
University of Florence
Department of Information Engineering

Ph.D. Program in Smart Computing

Graph Neural Networks

for Advanced Molecular

Data Analysis

Candidate

Niccolò Pancino

Supervisor

Prof. Monica Bianchini

PhD Coordinator

Prof. Stefano Berretti

Cycle XXXV, years 2019-2023

Ph.D. Program in Smart Computing

Unversity of Florence, University of Pisa, University of Siena

PhD Thesis Committee:

Prof. Marco Maggini

Prof. Marcello Sanguineti

Prof. Thomas Gärtner

Prof. Paolo Nesi

Prof. Luca Oneto

Prof. Filippo Maria Bianchi

Thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Smart Computing.

Abstract

Graphs are data structures composed of collections of nodes and edges, which

can be used to represent objects, or patterns, along with their relationships.

Deep Learning techniques, and in particular Deep Neural Networks, have re-

cently known a great development and have been employed in solving tasks

of increasing complexity and variety. In particular, Graph Neural Networks

(GNNs) have been extensively studied in the last decade, with many theo-

retical and practical innovations. Indeed, their main feature is the capability

of processing graphs with minimal loss of structural information, which has

caused GNNs to be applied to an increasing number of problems of different

nature, leading to the development of new theories, models, and techniques.

In particular, biological data proved to be a very suitable application field

for GNNs, with metabolic networks, molecules, and proteins representing

just few examples of data that are naturally encoded as graphs.

In this thesis, a software framework for implementing GNN models was

developed and discussed. Furthermore, some applications of GNNs to molec-

ular data, relevant both from the point of view of Deep Learning and Bioin-

formatics, are discussed. The main focus of the work is on the drug side–effect

prediction problem. This is a challenging task, since predictions can be based

on homogeneous as well as heterogeneous and complex data, with graphs

collecting nodes and edges representing different entities and relationships.

On the other side, protein–protein interfaces can be detected by identifying

the maximum clique in a correspondence graph of protein secondary struc-

tures, a problem which can be solved with Layered Graph Neural Networks

(LGNNs). Promising experimental outcomes offer valuable insights and per-

mit drawing interesting conclusions about the abilities of GNNs in analyzing

molecular data. Given the growing interest of the AI research community

on graph–based models, these applications, inspired by real–world problems,

constitute a very good testing ground for evaluating GNN computational ca-

3

4

pabilities, in order to improve and evolve the actual models and extend them

to more complex tasks, particularly in the biological field.

Contents

1 Introduction 11

1.1 GNNs in Bioinformatics . 11

1.2 Thesis Summary . 13

1.2.1 Main Contributions of the Thesis 16

1.2.2 Structure of the Thesis 17

2 Deep Learning on Structured Data 19

2.1 Deep Learning . 20

2.1.1 From Artificial Intelligence to Deep Learning 20

2.1.2 Learning with Deep Models 23

2.2 Machine Learning for Structured Data 24

2.2.1 Structure–Oriented Models 26

2.3 Graph Neural Networks . 28

2.3.1 The Graph Neural Network Model 29

2.3.2 Learning with Graph Neural Networks 31

2.3.3 Layered Graph Neural Networks 32

2.3.4 Composite Graph Neural Networks 33

2.3.5 Approximation Power of GNNs 35

2.3.6 Applications of Graph–based Models 37

2.4 Biological Problems on Graphs 38

2.4.1 Graph Data in Biology 38

2.4.2 Graphs in Drug Discovery 39

2.4.3 Bioinformatics and GNNs 39

3 ML Applications to Molecular Data 43

3.1 ML in Drug Discovery . 43

3.2 Drug Side–Effect Prediction 44

3.3 Prediction of Protein–Protein Interfaces 45

5

6 CONTENTS

4 GNN keras 47

4.1 Motivation and Significance 48

4.2 Software Description . 49

4.2.1 GraphObject and GraphTensor 51

4.2.2 GraphSequencer . 53

4.3 Conclusions . 53

5 Drug Side–Effect Prediction with GNN 55

5.1 Mixed Inductive–Transductive Learning 57

5.2 Data Sources . 58

5.2.1 PubChem . 59

5.2.2 Ensembl . 59

5.2.3 Gene Ontology . 60

5.2.4 STITCH . 61

5.2.5 HuRI . 61

5.2.6 SIDER . 62

5.3 Modular Multi–Source Prediction 62

5.3.1 Dataset . 63

5.3.2 Model . 66

5.3.3 Experimental setup 67

5.3.4 Results and Discussion 69

5.3.5 Comparison with Other Models 69

5.3.6 Ablation Study . 70

5.3.7 Usability . 72

5.4 DSE prediction on Molecular Graphs 74

5.4.1 Dataset . 75

5.4.2 Model . 77

5.4.3 Experimental Setup 77

5.4.4 Results and Discussion 79

5.4.5 Comparison with Other Models 80

5.4.6 Usability . 81

5.5 DSE Prediction with DL Molecular Embedding 82

5.5.1 Dataset . 84

5.5.2 Model . 85

5.5.3 Experimental Setup 87

5.5.4 Results and Discussion 89

5.5.5 Comparison with Other Models 90

CONTENTS 7

5.5.6 Ablation Study . 91

5.5.7 Usability . 93

5.6 Conclusions and Future Work 93

6 GNN for the prediction of PPI 97

6.1 Dataset . 98

6.2 Model . 101

6.3 Experimental Setup . 101

6.4 Results and Discussion . 102

6.5 Conclusions and Future Work 103

7 Other Works 105

7.1 GNN–Based Caregiver Matching 105

7.2 Multi–Modal Data Analysis 107

7.2.1 Visual Sequential Search Test 107

7.2.2 Validation of Ribo–Seq Profiles 109

7.3 DL Applications for Image Analysis 111

7.3.1 Dragonfly Action Recognition 111

7.3.2 Oocyte Segmentation 113

8 Conclusions and Future Developments 117

8 CONTENTS

List of acronyms used in the

Thesis

AI : Artificial Intelligence

ANN : Artificial Neural Network

ASA : Accessible Surface Area

CGNN : Composite Graph Neural Network

CNN : Convolutional Neural Network

DL : Deep Learning

DNN : Deep Neural Network

DSE : Drug Side–Effect

GAN : Generative Adversarial Network

GAT : Graph Attention neTwork

GCN : Graph Convolution Network

GNN : Graph Neural Network

MGSEP : Molecular Graph Side–Effect Predictor

LGNN : Layered Graph Neural Network

LSTM : Long Short Term Memory

MG2N2 : Molecular Generative Graph Neural Network

ML : Machine Learning

MLP : Multi–Layer Perceptron

MPNN : Message Passing Neural Network

NLP : Natural Language Processing

RL : Reinforcement Learning

RNN : Recurrent Neural Network

SSE : Secondary Structure Element

SVM : Support Vector Machine

VAE : Variational AutoEncoder

9

10 CONTENTS

Chapter 1

Introduction

Machine Learning (ML) — especially if declined in the current Deep Learn-

ing (DL) framework — is an ever–evolving field which has seen many break-

through discoveries in recent years, allowing for solutions to be found for

an increasing variety and complexity of problems. Particularly, attention

is given to Graphs Neural Networks (GNNs) [1], which are a powerful tool

for understanding complex relationships within graph data, and have been

proven to be effective in a wide range of applications.

This thesis aims to explore the potential of GNNs in the field of biology

and contribute to the ongoing research in this area.

1.1 GNNs in Bioinformatics

A graph is a data structure composed of a collection of nodes and edges which

can be used to represent objects, or patterns, along with their relationships

[2]. Nodes and edges can be associated with feature vectors, describing their

attributes. Nowadays, graphs play an important role in many modern appli-

cations, since they are widely used to describe the information of interest in

many real–world problems in different fields, including physics, social science

[3], economics, and bioinformatics. For instance, for biological or chemical

data, nodes denote entities, such as atoms, proteins, or genes, while edges

represent chemical bonds, physical contacts, or metabolic interactions. Ac-

tually, graphs constitute the natural data domain in many bioinformatics

applications, such as, for instance, molecular property prediction [4], iden-

tification of interfacing amino acids in Protein–Protein Interaction (PPI)

11

12 CHAPTER 1. INTRODUCTION

[5, 6], prediction of polypharmacy side effects [7], and drug design [8]. More

generally, it can be observed that a graphical representation allows infor-

mation from different sources to be merged in a natural way (e.g. gene

regulatory networks, metabolic networks, any drugs taken) while preserving

the interactions that naturally occur in a complex biological environment.

Traditional machine learning methods are not able to process graph–

structured data in its native form, and require them to be encoded into

vectors, with an inevitable loss of useful information and preventing models

from considering the relational information inherent in the task.

GNNs are powerful connectionist models for graph–structured data, which

have become practical tools for any problem involving graphs, thanks to their

capability of processing relational data directly in graph form and calculating

an output at each node or edge, with minimal loss of information. Indeed,

GNNs assume that the input domain is represented by a set of entities and

relationships between them.

Since the seminal work in [1, 9], many GNN models have been proposed,

such as Graph Convolution Networks (GCN) [10, 11, 12], GraphSAGE [13],

and Graph Attention Networks (GATs) [14]. GNNs have been successfully

applied to a wide variety of tasks [15], spreading from computer vision [16,

17, 18] and social and recommendation systems [19, 20, 21], to biological

and chemical tasks in protein–related problems [22, 4, 23, 24] and drug—

discovery applications [25, 8].

Three types of tasks can be faced by means of GNNs, i.e. node–focused,

edge–focused, and graph–focused problems. In particular, node–focused

problems concern situations in which all the nodes of a graph, or a sub-

set of them, are associated with a target value: intuitively, an output must

be produced in correspondence of each targeted node, which can be used for

classification, regression, or clustering purposes. For example, localizing a

particular compound in a macromolecule, when the molecule is represented

as a graph, is a node–focused task. On the other hand, edge–focused prob-

lems concern tasks in which the targets are associated to the edges: the

GNN must classify, cluster, or even predict the existence of relationships

between patterns. Predicting the nature of chemical bonds between atoms

or molecules represents an edge–focused task. Finally, a graph–focused task

concerns problems in which a unique target is associated to the whole graph,

and the goal is to predict a property or to cluster the complex object repre-

sented by the graph. Predicting the mutagenicity of a particular compound

1.2. THESIS SUMMARY 13

[4] is an example of graph–focused problem.

GNNs can therefore be applied to many types of problems, in both the

regression and classification settings, as well as in both the inductive and

mixed inductive–transductive learning framework, which makes these mod-

els extremely adaptable and capable to match the extraordinary variety of

biological problems on graphs. GNNs can also be modified in order to solve

even more specific tasks: they can be used to develop graph generative mod-

els [26]; attention mechanisms can make the models explainable [27]; hi-

erarchical versions can process large graphs with complex structures [28];

composite GNNs can process heterogeneous graphs [29].

1.2 Thesis Summary

The primary objective of this thesis is to investigate the use of graph neural

networks in solving biological tasks inspired by real–world problems and

possibly related to molecular data. A comprehensive overview of the various

ML algorithms which can be applied to structured data as well as a detailed

review of the related literature in the field is provided, with a specific focus

on GNNs and biological problems which can be addressed by them, in order

to establish a solid foundation for the subsequent presentation and discussion

of the work.

Firstly, the development of a software framework for the implementation

of the original (recurrent) GNNs for a wide variety of possible scientific

applications is discussed. The software has been used in all the other research

works presented in this thesis. Four applications, which are relevant from

the point of view of ML as well as from that of bioinformatics, are then

illustrated in the following chapters.

Three applications consist in the prediction of Drug Side–Effects (DSEs)

with GNNs. Predicting side–effects is a key problem in drug discovery: an

efficient method for anticipating their occurrence could cut the costs of the

experimentation on new drug compounds, avoiding predictable failures dur-

ing clinical trials. A dataset is built for this task, which includes relevant

heterogeneous information coming from multiple well known and publicly

available online resources. The dataset consists of a single heterogeneous

graph, where genes and drugs are represented as nodes, connected by three

different sets of edges, with relationships based on gene–gene interactions,

drug–gene interactions, and drug–drug similarity. Drug nodes are associ-

14 CHAPTER 1. INTRODUCTION

ated to a set of 360 common side–effects, in a multi–class multi–label node

classification setting, exploiting a composite GNN model, specialized on het-

erogeneous graph–structured data. Since the purpose of the model is that

of predicting DSEs of new drugs based on those of previously known com-

pounds, transductive learning is exploited to better adapt the model to this

setup. Given its nature, the problem is particularly challenging in the ML

scope, providing an interesting application case of GNNs to a complex task

(multiple non–mutually exclusive classes to be predicted in parallel), on het-

erogeneous data, and in a mixed inductive–transductive setting. Results

have been promising in terms of accuracy compared to both other graph–

based models and traditional ML methods, which are not able to use rela-

tional information, showing that encoding data in a graph structure brings

an advantage over unstructured data, and that GNNs exploit the given infor-

mation better than concurrent models. The method is adaptable and can be

easily expanded to include more node attributes and edges without changing

the ML framework. However, DruGNN operates as a black–box approach,

like many other DNN–based methods: producing a much more interpretable

and trustworthy version of the model in the future would boost the usabil-

ity of the approach. The second application of GNNs for DSE prediction

is addressed as a graph–focused multi–class and multi–label classification

problem. As the drug structure can be efficiently encoded by a graph, which

retains all structural information associated with the drug and which can

also be enriched with relevant chemical features of the compound, GNNs are

employed to predict DSEs based solely on the drug molecular graph repre-

sentation. A novel dataset of molecular graphs is then introduced for the

task. The experimental results show that the DSE prediction can be effec-

tively accomplished with this method. Finally, the last application for DSE

prediction includes both the setting of the previous two applications, being

based on the same heterogeneous graph — including two types of nodes,

representing drugs and genes, and three types of edges, for drug–gene, drug–

drug, and gene–gene relationships — on which the first application is trained,

and on the molecular graph representation considered in the second one. For-

mally, the task is still a node–focused, multi–class, multi–label classification

problem: the GNN model is trained to predict the DSEs associated with the

drug nodes, by processing directly graph–structured data and by generating

neural fingerprints at learning time, which can be adapted to the task the

model is trained for. This results in further improvements over the other

1.2. THESIS SUMMARY 15

methods, showing promising performance in predicting DSEs. It is a matter

of future research to specialize the predictors, e.g. considering tissue specific

data and DSE supervisions, for more accurate and informative insights, as

well as to provide interpretability and explainability of the models, in order

to improve the usability of the approaches and to facilitate the development

of safer and more effective drugs.

The last GNN application consists in the prediction of protein–protein

interfaces. Simulating the structural conformation of a protein in a computer

environment (in silico) can be difficult and requires a significant amount of

resources. Having a reliable method for predicting interfaces could enhance

the prediction of protein’s quaternary structures and functions. By repre-

senting a pair of interacting peptides as graphs, a correspondence graph can

be created, describing their interaction and accounting for structural simi-

larities and contacts between the pair. The correspondence graph is then

analyzed in search of the maximum clique (the largest fully–connected sub–

graph within a give graph), which corresponds to the location of the interface

between the two peptides. Identifying cliques in this context can be chal-

lenging due to the imbalanced distribution of data (only a small number

of nodes belong to cliques) and the complex nature of the data structures.

GNNs provide a viable solution for dealing with this task, with their ca-

pability of approximating functions on graphs. The experimental results

show that this solution is very promising, also compared to other methods

available in the literature.

The proposed applications, additionally to their inherent relevance from

the point of view of research on molecular data, are a good testing ground for

GNNs. The first three applications are strictly correlated, as they propose

three different models in order to face the same problem. In particular,

the first application demonstrates the capabilities of GNNs in processing a

heterogeneous relational dataset, built from multiple different data sources;

the second one is based on a homogeneous relational dataset, yet it allows to

tackle the same task; finally, the third one further broadens the field of study

by including both the previously described settings. This application is more

classical, yet it allows to face a relevant biological task, and to test GNNs

on the maximum clique detection problem (known to be NP–complete) on

an unbalanced dataset. Therefore, all the presented real–world applications

allow to obtain relevant results, and to draw interesting conclusions, from

the point of view of ML.

16 CHAPTER 1. INTRODUCTION

Additionally, this thesis also explores other works, mainly related to

bioinformatics and structured data. These studies are briefly summarized

and discussed in Chapter 7. The rest of this section summarizes the con-

tributions of the thesis, presented in Section 1.2.1, and the thesis structure,

described in Section 1.2.2.

1.2.1 Main Contributions of the Thesis

The main contributions of the thesis are summarized in the following.

1. A software framework, described in the publication [A2], based on

TensorFlow 2 and Keras, for the implementation of Recurrent GNNs

in multiple application scenarios, for node–focused, edge–focused, and

graph–focused applications, for homogeneous and heterogeneous graph

processing, and for both inductive and mixed inductive–transductive

learning settings.

2. Three GNN–based DSE predictors, described in the publications [A1],

[A4], and [A7]:

(a) A novel relational dataset which integrates multiple information

sources into a network of drugs and genes, with different types of

features and connections;

(b) Two novel GNN–based predictors on such dataset, which deal

with a multi–class multi–label classification task on heterogeneous

data, both in the inductive and a mixed inductive–transductive

learning framework;

(c) Ablation studies on DSEs and data sources, which underline their

importance for the learning process;

(d) Experimental validation of the three predictors, with interesting

results highlighting the gap with a non–graph–based method.

3. A GNN–based method for the identification of protein–protein inter-

faces, described in the publication [P1]:

(a) A novel dataset of graphs describing protein–protein interactions,

built on reliable and publicly available sources;

1.2. THESIS SUMMARY 17

(b) A GNN predictor trained on this dataset, which successfully de-

tects cliques (corresponding to interactions) in a highly unbal-

anced setting, with very promising results.

1.2.2 Structure of the Thesis

The thesis is divided into chapters, sections, and subsections to present a

clear and organized structure for the research conducted during the Ph.D.

program.

After the present introductory chapter, Chapter 2 describes the general

concepts of DL and its application to structured data, with a focus on the

GNN model and its application in Biology and Bioinformatics. A review

of the literature on the topics relevant to this thesis is provided in Chapter

3, with some interesting insights on theoretical and practical applications of

GNNs to biological problems, as well as on the classical methodologies and

state–of–the–art approaches for the tasks addressed in this thesis.

The main contributions of this work are presented and discussed in Chap-

ters 4, 5, and 6. In particular, Chapter 4 describes a Python–based software

framework for the implementation of the original recurrent GNN model.

Then, three different GNN–based DSE predictors are proposed and described

in Chapter 5, along with a brief description of the publicly available data

sources used for such applications. Two novel relational datasets have been

built from the aforementioned databases: the former, exploited both in Sec-

tion 5.3 and Section 5.5, is composed of drugs and human genes, to consider

all the heterogeneous data relevant for the prediction of DSEs; the latter

is a homogeneous dataset composed of molecular graphs and it is described

in Section 5.4. The GNN predictors have been trained and tested on these

datasets, leading to very promising results. Finally, the last contribution of

this thesis is discussed in Chapter 6, in which a GNN model for the predic-

tion of protein–protein interfaces is presented, with interesting experimental

results. In this application, the GNN model is trained on a dataset composed

of multiple homogeneous graphs — accounting for structural similarities and

contacts between pairs of peptides — in order to detect the maximum clique

on such graphs, corresponding, from a biological point of view, to the local-

ization of the interfaces between the two peptides.

Other works, carried out during the Ph.D., not related to the main con-

tributions of the present work, yet still relevant to ML and bioinformatics,

18 CHAPTER 1. INTRODUCTION

are briefly described in Chapter 7.

Lastly, Chapter 8 draws the conclusions of this thesis, suggesting possible

future developments, and discussing their relevance and meaning.

Chapter 2

Deep Learning on Structured

Data

This chapter introduces the fundamentals of deep learning (DL) and dis-

cusses its application to structured data, specifically graphs. It also provides

an overview of the types of biological data that are particularly well suited

for DL approaches and introduces the main applications that are discussed in

the thesis. In particular, Section 2.1 describes DL in the wider framework of

Artificial Intelligence (AI) and Machine Learning (ML), briefly introducing

it from a historical point of view in Section 2.1.1, along with some insight

on deep neural networks and on ad hoc learning algorithms (Section 2.1.2).

Models and algorithms for structured data are introduced in Section 2.2. In

Section 2.3, Graph Neural Networks (GNNs) are introduced, sketching the

general model in Section 2.3.1, its learning procedure in Section 2.3.2, and its

deeper version represented by the Layered Graph Neural Networks (LGNNs)

in Section 2.3.3, as well as the composite model for heterogeneous graphs in

Section 2.3.4. Moreover, a theoretical analysis of the approximation capabil-

ities of GNNs and an overview of the principal models and applications are

given in Sections 2.3.5 and 2.3.6, respectively. Finally, Section 2.4 describes

how GNNs are applied to molecular data, reviewing biological problems in-

volving graph data in Section 2.4.1, giving a deeper view on graph–based

drug related tasks in Section 2.4.2, and introducing the applications of GNNs

to some bioinformatics problems in Section 2.4.3.

19

20 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

2.1 Deep Learning

DL is a subset of a larger family of ML methods based on ingesting data

representations with deep architectures, i.e. ANNs with three or more layers,

to solve complex tasks: while a neural network with a single layer can still

make approximate predictions, additional hidden layers can help to refine the

knowledge, extracting more and more abstract and high level information

from data. These neural networks attempt to simulate the behavior of the

human brain, learning from large amounts of data, ranging from systems

that simply replicate solutions designed by human experts, to ML models

that learn their solutions from experience.

DL architectures, for example, have been applied in computer vision,

automatic spoken language recognition, natural language processing, audio

recognition, and in bioinformatics, which is the science that studies the use

of computer tools to analyze biological phenomena such as gene interactions,

protein composition and structure, and biochemical processes in cells.

From a mathematical point of view, a ML model learns a function f

associating an output y to an input x, according to its parameters θ, as

described in Eq. (2.1):

f(x, θ) = y (2.1)

The ML and DL models are also capable of performing different types

of learning, which are usually classified as supervised learning, unsupervised

learning, and reinforcement learning. Supervised learning utilizes labeled

datasets, where the correct value ŷ of f(x) is known, to categorize or make

predictions; this requires some kind of human intervention to label input

data correctly. In contrast, unsupervised learning does not require labeled

datasets, and instead, it detects patterns in the data, clustering them by any

distinguishing characteristics. Therefore, unsupervised models learn from

unlabeled data, using only the available information on examples. Rein-

forcement learning is a process in which a model learns to become more

accurate for performing an action in an environment based on feedback, in

order to maximize the reward.

2.1.1 From Artificial Intelligence to Deep Learning

The history of AI can be traced back to 1943, when Walter Pitts and Warren

McCulloch created a neuron model inspired by the neural cells of the human

2.1. DEEP LEARNING 21

brain [30], with a combination of algorithms and mathematics to mimic the

thought process.

In 1950, Alan Turing wrote a paper [31] suggesting how to test a thinking

machine: he believed a machine could be described as thinking if it could

carry on a conversation imitating a human with no noticeable differences, by

way of a teleprinter. His paper was followed, in 1952, by the Hodgkin–Huxley

model [32] of the brain as composed by neurons forming an electrical net-

work, with individual neurons firing on/off pulses. These combined events,

discussed at a conference sponsored by Dartmouth College in 1956, helped

to spark the idea of AI.

The concept of ML was first introduced in a 1959 study [33], which can

be considered one of the first works on learning algorithms, although it con-

tained only basic concepts and ideas, without proposing a learning mecha-

nism usable and efficient.

AI has had a mostly steady evolution with two substantial interruptions

known as the AI winters. The first AI winter occurred from 1974 to 1980,

as the US government halted financing for AI research. AI researchers faced

two very basic obstacles: not enough memory and processing speed which

would be considered appalling by modern standards. With the promising

debut of “Expert Systems” (ES), which were created and rapidly adopted

by leading competitive organizations around the world, the first AI winter

came to a close. The issue of gathering information from multiple specialists

and disseminating it to its consumers was the main focus of AI research.

Anyway, the real breakthrough did not come before the 1980s, with the

introduction of the BackPropagation algorithm [34], i.e. the essence of neural

network training, based on the backward propagation of errors for tuning the

parameters, reducing error rates and making the model reliable by increasing

its generalization capabilities.

The AI industry experienced a severe decline in research from 1987 to

1993, which coincided with the increasing popularity of desktop PCs and the

perception that expert systems were too expensive and difficult to maintain.

DARPA also redirected its funding to other initiatives, leading to a reduction

in funding for AI research and the Second AI Winter began. However, some

individuals continued to work on machine learning, resulting in significant

progress, such as the development of the support vector machine model in

1995 [35] and the LSTM (Long Short–term Memory) recurrent networks in

1997 [36]. Ironically, AI thrived in the absence of government funding and

22 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

public outcry.

Overall, many of AI’s historic goals were achieved in the 1990s and 2000s:

Grandmaster and then world chess champion Gary Kasparov lost to IBM’s

Deep Blue, a chess–playing computer program, in 1997. Kasparov’s defeat

had worldwide resonance and represented a sensational boost for the devel-

opment of AI.

ML made significant progress when GPUs were created in 1999, allowing

for faster processing of data and the development of deep learning algo-

rithms. Over a ten–year period, faster processors with GPUs increased com-

putational speed 1,000 times. Neural networks became a contender against

support vector machines, with superior results over time as more training

data was provided, resulting in a collection of algorithms to model data

high–level abstractions through the use of deep architectures, spreading the

concept of DL and Deep Neural Networks (DNNs).

Before DL could know the fast and revolutionary development it has

known in the 2010s (which is still ongoing at the present day), the issue

to be solved were long–term dependencies in data, and the consequent van-

ishing gradient problem [37]. Many different solutions were proposed, with

the development of models based on different paradigms, and designed for

different data, that will be overviewed in Section 2.2.1.

ML includes many different paradigms of learning machines:

• RL [38] investigates how agents can be taught to operate so that to

solve a problem by means of rewards (reinforcements);

• Support Vector Machines (SVMs) are trained to discriminate data lin-

early, or with kernels accounting for non–linearity [35];

• ANNs combine artificial neurons [30] to approximate non–linear func-

tions of variable complexity;

• Self–Organizing Maps (SOMs) are a special type of ANN, based on

competitive rather than inductive learning; they are an unsupervised

model: the neurons are arranged into a regular grid (map) and are able

to fire based on the input and the activation of their neighbors [39];

• Clustering methods are unsupervised learning algorithms that can be

trained to associate data entities based on their vicinity in the feature

space [40];

2.1. DEEP LEARNING 23

• Random Forests (RFs) [41] learn to build ensembles of decision trees

that fit training data according to supervisions;

• Gradient boosting techniques [42] realize a strong decision model by

building an ensemble of several weak decision models (usually decision

trees).

A particular family of machine learning models, known as ANNs, has

gained a lot of popularity in recent years for addressing problems of in-

creasing complexity, frequently surpassing other ML techniques. ANNs use

artificial neurons, the basic processing units which apply a function to the

weighted sum of its inputs [30]. ANNs are commonly organized into layers

of neurons, and their architecture determines their ability to resolve prob-

lems of varying complexity. More layers and units per layer improve ANN

computing power, but training becomes more challenging due to theoreti-

cal and practical constraints such as memory requirements and processing

speed. The number of layers defines the depth of the network: DNNs refer

to networks with multiple hidden layers, e.g. layers which are not externally

observable and are located between the input and the output layer. The

more layers a neural network has, the “deeper” it is. A simple type of ANN

is the Multi–Layer Perceptron (MLP), which takes an array of features as

input and computes an output function defined according to the problem at

hand. MLPs have been proven to be universal approximators for Euclidean

data [43, 44, 45]: this means that the mapping between input and output

vectors can be learned by an MLP, with a sufficient number of neurons [44]

and at least one hidden layer, with any degree of accuracy. The first ex-

ample of a DNN can be represented by the four–layer Cognitron [46]. More

complex ANNs and DNNs have been developed to handle structured data

and are considered in Section 2.2.

2.1.2 Learning with Deep Models

Feedforward models are the simplest type of ANNs, which consist of mul-

tiple layers of computational units, through which the information flows

unidirectionally, from the input to the output layer. Each neuron in one

layer has directed connections to the neurons of the subsequent layer. More

specifically, in this network, the input signal is propagated through the N

layers L1, L2, ...LN in only one direction — forward — from the input nodes,

24 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

through the hidden nodes (if any) and to the output nodes, obtaining the

network output y. There are no cycles or loops in the network. In a super-

vised learning setting, the output y is then compared to the supervision ŷ,

by means of an error function E(y, ŷ), also called loss function or cost func-

tion. The model is optimized with a gradient descent algorithm in order to

minimize E: the process starts from the calculation of the derivative ∂E/∂yi
for each unit i of the output layer LN , which can then be used to calculate

the contribution to the error of the units belonging to the last hidden layer

∂E/∂yj, for each unit j of the hidden layer LN−1, as in Eq. (2.2), and so on:

∂E

∂xj

=
∑
i∈LN

∂E

∂yi

∂yi
∂xj

(2.2)

In fact, the process is repeated in cascade — as a backward calculation

of the error contributions — and is therefore called BackPropagation [34].

These contributions are then exploited to learn a better configuration and

therefore to update the network parameters θ. DNNs, where the number of

layers N is large, are characterized by the long–term dependency problem

[37], which prevent the model to learn the dependencies between neurons

located in distant layers due to the so called vanishing gradient problem: the

derivative of the error gets so small when backpropagating to lower network

layers, that the layers closer to the input cannot be trained from experience.

The source of the problem turned out to be the use of certain activation

functions, which condensed their input, in turn reducing the output range

in a somewhat chaotic fashion. This produced large areas of input to be

mapped over an extremely small range. In these areas of the input space, a

large change will be reduced to a small change in the output space, resulting

in a vanishing gradient. This behaviour prevents traditional ML algorithms,

like standard BackPropagation, from successfully training DNN models [37].

Over the years, in order to solve these issues, new ad–hoc training meth-

ods, activation functions, such as the Rectified Linear Unit (ReLU), and

batch normalization, were introduced.

2.2 Machine Learning for Structured Data

Structured data are everywhere and they are playing an increasingly impor-

tant role in our daily lives as the world becomes more interconnected. As

2.2. MACHINE LEARNING FOR STRUCTURED DATA 25

the amount and variety of data related to any given problem increases, the

use of relational data and data structures becomes vital. Indeed, structured

data are particularly useful in organizing and managing large amounts of

information, allowing for more efficient analysis and decision–making. In a

variety of fields, such as finance, healthcare, and transportation, structured

data are essential for optimizing processes and achieving better outcomes.

As our reliance on data continues to grow, the importance of structured data

will only continue to increase [15].

