup

t
{t ≥ 0 | f (t) < x}

= sup
t,x
{t ≥ 0 | f (t) < x, x < y}

= sup {t ≥ 0 | f (t) < y}
= f−1
↓ (y) .

Lemma 4.12. Let f ∈ U be non-decreasing and left-continuous. Then,

f =
(

f−1
↑

)−1

↓
. (4.6)

Proof. We follow along the lines of [Lie17, p. 65], adapting the steps to consider
f ∈ U .

Let t ∈ Q+. Then(
f−1
↑

)−1

↓
(t) = inf

{
x ≥ 0 | f−1

↑ (x) ≥ t
}

= inf {x ≥ 0 | sup {s ≥ 0 | f (s) ≤ x} ≥ t} .

We introduce notation for the two sets appearing in the equation and define

Mt := {x ≥ 0 | sup {s ≥ 0 | f (s) ≤ x} ≥ t} ,

Mt,x := {s ≥ 0 | f (s) ≤ x} .

D.2 Properties of pseudoinverses 225

Weprove the claim by showing that f (t) = inf {Mt}. Then, we show that f (t) ∈ Mt,
and that if x̂ < f (t), then x̂ /∈ Mt. This would finish the proof as f−1

↑ is right-

continuous and hence an infimum of the set Mt =
{

x ≥ 0 | f−1
↑ (x) ≥ t

}
must also

be an element of Mt.
If x = f (t), the condition to be an element of Mt becomes

sup {Mt,x} = sup
{

Mt, f (t)

}
= sup {s ≥ 0 | f (s) ≤ f (t)} ≥ t.

This supremum is either equal to t or equal to s∗ > t such that f (s∗) = f (t). In both
cases, the condition of the supremum to be greater than or equal to t is therefore
satisfied, and hence we conclude that f (t) ∈ Mt.

For an x̂ < f (t), the condition is equal to

sup {Mt,x̂} = sup {s ≥ 0 | f (s) ≤ x̂} ≥ t.

Let s∗ := sup {Mt,x̂} be the supremum. Since f is left-continuous, we have that
s∗ ∈ Mt,x̂, and, therefore f (s∗) ≤ x̂. Combining both assumptions yields

f (s∗) ≤ x̂ < f (t).

Since f is non-decreasing, this implies that s∗ < t. Hence, with x̂, the condition for
membership in Mt cannot be satisfied, and we have that x̂ /∈ Mt.

Lemma 4.13. Let f ∈ U be non-decreasing and right-continuous. Then,

f =
(

f−1
↓

)−1

↑
. (4.7)

Proof. We follow along the lines of [Lie17, p. 65], adapting the steps to consider
f ∈ U .

Let t ∈ Q+. Then(
f−1
↓

)−1

↑
(t) = sup

{
x ≥ 0 | f−1

↓ (x) ≤ t
}

= sup {x ≥ 0 | inf {s ≥ 0 | f (s) ≥ x} ≤ t} .

We introduce notation for the two sets appearing in the equation and define

Mt := {x ≥ 0 | inf {s ≥ 0 | f (s) ≥ x} ≤ t} ,

Mt,x := {s ≥ 0 | f (s) ≥ x} .

We prove the claim by showing that f (t) = sup {Mt}. Then, we show that f (t) ∈
Mt, and that if x̂ > f (t), then x̂ /∈ Mt. This would finish the proof as f−1

↓ is left-

continuous and hence a supremum of the set Mt =
{

x ≥ 0 | f−1
↓ (x) ≤ t

}
must also

be an element of Mt.

226 Pseudoinverses

If x = f (t), the condition to be an element of Mt becomes

inf {Mt,x} = inf
{

Mt, f (t)

}
= inf {s ≥ 0 | f (s) ≥ f (t)} ≤ t.

This infimum is either equal to t or equal to 0 ≤ s∗ < t such that f (s∗) = f (t). In
both cases, the condition of the infimum to be less than or equal to t is therefore
satisfied, and hence we conclude that f (t) ∈ Mt.

For an x̂ > f (t), the condition is equal to

inf {Mt,x̂} = inf {s ≥ 0 | f (s) ≥ x̂} ≤ t.

Let s∗ := inf {Mt,x̂} be the infimum. Since f is right-continuous, we have that s∗ ∈
Mt,x̂, and, therefore f (s∗) ≥ x̂. Combining both assumptions yields

f (s∗) ≥ x̂ > f (t).

Since f is non-decreasing, this implies that s∗ > t. Hence, with x̂, the condition for
membership in Mt cannot be satisfied, and we have that x̂ /∈ Mt.

D.3 UPP properties of pseudoinverses
Lemma 10.3 (Sufficient Cut for Lower Pseudoinverse). Let f be a function of U that is
non-decreasing and neither UC nor UI. Then, in order to compute f−1

↓ (x) with x ∈ I′ :=

[0, x′[, where x′ ≥ 0, it is sufficient to use f (t) with t ∈ [0, t′], where t′ := f−1
↓ (x′).

Proof. By definition of

t′ = f−1
↓ (x′) = inf

{
t ≥ 0 | f (t) ≥ x′

}
,

we can restrict the interval of the upper pseudoinverse as

f−1
↓ (x′) = inf

{
t ≥ 0 | f (t) ≥ x′

}
= inf

{
0 ≤ t ≤ t′ | f (t) ≥ x′

}
.

Since f−1
↓ is non-decreasing, f−1

↓ (0) ≤ f−1
↓ (x) ≤ f−1

↓ (x′), so the restriction above
can be applied for all x ∈ I′. Thus, it is sufficient to use only the values of f within
interval [0, t′].

Lemma 10.5 (Sufficient Cut for Upper Pseudoinverse). Let f be a function of U that is
non-decreasing and neither UC nor UI. Then, in order to compute f−1

↑ (x) with x ∈ I′ :=

[0, x′[, where x′ ≥ 0, it is sufficient to use f (t) with t ∈ [0, t′], where t′ := f−1
↑ (x′).

D.4 Calculation of lower and upper pseudoinverses 227

Proof. By definition of

t′ = f−1
↑ (x′) = sup

{
t ≥ 0 | f (t) ≤ x′

}
,

we can restrict the interval of the upper pseudoinverse as

f−1
↑ (x′) = sup

{
t ≥ 0 | f (t) ≤ x′

}
= sup

{
0 ≤ t ≤ t′ | f (t) ≤ x′

}
.

Since f−1
↑ is non-decreasing, f−1

↑ (0) ≤ f−1
↑ (x) ≤ f−1

↑ (x′), so the restriction above
can be applied for all x ∈ I′. Thus, it is sufficient to use only the values of f within
interval [0, t′].

D.4 Calculation of lower and upper pseudoinverses
We report here the rigorous mathematical derivations for cases c1-c8 in Table 10.1.

Point after segment (cases c1-c4)
In these cases we have, in general, an f such that

f (x) =

b1 + ρ (x− t1) , if t1 < x < t2,

b2, if x → t−2 ,

b3, if x = t2.

Since f is non-decreasing, b1 + ρ (x− t1) ≤ b2 ≤ b3 for all x ∈]t1, t2[.
We then distinguish four cases based on two properties:

• Whether the segment is constant, i.e., ρ = 0→ b1 = b2;

• Whether there is a discontinuity at t2, i.e., b2 < b3.

Case c1: ρ = 0 and b1 = b2 < b3 (constant segment followed by a discontinuity).
It holds that

f−1
↓ (y) =

inf {x | f (x) ≥ y} = t2, if b1 < y < f (t2) = b2,

inf

x | f (x) ≥ y︸︷︷︸
=b2

 = t2, if y = f (t2) = b2,
(D.1)

228 Pseudoinverses

and

f−1
↑ (y) =

sup

x | f (x) ≤
=b1︷︸︸︷
y

 = t2, if y = b1 = f (t+1),

sup {x | f (x) ≤ y} = t2, if b1 = f (t+1) < y < f (t2),

inf

x | f (x)︸︷︷︸
=b2

> y

 = sup {x | f (x) ≤ y} = t2, if y = f (t2) = b2.

(D.2)

Case c2: ρ = 0 and b1 = b2 = b3 (constant segment without any discontinuity).
It holds that

f−1
↓ (y) = inf

x |
=b1︷︸︸︷
f (x) ≥ y

 = t1, if y = b1. (D.3)

However, we do not add a value as it is processed in the “segment after point” sec-
tion. Moreover,

f−1
↑ (y) := sup

x | f (x)︸︷︷︸
=b1

≤ y

 = t2, if y = b1. (D.4)

Case c3: ρ > 0 and b2 < b3 (non-constant segment followed by a discontinuity).

f−1
↓ (y) =

inf {x | f (x) ≥ y} = t2, if y = b1 + r (t2 − t1) = f (t−2),

inf {x | f (x) ≥ y} = t2, if f (t−2) < y < f (t2) = b3,

inf

x | f (x) ≥ y︸︷︷︸
=b3

 = t2, y = f (t2) = b3,

(D.5)

and

f−1
↑ (y) =

inf {x | f (x) > y} = t2, if y = b1 + r (t2 − t1) = f (t−2),

inf {x | f (x) > y} = t2, if f (t−2) < y < f (t2) = b3,

inf

x | f (x) > y︸︷︷︸
=b3

 = t2, y = f (t2) = b3.

(D.6)

D.4 Calculation of lower and upper pseudoinverses 229

Case c4: ρ > 0 and b2 = b3 (non-constant segment without any discontinuity).

f−1
↓ (y) = inf

x | f (x) ≥ y︸︷︷︸
=b2

 = t2, y = f (t2) = b2, (D.7)

and

f−1
↑ (y) = inf

x | f (x) > y︸︷︷︸
=b2

 = t2, y = f (t2) = b2. (D.8)

Segment after point (cases 5-8)
In these cases we have, in general, an f such that

f (x) =

b1, x = t1,

b2, x → t+1 ,

b2 + ρ (x− t1) , t1 < x < t2.

We then distinguish four cases based on two properties:

• Whether the segment is constant, i.e., ρ = 0→ b2 = b3;

• Whether there is a discontinuity at t1, i.e., b1 6= b2.

Case c5: b1 < b2 = b3 and ρ = 0 (discontinuity followed by a constant segment).
It holds that

f−1
↓ (y) =

inf {x | f (x) ≥ y} = sup {x | f (x) < y} = t1, if b1 < y < f (t+1) = b2,

inf

x | f (x) ≥ y︸︷︷︸
=b2

 = t1, if y = f (t+1) = b2,

(D.9)
and

f−1
↑ (y) =

inf {x | f (x) > y} = sup {x | f (x) ≤ y} = t1, if b1 < y < f (t+1) = b2,

inf {x | f (x) > y} = sup

x | f (x) ≤ y︸︷︷︸
=b2

 = t2, if y = f (t+1) = b2.

(D.10)

230 Pseudoinverses

Case c6: b1 = b2 = b3 and ρ = 0 (no discontinuity and a constant segment).
Then it holds that

f−1
↓ (y) = inf

x |
=b1︷︸︸︷
f (x) ≥ y

 = t1, if y = b1. (D.11)

However, we do not add a value as it is processed in the “point after segment” sec-
tion. Moreover,

f−1
↑ (y) := sup

x | f (x)︸︷︷︸
=b1

≤ y

 = t2, if y = b1. (D.12)

Case c7: b1 < b2 and ρ > 0 (discontinuity followed by a non-constant segment).
We have

f−1
↓ (y) =

inf {x | f (x) ≥ y} = t1, if b1 < y < f (t−1) = b2,

inf

x | f (x) ≥ y︸︷︷︸
=b2

 = t1, if y = f (t−1) = b2,

inf {x | b2 + ρ (x− t1) ≥ y} = t1 +
y−b2

ρ , if b2 < y < b3,
(D.13)

and

f−1
↑ (y) =

inf {x | f (x) > y} = t1, if b1 < y < b2,

inf {x | f (x) > y} = sup

x | f (x) ≤ y︸︷︷︸
=b2

 = t1, if y = b2,

inf {x | b2 + ρ (x− t1) > y} = t1 +
y−b2

ρ , if b2 < y < b3.
(D.14)

Case c8: b1 = b2 and ρ > 0 (no discontinuity and non-constant segment). We
have

f−1
↓ (y) = inf {x | b1 + ρ (x− t1) ≥ y} = t1 +

y− b1

ρ
,

if b1 = f (t+1) < y < f (t−2) = b2,
(D.15)

and

f−1
↑ (y) = inf {x | b1 + ρ (x− t1) > y} = t1 +

y− b1

ρ
,

if b1 = f (t+1) < y < f (t−2) = b2.
(D.16)

Appendix E

Composition

E.1 UPP properties of composition
Proposition 11.3. Let f and g be two functions ∈ U that are not UI, with g being non-
negative, non-decreasing, UA, with ρg > 0 (hence not UC). Then, their composition h :=
f ◦ g is again a function ∈ U with

Th = max
(

g−1
↓ (Tf), Tg

)
,

dh =
d f

ρg
, (11.5)

ch = c f . (11.6)

Proof. Due to Theorem 11.1, h ∈ U . Then, let kh ∈ N be arbitrary but fixed. Since g
is assumed to be UA, it holds for all t ≥ Th that

h(t + kh · dh) = f (g(t + kh · dh))

(3.2)
= f

(
g(Th) + ρg · (t + kh · dh − Th)

)
= f

(
ρg · t + g(Th)− ρg · Th + kh · d f

)
(3.1)
= f

(
ρg · t + g(Th)− ρg · Th

)
+ kh · c f

= f
(

g(Th) + ρg · (t− Th)
)
+ kh · c f

(3.2)
= f (g(t)) + kh · c f

= h(t) + kh · ch.

231

232 Composition

Proposition 11.4. Let f ∈ U be UA and g ∈ U be non-negative, non-decreasing and not
UI. Then, their composition h := f ◦ g is again ∈ U with

Th = max
(

g−1
↓ (Tf), Tg

)
,

dh = dg, (11.8)
ch = cg · ρ f . (11.9)

Proof. Due to Theorem 11.1, h ∈ U . Then, let kh ∈ N be arbitrary but fixed. Since f
is assumed to be UA, it holds for all t ≥ Th that

h(t + kh · dh) = f (g(t + kh · dh))

(3.1)
= f

(
g(t) + kh · cg

)
(3.2)
= f (g(Th)) + ρ f ·

(
g(t) + kh · cg − g(Th)

)
= f (g(Th)) + ρ f · (g(t)− g(Th)) + kh · cg · ρ f

(3.2)
= f (g(t)) + kh · cg · ρ f

= h(t) + kh · ch.

Proposition 11.5. Let f ∈ U and g ∈ U be UA functions with g being non-negative,
non-decreasing and not UI. Then, their composition h := f ◦ g is again UA with

Ta
h = max

(
g−1
↓ (Ta

f), Ta
g

)
,

ρh = ρ f · ρg. (11.11)

Proof. Due to Theorem 11.1, h ∈ U . If f is UI, the result is trivial. Let us assume that
f is not UI. Define Ta

h := max
(

g−1
↓ (Ta

f), Ta
g

)
. Then we have that, for any t ≥ Ta

h ,

h(t + Ta
h) = f (g(t + Ta

h))

(3.2)
= f

(
g(Ta

h) + ρg · (t− Ta
h)
)

(3.2)
= f (g(Ta

h)) + ρ f ·
((

g(Ta
h) + ρg · (t− Ta

h)
)
− g(Ta

h)
)

= f (g(Ta
h)) + ρ f · ρg · (t− Ta

h)

= h(Ta
h) + ρ f · ρg · (t− Ta

h).

E.2 Composition of Ultimately Constant (UC) functions 233

E.2 Composition of Ultimately Constant (UC)
functions

Proposition E.1. Let f and g be two functions ∈ U that are not UI, with g being non-
negative, non-decreasing and UC. Then, their composition h := f ◦ g is again UC with

Th = Tg. (E.1)

Proof. For t ≥ Tg, it holds that

h(t) = f (g(t)) = f (g(Tg)) = h(Th).

Proposition E.2. Let f be UC and g be a function ∈ U that is non-negative and non-
decreasing. Then, their composition h := f ◦ g is again UC with

Th = g−1
↓ (Tf). (E.2)

Proof. For t ≥ g−1
↓ (Tf), it holds that

h(t) = f (g(t)) = f (Tf) = h(Th).

PropositionE.3. Let f and g beUC functions, with g being non-negative and non-decreasing.
Then, their composition h := f ◦ g is again UC with

Th = min
(

Tf , g−1
↓ (Tf)

)
. (E.3)

Proof. The proof is simply a combination of the previous two propositions.

Appendix F

Algorithmic Improvements through
Isomorphism

F.1 Isomorphism of convolution for functions of U
Theorem 4.16 (Isomorphism of Convolution For Left-Continuous Functions). Let f
and g be functions of U that are left-continuous and non-decreasing. Then,

(f ⊗ g)−1
↑ =

(
f−1
↑

)
⊗
(

g−1
↑

)
. (4.12)

Proof. The proof follows mostly along the lines of [Lie17, Theorem 10.3b]. The cru-
cial difference is that functions of U have 0 as a boundary, while functions in [Lie17]
are defined over all real numbers (see Section 4.3).

First, we consider the case x < f (0) + g(0). We calculate

f ⊗ g(0) = f (0) + g(0) > x.

Therefore, by the definition of the upper pseudoinverse, we know for all x < f (0) +
g(0) that

(f ⊗ g)−1
↑ (x) = sup {t ≥ 0 | f ⊗ g(t) ≤ x} = −∞.

Similarly, we obtain (
f−1
↑ ⊗ g−1

↑

)
(y) = −∞

for all y < f (0) + g(0). In fact, for any y = v + (y− v), 0 ≤ v ≤ y, either v < f (0),
thus f−1

↑ (v) = sup {t ≥ 0 | f (t) ≤ v} = −∞, or y − v < g(0), thus g−1
↑ (y − v) =

sup {t ≥ 0 | g(t) ≤ y− v} = −∞.
Now, let x ≥ f (0) + g(0). In this case, x is in the interval [f (0) + g(0),+∞[,

hence we can follow the exact same steps of [Lie17, Theorem 10.3b, p. 69] to obtain

(f ⊗ g)−1
↑ =

(
f−1
↑

)
⊗
(

g−1
↑

)
.

235

236 Algorithmic Improvements through Isomorphism

Theorem 4.18 (Isomorphism of Convolution For Right-Continuous Functions). Let
f and g be functions of U that are right-continuous and non-decreasing. Then,

(f ⊗ g)−1
↓ =

(
f−1
↓

)
⊗
(

g−1
↓

)
. (4.14)

Proof. The proof follows mostly along the lines of Theorem 4.16, once adapted for
(max,+) algebra. Again, the crucial difference is that functions of U have 0 as a
boundary, while functions in [Lie17] are defined over all real numbers (see Sec-
tion 4.3).

First, we consider the case x ≤ f (0) + g(0). We calculate

(f ⊗ g) (0) = f (0) + g(0) ≥ x.

Therefore, by the definition of the lower pseudoinverse, we know for all x ≤ f (0) +
g(0) that

(f ⊗ g)−1
↓ (x) = inf {t ≥ 0 | f (t) ≥ x} = 0.

Similarly, we obtain (
f−1
↓ ⊗ g−1

↓

)
(y) = 0

for all y ≤ f (0) + g(0), since we know that f−1
↓ (y) = inf {t ≥ 0 | f (t) ≥ y} = 0 for

y ≤ f (0) and g−1
↑ (y) = inf {t ≥ 0 | g(t) ≥ y} = 0 for y ≤ g(0), respectively.

Now, let x > f (0) + g(0). In this case, x is an interior point in the interval
[f (0) + g(0),+∞[, hencewe can follow the exact same steps of [Lie17, Theorem10.4b,
p. 69]1 to obtain

(f ⊗ g)−1
↓ =

(
f−1
↓

)
⊗
(

g−1
↓

)
.

F.2 Isomorphism of convolution for restricted
functions

Lemma 14.11 (Improved period start for Lower Pseudoinverse over Interval). Let
f ∈ U be neither UC nor UI, right-continuous, and non-decreasing over the interval I =

[a,+∞[, where a ≤ Tf . Let

T∗f := f−1
↓,I (f (Tf))

= inf
{

t ≥ a | f (t) ≥ f (Tf)
}

= inf
{

t ≥ a | f (t) = f (Tf)
}

,

(14.15)

1Note that [Lie17] does not provide an explicit proof for Theorem 10.4, as it requires only minor
changes from that of Theorem 10.3.

F.2 Isomorphism of convolution for restricted functions 237

and
T∗∗f := f−1

↓,I (f (T∗1 + d f))

= inf
{

t ≥ a | f (t) = f (T∗1 + d f)
}

.
(14.16)

Then, if f is UPP from T∗f and if T∗∗f = T∗f + d f , the pseudo-periodic start Tf−1
↑

in Equa-
tion (14.9) can be improved into

Tf−1
↓,I

= f (Tf). (14.17)

Proof. Since f is right-continuous over I, it follows that f (T∗f) = f (Tf) and f (T∗∗f) =

f (T∗f + d f).

Let t1 ∈
[

T∗f , T∗f + d f

[
and x := f (t1). Moreover, we define

t0 := f−1
↓,I (x) = inf {t ≥ a | f (t) ≥ x} = inf {t ≥ a | f (t) ≥ f (t1)} .

Bydefinition of T∗f , T∗f ≤ t0 ≤ t1. Moreover, from T∗∗f = inf
{

t ≥ a | f (t) = f (T∗f + d f)
}
=

T∗f + d f it follows that f (τ) < f (T∗f + d f) for any τ < T∗1 + d f , and subsequently, it
holds that f (t0) < f (T∗f + d f) ≤ f (t0 + d f). Therefore,

f−1
↓,I

(
x + d f−1

↓,I

)
= inf

{
t ≥ a | f (t) ≥ x + d f−1

↓,I

}
(14.10)
= inf

{
t ≥ a | f (t) ≥ x + c f

}
= inf

{
t ≥ a | f (t) ≥ f (t1) + c f

}
= inf

{
t ≥ a | f (t) ≥ f (t0) + c f

}
= inf

{
t ≥ a | f (t) ≥ f (t0 + d f)

}
= t0 + d f

(14.11)
= f−1

↓,I (x) + c f−1
↓,I

,

where we used that a ≤ T∗f ≤ t0 + d f on the second-to-last line.
Then, for any k ∈N, since x + k · c f is again≥ f (T∗f), it follows by induction that

f−1
↓,I
(
x + k · c f

)
= f−1

↓,I
(
x + c f

)
+ k · d f ,

thus satisfying the UPP property (Equation (3.1)).
This concludes the proof.

Lemma 14.13. Let f ∈ U be neither UC nor UI, left-continuous, and non-decreasing over
the interval I = [a,+∞[, where a ≤ Tf . Moreover, let f−1

↑,I be its upper pseudoinverse
over I. Then, f−1

↑,I satisfies the conditions of Lemma 14.11. Thus, its lower pseudoinverse(
f−1
↑,I

)−1

↓,[f (a),+∞[
is UPP from f−1

↑,I (Tf−1
↑,I
) = Tf .

238 Algorithmic Improvements through Isomorphism

Proof. By Theorem 14.10, f−1
↑,I is UPP from f (Tf). What is left to show, is that T∗

f−1
↑,I

=

f (Tf) as well as T∗∗
f−1
↑,I

= T∗
f−1
↑,I

+ d f−1
↑,I
. As discussed in Chapter 10, a constant segment

in f−1
↑,I corresponds to a jump, i.e., a discontinuity, in f . In the following, we show

that, due to left-continuity, there are no jumps in f such that f−1
↑,I may have constant

segments that would cause T∗∗f < T∗
f−1
↑,I

+ d f−1
↑,I

which would lead to a contradiction.
In particular this holds at Tf and Tf + d f .

If Tf = a, then

T∗f−1
↑,I

(14.15)
= inf

{
y ≥ f (a) | f−1

↑,I (y) = f−1
↑,I (f (a))

}
= f (a) = f (Tf). (F.1)

Now, let τ > a, and let x := f (τ). Assume there exists x∗ < x such that f−1
↑,I is

constant in [x∗, x]. Therefore,

sup {t ≥ a | f (t) ≤ x} = f−1
↑,I (x)

= f−1
↑,I (x∗)

= sup {t ≥ a | f (t) ≤ x∗} .

In order to find the supremum t such that f (t) ≤ x, it is sufficient to consider only
t such that f (t) ≤ x∗; or, in other words, the function f jumps between x∗ and
x = f (τ), which is a contradiction to f being left-continuous in τ. Indeed, for
ε ∈]0, x− x∗[, there exists no δ > 0 such that τ − δ < t < τ implies | f (t)− f (τ)| =
| f (t)− x| < ε. Therefore, for above-mentioned x = f (τ), f−1

↑,I will not have a con-
stant segment on]x− ε, x] for any ε > 0.

Since this was true for all τ > a, in particular, it is true for Tf > a and Tf + d f ,
implying that

T∗f−1
↑,I

(14.15)
= inf

{
y ≥ f (a) | f−1

↑,I (y) = f−1
↑,I (f (Tf))

}
= f (Tf)

and

T∗∗f−1
↑,I

(14.16)
= inf

{
y ≥ f (a) | f−1

↑,I (y) = f−1
↑,I

(
T∗f−1
↑,I

+ d f−1
↑,I

)}
= T∗f−1

↑,I
+ d f−1

↑,I
.

Combining this with Equation (F.1) finishes the proof.

Lemma 14.14 (Sufficient Cut for Lower Pseudoinverse over Interval). Let f ∈ U be
neither UC nor UI, and is right-continuous and non-decreasing over I = [a,+∞[. Then,
in order to compute f−1

↓,I (x) with x ∈ [x1, x2] ⊂ [f (a),+∞[and x1 < x2, it is sufficient to
use f (t) with t ∈ [t1, t2], where t1 := f−1

↓,I (x1) and t2 := f−1
↓,I (x2).

F.2 Isomorphism of convolution for restricted functions 239

Proof. Let x ∈ [x1, x2] ⊂ [f (a),+∞[with x1 < x2. Since f−1
↓,I is non-decreasing,

f−1
↓,I (x1) ≤ f−1

↓,I (x) ≤ f−1
↓,I (x2). Thus, we can focus on the boundaries. We obtain By

definition of
t1 = f−1

↓,I (x1) = inf {t ≥ a | f (t) ≥ x1} ,

it follows that f (t1) ≥ x1 (by right-continuity of f) and f (t1 − ε) < x1 for any ε ≥ 0
such that t1 − ε ≥ a. Thus,

f−1
↓,I (x1) = inf {t ≥ a | f (t) ≥ x1}

= inf {t ≥ t1 | f (t) ≥ x1}
= f−1

↓,[t1,+∞[
(x1).

Moreover, by definition of

t2 = f−1
↓,I (x2) = inf {t ≥ a | f (t) ≥ x2} ,

we can restrict the interval of the upper pseudoinverse as

f−1
↓,I (x2) = inf {t ≥ a | f (t) ≥ x2}

= inf {a ≤ t ≤ t2 | f (t) ≥ x2}
= f−1

↓,[a,t2]
(x2),

where we used the right-continuity of f in the second line. Combining the two
results, for any x ∈ [x1, x2] we obtain

f−1
↓,I (x) = inf {t ≥ a | f (t) ≥ x}

= inf {t1 ≤ t ≤ t2 | f (t) ≥ x}
= f−1

↓,[t1,t2]
(x)

Thus only the values of f within said interval are required.

Lemma 14.15 (Sufficient Cut for Upper Pseudoinverse over Interval). Let f ∈ U be
neither UC nor UI, and is left-continuous and non-decreasing over I = [a,+∞[. Then, in
order to compute f−1

↑,I (x) and x ∈ [x1, x2] ⊂ [f (a),+∞[with x1 < x2, it is sufficient to
use f (t) with t ∈ [t1, t2], where t1 := f−1

↑,I (x1) and t2 := f−1
↑,I (x2).

Proof. Let x ∈ [x1, x2] ⊂ [f (a),+∞[with x1 < x2. Since f−1
↑,I is non-decreasing,

f−1
↑,I (x1) ≤ f−1

↑,I (x) ≤ f−1
↑,I (x2). Thus, we can focus on the boundaries. By definition

of
t1 := f−1

↑,I (x1) = sup {t ≥ a | f (t) ≤ x1} ,

240 Algorithmic Improvements through Isomorphism

it follows that f (t1) ≤ x1 (by left-continuity of f) and f (t1 + ε) > x1 for any ε > 0.
Thus,

f−1
↑,I (x1) = sup {t ≥ a | f (t) ≤ x1}

= sup {t ≥ t1 | f (t) ≤ x1}
= f−1

↑,[t1,+∞[
(x1).

Moreover, by definition of

t2 := f−1
↑,I (x2) = sup {t ≥ a | f (t) ≤ x2} ,

we can restrict the interval of the upper pseudoinverse as

f−1
↑,I (x2) = sup {t ≥ a | f (t) ≤ x2}

= sup {a ≤ t ≤ t2 | f (t) ≤ x2}
= f−1

↑,[a,t2]
(x2),

wherewe used the left-continuity of f in the second line. Combining the two results,
for any x ∈ [x1, x2] we obtain

f−1
↑,I (x) = sup {t ≥ a | f (t) ≤ x}

= sup {t1 ≤ t ≤ t2 | f (t) ≤ x}
= f−1

↑,[t1,t2]
(x)

Thus, only the values of f within said interval are required.

F.2.1 Isomorphism of restricted (min,+) convolution
Lemma 14.16. Let f ∈ U be non-decreasing over I = [a,+∞[⊂ Q+. Let x ∈ I. If
f (x) ≤ y, then f−1

↑,I (y) ≥ x.

Proof. The proof follows mostly along the lines of [Lie17, p. 62]. Since x ∈ I and
f (x) ≤ y, applying f−1

↑,I to f (x) ≤ y preserves the inequality (we are in the supre-
mum case of Equation (14.6)) and thus it follows that

f−1
↑,I (f (x)) ≤ f−1

↑,I (y).

Moreover, since x ∈ I, it holds that

f−1
↑,I (f (x)) = sup {z ∈ I | f (z) ≤ f (x)}

≥ x.

This finishes the proof.

F.2 Isomorphism of convolution for restricted functions 241

Proposition 14.17. Let f ∧p , g∧p ∈ U be left-continuous and non-decreasing, respectively,
over

[
Tf ,+∞

[
and

[
Tg,+∞

[
. Then, for any t ∈

[
Tf + Tg,+∞

[
it exists s∗ ∈ [Tf , t− Tg]

such that

(f ∧p ⊗ g∧p)(t) = inf
0≤s≤t

{
f ∧p (s) + g∧p (t− s)

}
= inf

Tf≤s≤t−Tg

{
f ∧p (s) + g∧p (t− s)

}
= f ∧p (s

∗) + g∧p (t− s∗).

In other words, the infimum is attainable.

Proof. The proof follows along the lines of [BBL18, pp. 48].
First, we justify the first equivalence, i.e.,

inf
0≤s≤t

{
f ∧p (s) + g∧p (t− s)

}
= inf

Tf≤s≤t−Tg

{
f ∧p (s) + g∧p (t− s)

}
If s < Tf , then f ∧p (s) = +∞, and similarly if s > t − Tg, then t − s < Tg and
g∧p (t− s) = +∞. Thus both cases can be excluded from the infimum.

Fix t ≥ Tf + Tg and define Ft(s) := f ∧p (s) + g∧p (t− s). Let (sn)n∈N be a sequence
such that Ft(sn) is decreasing and converges to

inf
Tf≤s≤t−Tg

{
f ∧p (s) + g∧p (t− s)

}
. (F.2)

Note that (F.2) is in Q, as it is true for (min,+) convolution of two piecewise affine
functions in general [BT08, Proposition 7]. As for all n, it holds that sn ∈

[
Tf , t− Tg

]
.

In other words, we have an infinite sequence on a closed and bounded interval.
Therefore, by the Bolzano-Weierstrass theorem for real sequences, there exists a sub-
sequence un that converges to ū ∈

[
Tf , t− Tg

]
⊂ R+. Moreover, by the Lemma C.1,

this limit ū ∈ Q+. By the Monotone Subsequence Theorem, there exists a mono-
tonic subsequence (vn)n∈N (of this subsequence un) with the same limit ū. Without
loss of generality, this sequence is increasing (if this sequence is decreasing, we can
exchange the role of f ∧p and g∧p and replace vn with t− vn). As f ∧p is left-continuous
over

[
Tf ,+∞

[
, limn→∞ f ∧p (vn) = f ∧p (v̄), and, as g∧p is non-decreasing over

[
Tg,+∞

[
,

limn→∞ g∧p (t− vn) ≥ g∧p (t− v̄). Therefore,

lim
n→∞

Ft(vn) = lim
n→∞

f ∧p (vn) + g∧p (t− vn) ≥ f ∧p (ū) + g∧p (t− ū) = F(ū).

Thus, Ft reaches its minimum on [Tf , t− Tg] ⊆ [0, t].

Theorem 14.18. Let f ∧p , g∧p ∈ U be left-continuous and non-decreasing, respectively, over[
Tf ,+∞

[
and

[
Tg,+∞

[
. Then(
f ∧p ⊗ g∧p

)−1

↑,
[

Tf +Tg,+∞
[= (f−1

↑,p ⊗ g−1
↑,p

)
. (14.18)

242 Algorithmic Improvements through Isomorphism

Proof. The proof follows mostly along the lines of [Lie17, Theorem 10.3, p. 69].
First, we consider the case x < f (Tf) + g(Tg). We calculate(

f ∧p ⊗ g∧p
)
(Tf + Tg) = f (Tf) + g(Tg) > x,

where we used for the equality that f ∧p (t) = +∞ for t < Tf and g∧p (t) = +∞ for
t < Tg. Therefore, by the definition of the upper pseudoinverse over an interval, we
know for all x < f (Tf) + g(Tg) that(

f ∧p ⊗ g∧p
)−1

↑,
[

Tf +Tg,+∞
[(x) = −∞.

Similarly, we obtain (
f−1
↑,p ⊗ g−1

↑,p

)
(y) = −∞

for all y < f (Tf) + g(Tg), since we know that f−1
↑,p (y) = −∞ for y < f (Tf) and

g−1
↑,p(y) = −∞ for y < g(Tg), respectively.
Now, let x ≥ f (Tf) + g(Tg). First, we show that(

f ∧p ⊗ g∧p
)−1

↑,
[

Tf +Tg,+∞
[(x) ≤

(
f−1
↑,p ⊗ g−1

↑,p

)
(x).