In the field of AI and ML, data are often organized and processed in a

particular way. The most common data type, called Euclidean, consists of

entities described by a simple vector of feature values. This type of data

is often used by traditional ML models and ANNs. However, real–world

data can be represented with many different structures, including sequences,

trees, graphs, and images. A sequence is a type of data structure that

represents each entity as part of a temporal or spatial succession of simi-

lar entities, where each entity is followed (and preceded) by only one other

entity: examples of data that can be represented as sequences include nu-

cleic acids, proteins, temporal sequences of weather observations, and item

queues. Trees are a generalization of sequences, where each entity can be fol-

lowed by multiple entities (but preceded by only one parent entity), such as

phylogenetic trees, decision trees and, in general, data admitting a hierarchi-

cal organization. Graphs are a further generalization of trees, where entities

are represented as nodes and relationships between entities are represented

as edges. Graph data examples can include protein structures, metabolic

networks, molecules, power grids, traffic systems, citation networks, knowl-

edge graphs, social networks, and even the Internet. Images are a specific

type of graph, where pixels are represented as nodes and edges only exist

between nearby pixels. Images can represent a wide variety of subjects, and

can be used for helping with the identification of tumors through radiog-

raphy and skin images, analyzing road usage through images of vehicles, or

detecting emotions through photos of human faces. Often, combinations and

hierarchies of these structured data types can be found. For instance, videos

are sequences of images, networks of interacting compounds can be seen as

graphs of graphs, phylogenetic trees based on DNA are trees of sequences,

and the weather can be analyzed using sequences of graphs. Visual examples

of these structured data types can be found in Fig. 2.1.

Traditionally, these structures are encoded into Euclidean feature vectors

26 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

using specialized algorithms: however, this process can result in a loss of

information. Deep learning solutions, on the other hand, can analyze and

make decisions based on structured data in its natural form, potentially

improving the accuracy and effectiveness of the analysis. Such solutions will

be analyzed in Section 2.2.1.

(a) Sequence (b) Tree

.
(c) Graph (d) Image

Figure 2.1: Some structured data examples. (A) Sequences: The two strands of a DNA

double helix. (B) Tree: a cladogram. (C) Graph: the structural formula of a molecule.

(D) Image: a photo is a collection of numerical values of pixel colour levels.

2.2.1 Structure–Oriented Models

Deep neural networks are a type of artificial neural networks which can be

designed with complex architectures to better fit the structure of the data

they are intended to process. One of the earliest approaches for training

neural networks with BackPropagation, the BackPropagation Through Time

(BPTT) algorithm, was published in 1990 [47], just a few years after the in-

troduction of BackPropagation for feedforward neural networks [34]. One of

2.2. MACHINE LEARNING FOR STRUCTURED DATA 27

the first types of structured data that was processed with artificial neural

networks — namely Recurrent Neural Networks (RNNs) — using the BPTT

algorithm was sequences [48]. RNNs use the concept of recursion by replicat-

ing the same layer (or group of layers) for each element in an input sequence.

In 1997, the introduction of LSTM networks [49] revolutionized the field by

introducing the concept of cell gates, which are units that can control the

flow of signals (and gradients) through the network, allowing it to store infor-

mation over an extended period of time [49]. Gated recurrent units (GRUs)

are similar to LSTMs, but they only have a single gate per unit (the forget

gate) [50]. RNNs have been used for tasks such as natural language process-

ing [51], protein secondary structure prediction [52, 53], motion recognition

[54], stock market prediction [55], and speech recognition [56]. These same

application areas have also been explored using one–dimensional Convolu-

tional Neural Networks (CNN–1D) [57] and transformers [58]. Transformers

have had a significant impact on the field by introducing an attention mech-

anism that allows the network to weigh the importance of different elements

in a sequence and overcome biases introduced by the order of the elements

[58].

Images are traditionally more complex to process, since they can be large

in term of size and memory consumption. Moreover, learning on images with

traditional ML models such as MLPs is not efficient, since slicing them to

fit into vectors can lead to structural information loss, as well as processing

them can be computationally expensive or even infeasible. Convolutional

neural networks were developed as a solution to this problem. Based on

a theory from 1989 [59] and first introduced in 2012 [60], CNNs use small

patches of pixels as inputs and produce a single output value, repeated across

the whole image, without any need to slice the image. This process can be

repeated with different convolutional filters in the same layer, or with mul-

tiple convolutional layers. CNNs also often include pooling layers, to reduce

the input size, and dense layers. There are many different types of CNN

architectures that have been developed for a range of tasks, including image

classification [60], segmentation [61], object detection [62], and image gen-

eration [63], introducing deeper models as the research goes on [64]. These

models change the paradigm of forward propagation: each residual block

(composed of a small number of layers) learns to refine the output of the

previous residual block, shortening the gradient path in BackPropagation

[65]. CNNs can be very deep, with hundreds of layers, and often use resid-

28 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

ual connections between layers to improve their performance. They can also

be used to process 1D sequences, 3D images, and videos, by generating a

recurrent CNN. In this regard, 1D, 2D and 3D grids can be considered as

particular kinds of graphs, yet CNNs cannot be used to process any type

of graph. Processing and learning on graphs are challenging tasks in ML,

and various methods have been developed to extract Euclidean information

from them, including techniques based on random walks [66] and kernels

which can approximate functions on graphs [67], with many applications in

bioinformatics [68]. Some specific types of graphs, like trees and directed

acyclic graphs, can be processed using models from the recurrent neural net-

work family [69, 70]. In this context, the breakthrough discovery was the

theorization of neural networks which can process graphs by adapting their

architecture to the input graph topology, namely GNNs [1]. These models

will be extensively described and discussed in the following Section 2.3.

2.3 Graph Neural Networks

Graph Neural Networks (GNNs) are a well–known class of machine learning

models for graph–structured data processing. The first theorization of GNNs

dates back to 2005 [71] — with the full mathematical formulation proposed

in 2009 [1] — and describe them as networks which replicate the topology of

the input graph, and exchange messages between neighbor nodes to produce

an output on selected data. GNNs typically work on a graph dataset D

composed of one or more graphs, processed independently.

A graph is a non–linear (non–Euclidean) data structure composed of a

collection of nodes and edges. Formally, it is defined as a tuple G = (N,E),

where N is the set of nodes and E ⊆ N × N is the set of edges. Nodes

represent objects or entities, and relationships between them are represented

by edges. Nodes and edges can be associated with values or vectors of values,

describing their attributes, and defined as node feature vectors, ln, ∀n ∈ N ,

and an edge feature vectors, en,m, ∀(m,n) ∈ E, respectively. Moreover, a

neighborhood function Ne, which associates each node n to the set of its

neighbor nodes Ne(n) ⊂ N can be defined, based on the edges E.

2.3. GRAPH NEURAL NETWORKS 29

2.3.1 The Graph Neural Network Model

A GNN assigns a state sn to each node n ∈ N and updates it iteratively

by sending messages through the edges connecting n to its neighbors Ne(n).

The GNN theoretical model is fully described by two parametric functions,

fw and gw, which, respectively, regulate the state updating process and the

output calculation.

The GNN model approximates an output function gw, expressing a prop-

erty of the whole graph G, of its nodes or a subset of its nodes Nout ⊆ N ,

or of its edges or a subset of its edges Eout ⊆ E. To do so, a state xn ∈ Rdx

is associated to each node n ∈ N , and then iteratively updated by sending

messages through the edges connecting n to its neighbors Ne(n).

The state dimension dx as well as the number of state updating iterations

K are hyperparameters of the GNN, while the states are usually initialized

by sampling from a random distribution centered on the origin of Rdx . Given

the randomly sampled initial states x0
n, ∀n ∈ N , the state of a generic node

n at iteration t can be calculated as in Eq. (2.3):

xt
n = fw(xt−1

n , ln, A({(M(n, m, t)) : m ∈ Ne(n)})) (2.3)

where M(·) and A(·) are the the function defining the message coming from

the neighbourhood m ∈ Ne(n) to node n, and the aggregating function

defining how these messages are aggregated, respectively. M can be any

function returning the message in the form of a vector whose computation

is based on the destination node n, the source node m, and the label em,n of

the edge (m,n) connecting the two nodes. M could even be learned with a

neural network. In this thesis, M always takes the general form defined in

Eq. (2.4) with the possibility of excluding lm or em,n (when nodes/edges are

not labeled) from the computation:

M(n, m, t) = (xt−1
m , lm, em,n) (2.4)

On the other hand, the aggregation function A can be any function de-

fined on a set of vectors (the messages), each having dimension dm and

returning a single vector of the same dimension. A is usually the sum, av-

erage, or maximum of the single components of the message, but it could

even be learned with another neural network, as for example in the (con-

volutional) aggregations of GraphSAGE [13]. In this thesis, A is either the

30 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

sum or average of the messages, as described by Eq. (2.5):

Asum =
∑

m∈Ne(n)

(xt−1
m , lm, em,n)

Aavg =
Asum

|Ne(n)|

(2.5)

Since the two aggregations are similar, a hyperparameter a equal to 1/|Ne(vi)|
or 1 can be defined to select the aggregation function, obtaining the average

or the sum, respectively. Combining all these concepts, the state updating

function in its general final form can be rewritten as in Eq. (2.6):

xt
n = fw(xt−1

n , ln, a
∑

m∈Ne(n)

(xt−1
m , lm, em,n)) (2.6)

The GNN implements a recurrent algorithm for exchanging useful infor-

mation between nodes and their neighbors, for a pre–set number of iterations

T or until the state computation dynamics reaches a stable equilibrium point

at the iteration t ≤ T ; then, the final versions of the node states xT
n , ∀n ∈ N ,

are fed in input to the output network, approximating the output function

gw, which can be defined for the three types of problems addressed by GNNs:

node focused, edge focused or graph focused. In node focused problems, the

output is defined for each node n ∈ Nout, as a function of its state and label,

as in Eq. (2.7):

yn = gw(xT
n , ln) (2.7)

In edge focused problems, the output is defined for each edge (m,n) ∈ Eout,

as a function of the states of both the source node m and the destination

node n, and, if it exists, the label em,n, as in Eq. (2.8):

ym,n = gw(xT
n , xT

m, em,n) (2.8)

Finally, in graph focused problems, the output is calculated over each node

n ∈ Nout as in node based problems, and then averaged over the output

nodes. This is defined in Eq. (2.9):

yG =
1

|Nout|
∑

n∈Nout

gw(xT
n , ln) (2.9)

2.3. GRAPH NEURAL NETWORKS 31

2.3.2 Learning with Graph Neural Networks

Based on an information diffusion mechanism, GNNs can process homoge-

neous and heterogeneous graph–structured data. In particular, GNNs create

an encoding network, a recurrent neural network architecture which replicates

the topology of the input graph, by means of two MLP units, one implement-

ing the state transition function fw of Eq. (2.6) at each node and the other

implementing the output function gw (on targeted nodes or edges). The GNN

replicates the MLP units on each node of the input graph and unfolds itself

in time and space, generating a feedforward architecture, known as the un-

folding network, in which each layer contains copies of all the elements of the

encoding network and represents an iteration of the implemented algorithm.

Connections between neurons belonging to subsequent layers reproduce ex-

actly those of the encoding network. Weight sharing is exploited between

all the copies of the MLPs, allowing to manage long–term dependencies be-

tween distant nodes in the graph, for both the state and output MLPs. The

information associated with each node can thus be propagated through the

whole graph in a sufficient number of iterations; then an output on nodes,

edges, or whole graphs — depending on the problem under analysis — is

produced by the MLP implementing gw.

A sketch of the unfolded encoding network is provided in Fig. 2.2.

Figure 2.2: Sketch of how the GNN model produces the encoding network and its unfolded

version on an example input graph (for a node focused problem). In the unfolded network,

the topology–like replica of the input graph is guaranteed by the connections between

layers.

Note that the unfolded encoding network corresponds to a DNN with

recurrent layers: given the numbers of layers in the state MLP, indicated

with Lf , and in the output MLP, denoted with Lg, the network has a depth

of K × Lf + Lg layers. Weight sharing in space and time makes the model

scalable, invariant in the number of parameters to graph size and number

of iterations, and less prone to overfitting. Consequently, to optimize the

32 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

parameters of the network, and therefore implement the learning process,

it is sufficient to apply a standard optimization algorithm based on Back-

Propagation. Typical examples include stochastic gradient descent or the

Adam optimizer [72]. A loss function, depending on the problem under an-

alysis (e.g. cross–entropy for classification), is applied to the outputs and

the targets, computing the error. The error gradient is then calculated with

respect to all parameters of the network, averaging the contribution over all

the replicas of each parameter, and applying the resulting value to all the

replicas of the same weight.

2.3.3 Layered Graph Neural Networks

In 2010, the base GNN model was further refined by introducing its deeper

version, the Layered Graph Neural Networks (LGNNs) [73], to face the Long–

Term Dependency problem, which corresponds to the inability of the network

to correctly process a complex structure, due to the local nature of the GNN

training process, which does not allow state computation to be influenced

by labels and states of distant nodes.

The LGNN architecture is characterized by multiple GNNs connected in

cascade, in which each layer can be trained separately using always the same

target, and using invariably the original graph as input, though with node

labels enriched by the results calculated in the previous layer. Formally,

the first layer is a standard GNN operating on the original input graphs.

Each layer after the first is trained on an enriched version of the graphs, in

which the information obtained from the previous layer is concatenated to

the original node labels. This additional information consists in, either, the

node state, the node output, or both. Formally, the label of node n in the i–

th layer, i > 1, is lin = [ln, x
i−1
n] or lin = [ln, o

i−1
n] or lin = [ln, x

i−1
n , oi−1

n], where

xi−1
n , oi−1

n are, respectively, the state and the output of node n at layer i− 1

of the cascaded architecture. Given the operation described for the labels,

all the mathematical formulations remain valid for each layer. The output

of a node in a GNN, yn, is influenced by the node state xn, which in turn is

influenced by the node’s neighbors Ne(n): if this information is included in

the training data for each GNN layer, then the model is able to expand the

node’s neighborhood, layer by layer.

This means that the LGNN can progressively widen the neighborhood of

a generic node, continually increasing the amount of information it takes

2.3. GRAPH NEURAL NETWORKS 33

Figure 2.3: Example of an LGNN with 3 layers.

into account from nodes which are further and further away from the one

under analysis. Moreover, the solution proposed by the previous layer (in

the form of states or output vector, or both of them) is integrated to the

input of each layer after the first, significantly addressing the long–term

dependency issue: each GNN, therefore, becomes an expert which solves

the considered problem using the original data and the experience obtained

from the GNNs of the previous layers so as to “correct” the errors made by

the previous networks, rather than solving the whole problem. As a result,

LGNNs progressively refine the model’s output and obtain a greater learning

capability with respect to a single–layered GNN [73].

The architecture of a LGNN model applied to a generic graph is shown

in Fig. 2.3.

2.3.4 Composite Graph Neural Networks

GNNs and LGNNs can be extended to the domain of heterogeneous graphs,

where multiple types of nodes coexist, as they represent different kinds of

objects and may have different numbers and types of features: the GNN

model for heterogeneous graphs [29] is known as a Composite Graph Neural

Network (CGNN), while the LGNN model in this case is called Composite

Layered Graph Neural Networks (CLGNN). Heterogeneous graphs are often

used to represent information about different types of entities and/or rela-

tionships: typical examples of this setting are knowledge graphs, in which

entities of different types need to be encoded into a single relational graph,

34 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

or molecular graphs, since atom species can be distinguished and represented

by different node types.

Without loss of generality, in this section, only the case of CGNNs will

be analyzed. CGNNs process graphs with edges representing different types

of relationships considering a one–hot encoding of the relationship type as a

label, possibly to be concatenated to the edge features, if any. Node types

instead are treated as subsets of the node set N , and each type has a ded-

icated state network. In this setting, given the number of node types nt

in the dataset, the CGNN learning process is based on multiple MLPs for

the nodes state updating process, one for each type of nodes, and a variable

number of output networks, depending on the problem under analysis. Each

state network Fi learns its own version fw,i of the state updating function

in Eq. (2.6). In this way, each node type is associated with a unique MLP

which learns a unique state transition function. All the Fi are characterized

by the same output dimension, corresponding to the CGNN hyperparameter

dx. To allow nodes belonging to different types to exchange coherent mes-

sages, the node label is not considered as a part of the message, as it can

assume different dimensions and meaning for different node types. The state

updating function fw,i can therefore be rewritten as in Eq. (2.10):

xt
n = fw,i(x

t−1
n , ln, a

∑
m∈Ne(n)

(xt−1
m , em,n)) : i = T [n] (2.10)

where, to select the correct fw,i, a vector T associating each node n ∈ N to

its type i is given to the GNN as part of the dataset.

The output functions described in Eq. (2.7), (2.8), and (2.9) are still

valid, with the only difference represented by the number of output network

used for calculating the output: in the most general case, for node focused

applications in which Nout contains nodes of all the types defined in the

dataset, the CGNN model requires nt output networks; in the simple case, in

which Nout refers to a single node type — as in all the applications described

in this thesis —, the model still requires nt different state networks, but only

a single output network is needed, since the label of only one node type is

considered in calculating the output for each n ∈ Nout. As a consequence,

in the latter case the parameters the GNN has to learn are distributed in

nt + 1 MLPs, in contrast to the two MLPs of the homogeneous setting.

The rest of the learning process is exactly the same as the homogeneous

case, as explained in Section 2.3.2, with the only difference consisting in the

2.3. GRAPH NEURAL NETWORKS 35

number of state networks — and possibly of output networks — to build

the encoding network and consequently the unfolding network. The CGNN

learning process scheme on a heterogeneous graph is depicted in Fig. 2.4

Figure 2.4: Scheme of a CGNN learning process on a heterogeneous graph. From the

left: The heterogeneous input graph, where green and red circles represent two types of

nodes, and connections belong to a single undirected edge type. The encoding network,

generated by means of the MLPs implementing the state transition functions fw,i (red

and green rectangles, one for each node type) and the output functions gw,i (blue and

orange rectangles). The unfolding network, in which the information can flow from the

input to the output, passing through the aforementioned MLPs and the graph connections

defining this feedforward network. Note that for a non–composite GNN, learning on a

homogeneous graph, the scheme is the same, with a unique MLP for state transition, since

only one type of nodes is admitted.

2.3.5 Approximation Power of GNNs

The approximation capabilities of DNNs, and in particular MLPs, have been

studied and described in various theoretical works [43, 44, 74]. However, since

GNNs operate on the graph domain, they have to withstand different chal-

lenges, also concerning symmetries in the data structures. In [9], published

in parallel with the original model [1], the computational power of GNNs

was analyzed.

Given a graph G = (N,E), to analyze the computation of the state of

a generic node n in the graph, the concept of unfolding tree is introduced:

the unfolding tree is built by taking n as the root, adding its neighbors as

child nodes, and then recursively adding the neighbors of each child node

as its children. In other words, an unfolding tree is obtained by unfolding

G up to an arbitrary depth k using n as the starting point, as described in

Eq. (2.11):

T k
n =

{
Tree(xn, {T k−1

m , ∀m ∈ Ne(n)}) if k > 1

Tree(xn) if k = 1
(2.11)

36 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

The unfolding tree T k
n represents all the information on node n available to

the GNN after k iterations. For k larger or equal to the diameter of G, two

nodes n and m with identical unfolding trees T k
n = T k

m are indistinguishable

to the network and are said to be unfolding equivalent. It was demonstrated

that GNNs are universal approximators for all functions that preserve the

unfolding equivalence (i.e. functions that produce the same result on any pair

of unfolding equivalent nodes) [9]. An alternative way to assess the computa-

tional capabilities of GNN models has been presented in recent publications

[75, 76]. It is based on the Weisfeiler–Lehman graph isomorphism test [77],

which associates a unique, canonical representation to each graph, based on

the connections between nodes (i.e. the node adjacency). If two graphs

have the same representation, they are considered isomorphic, meaning that

they have the same structure. However, the one–dimensional version of the

Weisfeiler–Lehman test (1–WL) cannot distinguish between all possible pairs

of graphs, because the same representation can be shared by multiple non–

isomorphic graphs. Therefore, higher–dimensional versions of the test, such

as the D–dimensional test (D–WL), have been developed. These tests are

based on sets of D nodes and are more effective at distinguishing between

non–isomorphic graphs. The ability to distinguish between non–isomorphic

graphs increases with D.

GNN models can be classified based on their ability to mimic the Weisfeiler–

Lehman test: those which can replicate the 1–WL test are classified as 1–WL

models, which means they are at least as powerful as the one–dimensional

Weisfeiler–Lehman test; however, many currently used GNN models are not

as powerful as 1–WL, because they are unable to simulate the test. Interest-

ingly, the 1–WL test is analogous to an iteration of neighborhood aggregation

in recurrent GNNs: as a result, these models have been demonstrated to be

all 1–WL if injective neighborhood aggregation and output functions [75]

are used. Currently, no GNN model has been able to simulate higher–order

Weisfeiler–Lehman tests like, 2–WL or more [75], although some research has

been done on developing higher–order GNNs using non–local neighborhood

aggregation [78]. Moreover, it has been demonstrated that both unfolding

trees and the Weisfeiler–Lehman test can be used to evaluate the approxi-

mation power of GNNs [79].

2.3. GRAPH NEURAL NETWORKS 37

2.3.6 Applications of Graph–based Models

Since the seminal work [1, 9], many GNN models have been introduced [80],

which can be classified, depending on how the information is propagated

among nodes, in two broad families: recurrent GNNs, and convolutional

GNNs. The former, which also include the original model [1], are based

on message passing between nodes and apply the same weight matrices in

the recurrent calculation of node states, whereas the latter apply different

weights at each time–step t. Moreover, Convolutional GNNs, also known as

Graph Convolution Networks (GCNs), are based on the concept of graph

convolution: similarly to what happens in CNNs, a convolutional filter is

applied on each node (and its neighborhood) to calculate its label in the

subsequent layer, or its output.

One key difference between standard convolutional layers and graph con-

volutional layers is the way they handle spatial relationships between data

points. In standard convolutional layers, the spatial relationships between

data points are fixed and predefined by the grid structure of the data. In

graph convolutional layers, on the other hand, the spatial relationships be-

tween data points are dynamic and can be learned from the data itself, since

they are defined by the edges of the graph. This makes graph convolu-

tional layers well–suited for tasks where the spatial relationships between

data points are complex or not well–defined.

Examples of recurrent GNNs are Graph Nets [81], Gated Graph Sequence

Neural Networks [82], Message Passing Neural Networks [83], and Graph

Isomorphism Networks [75]. The first convolutional GNNs to be introduced

were standard GCNs [10], followed by spectral convolution models [11, 12].

GraphSage generalized the concept of convolutional GNN by introducing

different types of neighbor aggregation [13]. GCNs were also combined with

attention mechanisms in Graph Attention Networks [14], improving the pre-

dictions with information on important relationships [84] and dealing with

explainability issues [27].

Graph–based models can be applied on any type of graph, both in real–

world applications and synthetic problems. For example, in the Web domain,

GNNs have been used for spam detection [85], community detection [10],

content interaction prediction [86] and sentiment analysis [3]. They have

been employed also in prediction of logical relations in knowledge graphs

and future links in citation networks [87], and as recommendation systems

38 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

[88, 89]. Many node or graph classification and regression tasks have been

solved by applying GNNs [15], also in a heterogeneous setting [90]. Models

of the GNN family have showed performance at or close to the state–of–

the–art in problems of graph matching [91], weather forecasting [92], power

grid analysis [93], and many others. In the biological domain, GNNs can

calculate molecule properties [83, 94], predict protein–protein interfaces [23],

and classify compounds according to their mutagenicity [4] or activity against

HIV [95, 22], just to list a few applications.

2.4 Biological Problems on Graphs

Computational methods have enabled new research avenues in biology and

medicine, resulting in the development of interdisciplinary fields such as

bioinformatics and medical informatics. DL techniques are becoming more

widely used in these fields, offering innovative solutions to previously untreat-

able problems, reducing the expenses and duration of traditional methods,

and improving existing processes by making them more efficient.

2.4.1 Graph Data in Biology

Biological data are often naturally represented with graphs. Molecules have

always been perceived as graphs, in which atoms correspond to nodes (pos-

sibly labelled with some chemical and physical information such as atom

type, molecular weight and polar surface area), and chemical bonds corre-

spond to edges, whose label can be the type of bond. These structures are

also known in the literature as molecular graphs. Molecular graphs allow to

predict many properties of each molecule, such as mutagenicity, anti–HIV or

anti–cancer action, and other levels of activity. Other structures like poly-

mers, proteins, and nucleic acids can be effectively represented as graphs,

with nodes representing different structural levels (e.g. substructures, pro-

tein secondary structures, DNA blocks) and edges representing interactions

between these components. This type of representation is useful for under-

standing and solving key biological problems, such as predicting interactions

between proteins and ligands, proteins and proteins, and proteins and nucleic

acids. Additionally, a hierarchical model can be used, in which each node

is expanded into its own graph substructure, such as, for example, when

a graph containing nodes that describe interacting proteins is expanded by

2.4. BIOLOGICAL PROBLEMS ON GRAPHS 39

representing each protein as a molecule — in this case it is referred to as

graph of graphs.

Graphs can also be used to represent logical information, such as knowl-

edge graphs of biological entities. In these graphs, each node represents

an entity and each edge represents a relationship between two entities. ML

models can then be trained to predict new, biologically relevant relationships

between entities based on the known relationships: this is often done in a

heterogeneous setting, where the entities come from different types of data

sources.

2.4.2 Graphs in Drug Discovery

Drug discovery is the discipline which focuses on how to develop new drug

compounds. Discovering a new molecule is a long and expensive process [96],

often involving researchers, companies, and national agencies [97]. Drug dis-

covery is a field in constant development which is increasingly influenced

by the use of ML techniques [25], and GNNs in particular [8], since drugs

and other molecules are efficiently represented with graphs. These methods

are increasingly needed to reduce the enormous monetary and time costs

of developing new pharmaceutical compounds [96, 98]. In particular, deep

learning models for drug discovery [99] focus on computer aided drug design,

where in silico experiments allow for a faster search and delivery of new can-

didate drugs [100]. Moreover, DNNs can be used to predict the properties of

new compounds in silico, to estimate their activity levels in different settings,

to predict their side–effects, and to generate candidate molecular structures

[25]. This thesis focuses on drug side–effect predictors, and on a predictor of

protein–protein interfaces, all developed with GNNs, that will be presented

in Chapter 5, and Chapter 6 respectively.

2.4.3 Bioinformatics and GNNs

GNN applications to bioinformatics are not limited to drug discovery. As dis-

cussed in Section 2.4.1, graphs are commonly used in biology and medicine,

and GNNs can be used to address a wide range of problems in these fields.

Some examples of open problems that GNNs could potentially contribute to

solve in the future are listed below.

• Protein folding prediction: the term protein folding refers to the pro-

40 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

cess by which proteins fold into their 3D structures, which determine

their function. Predicting how proteins fold is an important problem in

bioinformatics, as it can help to understand how proteins work and how

they interact with other molecules. Traditionally, protein folding pre-

diction has been approached using heuristics, which are methods that

work well in practice but do not guarantee the optimal solution. More

recently, DL methods, including GNNs, have been used to address this

problem, as models can be trained on known protein structures to learn

how proteins fold, and can then be used to predict the structures of

novel proteins. Indeed AlphaFold is a recent AI system developed by

DeepMind [101] that predicts a protein 3D structure from its amino

acid sequence. It regularly achieves accuracy competitive with experi-

ments. Nonetheless, the computational power needed to run AlphaFold

is not available in common practice. Therefore, predicting protein fold-

ing is still a challenging problem due to the large number of possible

conformations that a protein can take, which makes it difficult to find

the optimal solution using traditional optimization techniques. How-

ever, AI methods, particularly GNNs, have the potential to provide

a more efficient way to search the solution space and could lead to

significant advancements in the discovery of new drugs and therapies.

• Protein–protein interaction prediction: predicting protein–protein in-

teractions involves identifying which proteins bind to each other and

determining the specific binding sites on the proteins [23]. This is an

important problem in bioinformatics as protein–protein interactions

are involved in many biological processes, including signaling pathways,

gene regulation, and metabolism. There are several methods that can

be used to predict protein–protein interactions, including clique de-

tection or structural similarity analysis. GNNs can learn from known

interactions to identify patterns indicative of protein–protein interac-

tions and can be used to predict new interactions. Predicting protein–

protein interactions can help to improve our understanding of biological

processes and may also lead to the development of new drugs and ther-

apies, for instance able to inhibit the formation of protein complexes

which are fundamental for a virus transmission [102].

• AI–driven molecular dynamics simulations: molecular dynamics (MD)

simulations are computer–based models that allow scientists to study

2.4. BIOLOGICAL PROBLEMS ON GRAPHS 41

the movements and interactions of molecules over time. These simula-

tions are an important tool in bioinformatics and other scientific fields,

as they can help to understand and predict the behavior of molecules

in different environments and under different conditions. Traditionally,

MD simulations have been computationally intensive, requiring large

amounts of memory and time to run. This has limited the length of

time during which the dynamics can be simulated, making it difficult

to study processes that occur over long time scales. GNNs have the po-

tential to significantly improve the efficiency of MD simulations, since

they can be used to reduce the memory and time requirements. This

could lead to the development of new drugs [103, 24, 26] and therapies

and improve our understanding of how molecules function in different

environments.

• Multi–omics analysis: multi–omics data refers to data from multiple

types of omics studies, such as genomics, transcriptomics, proteomics,

and metabolomics. These studies generate large amounts of data that

can be difficult to analyze and integrate. GNNs can be trained to

identify patterns and relationships in the data and to predict properties

of an organism or a tissue based on multi–omics information. This

can be useful for understanding the mechanisms underlying biological

processes and for predicting the behavior of molecules under different

conditions.

GNNs are versatile and can be considered an attractive option to model-

ing many different biological problems [29]. Moreover, different models have

been employed on different tasks, such as different types of convolutional or

recurrent GNNs. Ad–hoc models can also be developed on a task specific

basis or on a broader biological setting [83].

42 CHAPTER 2. DEEP LEARNING ON STRUCTURED DATA

Chapter 3

Machine Learning Applications

to Molecular Data

This chapter provides a thorough literature review concerning the research

applications constituting the main focus of this thesis. Relevant literature on

ML–based applications to drug discovery are introduced in Section 3.1, with

a particular focus on drug side–effect prediction (Section 3.2). Eventually,

Section 3.3 deals with the protein–protein interface prediction.