Define
s∗t := arg inf

Tf≤s≤t−Tg

{ f ∧p (s) + g∧p (t− s)}

and y∗t := f ∧p (s∗t). Note that, by Proposition 14.17, s∗t exists and is in [Tf , t − Tg]

since f ∧p and g∧p are left-continuous over
[
Tf ,+∞

[
and

[
Tg,+∞

[
, respectively. We

continue with(
f ∧p ⊗ g∧p

)−1

↑,
[

Tf +Tg,+∞
[(x)

= sup
{

t ∈
[
Tf + Tg,+∞

[
|
(

f ∧p ⊗ g∧p
)
(t) ≤ x

}
= sup

{
t ∈

[
Tf + Tg,+∞

[
| inf

0≤s≤t

{
f ∧p (s) + g∧p (t− s)

}
≤ x

}
= sup

{
t ∈

[
Tf + Tg,+∞

[
| inf

Tf≤s≤t−Tg

{
f ∧p (s) + g∧p (t− s)

}
≤ x

}

= sup

t ∈
[
Tf + Tg,+∞

[
| f ∧p (s

∗
t)︸ ︷︷ ︸

=y∗t

+g∧p (t− s∗t) ≤ x

F.2 Isomorphism of convolution for restricted functions 243

= sup
{

t ∈
[
Tf + Tg,+∞

[
| f ∧p (s

∗
t) ≤ y∗t and g∧p (t− s∗t) ≤ x− y∗t

}
(Lemma 14.16)

≤ sup
{

t ∈
[
Tf + Tg,+∞

[
| f−1
↑,p (y

∗
t) ≥ s∗t and g−1

↑,p(x− y∗t) ≥ t− s∗t
}

≤ sup
{

t ∈
[
Tf + Tg,+∞

[
| f−1
↑,p (y

∗
t) + g−1

↑,p(x− y∗t) ≥ t
}

≤ sup

{
t ∈

[
Tf + Tg,+∞

[
| sup

0≤z≤x

{
f−1
↑,p (z) + g−1

↑,p(x− z)
}
≥ t

}
= sup

{
t ∈

[
Tf + Tg,+∞

[
|
(

f−1
↑,p ⊗ g−1

↑,p

)
(x) ≥ t

}
≤
(

f−1
↑,p ⊗ g−1

↑,p

)
(x)

where we used again that
(

f−1
↑,p ⊗ g−1

↑,p

)
(x) ≥ Tf + Tg for all x ≥ f (Tf) + g(Tg).

Moreover, we used that(
f−1
↑,p (y

∗
t) ≥ s∗t and g−1

↑,p(x− y∗t) ≥ t− s∗t
)
⇒ g−1

↑,p(x− y∗t) + f−1
↑,p (y

∗
t) ≥ t

when replacing the “and” by the sum. For more details about this step, see Ap-
pendix G.3.

For the reverse direction, we derive(
f−1
↑,p ⊗ g−1

↑,p

)
(x)

= sup
0≤z≤x

{
f−1
↑,p (z) + g−1

↑,p(z− x)
}

= sup
f (Tf)≤z≤x−g(Tg)

{
f−1
↑,p (z) + g−1

↑,p(z− x)
}

= sup
f (Tf)≤z≤x−g(Tg)

{
sup

{
τ ∈

[
Tf ,+∞

[
| f (τ) ≤ z

}
+ sup

{
s ∈

[
Tg,+∞

[
| g(s) ≤ x− z

}}
= sup

f (Tf)≤z≤x−g(Tg)

{
sup

{
τ ∈

[
Tf ,+∞

[
| f ∧p (τ) ≤ z

}
+ sup

{
s ∈

[
Tg,+∞

[
| g∧p (s) ≤ x− z

}}
= sup

f (Tf)≤z≤x−g(Tg)

{
sup

{
t ∈

[
Tf + Tg,+∞

[
| t = τ + s and f ∧p (τ) ≤ z and g∧p (s) ≤ x− z

}}
≤ sup

f (Tf)≤z≤x−g(Tg)

{
sup

{
t ∈

[
Tf + Tg,+∞

[
| t = τ + s and f ∧p (τ) + g∧p (s) ≤ x

}}
= sup

f (Tf)≤z≤x−g(Tg)

{
sup

{
t ∈

[
Tf + Tg,+∞

[
| inf

0≤τ≤t

{
f ∧p (τ) + g∧p (t− τ)

}
≤ x

}}
= sup

f (Tf)≤z≤x−g(Tg)

{
sup

{
t ∈

[
Tf + Tg,+∞

[
|
(

f ∧p ⊗ g∧p
)
(t) ≤ x

}}
= sup

{
t ∈

[
Tf + Tg,+∞

[
|
(

f ∧p ⊗ g∧p
)
(t) ≤ x

}

244 Algorithmic Improvements through Isomorphism

=
(

f ∧p ⊗ g∧p
)−1

↑,
[

Tf +Tg,+∞
[(x),

where, again, we used that
(

f ∧p ⊗ g∧p
)−1

↑,
[

Tf +Tg,+∞
[(x) ≥ Tf + Tg for x ≥ f (Tf) +

g(Tg). This finishes the proof.

Proposition 14.19. Let f ∈ U be left-continuous and non-decreasing on the interval I =

[a,+∞[. Let a′ := sup {t ≥ a | f (t) = f (a)} ≥ a. Then(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[
= f |∧[a′,+∞[.

Proof. We distinguish cases. First, let t < a′. We have that f−1
↑,[a,+∞[

(y) = −∞ for
y < f (a), and f−1

↑,[a,+∞[
(f (a)) = a′. Therefore, for t < a′,

(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[
(t)

(14.5)
= +∞,

where we used that t < a′ = f−1
↑,[a,+∞[

(f (a)). Note that this is true even for all
t ∈]a, a′[. On the other hand,

f |∧[a′,+∞[(t) = +∞.

Now, in the following, let t ≥ a′. We can follow along the steps of Lemma 4.12,
replacing 0 with a′. Inserting the definitions of lower and upper pseudoinverses
yields(

f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[
(t) = inf

{
x ≥ f (a) | f−1

↑,[a,+∞[
(x) ≥ t

}
= inf {x ≥ f (a) | sup {s ≥ a | f (s) ≤ x} ≥ t}
= inf

{
x ≥ f (a) | sup

{
s ≥ a′ | f (s) ≤ x

}
≥ t
}

,

where we used in the second line that t ≥ a′ ≥ a. We introduce notation for the two
sets appearing in the equation and define

Mt :=
{

x ≥ f (a) | sup
{

s ≥ a′ | f (s) ≤ x
}
≥ t
}

,

Mt,x :=
{

s ≥ a′ | f (s) ≤ x
}

.

Weprove the claim by showing that f (t) = inf {Mt}. Then, we show that f (t) ∈ Mt,
and that if x̂ < f (t), then x̂ /∈ Mt. This would finish the proof as f−1

↑,[a,+∞[
is right-

continuous and hence an infimum of the set Mt =
{

x ≥ f (a) | f−1
↑,[a,+∞[

(x) ≥ t
}

must also be an element of Mt.

F.2 Isomorphism of convolution for restricted functions 245

If x = f (t), the condition to be an element of Mt becomes

sup {Mt,x} = sup
{

Mt, f (t)

}
= sup

{
s ≥ a′ | f (s) ≤ f (t)

}
≥ t.

This supremum is either equal to t or equal to s∗ > t such that f (s∗) = f (t). In both
cases, the condition of the supremum to be greater than or equal to t is therefore
satisfied, and hence we conclude that f (t) ∈ Mt.

For an x̂ < f (t), the condition is equal to

sup {Mt,x̂} = sup
{

s ≥ a′ | f (s) ≤ x̂
}
≥ t.

Let s∗ := sup {Mt,x̂} be the supremum. Since f is left-continuous, we have that
s∗ ∈ Mt,x̂, and, therefore f (s∗) ≤ x̂. Combining both assumptions yields

f (s∗) ≤ x̂ < f (t).

Since f is non-decreasing, this implies that s∗ < t. Hence, with x̂, the condition for
membership in Mt cannot be satisfied, and we have that x̂ /∈ Mt.

Proposition 14.20. Let f ∈ U be left-continuous and non-decreasing on the interval I =

[a,+∞[. Let a′ := sup {t ≥ a | f (t) = f (a)} ≥ a. Then[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a
= f |∧[a,+∞[. (14.20)

Proof. Note that a′ ≥ a. We want to show that[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a
(t) = f |∧[a,+∞[(t)

for all t ∈ Q+.
For t ≥ a′, we have that[(

f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a
(t)

(14.19)
=

(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[
(t).

Together with t ≥ a′ ≥ a, by Proposition 14.19 it follows that[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a
(t) = f (t) = f |∧[a,+∞[(t).

Next, we consider t < a. Again, we have that[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a
(t)

(14.19)
=

(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[
(t)

246 Algorithmic Improvements through Isomorphism

and thus, we obtain[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a
(t) = +∞ = f |∧[a,+∞[(t).

The last remaining case is t ∈ [a, a′[. As a′ ≥ a, we have that[(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

]
a
(t)

(14.19)
=

(
f−1
↑,[a,+∞[

)−1

↓,[f (a),+∞[

(
a′
)

(14.5)
= inf

{
y ≥ f (a) | f−1

↑,[a,+∞[
(y) ≥ a′

}
= f (a),

where we used in the last line that f−1
↑,[a,+∞[

(f (a)) = a′. On the other hand, we have

f |∧[a,+∞[(t) = f (t).

If a′ = a, [a, a′[is just a single point and the claim follows immediately. If a′ > a,
the functions f is constant on [a, a′[and thus, f (t) = f (a). Combining all cases
concludes the proof.

F.2.2 Isomorphism of restricted (max,+) convolution
Lemma 14.23. Let f ∈ U be non-decreasing and I = [a,+∞[⊂ Q+. Let x ∈ I and
y ≥ f (a). If f (x) ≥ y, then f−1

↓,I (y) ≤ x.

Proof. The proof follows mostly along the lines of [Lie17, p. 62].
Since x ∈ I and y ≥ f (a), applying f−1

↓,I to f (x) ≥ y preserves the inequality (we
are in the infimum case of Equation (14.5)) and thus it follows that

f−1
↓,I (f (x)) ≥ f−1

↓,I (y).

Moreover, since x ∈ I, it holds that

f−1
↓,I (f (x)) = inf {z ∈ I | f (z) ≥ f (x)}

≤ x.

This finishes the proof.

Proposition 14.24. Let f and g be non-decreasing and right-continuous functions of U .
Then, for any t ∈

[
Tf + Tg,+∞

[
it exists s∗ ∈ [Tf , t− Tg] such that

(f ∨p ⊗ g∨p)(t) = sup
0≤s≤t

{
f ∨p (s) + g∨p (t− s)

}
= sup

Tf≤s≤t−Tg

{
f ∨p (s) + g∨p (t− s)

}
= f (s∗) + g(t− s∗)

In other words, the supremum is attainable.

F.2 Isomorphism of convolution for restricted functions 247

Proof. The proof follows along the lines of [BBL18, pp. 48], adapted to functions
restricted to the pseudo-periodic parts.

Fix t ≥ 0 and define Ft(s) := f ∨p (s) + g∨p (t− s). Let (sn)n∈N be a sequence such
that Ft(sn) is increasing and converges to

sup
0≤s≤t

{
f ∨p (s) + g∨p (t− s)

}
= sup

Tf≤s≤t−Tg

{ f (s) + g(t− s)} .

Similar to the (min,+) convolution [BT08, Proposition 7], one can show that the
limit, the (max,+) convolution supTf≤s≤t−Tg

{ f (s) + g(t− s)}, is inQ. As for all n, it
holds that sn ∈

[
Tf , t− Tg

]
. In other words, we have an infinite sequence on a closed

andbounded interval. Therefore, there exists a subsequence un that converges to ū ∈[
Tf , t− Tg

]
⊂ R+ (Bolzano-Weierstrass Theorem for real sequences). Moreover, by

the Lemma C.1, this limit ū ∈ Q+. By the Monotone Subsequence Theorem, there
exists a monotonic subsequence (vn)n∈N (of this subsequence un) with the same
limit ū. Without loss of generality, this sequence is decreasing (if this sequence is
increasing, we can exchange the role of f and g and replace vn with t− vn). As f is
right-continuous, limn→∞ f (vn) = f (v̄), and, as g is non-decreasing, limn→∞ g(t−
vn) ≤ g(t− v̄). Therefore,

lim
n→∞

Ft(vn) = lim
n→∞

f (vn) + g(t− vn) ≤ f (ū) + g(t− ū) = F(ū).

Thus, Ft reaches its maximum on [Tf , t− Tg] ⊆ [0, t].

Theorem 14.25. Let f and g be right-continuous, non-decreasing UPP functions. Then(
f ∨p ⊗ g∨p

)−1

↓,
[

Tf +Tg,+∞
[= (f−1

↓,p ⊗ g−1
↓,p

)
. (14.23)

Proof. The proof follows mostly along the lines of Theorem 14.18, once adapted for
(max,+) algebra.

First, we consider the case x < f (Tf) + g(Tg). We calculate(
f ∨p ⊗ g∨p

)
(Tf + Tg) = f (Tf) + g(Tg) > x,

where we used for the equality that f ∨p (t) = −∞ for t < Tf and g∨p (t) = −∞ for
t < Tg. Therefore, by the definition of the lower pseudoinverse over an interval, we
know for all x < f (Tf) + g(Tg) that(

f ∨p ⊗ g∨p
)−1

↓,
[

Tf +Tg,+∞
[(x)

(14.5)
= +∞.

Similarly, we obtain (
f−1
↓,p ⊗ g−1

↓,p

)
(y) = +∞

248 Algorithmic Improvements through Isomorphism

for all y < f (Tf) + g(Tg), since we know that f−1
↓,p (y) = +∞ for y < f (Tf) and

g−1
↑,p(y) = −∞ for y < g(Tg), respectively.
Now, let x ≥ f (Tf) + g(Tg). First, we show that(

f ∨p ⊗ g∨p
)−1

↓,
[

Tf +Tg,+∞
[≥ (f−1

↓,p ⊗ g−1
↓,p

)
(x).

Define
s∗t := arg sup

Tf≤s≤t−Tg

{ f ∨p (s) + g∨p (t− s)}

and y∗t := f ∨p (s∗t). Note that, by Proposition 14.24, s∗t exists and is in [Tf , t − Tg]

since f ∨p and g∨p are right-continuous over
[
Tf ,+∞

[
and

[
Tg,+∞

[
, respectively. We

continue with (
f ∨p ⊗ g∨p

)−1

↓,
[

Tf +Tg,+∞
[

= inf
{

t ∈
[
Tf + Tg,+∞

[
|
(

f ∨p ⊗ g∨p
)
(t) ≥ x

}
= inf

{
t ∈

[
Tf + Tg,+∞

[
| sup

0≤s≤t

{
f ∨p (s) + g∨p (t− s)

}
≥ x

}

= inf

{
t ∈

[
Tf + Tg,+∞

[
| sup

Tf≤s≤t−Tg

{
f ∨p (s) + g∨p (t− s)

}
≥ x

}

= inf

t ∈
[
Tf + Tg,+∞

[
| f ∨p (s

∗
t)︸ ︷︷ ︸

=y∗t

+g∨p (t− s∗t) ≥ x

= inf

{
t ∈

[
Tf + Tg,+∞

[
| f ∨p (s

∗
t) ≥ y∗t and g∨p (t− s∗t) ≥ x− y∗t

}
(Lemma 14.23)

≥ inf
{

t ∈
[
Tf + Tg,+∞

[
| f−1
↓,p (y

∗
t) ≤ s∗t and g−1

↓,p(x− y∗t) ≤ t− s∗t
}

≥ inf
{

t ∈
[
Tf + Tg,+∞

[
| f−1
↓,p (y

∗
t) + g−1

↓,p(x− y∗t) ≤ t
}

≥ inf
{

t ∈
[
Tf + Tg,+∞

[
| inf

0≤z≤x

{
f−1
↓,p (z) + g−1

↓,p(x− z)
}
≤ t
}

= inf
{

t ∈
[
Tf + Tg,+∞

[
|
(

f−1
↓,p ⊗ g−1

↓,p

)
(x) ≤ t

}
≥
(

f−1
↓,p ⊗ g−1

↓,p

)
(x)

where we used again that
(

f−1
↓,p ⊗ g−1

↓,p

)
(x) ≥ Tf + Tg for all x ≥ f (Tf) + g(Tg).

Moreover, we used that(
f−1
↓,p (y

∗
t) ≤ s∗t and g−1

↓,p(x− y∗t) ≤ t− s∗t
)
⇒ f−1

↓,p (y
∗
t) + g−1

↓,p(x− y∗t) ≤ t

F.2 Isomorphism of convolution for restricted functions 249

when replacing the “and” by the sum. For more details about this step, see Ap-
pendix G.3.

For the reverse direction, we derive(
f−1
↓,p ⊗ g−1

↓,p

)
(x)

= inf
0≤z≤x

{
f−1
↓,p (z) + g−1

↓,p(z− x)
}

= inf
f (Tf)≤z≤x−g(Tg)

{
f−1
↓,p (z) + g−1

↓,p(z− x)
}

= inf
f (Tf)≤z≤x−g(Tg)

{
inf
{

τ ∈
[
Tf ,+∞

[
| f (τ) ≥ z

}
+ inf

{
s ∈

[
Tg,+∞

[
| g(s) ≥ x− z

}}
= inf

f (Tf)≤z≤x−g(Tg)

{
inf
{

τ ∈
[
Tf ,+∞

[
| f ∨p (τ) ≥ z

}
+ inf

{
s ∈

[
Tg,+∞

[
| g∨p (s) ≥ x− z

}}
= inf

f (Tf)≤z≤x−g(Tg)

{
inf
{

t ∈
[
Tf + Tg,+∞

[
| t = τ + s and f ∨p (τ) ≥ z and g∨p (s) ≥ x− z

}}
≥ inf

f (Tf)≤z≤x−g(Tg)

{
inf
{

t ∈
[
Tf + Tg,+∞

[
| t = τ + s and f ∨p (τ) + g∨p (s) ≥ x

}}
= inf

f (Tf)≤z≤x−g(Tg)

{
inf

{
t ∈

[
Tf + Tg,+∞

[
| sup

0≤τ≤t

{
f ∨p (τ) + g∨p (t− τ)

}
≥ x

}}
= inf

f (Tf)≤z≤x−g(Tg)

{
inf
{

t ∈
[
Tf + Tg,+∞

[
|
(

f ∨p ⊗ g∨p
)
(t) ≥ x

}}
= inf

{
t ∈

[
Tf + Tg,+∞

[
|
(

f ∨p ⊗ g∨p
)
(t) ≥ x

}
=
(

f ∨p ⊗ g∨p
)−1

↓,
[

Tf +Tg,+∞
[(x),

where, again, we used that
(

f ∨p ⊗ g∨p
)−1

↓,
[

Tf +Tg,+∞
[(x) ≥ Tf + Tg for x ≥ f (Tf) +

g(Tg). This finishes the proof.

Proposition 14.26. Let f ∈ U be right-continuous and non-decreasing on the interval
I = [a,+∞[. Then (

f−1
↓,[a,+∞[

)−1

↑,[f (a),+∞[
= f |∨[a,+∞[. (14.24)

Proof. We distinguish cases. First, let t < a. We have that f−1
↓,[a,+∞[

(y) = +∞ for
y < f (a), and f−1

↓,[a,+∞[
(f (a)) = a. Therefore, for t < a,(

f−1
↓,[a,+∞[

)−1

↑,[f (a),+∞[
(t)

(14.6)
= −∞,

where we used that t < a = f−1
↓,[a,+∞[

(f (a)). On the other hand,

f |∨[a,+∞[(t) = −∞.

250 Algorithmic Improvements through Isomorphism

Now, in the following, let t ≥ a. We can follow along the lines of Lemma 4.13,
replace 0 with a. Inserting the definitions of lower and upper pseudoinverses yields(

f−1
↓,[a,+∞[

)−1

↑,[f (a),+∞[
(t) = sup

{
x ≥ f (a) | f−1

↓,[a,+∞[
(x) ≤ t

}
= sup {x ≥ f (a) | inf {s ≥ a | f (s) ≥ x} ≤ t} .

We introduce notation for the two sets appearing in the equation and define

Mt :=
{

x ≥ f (a) | inf
{

s ≥ a′ | f (s) ≥ x
}
≤ t
}

,

Mt,x :=
{

s ≥ a′ | f (s) ≥ x
}

.

We prove the claim by showing that f (t) = sup {Mt}. Then, we show that f (t) ∈
Mt, and that if x̂ > f (t), then x̂ /∈ Mt. This would finish the proof as f−1

↓,[a,+∞[
is left-

continuous and hence a supremum of the set Mt =
{

x ≥ f (a) | f−1
↓,[a,+∞[

(x) ≤ t
}

must also be an element of Mt.
If x = f (t), the condition to be an element of Mt becomes

inf {Mt,x} = inf
{

Mt, f (t)

}
= inf {s ≥ a | f (s) ≥ f (t)} ≤ t.

This infimum is either equal to t or equal to s∗ < t such that f (s∗) = f (t). In both
cases, the condition of the infimum to be less than or equal to t is therefore satisfied,
and hence we conclude that f (t) ∈ Mt.

For an x̂ > f (t), the condition is equal to

inf {Mt,x̂} = inf {s ≥ a | f (s) ≥ x̂} ≤ t.

Let s∗ := inf {Mt,x̂} be the infimum. Since f is right-continuous, we have that s∗ ∈
Mt,x̂, and, therefore f (s∗) ≥ x̂. Combining both assumptions yields

f (s∗) ≥ x̂ > f (t).

Since f is non-decreasing, this implies that s∗ > t. Hence, with x̂, the condition for
membership in Mt cannot be satisfied, and we have that x̂ /∈ Mt.

F.3 Exploiting the isomorphism to speed up the
(min,+) convolution

Theorem 14.29. Let f , g ∈ U be left-continuous and non-decreasing functions. Let

kc f :=
lcm

(
c f , cg

)
c f

, (14.27)

kcg :=
lcm

(
c f , cg

)
cg

. (14.28)

F.3 Exploiting the isomorphism to speed up the (min,+) convolution 251

Then, f ∧p ⊗ g∧p is again ∈ U with

T⊗pp = sup
{

t ≥ Tf + Tg | f ∧p ⊗ g∧p (t) ≤ f (Tf) + g(Tg) + lcm
(
c f , cg

)}
, (14.29)

d⊗pp = max

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
= max

(
kcg · dg, kc f · d f

)
, (14.30)

c⊗pp = lcm
(
c f , cg

)
. (14.31)

Proof. Using Proposition 14.20, we have that

f ∧p ⊗ g∧p
(14.20)
=

((f ∧p ⊗ g∧p
)−1

↑,
[

Tf +Tg,+∞
[
)−1

↓,
[

f (Tf)+g(Tg),+∞
[

(Tf +Tg)

(14.18)
=

[(
f−1
↑,p ⊗ g−1

↑,p

)−1

↓,
[

f (Tf)+g(Tg),+∞
[
]
(Tf +Tg)

,

where we used Theorem 14.18 in the second line. For the inner part (the (max,+)
convolution), we obtain for all x ≥ f (Tf)+ g(Tg)+ c′′⊗pp

= f (Tf)+ g(Tg)+ lcm
(
c f , cg

)
(Equation (14.4)) that

(
f−1
↑,p ⊗ g−1

↑,p

) (
x + c′′⊗pp

)
= sup

0≤u≤x+c′′⊗pp

{
f−1
↑,p (u) + g−1

↑,p(x + c′′⊗pp − u)
}

= sup
f (Tf)≤u≤x+c′′⊗pp−g(Tg)

{
f−1
↑,p (u) + g−1

↑,p(x + c′′⊗pp − u)
}

= sup
f (Tf)≤u≤x−g(Tg)

{
f−1
↑,p (u) + g−1

↑,p(x + c′′⊗pp − u)
}

∨ sup
x−g(Tg)≤u≤x+c′′⊗pp−g(Tg)

{
f−1
↑,p (u) + g−1

↑,p(x + c′′⊗pp − u)
}

(
x−g(Tg)≥ f (Tf)+c′′⊗pp

)
= sup

f (Tf)≤u≤x−g(Tg)

{
f−1
↑,p (u) + g−1

↑,p(x + c′′⊗pp − u)
}

∨ sup
f (Tf)+c′′⊗pp≤u≤x+c′′⊗pp−g(Tg)

{
f−1
↑,p (u) + g−1

↑,p(x + c′′⊗pp − u)
}

,

where we used the definition of the (max,+) convolution in the second line and the
fact that we only consider the periodic phase in the third line. In the last two lines,
we exploited that the supremum does not change since the intervals now overlap.

252 Algorithmic Improvements through Isomorphism

We continue by substituting v := x + c′′⊗pp
− u:(

f−1
↑,p ⊗ g−1

↑,p

) (
x + c′′⊗pp

)
(v:=x+c′′⊗pp−u)

= sup
f (Tf)≤u≤x−g(Tg)

 f−1
↑,p (u) + g−1

↑,p(x + lcm
(
c f , cg

)︸ ︷︷ ︸
=kcg cg

−u)

∨ sup

g(Tg)≤v≤x− f (Tf)

 f−1
↑,p (x + lcm

(
c f , cg

)︸ ︷︷ ︸
=kc f c f

−v) + g−1
↑,p(v)

(

x−u≥g(Tg),x−v≥ f (Tf)
)

= sup
f (Tf)≤u≤x−g(Tg)

{
f−1
↑,p (u) + g−1

↑,p(x− u)
}
+ kcg dg

∨ sup
g(Tg)≤v≤x− f (Tf)

{
f−1
↑,p (x− v) + g−1

↑,p(v)
}
+ kc f d f

=
(

f−1
↑,p ⊗ g−1

↑,p

)
(x) + max

(
kcg · dg, kc f · d f

)
=
(

f−1
↑,p ⊗ g−1

↑,p

)
(x) + max

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
,

where we used Theorem 10.4 in the fourth line. It follows then that

T⊗−1
p

= f (Tf) + g(Tg) + lcm
(
c f , cg

)
, (F.3)

d⊗−1
p

= c′′⊗pp = lcm
(
c f , cg

)
, (F.4)

c⊗−1
p

= max
(

kcg · dg, kc f · d f

)
. (F.5)

Next, for the outer part we consider the lower pseudoinverse of the above result,
restricted to the interval

[
f (Tf) + g(Tg),+∞

[
. From Lemmas 14.11 and 14.13, it

follows that

T′′⊗pp

(14.17)
=

(
f ∧p ⊗ g∧p

)−1

↑,
[

Tf +Tg,+∞
[(T⊗−1

p

)
(14.6)
= sup

{
t ≥ Tf + Tg | f ∧p ⊗ g∧p (t) ≤ T⊗−1

p

}
.

From Theorem 14.9 it follows also that

d′′⊗pp = c⊗−1
p

= max
(

kcg · dg, kc f · d f

)
,

c′′⊗pp = d⊗−1
p

= lcm
(
c f , cg

)
.

This finishes the proof.

F.3 Exploiting the isomorphism to speed up the (min,+) convolution 253

Corollary 14.30. Let f and g ∈ U which are neither UC nor UI, and are left-continuous

and non-decreasing in
[
Tf ,+∞

[
and

[
Tg,+∞

[
, respectively. Let kc f :=

lcm
(

c f ,cg

)
c f

, kcg :=

lcm
(

c f ,cg

)
cg

. Then, to compute f ∧p ⊗ g∧p via the (max,+) isomorphism (Equation (14.22)), it

is sufficient to use S
I f∧p
f∧p

and S
Ig∧p
g∧p

with

I f∧p =
[

Tf , T′f + 2 · kc f · d f

]
,

Ig∧p =
[

Tg, T′g + 2 · kcg · dg

]
.

(14.34)

where we used2

T′f = sup
{

t ≥ Tf | f (t) = f (Tf)
}

,

T′g = sup
{

t ≥ Tg | g(t) = g(Tg)
}

.

Proof. The proof is based on using Proposition 14.20, as we did in the proof of Corol-
lary 14.30. We thus compute f ∧p ⊗ g∧p through f−1

↑,p ⊗ g−1
↑,p.

In the proof of Corollary 14.30, we have shown that the latter has the following
UPP properties:

T⊗−1
p

(F.3)
= f (Tf) + g(Tg) + lcm

(
c f , cg

)
,

d⊗−1
p

(F.4)
= lcm

(
c f , cg

)
,

c⊗−1
p

(F.5)
= max

(
kcg · dg, kc f · d f

)
.

Thus, it is sufficient to compute S
I⊗−1

p

⊗−1
p

= SIq
q ⊗ SIr

r , where q := f−1
↑,p and r := g−1

↑,p with

I⊗−1
p

=
[

f (Tf) + g(Tg), f (Tf) + g(Tg) + 2 · lcm
(
c f , cg

)[
, (F.6)

I f−1
↑,p

=
[

f (Tf), f (Tf) + 2 · lcm
(
c f , cg

)]
=
[

f (Tf), f (Tf) + 2 · kc f · c f

]
, (F.7)

Ig−1
↑,p

=
[
g(Tg), g(Tg) + 2 · lcm

(
c f , cg

)]
=
[

g(Tg), g(Tg) + 2 · kcg · cg

]
. (F.8)

Next, we derive which values of f ∧p and g∧p are sufficient in order to compute the
values of f−1

↑,p in I f−1
↑,p

and g−1
↑,p in Ig−1

↑,p
. We focus, without loss of generality, on f ∧p , and

obtain via Lemma 14.15 that

f−1
↑,p (f (Tf)) = sup

{
t ≥ Tf | f (t) ≤ f (Tf)

}
= T′f

2The suprema are attainable since the functions are left-continuous over the respective intervals.

254 Algorithmic Improvements through Isomorphism

and using Theorem 10.4

f−1
↑,p (f (Tf) + 2 · lcm

(
c f , cg

)
) = f−1

↑,p (f (Tf)) + 2 · kc f · d f

= T′f + 2 · kc f · d f .

Hence, it is sufficient to use[
T′f , T′f + 2 · kc f · d f

]
for f−1

↑,p ,[
T′g, T′g + 2 · kcg · dg

]
for g−1

↑,p.

Thus, the above intervals enable us to compute f−1
↑,p ⊗ g−1

↑,p. Then, to compute the
lower pseudoinverse, we do not require any additional value from f and g. We do
so however for the last step, due to the loss of information implied by having T′f and
T′g as left boundaries. Using Proposition 14.20, the reconstruction operator requires
us to know that f (t) = f (Tf) ∀Tf ≤ t ≤ T′f , we obtain

I′f∧p =
[

Tf , T′f + 2 · kc f · d f

]
,

I′g∧p =
[

Tg, T′g + 2 · kcg · dg

]
.

Theorem 14.31 (Mix and Match ((min,+) Convolution)). Let f and g ∈ U which are
neither UC nor UI, and are left-continuous and non-decreasing in

[
Tf ,+∞

[
and

[
Tg,+∞

[
,

respectively. Let I f∧p , Ig∧p be the intervals sufficient to compute f ∧p ⊗ g∧p according to Propo-
sition 3.16, and let I′f∧p , I′g∧p be the intervals sufficient to compute f−1

↑,p ⊗ g−1
↑,p according to

Corollary 14.30.
Then I f∧p ∩ I′f∧p , Ig∧p ∩ I′g∧p are intervals sufficient to compute f ∧p ⊗ g∧p .

Proof. We distinguish four cases, based on the result of the intersections. In the first
case, I f∧p ⊆ I′f∧p and Ig∧p ⊆ I′g∧p , in the second case I f∧p ⊃ I′f∧p and Ig∧p ⊆ I′g∧p , in the third
I f∧p ⊆ I′f∧p and Ig∧p ⊃ I′g∧p , and finally in the fourth I f∧p ⊃ I′f∧p and Ig∧p ⊃ I′g∧p .

The first case is trivial, since the resulting intervals are sufficient due to Propo-
sition 3.16. We now prove the result for the fourth case, while the second and third
can be derived following the same steps.

Let I f∧p =
[
Tf , b f

]
, I′f∧p =

[
Tf , a f

]
with a f < b f , and Ig∧p =

[
Tf , bg

]
, I′g∧p =

[
Tf , ag

]
with ag < bg. Moreover, we define d⊗pp according to (14.32), and T⊗pp according to
(14.29).

We shownow that the values of f in
]
a f , b f

]
and g in

]
ag, bg

]
are not necessary for

the computation. Therefore, assume that this is not the case, i.e., there exists some

F.3 Exploiting the isomorphism to speed up the (min,+) convolution 255

t∗ ∈
[

Tf + Tg, T⊗pp + d⊗pp

]
such that

inf
0≤s≤t∗, s/∈

]
a f ,b f

]{ f ∧p (s) + g∧p (t
∗ − s)

}
> f ∧p ⊗ g∧p (t

∗)

= f ∧p (s
∗) + g∧p (t∗ − s∗) =: z∗,

where either s∗ ∈
]
a f , b f

]
or t∗ − s∗ ∈

]
ag, bg

]
.

From I′f∧p =
[
Tf , a f

]
, I′g∧p =

[
Tg, ag

]
and Lemma 14.15 it follows that

I f−1
↑,p

=
[

f (Tf), f (a f)
]

,

Ig−1
↑,p

=
[
g(Tg), g(ag)

]
Let us consider now (

f ∧p ⊗ g∧p
)−1

↑
(z∗) = f−1

↑,p ⊗ g−1
↑,p(z

∗).

We distinguish two cases: either z∗ ∈ I⊗−1
p
, computed according to Equation (F.6),

or it is larger than the upper boundary of I⊗−1
p

(as it cannot be less than the lower
boundary). In the first case, i.e., z∗ < f (Tf) + g(Tg) + 2 · lcm

(
c f , cg

)
, we have

f−1
↑,p ⊗ g−1

↑,p(z
∗) = sup

0≤v≤z∗

{
f−1
↑,p (v) + g−1

↑,p(z
∗ − v)

}
= f−1

↑,p (v
∗) + g−1

↑,p (z
∗ − v∗) ,

where v∗ ∈ I′
f−1
↑,p

=
[

f (Tf), f (a f)
]
, z∗ − v∗ ∈ I′

g−1
↑,p

=
[
g(Tg), g(ag)

]
such that the

supremum is attained. These elements exist since the upper pseudoinverses are
right-continuous over their respective intervals (Lemma 14.8), thus their (max,+)
convolution can always be attained (Proposition 14.24). Moreover, since I′

f−1
↑,p

and

Ig−1
↑,p

are sufficient to compute f−1
↑,p ⊗ g−1

↑,p(z) for any z ∈ I⊗−1
p

(Corollary 14.30), it
follows that v∗ ∈ I′

f−1
↑,p

and z∗ − v∗ ∈ Ig−1
↑,p
, hence we do not need any value of f and

g outside these intervals to perform the computation for z∗ in particular. But, since
the interval

]
a f , b f

]
was not used to compute I′

f−1
↑,p
, nor

]
ag, bg

]
to compute I′

g−1
↑,p
, this

is a contradiction to the assumption that s∗ ∈
]
a f , b f

]
or t∗− s∗ ∈

]
ag, bg

]
are needed

for the computation of f ∧p ⊗ g∧p .
In the second case (z∗ ≥ f (Tf) + g(Tg) + 2 · lcm

(
c f , cg

)
), f−1
↑,p ⊗ g−1

↑,p(z
∗) can be

computed by applying the UPP property meaning that

f−1
↑,p ⊗ g−1

↑,p(z
∗) = f−1

↑,p ⊗ g−1
↑,p

(
z∗ − k · d⊗−1

p

)
+ k · c⊗−1

p

256 Algorithmic Improvements through Isomorphism

for d⊗−1
p

and c⊗−1
p

described in Equation (F.4) and Equation (F.5), respectively, and
some k ∈ N such that z∗ − k · d⊗−1

p
∈ I⊗−1

p
. We can follow for the latter the same

reasoning as in the first case, thus having the same contradiction. This concludes
the proof.