3.1 ML in Drug Discovery

In recent years, the drug discovery field has seen a significant shift towards

the use of ML techniques [99], due to a number of factors, including the in-

creasing complexity and cost of traditional drug development technologies,

the growing availability of computational resources, and the rapid advance-

ments in AI and DL. As a result, DL methods are being increasingly em-

ployed to enhance and even replace traditional processes in drug discovery

[8]. One of the main areas where DL is being used in drug discovery is in sil-

ico experimentation, such as the identification of potential drug compounds

[104], prediction of drug–target interactions [105], virtual screening [106],

the analysis of binding pockets exploiting 3D CNNs [107] or druggability

predictors based on ANNs [108], as well as reverse docking techniques to

identify target proteins using a library of known drugs [109]. The use of DL

in these areas has the potential to greatly improve the speed and efficiency

of the drug discovery process, as well as increase the likelihood of success in

43

44 CHAPTER 3. ML APPLICATIONS TO MOLECULAR DATA

identifying effective drugs.

3.2 DSEs Prediction with DL

Drug side–effect prediction using ML is an important area of research in drug

discovery. Predicting side effects of drugs in silico, before they are tested in

humans, is a crucial task which can greatly improve the safety and efficacy

of drugs, as well as reduce the risk of adverse events in patients. Many

approaches has been proposed, from simpler methods based on Euclidean

data [110, 111, 112, 113], to similarity scores between drugs [114]. The

increasing in both quantity and heterogeneity of data, with the availability of

processing resources, have helped in spreading ML–based approaches in this

direction, from SVMs [115] and clustering techniques [116] to more complex

predictors such as random forests [117] and deep MLPs [118] or NLP–based

models [119]. Many methods that rely on biological information use protein-

target as features, with the assumption that drugs with similar in vitro

protein–binding profiles tend to exhibit similar side effects [120].

The prediction of DSEs requires knowledge of various biological entities,

including genes, proteins, drugs, and pathways. The data used for such pre-

dictions is therefore naturally relational, thus being possible to represent it

as a graph. GNNs have been found to be efficient in these types of scenar-

ios; however, there is currently no known use of node–focused GNN–based

approaches for predicting the side effects of individual drugs, although they

have been employed in a similar but distinct context, specifically for the pre-

diction of polypharmacy side effects — i.e. those resulting from the concur-

rent use of multiple drugs. Polypharmacy is nowadays a common practice in

modern medicine which can lead to a large number of potential interactions,

making it difficult to predict which combinations may lead to DSEs, given

the complexity of the data. One approach to predicting polypharmacy DSEs

using DL is to analyze a subset of possible drug pairs in the dataset, using

graph attention networks (GATs) to measure the graph co–attention on the

molecular graphs of the two drugs in each pair [121, 122, 123]. Another ap-

proach is to build a graph that accounts for the interaction between protein

targets and drugs, and the known side effects of the single drugs. This graph

is then analyzed using a GCN to predict the polypharmacy DSEs as links

between drug nodes [7]. In this context, matrix factorization is a commonly

employed technique for predicting links: in this cases networks are portrayed

3.3. PREDICTION OF PROTEIN–PROTEIN INTERFACES 45

as matrices with cells representing relationships between them. In such sce-

narios, link prediction can be treated as a problem of matrix completion

[124] based on Singular Value Decomposition (SVD) [125] or Non–negative

Matrix Factorization (NMF) techniques [126, 127]. Given the graph of drugs

and DSEs, composed of two inner networks — a DSEs–drug bipartite sub–

graph and drug–drug similarity sub–graph —, the task is then to predict the

links in the bipartite network between drugs and DSEs by means of heat

diffusion–based or similarity–based approaches [123]. In recent years, hybrid

approaches have been developed to jointly learn drug features from both the

macroscopic biological network and the microscopic drug molecules [128]:

to predict potential connections between drugs and DSEs, the model calcu-

lates molecular structure embeddings and fingerprints based on the drug’s

SMILES, while side effects are represented as unique random vectors. In

the corresponding bipartite graph, the GNN model is exploited to update

nodes representation, which is eventually multiplied by the side effect feature

matrix to recreate the adjacency matrix, solving the link prediction task.

3.3 Prediction of Protein–Protein Interfaces

Predicting protein–protein interfaces is crucial in structural biology and

bioinformatics, since by identifying the specific residues that form the in-

terface of a protein complex, researchers can gain a deeper understanding of

the molecular interactions that drive biological processes. This knowledge

can have significant implications for the development of new drugs, as it can

help identify potential drug targets and design drugs that specifically bind

to those targets. Furthermore, predicting the interface of a protein complex

can also aid in the prediction of the overall 3D structure of the complex,

which is crucial for understanding the function of the proteins involved. In

addition, understanding protein–protein interactions can lead to the design

of new proteins with improved properties: this can be used in the develop-

ment of new enzymes for industrial applications and in the design of new

vaccines.

Though detecting the interface of two monomers is important to predict

the quaternary structure and functionality of proteins [129], this can be a

hard task to be faced with traditional techniques [130]. Protein–protein in-

terfaces can be predicted with a variety of approaches: based on sequence

homology [131], Bayesian methods [132], analyzing combined docking sim-

46 CHAPTER 3. ML APPLICATIONS TO MOLECULAR DATA

ulations [133], or using SVM predictors [134]. Recently, GNN–based pre-

dictors have been developed for the prediction of molecular interactions

[135, 136, 137], although no specific GNN methods have been reported for

the detection of interfaces between monomers. In this context, the biological

problem of detecting the interfaces between the two proteins can be reformu-

lated as a maximum clique search problem [6], by constructing a so–called

correspondence graph from the graph representations of the two interact-

ing monomers, in which secondary structures elements are considered [5].

The interface will then correspond to the maximum clique in the correspon-

dence graph [6]. Clique detection problems have already been addressed with

GNNs [138], and, more recently, also in a transductive learning setup [139].

Finally, this strategy was also further refined by exploiting LGNNs [73].

Chapter 4

GNNkeras: A Keras–based

Library for Graph Neural

Networks

In this chapter, GNNkeras, the software framework for the implementation

of GNNs, described in publication [A2], is described. This framework al-

lows to easily define GNN models for homogeneous and heterogeneous graph

processing, represented by GNN/LGNN and CGNN/CLGNNN (see Section

2.3.4) models, respectively. All the implemented GNN models can be used

for classification, regression, and clustering on nodes, edges or whole graphs,

both in inductive and mixed inductive–transductive learning settings [139].

In the original framework, GNNs are inductively trained based on a su-

pervised learning environment. However, GNNs and LGNNs can also take

advantage of transductive learning [140], thanks to the natural way the infor-

mation flows and spreads across the graph. In the transductive framework,

the training set nodes and their targets are used in conjunction with the

test patterns. In particular, the feature vectors of a subset of the training

nodes — called transductive nodes — are enriched with their targets, to be

explicitly exploited in the diffusion process, yielding a direct transductive

contribution.

The rest of this chapter is organized as follows: Section 4.1 introduces

the motivation behind the development of GNNkeras, Section 4.2 describes

the software in detail and its usability, then Section 4.3 draws conclusions

on this work.

47

48 CHAPTER 4. GNN KERAS

4.1 Motivation and Significance

In the context of ML research on graphs, it is important for researchers

and software developers to have adequate and flexible tools that support the

development of applications with current GNN models and possibly favor

the study of new versions of GNNs. For this reason, a new Keras library was

developed, based on the original GNN model [1], which allows to implement

the whole subclass of recurrent GNNs [80], and LGNNs [73].

GNNkeras users can easily access a huge number of ML features. This fact

is guaranteed by Keras, which is built on top of TensorFlow 2.x [141] and is

one of the most used and complete software libraries for ML. As far as the

author’s knowledge goes, GNNkeras is the first tool specifically designed for

implementing recurrent GNNs, while other tools exist for building models

of the subclass of convolutional GNNs. Finally, GNNkeras is flexible in that

it permits to manage a variety of activities, graph domains and learning

approaches.

The characteristics of GNNkeras are many and can be summarized in the

following points.

• GNNkeras allows to develop and deploy GNN models easily, in a few

lines of code, and with high versatility. Representing a GNN as a

GNNkeras model gives a considerable advantage compared to previous

common solutions, which were manually written from scratch with

TensorFlow.

• All the three different types of deep learning problems on graphs are

implemented: node–based, edge–based, graph–based.

• GNNs can be layered, implementing the LGNN version for more com-

plex problems.

• GNNs and LGNNs can be applied to heterogeneous graphs.

• All the three super–categories of deep learning tasks can be tackled

with GNNs: regression, classification, and generation.

• Inductive and mixed inductive–transductive learning can be adopted.

Although there are already several excellent GNN libraries available,

based either on PyTorch (PyTorch Geometric [142], Deep Graph Library

4.2. SOFTWARE DESCRIPTION 49

DGL [143], etc.) or Tensorflow (Spektral [144], etc.), GNNkeras has been

developed as a new library, rather than contributing to the existing ones.

GNNKeras was born to address specific use cases or applications which are

not fully supported by existing libraries, in particular to handle heteroge-

neous graph data, which is not possible with the other Tensorflow–based

libraries. For this reason, GNNkeras can provide a tailored solution, with

specialized APIs and workflows, that are designed to make it more efficient

and effective for users to build GNN models on heterogeneous graphs.

The expected impact of GNNkeras is mainly related to its capability

of helping its users in speeding up the proposal of new research and the

development of advanced software.

4.2 Software Description

The software implements the GNN model formulation described in Section

2.3.1, the CGNN model described in Section 2.3.4, and LGNNs [73] as de-

scribed in Section 2.3.3.

Figure 4.1: Software architecture: the main GNN directory contains graph data rep-

resentation classes; the Models sub–directory provides MLP, GNN, LGNN, CGNN and

CLGNN implementations; the Sequencers sub–directory provides graph sequencers for

feeding models with GraphObject/CompositeGraphObject data. Note that the MLP

model is a function which returns a Keras Sequential model, meaning that every Sequential

model can be used for implementing the state transition network fw and the output net-

work gw. In the latest version of the software, no distinction is made between multi–graph

and single–graph sequencers, since only GraphSequencer/CompositeGraphSequencer and

TransductiveGraphSequencer/CompositeTransductiveGraphSequencer are provided.

To parallelize software execution on modern CPUs and GPUs, all the

operations are based on matrix multiplications. Fig. 4.2 shows the process-

50 CHAPTER 4. GNN KERAS

ing scheme of a heterogeneous graph by a CGNN model implemented with

GNNkeras. The homogeneous case is analogous to a CGNN with a single

node type.

Figure 4.2: CGNN model software scheme. The GraphSequencer generates batches of

GraphTensors which are presented to the model as input. All quantities pass through

multiple operations (matrix multiplications, boolean mask filtering and concatenating

processes) to form the input to fw and gw.

GNNkeras has been implemented as a module using the Python3 pro-

gramming language, and it includes GNN models for node–focused, edge–

focused, and graph–focused applications, working in homogeneous and het-

erogeneous graph domains, both in inductive and transductive learning con-

texts. It is based on NumPy, SciPy, and TensorFlow libraries, as NumPy and

SciPy provide efficient numerical routines for dense and sparse data, while

TensorFlow and Keras provide a simple and smart way to define and manage

models, as well as to simplify the learning and evaluation processes. In par-

ticular, TensorFlow [141] is an open-source set of libraries for creating and

working with neural networks, developed since 2017 by Google Brain, a deep

learning and artificial intelligence research team from Google AI, the research

division at Google formed in 2011 and dedicated to artificial intelligence.

Since 2019 with its 2.0 version, TensorFlow has adopted Keras as its official

high-level API, as it simplifies the implementation of complex neural net-

works with its easy to use framework. Developed by Google, Keras provides

4.2. SOFTWARE DESCRIPTION 51

a python frontend with a high level of abstraction while including inbuilt

and optimized modules for all neural network computations. Indeed, it pro-

vides numerous implementations of commonly used neural-network models

or building blocks such as layers, objectives, activation functions, optimiz-

ers. Keras is scalable and it has native support for mixed–precision training

on Nvidia GPUs and TPUs for speeding up the learning process. While

there are many deep learning frameworks available today, Keras along with

TensorFlow 2 has greater adoption in both the industry and the research

community than any other deep learning solution.

4.2.1 GraphObject and GraphTensor

The software relies on a custom graph representation, which is implemented

in graph class and defined by the GraphObject class. An instance of Gra-

phObject is therefore a compact representation of a generic graph G =

(V,E), which is initialized at least by a node feature matrix X, an arc feature

matrix E, and by a target matrix T.

Since not all vi ∈ V or eij ∈ E are necessarily associated with a target

value, a boolean output mask mo ∈ B is included in the GraphObject, to

define whether or not a target value ti ∈ T is associated with a specific node

or arc. Moreover, when the dataset is composed of only one single graph, a

boolean set mask ms ∈ B is included, so as to specify the subset of nodes or

arcs belonging to a specific data set. Note that, for the graph to be correctly

processed, the dimensions of ms and mo must match, while mo must contain

as many true values as the number of rows in T.

During the initialization phase, a GraphObject defines automatically

three SciPy sparse matrices in coordinate format: the adjacency matrix

A and an arc–node matrix AN, which are used in the aggregation mes-

sage procedure in the state transition phase — affected by a hyperparameter

aggregation mode, whose value defines the φ version to be used for ag-

gregating the messages —, and the node–graph matrix NG, which is used

by the GNN models in graph–based applications, and in particular, by the

MLP implementing the output function, to convert a node–based output to

an overall graph–based output.

The GraphObject class can be extended to the heterogeneous domain

with the CompositeGraphObject class, provided in composite graph class,

which includes a boolean type mask mK ∈ Bn×K = {mK
ik ∈ B}, to specify

52 CHAPTER 4. GNN KERAS

the type for each node, such that mK
ik = 1 if and only if node vi = vki ,

otherwise mK
ik = 0. In other words, each column of mK is a boolean array

which defines the type of node each node in the graph belongs to: there

are no overlapping columns in mK , namely they are mutually exclusive,

meaning that a node can belong to only one node type. A heterogeneous or

composite graph is therefore described by its composite node feature ma-

trix X ∈ Rn×Ln , where Ln = max(LK
n) — as a zero padding is added

to shorter feature vectors — and by its arc feature matrix E ∈ Rm×le .

The incoming neighborhood set can be composed of nodes of different type

inv(vi) = {ink
v(vi) ⊆ inv(vi) : ink

v(vi) ∩ inh
v(vi) = ∅, ∀k ̸= h, k, h ∈ K},

where ink
v(vi) = {vkj ∈ V : eji ∈ E, k ∈ K} has size |ink

v(vi)|. Moreover, a

composite adjacency matrix set can be defined, exploited by the CGNN to

process the incoming message of a node and based on the number and type

of the neighbors, AK = {Ak ∈ Rn×n}, where Ak = {akij ∈ R : k ∈ K, 0 ≤
i ≤ n − 1, 0 ≤ j ≤ n − 1} is the composite adjacency matrix of type k. In

particular, if there exists an arc (vki , vj) ∈ E, connecting two generic nodes

vki , vj ∈ V , then akij ∈ R ̸= 0, otherwise akij = 0. Instances of GraphObject

and CompositeGraphObject can also be saved in a single NumPy uncom-

pressed/compressed npz file — or in a folder of text files — which includes

all the necessary matrices for their complete representation. Given a dataset

of graphs, in the form of a list of graph data elements, these classes also pro-

vide a smart way to save the entire dataset in a single folder, from which it

can be loaded when needed. For speeding up the learning procedure, before

feeding a GNN model, a GraphObject is converted in another custom graph

representation, called GraphTensor, which contains a tensor–based descrip-

tion of all the attributes for the graph to be correctly and quickly processed

by the GNN model: although GraphObjects and GraphTensors are essen-

tially the same object, they differ in the data type used for their attributes,

as GraphObjects are described by NumPy arrays and SciPy sparse matrices

while GraphTensors by TensorFlow constant and sparse tensors. In order to

be correctly processed by the GNN models, GraphObjects and Composite-

GraphObjects are required to be fed to a special data handler, the Graph

Sequencer, described in the following.

4.3. CONCLUSIONS 53

4.2.2 GraphSequencer

A GraphSequencer is a data manager for fitting to a sequence of data —

such as a dataset of graphs — which is fed with a single GraphObject el-

ement or a list of multiple GraphObject elements to generate batches of

GraphTensors, whose attributes are presented as input to a given GNNkeras

model. In the first version of the software, described in [A2], a total of

six GraphSequencer are provided, for multi–graph and single–graph–based

datasets, in homogeneous and heterogeneous graph domains, and for induc-

tive and a mixed inductive–transductive learning approaches. It is worth

noting that the transductive one is a special class of Sequencer, which in

the homogeneous case is fed with homogeneous GraphObjects while gener-

ating heterogeneous graph data. Indeed, for each epoch and batch, it splits

the graph training supervised nodes into two subsets of inductive and trans-

ductive nodes: in the latter, the target of a node is integrated within its

feature vector. Therefore, for that node, no supervision is considered in the

learning process. Instead, no operation is carried out on the (supervised)

inductive set, which is used in the learning process for adapting the model’s

parameters. As a consequence, the new graph cannot be represented by a

homogeneous GraphTensor, since two types of nodes are present — described

by feature vectors of different lengths — thus making necessary the Compos-

iteGraphTensor representation for the CGNN learning process. In the com-

posite case described by the CompositeTransductiveGraphSequencer, both

the input and output data are represented by heterogeneous graphs, as the

procedure of splitting into transductive and inductive sets can be performed

on one specific type of nodes among all the available types in a Composite-

GraphObject instance, from which batches of CompositeGraphTensors are

generated, whose node types are the same as input heterogeneous graphs,

integrating a new node type which defines the transductive subset for that

specific node type.

4.3 Conclusions

In this chapter, a new general GNN programming framework has been pre-

sented, which provides multiple Keras–based GNN models for homogeneous

and heterogeneous graph processing, for both inductive and mixed inductive–

transductive learning settings. GNNkeras has been designed with the aim of

54 CHAPTER 4. GNN KERAS

simplifying the development of software applications in the field of ML for

graphs, to simplify the approach to this kind of machine learning models for

those who are already familiar with Keras models as well as for those who

want to enter the graph domain of Artificial Intelligence.

Indeed, due to the mentioned characteristics in Section 4.1, GNNkeras is

a flexible and suitable tool which can be used by researchers in ML to test

new models and to design new applications for relational data. Finally, the

exceptional interest in ML for graphs is a measure of the size and growth

of the community operating in the sector and for which GNNkeras can be

useful. In this perspective, a possible future development could be to include

all its functionalities in other existing wide–used TensorFlow–based libraries.

Contributing to an existing library, to add support for heterogeneous graph

data processing, could be a valuable approach to ensure that the library

is maintained and improved by the research community. This would avoid

fragmenting the field and creating duplication of effort, and would allow

users to benefit from a unified and well–maintained library. Adding support

for heterogeneous graph data processing to an existing library would require

significant effort, but could be accomplished through contributions from a

community of developers and researchers. This could involve adding special-

ized APIs and workflows that are optimized for working with heterogeneous

graph data, as well as incorporating relevant research advancements and best

practices. By contributing to an existing library, researchers can benefit from

the existing community and infrastructure, and can leverage the knowledge

and experience of other developers and users, leading to a more robust and

well–supported library that is able to keep up with the latest developments

in the field of GNNs.

Chapter 5

Drug Side–Effect Prediction

with Graph Neural Networks

This chapter describes three predictors of DSEs based on GNNs, trained on

both homogeneous and heterogeneous relational datasets integrating multi-

ple data sources. All the proposed models are the subjects of publications

[A1], [A4] and [A7].

Drug side effects (DSEs), also known as adverse drug reactions (ADRs),

are unwanted and undesirable effects that are possibly related to a drug, and

they have become a major modern healthcare concern, particularly given the

increasing complexity of therapeutics; thus, they have a high impact on the

costs of the public health care system [145] and drug discovery processes

[146, 97]. They can arise when a drug is used either as indicated, or as a

consequence of improper dosages or multiple drug interactions, ranging from

minor problems such as a runny nose to life–threatening events, such as a

heart attack or liver damage: although fatal ADRs are rare once a drug is

launched on the market, they are estimated to be one of the most common

causes of death in the United States [147].

As prescription drug use is increasing [148], DSEs are becoming a cen-

tral problem for pharmaceutical companies, since their occurrence is one of

the most important reasons for candidate drug elimination during clinical

trials, accounting for around 30% of failures [149, 97] and preventing candi-

date molecules from being selected as commercial drugs. The development

of computational tools that can predict adverse effects might thus reduce

the attrition rate, avoiding health risks for participants and cutting drug

development costs [121].

55

56 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

DL methods are becoming increasingly important for understanding com-

plex biological processes which trigger DSEs [118]. These processes involve

various entities such as drugs, proteins, genes, and metabolic processes which

interact with each other. An effective predictor should be able to handle

heterogeneous data and consider the relationships between data types. In

general, DSE computational prediction methods range from simple predic-

tors to machine learning (ML) techniques such as support vector machines

(SVMs) or multilayer perceptrons (MLPs), and to more complex models

based on random forests or deep learning [115, 150, 7]. However, most of the

DSE prediction techniques are still limited by the reliance on euclidean data

[111, 114], which prevents models from considering relational information in

the task, since molecular data must undergo preprocessing to be encoded

into vectors, with an inevitable loss of possibly useful information. In addi-

tion, preprocessing methods usually require re–thinking when new features

are added. GNNs, instead, can process relational data directly in graph

form, exploiting all the structural information.

GNNs were already used for a related but different task, namely the

prediction of polypharmacy side–effects. Polypharmacy side–effects are trig-

gered by the combined use of two or more drugs. Direct and indirect inter-

actions between the drugs are the key mechanisms behind these adverse re-

actions, which can be foreseen based on the structures of the drugs and their

interactions with human genes. Predicting the probability of such events

before prescribing the drugs can save the patient’s health. This problem

was addressed with GNNs both by analyzing the network of drugs and pro-

tein targets [7], and by applying a graph co–attention model over the two

graphs describing a pair of drugs’ structural formulas [121]. Differently, the

side–effects of a single drug are mainly triggered by its interactions with the

human organism, and can therefore be determined based on these interac-

tions, on the structural features of the drug, and on similarities with other

drugs for which the side–effects are known. Nevertheless, to the best of the

author’s knowledge, no single–drug side–effect predictor based on GNNs has

been proposed yet.

This chapter presents three GNN–based methods for predicting the single

DSEs, after a short description of the mixed inductive–transductive train-

ing procedure which has been used in some of the presented works and a

brief overview of the databases from which the data has been retrieved, in

Sections 5.1 and 5.2, respectively. In particular, Section 5.3 is the subject

5.1. MIXED INDUCTIVE–TRANSDUCTIVE LEARNING 57

of publication [A1] and proposes a node–focused GNN classifier working on

a heterogeneous graph involving drug–gene, drug–drug, and gene–gene re-

lationships; Section 5.4 is the subject of publication [A7] and deals with a

graph–focused classification task of the graph–based representations of drug

structures; Section 5.5 further broadens the field of study by including both

the graph–based representation of drug structures and the relationships they

have with genes and other chemical compounds, as presented in publication

[A4]. With reference to the previously mentioned order, all sections share

the same structure: first, the related dataset is described (Sections 5.3.1,

5.4.1, and 5.5.1); then the specific model is presented, in Sections 5.3.2,

5.4.2, and 5.5.2, giving implementation details of the GNN model specific of

the application as well as the setup employed in the experimentation (Sec-

tions 5.3.3, 5.4.3, and 5.5.3). Eventually, results are reported and discussed

in Sections 5.3.4, 5.4.4, and 5.5.4 with a comparison with other ML methods

in Sections 5.3.5, 5.4.5 and 5.5.5, and a focus on an ablation study in Sec-

tions 5.3.6, and 5.5.6. Please note that, since in [A7] only the graph–based

structures of molecules are considered, with only one set of data retrieved

from the databases described in Section 5.2, no ablation study is carried out

in Section 5.4. The expected use of the method is then discussed in Sec-

tions 5.3.7, 5.4.6, and 5.5.7, respectively. Finally, Section 5.6 draws overall

conclusions on the methods and the results.

5.1 Mixed Inductive–Transductive Learning

A mixed inductive–transductive learning scheme [140] is employed in the

works presented in this chapter. In this setting, a double mechanism is

exploited by the network to learn node–class associations. In standard in-

ductive learning, predictions of side–effects of drugs are made based on node

features of drugs and genes, and graph connectivity. In a transductive learn-

ing setup, instead, predictions are made based on known side–effects of other

drugs. In this mixed inductive–transductive learning scheme, both mecha-

nisms are utilized simultaneously. Specifically, the feature vectors of a subset

of the training nodes, referred to as transductive nodes, are enhanced with

their targets in order to be explicitly exploited into the diffusion process,

yielding a direct transductive contribution.

In the learning process, the training set is split into ten batches. The

network learns the input–supervision association on one training batch at a

58 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Figure 5.1: An example of two–batch generation for the mixed inductive–transductive

learning setting. From the left: the original graph, with no transductive nodes; the gen-

erated batches, with both inductive and transductive nodes. Blue, red, and green nodes

represent inductive drug nodes, transductive drug nodes, and gene nodes, respectively.

Note that the transduction is performed only on drug nodes, since no prediction is per-

formed on gene nodes.

time, while the other nine batches are exploited as a transduction set. The

features of each drug node in the transduction set are augmented with the

transductive features, corresponding to the occurrence of the side effects on

that node. An example of two–batch generation for the mixed inductive–

transductive learning setting is depicted in Fig. 5.1. When evaluating the

validation set, the entire training set is used as the transduction set in the

same manner as previously described. When evaluating the test set, the

transduction set is composed of both the validation set and the training

set. The idea is to exploit known DSE associations to predict DSEs for

new drugs: since the mixed inductive–transductive scheme replicates this

behavior during training, validation, and test times, this method is suitable

for the use case of the following datasets and tools.

5.2 Data Sources

Having multiple databases which can exchange information on heterogeneous

data is crucial for bioinformatics, as it allows for a more comprehensive un-

derstanding of biological systems. By combining data from different sources,

researchers can gain a broader perspective on the interactions and relation-

5.2. DATA SOURCES 59

ships between different molecules, genes, and other biological entities, since

the complexity of biological systems can make it difficult to understand their

underlying mechanisms. In the following the main data sources used for re-

trieving data for publications [A1], [A7], and [A4] are described.

5.2.1 PubChem

PubChem [151] is an open open chemistry database which provides informa-

tion on millions of chemical substances, including their structures, properties,

and biological activities. In addition, PubChem also includes information on

the physical properties of chemicals, such as melting point, boiling point,

and solubility, as well as links to other resources, such as patents, literature

references, and safety information. PubChem is a valuable resource for re-

searchers, students, and the general public interested in chemistry and the

biological effects of chemicals. The database is constantly being updated

with new information, making it a valuable resource for staying up–to–date

on the latest research in the field. Launched in 2004 as a component of the

Molecular Libraries Program (MLP) of the US National Institutes of Health

(NIH), the system is maintained by the National Center for Biotechnology

Information (NCBI) and involves 885 contributing organizations, including

university labs, government agencies, pharmaceutical companies and chem-

ical vendors and publishers. As of January 2023, PubChem contains more

than 298 million substance descriptions, 112 million unique chemical struc-

tures, and 301 million bioactivity data points from 1,5 million biological

assays experiments, involving 103.988 Genes and 185.153 proteins.

5.2.2 Ensembl

Ensembl [152] is a comprehensive and freely available database of genomic

and biological data for vertebrates and other eukaryotic organisms. Started

as a project in 1999 to automatically annotate the genome, it is one of the

most widely used resources for genetic and genomic information, and is par-

ticularly useful for understanding the structure and function of genes and

their products (such as proteins). Ensembl is a collaborative project be-

tween the European Bioinformatics Institute (EBI) — part of the European

Molecular Biology Laboratory (EMBL) — and the Wellcome Trust Sanger

Institute, and it is maintained and updated by a team of bioinformatics an-

60 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

alysts and software developers. The database includes a range of data types,

including DNA and protein sequences, gene structures, regulatory elements,

and functional annotations. It also provides tools for data visualization and

analysis, including BLAST searches, multiple alignment tools, and gene ex-

pression data. Ensembl is an important resource for researchers in many

fields, including genetics, genomics, and molecular biology. It is regularly

updated with new data and features, and is an essential tool for anyone

working with genomic data.

One of the most useful features of Ensembl is to access and query large

datasets of biological data in a user–friendly way with BioMart web–based

tool. BioMart is designed to be easy to use, even for people with little

or no programming experience, and it provides a wide range of features

for searching, filtering, and downloading data, including DNA and protein

sequences, gene structures, functional annotations, and gene expression data.

Users can also use BioMart to search for specific genes or genomic regions

of interest, and to filter data based on various criteria such as species, tissue

type, or gene function.

5.2.3 Gene Ontology

The Gene Ontology (GO) [153] is a controlled vocabulary used to describe

the biological roles of genes and their products, typically proteins, in an or-

ganism. It is a database that provides a standardized system for annotating

and querying the function of genes across different organisms. GO is made

up of three main components: the Biological Process (BP), Molecular Func-

tion (MF) and Cellular Component (CC). These three ontologies provide a

consistent way to describe the different aspects of gene product behavior and

location: the BP ontology defines high–level biological processes in which a

gene or gene product participates, such as metabolism or cell division; the

MF ontology describes the molecular activity of a gene product, such as cat-

alytic activity or binding; the CC ontology describes the cellular location or

complex in which a gene product is active, such as the cytoplasm or a cell

membrane. GO is a widely used resource in the bioinformatics community,

with annotation for many sequenced organisms including humans, mice, fruit

flies, and yeasts.

5.2. DATA SOURCES 61

5.2.4 STITCH

The search tool for interactions of chemicals (STITCH) [154] is one of the

most complete and up–to–date database of known and predicted interactions

between over 2 million chemical compounds and over 5 million proteins. The

interactions include physical and functional associations, derived from sci-

entific literature, patents, computational prediction, knowledge transfer be-

tween organisms, and interactions aggregated from other primary databases.

STITCH integrates information about interactions from metabolic pathways,

crystal structures, binding experiments and drug–target relationships, which

are also know as drug–protein interactions (DPIs). This database also pro-

vides information on the strength and type of each interaction, as well as

any known physiological effect of the interaction. This can be helpful for

researchers trying to understand the potential mechanisms of action of a

chemical compound or the potential side effects of a drug.