F.4 Exploiting the isomorphism to speed up the
(max,+) convolution

Proposition 14.2. Let f and g ∈ U which are neither UC nor UI, and are right-continuous
and non-decreasing. Then,

d f ⊗ g = min

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
, (14.3)

c f ⊗ g = lcm
(
c f , cg

)
(14.4)

are sufficient period length and height for f ⊗ g.

Proof. Since f and g are right-continuous, it holds by Equation (4.15) that

f ⊗ g =
(

f−1
↓ ⊗ g−1

↓

)−1

↑
.

Combining this with Proposition 3.17, we obtain for the inner function f−1
↓ ⊗ g−1

↓

d f−1
↓ ⊗g−1

↓
= lcm

(
d f−1
↓

, dg−1
↓

)
,

c f−1
↓ ⊗g−1

↓
= min

 c f−1
↓

d f−1
↓

,
cg−1
↓

dg−1
↓

 · d f−1
↓ ⊗g−1

↓
.

Using Theorem 10.2, we obtain for the period-length and height of the lower pseu-
doinverse

d f−1
↓ ⊗g−1

↓
= lcm

(
c f , cg

)
,

c f−1
↓ ⊗g−1

↓
= min

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
.

F.4 Exploiting the isomorphism to speed up the (max,+) convolution 257

Combining this with the outer function (·)−1
↑ , due to Theorem 10.4, we eventually

obtain for
(

f−1
↓ ⊗ g−1

↓

)−1

↑
that

d′′f ⊗ g
(4.15)
= d(

f−1
↓ ⊗g−1

↓

)−1

↑

= c f−1
↓ ⊗g−1

↓
= min

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
,

c′′f ⊗ g
(4.15)
= c(

f−1
↓ ⊗g−1

↓

)−1

↑

= d f−1
↓ ⊗g−1

↓
= lcm

(
c f , cg

)
.

This finishes the proof.

Theorem 14.32. Let f and g ∈ U which are neither UC nor UI, and are right-continuous
and non-decreasing. Moreover, let f and g satisfy the assumptions of Lemma 14.11, such
that Tf−1

↓,p
= f (Tf), Tg−1

↓,p
= g(Tg). Let

kc f :=
lcm

(
c f , cg

)
c f

, (14.35)

kcg :=
lcm

(
c f , cg

)
cg

. (14.36)

Then, f ∨p ⊗ g∨p is again a function of U with

T⊗ pp
= inf

{
t ≥ Tf + Tg | f ∨p ⊗ g∨p (t) ≥ f (Tf) + g(Tg) + lcm

(
c f , cg

)}
, (14.37)

d⊗ pp
= min

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
= min

(
kcg · dg, kc f · d f

)
, (14.38)

c⊗ pp
= lcm

(
c f , cg

)
. (14.39)

Proof. Using Proposition 14.26, we have that

f ∨p ⊗ g∨p
(14.24)
=

((
f ∨p ⊗ g∨p

)−1

↓,
[

Tf +Tg,+∞
[
)−1

↑,
[

f (Tf)+g(Tg),+∞
[

(14.23)
=

(
f−1
↓,p ⊗ g−1

↓,p

)−1

↑,
[

f (Tf)+g(Tg),+∞
[,

where we used Theorem 14.25 in the second line. For the inner part (the (min,+)
convolution), we obtain for all x ≥ f (Tf)+ g(Tg)+ c′′⊗ pp

= f (Tf)+ g(Tg)+ lcm
(
c f , cg

)
(Equation (14.4)) that

258 Algorithmic Improvements through Isomorphism

(
f−1
↓,p ⊗ g−1

↓,p

) (
x + c′′⊗ pp

)
= inf

0≤u≤x+c′′⊗ pp

{
f−1
↓,p (u) + g−1

↓,p(x + c′′⊗ pp
− u)

}
= inf

f (Tf)≤u≤x+c′′⊗ pp
−g(Tg)

{
f−1
↓,p (u) + g−1

↓,p(x + c′′⊗ pp
− u)

}
= inf

f (Tf)≤u≤x−g(Tg)

{
f−1
↓,p (u) + g−1

↓,p(x + c′′⊗ pp
− u)

}
∧ inf

x−g(Tg)≤u≤x+c′′⊗ pp
−g(Tg)

{
f−1
↓,p (u) + g−1

↓ (x + c′′⊗ pp
− u)

}
(

x−g(Tg)≥ f (Tf)+c′′⊗ pp

)
= inf

f (Tf)≤u≤x−g(Tg)

{
f−1
↓,p (u) + g−1

↓,p(x + c′′⊗ pp
− u)

}
∧ inf

f (Tf)+c′′⊗ pp
≤u≤x+c′′⊗ pp

−g(Tg)

{
f−1
↓,p (u) + g−1

↓,p(x + c′′⊗ pp
− u)

}
,

where we used the definition of the (min,+) convolution in the second line and the
fact that we only consider the periodic phase in the third line. In the last two lines,
we exploited that the infimum does not change since the intervals now overlap. We
continue by substituting v := x + c′′⊗ pp

− u:(
f−1
↓,p ⊗ g−1

↓,p

) (
x + c′′⊗ pp

)
(v:=x+c′′⊗ pp

−u)
= inf

f (Tf)≤u≤x−g(Tg)

 f−1
↓,p (u) + g−1

↓,p(x + lcm
(
c f , cg

)︸ ︷︷ ︸
=kcg cg

−u)

∧ inf

g(Tg)≤v≤x− f (Tf)

 f−1
↓,p (x + lcm

(
c f , cg

)︸ ︷︷ ︸
=kc f c f

−v) + g−1
↓,p(v)

(

x−u≥g(Tg),x−v≥ f (Tf)
)

= inf
f (Tf)≤u≤x−g(Tg)

{
f−1
↓,p (u) + g−1

↓,p(x− u)
}
+ kcg dg

∧ inf
g(Tg)≤v≤x− f (Tf)

{
f−1
↓,p (x− v) + g−1

↓,p(v)
}
+ kc f d f

=
(

f−1
↓,p ⊗ g−1

↓,p

)
(x) + min

(
kcg · dg, kc f · d f

)
=
(

f−1
↓,p ⊗ g−1

↓,p

)
(x) + min

(
d f

c f
,

dg

cg

)
· lcm

(
c f , cg

)
,

F.4 Exploiting the isomorphism to speed up the (max,+) convolution 259

where we used Theorem 10.2 and Lemma 14.11 in the fourth line. It follows then
that

T⊗−1
p

= f (Tf) + g(Tg) + lcm
(
c f , cg

)
, (F.9)

d⊗−1
p

= lcm
(
c f , cg

)
, (F.10)

c⊗−1
p

= min
(

kcg · dg, kc f · d f

)
. (F.11)

Next, for the outer part we consider the upper pseudoinverse of the above result,
restricted to the interval

[
f (Tf) + g(Tg),+∞

[
. From Theorem 14.10, it follows that

T′′⊗ pp

(14.12)
=

(
f−1
↓,p ⊗ g−1

↓,p

) (
T⊗−1

p

)
(14.23)
=

(
f ∨p ⊗ g∨p

)−1

↓,
[

Tf +Tg,+∞
[(T⊗−1

p

)
(14.5)
= inf

{
x ≥ Tf + Tg | f ∨p ⊗ g∨p (t) ≥ T⊗−1

p

}
.

From Theorem 14.10 it follows also that

d′′⊗ pp
= c⊗−1

p
= min

(
kcg · dg, kc f · d f

)
,

c′′⊗ pp
= d⊗−1

p
= lcm

(
c f , cg

)
.

This finishes the proof.

Corollary 14.33. Let f and g ∈ U which are neither UC nor UI, and are right-continuous
and non-decreasing in

[
Tf ,+∞

[
and

[
Tg,+∞

[
, respectively. Moreover, let f and g satisfy

the assumptions of Lemma 14.11, such that Tf−1
↓,p

= f (Tf), Tg−1
↓,p

= g(Tg).

Let kc f :=
lcm
(

c f ,cg

)
c f

, kcg :=
lcm
(

c f ,cg

)
cg

. Then, to compute f ∨p ⊗ g∨p via the (min,+)

isomorphism (Equation (14.26)), it is sufficient to use S
I′

f∨p
f∨p

and S
I′
g∨p

g∨p
with

I f∨p =
[

Tf , Tf + 2 · kc f · d f

]
,

Ig∨p =
[

Tg, Tg + 2 · kcg · dg

]
.

(14.42)

Proof. The proof is based on using Proposition 14.26, as we did in the proof of Corol-
lary 14.33. We thus compute f ∨p ⊗ g∨p through f−1

↓,p ⊗ g−1
↓,p.

In the proof of Corollary 14.33, we have shown that the latter has the following
UPP properties:

T⊗−1
p

(F.9)
= f (Tf) + g(Tg) + lcm

(
c f , cg

)
,

d⊗−1
p

(F.10)
= lcm

(
c f , cg

)
,

c⊗−1
p

(F.11)
= min

(
kcg · dg, kc f · d f

)
.

260 Algorithmic Improvements through Isomorphism

Thus, it is sufficient to compute S
I⊗−1

p

⊗−1
p

= SIq
q ⊗ SIr

r , where q := f−1
↓,p and r := g−1

↓,p,
and

I⊗−1
p

=
[

f (Tf) + g(Tg), f (Tf) + g(Tg) + 2 · lcm
(
c f , cg

)[
, (F.12)

I f−1
↓,p

=
[

f (Tf), f (Tf) + 2 · lcm
(
c f , cg

)]
=
[

f (Tf), f (Tf) + 2 · kc f · c f

]
, (F.13)

Ig−1
↓,p

=
[
g(Tg), g(Tg) + 2 · lcm

(
c f , cg

)]
=
[

g(Tg), g(Tg) + 2 · kcg · cg

]
. (F.14)

Next, we derive which values of f ∨p and g∨p in order to compute the values of f−1
↓,p

in I f−1
↓,p

and g−1
↓,p in Ig−1

↓,p
. We focus, without loss of generality, on f ∨p , and obtain via

Lemma 14.14 that

f−1
↓,p (f (Tf)) = inf

{
t ≥ Tf | f (t) ≥ f (Tf)

}
= Tf

and, using Theorem 10.2 and Lemma 14.11,

f−1
↓,p
(

f (Tf) + 2 · lcm
(
c f , cg

))
= f−1

↓,p (f (Tf)) + 2 · kc f · d f

= Tf + 2 · kc f · d f .

Hence, it is sufficient to use

I′f∨p =
[

Tf , Tf + 2 · kc f · d f

]
,

I′g∨p =
[

Tg, Tg + 2 · kcg · dg

]
.

Thus, the above intervals enable us to compute f−1
↓,p ⊗ g−1

↓,p. Then, to compute the
upper pseudoinverse we do not require any additional value from f and g.

Theorem 14.34 (Mix and Match ((max,+) Convolution)). Let f and g ∈ U which
are neither UC nor UI, and are right-continuous and non-decreasing in

[
Tf ,+∞

[
and[

Tg,+∞
[
, respectively. Moreover, let f and g satisfy the assumptions of Lemma 14.11,

such that Tf−1
↓,p

= f (Tf), Tg−1
↓,p

= g(Tg). Let I f∨p , Ig∨p be the intervals sufficient to compute
f ∨p ⊗ g∨p according to Proposition 3.32, and let I′f∨p , I′g∨p be the intervals sufficient to compute

f−1
↓,p ⊗ g−1

↓,p according to Corollary 14.33.
Then, I f∨p ∩ I′f∨p , Ig∨p ∩ I′g∨p are sufficient intervals to compute f ∨p ⊗ g∨p .

Proof. We distinguish four cases, based on the result of the intersections. In the first
case, I f∨p ⊆ I′f∨p and Ig∨p ⊆ I′g∨p , in the second case I f∨p ⊃ I′f∨p and Ig∨p ⊆ I′g∨p , in the third
I f∨p ⊆ I′f∨p and Ig∨p ⊃ I′g∨p , and finally in the fourth I f∨p ⊃ I′f∨p and Ig∨p ⊃ I′g∨p .

F.4 Exploiting the isomorphism to speed up the (max,+) convolution 261

The first case is trivial, since the resulting intervals are sufficient due to Propo-
sition 3.32. We now prove the result for the fourth case, while the second and third
can be derived following the same steps.

Let I f∨p =
[
Tf , b f

]
, I′f∨p =

[
Tf , a f

]
with a f < b f , and Ig∨p =

[
Tf , bg

]
, I′g∨p =

[
Tf , ag

]
with ag < bg. Moreover, we define d⊗ pp

according to Equation (14.40), and T⊗ pp

according to (14.37).
We shownow that the values of f in

]
a f , b f

]
and g in

]
ag, bg

]
are not necessary for

the computation. Therefore, assume that this is not the case, i.e., there exists some
t∗ ∈

[
Tf + Tg, T⊗ pp

+ d⊗ pp

]
such that

sup
0≤s≤t∗, s/∈

]
a f ,b f

]
{

f ∨p (s) + g∨p (t
∗ − s)

}
< f ∨p ⊗ g∨p (t

∗)

= f ∨p (s
∗) + g∨p (t∗ − s∗) =: z∗,

where either s∗ ∈
]
a f , b f

]
or t∗ − s∗ ∈

]
ag, bg

]
.

From I′f∨p =
[
Tf , a f

]
, I′g∨p =

[
Tg, ag

]
and Lemma 14.14 it follows that

I f−1
↓,p

=
[

f (Tf), f (a f)
]

,

Ig−1
↓,p

=
[
g(Tg), g(ag)

]
Let us consider now (

f ∨p ⊗ g∨p
)−1

↓
(z∗) = f−1

↓,p ⊗ g−1
↓,p(z

∗).

We distinguish two cases: either z∗ ∈ I⊗−1
p
, computed according to Equation (F.12),

or it is larger than the upper boundary of I⊗−1
p

(as it cannot be less than the lower
boundary). In the first case, i.e., z∗ < f (Tf) + g(Tg) + 2 · lcm

(
c f , cg

)
, we have

f−1
↓,p ⊗ g−1

↓,p(z
∗) = inf

0≤v≤z∗

{
f−1
↓,p (v) + g−1

↓,p(z
∗ − v)

}
= f−1

↓,p (v
∗) + g−1

↓,p (z
∗ − v∗) ,

where v∗ ∈ I′
f−1
↓,p

=
[

f (Tf), f (a f)
]
, z∗ − v∗ ∈ I′

g−1
↓,p

=
[
g(Tg), g(ag)

]
such that the

infimum is attained. These elements exist since the lower pseudoinverses are left-
continuous over their respective intervals (Lemma 14.8), thus their (min,+) con-
volution can always be attained (Proposition 14.17). Moreover, since I′

f−1
↓,p

and Ig−1
↓,p

are sufficient to compute f−1
↓,p ⊗ g−1

↓,p(z) for any z ∈ I⊗−1
p

(Corollary 14.33), it follows
that v∗ ∈ I′

f−1
↓,p

and z∗ − v∗ ∈ Ig−1
↓,p
, hence we do not need any value of f and g out-

side these intervals to perform the computation for z∗ in particular. But, since the

262 Algorithmic Improvements through Isomorphism

interval
]
a f , b f

]
was not used to compute I′

f−1
↓,p
, nor

]
ag, bg

]
to compute I′

g−1
↓,p
, this is a

contradiction to the assumption that s∗ ∈
]
a f , b f

]
or t∗ − s∗ ∈

]
ag, bg

]
are needed

for the computation of f ∨p ⊗ g∨p .
In the second case (z∗ ≥ f (Tf) + g(Tg) + 2 · lcm

(
c f , cg

)
), f−1
↓,p ⊗ g−1

↓,p(z
∗) can be

computed by applying the UPP property meaning that

f−1
↓,p ⊗ g−1

↓,p(z
∗) = f−1

↓,p ⊗ g−1
↓,p

(
z∗ − k · d⊗−1

p

)
+ k · c⊗−1

p

for d⊗−1
p

and c⊗−1
p

described in Equation (F.10) and Equation (F.11), respectively,
and some k ∈N such that z∗− k · d⊗−1

p
∈ I⊗−1

p
. We can follow for the latter the same

reasoning as in the first case, thus having the same contradiction. This concludes
the proof.

Appendix G

Other Proofs

G.1 Equivalence of UA definitions
Proposition G.1. A function f ∈ U is Ultimately Affine (UA) (defined in Definition 3.3)
iff there exist T ∈ Q+, σ, ρ ∈ Q such that either

f (t) = ρt + σ ∀t ≥ T (G.1)

or if f (t) = −∞ or f (t) = +∞ for all t ≥ T.

Proof. The proof is trivial for f being −∞ or +∞ for all t ≥ T. Therefore, we limit
ourselves to the cases of f being finite.

“⇒”
Let f be UA. Define T := Ta

f , σ := f
(

Ta
f

)
− ρ f · Ta

f and ρ := ρ f . Then, it holds for all
t ≥ T that

f (t)
(3.2)
=
(

f
(

Ta
f

)
− ρ f · Ta

f

)
+ ρ f · t = σ + ρ · t.

“⇐” Assume f to verify the condition in Equation (G.1). Therefore, assume that
f (t) = ρt + σ for all t ≥ T. Define Ta

f := T, ρ f := ρ. Then for all t ≥ Ta
f

f (t) = f
(
(t− Ta

f) + Ta
f

)
(G.1)
= σ + ρ f

(
(t− Ta

f) + Ta
f

)
=
(

ρ f Ta
f + σ

)
+ ρ f · (t− Ta

f)

(G.1)
= f (Ta

f) + ρ f (t− Ta
f).

This concludes the proof.

263

264 Other Proofs

G.2 Subadditivity and superadditivity checks
First, we recall the definition of f ◦.

Definition 9.2. Let f be a function of U . Then we define f ◦ as

f ◦(t) :=

{
0, if t = 0,

f (t), otherwise.

Lemma 9.3. Let f be a function of U such that f (0) ≥ 0. Then, f is subadditive if and only
if f ◦ = f ◦ ⊗ f ◦.

Proof. First, we show that if f (t) ≤ f (s) + f (t − s) for any 0 ≤ s ≤ t, then f is
sub-additive. Let x, y be arbitrary. We define t = x + y, s = y. Then,

f (x + y) = f (t) ≤ f (s) + f (t− s) = f (y) + f (x + y− y) = f (y) + f (x)

and thus, f is subadditive. One can easily show that the reverse is also true, so the
two are equivalent.

Then, we show that if f ⊗ f = f , f is subadditive. We know by assumption that
for all t ≥ 0 and τ such that 0 ≤ τ ≤ t, it holds that

f (t) = f ⊗ f (t) = inf
0≤s≤t

{ f (s) + f (t− s)} ≤ f (τ) + f (t− τ).

By the previous reasoning, f is subadditive. Finally, we show that if f (0) ≥ 0 and
f ◦ is subaddittive, then f is subadditive as well.

We calculate for any x, y ∈ Q+ and f ◦ sub-additive that

f (x + y) =

f ◦(x + y) ≤ f ◦(x) + f ◦(y) = f (x) + f (y), if x and y > 0,

f (0 + y) ≤ f (0) + f (y) = f (x) + f (y), if x = 0 and y > 0,

symmetric, if x > 0 and y = 0,

f (0) ≤ f (0) + f (0), if x = 0 and y = 0.

Vice versa, we calculate

f ◦(x + y) =

f (x + y) ≤ f (x) + f (y) = f ◦(x) + f ◦(y), if x and y > 0,

f ◦(0 + y) = f ◦(0) + f ◦(y), if x = 0 and y > 0,

symmetric, if x > 0 and y = 0,

f ◦(0) = f ◦(0) + f ◦(0), if x = 0 and y = 0.

Lemma 9.4. Let f be a function of U such that f (0) ≤ 0. Then, f is superadditive if and
only if f ◦ = f ◦⊗ f ◦.

G.3 Clarifying steps in Appendix F 265

Proof. The proof follows the same steps of Lemma 9.3. We calculate for any x, y ∈
Q+ and f ◦ super-additive that

f (x + y) =

f ◦(x + y) ≥ f ◦(x) + f ◦(y) = f (x) + f (y), if x and y > 0,

f (0 + y) ≥ f (0) + f (y) = f (x) + f (y), if x = 0 and y > 0,

symmetric, if x > 0 and y = 0,

f (0) ≥ f (0) + f (0), if x = 0 and y = 0.

Vice versa, we calculate

f ◦(x + y) =

f (x + y) ≥ f (x) + f (y) = f ◦(x) + f ◦(y), if x and y > 0,

f ◦(0 + y) = f ◦(0) + f ◦(y), if x = 0 and y > 0,

symmetric, if x > 0 and y = 0,

f ◦(0) = f ◦(0) + f ◦(0), if x = 0 and y = 0.

G.3 Clarifying steps in Appendix F
The proof of Theorem 10.3 in [Lie17, pp. 68] uses an implication, thus a subset rela-
tion, to derive an inequality for a supremum. We clarify this step, showing that it is
based on calculating a subset over a larger interval.

Lemma G.2. For any s, t, x, y ∈ R, it holds that

sup {t | f (x) ≥ s and g(y) ≥ t− s} ≤ sup {t | f (x) + g(y) ≥ t} .

Proof. We define
A := {t | f (x) ≥ s and g(y) ≥ t− s}

and
B := {t | f (x) + g(y) ≥ t} .

It holds that
f (x) ≥ s and s + g(y) ≥ t ⇒ f (x) + g(y) ≥ t.

In other words, any t, that satisfies the condition on the left-hand side, automatically
satisfies the condition on the right-hand side. In other words, it holds that A ⊆ B.
This, in turn, means that

sup A ≤ sup B

and thus the claim follows.

266 Other Proofs

Example G.3. Assume that s = 1 and f (x) = g(y) = 2. Then,

sup {t | f (x) ≥ s and g(y) ≥ t− s} = sup {t | 2 ≥ 1 and 2 ≥ t− 1} = 3,

and
sup {t | f (x) + g(y) ≥ t} = sup {t | 2 + 2 ≥ t} = 4.

Lemma G.4. For any s, t, x, y ∈ R, it holds that

inf {t | f (x) ≤ s and g(y) ≤ t− s} ≤ inf {t | f (x) + g(y) ≤ t} .

Proof. We define
A := {t | f (x) ≤ s and g(y) ≤ t− s}

and
B := {t | f (x) + g(y) ≤ t} .

It holds that
f (x) ≤ s and s + g(y) ≤ t ⇒ f (x) + g(y) ≤ t.

In other words, any t, that satisfies the condition on the left-hand side, automatically
satisfies the condition on the right-hand side. In other words, it holds that A ⊆ B.
This, in turn, means that

inf A ≥ inf B

and thus the claim follows.

Example G.5. Assume that s = 2 and f (x) = g(y) = 1. Then,

inf {t | f (x) ≤ s and g(y) ≤ t− s} = inf {t | 1 ≤ 2 and 1 ≤ t− 2} = 3,

and
inf {t | f (x) + g(y) ≤ t} = inf {t | 1 + 1 ≤ t} = 2.

Appendix H

System Configurations

H.1 Software configuration
As mentioned, Nancy can – and does, by default – run most algorithms in parallel,
benefiting from the computational power of multicore systems. Note, however, that
to minimize the perturbations and improve the fairness of comparisons, in all ex-
periments whose result we report in this thesis, we used Nancy in single-threaded
mode (UseParallelism = false). This allows us to obtain consistent time measure-
ments, and we verified that the execution times of independent replicas of the same
experiment differ by fractions of percentage points – for this reason, confidence in-
tervals are omitted.

Moreover, we used the BigInteger version of Rational type. This has a perfor-
mance overhead over using 64-bit integers, but has the distinctive advantage of re-
moving all issueswith arithmetic overflow – thuswe could trust that all experiments
would, eventually, terminate.

Execution times are measured using the System.Diagnostic.Stopwatch class. When
applying our optimizations, the execution timeswemeasure also include those spent
testing our hypotheses (e.g., dominance or asymptotic dominance).

In the experiments, we use parametrized curves, whose parameters are then ran-
domly generated. For example, in Chapters 12, 13 and 15, we use βR,θ,h = βR,θ + h,
where βR,θ is a rate-latency curve, with latency θ and rate R, and h is the ordinate of
a constant function. We generate these parameters using System.Random, constrained
so that computations do not become too large when hyperperiod explosion occurs –
e.g., with a max value of 1000.

H.2 Hardware configurations
In this thesis, we used experimental results that were run on different machines. For
ease of reference, we collect their full specifications here.

267

268 System Configurations

System 1. Desktop PC, with Intel Core i9-9900, 16 GB of DRAM @3200 MHz, Win-
dows 10
System 2. Desktop PC, with Intel Core i9-9900, 32 GB of DRAM @3200 MHz, Win-
dows 10
System 3. Desktop PC, with AMD Ryzen 7 5800X, 32 GB of DRAM @3000 MHz,
Windows 10
System 4. Laptop PC, with Intel i7-10750H, 32 GB of DDR4 @3000 MHz, Windows
10
System 5. Cloud Virtual Machine, with 24 virtual Intel Xeon Processors (Cascade-
Lake) cores @2.2 GHz, 32 GB of DRAM, Ubuntu 22.04

Index of notation

Sets

R+ Set of non-negative real numbers, includes 0.
R Set of real numbers, does not include ±∞.

Q+ Set of non-negative rational numbers, includes 0.
Q Set of rational numbers, does not include ±∞.
N Set of natural numbers, does not include 0.
N0 Set of non-negative integers, including 0.
U Set of ultimately pseudo-periodic, piecewise affine, Q+ → Q∪

{+∞,−∞} functions.
Section 3.2

DNC operators

f ∧ g Minimum Section 2.2
f ∨ g Maximum Section 2.2
f ⊗ g (min,+) convolution Section 2.2
f ⊗ g (max,+) convolution Section 2.2

f Subadditive closure Definition 2.1
f Superadditive closure Definition 2.5

f−1
↓ Lower pseudoinverse Definition 4.9

f−1
↑ Upper pseudoinverse Definition 4.9

f ◦ g Composition, f (g(t)) Chapter 11

269

270 Index of notation

UPP functions
Tf Pseudo-period start of f Definition 3.1
d f Pseudo-period length of f Definition 3.1
c f Pseudo-period height of f Definition 3.1
SI

f Sequence that represents f over interval I Definition 3.6
R f Tuple (S, T, d, c) that represents f over Q+ Section 3.2

n(S) Number of elements included in sequence S Section 3.2
f |∧I f |∧I (t) = f (t) if t ∈ I, +∞ otherwise Definition 3.8
f |∨I f |∨I (t) = f (t) if t ∈ I, −∞ otherwise Definition 3.8

f ∧t ∧ f ∧p Min decomposition of f over its transient and periodic
parts.

Equation (3.3)

f ∨t ∧ f ∨p Max decomposition of f over its transient and periodic
parts.

Equation (3.3)

Operators over interval
f−1
↓,I Lower pseudoinverse over interval I Definition 14.6

f−1
↑,I Upper pseudoinverse over interval I Definition 14.6

f−1
↓,p Lower pseudoinverse over interval

[
Tf ,+∞

[
Definition 14.6

f−1
↑,p Upper pseudoinverse over interval

[
Tf ,+∞

[
Definition 14.6

[f]a Reconstruction operator Equation (14.19)

Other notations
[a]+ Positive part, equal to max (a, 0).

f ◦ f ◦(0) = 0, f ◦(t) = f (t) ∀ t > 0 Definition 9.2
βr,l Rate-latency curve with rate r and latency l. Section 2.1
bβcrl Rate-latency lower bound for β Chapter 6

Publications

Conference proceedings
[ACSZ20] Matteo Andreozzi, Frances Conboy, Giovanni Stea, and Raffaele

Zippo. “Heterogeneous systems modelling with Adaptive Traf-
fic Profiles and its application to worst-case analysis of a DRAM
controller”. In: 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC), Invited Paper. IEEE. 2020,
pp. 79–86.

[RSLSSZZAH21] Falk Rehm, Jörg Seitter, Jan-Peter Larsson, Selma Saidi, Giovanni
Stea, Raffaele Zippo, Dirk Ziegenbein, Matteo Andreozzi, and
ArneHamann. “TheRoad towards PredictableAutomotiveHigh-
Performance Platforms”. In: 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE. 2021, pp. 1915–
1924.

[ZNS23a] Raffaele Zippo, Paul Nikolaus, and Giovanni Stea. “Isospeed:
Improving (min,+)Convolution byExploiting (min,+)/(max,+)
Isomorphism”. In: 35th Euromicro Conference on Real-Time Sys-
tems. 2023.

Journal articles
[AFGSZ22] MatteoAndreozzi, Antonio Frangioni, LauraGalli, Giovanni Stea,

and Raffaele Zippo. “A MILP approach to DRAM access worst-
case analysis”. In: Computers & Operations Research 143 (2022).

[ZNS23c] Raffaele Zippo, Paul Nikolaus, and Giovanni Stea. “Extending
theNetworkCalculusAlgorithmic Toolbox forUltimately Pseudo-
Periodic Functions: Pseudo-Inverse and Composition”. In: Dis-
crete EventDynamic Systems (AcceptedDecember 2022, Yet to ap-
pear as of July 2023). doi: 10.1007/s10626-022-00373-5.

271

https://doi.org/10.1007/s10626-022-00373-5

272 Publications

[ZS22] Raffaele Zippo and Giovanni Stea. “Nancy: An efficient parallel
Network Calculus library”. In: SoftwareX 19 (2022). doi: https:
//doi.org/10.1016/j.softx.2022.101178. url: https://www.
sciencedirect.com/science/article/pii/S235271102200108X.

[ZS23] Raffaele Zippo and Giovanni Stea. “Computationally efficient
worst-case analysis of flow-controlled networks with network
calculus”. In: IEEE Transactions on Information Theory 69.4 (2023),
pp. 2664–2690.

Patents
[ACSZ22] Matteo Maria Andreozzi, Michael Andrew Campbell, Giovanni

Stea, and Raffaele Zippo. “Method, system and device for elec-
tronic interconnect delay bounddetermination”.USPatent 11,455,268.
Sept. 2022.

Artifacts
[ZNS23b] Raffaele Zippo, Paul Nikolaus, and Giovanni Stea. “Isospeed:

Improving (min,+)Convolution byExploiting (min,+)/(max,+)
Isomorphism (Artifact)”. In: Dagstuhl Artifacts Series 9 (2023).

Software
[ZSd] Raffaele Zippo andGiovanni Stea.Nancy source repository onGitHub.

url: https://github.com/rzippo/nancy.

Talks
Nancy: a library for Network Calculus, Best Student Presentation Award (ex-aequo),
6th Workshop on Network Calculus, 2022.

Algebraic transformations for network paths with hop-by-hop flow control, 5th Work-
shop on Network Calculus, 2020.

https://doi.org/https://doi.org/10.1016/j.softx.2022.101178
https://doi.org/https://doi.org/10.1016/j.softx.2022.101178
https://www.sciencedirect.com/science/article/pii/S235271102200108X
https://www.sciencedirect.com/science/article/pii/S235271102200108X
https://github.com/rzippo/nancy

Bibliography

[ACOR99] Rajeev Agrawal, Rene L Cruz, Clayton Okino, and Rajendran
Rajan. “Performance bounds for flowcontrol protocols”. In: IEEE/ACM
transactions on networking 7.3 (1999), pp. 310–323.

[ACSZ20] Matteo Andreozzi, Frances Conboy, Giovanni Stea, and Raffaele
Zippo. “Heterogeneous systems modelling with Adaptive Traf-
fic Profiles and its application to worst-case analysis of a DRAM
controller”. In: 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC), Invited Paper. IEEE. 2020,
pp. 79–86.

[AFGSZ22] MatteoAndreozzi, Antonio Frangioni, LauraGalli, Giovanni Stea,
and Raffaele Zippo. “A MILP approach to DRAM access worst-
case analysis”. In: Computers & Operations Research 143 (2022).

[Bal11] Simonetta Balsamo. “Queueing Networks with Blocking: Anal-
ysis, Solution Algorithms and Properties”. In: Network Perfor-
mance Engineering: A Handbook on Convergent Multi-Service Net-
works and Next Generation Internet. Ed. by Demetres D. Kouvat-
sos. Berlin,Heidelberg: Springer BerlinHeidelberg, 2011, pp. 233–
257. isbn: 978-3-642-02742-0. doi: 10.1007/978-3-642-02742-
0_11. url: https://doi.org/10.1007/978-3-642-02742-0_11.

[BBL18] Anne Bouillard,Marc Boyer, and Euriell Le Corronc.Determinis-
ticNetwork Calculus: FromTheory to Practical Implementation. Hobo-
ken, NJ: Wiley, 2018.

[BCGHLL09] AnneBouillard, BertrandCottenceau, BrunoGaujal, LaurentHardouin,
Sébastien Lagrange, and Mehdi Lhommeau. “COINC Library:
A Toolbox for the Network Calculus: Invited Presentation, Ex-
tended Abstract”. In: Proceedings of the Fourth International ICST
Conference on Performance EvaluationMethodologies and Tools. VAL-
UETOOLS ’09. Pisa, Italy: ICST (Institute forComputer Sciences,
Social-Informatics and Telecommunications Engineering), 2009.
isbn: 9789639799707.

273

https://doi.org/10.1007/978-3-642-02742-0_11
https://doi.org/10.1007/978-3-642-02742-0_11
https://doi.org/10.1007/978-3-642-02742-0_11

274 BIBLIOGRAPHY

[BCOQ92] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre
Quadrat. “Synchronization and linearity: an algebra for discrete
event systems”. In: (1992).

[BD22] Marc Boyer and Hugo Daigmorte. “Improved service curve for
elementwith known transmission rate”. In: IEEENetworking Let-
ters (2022), pp. 1–1. doi: 10.1109/LNET.2022.3150649.