5.2.5 HuRI

The Human Reference Protein Interactome Mapping Project (HuRI) [155]

is a repository, created and maintained by the Center for Cancer Systems

Biology (CCSB) at Dana–Farber Cancer Institute, which stores the data

from the ongoing work on the first complete reference map of the human

protein–protein interactome network. All pairwise combinations of human

protein–coding genes are systematically being interrogated to identify which

are involved in binary protein–protein interactions (PPIs). HuRI has grown

in several distinct stages primarily defined by the number of human protein–

coding genes amenable to screening for which at least one Gateway–cloned

Open Reading Frame (ORF) was available at the time of the project. The

database currently includes three proteome–scale human PPI datasets, as

well as smaller datasets generated from screens of specific protein–coding

genes. In addition to these datasets, HuRI also includes information about

PPIs involving different isoforms of the same gene produced through alter-

native splicing. HuRI is an important fully–open resource for researchers

studying the human proteome, as it provides a wealth of information about

how different proteins work together to perform essential functions and con-

tribute to disease processes. By making this information available, HuRI

enables researchers to identify potential therapeutic targets and to develop

new treatments for diseases. Additionally, the database is constantly up-

62 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

dated as new information becomes available, so it is a valuable resource for

staying current with developments in the field. Overall, the HuRI database

is a key tool for advancing our understanding of the human proteome and

for improving human health.

5.2.6 SIDER

The Side Effect Resource database (SIDER) [156] contains information on

the side effects of drugs available in the European Union and the Euro-

pean Economic Area (EEA), maintained by the European Medicines Agency

(EMA). The database includes information on over 500 drugs and more than

4.000 side effects derived from a variety of sources, including reports submit-

ted to national regulatory authorities, published literature, and other public

sources. Moreover, SIDER includes information on the indications (uses) for

each drug, as well as information on the drug’s pharmacology (how it works

in the body) and its contraindications (situations in which the drug should

not be used). As a result, SIDER is intended to be a resource for pharma-

covigilance, which is the study of the safety of drugs after they have been

approved for marketing, and to help healthcare professionals, researchers,

and others to identify and assess the potential risks of drugs, and to make

informed decisions about their use. It is regularly updated with new informa-

tion on drugs and their side effects, as it becomes available. In addition, the

EMA also provides a number of tools and resources to help users of SIDER

in accessing and interpreting the data, including guidance documents and

training materials, as well as technical support for users who have questions

or need assistance.

5.3 Modular Multi–Source Prediction

In this section DruGNN, a new method for single DSE prediction, based on

GNNs and a novel graph dataset accounting for drug–gene, drug–drug, and

gene–gene relationships, is presented. The first novelty of this work is the

creation of a dataset for predicting DSEs using the publicly available data

described in Section 5.2. This dataset, described in detail in Section 5.3.1, is

composed of a single graph with two types of nodes (drugs and genes) and

three types of edges (connections between drugs, genes, and both), where

each node is described by a specific set of features, such as chemical properties

5.3. MODULAR MULTI–SOURCE PREDICTION 63

for drugs and characteristics/functions for genes. Another key aspect of this

work is the development of DruGNN, a GNN–based ML method for DSE

prediction on the aforementioned graph dataset. Although the idea of a

GNN for heterogeneous data is not novel, to the author’s knowledge there

are no GNN–based approaches, especially recurrent GNN models, for the

prediction of side effects of single drugs exploiting a heterogeneous dataset

composed of drugs and genes. Application specific implementation details

of the GNN model are given in Section 5.3.2. The prediction process is

set up as a multi–class multi–label node–focused classification problem in

which drug nodes are associated to a binary vector defining DSE classes. A

mixed inductive–transductive learning approach [139] is used, incorporating

information on known DSEs in order to predict new DSEs.

The method is flexible and can be easily expanded to include more node

attributes and edges without altering the ML framework [140], as well as to

predict DSEs of new drugs with no need of retraining. Experimental results

have shown promising accuracy and the method has been compared to sim-

ilar graph–based models and a traditional ML method which cannot exploit

relational information. Two ablation studies have also been conducted over

both the DSE set and the feature set to demonstrate the model’s robustness

and the importance of each data source in the training process.

The rest of this section is organized as follows: Section 5.3.1 describes

the dataset, its construction process, and the data sources. Implementation

details of the GNN model specific of this application are given in Section

5.3.2, while the experimental setup is described in Section 5.3.3. In Section

5.3.4 the obtained results are presented, with a discussion on their relevance

and meaning. A comparison with other models is carried out in Section

5.3.5, while Section 5.3.6 focuses on an ablation study. Eventually, Section

5.3.7 discusses the expected use of the method.

5.3.1 Dataset

The dataset consists of a single heterogeneous graph where genes and drugs

are represented as nodes, connected by three different sets of edges, with

relationships based on gene–gene interactions, drug–gene interactions, and

drug–drug similarity. A sketch of the graph is provided in Fig. 5.2.

Gene node features are retrieved from the BioMart database [157] and

consist of chromosome and strand location encoded by a one–hot vector of 25

64 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Figure 5.2: Illustration of the graph composition. Blue and orange nodes represent drugs

and genes, respectively, labelled with their own features. Red rectangles represent DSEs

classes.

features (22 regular chromosomes, plus X, Y, and mitochondrial DNA) and

by a single value +1 or −1, respectively, the percentage of GC content, and a

one–hot vector representing the molecular function ontology term, clustered

on the 113 unique top–level terms from Gene Ontology’s molecular function

ontology [153] using DAVID [158, 159], for a total of 140 features on each

gene node.

Drug nodes are described by a set of chemico–physical molecular descrip-

tors provided by the PubChem database [151], such as molecular weight,

polar surface area, xlogp coefficient, heavy atom and rotatable bond counts,

numbers of hydrogen bond donors and acceptors, concatenated to the MF of

the drug. Only drug nodes with at least one occurring DSE are taken into

consideration.

Two MFs of different lengths are extracted from the SMILES strings

provided by PubChem — describing each molecular structure of the drugs

— using the RdKit python library [160], of sizes 128 and 2, 048 elements,

used for different purposes. The shortest one is concatenated to the drug

features in order to keep the feature vector size of drug nodes similar to

that of gene nodes and therefore bringing the total size of the drug feature

vector to 135. The longest MF allows to better estimate and to define the

drug-–drug relationships, based on the drug similarity measured in terms

5.3. MODULAR MULTI–SOURCE PREDICTION 65

of Tanimoto Similarity (TS) [161], the most common measure of similarity

between molecules, so that an edge between a generic node pair is generated

if and only if the TS value of the two related MFs is greater than or equal

to a fixed TS threshold at graph construction.

Drug–gene relationships are based on drug–to–protein interactions (DPI)

extracted from the STITCH database [154] and BioMart [157], allowing to

produce a mapping between drugs and genes whose products are the pro-

teins the drugs interact with. For the aforementioned dataset, this mapping

consists of 314, 369 DPI links. Finally, gene–gene relationships are retrieved

from HuRI [155] and from a gene–to–protein mapping provided by BioMart.

Gene–gene interaction links combined to gene features such as the GO term

allow to reconstruct the metabolic network.

The supervisions for the drug nodes are extracted from the SIDER database

[156]. At the time of this study, SIDER contained 5, 868 side–effects occur-

ring on 1, 430 drugs, with a total of 139, 756 entries, each accounting for

the association of a single drug to a specific side–effect. These associations

are retrieved from medical documents, and in most cases do not report the

concentration at which the side effects appear. Drugs supervisions are de-

fined as all the most occurring DSEs found on SIDER with a minimum of

100 occurrences over the drugs of the dataset, whose original distribution is

reported in Fig. 5.3.

After all the filtering steps, these result in 360 side–effects , which may

(positive class) or may not occur (negative class) for each drug node. The

choice for the DSE filtering threshold represents a good compromise between

number of considered DSEs and the balancement of the dataset, since low-

ering this threshold resulted in a much more unbalanced supervision. The

associations between drugs and side–effect are modeled independently of each

other, both on the drug and on the side–effect axes. The final task is then a

multi–label, multi–class, node–focused classification, with 96, 477 total posi-

tive occurrences, and 515, 160 negative ones. In particular, belonging to the

positive class for a generic drug means that it produces the particular side ef-

fect, corresponding to the value 1 in the related position of the target vector.

Note that each drug can cause multiple side effects. These labels are also

used, according to the inductive–transductive scheme, as either transductive

features for known drugs, or class supervisions for new drugs.

The final dataset consists of a single heterogeneous graph composed of

1, 341 drug nodes and 7, 881 gene nodes as well as 12, 002 PPIs links, 314, 369

66 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Figure 5.3: The number of drugs associated to each specific DSE. Most DSEs are associ-

ated with few drugs.

DPIs links, and 5, 252 drug–drug similarities, for a total of 9, 222 featured

nodes and 331, 623 unfeatured edges. In generating the drug–drug arcs, a TS

threshold equal to 0.7 has been selected, as to avoid either an excessive num-

ber of drug–drug links or isolated drug nodes, which in the mixed inductive–

transductive learning policy would have meant too much DSE transductive

information passing between nodes, or no information passing at all, respec-

tively. The dataset construction, with all the source databases and prepro-

cessing steps, is sketched in Fig. 5.4.

5.3.2 Model

This subsection describes the application–specific implementation of the

GNN model formulated in Section 2.3.1. In particular, since in this sec-

tion the dataset is a heterogeneous graph with two types of nodes (drugs

and genes), the GNN model is a Composite GNN, as formulated in Sec-

tion 2.3.4. The state updating functions are therefore implemented by two

MLPs, one for each node type. The general formulation given in Eq. (2.10)

is specified for this application in Eq. (5.1), where Nd and Ng represent the

subsets of drug and gene nodes, respectively. Edge features are not used in

5.3. MODULAR MULTI–SOURCE PREDICTION 67

Figure 5.4: Sketch of the DruGNN original dataset construction. The information flows

from the orange and cyan rectangles representing data sources and data pieces to the

final graph representation, in which purple and pink rectangles represent graph nodes and

their features, green rectangles stand for the edges between nodes, and blue rectangles

represent the labels of a subset of the drug nodes.

this formulation, as edges are not labeled in the final dataset:

xt
n = fw,d(x

t−1
n , ln, a

∑
m∈Ne(n)

(xt−1
m , ln)) if n ∈ Nd ⊂ N

xt
n = fw,g(x

t−1
n , ln, a

∑
m∈Ne(n)

(xt−1
m , ln)) if n ∈ Ng ⊂ N

(5.1)

During the training phase, the two MLPs will learn two different versions

of the state updating function: fd
w computes the states of all drug nodes

Nd ⊂ N , while f g
w the states of all gene nodes Ng ⊂ N . The output network

is then applied to the subset of drug nodes in the graph for which an output is

requested. Since this is a problem of node classification the output function

is exactly the one described in Eq. (2.7).

5.3.3 Experimental setup

The final task is to predict DSEs on drug nodes in a node–based classifica-

tion problem with multiple classes and a multi–label setting, as each drug

can cause multiple side–effects among the 360 considered DSEs. A random

dataset split, consistently used throughout the experimentation, is performed

to ensure reproducible and comparable results. 10% of the drug nodes are

designated as the test set, and only employed during testing phase. Another

10% of the drug nodes are reserved as a validation set to monitor overfit-

ting and stop the training process accordingly. The remaining 80% of the

68 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Hyperparameter Values

Activation Function relu, selu, tanh, sigmoid

Initial Learning Rate 10−2, 10−3, 10−4

State Dimension 10, 50, 100, 200

Hidden Units 100, 200, 500

Neighborhood Aggregation average, sum

Dropout Rate in nets 0.0, 0.1, 0.3, 0.5

Table 5.1: Hyperparameter values analyzed during the grid search procedure, with the

best configuration in terms of performance highlighted in red.

nodes are exploited as the training set. The network hyperparameters were

tuned with an extensive grid–search procedure. In particular, experiments

were carried out on all the hyperparameter values described in Table 5.1 and

their combinations. Each element in the grid was analyzed by measuring the

average model accuracy in a 5–fold cross–validation procedure.

To assess the performance of the DruGNN on the dataset and investigate

the impact of varying the number of side–effects on the learning process, a

series of experiments were conducted. An ablation study was conducted on

the set of side–effects, in which the model was trained and tested on versions

of the dataset featuring progressively fewer side–effects. Only the k most

prevalent side–effects were retained in each iteration, with k assuming the

following values: 360, 240, 120, 80, 40, 20, 10, 5.

To assess the significance of the contributions from the various data

sources, an additional ablation study was carried out: node features and

edges were organized in groups by source and were removed from the dataset,

one group at a time, evaluating the model’s performance in the absence of

such a group. The difference in performance provides an estimate of the sig-

nificance of the excluded features. Seven feature/edge groups characterize

the dataset, and each group was analyzed in a 5–fold cross–validation proce-

dure. The same dataset split and transductive learning scheme described in

the previous experimentation (as outlined in Section 5.1) were consistently

applied.

Eventually, the DruGNN was compared to other competitive GNN mod-

els with different characteristics, in order to assess its performance with

respect to the alternative solutions. In particular, two powerful models were

5.3. MODULAR MULTI–SOURCE PREDICTION 69

considered: GCNs [10], which exploit convolutions to aggregate information

coming from different locations across the graph, and have shown competitive

performance on many different tasks; GraphSAGE [13], which are versatile

networks that can be configured with various aggregation and state updating

functions, being potentially competitive on every graph dataset. In addition,

a comparison with a simple MLP was also performed, in order to evaluate

the difference between a graph–based model and a Euclidean predictor: in

particular, a three–layered MLP was used after a small optimization over

the validation set. Due to the unique and graph–structured nature of the

dataset, it was not possible to incorporate previously published predictors

for DSEs in the comparison as the feature sets would not be adaptable. It

should also be noted that no graph–based predictor has been published for

this task thus far.

5.3.4 Results and Discussion

The hyperparameter search described in Section 5.3.3 produced a model with

an accuracy over the validation set of 87.22%. The same model, evaluated

on the held–out test set scored an accuracy of 86.30%.

5.3.5 Comparison with Other Models

To evaluate the capabilities of DruGNN with respect to other GNN vari-

ants and non–graph based Euclidean models, a comparison was made with

GraphSAGE [13], GCNs [10], and a simple MLP model trained on a vec-

torized version of the drug data. The MLP serves as a measure of the

results that can be achieved using traditional Euclidean predictions on the

dataset. The GCN and GraphSAGE were trained using the same inductive–

transductive scheme as DruGNN. All models were trained using the binary

cross–entropy loss function, Adam optimizer [72], and an initial learning rate

of 10−4. A maximum of 500 epochs were allowed for each model, with early

stopping implemented based on the validation loss and recovery of the best

weights. As expected, all graph–based models outperformed the standard

MLP, highlighting the benefits of representing the dataset as relationships

on a graph and learning directly on the graph structure. Additionally, using

a GraphSAGE or GCN approach did not yield the same results as obtained

with DruGNN, as shown in Table 5.2. This can be attributed to the Re-

70 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Model Configuration Avg. Acc.

MLP DL = 3 × 25 0.7798 ± 0.014

GCN CL = 2 × 36, DL = 116 0.8294 ± 0.004

GraphSAGE CL = 2 × 72, DL = 1 × 168 0.8311 ± 0.004

DruGNN K = 6, SD = 50, DL = 1 × 200 0.8630 ± 0.006

Table 5.2: Comparison between different models of the GNN family. Model configuration

is reported; all of the models were optimized on a limited hyperparameter search space.

The parameters used in the DruGNN model include K (maximum number of state update

iterations), SD (state dimension), DL (number of dense layers and the number of units

in each layer), and CL (number of convolutional layers and the number of units in each

layer). For GCN and GraphSAGE models, the dense layer is the last one before the output

layer.

current GNN model being particularly efficient in node property prediction

tasks, while the other GNN models tend to aggregate nodes on a larger scale,

providing an advantage in graph property prediction tasks. This is also con-

sistent with theoretical studies on GNNs that demonstrate processing capa-

bilities by simulating the Weisfeiler–Lehman test [75] (for more details please

refer to Section 2.3.5). Models evaluation is based on the average accuracy

percentage obtained over a 10–fold cross–validation procedure on the same

dataset split.

5.3.6 Ablation Study

The contribution of side–effects to the network’s learning capability was

investigated using the best model configuration obtained from the first set

of experiments. The side–effects were ranked by occurrence and the set was

gradually reduced by selecting only the most common ones. The average

accuracy was measured over five repetitions on the held–out test set and the

results are presented in Table 5.3.

The multi–class multi–label classification task can be seen as a set of

independently and parallel problems involving all the class memberships. It

was initially expected that an increase in the number of classes would result

in the need for the network to learn a more complex algorithm. However,

the results in Table 5.3 show an improvement in performance for larger sets

of side–effects. This unexpected behavior can be attributed to the network’s

5.3. MODULAR MULTI–SOURCE PREDICTION 71

DSE 360 240 120 80 40 20 10 5

Acc. 0.863 0.815 0.732 0.685 0.630 0.618 0.671 0.747

Bal. 0.581 0.586 0.600 0.605 0.621 0.599 0.577 0.562

Table 5.3: Average accuracy (Acc.), and average balanced accuracy (Bal.) obtained on

the test set by training and testing the model on progressively smaller sets of DSEs.

ability to learn intermediate solutions useful for all or large subsets of the

classes, similar to transfer learning. This is particularly effective in this

case, as transfer learning between classes is crucial due to the relatively

small dimension of the set of drugs, with the additional bonus of avoiding

overfitting. However, at lower set dimensions (up to 20), transfer learning

becomes less efficient and the network instead learns to treat each class

independently.

The unbalanced nature of the problem also contributes to the observed

behavior. The side–effects with fewer occurrences are highly unbalanced

towards the negative class, while the side–effects with more occurrences are

skewed towards the positive class. As less common side–effects are removed,

the balance shifts, likely playing a significant role in this phenomenon.

A second ablation study was conducted on the feature/edge groups from

various data sources. The model’s accuracy, trained and tested without the

specific data group, was evaluated and averaged over five runs of the same

experiment. To better weigh the importance of each group, the DPF (Dif-

ference Per Feature) score was also calculated by dividing the performance

difference with respect to the complete model by the number of features in

the group. The results of the ablation study for each data group, including

the observed performance loss, are presented in Table 5.4.

Table 5.4 demonstrates that each data source has a positive impact on

the GNN learning process. The deletion of drug fingerprints results in the

largest decrease in performance: this can be attributed to the significance of

drug substructures in identifying side effects, as well as the large number of

features assigned to this data group (128 in total). Additionally, analysis of

the DPF score indicates that the seven PubChem descriptors have the great-

est contribution, as expected due to their chemical relevance. The gene fea-

tures also have a notable impact on performance, with the BioMart–retrieved

features having a DPF equivalent to that of drug fingerprints. Edges also

72 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Group DPI PPI DDS FP PC GO BM

Type E E E DF DF GF GF

Acc. 0.8614 0.8618 0.8623 0.8581 0.8620 0.8617 0.8620

Diff. 0.16 0.12 0.07 0.49 0.10 0.13 0.10

Count - - - 128 7 113 27

DPF - - - 0.004 0.014 0.001 0.004

Table 5.4: Average accuracy (Acc) and relative difference from the model trained on the

full set of features (Diff.) when the model is trained and tested on the dataset with the

absence of a specific feature/edge group (Group). The Group column is divided into three

types: E (Edges), DF (Drug Features), GF (Gene Features). For DF and GF data groups,

the number of features (Count) and the difference per feature (DPF) are also reported.

DPI (Drug–Protein Interactions), PPI (Protein–Protein Interactions), DDS (Drug–Drug

Similarity), FP (FingerPrints), PC (PubChem), GO (Gene Ontology), and BM (BioMart)

are the different data groups used in the study.

showed to be important, as the deletion of each edge set leads to a decrease in

performance. Notably, the results suggest that drug similarity relations are

less important, which may be due to the network’s ability to infer similarity

based on fingerprints and drug–gene interactions.

The results of the study indicate that although each group of features

and edges contributes positively to the model’s performance, the minimal

decrease in performance observed when they are removed suggests the ro-

bustness of the model: in other words, the model maintains a high level of

performance even when certain sets of edges or features are excluded. One

potential explanation for this robustness is the general tendency for GNNs

to be robust, as previously demonstrated by systematic ablation studies on

various types of graph datasets [75]. Another possibility is that the large

number of features and edges, as well as the diversity of data sources used

in the model, enhance its robustness.

5.3.7 Usability

DruGNN is designed as a practical tool that can aid healthcare and pharma-

cology professionals in predicting the side effects of newly discovered com-

pounds or those not yet classified as commercial drugs. The dataset and

5.3. MODULAR MULTI–SOURCE PREDICTION 73

software are publicly accessible on GitHub1, allowing for further scientific

research and utilization by the community. Furthermore, both the dataset

and algorithm are scalable, with the ability to add new compounds for predic-

tion without compromising network usability, as there is no need to re–train

it from scratch.

An example of such usage is represented by the prediction of the side–

effects of Amoxicillin (PubChem CID: 2171), which is part of the held–

out test set (and therefore never seen during the training or validation

phases). Amoxicillin has been determined to be similar to the following

drugs, listed by PubChem CID: 2173, 2349, 2559, 4607, 4730, 4834, 8982,

15232, 22502, 6437075. It also interacts with 76 genes. No other information

but the fingerprint and PubChem features of Amoxicillin are available to the

model. The network correctly predicts 22 side–effects, among which (listed

by SIDER id) quite common and expectable ones, like C0000737 (Abdominal

pain) and C0038362 (Stomatitis), but also non–obvious ones, like C0002871

(Anaemia) and C0917801 (Insomnia). However, it fails to predict 6 side–

effects: C0002994 (Angioedema), C0008370 (Cholestasis), C0009319 (Coli-

tis), C0011606 (Dermatitis exfoliative), C0014457 (Eosinophilia), C0036572

(Convulsion). Please notice that Angioedema, Colitis, Dermatitis exfolia-

tive, and Convulsion are indicated as very rare for Amoxicillin. Cholestasis

has relatively few occurrences in the dataset, and is therefore difficult to

predict. Moreover, the network shows good predictive capabilities on side–

effects which are common in the whole drug class Amoxicillin belongs to

(represented by the similar compounds in the dataset). In addition, the net-

work predicts only one side–effect which is not associated to Amoxicillin in

the supervision: C0035078 (Renal failure).

As shown in the example, to predict the side–effects of a new compound,

it is sufficient to retrieve information (coming from wet–lab studies and from

the literature) on its interactions with genes, and to know its structural for-

mula. The fingerprint of the compounds composing the dataset as well as

similarities between them can be calculated by using RdKit python library.

The PubChem features can either be obtained from a database, or calculated

with RdKit. By incorporating the compound into the dataset, its DSEs can

be predicted with DruGNN. The results obtained from DruGNN and the rel-

evant information from the database can be utilized by medical professionals

such as doctors and pharmacists for visual analysis.

1https://github.com/PietroMSB/DrugSideEffects

https://github.com/PietroMSB/DrugSideEffects

74 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

5.4 DSE prediction on Molecular Graphs

In this section, GNN–MGSEP (Graph Neural Network — Molecular Graph

Side–Effect Predictor) is described, for the DSE prediction task, addressed

as a graph–focused multi–class multi–label classification problem. As the

drug structure can be efficiently encoded by a molecular graph, GNNs are

employed to predict DSEs on single drugs based solely on the drug structure.

This methodology differs from the GNN–based DSE predictor described in

Section 5.3, since DruGNN predicts DSEs on a large knowledge graph in-

tegrating drug features, gene features, gene–gene interactions, drug–gene

interactions and drug–drug similarities [103]. DruGNN, despite its ability

to integrate information from various domains through Composite Graph

Neural Networks (CGNNs), is limited in its ability to exploit full molecular

information as it encodes the drug structure as a fingerprint vector. More-

over, using SMILES, like other non–graph–based methodologies, also results

in loss of information. In contrast, molecular graphs retain all structural

information associated with each drug compound, which can be exploited

to predict DSEs. A novel dataset of molecular graphs is introduced and de-

scribed in Section 5.4.1: it can be used for the prediction of DSEs with any

predictor model that accepts the drug structure in input; molecular graphs

can also be enriched with relevant chemical features of the compound. Al-

though the model is not a novelty in this field, to the author’s knowledge

there are no GNN–based approaches for the prediction of side effects of single

drugs exploiting only their molecular structure, in a graph–focused, homo-

geneous setting. The rest of the section is organized as follows: Section 5.4.2

explains the methodology and describes the GNN model used for carrying

out the predictions; Section 5.4.3 describes the experimental setup; Section

5.4.4 discusses the relevance of the results, with a focus on the prediction

performance in comparison with other available methods in Section 5.4.5;

finally, Section 5.4.6 describes the usability of the method. Since only the

graph–based structures of molecules are considered, and no data is collected

from most of the databases described in Section 5.2, no ablation study is

carried out in this work.

5.4. DSE PREDICTION ON MOLECULAR GRAPHS 75

5.4.1 Dataset

In this framework, only the chemical structure of a drug and known DSE

associations are required. Data was obtained from the SIDER database

[156], which contained information on 1, 430 drugs, 5, 880 Adverse Drug Re-

actions (ADRs), and 140, 064 drug–ADR pairs, at the time of the study.

The “stereo” version of the STITCH compound identifier was used as a

key on the PubChem database [151]. A preprocessing procedure was imple-

mented on the SIDER database to filter out duplicates of drug–ADR pairs.

This was done by removing all associations referring to lowest level terms

(LLTs) for DSEs. The dataset is therefore composed of drug–ADR pairs

in which side–effects are expressed via a primary term (PT). This ensures

that duplicate pairs are not present and that the learning procedure is not

negatively affected by unnecessary data. Additionally, a constraint was ap-

plied on DSE occurrences, dropping DSEs with less than 5 occurrences in the

dataset. A series of procedures were implemented which resulted in a signif-

icant reduction of the number of associations and side–effects in the dataset.

Specifically, the number of associations was reduced from nearly 309, 000 to

157, 000, and the quantity of DSEs with a number of occurrences greater or

equal to 5 was reduced from 4, 251 to 2, 055. In addition, compounds which

lacked intramolecular bonds were removed from the dataset. This resulted in

a final dataset of 157, 000 associations. Furthermore, an additional filter was

applied to the dataset for Experiment B1, resulting in the removal of drugs

that were associated with either less than 5 or more than 400 side–effects.

The distribution of number of side–effects associated for each drug is shown

in Fig. 5.5.

A grouping system was developed for similar chemical elements in order

to be viewed as the same type by the GNN model based on their chemico–

physical properties (Table 5.5 for details), due to the non–uniform distri-

bution of chemical elements within the dataset. This is crucial as some

elements have limited occurrences and too many node types would increase

the complexity of the learning problem.

Molecular chemical structures were represented by graphs to minimize

loss of information that would occur when compressing the molecular graph

into other data structures. To retrieve the graph representation of a specific

molecule, intermediate steps were taken such as using PubChemPy2 to re-

2PubChemPy documentation is available at http://pubchempy.readthedocs.io/

http://pubchempy.readthedocs.io/

76 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Figure 5.5: The number of side–effects per drug follows a non uniform skewed distribution.

Most drugs have few DSEs, while few drugs are associated to a large number of DSEs.

This causes imbalancement in the class distributions which can lead to a bias in the model.

Element group Element Element group Element

1 C 9 Br

2 N 10 Na, K, Li

3 O 11 Ca, Mg, Ba, Sr

4 S, Se 12 Co, Tc, Mn, Fe

5 F 13 Au, Ag, Pt, Zn

6 P 14 B, Ge, In, Tl

7 Cl 15 La, Gd

8 I

Table 5.5: Grouping of the elements used in this work.

trieve the SMILES string associated with the compound and transforming it

into a RWMol using the RdKit library [160]. This RWMol was then used to

build a NetworkX [162] graph of the molecular structure, which was finally

converted into a GraphObject for use as a structured graph representation

in GNNKeras [29]. The graph representation used in this work is made of

three different components:

5.4. DSE PREDICTION ON MOLECULAR GRAPHS 77

• the node matrix, where rows represent the chemical element (or chem-

ical element grouping) of the specific node. The following general rule

applies to the node matrix:

nij =

{
1 if the i–th node belongs to the j–th element group

0 otherwise

• the edge list, made of arrays of length 6 that collect initial and final

node of the edge, along with a label indicating the chemical bond it

represents. More specifically, an edge label is defined as {nh, nk, b},

in which nh and nk are respectively the initial and final nodes ids, while

b = {b1, b2, b3, b4} is a one–hot array expressing the bond type which

can be single, double, triple or aromatic;

• the target vector, employed to carry out supervised learning; it consists

in a binary vector of 2055 entries (i.e., one entry per side–effect) such

that

ti =

{
1 if the drug can cause the i–th side–effect

0 otherwise

5.4.2 Model

This subsection describes the application–specific implementation of the

GNN model formulated in Section 2.3.1: in particular, since in this section

the dataset is composed of a collection of homogeneous graphs representing

molecules, the GNN model is a normal GNN, as formulated in Section 2.3.1.

The state updating functions are therefore implemented by a single MLP,

as only one type of nodes is present, representing the atoms the molecules

are composed of. The general formulation given in Eq. (2.6) and still holds

for this application, as features are associated to each edge, representing the

bond type between pairs of atoms. Since this is a graph classification task,

the output function is exactly the one described in Eq. (2.9).

5.4.3 Experimental Setup

In this work, DSE prediction is modelled as a graph–focused classification

problem. Therefore, it requires an adequate loss function to be optimized

78 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

during learning. The best fitting choice in this scenario is the binary cross–

entropy, being capable of handling each DSE independently from the others

by taking into consideration the entries of the network’s output one by one.

The loss function was optimized via the Adam optimizer (from Adaptive

moment estimation), which has proved to be highly efficient, requires little

memory, and is appropriate for problems with noisy and/or sparse gradients

[72].

The following settings differ from each other on various parameters, such

as number of epochs, batch size and stopping criteria. These differences are

presented and compared in Table 5.6.

Parameter Exp. A Exp. B Exp. B1 Exp. C

Batch size 32 32 32 16

Threshold loss 0.15 0.15 0.15 0.14

Epochs 8000 10000 10000 7500

Patience 2000 2000 2000 1000

Table 5.6: Hyperparameters of the experiments discussed in this work. Exp. B and B1

were carried out using the same parameters but different datasets.

Various metrics were employed to evaluate different aspects of the model’s

performance. One of them is the binary accuracy, which simply calculates

how often predictions match binary labels as a percentage. When using

such metric, entries of target arrays are considered independent from each

other, by performing an element–wise comparison between the predicted

array and the desired output. However, this metric does not provide enough

information about the model’s performance due to the nature of the target

distribution, as each target array contains 2, 055 entries, and each chemical

compound in the filtered dataset causes approximately 97 side–effects on

average3, which accounts for only 4.71% of the total number of target array

entries. Therefore, high values in binary accuracy do not necessarily indicate

good network performance as they could be achieved even if the network’s

predictions were vectors full of zeros. Hence, metrics such as the Area Under

ROC Curve (AUC) and the Area Under Precision Recall Curve (AUPR)

were also employed, which are obtained by plotting the true positive rate

against the false positive rate and the positive predicted value against the

true positive rate, respectively.

3More precisely, the mean results in 96, 744 DSEs per compound.

5.4. DSE PREDICTION ON MOLECULAR GRAPHS 79

Metric Exp. A Exp. B Exp. B1 Exp. C

Bin Acc 0.9516 ± 0.004 0.9513 ± 0.004 0.9525 ± 0.006 0.9494 ± 0.03

AUC 0.8613 ± 0.004 0.8611 ± 0.010 0.8673 ± 0.005 0.8586 ± 0.003

AUPR 0.2913 ± 0.022 0.2885 ± 0.018 0.2854 ± 0.035 0.2682 ± 0.017

Table 5.7: Results for each experiment.

Metric Exp. A Exp. B Exp. B1

PPV 0.4756 ± 0.26 0.4541 ± 0.24 0.4512 ± 0.24

NPV 0.9589 ± 0.04 0.9600 ± 0.04 0.9614 ± 0.04

TPR 0.9905 ± 0.01 0.9891 ± 0.02 0.9886 ± 0.02

TNR 0.2132 ± 0.15 0.2382 ± 0.15 0.2068 ± 0.14

Table 5.8: Further analysis for the best experimental settings. PPV: Positive Predicted

Value; NPV: Negative Predicted Value; TPR: True Positive Rate, or Sensitivity; TNR:

True Negative Rate, or Specificity.

5.4.4 Results and Discussion

The results presented in the following are obtained from a 5–fold cross–

validation procedure, for an unbiased evaluation of GNN–MGSEP.

Table 5.7 shows the results obtained in each experiment: Exp. B1, which

was carried out after a further filtering of the data, provided the best per-

formance in terms of binary accuracy and AUC, while Exp. A resulted in a

better AUPR.

The best three experiments underwent a further analysis: Table 5.8 re-

ports positive predicted value, negative predicted value, sensitivity and speci-

ficity of experiments A, B and B1. It is worth noting how different the

positive predicted value and the specificity are, compared to the negative

predicted value and the sensitivity: therefore, it is possible to hypothesize

that currently the GNN model, in the framework of side–effect prediction,

is better at detecting negative associations with respect to positive ones due

to the unbalanced distribution of drug side–effect associations.

An analysis focused on the side–effects revealed that the relative fre-

quency of each adverse reaction highly influences the ability of the model

in detecting cases of positive associations regarding such side–effects. Table

5.9 shows such results, by considering the 10 most frequent and less frequent

side–effects (DSEs) in the datasets and reporting the ratio between true pos-

itive predictions and the number of occurrences of such adverse reactions.

80 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Metric Exp. A Exp. B Exp. B1

Most Freq. DSEs 0.6931 ± 0.11 0.8559 ± 0.15 0.8381 ± 0.16

Less Freq. DSEs 0.0150 ± 0.03 0.0297 ± 0.05 0.0568 ± 0.07

Overall Average 0.1118 ± 0.19 0.1206 ± 0.22 0.1090 ± 0.19

Table 5.9: Influence of the relative frequency of each adverse reaction on the model ability

in detecting positive associations.

The difference in the “detectability” of side–effects based on their number of

occurrences in the dataset is clearly shown.

The experimental results show that the DSE prediction task can be ef-

fectively accomplished using only the drug structure (molecular graph) as

GNN–MGSEP does. A similar task had been previously accomplished using

GNN (DruGNN) with a large knowledge graph containing seven main infor-

mation resources such as drug structural fingerprints, chemical properties,

molecular function ontology, genomic information, gene–gene interactions,

drug–drug similarity and drug–gene interactions [103]. The setup presented

in this work is simpler, requiring only drug structures for prediction, yet

the molecular graph conveys structural information which is crucial in de-

termining drug functionality, resulting in a simpler yet efficient prediction

framework as indicated by the metrics.

5.4.5 Comparison with Other Models

For performance comparison, other predictors not based on GNNs are also

considered, such as Pauwels [112], which is a structure–based predictor that

uses Sparse Canonical Correlation Analysis of structural fingerprints; Drug-

Clust [116], which is a predictor based on clustering and Gene Expression

data, and DeepSide [118], a more complex predictor based on DL which in-

tegrates data from various sources. These methods, along with DruGNN,

provide a valuable set of models for evaluating the capabilities of GNN–

MGSEP in comparison to previous work. While a direct comparison is not

possible as all of these methods use different data types and were trained

and tested on datasets of different nature, a comparison can be made by

assessing the differences in data types, dataset sizes, and predicted DSEs.

The number of drugs, predicted side–effects, information used, and methods

used for each predictor are described in Table 5.10.

5.4. DSE PREDICTION ON MOLECULAR GRAPHS 81

Predictor Drugs DSEs Method Data Types

Pauwels 888 1,385 SCCA SF

DrugClust 1,080 2,260 Clustering CF DPI GEX

DeepSide 791 1042 MLP GEX GO SF

DruGNN 1,341 360 CGNN CF SF GO PPI DPI DDS

GNN–MGSEP 1,397 2,055 GNN MG

Table 5.10: Comparison of data and methodology for each predictor. Drugs and DSEs

refer to the number of drugs and side–effects, respectively. SF: Structural Fingerprints;

MG: Molecular Graphs; GO: Gene Ontology data; CF: Chemical Features; DPI: Drug–

Protein Interactions, DDS: Drug–Drug Similarity; PPI: Protein–Protein Interactions.

As demonstrated by models such as DeepSide and DruGNN, integrating

increasing amounts of heterogeneous information has been the key to im-

proving DSE predictors. The former was one of the first DL approaches to

the problem, while the latter used GNNs to analyze the knowledge graph of

DSEs. GNNs can also be used to analyze the structure of each molecule, as

molecules are naturally represented by graphs. Moreover, molecular graphs

convey full structural information of the molecule more efficiently than struc-

tural fingerprints, which are commonly used in this field. This leads to

comparable performance between DeepSide, DruGNN, and GNN–MGSEP,

which uses a much simpler load of information consisting only of the molecu-

lar graph of each compound, making it a user–friendly predictor in compar-

ison to the other two. The performance of each model is reported in Table

5.11.

5.4.6 Usability

GNN–MGSEP is user–friendly as it requires minimal information to accu-

rately predict the occurrence of side–effects. To estimate the probable DSEs

of a new drug, it is only necessary to submit its molecular graph to the model.

Retraining the model is not necessary every time a new drug is introduced

in the dataset, however, when a large number of new drugs with their la-

bels become available, retraining will improve the model’s performance for

future predictions. The model is lightweight and does not require significant

resources for training, as it can be done on a commercial laptop without a

GPU. Once the model is trained, obtaining predictions with GNN–MGSEP

is even more efficient as the whole dataset of molecular graphs does not need

82 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Model Binary Accuracy AUC AUPR

Pauwels - 0.8932 -

DrugClust - 0.9138 0.3336

DeepSide - 0.8090 -

DruGNN 0.8630 0.7715 -

GNN–MGSEP 0.9525 0.8673 0.2913

Table 5.11: Comparison of prediction performance with respect to the other described

methodologies. Please notice that each predictor was trained and tested on its own

dataset, with different data types, number of drugs, and number of DSEs compared to

the others. Three metrics are considered for the evaluation: Binary Accuracy, AUC (Area

Under ROC Curve), and AUPR (Area Under Precision–Recall curve). Only the metrics

proposed by the respective authors are reported for each predictor, as different problem

formulations do not always allow to use the same metrics.

to be loaded. The model can be used as a simple screening service to predict

the occurrence of side–effects on a large number of molecular graphs, at the

early stages of a drug discovery pipeline.

5.5 DSE Prediction with DL Molecular Em-

bedding

In this section, the MolecularGNN method for DSE prediction is described

[163], which tries to overcome the limits of the works described in Sections 5.3

and 5.4. Usually, a molecular structure is encoded in a computer–readable

format such as the SMILE string or International Chemical Identifier (InChI)

keys, which are strings of symbols of variable length, used by computer soft-

ware to facilitate the search for molecular information in databases and for

creating two or three–dimensional models. Although these formats represent

molecules in their entirety, fixed–sized encoding strategies are widespread in

drug discovery and in drug design applications, as they are better suited for

computational methods. The most popular are the molecular fingerprints

(MFs), mainly used for assessing similarities between molecules in virtual

screening (VS) processes and chemical analysis. MFs represent molecules

with fixed–size vectors of real numbers, encoding chemical properties of the

molecules and their structural and sub–structural features. Fingerprints of

this kind are the results of mostly hand–crafted algorithms based on sub–

5.5. DSE PREDICTION WITH DL MOLECULAR EMBEDDING 83

graph structure detection [160]. However, in recent years, many machine

learning–based approaches offered an alternative strategy: neural finger-

prints (NF), which are obtained by training neural networks on a specific

task [164, 165]; therefore, the choice of machine learning architecture for the

fingerprint production becomes crucial in order to obtain a fingerprint with

the least loss of information.

Following the approach proposed in Section 5.3, the data of interest con-

sist of a heterogeneous graph including two types of nodes (drugs and genes)

and three types of edges (drug—gene, drug-–drug, and gene-–gene relation-

ships). Formally, the task is a node–focused, multi–class, multi–label classi-

fication problem: namely, the GNN model is trained to predict the DSEs

associated with the drug nodes, by processing directly graph–structured

data and by generating NFs at learning time. In this context, the struc-

ture of a generic drug can be represented as a single graph, consisting of

nodes representing atoms and linked by chemical bonds, making any GNN–

based model a proper choice for this task. Indeed, since GNNs can handle

graph–structured molecules directly and learn how to encode them during

the training process, they are ideal to overcome the limits in DSE prediction

and in the calculation of fingerprints, by adapting the molecule represen-

tation to the task they are being trained for — thus capturing structural

and relational information relevant for the specific task, which is something

traditional fingerprints and euclidean–based ML models cannot do.

In the presented approach, by exploiting both the relational dataset de-

scribed in Section 5.3.1 and the structural representations of drugs as de-

scribed in Section 5.4.1, a richer learning domain is obtained, which is com-

posed of a graph of graphs: each graph corresponds to its molecular graph at

the lower level and to a node of the knowledge graph at the higher level. In

the latter, drugs are linked to each other by similarity and are linked to gene

nodes according to their interactions. A new GNN classifier is exploited for

a single–DSE prediction called MolecularGNN that processes such heteroge-

neous and composite graph–structured data.

Notice that the use of a graph–of–graphs domain is an interesting research

topic, as GNNs have been applied in very few cases to such a peculiar domain

in the literature [166, 167, 168, 169]. Moreover, in such a context, the GNN

model is supposed to automatically extract a neural fingerprint (NF) from

each molecule.

Just like the previous sections, the rest of the section is organized as

84 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

follows: Section 5.5.1 describes the dataset on which the model defined in

Section 5.5.2 is trained, while Section 5.5.3 defines the experimental setup;

Section 5.5.4 presents and details the relevant experimental results, with a

comparison with other available methods in Section 5.5.5 and an ablation

study discussed in Section 5.5.6. Eventually, Section 5.5.7 discusses the

usability of the method.

5.5.1 Dataset

The dataset for the DSE prediction task was the one constructed in [103]

and described in Section 5.3.1. It consists of a single heterogeneous graph

where genes and drugs are represented as nodes, connected by three different

sets of edges, with relationships based on gene–gene interactions, drug–gene

interactions, and drug–drug similarity. At a high–resolution level, drug nodes

are represented as a single homogeneous graph each, where nodes represent

atoms and edges represent chemical bonds.

In particular, the molecules’ SMILES strings are used to obtain graph–

based representations of the drug molecules, from which a GNN–based NF is

extracted. Even if the graph representation of a drug as a molecule may seem

natural, it can still be extremely complex: a simple way to represent them

is to set each atom as a node (except for hydrogen atoms) and each bond

between two atoms as an edge in the graph, both associated with feature

vectors. Since some atoms are quite rare in the dataset — for instance,

arsenic is present in only one molecule — they are grouped in accordance

with their chemical families, which are encoded by a 1–hot vector: in total,

18 classes of atoms have been identified, as shown in Fig. 5.6.

Moreover, atom feature vectors are enriched by additional chemical in-

formation, such as the degree of the atom (number of electrons involved in

chemical bonds), the number of hydrogen atoms linked to it, the number of

radical electrons around the atom (which constitute a rare feature, as they

introduce instability), and their formal charges. Edge features describe the

type (simple, double, triple, or aromatic) of bond the edge represents, en-

coded by a 1–hot vector: this is the only feature used on edges, as other

important quantities should be deductible from the atoms on both sides of

the edge, and from their neighborhood.

5.5. DSE PREDICTION WITH DL MOLECULAR EMBEDDING 85

Figure 5.6: Grouping of atoms according to their chemical family. Each color represents

a single atom class.

5.5.2 Model

This subsection describes the application–specific implementation of the

GNN model formulated in Section 2.3.1. Both the implementation described

in Section 5.3.2 and Section 5.4.2 are exploited in this application, as de-

scribed in the following. To improve the performance by exploiting infor-

mation from both the molecular structures and the graph, a new GNN–

based model, MolecularGNN, is proposed. This model is an improvement

of DruGNN [103] and GNN–MGSEP [170], as it is capable of extracting

information from both the genes–drugs relational graph as well as directly

from the graph–based molecular structure representation, by processing it

with a GNN sub–model in order to produce a NF which considers both node

features and relational data, thereby improving the overall predictions.

An overview of the architecture and processing scheme is given in Fig. 5.7.

The MolecularGNN model is composed of two GNN sub–models:

• A molecular embedding module: A GNN–based architecture fed with

the graph representations of the molecular structures—extracted from

the SMILES strings describing the drug molecules—to produce a task–

based NF, which is concatenated to the drug node features and used by

the following sub–model to predict DSEs on drug nodes; this approach

86 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Figure 5.7: MolecularGNN architecture and processing scheme. Molecular graph struc-

tures — representing a single drug node each — are processed by the Molecular Embedding

sub–model to produce NFs which are then concatenated to the drug node feature vectors.

The enriched graph–structured dataset is then processed by the DruGNN module to pro-

duce predictions on drug node DSEs. A new drug molecule can be added to the dataset

by calculating its possible relationships with other nodes in the graph and extrapolating

its graph representation from its SMILES code, and the related DSEs can be predicted

by just applying the pre–trained model to the new dataset, composed of the one on which

the model has been trained, and enriched by the new information derived from the new

drug molecule.

should encourage the molecular embedding sub–model to extract in-

formation, which is not captured by the MF used in the original work,

as it remains the same overall training procedure. In this case, since

the NF is produced by a ML model, it is dynamically adapted during

the learning procedure for the DSE prediction task to maximize the

performance of the general model. Implementation of this sub–module

is described in Section 5.4.2.

• DruGNN: The model is similar to the one introduced in [103]. This

network is a recurrent GNN model [1] which exploits an inductive–

transductive learning scheme to predict DSEs on drug nodes. More

details about its implementation and its hyperparameters can be found

in Section 5.3.3. The main difference with the original model is the

fingerprint used as part of the drug node features, since in this work

it is not a pre–calculated or standard MF, but a NF produced by the

molecular embedding sub–model. Implementation of this sub–module

is described in Section 5.3.2.

5.5. DSE PREDICTION WITH DL MOLECULAR EMBEDDING 87

To ensure that the information extracted from the molecule complements

the information contained in the DruGNN graph, the two aforementioned

modules are jointly trained as a single model.

5.5.3 Experimental Setup

A grid–search procedure has been carried out based on the hyperband al-

gorithm [171], together with an early stopping callback, monitoring the F1–

score on a validation set. The hyperparameter search space is summarized

in Table 5.12.

Hyperparameter Values

M number of layers in net state [1, 2, 3, 4]

M number of layers in net output [1, 2, 3]

M batch normalization layer before net state [True, False]

M dropout in net state [0.0, 0.1]

M L2 regularization [0.0, 0.001, 0.01, 0.1]

M activation function [relu, tanh, selu]

M state dimension [50, 70, 100, 120, 150]

M max iteration [2, 3, 4, 5, 6, 7]

D number of layers in net state [1, 2, 3, 4]

D number of layers in net output [1, 2, 3]

D batch normalization layer before net state [True, False]

D dropout in net state [0.0, 0.1]

D L2 regularization [0.0, 0.001, 0.01, 0.1]

D activation function [relu, tanh, selu]

D state dimension [50, 70, 100, 120]

D max iteration [2, 3, 4, 5, 6, 7]

Table 5.12: Hyperparameter search space for MolecularGNN. M = molecular embedding

sub–model; D = DruGNN sub–model. In red the best configuration obtained, correspond-

ing to the final architecture of the MolecularGNN model.

Moreover, three strategies were adopted during the learning procedure to

deal with the data distribution imbalance: using binary focal cross–entropy

instead of simple binary cross–entropy, not considering the DSEs with less

than 100 positive occurrences, and using a weighting scheme to encourage

better prediction of rarer side effects.

88 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Focal cross–entropy was first introduced in [172] for object detection ap-

plications. The only difference from the standard cross–entropy loss is the

introduction of a factor (1 − p)γ for positive example and pγ for negative

examples, as defined in Eq. (5.2):

Loss(p, y) =

{
−(1 − p)γ log(p), if y = 1

−(p)γ log(1 − p), otherwise
(5.2)

From a practical point of view, it results in a loss which penalizes big errors

and gives little to no importance to small ones in predictions. Despite its

early development purpose, it can be effectively applied on any classification

task where the model has to learn from unbalanced datasets, as the additional

factor encourages the model to take some risks by predicting the minority

class more often. Effects of γ on accuracy and F1–score metrics in the grid

search procedure are shown in Fig. 5.8.

Figure 5.8: Effects of γ on the accuracy and F1–score metrics. I = only inductive learning

approach; IT = mixed inductive–transductive learning approach.

In the dataset, some DSEs occur in only 100 cases, and others in more

than 1000, suggesting that the difficulty of prediction for a given DSE is

somehow related to the number of positive examples. To tackle this disparity,

the model should give more relevance to rarer DSEs when predicting class

probabilities: the ideal behavior should be for the network to have close to

5.5. DSE PREDICTION WITH DL MOLECULAR EMBEDDING 89

Metric DruGNN MolecularGNN

Accuracy 0.8630 ± 0.006 0.7746 ± 0.007

AUC 0.7715 ± 0.012 0.6846 ± 0.014

F1–score 0.2680 ± 0.010 0.4716 ± 0.008

Precision 0.5934 ± 0.014 0.4425 ± 0.012

Recall 0.1859 ± 0.03 0.5104 ± 0.021

PatR 0.2002 ± 0.010 0.2591 ± 0.004

Table 5.13: Comparison of MolecularGNN and DruGNN models.

uniform predicting power over the whole drug set, as in perfectly balanced

datasets. To achieve this, a weighting scheme inversely proportional to the

number of positive examples has been used, as defined in Eq. (5.3):

w =

(
100

npositive

)µ

(5.3)

where w is the weight given to a DSE with the npositive positive example, and

µ is a geometric coefficient which determines the weight of this weighting

process (no weighting for µ = 0 and inversely proportional weighting for

µ = 1).

All the experiments have been carried out on a Linux–operated machine,

equipped with an Intel® Core™ i9–10920X CPU @ 3.50GHz (12 cores/24

threads), 128 GB DDR4 memory, and two NVIDIA Titan RTX with 24

GB VRAM GDDR6 each. A single graphics card was able to carry out an

instance of the learning procedure and the related evaluation of the model,

leading to an average of about 5 h and 30 min per experiment.

5.5.4 Results and Discussion

MolecularGNN has been compared with the DruGNN model using accu-

racy, area under the ROC curve (AUC), micro F1–score (F1–score), micro–

precision (precision), micro–recall (recall), and precision at recall of 90%

(PatR), in a 10–fold cross–validation procedure. The results are presented

in Table 5.13.

MolecularGNN performed significantly better in terms of F1–score com-

pared to the DruGNN model: indeed, the main improvement of Molecu-

larGNN over DruGNN was in the recall, with an improvement of 0.32, which

90 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Model Drugs DSEs Method Data Types

Pauwels 888 1385 SCCA SF

DrugClust 1080 2260 Clustering CF DPI GEX

DeepSide 791 1042 MLP GEX GO SF

DruGNN 1341 360 CGNN SF CF GO PPI DPI DDS

GNN–MGSEP 1,397 2,055 GNN MG

MolecularGNN 1384 360 CGNN NF MG CF GO PPI DPI DDS

Table 5.14: Comparison of data and methodology for each predictor. NF stands for

neural fingerprints, SF for structural fingerprints, MG for molecular graphs, GO for Gene

Ontology data, CF for chemical features, DPI for drug–protein interactions, DDS for

drug–drug similarity, PPI for protein–protein interactions.

compensated a drop in precision of 0.15, resulting in an almost doubled F1–

score. The PatR metric is particularly interesting, as it well simulates a real

world scenario: in this scope, the ideal model (i.e., the one with the maxi-

mum score) should correctly classify 90% of the side effects, to make clinical

tests to filter out the false positives. This metric shows a notable increase in

0.6. The threshold of 90% is still a somewhat low value for such a use case;

however, it constitutes a robust metric for predictors. Some metrics, such as

the accuracy, do not improve, resulting in a drop in performance of about

10 percentage points: that is in line with the expectations, as the dataset is

characterized by an imbalanced class distribution — very common in most

real–life classification problems or datasets — thus making the F1–score a

better evaluation metric, since it gives a better measure of the incorrectly

classified cases than the accuracy metric.

5.5.5 Comparison with Other Models

Additionally, a comparison with previously developed methods for drug side

effect prediction is provided in Table 5.14 and Table 5.15. More precisely,

MolecularGNN was compared to the same models described and used for

comparison in Section 5.4.5.

It is worth noticing that each method was developed on different datasets

and with different and often heterogeneous data types. Moreover, these dif-

ferences led to different dataset sizes, as not all the data available online can

be exploited in all the settings. Please keep in mind that the different nature

of the predictors, the data used by each, and the number of examples mean

that the comparison is purely qualitative. As a matter of fact, it is common

5.5. DSE PREDICTION WITH DL MOLECULAR EMBEDDING 91

Model Binary Accuracy AUC AUPR

Pauwels - 0.8932 -

DrugClust - 0.9138 0.3336

DeepSide - 0.8090 -

DruGNN 0.8630 0.7715 -

GNN–MGSEP 0.9525 0.8673 0.2913

MolecularGNN 0.7746 0.6846 -

Table 5.15: Comparison of prediction performance with respect to the other described

methodologies. Please notice that each predictor was trained and tested on its own

dataset, with different data types, number of drugs, and number of DSEs compared to

the others. Three metrics are considered for the evaluation: Binary Accuracy, AUC (Area

Under ROC Curve), and AUPR (Area Under Precision–Recall curve). Only the metrics

proposed by the respective authors are reported for each predictor, as different problem

formulations do not always allow to use the same metrics.

practice to test the models for DSE prediction only on the dataset for which

they are conceived, as each model usually uses a unique combination of the

many different pieces of information needed to model these complex biolog-

ical phenomena. The comparison was made in terms of AUC metric, since

this is the only metric that was measured for each of the predictors involved.

The presented method, with an unbalanced dataset, did not reach an

AUC comparable to simpler predictors operating on less unbalanced datasets.

The F1–score was the dominant metric in this case, and it was significantly

better than the F1–score of DruGNN — the only other predictor trained on

a dataset with a comparable level of imbalancement between classes.

5.5.6 Ablation Study

An ablation study was carried out to assess the importance of the contribu-

tions of the different changes in the learning procedure and in the dataset.

The results from a 10–fold cross–validation procedure are reported in Ta-

ble 5.16. As expected, the mixed inductive–transductive learning approach

resulted in the biggest improvements over the basic model. The most no-

table results are the increases of 0.167 in the AUC, 0.138 in the F1–score,

and 0.046 in the PatR. Those huge improvements show the importance of

exploiting all the available information, including the actual labels of the

neighboring drugs. The molecular embedding developed in Section 5.5.2

92 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Configuration Accuracy AUC F1-Score

Baseline 0.7746 ± 0.007 0.6846 ± 0.014 0.4716 ± 0.008

µ = 0 −0.003 ± 0.008 −0.001 ± 0.006 −0.001 ± 0.004

γ = 0 0.013 ± 0.012 −0.040 ± 0.015 −0.037 ± 0.008

All 360 side effects −0.002 ± 0.007 −0.022 ± 0.030 −0.013 ± 0.021

Only inductive −0.021 ± 0.030 −0.167 ± 0.001 −0.138 ± 0.020

Using fingerprint 0.019 ± 0.006 −0.014 ± 0.005 −0.034 ± 0.014

No fingerprint 0.002 ± 0.007 −0.042 ± 0.020 −0.042 ± 0.010

Configuration Precision Recall PatR

Baseline 0.4425 ± 0.012 0.5104 ± 0.021 0.2591 ± 0.004

µ = 0 −0.006 ± 0.013 0.0020 ± 0.014 −0.001 ± 0.003

γ = 0 0.021 ± 0.024 −0.097 ± 0.050 −0.015 ± 0.005

All 360 side effects −0.006 ± 0.010 −0.016 ± 0.042 −0.007 ± 0.008

Only inductive −0.050 ± 0.040 −0.196 ± 0.043 −0.046 ± 0.003

Using fingerprint 0.0380 ± 0.017 −0.100 ± 0.032 −0.002 ± 0.003

No fingerprint 0.001 ± 0.019 −0.079 ± 0.045 −0.017 ± 0.005

Table 5.16: Ablation study of MolecularGNN. Values are shown as the (mean ± std) of

the results of 10 learning procedures each. The best result for each metric is highlighted

in red. Baseline is the MolecularGNN model architecture, as described in Table 5.12.

has an excellent effect on the F1–score (0.042) and on the PatR (0.017%),

bringing the second–best improvement for both metrics, only behind the

inductive–transductive learning approach. However, it also caused notable

decreases in accuracy, AUC, and precision. This was probably the con-

sequence of a mix of overfitting and the gained expressiveness, which was

mainly directed toward the F1–score due to changes to the loss function.

This was further reinforced by the simultaneous use of both molecular em-

bedding and sklearn fingerprint, which did not increase accuracy but instead

decreased the F1–score, the AUC, and the PatR.

The modifications to the loss function brought notable improvements:

the use of focal cross–entropy described in Section 5.5.3 caused big increases

in AUC (0.04), F1–score (0.04), and recall (0.10). It also caused the third–

biggest increase in PatR, which is arguably the most important metric in the

scope of real–world usage. All these came at the cost of slight decreases in

accuracy and precision at a classification threshold equal to 0.5. Considering

5.6. CONCLUSIONS AND FUTURE WORK 93

the massive increase in recall, the reduction in precision should be easily

compensated by increasing the threshold. In contrast, the effect of weighting

the loss based on the number of positive examples, as described in Section

5.5.3, is very small, but it is mostly beneficial, with the exception of the

recall which showed a very slight improvement using µ = 0 (no weighting).

5.5.7 Usability

The model presented in the section also brings consistent improvement to

the usability of the method, as it integrates two successful strategies for

solving the same problem: exploiting the molecular graph to predict the side

effects of the drug [170] and predicting the side effects on a wide graph that

integrates heterogeneous information on the drug and the genes it interacts

with [103]. These two strategies have been applied separately so far, but

they can be combined thanks to the ability of GNNs to process different

forms of graph structured data, which is a very promising solution. This

was demonstrated by the improvements in F1–score and PatR score shown

in the results and will lead to better usability in future real–world scenarios.

One of such scenarios, as already partially discussed in Section 5.3.7, will

consist of building a fully automated pipeline of deep learning–aided drug

discovery, in which a molecular graph generator such as GraphVAE [173],

JTVAE [174], or MG2N2 [26] could generate large quantities of potential drug

candidates. After a first filtering step for discarding the compounds with low

QED scores [175] or low druggability scores [107, 108], MolecularGNN could

be employed to screen out all the molecules with relevant probabilities of

producing side effects. This pipeline could provide a large quantity of poten-

tial drug candidates with good drug–likeness and small side effect profiles,

thereby constructing a reliable chemical space from which drug candidates

can be drawn by experts, contributing to cutting the costs and difficulties of

drug discovery research.

5.6 Conclusions and Future Work

Combining data from multiple sources is essential for a DNN to effectively

learn the complex mechanisms regulating the occurrence of DSEs. The rela-

tional information of interactions between drugs and genes can be effectively

represented by a graph structure. By integrating these entities and their

94 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

relations, a graph dataset was constructed for training and testing graph–

based DSE predictors. The GNNs demonstrated strong learning capabilities

on this dataset, indicating that a predictor based on this type of model could

aid in predicting the occurrence of side–effects. Additionally, its application

to new candidate drugs could save time and money in drug discovery stud-

ies, as well as prevent health concerns for individuals participating in clinical

tests.

DruGNN is a modular approach for predicting DSEs and is robust to

ablation. Moreover, it is easily adaptable to new drug compounds by simply

adding the new drug, along with its features and gene interactions, as a node

in the graph and running the prediction of its classes. The model does not

require retraining and the same inductive–transductive learning process can

be applied for future additions of compounds and predictions of their side–

effects. The prediction is based on a modular multi–omics robust approach,

using information obtained from publicly available sources. In principle,

the same graph could also be used to predict drug–gene interactions of new

compounds by applying link prediction to the gene set.

At a higher resolution, the DSE prediction task can be tackled with

GNN–MGSEP, based on the molecular graph describing the drug structure.

A dataset of molecular graphs and associated side–effects was built in order

to train and test the model. The experimental results show that the model

is capable of very good performance on the task of DSE prediction. Exploit-

ing only the molecular graph, it is able to obtain comparable performance,

and in some cases even better performance, with respect to the state of the

art methods in such task, which need large loads of information from het-

erogeneous sources to formulate their predictions — even though a direct

comparison is not possible due to the different nature of the data used by

each predictor.

Combining these two settings, it is possible to produce an enhanced and

innovative version of DruGNN: the new model, called MolecularGNN, is

able to work directly on the molecular structure and to work on unbal-

anced datasets and a graph–of–graphs domain. The novelty of this model

is represented by the generation of drug structural fingerprints, which can

be adapted to the task the general model is trained for. In particular, a

drug’s molecular structure is processed by a GNN sub–model, producing a

NF which is then used to enrich drug node features in the DruGNN graph

dataset, which are eventually processed by the following GNN sub–model

5.6. CONCLUSIONS AND FUTURE WORK 95

to predict the DSEs of drug nodes. This new technique, trained with an

inductive–transductive approach, together with a graph–based NF gener-

ation, succeeded in identifying more experimentally observed DSEs than

DruGNN: this task is considered much more important than identifying

DSEs which do not arise for a given drug, as a non predicted DSE could

cause little harm or be potentially fatal. Although MolecularGNN is still

limited, with an F1–score of less than 0.5, its precision at recall of 90% per-

formance indicates that it could possibly be used as an aide during drug

development processes.

Since drug structures proved to be one of the most important parts in

the dataset for DL, an interesting future direction is represented by the aug-

mentation with features coming from the gene side and drug–gene relations.

In this scope, the algorithm could even be combined with generative models,

like MG2N2 [26], which generate molecular graphs of possible drug candi-

dates in large quantities. The task of the DSE predictor would be to screen

out all the candidate compounds with high probabilities of occurrence of

particular side–effects.

Another potential avenue of research is to specialize some of the pre-

dictors discussed in this work by incorporating tissue–specific data, such as

gene expression, to fine–tune a dedicated version of the model for each tis-

sue. This could be achieved by utilizing tissue–specific side–effect targets,

resulting in a more detailed prediction that could also be personalized based

on an individual’s gene expression values, as it is relevant in the context of

precision medicine.

96 CHAPTER 5. DRUG SIDE–EFFECT PREDICTION WITH GNN

Chapter 6

Graph Neural Networks for the

Prediction of Protein–Protein

Interfaces

In this chapter, a predictor of protein–protein interfaces based on GNNs,

corresponding to publication [P1] is presented.

Proteins are fundamental molecules for life. They are involved in any bi-

ological process that takes place in living beings, carrying out a huge variety

of different tasks. In these molecules, functionality and structural confor-

mation are strictly correlated [176]. Therefore, analyzing structural features

of proteins is often useful in understanding which biological processes they

are involved in, which ligands they bind to, and which molecular complexes

they form.

The structure of a protein can be described at three different levels: the

primary structure corresponds to the sequence of amino acids it is composed

of; the secondary structure corresponds to the local conformation of the pep-

tide chain, in the shape of α–helices, β–sheets or coils; the tertiary structure

represents the three–dimensional configuration of the molecule. Often, two or

more molecules bind together to form a protein complex, whose shape goes

under the name of quaternary structure. Dimers are the simplest protein

complexes, as they are composed of just two monomers. To form such com-

plexes, monomers interact through specialized parts of their surface, called

binding sites or interfaces. These interactions can be studied with the help

of graph theory. Indeed, each monomer can be represented as a graph, with

nodes corresponding to Secondary Structure Elements (SSEs), while edges

97

98 CHAPTER 6. GNN FOR THE PREDICTION OF PPI

stand for spatial relationships between adjacent SSEs, which can be parallel,

anti–parallel or mixed. Using graphs of two different monomers, a corre-

spondence graph can be built, whose nodes describe all the possible pairs

of SSEs from the two different subunits [5]. Based on the correspondence

graph, identifying binding sites on protein surfaces can be reformulated as a

maximum clique search problem [6].

The maximum clique problem is known to be an NP–complete problem,

meaning that, except for very small graphs, traditional operations research

algorithms [177] will employ a prohibitive amount of time before solving it.

From this consideration stemmed the idea of using a ML method to solve the

problem with reasonable computational costs. In particular, GNNs [1] look

like the perfect model, with their ability to process graph–structured inputs.

In this scope, the maximum clique problem consists of a binary classification

between the nodes which belong to the maximum clique and those which

do not. In particular, the solution proposed in this chapter entails applying

LGNNs [73] to solve the maximum clique problem.

The rest of the chapter is organized as follows: Section 6.1 illustrates

the method, sketching the data acquisition and processing operations. The

implementation details on GNNs and LGNNs is given in Section 6.2, while

the experimental methodology is described in Section 6.3. Finally, Section

6.4 presents and gives interesting insights on the results of the work, and

Section 6.5 discusses the results of the approach and draws conclusions.

6.1 Dataset

In this section, the data and the experimental methodology used in this

work is described, with a particular focus on the dataset construction for

the protein–protein interface prediction task, in which pairs of monomers

are associated to a correspondence graph.

To build the dataset, heterodimers (i.e. dimers formed by two different

monomers) characterized by the absence of disulfide bridges, the presence

of salt bridges, and protein–protein interaction sites were searched in the

Protein DataBank in Europe (PDBePISA) [178]. A database of 6,695 known

protein has been obtained for a total of 160,680 monomeric interfaces. To

guarantee biological significance, some criteria were enforced: an area of at

least 200 Å2, ⟨x, y, z⟩ symmetry, and only two interacting protein molecules.

After this operation, a set of 12,455 interfaces has been obtained. For every

6.1. DATASET 99

Figure 6.1: Example of the construction of a correspondence graph from two generic

monomers graphs.

interface, two protein graphs were built, representing two polypeptide chains

which interact on the binding site.

The monomeric graphs were built using VPLG [179], with PDB [180]

and DSSP [181] files representing the whole protein. Each node v is labeled

with a feature vector lv which consists of: an ID number, the SSE type,

the number of occurrences of cysteine and that of the aromatic amino acids

(tyrosine, tryptophan and phenylalanine), the percentage of amino acids

taking part in the interface and the overall hydrophobicity [182], the charge

and Accessible Surface Area (ASA) of the SSE, respectively as the sum of

hydropathic indexes, charges and accessible surface areas of each amino acid

at pH 7.

Once the graph has been produced for both monomers, it is possible to

build the correspondence graph [6, 5]. Let G1 = (N1, E1) and G2 = (N2, E2)

be the graphs representing two protein chains and G = (NG, EG) be the

correspondence graph of G1 and G2. Let vi, ui ∈ Ni be two generic nodes

in Gi with i = 1, 2. Therefore, two nodes v = (v1, v2), u = (u1, u2) ∈ NG

are connected by an edge (v, u) ∈ EG if and only if ∃(v1, u1) ∈ E1 and

∃(v2, u2) ∈ E2. An example of the construction of a correspondence graph

from two generic graphs is depicted in Fig. 6.1.

The edge label eu,v is a one–hot representation of the spatial relationship

between two adjacent nodes in G, which depends on the labels ev1,u1 and

ev2,u2 , so that ev,u is the same edge label if both the edge labels in G1 and

G2 are equal, mixed otherwise. The label of node v ∈ NG consists of: an

100 CHAPTER 6. GNN FOR THE PREDICTION OF PPI

Dataset Graphs Edges Nodes Nodes0 Nodes1 %Nodes1

Before Pruning 512 441,203 328,629 325,798 2,831 0.86 %

After Pruning 1,044 274,608 166,424 163,593 2,831 1.7 %

Table 6.1: Dataset statistics before and after data cleaning. Nodes0 and Nodes1 represent

negative and positive nodes, respectively.

ID number, a one–hot representation of the SSE type, the differences in the

occurrences of cysteine and the aromatic amino acids, the arithmetic mean

of the two hydrophobicity values, the minimum of the ASAs and the sum of

the charges of the two SSEs. In particular, the SSE type of the node v ∈ NG,

which represents v1 ∈ N1 and v2 ∈ N2, is the same as that of the nodes v1
and v2 if both belong to the same SSE class, while it is defined as mixed if

they belong to different SSE classes.

The node targets were generated with the Bron and Kerbosch algorithm

[183], which identified the cliques within each correspondence graph, with a

minimum size of three nodes. Subsequently, these cliques were analyzed, in

order to determine whether or not they were biologically significant. In this

context, a clique is defined as positive or biologically significant if and only

if all the nodes belonging to that clique represent pairs of SSEs of different

monomeric graphs, that contain both at least one residue that is part of

the interface. Hence, the target attached to each node is a two–dimensional

vector containing a one–hot encoding of the two classes: positive if the node

belongs to a biologically significant clique, negative otherwise. 512 corre-

spondence graphs have been obtained with this procedure, each contain-

ing at least one biologically significant clique (and any number of negative

cliques) composed of three or more nodes. These were not completely con-

nected, often being made of multiple separated connected components. Since

many connected components did not include cliques, a pruning strategy was

adopted, in order to clean the dataset. The correspondence graphs were split,

obtaining a graph for each connected component, as depicted in Fig. 6.2.

Those not containing at least one clique have been filtered. As a result,

the dataset is composed of graphs containing at least one clique, whether

positive or not. This operation produced the final dataset of 1044 connected

graphs, 537 of which contain a positive clique, while the remaining 507 con-

tain only negative cliques. Table 6.1 provides numerical information on the

dataset, before and after the pruning process.

6.2. MODEL 101

Figure 6.2: Pruning strategy applied to the dataset. Graphs were split into their connected

components, filtering those not containing positive or negative cliques, as well as isolated

nodes. Moreover, nodes belonging to a positive clique were weighted more in the learning

procedure.

6.2 Model

In the work described in this chapter, GNNs are implemented as formulated

in Section 2.3.1, with no features on the edges. Moreover, only the sum of the

incoming message is used as their neighborhood aggregation function, namely

in all the experiments the hyperparameter a has value a = 1. The state

updating function fw defined in Eq. (2.6) can be re–written as in Eq. (6.1):

xt
n = fw(xt−1

n , ln,
∑

m∈Ne(n)

(xt−1
m , lm)) (6.1)

Since this is a node classification task, the output function gw is implemented

as defined in Eq. (2.7).

6.3 Experimental Setup

A binary GNN classifier was developed for the detection of maximum cliques

in the correspondence graphs, which addresses the problem as a node–based

classification task. Usually, in a classification task, the performance is mea-

sured in terms of accuracy. This metric, though, is not precise on unbalanced

102 CHAPTER 6. GNN FOR THE PREDICTION OF PPI

datasets, like the one under analysis. Therefore, to evaluate the model’s per-

formance the F1–score has been used, which combines precision and recall

to provide a balanced measure.

The architecture of the MLP module dedicated to the output function

gw was kept fixed, using a single level MLP and the softmax activation func-

tion. On the contrary, a 10–fold cross–validation was performed in order

to determine the best hyperparameters for the MLP implementing the state

updating function fw. According to the cross–validation results, the MLP

architecture with better performance has got a single hidden–layer with logis-

tic sigmoid activation functions. This setup was used also to test a 5–layered

LGNN network, where each GNN layer shares the same architecture.

In order to evaluate the performance of the LGNN, a 10–fold cross–

validation was carried out. The LGNN is composed of 5 GNN layers, each

with state dimension equal to 3. The state is calculated by a one–layer MLP

with logistic sigmoid activation, while the output is calculated with a one–

layer MLP with softmax activation. Since the negative/positive examples

ratio is quite large, the weight of positive examples is fixed to the 10% of

this ratio, against a weight of 1 for negative examples, in order to balance

the learning procedure. The model is trained with the Adam optimizer [72]

and the cross–entropy loss function.

6.4 Results and Discussion

The best performance is obtained with LGNNs integrating only the state

in the node labels. There are slight improvements in precision and more

tangible improvements in recall, which gains more than 10 percentage points

in the second GNN level, and then continues to grow and stabilize in the

following levels, as shown in Fig. 6.3. This architecture is the only one in

which a significant increase of the F1–Score is observable, getting more than

6 percentage points from nearly 35% of the first GNN level to more than

40% in the final GNN level, as reported in Table 6.2.

Contrariwise, integrating in the node labels only the output or both the

state and the output, the F1–score decreases through the LGNN layers.

The other parameters remain almost stable, except for recall, which slightly

increases through the LGNN layers. However, the standard deviation of

the recall tends to grow, suffering from a marked dependence on the initial

conditions of the experiment. The results confirm the expectations based on

6.5. CONCLUSIONS AND FUTURE WORK 103

biological data and show good performance in determining the interaction

sites, recognizing on average about 60% of the interacting nodes.

Figure 6.3: 5 levels LGNN 10–fold cross validation results: F1–score

Output Level 1 Level 2 Level 3 Level 4 Level 5

Precision 0.319± 0.069 0.271± 0.058 0.287± 0.049 0.266± 0.046 0.295± 0.070

Recall 0.455± 0.048 0.447± 0.111 0.476± 0.061 0.446± 0.101 0.517± 0.059

F–Score 0.368± 0.046 0.331± 0.062 0.354± 0.040 0.329± 0.062 0.368± 0.049

State Level 1 Level 2 Level 3 Level 4 Level 5

Precision 0.310± 0.061 0.279± 0.045 0.322± 0.052 0.295± 0.053 0.328± 0.061

Recall 0.436± 0.063 0.558± 0.056 0.524± 0.087 0.585± 0.080 0.571± 0.067

F–Score 0.358± 0.050 0.368± 0.039 0.392± 0.041 0.387± 0.053 0.414± 0.055

Both Level 1 Level 2 Level 3 Level 4 Level 5

Precision 0.308± 0.063 0.273± 0.052 0.261± 0.106 0.301± 0.064 0.296± 0.060

Recall 0.460± 0.056 0.544± 0.109 0.520± 0.185 0.518± 0.168 0.597± 0.096

F–Score 0.364± 0.047 0.354± 0.042 0.342± 0.125 0.372± 0.085 0.392± 0.063

Table 6.2: Results obtained with three different LGNN settings: propagating the output,

the state or both from one layer to the next

6.5 Conclusions and Future Work

The problem of protein–protein interface detection has been addressed as a

search for the maximum clique in the interface correspondence graph [23].

Although the problem is NP–complete, the described method, based on

104 CHAPTER 6. GNN FOR THE PREDICTION OF PPI

GNNs, can find the maximum clique in affordable time. The performance

of the model was measured in terms of F1–score and shows that the ap-

proach described in this chapter is very promising, though it can be further

improved. One key idea in this direction is that of using graphs in which

the nodes correspond to single amino acids, rather than to SSEs. Although

this latter approach would increase the complexity of the problem, it would

avoid the loss of information in compressing amino acid features into SSE

nodes. Moreover, predictions obtained in this setting would be more accu-

rate, describing the binding site at the amino acid level.

Chapter 7

Other Works

This chapter provides an overview of the other activities carried out during

the Ph.D. and not strictly related to the content of the thesis. In Section 7.1,

subject of [P3], a proof of concept of a GNN–based mobile app is proposed,

which could make it easier for caregivers of rare disease patients to share

knowledge and assistance.

Then, in Section 7.2 two statistical approaches for sequential data are

provided: the former, subject of the publications [A3] and [A5], is described

in Section 7.2.1 and overviews a method for differentiating between classes of

patients in medical applications, based on data collected by an eye–tracker

device; the latter is the topic of publication [A6] and illustrated in Section

7.2.2, describes a statistical and DL–based method for validating sequences

produced by the Ribo–Seq Profiling technique.

Eventually, Section 7.3 provides a description of two applications of DL

techniques to image analysis tasks coming from the real world: in Section

7.3.1 a CNN model for dragonfly action recognition [P2] is described, while

Section 7.3.2 illustrates a DL approach for the segmentation and analysis of

oocytes images [P4].

7.1 GNN–Based Caregiver Matching

A rare disease is defined as a disorder having a low occurrence in the popu-

lation and is often chronic and potentially life–threatening. There are esti-

mated to be over 6,000 rare diseases, with a prevalence ranging from 3.5% to

5.9% depending on local definitions. This results in 263–446 million people

105

106 CHAPTER 7. OTHER WORKS

Figure 7.1: General architecture of CaregiverMatcher mobile app. From the left: to access

the platform, caregivers log in with username and password. Four sections are available

in the home page: Profile, to manage personal and patient data; Chat, where all messages

and chat conversations are stored; Get Informed to retrieve rare diseases information as

well as associations or doctors contacts; Match to start the matching process. As a result,

caregivers can then connect with patient associations, specialized clinicians and other

caregivers.

affected worldwide [184]. Caregivers, who can be family members or hired

professionals, provide daily assistance to those affected by rare diseases. The

constant attention required and social isolation experienced by caregivers can

present obstacles in their daily assistance [185]. To address these issues, a

network of caregivers is considered to be extremely valuable [186].

In this section, derived from publication [P3], the proof of concept of

a cross–platform application in support of the caregiver’s experience is pre-

sented. The proposal is called CaregiverMatcher [20], and its aim is to create

a network of caregivers of rare disease patients. This project was presented

at the Rare Disease Hackathon 2020, organized by the Italian Forum Sistema

Salute, reaching the final stage reserved to the best 8 proposals, among more

than 250 projects. CaregiverMatcher exploits GNNs [1] to link each caregiver

with other caregivers that face similar issues in daily assistance, building a

network of contacts, based on information on the assisted patients. The

design of this application is intended to be user–friendly and present infor-

mative sections to improve the knowledge about rare diseases, as show in

Fig. 7.1.

7.2. MULTI–MODAL DATA ANALYSIS 107

The core, and main novelty, of CaregiverMatcher is the idea of connect-

ing caregivers with GNNs. From a practical point of view, the application

builds links between caregivers based on both patient personal information

and health condition. The GNN model is asked to predict whether an edge

exists between each pair of caregiver nodes. The predicted presence or ab-

sence of an edge represents the existence of a caregiver–caregiver relationship,

and it is weighted according to a real–valued similarity score describing how

compatible their profiles are: the higher the score, the higher the compati-

bility between the connected users. Eventually, once the matching process

has been completed, the user is returned a list of similar caregivers, filtered

as needed by setting some parameters in a dedicated section.

It is well established that support groups for caregivers can have a positive

impact on their mental health, level of burden, and overall social well–being

[187]. However, it’s important to note that the full potential of the appli-

cation will only be realized after an unspecified period of time, as the GNN

model on which the system is based needs a sufficient number of users in

order to effectively match caregivers within the network.

In summary, CaregiverMatcher has the potential to provide numerous

advantages to caregivers in various areas of their lives. This includes im-

provements in mental health, as the application offers both psychological

and practical support as well as easy access to credible educational resources

provided by experts and organizations.

7.2 Multi–Modal Data Analysis

This section presents two mixed statistical and ML approaches applied on

sequential data. Statistical analysis obtained from visual tests [188, 189] are

discussed in Section 7.2.1 to identify patterns within the data in order to

differentiate between people affected by chronic pain, extrapyramidal disor-

ders or healthy people. Then, statistical and ML approaches are described

in Section 7.2.2 to validate data produced by translation procedure analysis.

7.2.1 Visual Sequential Search Test

An algorithmic approach for the analysis of the Visual Sequential Search Test

(VSST) is proposed in this subsection, to have an insight into the patient

condition and to offer a support for clinical application [188, 189]. Eye–

108 CHAPTER 7. OTHER WORKS

tracking can offer a novel clinical practice and a non–invasive tool to detect

neuro–pathological syndromes, with its capacity of detecting eye position and

speed of movements [190]. This study focuses on the analysis of data coming

from the Visual Sequential Search Test (VSST), a neuro–psychological test

which measures the ability to detect and locate a target stimulus in images,

to assess cognitive impairment or working memory. The test consists of

a series of trials in which a target stimulus (such as a letter or shape) is

presented among a set of distractors. The participant is asked to identify

the target stimulus as quickly and accurately as possible. The time taken to

complete each trial is recorded and the test is designed to measure the speed

and accuracy of visual search performance.

In this work, VSST data is analyzed, examining both the blinking be-

haviour and the pupil size of the subjects, to gain an insight into the patient

condition and offer a support for the clinical practice. For this purpose, sev-

eral indicators to distinguish among classes of patients have been compared.

Data has been collected from people affected by extrapyramidal syn-

drome, by chronic pain or from healthy people (46, 284 and 46 examples,

respectively, for a total of 376 participants), and consist of multiple time–

sampled series provided by the eye–tracker instrument, containing informa-

tion on bidimensional gaze position, left and right pupil sizes, fixation IDs

and the stimulus code). Individuals affected by extrapyramidal symptoms

suffer from tremors, rigidity, spasms, decline in cognitive functions (demen-

tia), affective disorders, depression, amnesia, involuntary and hyperkinetic

jerky movements, slowing of voluntary movements, and postural abnormal-

ities. Conversely, there are several mechanisms underlying chronic pain;

more often an excessive and persistent stimulation of the “nociceptors” or a

lesion of the peripheral or central nervous system, but there are also forms

of chronic pain that do not seem to have a real, well–identified cause (neuro-

pathic pain). Therefore, chronic pain can be related to a variety of diseases,

with very different severity, from depression, to chronic migraine and to can-

cer.

A Kruskall–Wallis test [191] was applied to the distributions of the blink-

ing rate, maximum pupil size variations and mean blinking duration. The

analysis showed the presence of some statistically significant differences be-

tween the groups under analysis. In particular, no significant differences are

found between healthy subjects and patients affected by extrapyramidal syn-

drome considering the three indicators. Conversely, a significant statistical

7.2. MULTI–MODAL DATA ANALYSIS 109

difference between healthy controls and chronic pain patients was found for

the rate of blinking and the variation of pupil size. Concerning the compari-

son between patients affected by chronic pain and extrapyramidal syndrome,

a significant difference was detected both in the maximum pupil size varia-

tion and in the blinking average duration.

Limitations of this work are mainly due to the small dataset available.

Variations of the VSST could be implemented and standardised, to avoid

biases due to the fact that no instructions were given concerning the number

of times the patients should have completed the sequence during the data

acquisition time. Therefore, future research and extensions will concern new

standardised data collection for further testing and a more extensive vali-

dation of the approach based on a wider experimentation, for example by

considering more than three mutual exclusive classes, so as to include co–

morbidities, i.e., cases in which additional conditions are concurrent to the

primary one.

7.2.2 Validation of Ribo–Seq Profiles

This subsection describes a work, the subject of publication [A6], in which

statistical analysis and ML models have been used to validate the quality of

sequences produced by the so–called Ribosome Profiling Technique (Ribo–

Seq). Ribosomes perform protein synthesis from mRNA templates by a

highly regulated process called translation, which plays a key role in the reg-

ulation of gene expression, both in physiological and pathological conditions.

In recent years, Ribo–Seq has emerged as a powerful method for globally

monitoring the translation process in vivo at single nucleotide resolution. In-

terestingly, the nucleotide—level resolution of Ribo—seq experiments reveals

the density of the ribosomes at each position along the mRNA template. Lo-

cal differences in the density of Ribosome Protected Fragments (RPFs) along

the Open Reading Frame (ORF) reflect differences in the speed of transla-

tion and elongation, thus determining regions where the translation is slower

or faster. Unfortunately, the reproducibility of Ribo—seq experiments can

be affected by multiple variables due to the complexity of the experimental

protocol and the lack of standardization in computational data analysis.

Inspired by the seminal work [192], a novel analysis procedure for Ribo–

Seq data is performed. Based on the collected data from Escerichia Coli

(E. coli) sequences — 40 highly reproducible profiles resulted from the Rib–

110 CHAPTER 7. OTHER WORKS

Seq procedure —, a statistical analysis has been carried out that gave new

insights on the dynamics of the ribosome translation, showing a statistically

significant difference in the nucleotide composition between sub–sequences

characterized by different translation speeds [193]. Data has been generated

from E. coli sequences retrieved from different datasets available online, in

the form of 40 digitalized highly reproducible Ribo–Seq profile sequences

from which 264 sub–sequences characterized by a slow translation and 195

by a fast translation have been extracted, for a total of 459 sub–sequences

of variable length.

The statistical analysis consisted in computing the relative frequencies

of each nucleotide in the fast and slow sub–sequences, respectively, showing

a significant larger concentration of the adenine w.r.t the other nucleotides.

To assess the significance of the results, a statistical test has been performed

in order to determine whether the frequencies obtained are specific char-

acteristics of fast and slow sub–sequences or they are simply a product of

chance. The obtained results suggests that the relative frequencies of the

four nucleotides are significantly different from those occurring randomly. In

particular, nucleotides A and T show a higher frequency in fast sequences

than G and C. Instead, the frequency of nucleotides G and C is significantly

higher in slow sequences than those of A and T. Based on this evidence, the

proposed method for the identification of reproducible Ribo–Seq profiles was

able to correctly detect sub–sequences characterized by a higher information

content with respect to random sub–sequences, confirming the validity of the

new approach.

Another experiment has been carried out, in which the informative con-

tent of the obtained data has been validated using two ML–based approaches,

in the form of two binary classifiers whose task is to predict the translation

speed class of the sub–sequences. The two neural network architectures,

which are capable of processing both plain and sequential data, are highly

effective in obtaining high accuracy. Furthermore, it is shown that funda-

mental information is contained in both the nucleotide composition of the

sequences and the order in which nucleotides appear within each sequence.

This research opens new frontiers in the analysis of ribosome translation

dynamics in different organisms. Despite the complexity of the human data,

further analysis is deemed necessary in order to improve performance. This

may include the use of specialized neural architectures and hyperparameter

search. It is notable that the proposed method represents an effective ap-

7.3. DL APPLICATIONS FOR IMAGE ANALYSIS 111

proach for analyzing any type of Ribo–seq data and investigating the open

question of what features influence the speed of ribosome during translation.

7.3 DL Applications for Image Analysis

This section presents two DL techniques applied on image data. Sequences

of images representing dragonflies are analyzed in order to recognize the

actions the dragonflies are performing [194]. Then, an oocyte classifier based

on CNNs and attention mechanism is proposed [195], in order to support

human operators in in-vitro fertilization (IVF) procedures.

7.3.1 Dragonfly Action Recognition

This subsection presents a work, described in publication [P2], in which a

CNN–based classifier for recognizing the different phases of dragonfly flight

in images is presented. Dragonflies are very complex and advanced flying

organisms: they are characterized by a long and thin body, two large mul-

tifaceted eyes, two pairs of transparent wings and six legs. They can move

the four wings in a fully independent way, giving them extraordinary agility,

and obtaining formidable performance in flight and hunting, where they can

perform backward movements, very narrow vertical and horizontal loops and

stops in mid–air. All these features make dragonfly flight very interesting to

study, while also making dragonfly action recognition a difficult task. The

development of a reliable system for recognizing dragonfly actions is useful as

it has wide interest in the biological research community. Indeed, research in

different fields could benefit from the recognition system to test hypotheses

on dragonfly anatomy, flight dynamics and predatory behaviors.

More specifically, the proposed model classifies video frames in five classes:

take–off, flight, landing, stationary and absent (frames in which the dragon-

fly is not present). A limitation in the development of a DL model is the

requirement for a large set of fully annotated data. In this case, there was

not a publicly available labeled dataset of dragonfly images. In order to train

a DL architecture, a sufficient quantity of samples were gathered from online

videos. These samples were preprocessed and labeled on a frame–by–frame

basis. Two distinct classifier networks were evaluated for action recognition:

a standard CNN, which processes one frame at a time, and an LSTM, which

processes sequences of frames.

112 CHAPTER 7. OTHER WORKS

Figure 7.2: Architecture of the CNN + LSTM hybrid model. The images are converted

into 224×224×3 matrices and processed separately by replicas of the same CNN model

(in blue). The results are then processed by the LSTM layer (in green). Finally, dense

layers (in orange) re–elaborate the information and perform the classification.

A first set of experiments was carried out with the aim of identifying a

good combination of hyperparameters, such as the number of convolutional

blocks or the number of feature maps. Transfer learning was then applied,

exploiting pre–trained models that could extract low–level image features

efficiently and with short training times. Three CNN models which are well

known in the literature were used for transfer learning: the MobileNet–v2

[196], the VGG16 [197] and the DenseNet121 [198]. All of them are pre—

trained on the ImageNet dataset [199].

The experimentation on LSTMs was carried out on the same dataset, but

taking into account the sequentiality of frames. Since the recurrent layers

are not able to process multidimensional data, a CNN–based feature extrac-

tor was employed, in order to transform each frame into a feature vector,

compatible with the recurrent layers of the LSTM model. The sequence of

vectors was then analyzed with the LSTM model, characterized by 2 dense

layers composed of 100 and 5 neurons, respectively, as depicted in Fig. 7.2

To analyze the entire sequence, a sliding window with a size of 7 frames was

employed.

The experimental results showed that both models (CNNs and LSTMs)

reached an accuracy score of 73.9 %, yet with some difficulties in recognizing

specific classes. This work demonstrated that DL techniques can be success-

fully applied to the dragonfly action recognition task. In particular, a good

7.3. DL APPLICATIONS FOR IMAGE ANALYSIS 113

set of guidelines for the automatic analysis of dragonfly flight has been pro-

vided. These guidelines include new instructions for setting up a dataset, as

well as useful considerations for the calibration, design and implementation

of deep models to face this complex task.

7.3.2 Oocyte Segmentation

Medical Assisted Procreation (MAP) has seen a sharp increase in demand

over the past decade, due to a variety of reasons, including genetic factors,

health conditions altered by stress and pollution, as well as delayed preg-

nancy and age–related loss of fertility. The success of MAP techniques is

strongly correlated to the dexterity of human operators, who are asked to

classify and select healthy oocytes to be fertilized and returned to the uterus.

This work describes a deep learning approach to the segmentation of oocyte

images, to support operators in their selection, to improve the success proba-

bility of MAP. This work focuses on second level in–vitro fertilization (IVF),

a set of pharmacological therapies, surgical and laboratory procedures, and in

particular on ICSI (IntraCytoplasmic Sperm Injection) procedure, in which

the spermatozoa are directly injected into the oocyte. It is worth noting that

the success of ICSI depends, among the other genetic factors, on the capa-

bility of the human operator to perform a good selection of embryos: this

work therefore aims at showing how a semantic segmentation DL approach

can be used to support the operators, to improve the success probability of

the IVF procedure.

The dataset was initially composed by 40x inverted images captured with

a Leica Micromanipulator with Nikon camera (Fig. 7.3a), provided with

respective masks highlighting inclusions (Fig. 7.3b).

Split W/ Inclusion Resolution

Training Original 18 256×256

Training Augmented 1000 256×256

Training Synthetic 1000 256×256

Test Original 8 256×256

Table 7.1: Dataset organization. Training Original are the set of microscope images;

Training Augmented are the images from the training set augmented by randomly applying

flips and rotations; Training Synthetic are the set of synthetic images augmented by

generation; Test Original represents the microscope images set used as a test set.

114 CHAPTER 7. OTHER WORKS

(a) (b)

Figure 7.3: Sample image from the training set in (a); the corresponding mask in (b)

The semantic segmentation task has been tackled by the means of a

Segmentation Multiscale Attention Network (SMANet) [200], a DL architec-

ture for image segmentation, formed by three main components: a ResNet

encoder, a multiscale attention module, and a convolutional decoder. In

particular, a ResNet50 architecture [65] has been used as the encoder in

order to perform feature extraction of the input image. The convolutional

encoder is followed by an attention module and a convolutional layer pro-

viding pixel–wise prediction, which learns to focus on regions containing the

desired object, and by a two level decoder to recover small details at a higher

resolution.

In order to successfully train a deep segmentation network, a large amount

of supervised data is usually required. Nonetheless, data deficiency is a typi-

cal drawback of DL biomedical applications, due to privacy issues and to the

inherent difficulty on obtaining supervised data. Therefore, a data augmen-

tation procedure was carried out, based on a DL image generation technique,

to face the lack of a large set of annotated data. In particular, an image–to–

image translation approach was used, to transform semantic label maps in

fake oocyte images, in order to enlarge the small available training set.

The label maps are created by randomly placing from one to five circular

spots with variable diameter (from 2 to 7 pixels), since this closely resembles

the true distribution of the inclusions in the oocyte which, based on the

opinion of experts, is totally random.

The experimental setup has been divided in three cases, involving training

only on real images, training only on synthetic images, and performing fine–

tuning, in which a model pre–trained on synthetic images was fine–tuned on

real images. As a first outcome, it is worth noting that synthetic images can

7.3. DL APPLICATIONS FOR IMAGE ANALYSIS 115

be effectively used as data augmentation. Indeed, better results are achieved

by training on synthetic images rather than using real data, demonstrating

the high quality of the generated images. Moreover, the results can be further

improved by fine–tuning the model, pre–trained on the syntethic data, on

the real images.

This work can be considered as a first step towards a more complex tool,

capable to characterise oocytes in a complete manner and give the human

operator a quality score, obtained through an objective and reproducible

procedure. As a matter of further research, the collection of original images

will be enlarged, which is expected to greatly improve the performance of

the network. Furthermore, other parameters having a strong influence on the

evaluation of oocytes may be considered in the segmentation task: to this

aim, more detailed segmentation maps will be drawn, taking into account

other characteristics and abnormalities of oocytes.

116 CHAPTER 7. OTHER WORKS

Chapter 8

Conclusions and Future

Developments

This thesis is focused on GNNs and their applications in bioinformatics.

A software framework, described in Chapter 4, for designing and deploy-

ing GNNs for research purposes has been developed and used to implement

some applications, presented and discussed in the other chapters of this the-

sis. The software provides multiple Keras–based GNN models for homoge-

neous and heterogeneous graph processing and for both inductive and mixed

inductive–transductive learning settings, thus providing a simple tool for the

development of software applications in the field of ML for graphs. In par-

ticular, GNNs are employed for predicting the side–effects of drugs and for

identifying protein–protein interfaces. The two applications are described in

Chapter 5 and Chapter 6, respectively. Some specific conclusions on each

of these works are drawn at the end of the respective chapters, and summa-

rized in the following. Three DSE predictors are proposed and discussed in

Chapter 5.

The first one, called DruGNN and described in Section 5.3, combines

data from heterogeneous sources into a relational dataset allows to repre-

sent the complex features and interactions involved into the occurrence of

DSEs. CGNNs are ideal to process this kind of dataset, following a mixed

inductive–transductive learning scheme, and produce accurate predictions

in this multi–class multi–label node classification task. Moreover, DruGNN

is modular: data can be added without having to re–train the model, and

robust to ablation. The proposed method can be easily used to predict the

side–effects of a candidate drug, by inserting the molecule and its interac-

117

118 CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS

tion data. A future research direction consists in specializing the predictor,

by taking into account tissue specific data and DSE supervisions, obtaining

more accurate and informative insights.

The second DSE predictor, GNN–MGSEP, is described in Section 5.4. It

is based only on the molecular graphs of the drug structures. A dataset of

molecular graphs and associated side–effects was built in order to train and

test the model. The experimental results show that the model is capable of

very good performance in this task. In the future, the model can be fur-

ther developed in multiple directions. On the one hand, introducing a larger

amount of drug examples could improve performance of GNN–MGSEP while

retaining the same simplicity and lightweight style. On the other hand, the

model can be refined by integrating heterogeneous data as it is the case

for DeepSide and DruGNN. The more straightforward addition that could

be made is constituted by the chemical features of drugs, that can be re-

trieved from PubChem and integrated inside the molecular graph. Other

data, describing drug–protein interactions, metabolomics, gene expression,

and ontologies, could be integrated as well, though this would imply a re-

thinking of the model to attach these pieces of information to a molecular

graph.

The last proposed method for the prediction of DSEs is MolecularGNN,

described in Section 5.5, which combines the DruGNN and GNN–MGSEP

settings, to produce an enhanced model, able to work directly on the molec-

ular structure and on unbalanced datasets, in a graph–of–graphs domain.

The novelty of this model is represented by the generation of drug struc-

tural fingerprints, which can be adapted to the task the general model is

trained for. Possible future developments in this context include a dynamic

learning approach, by considering a dynamic topology of the graph, in which

the connections between the drug nodes do not remain the same throughout

the learning procedure, since they can be re–calculated on the basis of the

similarity between the neural fingerprints generated at each epoch by the ap-

propriate sub–model, possibly adding some constraints to respect a certain

level of similarity given by the one obtained with the standard, preprocessed

fingerprints.

In future real–world scenarios, as already partially discussed for DruGNN

[103], it will be possible to build a fully automated pipeline of deep learning–

aided drug discovery, in which a molecular graph generator such as Chem-

VAE [201], JTVAE [174], CCGVAE [202], GraphVAE [173], MolGAN [203],

119

or the GNN–based MG2N2 [26] could generate large quantities of potential

drug candidates. These methods can in fact produce massive amounts of

possible drug candidates, but often lack the ability of evaluating the pos-

sible DSEs of the generated compounds. The drug candidates could then

be screened for their drug–likeness, retaining only compounds with a high

QED score [175] or druggability score, which can be estimated with various

methods, including deep learning predictors [107, 204, 108]. GNN–MGSEP

and MolecularGNN could be employed to screen out all the molecules with

relevant probabilities of producing side effects. This pipeline could provide

a large quantity of potential drug candidates with good drug–likeness and

small side effect profiles, thereby constructing a reliable chemical space from

which drug candidates can be drawn by experts, contributing to cutting the

costs and difficulties of drug discovery research.

However, the black–box nature of these predictors limits their inter-

pretability and trustworthiness: to address this limitation, explainable ma-

chine learning (XAI) models, particularly those based on GNNs, have been

developed to provide further insight into the model’s structure and decision-

making process. In the context of drug discovery and side effect prediction,

GNN–based XAI models can help identify the molecular features that are

most relevant for predicting a particular side effect. By analyzing the impor-

tance of different molecular features, drug developers can gain insights into

the mechanisms that underlie the side effect and potentially identify ways to

mitigate it. GNN–based XAI models can also generate visual explanations

of the model’s predictions, providing a basis for validating and refining the

model’s performance. In conclusion, GNN–based XAI models have signifi-

cant potential in drug discovery and drug side effect prediction. By providing

interpretability and explainability, and by improving the transparency of ma-

chine learning models, GNN–based XAI can help boost the usability of the

approaches and facilitate the development of safer and more effective drugs.

GNNs were also employed for predicting protein–protein interfaces, as

described in Chapter 6. This task was formulated as a maximum clique

search on the correspondence graph derived from the secondary structures

of each pair of proteins. The approach showed very promising results, in-

dividuating the secondary structures that participate in each interface, and

providing interesting insights for future research. However, further experi-

mentation and different GNN models and architectures could improve the

model. Additionally, the current SSE–based representation of the interfaces

120 CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS

is at a coarse level and could be refined to include specific amino acids or

even atoms for a more precise identification of protein–protein interactions.

A first limitation is that current results are preliminary: an improved version

of the model could be developed based on a more extensive experimentation,

also taking into account more possible GNN models and architectures. The

second drawback is represented by the coarse scale of the interface represen-

tation predicted: in fact, the same analysis could be refined to the amino

acid scale, or even at the atom level, more precisely identifying the residues

that take part into protein–protein interfaces.

GNNs have shown their capabilities in various molecular data settings,

particularly in the field of drug discovery. Applications such as node clas-

sification in a traditional yet imbalanced setting and node classification on

a complex, heterogeneous relational dataset are just a few examples of the

potential of GNNs in this field. Furthermore, the development of a software

framework that allows for an easy Keras–based implementation of recurrent

GNNs has made it easier for researchers to access and utilize their properties.

In conclusion, the demonstrations of GNN capabilities in these testing

grounds, along with the growing interest and community related to graph–

based models, suggest that GNNs will continue to improve and evolve. New

theories and models, such as non–local GNNs with higher computational

power, will likely be proposed in the future. Additionally, GNNs will be

applied to new fields and even more complex data settings, providing sig-

nificant contributions to various scientific fields, including biology, physics

simulations, weather prediction, and social network analysis.

Publications and Activities

Journal Articles

[A1] Pietro Bongini, Franco Scarselli, Monica Bianchini, Giovanna Maria

Dimitri, Niccolò Pancino, Pietro Liò. 2022. Modular multi–source

prediction of drug side–effects with DruGNN. Published in early access

on IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics.

https://doi.org/10.1109/TCBB.2022.3175362

Candidate’s contributions: conceptualization, software implemen-

tation, manuscript reviewing and editing.

Thesis relevance: primary contribution, presented in Section 5.3.

[A2] Niccolò Pancino, Pietro Bongini, Franco Scarselli, Monica Bianchini.

2022. GNNkeras: A Keras–based library for Graph Neural Networks

and homogeneous and heterogeneous graph processing. SoftwareX, 18,

101061.

https://doi.org/10.1016/j.softx.2022.101061

Candidate’s contributions: software implementation (in collabora-

tion), manuscript reviewing and editing.

Thesis relevance: primary software contribution, presented in Chap-

ter 4.

[A3] Niccolò Pancino, Caterina Graziani, Veronica Lachi, Maria Lucia

Sampoli, Emanuel S, tefǎnescu, Monica Bianchini, and Giovanna Maria

Dimitri. 2021. A Mixed Statistical and Machine Learning Approach

for the Analysis of Multimodal Trail Making Test Data. Mathematics

9, no. 24: 3159.

https://doi.org/10.3390/math9243159

Candidate’s contributions: software implementation (in collabora-

121

122 CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS

tion), manuscript reviewing and editing.

Thesis relevance: other works, discussed in Section 7.2.1.

[A4] Niccolò Pancino, Yohann Perron, Pietro Bongini, and Franco Scarselli.

2022. Drug Side Effect Prediction with Deep Learning Molecular Em-

bedding in a Graph–of–Graphs Domain. Mathematics 10, no. 23:

4550.

https://doi.org/10.3390/math10234550

Candidate’s contributions: supervision, software implementation

(in collaboration), original manuscript draft, manuscript reviewing and

editing.

Thesis relevance: primary contribution, presented in Section 5.5.

[A5] Emanuel S, tefǎnescu, Niccolò Pancino, Cateringa Graziani, Veronica

Lachi, Maria Lucia Sampoli, Giovanna Maria Dimitri, A Bargagli,

Dario Zanca, Monica Bianchini, D. Muresanu, D. and Alessandra Rufa.

2022. Blinking Rate Comparison Between Patients with Chronic Pain

and Parkinson’s Disease. In: European Journal of Neurolog, Vol. 29,

pp. 669–669.

https://onlinelibrary.wiley.com/doi/epdf/10.1111/ene.15466

Candidate’s contributions: supervision, software implementation

(in collaboration), original manuscript draft, manuscript reviewing and

editing.

Thesis relevance: other works, discussed in Section 7.2.1.

[A6] Giorgia Giacomini, Caterina Graziani, Veronica Lachi, Pietro Bongini,

Niccolò Pancino, Monica Bianchini, Davide Chiarugi, Angelo Val-

leriani, and Paolo Andreini. 2022. A Neural Network Approach for

the Analysis of Reproducible Ribo–Seq Profiles. Algorithms 15, no. 8:

274.

https://doi.org/10.3390/a15080274

Candidate’s contributions: metodology, validation, resurces, ma-

nuscript reviewing and editing.

Thesis relevance: other works, discussed in Section 7.2.2.

[A7] Pietro Bongini, Elisa Messori, Niccolò Pancino, Monica Bianchini.

2022. A Deep Learning Approach to the Prediction of Drug Side–

Effects on Molecular Graphs. Submitted to IEEE/ACM Transactions

on Computational Biology and Bioinformatics.

123

Candidate’s contributions: model and algorithm design (in collabo-

ration with Pietro Bongini), software implementation (in collaboration

with Pietro Bongini), manuscript reviewing and editing.

Thesis relevance: primary contribution, presented in Section 5.4.

Conference Papers

[P1] Niccolò Pancino, Alberto Rossi, Giorgio Ciano, Giorgia Giacomini,

Simone Bonechi, Paolo Andreini, Franco Scarselli, Monica Bianchini,

Pietro Bongini. 2020. Graph Neural Networks for the Prediction of

Protein–Protein Interfaces. In: 28th European Symposium on Artifi-

cial Neural Networks, Computational Intelligence and Machine Learn-

ing (ESANN 2020), 127–132.

Candidate’s contributions: conceptualization and discussion, model

and algorithm design (in collaboration with Pietro Bongini), software

implementation (in collaboration with Pietro Bongini), original manu-

script draft, manuscript reviewing and editing.

Thesis relevance: primary contribution, presented in Chapter 6.

[P2] Martina Monaci, Niccolò Pancino, Paolo Andreini, Simone Bonechi,

Pietro Bongini, Alberto Rossi, Giorgio Ciano, Giorgia Giacomini, Franco

Scarselli, Monica Bianchini. (2020). Deep Learning Techniques for

Dragonfly Action Recognition. In: Proceedings of the 9th Interna-

tional Conference on Pattern Recognition Applications and Methods

(ICPRAM 2020), 1, 562–569.

Candidate’s contributions: conceptualization and discussion (in

collaboration), data analysis (in collaboration), original manuscript

draft, manuscript reviewing and editing.

Thesis relevance: other works, discussed in Section 7.3.1.

[P3] Filippo Guerranti, Mirco Mannino, Federica Baccini, Pietro Bongini,

Niccolò Pancino, Anna Visibelli, Sara Marziali. (2021). Caregiver-

Matcher: graph neural networks for connecting caregivers of rare dis-

ease patients. In: 25th International Conference on Knowledge–Based

and Intelligent Information & Engineering Systems (KES 2021). Pro-

cedia Computer Science, 192, 1696–1704.

https://doi.org/10.1016/j.procs.2021.08.174

124 CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS

Candidate’s contributions: model and algorithm design (in collab-

oration), conceptualization and discussion (in collaboration), original

manuscript draft (sections on Graph Neural Networks and their appli-

cation), manuscript reviewing and editing.

Thesis relevance: other works, discussed in Section 7.1.

[P4] Paolo Andreini, Niccolò Pancino, Filippo Costanti, Gabriele Eusepi,

Barbara Toniella Corradini. (2022). A Deep Learning approach for

oocytes segmentation and analysis. In: 30th European Symposium on

Artificial Neural Networks, Computational Intelligence and Machine

Learning (ESANN 2022).

https://doi.org/10.14428/esann/2022.ES2022-44

Candidate’s contributions: conceptualization and discussion (in

collaboration), manuscript reviewing and editing.

Thesis relevance: other works, discussed in Section 7.3.2.

Book Chapters

[C1] Pietro Bongini, Niccolò Pancino, Franco Scarselli, Monica Bianchini.

(2022). BioGNN: How Graph Neural Networks can solve biological

problems. In: Cheng Peng Lim et al. Handbook of Artificial Intelli-

gence in Healthcare. Intelligent Systems Reference Library. Springer

Nature Switzerland, Cham, CH.

Candidate’s contributions: model and algorithm design (in collab-

oration), conceptualization and discussion (in collaboration), manusc-

ript reviewing and editing.

Acknowledgements

I would like to express my sincere gratitude to my advisors, Prof. Monica

Bianchini and Prof. Franco Scarselli, for their guidance, support, and friend-

ship throughout my Ph.D. journey. Their expertise and dedication have been

invaluable in shaping my research and professional development. Their keen

insights, constructive feedback, and unwavering encouragement have helped

me to overcome obstacles and achieve my goals. Their mentorship has been

a source of inspiration, and I am grateful for the opportunity to learn from

them and I am honored to consider them not only as my advisors but also

as my friends.

I would like to extend my sincere thanks to Prof. Pietro Liò for his valu-

able collaboration and support during my stay at the University of Cam-

bridge. His expertise and insights have greatly contributed to my research

and I am grateful for the opportunity to work alongside him.

I would like to thank Prof. Claudio Gallicchio and Prof. Stefano Cagnoni

for being part of my Supervisory Committee: I would like to express my

appreciation for their time, effort and dedication as well as their suggestions

and opinions, which have been fundamental to the success of my research.

I am grateful to the institutions which have enabled me to pursue these

studies. Specifically, I would like to thank the Ph.D. program in Smart Com-

puting, which is jointly funded by the Universities of Florence, Siena, and

Pisa, and also by Regione Toscana through the European Social Fund. I also

want to express my thanks to the University of Florence, the host institution

of the Ph.D program, as well as the University of Siena, particularly the De-

partment of Information Engineering and Mathematics, where I completed

my degrees and conducted most of my research.

A special thank you goes to all my fellow Ph.D. students at the Siena

Artificial Intelligence Laboratory (SAILab). I would risk not delivering my

thesis on time if I were to mention each and every one of them individually —

125

126 CHAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENTS

I swear I will do it separately, do not worry —, but I want them to know that

each of them has made these last three years unforgettable: in the Lab202 I

found authentic friendships and a sense of belonging and brotherhood that I

never expected to find in such a place. Special mentions to my friends Pietro

Bongini and Alessio D’Inverno, with whom I shared efforts in every work we

did together, trying to make everything work, and great laughs both inside

and outside the Lab and to Giovanna Maria Dimitri and Enrico Meloni, who

always supported me even when I was thousands of kilometers away.

I would like to extend a heartfelt thank you to my dear friends, Michele,

the VH group, the Hoppians, the UPD parishioners, as well as the newbies

who came in my life in the last year: the hours spent talking to you, together

with your laughter and good humor have brightened even the darkest of days.

I am so grateful to have you all in my life and I look forward to many more

years of friendship and fun. Thank you for being there for me, and for being

such an important part of my life.

Finally, my deepest gratitude goes to my family for their endless support

and love throughout my journey. My parents, Paolo and Patrizia, have

been my constant source of inspiration and encouragement. Their love and

guidance have been invaluable to me and I am eternally grateful for all that

they have done for me. My sisters, Ottavia, Gioia and Michela, together

with Manfredi and Alessandro, have always been my confidants and best

friends. Their love and support have been a source of strength for me. I am

also grateful to my grandmother for her prayers and for always being there

for me, and my nephews Chiara e Francesco for the joy they brought in my

life. I am blessed to have such a supportive and loving family, and I could

not have achieved this milestone without their love and support. I dedicate

this achievement to them, with all my love and gratitude.

Bibliography

[1] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-

dini, “The graph neural network model,” IEEE Transactions on Neural

Networks, vol. 20, no. 1, pp. 61–80, 2009.

[2] N. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936.

Oxford University Press, 1986.

[3] M. Wang and G. Hu, “A novel method for twitter sentiment anal-

ysis based on attentional–graph neural network,” Information, vol. 11,

no. 2, p. 92, 2020.

[4] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Hierarchical

representation learning in graph neural networks with node decima-

tion pooling,” IEEE Transactions on Neural Networks and Learning

Systems, 2020.

[5] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett, “Identi-

fication of tertiary structure resemblance in proteins using a maximal

common subgraph isomorphism algorithm,” Journal of molecular biol-

ogy, vol. 229, no. 3, pp. 707–721, 1993.

[6] E. J. Gardiner, P. J. Artymiuk, and P. Willett, “Clique–detection algo-

rithms for matching three-dimensional molecular structures,” Journal

of Molecular Graphics and Modelling, vol. 15, no. 4, pp. 245–253, 1997.

[7] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side

effects with graph convolutional networks,” Bioinformatics, vol. 34,

no. 13, pp. i457–i466, 2018.

[8] J. Kim, S. Park, D. Min, and W. Kim, “Comprehensive survey of

recent drug discovery using deep learning,” International Journal of

Molecular Sciences, vol. 22, no. 18, p. 9983, 2021.

127

128 BIBLIOGRAPHY

[9] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-

fardini, “Computational capabilities of graph neural networks,” IEEE

Transactions on Neural Networks, vol. 20, no. 1, pp. 81–102, 2009.

[10] T. N. Kipf and M. Welling, “Semi–supervised classification with graph

convolutional networks,” in 5th International Conference on Learning

Representations, ICLR 2017, 2017.

[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks

and deep locally connected networks on graphs,” in 2nd International

Conference on Learning Representations, ICLR 2014, 2014.

[12] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neu-

ral networks on graphs with fast localized spectral filtering,” in Ad-

vances in neural information processing systems, pp. 3844–3852, 2016.

[13] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation

learning on large graphs,” in Advances in neural information processing

systems, pp. 1024–1034, 2017.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and

Y. Bengio, “Graph attention networks,” 2017.

[15] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,

and M. Sun, “Graph neural networks: A review of methods and appli-

cations,” AI Open, vol. 1, pp. 57–81, 2020.

[16] Y. Wang, KrisKitani, and X. Weng, “Joint object detection and multi-

object tracking with graph neural networks,” in 2021 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 13708–

13715, IEEE, 2021.

[17] A. Luo, X. Li, Fan Yang, Z. Jiao, H. Cheng, and SiweiLyu, “Cascade

graph neural networks for rgb-d salient object detection,” in European

Conference on Computer Vision, pp. 346–364, Springer, 2020.

[18] WeijingShi and R. Rajkumar, “Point-gnn: Graph neural network for

3d object detection in a point cloud,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 1711–1719,

2020.

BIBLIOGRAPHY 129

[19] Z. Wang, W. Wei, G. Cong, X.-L. Li, X.-L. Mao, and M. Qiu, “Global

context enhanced graph neural networks for session-based recommen-

dation,” in Proceedings of the 43rd international ACM SIGIR confer-

ence on research and development in information retrieval, pp. 169–

178, 2020.

[20] F. Guerranti, M. Mannino, F. Baccini, P. Bongini, N. Pancino, A. Vis-

ibelli, and S. Marziali, “Caregivermatcher: graph neural networks for

connecting caregivers of rare disease patients,” Procedia Computer Sci-

ence, vol. 192, pp. 1696–1704, 2021.

[21] C. Wu, F. Wu, Y. Cao, Y. Huang, and X. Xie, “Fedgnn: Federated

graph neural network for privacy-preserving recommendation,” arXiv

preprint arXiv:2102.04925, 2021.

[22] J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural

attention,” in Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pp. 1666–1674,

2018.

[23] N. Pancino, A. Rossi, G. Ciano, G. Giacomini, S. Bonechi, P. Andreini,

F. Scarselli, M. Bianchini, and P. Bongini, “Graph neural networks for

the prediction of protein–protein interfaces,” in ESANN, pp. 127–132,

2020.

[24] P. Bongini, N. Pancino, F. Scarselli, and M. Bianchini, “Biognn: How

graph neural networks can solve biological problems,” in Artificial In-

telligence and Machine Learning for Healthcare, pp. 211–231, Springer,

2023.

[25] J. S. Smith, A. E. Roitberg, and O. Isayev, “Transforming computa-

tional drug discovery with machine learning and ai,” ACS medicinal

chemistry letters, vol. 9, no. 11, pp. 1065–1069, 2018.

[26] P. Bongini, M. Bianchini, and F. Scarselli, “Molecular generative

graph neural networks for drug discovery,” Neurocomputing, vol. 450,

pp. 242–252, 2021.

[27] E. Dai and S. Wang, “Towards self–explainable graph neural network,”

in Proceedings of the 30th ACM International Conference on Informa-

tion & Knowledge Management, pp. 302–311, 2021.

130 BIBLIOGRAPHY

[28] Z. Zhong, C.-T. Li, and J. Pang, “Hierarchical message-passing graph

neural networks,” 2020.

[29] N. Pancino, P. Bongini, F. Scarselli, and M. Bianchini, “Gnnkeras: A

keras-based library for graph neural networks and homogeneous and

heterogeneous graph processing,” SoftwareX, vol. 18, p. 101061, 2022.

[30] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-

manent in nervous activity,” The bulletin of mathematical biophysics,

vol. 5, no. 4, pp. 115–133, 1943.

[31] A. Mathison Turing, “Computing machinery and intelligence,” The

Turing Test: Verbal Behavior as the Hallmark of Intelligence, pp. 29–

56, 1950.

[32] A. L. Hodgkin and A. F. Huxley, “Propagation of electrical signals

along giant nerve fibres,” Proceedings of the Royal Society of London.

Series B-Biological Sciences, vol. 140, no. 899, pp. 177–183, 1952.

[33] A. L. Samuel, “Some studies in machine learning using the game of

checkers,” IBM Journal of research and development, vol. 3, no. 3,

pp. 210–229, 1959.

[34] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-

resentations by back-propagating errors,” Nature, vol. 323, no. 6088,

pp. 533–536, 1986.

[35] C. Cortes and V. Vapnik, “Support–vector networks,” Machine learn-

ing, vol. 20, no. 3, pp. 273–297, 1995.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[37] Y. Bengio, P. Simard, and P. Frasconi, “Learning long–term depen-

dencies with gradient descent is difficult,” IEEE transactions on neural

networks, vol. 5, no. 2, pp. 157–166, 1994.

[38] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-

tion. MIT press, 2018.

[39] T. Kohonen, “Self–organized formation of topologically correct feature

maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

BIBLIOGRAPHY 131

[40] J. A. Davis, “Clustering and structural balance in graphs,” Human

relations, vol. 20, no. 2, pp. 181–187, 1967.

[41] T. K. Ho, “Random decision forests,” in Proceedings of 3rd interna-

tional conference on document analysis and recognition, vol. 1, pp. 278–

282, IEEE, 1995.

[42] J. H. Friedman, “Greedy function approximation: a gradient boosting

machine,” Annals of statistics, pp. 1189–1232, 2001.

[43] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural networks, vol. 2, no. 5,

pp. 359–366, 1989.

[44] K. Hornik, “Approximation capabilities of multilayer feedforward net-

works,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[45] G. Cybenko, “Approximation by superpositions of a sigmoidal func-

tion,” Mathematics of control, signals and systems, vol. 2, no. 4,

pp. 303–314, 1989.

[46] K. Fukushima, “Cognitron: A self-organizing multilayered neural net-

work,” Biological cybernetics, vol. 20, no. 3, pp. 121–136, 1975.

[47] P. J. Werbos, “Backpropagation through time: what it does and how

to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[48] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,

no. 2, pp. 179–211, 1990.

[49] S. Hochreiter and J. Schmidhuber, “Long short–term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[50] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations us-

ing rnn encoder–decoder for statistical machine translation,” arXiv

preprint arXiv:1406.1078, 2014.

[51] K. M. Tarwani and S. Edem, “Survey on recurrent neural network

in natural language processing,” Int. J. Eng. Trends Technol, vol. 48,

pp. 301–304, 2017.

132 BIBLIOGRAPHY

[52] S. K. Sønderby and O. Winther, “Protein secondary structure predic-

tion with long short term memory networks,” 2014.

[53] A. Visibelli, P. Bongini, A. Rossi, N. Niccolai, and M. Bianchini, “A

deep attention network for predicting amino acid signals in the for-

mation of α-helices,” Journal of Bioinformatics and Computational

Biology, vol. 18, no. 05, p. 2050028, 2020.

[54] M. Weber, M. Liwicki, D. Stricker, C. Scholzel, and S. Uchida, “Lstm–

based early recognition of motion patterns,” in 2014 22nd International

Conference on Pattern Recognition, pp. 3552–3557, IEEE, 2014.

[55] K. Pawar, R. S. Jalem, and V. Tiwari, “Stock market price predic-

tion using lstm rnn,” in Emerging Trends in Expert Applications and

Security, pp. 493–503, Springer, 2019.

[56] A. Graves, N. Jaitly, and A. rahman Mohamed, “Hybrid speech recog-

nition with deep bidirectional lstm,” in 2013 IEEE workshop on auto-

matic speech recognition and understanding, pp. 273–278, IEEE, 2013.

[57] J. Zhao, X. Mao, and L. Chen, “Speech emotion recognition using

deep 1d & 2d cnn lstm networks,” Biomedical Signal Processing and

Control, vol. 47, pp. 312–323, 2019.

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”

in Advances in neural information processing systems, pp. 5998–6008,

2017.

[59] Y. LeCun et al., “Generalization and network design strategies,” Con-

nectionism in perspective, vol. 19, pp. 143–155, 1989.

[60] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” Advances in neural infor-

mation processing systems, vol. 25, pp. 1097–1105, 2012.

[61] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-

works for biomedical image segmentation,” in International Confer-

ence on Medical image computing and computer-assisted intervention,

pp. 234–241, Springer, 2015.

BIBLIOGRAPHY 133

[62] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 779–788,

2016.

[63] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”

Advances in neural information processing systems, vol. 27, 2014.

[64] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the

recent architectures of deep convolutional neural networks,” Artificial

Intelligence Review, vol. 53, no. 8, pp. 5455–5516, 2020.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778, 2016.

[66] D. Aldous and J. Fill, “Reversible markov chains and random walks

on graphs,” 2002.

[67] D. Haussler, “Convolution kernels on discrete structures,” tech. rep.,

Technical report, Department of Computer Science, University of Cal-

ifornia, 1999.

[68] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, “Graph kernels

for chemical informatics,” Neural networks, vol. 18, no. 8, pp. 1093–

1110, 2005.

[69] A. Sperduti and A. Starita, “Supervised neural networks for the classi-

fication of structures,” IEEE Transactions on Neural Networks, vol. 8,

no. 3, pp. 714–735, 1997.

[70] P. Frasconi, M. Gori, and A. Sperduti, “A general framework for adap-

tive processing of data structures,” IEEE transactions on Neural Net-

works, vol. 9, no. 5, pp. 768–786, 1998.

[71] F. Scarselli, S. L. Yong, M. Gori, M. Hagenbuchner, A. C. Tsoi, and

M. Maggini, “Graph neural networks for ranking web pages,” in The

2005 IEEE/WIC/ACM International Conference on Web Intelligence

(WI’05), pp. 666–672, IEEE, 2005.

134 BIBLIOGRAPHY

[72] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” 2014.

[73] N. Bandinelli, M. Bianchini, and F. Scarselli, “Learning long–term

dependencies using layered graph neural networks,” in The 2010 In-

ternational Joint Conference on Neural Networks (IJCNN), pp. 1–8,

IEEE, 2010.

[74] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why

and when can deep–but not shallow–networks avoid the curse of dimen-

sionality: a review,” International Journal of Automation and Com-

puting, vol. 14, no. 5, pp. 503–519, 2017.

[75] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph

neural networks?,” in International Conference on Learning Represen-

tations, 2018.

[76] R. Sato, “A survey on the expressive power of graph neural networks,”

arXiv preprint arXiv:2003.04078, 2020.

[77] B. Weisfeiler and A. Leman, “The reduction of a graph to canonical

form and the algebra which appears therein,” NTI Series, vol. 2, no. 9,

pp. 12–16, 1968.

[78] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rat-

tan, and M. Grohe, “Weisfeiler and leman go neural: Higher-order

graph neural networks,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, pp. 4602–4609, 2019.

[79] G. A. D’Inverno, M. Bianchini, M. L. Sampoli, and F. Scarselli, “An

unifying point of view on expressive power of gnns,” 2021.

[80] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A com-

prehensive survey on graph neural networks,” IEEE transactions on

neural networks and learning systems, 2020.

[81] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,

V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,

R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl,

A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess,

BIBLIOGRAPHY 135

D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pas-

canu, “Relational inductive biases, deep learning, and graph networks,”

2018.

[82] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph se-

quence neural networks,” 2015.

[83] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,

“Neural message passing for quantum chemistry,” in Proceedings of the

34th International Conference on Machine Learning, vol. 70, pp. 1263–

1272, 2017.

[84] S. Munikoti, L. Das, and B. Natarajan, “Scalable graph neural

network-based framework for identifying critical nodes and links in

complex networks,” Neurocomputing, vol. 468, pp. 211–221, 2022.

[85] F. Scarselli, A. C. Tsoi, M. Hagenbuchner, and L. Di Noi, “Solving

graph data issues using a layered architecture approach with applica-

tions to web spam detection,” Neural Networks, vol. 48, pp. 78–90,

2013.

[86] Z. Li, Z. Cui, S. Wu, X. Zhang, and L. Wang, “Fi-gnn: Modeling

feature interactions via graph neural networks for ctr prediction,” in

Proceedings of the 28th ACM International Conference on Information

and Knowledge Management, pp. 539–548, 2019.

[87] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and

J. Leskovec, “Open graph benchmark: Datasets for machine learning

on graphs,” 2020.

[88] X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph

collaborative filtering,” in Proceedings of the 42nd international ACM

SIGIR conference on Research and development in Information Re-

trieval, pp. 165–174, 2019.

[89] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “Kgat: Knowledge

graph attention network for recommendation,” in Proceedings of the

25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pp. 950–958, 2019.

136 BIBLIOGRAPHY

[90] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Het-

erogeneous graph attention network,” in The World Wide Web Con-

ference, pp. 2022–2032, 2019.

[91] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching

networks for learning the similarity of graph structured objects,” in

International conference on machine learning, pp. 3835–3845, PMLR,

2019.

[92] A. M. Karimi, Y. Wu, M. Koyuturk, and R. H. French, “Spatiotem-

poral graph neural network for performance prediction of photovoltaic

power systems,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, pp. 15323–15330, 2021.

[93] B. Donon, B. Donnot, I. Guyon, and A. Marot, “Graph neural solver

for power systems,” in 2019 International Joint Conference on Neural

Networks (IJCNN), pp. 1–8, IEEE, 2019.

[94] G. Bécigneul, O.-E. Ganea, B. Chen, R. Barzilay, and T. Jaakkola,

“Optimal transport graph neural networks,” 2020.

[95] B. Wu, Y. Liu, B. Lang, and L. Huang, “Dgcnn: Disordered graph

convolutional neural network based on the gaussian mixture model,”

Neurocomputing, vol. 321, pp. 346–356, 2018.

[96] O. J. Wouters, M. McKee, and J. Luyten, “Estimated research and

development investment needed to bring a new medicine to market,

2009-2018,” Jama, vol. 323, no. 9, pp. 844–853, 2020.

[97] M. L. Billingsley, “Druggable targets and targeted drugs: Enhancing

the development of new therapeutics,” Pharmacology, vol. 82, no. 4,

pp. 239–244, 2008.

[98] M. Dickson and J. P. Gagnon, “Key factors in the rising cost of

new drug discovery and development,” Nature reviews Drug discov-

ery, vol. 3, no. 5, pp. 417–429, 2004.

[99] C. F. Lipinski, V. G. Maltarollo, P. R. Oliveira, A. B. da Silva, and

K. M. Honorio, “Advances and perspectives in applying deep learning

for drug design and discovery,” Frontiers in Robotics and AI, vol. 6,

p. 108, 2019.

BIBLIOGRAPHY 137

[100] S. J. Y. Macalino, V. Gosu, S. Hong, and S. Choi, “Role of computer-

aided drug design in modern drug discovery,” Archives of pharmacal

research, vol. 38, no. 9, pp. 1686–1701, 2015.

[101] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ron-

neberger, K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko,

et al., “Highly accurate protein structure prediction with alphafold,”

Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[102] P. Bongini, A. Trezza, M. Bianchini, O. Spiga, and N. Niccolai, “A pos-

sible strategy to fight COVID-19: Interfering with spike glycoprotein

trimerization,” Biochem Biophys Res Commun., vol. 528(1), pp. 35–38,

2020.

[103] P. Bongini, N. Pancino, G. M. Dimitri, M. Bianchini, F. Scarselli,

and P. Lio, “Modular multi–source prediction of drug side–effects

with drugnn,” IEEE/ACM Transactions on Computational Biology

and Bioinformatics, pp. 1–1, 2022.

[104] A. Zhavoronkov, Y. A. Ivanenkov, A. Aliper, M. S. Veselov, V. A.

Aladinskiy, A. V. Aladinskaya, V. A. Terentiev, D. A. Polykovskiy,

M. D. Kuznetsov, A. Asadulaev, et al., “Deep learning enables rapid

identification of potent ddr1 kinase inhibitors,” Nature biotechnology,

vol. 37, no. 9, pp. 1038–1040, 2019.

[105] Q. Feng, E. Dueva, A. Cherkasov, and M. Ester, “Padme: A

deep learning-based framework for drug-target interaction prediction,”

2018.

[106] T. B. Kimber, Y. Chen, and A. Volkamer, “Deep learning in virtual

screening: Recent applications and developments,” International Jour-

nal of Molecular Sciences, vol. 22, no. 9, p. 4435, 2021.

[107] M. Skalic, A. Varela-Rial, J. Jiménez, G. Mart́ınez-Rosell, and G. De

Fabritiis, “Ligvoxel: inpainting binding pockets using 3d-convolutional

neural networks,” Bioinformatics, vol. 35, no. 2, pp. 243–250, 2019.

[108] P. Bongini, N. Niccolai, and M. Bianchini, “Glycine–induced formation

and druggability score prediction of protein surface pockets,” Journal

of bioinformatics and computational biology, vol. 17, no. 05, p. 1950026,

2019.

138 BIBLIOGRAPHY

[109] X. Zeng, S. Zhu, W. Lu, Z. Liu, J. Huang, Y. Zhou, J. Fang, Y. Huang,

H. Guo, L. Li, et al., “Target identification among known drugs by

deep learning from heterogeneous networks,” Chemical Science, vol. 11,

no. 7, pp. 1775–1797, 2020.

[110] Y. Yamanishi, M. Kotera, M. Kanehisa, and S. Goto, “Drug–target in-

teraction prediction from chemical, genomic and pharmacological data

in an integrated framework,” Bioinformatics, vol. 26, no. 12, pp. i246–

i254, 2010.

[111] S. Mizutani, E. Pauwels, V. Stoven, S. Goto, and Y. Yamanishi, “Re-

lating drug–protein interaction network with drug side effects,” Bioin-

formatics, vol. 28, no. 18, pp. i522–i528, 2012.

[112] E. Pauwels, V. Stoven, and Y. Yamanishi, “Predicting drug side–effect

profiles: A chemical fragment–based approach,” BMC bioinformatics,

vol. 12, no. 1, pp. 1–13, 2011.

[113] A. Mohsen, L. P. Tripathi, and K. Mizuguchi, “Deep learning predic-

tion of adverse drug reactions in drug discovery using open tg–gates

and faers databases,” Frontiers in Drug Discovery, vol. 1, 2021.

[114] W. Zhang, Y. Chen, S. Tu, F. Liu, and Q. Qu, “Drug side effect

prediction through linear neighborhoods and multiple data source in-

tegration,” in 2016 IEEE international conference on bioinformatics

and biomedicine (BIBM), pp. 427–434, IEEE, 2016.

[115] I. Shaked, M. A. Oberhardt, N. Atias, R. Sharan, and E. Ruppin,

“Metabolic network prediction of drug side effects,” Cell systems,

vol. 2, no. 3, pp. 209–213, 2016.

[116] G. M. Dimitri and P. Liò, “DrugClust: A machine learning approach

for drugs side effects prediction,” Computational biology and chemistry,

vol. 68, pp. 204–210, 2017.

[117] A. Cakir, M. Tuncer, H. Taymaz-Nikerel, and O. Ulucan, “Side effect

prediction based on drug–induced gene expression profiles and random

forest with iterative feature selection,” The Pharmacogenomics Jour-

nal, pp. 1–9, 2021.

BIBLIOGRAPHY 139

[118] O. C. Uner, R. G. Cinbis, O. Tastan, and A. E. Cicek, “DeepSide: A

deep learning framework for drug side effect prediction,” 2019.

[119] T. Huynh, Y. He, A. Willis, and S. Rueger, “Adverse drug reaction

classification with deep neural networks,” in Proceedings of COLING

2016, the 26th International Conference on Computational Linguistics:

Technical Papers, (Osaka, Japan), pp. 877–887, The COLING 2016

Organizing Committee, dec 2016.

[120] A. F. Fliri, W. T. Loging, P. F. Thadeio, and R. A. Volkmann, “Anal-

ysis of drug-induced effect patterns to link structure and side effects of

medicines,” Nature chemical biology, vol. 1, no. 7, pp. 389–397, 2005.

[121] A. Deac, Y.-H. Huang, P. Veličković, P. Liò, and J. Tang, “Drug–drug

adverse effect prediction with graph co–attention,” 2019.

[122] S. Bang, J. H. Jhee, and H. Shin, “Polypharmacy side-effect predic-

tion with enhanced interpretability based on graph feature attention

network,” Bioinformatics, vol. 37, no. 18, pp. 2955–2962, 2021.

[123] M. Timilsina, M. Tandan, M. d’Aquin, and H. Yang, “Discovering

links between side effects and drugs using a diffusion based method,”

Scientific reports, vol. 9, no. 1, p. 10436, 2019.

[124] A. K. Menon and C. Elkan, “Link prediction via matrix factorization,”

in Machine Learning and Knowledge Discovery in Databases: European

Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011,

Proceedings, Part II 22, pp. 437–452, Springer, 2011.

[125] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:

Large-scale information network embedding,” in Proceedings of the

24th international conference on world wide web, pp. 1067–1077, 2015.

[126] S. Sra and I. Dhillon, “Generalized nonnegative matrix approximations

with bregman divergences,” Advances in neural information processing

systems, vol. 18, 2005.

[127] B. Chen, F. Li, S. Chen, R. Hu, and L. Chen, “Link prediction

based on non-negative matrix factorization,” PloS one, vol. 12, no. 8,

p. e0182968, 2017.

140 BIBLIOGRAPHY

[128] L. Yu, M. Cheng, W. Qiu, X. Xiao, and W. Lin, “idse-he: Hybrid em-

bedding graph neural network for drug side effects prediction,” Journal

of Biomedical Informatics, vol. 131, p. 104098, 2022.

[129] J. Janin, R. P. Bahadur, and P. Chakrabarti, “Protein–protein in-

teraction and quaternary structure,” Quarterly reviews of biophysics,

vol. 41, no. 2, pp. 133–180, 2008.

[130] T. J. Lane, D. Shukla, K. A. Beauchamp, and V. S. Pande, “To mil-

liseconds and beyond: challenges in the simulation of protein folding,”

Current opinion in structural biology, vol. 23, no. 1, pp. 58–65, 2013.

[131] L. C. Xue, D. Dobbs, and V. Honavar, “Homppi: a class of sequence

homology based protein-protein interface prediction methods,” BMC

bioinformatics, vol. 12, no. 1, pp. 1–24, 2011.

[132] H. Hwang, D. Petrey, and B. Honig, “A hybrid method for protein–

protein interface prediction,” Protein Science, vol. 25, no. 1, pp. 159–

165, 2016.

[133] H. Hwang, T. Vreven, and Z. Weng, “Binding interface prediction

by combining protein–protein docking results,” Proteins: Structure,

Function, and Bioinformatics, vol. 82, no. 1, pp. 57–66, 2014.

[134] J. R. Bradford and D. R. Westhead, “Improved prediction of protein–

protein binding sites using a support vector machines approach,”

Bioinformatics, vol. 21, no. 8, pp. 1487–1494, 2005.

[135] K. Huang, C. Xiao, L. M. Glass, M. Zitnik, and J. Sun, “Skipgnn:

predicting molecular interactions with skip-graph networks,” Scientific

reports, vol. 10, no. 1, pp. 1–16, 2020.

[136] Y. Liu, H. Yuan, L. Cai, and S. Ji, “Deep learning of high–order in-

teractions for protein interface prediction,” in Proceedings of the 26th

ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pp. 679–687, 2020.

[137] M. Réau, N. Renaud, L. C. Xue, and A. M. J. J. Bonvin, “DeepRank-

GNN: a graph neural network framework to learn patterns in pro-

tein–protein interfaces,” Bioinformatics, vol. 39, 11 2022. btac759.

BIBLIOGRAPHY 141

[138] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in

graph domains,” in Proceedings. 2005 IEEE International Joint Con-

ference on Neural Networks, 2005., vol. 2, pp. 729–734, IEEE, 2005.

[139] A. Rossi, M. Tiezzi, G. M. Dimitri, M. Bianchini, M. Maggini, and

F. Scarselli, “Inductive–transductive learning with graph neural net-

works,” in IAPR Workshop on Artificial Neural Networks in Pattern

Recognition, pp. 201–212, Springer, 2018.

[140] G. Ciano, A. Rossi, M. Bianchini, and F. Scarselli, “On inductive–

transductive learning with graph neural networks,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2021.

[141] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for

large-scale machine learning,” in 12th {USENIX} symposium on oper-

ating systems design and implementation ({OSDI} 16), pp. 265–283,

2016.

[142] M. Fey and J. E. Lenssen, “Fast graph representation learning with

PyTorch Geometric,” in ICLR Workshop on Representation Learning

on Graphs and Manifolds, 2019.

[143] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,

L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep

graph library: A graph-centric, highly-performant package for graph

neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[144] D. Grattarola and C. Alippi, “Graph neural networks in tensorflow

and keras with spektral [application notes],” IEEE Computational In-

telligence Magazine, vol. 16, no. 1, pp. 99–106, 2021.

[145] F. R. Ernst and A. J. Grizzle, “Drug–related morbidity and mortality:

Updating the cost–of–illness model,” Journal of the American Phar-

maceutical Association, vol. 41, no. 2, pp. 192–199, 2001.

[146] H. Khalil and C. Huang, “Adverse drug reactions in primary care: A

scoping review,” BMC health services research, vol. 20, no. 1, pp. 1–13,

2020.

142 BIBLIOGRAPHY

[147] K. M. Giacomini, R. M. Krauss, D. M. Roden, M. Eichelbaum, M. R.

Hayden, and Y. Nakamura, “When good drugs go bad,” Nature,

vol. 446, no. 7139, pp. 975–977, 2007.

[148] E. D. Kantor, C. D. Rehm, J. S. Haas, A. T. Chan, and E. L. Gio-

vannucci, “Trends in prescription drug use among adults in the United

States from 1999–2012,” Jama, vol. 314, no. 17, pp. 1818–1830, 2015.

[149] N. P. Tatonetti, T. Liu, and R. B. Altman, “Predicting drug side-

effects by chemical systems biology,” Genome biology, vol. 10, no. 9,

pp. 1–4, 2009.

[150] A. Lavecchia and C. Di Giovanni, “Virtual screening strategies in drug

discovery: a critical review,” Current medicinal chemistry, vol. 20,

no. 23, pp. 2839–2860, 2013.

[151] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A.

Shoemaker, P. A. Thiessen, B. Yu, et al., “PubChem in 2021: New

data content and improved web interfaces,” Nucleic acids research,

vol. 49, no. D1, pp. D1388–D1395, 2021.

[152] F. Cunningham, J. E. Allen, J. Allen, J. Alvarez-Jarreta, M. Amode,

I. Armean, O. Austine-Orimoloye, A. Azov, I. Barnes, R. Ben-

nett, A. Berry, J. Bhai, A. Bignell, K. Billis, S. Boddu, L. Brooks,

M. Charkhchi, C. Cummins, L. Da Rin Fioretto, C. Davidson,

K. Dodiya, S. Donaldson, B. El Houdaigui, T. El Naboulsi, R. Fatima,

C. G. Giron, T. Genez, J. Martinez, C. Guijarro-Clarke, A. Gymer,

M. Hardy, Z. Hollis, T. Hourlier, T. Hunt, T. Juettemann, V. Kaikala,

M. Kay, I. Lavidas, T. Le, D. Lemos, J. C. Marugán, S. Mohanan,

A. Mushtaq, M. Naven, D. Ogeh, A. Parker, A. Parton, M. Perry,

I. Piližota, I. Prosovetskaia, M. Sakthivel, A. Salam, B. Schmitt,

H. Schuilenburg, D. Sheppard, J. Pérez-Silva, W. Stark, E. Steed,

K. Sutinen, R. Sukumaran, D. Sumathipala, M.-M. Suner, M. Sz-

pak, A. Thormann, F. F. Tricomi, D. Urbina-Gómez, A. Veidenberg,

T. Walsh, B. Walts, N. Willhoft, A. Winterbottom, E. Wass, M. Chaki-

achvili, B. Flint, A. Frankish, S. Giorgetti, L. Haggerty, S. Hunt, G. IIs-

ley, J. Loveland, F. Martin, B. Moore, J. Mudge, M. Muffato, E. Perry,

M. Ruffier, J. Tate, D. Thybert, S. Trevanion, S. Dyer, P. Harrison,

BIBLIOGRAPHY 143

K. Howe, A. Yates, D. Zerbino, and P. Flicek, “Ensembl 2022,” Nucleic

Acids Research, vol. 50, pp. D988–D995, 11 2021.

[153] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.

Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, et al.,

“Gene ontology: Tool for the unification of biology,” Nature genetics,

vol. 25, no. 1, pp. 25–29, 2000.

[154] D. Szklarczyk, A. Santos, C. Von Mering, L. J. Jensen, P. Bork, and

M. Kuhn, “STITCH 5: Augmenting protein–chemical interaction net-

works with tissue and affinity data,” Nucleic acids research, vol. 44,

no. D1, pp. D380–D384, 2016.

[155] K. Luck, D.-K. Kim, L. Lambourne, K. Spirohn, B. E. Begg, W. Bian,

R. Brignall, T. Cafarelli, F. J. Campos-Laborie, B. Charloteaux, et al.,

“A reference map of the human binary protein interactome,” Nature,

vol. 580, no. 7803, pp. 402–408, 2020.

[156] M. Kuhn, I. Letunic, L. J. Jensen, and P. Bork, “The SIDER database

of drugs and side effects,” Nucleic acids research, vol. 44, no. D1,

pp. D1075–D1079, 2016.

[157] D. Smedley, S. Haider, S. Durinck, L. Pandini, P. Provero, J. Allen,

O. Arnaiz, M. H. Awedh, R. Baldock, G. Barbiera, et al., “The

BioMart community portal: An innovative alternative to large, cen-

tralized data repositories,” Nucleic acids research, vol. 43, no. W1,

pp. W589–W598, 2015.

[158] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and

integrative analysis of large gene lists using DAVID bioinformatics re-

sources,” Nature protocols, vol. 4, no. 1, pp. 44–57, 2009.

[159] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics

enrichment tools: Paths toward the comprehensive functional analysis

of large gene lists,” Nucleic acids research, vol. 37, no. 1, pp. 1–13,

2009.

[160] G. Landrum, “rdkit/rdkit: 2020 03 1 (q1 2020) release,” mar 2020.

[161] T. T. Tanimoto, “IBM internal report 17th,” tech. rep., IBM, 11 1957.

144 BIBLIOGRAPHY

[162] A. Hagberg, P. Swart, and D. S. Chult, “Exploring network struc-

ture, dynamics, and function using networkX,” in In Proceedings of

the 7th Python in Science Conference (SciPy) (J. M. G. Varoquaux,

T. Vaught, ed.), pp. 11–15, 2008.

[163] N. Pancino, Y. Perron, P. Bongini, and F. Scarselli, “Drug side ef-

fect prediction with deep learning molecular embedding in a graph-of-

graphs domain,” Mathematics, vol. 10, no. 23, p. 4550, 2022.

[164] J. Menke and O. Koch, “Using domain-specific fingerprints generated

through neural networks to enhance ligand-based virtual screening,”

Journal of Chemical Information and Modeling, vol. 61, no. 2, pp. 664–

675, 2021.

[165] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell,

T. Hirzel, A. Aspuru-Guzik, and R. P. Adams, “Convolutional net-

works on graphs for learning molecular fingerprints,” Advances in neu-

ral information processing systems, vol. 28, 2015.

[166] H. Wang, D. Lian, Y. Zhang, L. Qin, and X. Lin, “Gognn: Graph of

graphs neural network for predicting structured entity interactions,”

arXiv preprint arXiv:2005.05537, 2020.

[167] ShonosukeHarada, H. Akita, M. Tsubaki, Y. Baba, I. Takigawa, Y. Ya-

manishi, and H. Kashima, “Dual convolutional neural network for

graph of graphs link prediction,” arXiv preprint arXiv:1810.02080,

2018.

[168] H. Wang, D. Lian, W. Liu, D. Wen, C. Chen, and X. Wang, “Powerful

graph of graphs neural network for structured entity analysis,” World

Wide Web, vol. 25, no. 2, pp. 609–629, 2022.

[169] Y. Wang, Y. Zhao, N. Shah, and T. Derr, “Imbalanced graph

classification via graph-of-graph neural networks,” arXiv preprint

arXiv:2112.00238, 2021.

[170] P. Bongini, E. Messori, N. Pancino, and M. Bianchini, “A deep learning

approach to the prediction of drug side-effects on molecular graphs,”

arXiv preprint arXiv:2211.16871, 2022.

BIBLIOGRAPHY 145

[171] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,

“Hyperband: A novel bandit-based approach to hyperparameter op-

timization,” Journal of Machine Learning Research, vol. 18, no. 185,

pp. 1–52, 2018.

[172] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for

dense object detection,” in 2017 IEEE International Conference on

Computer Vision (ICCV), vol. abs/1708.02002, pp. 2999–3007, 2017.

[173] M. Simonovsky and N. Komodakis, “GraphVAE: Towards generation

of small graphs using variational autoencoders,” in International Con-

ference on Artificial Neural Networks, pp. 412–422, Springer, 2018.

[174] W. Jin, R. Barzilay, and T. Jaakkola, “Junction tree variational au-

toencoder for molecular graph generation,” in International conference

on machine learning, pp. 2323–2332, PMLR, 2018.

[175] G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and A. L. Hop-

kins, “Quantifying the chemical beauty of drugs,” Nature chemistry,

vol. 4, no. 2, pp. 90–98, 2012.

[176] H. Hegyi and M. Gerstein, “The relationship between protein structure

and function: a comprehensive survey with application to the yeast

genome,” Journal of molecular biology, vol. 288, no. 1, pp. 147–164,

1999.

[177] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, “The

maximum clique problem,” in Handbook of combinatorial optimization,

pp. 1–74, Springer, 1999.

[178] E. Krissinel, “Crystal contacts as nature’s docking solutions,” Journal

of computational chemistry, vol. 31, no. 1, pp. 133–143, 2010.

[179] T. Schäfer, P. May, and I. Koch, “Computation and visualization

of protein topology graphs including ligand information,” in Ger-

man Conference on Bioinformatics 2012, Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2012.

[180] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,

H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein data

bank,” Nucleic acids research, vol. 28, no. 1, pp. 235–242, 2000.

146 BIBLIOGRAPHY

[181] W. Kabsch and C. Sander, “Dictionary of protein secondary struc-

ture: Pattern recognition of hydrogen–bonded and geometrical fea-

tures,” Biopolymers, vol. 22, no. 12, pp. 2577–2637, 1983.

[182] J. Kyte and R. F. Doolittle, “A simple method for displaying the hydro-

pathic character of a protein,” Journal of molecular biology, vol. 157,

no. 1, pp. 105–132, 1982.

[183] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of

an undirected graph,” Communications of the ACM, vol. 16, no. 9,

pp. 575–577, 1973.

[184] S. N. Wakap, D. M. Lambert, A. Olry, C. Rodwell, C. Gueydan,

V. Lanneau, D. Murphy, Y. Le Cam, and A. Rath, “Estimating cu-

mulative point prevalence of rare diseases: analysis of the orphanet

database,” European Journal of Human Genetics, vol. 28, no. 2,

pp. 165–173, 2020.

[185] M. Navaie-Waliser, P. H. Feldman, D. A. Gould, C. Levine, A. N.

Kuerbis, and K. Donelan, “When the caregiver needs care: The plight

of vulnerable caregivers,” American journal of public health, vol. 92,

no. 3, pp. 409–413, 2002.

[186] E. Palamaro Munsell, R. P. Kilmer, J. R. Cook, and C. L. Reeve, “The

effects of caregiver social connections on caregiver, child, and fam-

ily well-being.,” American Journal of Orthopsychiatry, vol. 82, no. 1,

p. 137, 2012.

[187] L.-Y. Chien, H. Chu, J.-L. Guo, Y.-M. Liao, L.-I. Chang, C.-H. Chen,

and K.-R. Chou, “Caregiver support groups in patients with dementia:

a meta-analysis,” International journal of geriatric psychiatry, vol. 26,

no. 10, pp. 1089–1098, 2011.

[188] N. Pancino, C. Graziani, V. Lachi, M. L. Sampoli, E. S, tefǎnescu,

M. Bianchini, and G. M. Dimitri, “A mixed statistical and machine

learning approach for the analysis of multimodal trail making test

data,” Mathematics, vol. 9, no. 24, p. 3159, 2021.

[189] E. S, tefǎnescu, N. Pancino, C. Graziani, V. Lachi, M. L. Sampoli, G. M.

Dimitri, A. Bargagli, D. Zanca, M. Bianchini, D. F. Muresanu, et al.,

BIBLIOGRAPHY 147

“Blinking rate comparison between patients with chronic pain and

parkinson’s disease,” in EUROPEAN JOURNAL OF NEUROLOGY,

vol. 29, pp. 669–669, WILEY 111 RIVER ST, HOBOKEN 07030-5774,

NJ USA, 2022.

[190] R. Kredel, C. Vater, A. Klostermann, and E.-J. Hossner, “Eye-tracking

technology and the dynamics of natural gaze behavior in sports: A

systematic review of 40 years of research,” Frontiers in psychology,

vol. 8, p. 1845, 2017.

[191] William H Kruskal and A. W. Wallis, “Use of ranks in one-criterion

variance analysis,” Journal of the American statistical Association,

vol. 47, no. 260, pp. 583–621, 1952.

[192] A. Valleriani and D. Chiarugi, “A workbench for the translational con-

trol of gene expression,” bioRxiv, 2020.

[193] G. Giacomini, C. Graziani, V. Lachi, P. Bongini, N. Pancino, M. Bian-

chini, D. Chiarugi, A. Valleriani, and P. Andreini, “A neural net-

work approach for the analysis of reproducible ribo–seq profiles,” Al-

gorithms, vol. 15, no. 8, p. 274, 2022.

[194] M. Monaci, N. Pancino, P. Andreini, S. Bonechi, P. Bongini, A. Rossi,

G. Ciano, G. Giacomini, F. Scarselli, and M. Bianchini, “Deep learning

techniques for dragonfly action recognition.,” in ICPRAM, pp. 562–

569, 2020.

[195] P. Andreini, N. Pancino, F. Costanti, G. Eusepi, and B. T. Corradini,

“A deep learning approach for oocytes segmentation and analysis,”

[196] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-

bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,

pp. 4510–4520, 2018.

[197] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” 2014.

[198] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

connected convolutional networks,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 4700–4708, 2017.

148 BIBLIOGRAPHY

[199] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet

large scale visual recognition challenge,” International journal of com-

puter vision, vol. 115, no. 3, pp. 211–252, 2015.

[200] S. Bonechi, M. Bianchini, F. Scarselli, and P. Andreini, “Weak supervi-

sion for generating pixel–level annotations in scene text segmentation,”

Pattern Recognition Letters, vol. 138, pp. 1–7, 2020.

[201] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-

Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre,

T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, “Automatic chemi-

cal design using a data-driven continuous representation of molecules,”

ACS central science, vol. 4, no. 2, pp. 268–276, 2018.

[202] D. Rigoni, N. Navarin, and A. Sperduti, “Conditional constrained

graph variational autoencoders for molecule design,” in 2020 IEEE

Symposium Series on Computational Intelligence (SSCI), pp. 729–736,

IEEE, 2020.

[203] N. De Cao and T. Kipf, “MolGAN: An implicit generative model for

small molecular graphs,” 2018.

[204] H. A. Hussein, A. Borrel, C. Geneix, M. Petitjean, L. Regad, and A.-C.

Camproux, “Pockdrug–server: a new web server for predicting pocket

druggability on holo and apo proteins,” Nucleic acids research, vol. 43,

no. W1, pp. W436–W442, 2015.

	Introduction
	GNNs in Bioinformatics
	Thesis Summary
	Main Contributions of the Thesis
	Structure of the Thesis

	Deep Learning on Structured Data
	Deep Learning
	From Artificial Intelligence to Deep Learning
	Learning with Deep Models

	Machine Learning for Structured Data
	Structure–Oriented Models

	Graph Neural Networks
	The Graph Neural Network Model
	Learning with Graph Neural Networks
	Layered Graph Neural Networks
	Composite Graph Neural Networks
	Approximation Power of GNNs
	Applications of Graph–based Models

	Biological Problems on Graphs
	Graph Data in Biology
	Graphs in Drug Discovery
	Bioinformatics and GNNs

	ML Applications to Molecular Data
	ML in Drug Discovery
	Drug Side–Effect Prediction
	Prediction of Protein–Protein Interfaces

	GNN keras
	Motivation and Significance
	Software Description
	GraphObject and GraphTensor
	GraphSequencer

	Conclusions

	Drug Side–Effect Prediction with GNN
	Mixed Inductive–Transductive Learning
	Data Sources
	PubChem
	Ensembl
	Gene Ontology
	STITCH
	HuRI
	SIDER

	Modular Multi–Source Prediction
	Dataset
	Model
	Experimental setup
	Results and Discussion
	Comparison with Other Models
	Ablation Study
	Usability

	DSE prediction on