[BGDM20] Marc Boyer, Amaury Graillat, Benot Dupont De Dinechin, and
JörnMigge. “Bounding the delays of theMPPAnetwork-on-chip
with network calculus:Models andbenchmarks”. In:Performance
Evaluation 143 (2020), p. 102124.

[BJLL06] Amit Bose, Xiaoyue Jiang, Bin Liu, and Gang Li. “Analysis of
manufacturing blocking systemswith network calculus”. In:Per-
formance Evaluation 63.12 (2006), pp. 1216–1234.

[BJT09] AnneBouillard, Laurent Jouhet, andEric Thierry. “Service curves
in Network Calculus: dos and don’ts”. PhD thesis. INRIA, 2009.

[BJT10] Anne Bouillard, Laurent Jouhet, and Eric Thierry. “Tight Per-
formance Bounds in the Worst-Case Analysis of Feed-Forward
Networks”. In: 2010 Proceedings IEEE INFOCOM. 2010, pp. 1–9.
doi: 10.1109/INFCOM.2010.5461912.

[BLMS10] Luca Bisti, Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea.
“Deborah: A tool for worst-case analysis of FIFO tandems”. In:
International SymposiumOnLeveragingApplications of FormalMeth-
ods, Verification and Validation. Springer. 2010, pp. 152–168.

[BLMS12] Luca Bisti, Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea.
“Numerical analysis of worst-case end-to-end delay bounds in
FIFO tandemnetworks”. In:Real-Time Systems 48.5 (2012), pp. 527–
569.

[Bou21] AnneBouillard. “Individual ServiceCurves for Bandwidth-Sharing
Policies Using Network Calculus”. In: IEEE Networking Letters
3.2 (2021), pp. 80–83. doi: 10.1109/LNET.2021.3067766.

[Boy10] Marc Boyer. “NC-maude: a rewriting tool to play with network
calculus”. In: International Symposium On Leveraging Applications
of FormalMethods, Verification andValidation. Springer. 2010, pp. 137–
151.

https://doi.org/10.1109/LNET.2022.3150649
https://doi.org/10.1109/INFCOM.2010.5461912
https://doi.org/10.1109/LNET.2021.3067766

BIBLIOGRAPHY 275

[BPC09] AnneBouillard, LinhT. X. Phan, and Samarjit Chakraborty. “Lightweight
Modeling of Complex State Dependencies in Stream Processing
Systems”. In:Proceedings of the 2009 15th IEEE Symposium onReal-
Time and Embedded Technology and Applications. RTAS ’09. USA:
IEEE Computer Society, 2009, pp. 195–204. isbn: 9780769536361.
doi: 10.1109/RTAS.2009.27. url: https://doi.org/10.1109/
RTAS.2009.27.

[BRD22] Marc Boyer, Pierre Roux, and Hugo Daigmorte. “Checking va-
lidity of the min-plus operations involved in the analysis of a
real-time embeddednetwork”. In:ERTS 2022-11th EuropeanCongress
Embedded Real Time System. 2022.

[BS12] Anne Bouillard and Giovanni Stea. “Exact worst-case delay for
FIFO-multiplexing tandems”. In: 6th International ICST Confer-
ence on Performance EvaluationMethodologies and Tools. IEEE. 2012,
pp. 158–167.

[BS14] Steffen Bondorf and Jens B. Schmitt. “The DiscoDNC v2 – A
Comprehensive Tool for Deterministic Network Calculus”. In:
Proceedings of the International Conference on Performance Evalua-
tionMethodologies and Tools. VALUETOOLS ’14.Dec. 2014, pp. 44–
49. url: https://dl.acm.org/citation.cfm?id=2747659.

[BS15] Anne Bouillard and Giovanni Stea. “Exact worst-case delay in
FIFO-multiplexing feed-forwardnetworks”. In: IEEE/ACMTrans-
actions on Networking (TON) 23.5 (2015), pp. 1387–1400.

[BS17] Michael Beck and Jens Schmitt. “Generalizingwindowflowcon-
trol in bivariate network calculus to enable leftover service in
the loop”. In: Performance Evaluation 114 (2017), pp. 45–55. issn:
0166-5316. doi: https://doi.org/10.1016/j.peva.2017.04.
008. url: https://www.sciencedirect.com/science/article/
pii/S0166531616301808.

[BSF09] Henri Bauer, Jean-Luc Scharbarg, and Christian Fraboul. “Ap-
plying andoptimizing trajectory approach for performance eval-
uation of AFDX avionics network”. In: 2009 IEEE Conference on
Emerging Technologies & Factory Automation. IEEE. 2009, pp. 1–8.

[BSF10] Henri Bauer, Jean-Luc Scharbarg, andChristian Fraboul. “Worst-
case end-to-end delay analysis of an avionics AFDX network”.
In: 2010 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE 2010). IEEE. 2010, pp. 1220–1224.

https://doi.org/10.1109/RTAS.2009.27
https://doi.org/10.1109/RTAS.2009.27
https://doi.org/10.1109/RTAS.2009.27
https://dl.acm.org/citation.cfm?id=2747659
https://doi.org/https://doi.org/10.1016/j.peva.2017.04.008
https://doi.org/https://doi.org/10.1016/j.peva.2017.04.008
https://www.sciencedirect.com/science/article/pii/S0166531616301808
https://www.sciencedirect.com/science/article/pii/S0166531616301808

276 BIBLIOGRAPHY

[BSGE09] Mohamed Bakhouya, S Suboh, Jaafar Gaber, and T El-Ghazawi.
“Analytical modeling and evaluation of on-chip interconnects
using network calculus”. In: 2009 3rd ACM/IEEE International
Symposium on Networks-on-Chip. IEEE. 2009, pp. 74–79.

[BSS12a] Marc Boyer,Giovanni Stea, andWilliamMangoua Sofack. “Deficit
Round Robin with network calculus”. In: 6th International ICST
Conference on Performance EvaluationMethodologies and Tools. 2012,
pp. 138–147. doi: 10.4108/valuetools.2012.250202.

[BSS12b] Marc Boyer,Giovanni Stea, andWilliamMangoua Sofack. “Deficit
Round Robin with network calculus”. In: 6th International ICST
Conference on Performance EvaluationMethodologies and Tools, Cargese,
Corsica, France, October 9-12, 2012. 2012, pp. 138–147. doi: 10 .
4108/valuetools.2012.250202. url: https://doi.org/10.
4108/valuetools.2012.250202.

[BT07] Anne Bouillard and Eric Thierry. An Algorithmic Toolbox for Net-
work Calculus. Research Report RR-6094. INRIA, 2007, p. 44. url:
https://hal.inria.fr/inria-00123643.

[BT08] Anne Bouillard and Éric Thierry. “An algorithmic toolbox for
network calculus”. In:Discrete EventDynamic Systems 18.1 (2008),
pp. 3–49.

[BT16] Anne Bouillard and Eric Thierry. “Tight performance bounds in
the worst-case analysis of feed-forward networks”. In: Discrete
Event Dynamic Systems 26.3 (2016), pp. 383–411. doi: 10.1007/
s10626-015-0213-2. url: https://doi.org/10.1007/s10626-
015-0213-2.

[CBL06] FlorinCiucu,Almut Burchard, and JörgLiebeherr. “Scaling prop-
erties of statistical end-to-end bounds in the network calculus”.
In: IEEE Transactions on Information Theory 52.6 (2006), pp. 2300–
2312.

[Cha00] Cheng-ShangChang.Performance guarantees in communication net-
works. New York, USA: Springer-Verlang, 2000.

[Cha97] Cheng-shang Chang. “On Deterministic Traffic Regulation and
Service Guarantees: A Systematic Approach by Filtering”. In:
IEEE Transactions on Information Theory 44 (1997), pp. 1096–1107.

https://doi.org/10.4108/valuetools.2012.250202
https://doi.org/10.4108/valuetools.2012.250202
https://doi.org/10.4108/valuetools.2012.250202
https://doi.org/10.4108/valuetools.2012.250202
https://doi.org/10.4108/valuetools.2012.250202
https://hal.inria.fr/inria-00123643
https://doi.org/10.1007/s10626-015-0213-2
https://doi.org/10.1007/s10626-015-0213-2
https://doi.org/10.1007/s10626-015-0213-2
https://doi.org/10.1007/s10626-015-0213-2

BIBLIOGRAPHY 277

[CNS22a] Vlad-Cristian Constantin, Paul Nikolaus, and Jens Schmitt. “Im-
provingPerformance Bounds forWeightedRound-Robin Sched-
ulers under Constrained Cross-Traffic”. In: Proceedings IFIP Net-
working 2022Conference (NETWORKING’22). ISBN978-3-903176-
48-5. Catania, Italy: IEEE, June 2022.doi: 10.23919/IFIPNetworking55013.
2022.9829772. url: /discofiles/publicationsfiles/CNS22-
1.pdf.

[CNS22b] Vlad-CristianConstantin, PaulNikolaus, and Jens Schmitt. “Orig-
inal and Erratum: Improving Performance Bounds forWeighted
Round-Robin Schedulers under Constrained Cross-Traffic”. In:
arXiv,Dec. 2022.doi: 10.48550/ARXIV.2202.08381.url: /discofiles/
publicationsfiles/CNS22-1_erratum.pdf.

[Cru91a] Rene L Cruz. “A calculus for network delay, part I: Network el-
ements in isolation”. In: IEEE Transactions on information theory
37.1 (1991), pp. 114–131.

[Cru91b] Rene L Cruz. “A calculus for network delay, part II: Network
analysis”. In: IEEE Transactions on information theory 37.1 (1991),
pp. 132–141.

[CS12] Florin Ciucu and Jens Schmitt. “Perspectives on network calcu-
lus: no free lunch, but still good value”. In: Proceedings of the
ACM SIGCOMM 2012 conference on Applications, technologies, ar-
chitectures, and protocols for computer communication. 2012, pp. 311–
322.

[CSEF06] Hussein Charara, J-L Scharbarg, Jérôme Ermont, and Christian
Fraboul. “Methods for bounding end-to-end delays on anAFDX
network”. In: 18th Euromicro Conference onReal-Time Systems (ECRTS’06).
IEEE. 2006, 10–pp.

[FE17] HEFeng andLI Ershuai. “Deterministic bound for avionics switched
networks according to networking features using network calcu-
lus”. In:Chinese Journal of Aeronautics 30.6 (2017), pp. 1941–1957.

[Fid06] Markus Fidler. “An end-to-end probabilistic network calculus
with moment generating functions”. In: 200614th IEEE Interna-
tional Workshop on Quality of Service. IEEE. 2006, pp. 261–270.

[GC21] Liang Guo and Paul Congdon. “IEEE 802 Nendica Report: In-
telligent Lossless Data Center Networks”. In: IEEE SA Indus-
try Connections–IEEE 802 Nendica Report: Intelligent Lossless Data
Center Networks (2021), pp. 1–44.

https://doi.org/10.23919/IFIPNetworking55013.2022.9829772
https://doi.org/10.23919/IFIPNetworking55013.2022.9829772
/discofiles/publicationsfiles/CNS22-1.pdf
/discofiles/publicationsfiles/CNS22-1.pdf
https://doi.org/10.48550/ARXIV.2202.08381
/discofiles/publicationsfiles/CNS22-1_erratum.pdf
/discofiles/publicationsfiles/CNS22-1_erratum.pdf

278 BIBLIOGRAPHY

[GM18] Frédéric Giroudot and Ahlem Mifdaoui. “Buffer-aware worst-
case timing analysis of wormhole NoCs using network calcu-
lus”. In: 2018 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS). IEEE. 2018, pp. 37–48.

[GM19] Frederic Giroudot and Ahlem Mifdaoui. “Tightness and com-
putation assessment of worst-case delay bounds in wormhole
networks-on-chip”. In: Proceedings of the 27th International Con-
ference on Real-Time Networks and Systems. 2019, pp. 19–29.

[GSSAA19] Prateesh Goyal, Preey Shah, Naveen Kr. Sharma, Mohammad
Alizadeh, and Thomas E. Anderson. “Backpressure Flow Con-
trol”. In: Proceedings of the 2019 Workshop on Buffer Sizing. BS ’19.
PaloAlto, CA,USA:Association forComputingMachinery, 2019.
isbn: 9781450377454.doi: 10.1145/3375235.3375239.url: https:
//doi.org/10.1145/3375235.3375239.

[GY13] Nan Guan and Wang Yi. “Finitary real-time calculus: Efficient
performance analysis of distributed embedded systems”. In: 2013
IEEE 34th Real-Time Systems Symposium. 2013, pp. 330–339.

[IEEE754] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-
2019 (Revision of IEEE 754-2008) (2019), pp. 1–84. doi: 10.1109/
IEEESTD.2019.8766229.

[JL08] Yuming Jiang and Yong Liu. Stochastic network calculus. Vol. 1.
Springer, 2008.

[KGNMP18] Anders EllersgaardKalør, ReneGuillaume, Jimmy JessenNielsen,
Andreas Mueller, and Petar Popovski. “Network slicing in in-
dustry 4.0 applications:Abstractionmethods and end-to-end anal-
ysis”. In: IEEE Transactions on Industrial Informatics 14.12 (2018),
pp. 5419–5427.

[LBS16] Kai Lampka, Steffen Bondorf, and Jens Schmitt. “Achieving effi-
ciency without sacrificing model accuracy: Network calculus on
compact domains”. In: 2016 IEEE 24th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). IEEE. 2016, pp. 313–318.

[LBSGY17] Kai Lampka, Steffen Bondorf, Jens B. Schmitt, Nan Guan, and
Wang Yi. “Generalized Finitary Real-Time Calculus”. In: Pro-
ceedings of the 36th IEEE International Conference on Computer Com-
munications (INFOCOM 2017). 2017.

https://doi.org/10.1145/3375235.3375239
https://doi.org/10.1145/3375235.3375239
https://doi.org/10.1145/3375235.3375239
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229

BIBLIOGRAPHY 279

[LCH14] Euriell LeCorronc, BertrandCottenceau, andLaurentHardouin.
“Container of (min,+)-linear systems”. In: Discrete Event Dy-
namic Systems 24.1 (2014), pp. 15–52.

[LHL17a] Natchanon Luangsomboon, Robert Hesse, and Jorg Liebeherr.
“Fast Min-plus Convolution and Deconvolution on GPUs”. In:
Proceedings of the 11th EAI International Conference on Performance
Evaluation Methodologies and Tools. VALUETOOLS 2017. Venice,
Italy: Association for Computing Machinery, 2017, pp. 126–131.
isbn: 9781450363464.doi: 10.1145/3150928.3150958.url: https:
//doi.org/10.1145/3150928.3150958.

[LHL17b] Natchanon Luangsomboon, Robert Hesse, and Jorg Liebeherr.
“Fast Min-plus Convolution and Deconvolution on GPUs”. In:
Proceedings of the 11th EAI International Conference on Performance
Evaluation Methodologies and Tools. VALUETOOLS 2017. Venice,
Italy: Association for Computing Machinery, 2017, pp. 126–131.
isbn: 9781450363464.doi: 10.1145/3150928.3150958.url: https:
//doi.org/10.1145/3150928.3150958.

[Lie17] Jörg Liebeherr. “Duality of the max-plus and min-plus network
calculus”. In: Foundations and Trends in Networking 11.3-4 (2017),
pp. 139–282. issn: 15540588. doi: 10.1561/1300000059.

[LMMS06] LucianoLenzini, LindaMartorini, EnzoMingozzi, andGiovanni
Stea. “Tight end-to-end per-flow delay bounds in FIFO multi-
plexing sink-tree networks”. In: Performance Evaluation 63.9-10
(2006), pp. 956–987.

[LT01] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a the-
ory of deterministic queuing systems for the internet. Berlin, Ger-
many: Springer Science & Business Media, 2001.

[MHG20] Lisa Maile, Kai-Steffen Hielscher, and Reinhard German. “Net-
work Calculus Results for TSN: An Introduction”. In: 2020 Infor-
mationCommunication Technologies Conference (ICTC). IEEE. 2020,
pp. 131–140.

[MSB19] Ehsan Mohammadpour, Eleni Stai, and Jean-Yves Le Boudec.
“Improved delay bound for a service curve element with known
transmission rate”. In: IEEENetworking Letters 1.4 (2019), pp. 156–
159.

[MSB22] Ehsan Mohammadpour, Eleni Stai, and Jean-Yves Le Boudec.
“Improved Network Calculus Delay Bounds in Time-Sensitive
Networks”. In: arXiv preprint arXiv:2204.10906 (2022).

https://doi.org/10.1145/3150928.3150958
https://doi.org/10.1145/3150928.3150958
https://doi.org/10.1145/3150928.3150958
https://doi.org/10.1145/3150928.3150958
https://doi.org/10.1145/3150928.3150958
https://doi.org/10.1145/3150928.3150958
https://doi.org/10.1561/1300000059

280 BIBLIOGRAPHY

[PLSK11] Victor Pollex, Henrik Lipskoch, Frank Slomka, and Steffen Koll-
mann. “Runtime improved computation of path latencies with
the real-time calculus”. In:Proceedings of the 1st InternationalWork-
shop on Worst-Case Traversal Time. 2011, pp. 58–65.

[PS20] Vitaly G. Promyslov and Kirill V. Semenkov. “Assessment of de-
terministic delay bounds for aDoS-attack preventiondevicewith
a staticwindowflowcontrol”. In: IFAC-PapersOnLine 53.2 (2020).
21st IFACWorldCongress, pp. 11089–11093. issn: 2405-8963.doi:
https: // doi .org / 10. 1016 /j . ifacol. 2020 .12 . 251. url:
https : / / www . sciencedirect . com / science / article / pii /
S2405896320305280.

[PS22] Victor Pollex and Frank Slomka. “A Mathematical Comparison
Between Response-Time Analysis and Real-Time Calculus for
Fixed-Priority Preemptive Scheduling”. In: 34th Euromicro Con-
ference on Real-Time Systems (ECRTS 2022). Ed. by Martina Mag-
gio. Vol. 231. Leibniz International Proceedings in Informatics
(LIPIcs).Dagstuhl, Germany: SchlossDagstuhl – Leibniz-Zentrum
für Informatik, 2022, 7:1–7:25. isbn: 978-3-95977-239-6. doi: 10.
4230/LIPIcs.ECRTS.2022.7. url: https://drops.dagstuhl.
de/opus/volltexte/2022/16324.

[QLD09] Yue Qian, Zhonghai Lu, and Wenhua Dou. “Analysis of worst-
case delay bounds for best-effort communication in wormhole
networks on chip”. In: Networks-on-Chip, 2009. NoCS 2009. 3rd
ACM/IEEE International Symposium on. IEEE. 2009, pp. 44–53.

[QLD10] Yue Qian, Zhonghai Lu, and Wenhua Dou. “Analysis of worst-
case delay bounds for on-chip packet-switching networks”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 29.5 (2010), pp. 802–815.

[RQB22] Pierre Roux, Sophie Quinton, and Marc Boyer. “A formal link
between response time analysis and network calculus”. In: 34th
Euromicro Conference on Real-Time Systems ECRTS 2022. 2022.

[RRB21] Lucien Rakotomalala, Pierre Roux, and Marc Boyer. “Verifying
Min-Plus Computations with Coq”. In: NASA Formal Methods.
Ed. by Aaron Dutle, Mariano M. Moscato, Laura Titolo, César
A. Muñoz, and Ivan Perez. Cham: Springer International Pub-
lishing, 2021, pp. 287–303. isbn: 978-3-030-76384-8.

https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.251
https://www.sciencedirect.com/science/article/pii/S2405896320305280
https://www.sciencedirect.com/science/article/pii/S2405896320305280
https://doi.org/10.4230/LIPIcs.ECRTS.2022.7
https://doi.org/10.4230/LIPIcs.ECRTS.2022.7
https://drops.dagstuhl.de/opus/volltexte/2022/16324
https://drops.dagstuhl.de/opus/volltexte/2022/16324

BIBLIOGRAPHY 281

[RSLSSZZAH21] Falk Rehm, Jörg Seitter, Jan-Peter Larsson, Selma Saidi, Giovanni
Stea, Raffaele Zippo, Dirk Ziegenbein, Matteo Andreozzi, and
ArneHamann. “TheRoad towards PredictableAutomotiveHigh-
Performance Platforms”. In: 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE. 2021, pp. 1915–
1924.

[RTaWa] RealTime-at-Work.Minplus-Console V1.5.3UserManual.url: https:
//www.realtimeatwork.com/minplus-console/RTaW-MinplusConsole-
UserManual.pdf (visited on 01/09/2023).

[RTaWb] RealTime-at-Work.Online Min-Plus Interpreter for Network Calcu-
lus. url: http://realtimeatwork.com/minplus-playground
(visited on 11/01/2021).

[RTaWc] RealTime-at-Work. RTaW-Pegase (min,+) library. url: https://
www.realtimeatwork.com/rtaw-pegase-libraries/ (visited
on 04/05/2022).

[SB17] Philipp Schon and Steffen Bondorf. “Towards Unified Tool Sup-
port for Real-time Calculus &Deterministic Network Calculus”.
In: Proceedings of the Euromicro Conference on Real-Time Systems,
Work-in-Progress Session. ECRTS ’17. June 2017.

[SBP17] Jens Schmitt, Steffen Bondorf, andWint Yi Poe. “The sensor net-
work calculus as key to the design of wireless sensor networks
with predictable performance”. In: Journal of Sensor and Actuator
Networks 6.3 (2017), p. 21.

[SLSF18] Aakash Soni, XiaotingLi, Jean-Luc Scharbarg, andChristian Fraboul.
“Optimizing Network Calculus for Switched Ethernet Network
withDeficit RoundRobin”. In: 2018 IEEEReal-Time Systems Sym-
posium (RTSS). 2018, pp. 300–311. doi: 10.1109/RTSS.2018.
00046.

[SPLT10] Urban Suppiger, SimonPerathoner, Kai Lampka, andLothar Thiele.
A simple approximation method for reducing the complexity of Mod-
ular Performance Analysis. TIK-Report 329. Computer Engineer-
ing andNetworks Laboratory Swiss Federal Institute of Technol-
ogy (ETH): Computer Engineering and Networks Laboratory –
Swiss Federal Institute of Technology (ETH), Aug. 2010.

[SR05] Jens B Schmitt andUtzRoedig. “Sensor network calculus–a frame-
work for worst case analysis”. In: International Conference on Dis-
tributed Computing in Sensor Systems. Springer. 2005, pp. 141–154.

https://www.realtimeatwork.com/minplus-console/RTaW-MinplusConsole-UserManual.pdf
https://www.realtimeatwork.com/minplus-console/RTaW-MinplusConsole-UserManual.pdf
https://www.realtimeatwork.com/minplus-console/RTaW-MinplusConsole-UserManual.pdf
http://realtimeatwork.com/minplus-playground
https://www.realtimeatwork.com/rtaw-pegase-libraries/
https://www.realtimeatwork.com/rtaw-pegase-libraries/
https://doi.org/10.1109/RTSS.2018.00046
https://doi.org/10.1109/RTSS.2018.00046

282 BIBLIOGRAPHY

[SSB22] Alexander Scheffler, Jens Schmitt, and Steffen Bondorf. “Search-
ing for Upper Delay Bounds in FIFOMultiplexing Feedforward
Networks”. In: Proceedings of the 30th International Conference on
Real-Time Networks and Systems. 2022, pp. 230–241.

[SSH07] Henrik Schioler, Hans P Schwefel, andMartin B Hansen. “Cync:
a matlab/simulink toolbox for network calculus”. In: 2nd Inter-
national ICST Conference on Performance Evaluation Methodologies
and Tools. 2007.

[SZF08] Jens B Schmitt, Frank A Zdarsky, and Markus Fidler. “Delay
bounds under arbitrary multiplexing: When network calculus
leaves you in the lurch...” In: IEEE INFOCOM 2008-The 27th Con-
ference on Computer Communications. IEEE. 2008, pp. 1669–1677.

[SZT07] Jens B Schmitt, Frank A Zdarsky, and Lothar Thiele. “A compre-
hensive worst-case calculus for wireless sensor networks with
in-network processing”. In: 28th IEEE International Real-Time Sys-
tems Symposium (RTSS 2007). IEEE. 2007, pp. 193–202.

[TB21] SeyedMohammadhossein Tabatabaee and Jean-Yves Le Boudec.
“Deficit Round-Robin: A Second Network Calculus Analysis”.
In: 2021 IEEE 27th Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS). 2021, pp. 171–183. doi: 10.1109/
RTAS52030.2021.00022.

[TCN00] Lothar Thiele, Samarjit Chakraborty, andMartinNaedele. “Real-
time calculus for scheduling hard real-time systems”. In: 2000
IEEE International Symposium on Circuits and Systems (ISCAS).
Vol. 4. IEEE. 2000, pp. 101–104.

[TL22] SeyedMohammadhossein Tabatabaee and Jean-Yves Le Boudec.
“Deficit Round-Robin: A Second Network Calculus Analysis”.
In: IEEE/ACM Transactions on Networking (2022).

[TLB21] SeyedMohammadhossein Tabatabaee, Jean-Yves LeBoudec, and
Marc Boyer. “Interleaved weighted round-robin: A network cal-
culus analysis”. In: IEICE Transactions on Communications 104.12
(2021), pp. 1479–1493.

[Wan06] ErnestoWandeler. “Modular performance analysis and interface-
baseddesign for embedded real-time systems”. PhD thesis. ETH
Zurich, 2006.

https://doi.org/10.1109/RTAS52030.2021.00022
https://doi.org/10.1109/RTAS52030.2021.00022

BIBLIOGRAPHY 283

[WCHLL21] Shie-Yuan Wang, Yo-Ru Chen, Hsien-Chueh Hsieh, Ruei-Syun
Lai, and Yi-Bing Lin. “A Flow Control Scheme Based on Per
Hop and Per Flow in Commodity Switches for Lossless Net-
works”. In: IEEE Access 9 (2021), pp. 156013–156029. doi: 10.
1109/ACCESS.2021.3129595.

[WTa] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC)
Toolbox. url: http://www.mpa.ethz.ch/Rtctoolbox (visited on
12/17/2022).

[WTb] Ernesto Wandeler and Lothar Thiele. RTC Toolbox Tutorial. url:
https://www.mpa.ethz.ch/tutorial/Tutorial.html (visited
on 12/17/2022).

[ZCWW19] Jiayi Zhang, Lihao Chen, Tongtong Wang, and Xinyuan Wang.
“Analysis of TSN for industrial automation based on network
calculus”. In: 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE. 2019, pp. 240–
247.

[ZHLC20] Boyang Zhou, Isaac Howenstine, Siraphob Limprapaipong, and
Liang Cheng. “A Survey on Network Calculus Tools for Net-
work Infrastructure inReal-Time Systems”. In: IEEEAccess 8 (2020),
pp. 223588–223605. doi: 10.1109/ACCESS.2020.3043600.

[ZNS23a] Raffaele Zippo, Paul Nikolaus, and Giovanni Stea. “Isospeed:
Improving (min,+)Convolution byExploiting (min,+)/(max,+)
Isomorphism”. In: 35th Euromicro Conference on Real-Time Sys-
tems. 2023.

[ZNS23b] Raffaele Zippo, Paul Nikolaus, and Giovanni Stea. “Isospeed:
Improving (min,+)Convolution byExploiting (min,+)/(max,+)
Isomorphism (Artifact)”. In: Dagstuhl Artifacts Series 9 (2023).

[ZNS23c] Raffaele Zippo, Paul Nikolaus, and Giovanni Stea. “Extending
theNetworkCalculusAlgorithmic Toolbox forUltimately Pseudo-
Periodic Functions: Pseudo-Inverse and Composition”. In: Dis-
crete EventDynamic Systems (AcceptedDecember 2022, Yet to ap-
pear as of July 2023). doi: 10.1007/s10626-022-00373-5.

[ZPZDB21] Luxi Zhao, Paul Pop, Zhong Zheng, Hugo Daigmorte, andMarc
Boyer. “Latency Analysis of Multiple Classes of AVB Traffic in
TSN With Standard Credit Behavior Using Network Calculus”.
In: IEEE Trans. Ind. Electron. 68.10 (2021), pp. 10291–10302. doi:
10.1109/TIE.2020.3021638. url: https://doi.org/10.1109/
TIE.2020.3021638.

https://doi.org/10.1109/ACCESS.2021.3129595
https://doi.org/10.1109/ACCESS.2021.3129595
http://www.mpa.ethz.ch/Rtctoolbox
https://www.mpa.ethz.ch/tutorial/Tutorial.html
https://doi.org/10.1109/ACCESS.2020.3043600
https://doi.org/10.1007/s10626-022-00373-5
https://doi.org/10.1109/TIE.2020.3021638
https://doi.org/10.1109/TIE.2020.3021638
https://doi.org/10.1109/TIE.2020.3021638

284 BIBLIOGRAPHY

[ZSa] Raffaele Zippo andGiovanni Stea.Example of non-terminating com-
putation using RTC Toolbox. url: https://gist.github.com/
rzippo/8a7575b5517db8d9f871171f6ce08ef9.

[ZSb] Raffaele Zippo and Giovanni Stea. Nancy library for Network Cal-
culus. url: http://nancy.unipi.it/.

[ZSc] Raffaele Zippo and Giovanni Stea.Nancy packages on NuGet. url:
https://www.nuget.org/packages/Unipi.Nancy/.

[ZSd] Raffaele Zippo andGiovanni Stea.Nancy source repository onGitHub.
url: https://github.com/rzippo/nancy.

[ZS22] Raffaele Zippo and Giovanni Stea. “Nancy: An efficient parallel
Network Calculus library”. In: SoftwareX 19 (2022). doi: https:
//doi.org/10.1016/j.softx.2022.101178. url: https://www.
sciencedirect.com/science/article/pii/S235271102200108X.

[ZS23] Raffaele Zippo and Giovanni Stea. “Computationally efficient
worst-case analysis of flow-controlled networks with network
calculus”. In: IEEE Transactions on Information Theory 69.4 (2023),
pp. 2664–2690.

[ZYD11] Lianming Zhang, Jianping Yu, and Xiaoheng Deng. “Modelling
the guaranteed QoS for wireless sensor networks: a network cal-
culus approach”. In: EURASIP Journal on Wireless Communica-
tions and Networking 2011.1 (2011), pp. 1–14.

https://gist.github.com/rzippo/8a7575b5517db8d9f871171f6ce08ef9
https://gist.github.com/rzippo/8a7575b5517db8d9f871171f6ce08ef9
http://nancy.unipi.it/
https://www.nuget.org/packages/Unipi.Nancy/
https://github.com/rzippo/nancy
https://doi.org/https://doi.org/10.1016/j.softx.2022.101178
https://doi.org/https://doi.org/10.1016/j.softx.2022.101178
https://www.sciencedirect.com/science/article/pii/S235271102200108X
https://www.sciencedirect.com/science/article/pii/S235271102200108X

Colophon
This document was typeset in LaTeX using the template provided by University of
Florence. Code listings were typeset using minted; plots were typeset using TikZ
and pgfplots; diagrams are produced with draw.io (now diagrams.net) and the

custom package drawio.sty (hosted on GitHub repository drawio-latex).

https://github.com/rzippo/drawio-latex

	Contents
	Acronyms
	Introduction and Background
	Introduction and Motivation
	Selected Use Cases of DNC
	Fundamentals of Deterministic Network Calculus
	(min,+) and (max,+) algebra
	Networks with flow control
	Round-robin schedulers in DNC
	Real-Time Calculus

	Mathematical Model
	Foreword
	The UPP model
	Minimum of functions in U
	(min,+) convolution of functions in U
	Other (min,+) operations
	Subadditive closure
	(max,+) operators
	Plain and ultimately plain functions

	Used Results
	Continuity and (•, +) convolution
	Subadditive functions
	Upper and lower pseudoinverses
	Isomorphism between (min,+) and (max,+) algebra

	Related Works
	Research Statement
	Efficient subadditive convolutions: flow-controlled tandem
	Extending the algorithmic toolbox: Interleaved Weighted Round Robin
	Improving convolution runtime using isomorphism

	Contribution
	Overview
	The Nancy Library
	Choice of language and framework
	Numerical types
	Layered architecture
	Implemented operators
	The Cut algorithm
	Implementing the by-curve (min,+) convolution
	Implementing the by-sequence (min,+) convolution
	Lower envelope algorithm for (min,+) convolution
	Inheritance and specialization of algorithms
	Testing
	Publication
	Support for notebooks

	Useful Extensions
	Sampling at or near a time t
	Equivalence of two curves
	Properties: continuity, subadditivity, etc.
	Closures: non-negative, non-decreasing, etc.
	Formatting as JSON, C#, TikZ

	Extending the Algorithmic Toolbox: Lower and Upper Pseudoinverses
	Properties of pseudoinverses of functions of U
	By-sequence algorithm for pseudoinverses
	By-curve algorithm for pseudoinverses
	Corner cases: UC and UI functions

	Extending the Algorithmic Toolbox: Composition
	Properties of composition of functions of U
	By-sequence algorithm for composition
	By-curve algorithm for composition
	Example study on IWRR scheduler

	Representation Minimization
	Minimization of the period
	Minimization of the transient
	Performance evaluation

	Improving (min,+) Convolution of Subadditive Curves
	Improving convolution of subadditive functions with dominance
	Performance evaluation

	Isospeed: Algorithmic Improvements through Isomorphism
	Explaining the algorithmic improvements via isomorphism
	Isomorphism for restricted functions
	Exploiting the isomorphism to speed up the (min,+) convolution
	Exploiting the isomorphism to speed up the (max,+) convolution

	Comparison With RTC Toolbox
	Floating point numbers
	Floating point approximations and hyper-period explosion
	Conclusion

	Conclusion and Future Works

	Appendices
	Generator Pattern and yield
	The generator pattern via examples
	The generator pattern in C#

	UPP properties for minimum and (min,+) convolution
	Minimum
	(min,+) convolution

	Continuity and (•, +) Convolution
	Note on the non-completeness of Q
	Attainability and left-continuity of (min,+) convolution
	Attainability and left-continuity of (max,+) convolution
	Both functions must be *-continuous

	Pseudoinverses
	Differences in pseudoinverses definitions
	Properties of pseudoinverses
	UPP properties of pseudoinverses
	Calculation of lower and upper pseudoinverses

	Composition
	UPP properties of composition
	Composition of Ultimately Constant (UC) functions

	Algorithmic Improvements through Isomorphism
	Isomorphism of convolution for functions of U
	Isomorphism of convolution for restricted functions
	Exploiting the isomorphism to speed up the (min,+) convolution
	Exploiting the isomorphism to speed up the (max,+) convolution

	Other Proofs
	Equivalence of UA definitions
	Subadditivity and superadditivity checks
	Clarifying steps in app:Isospeed

	System Configurations
	Software configuration
	Hardware configurations

	Index of notation
	Publications
	Bibliography

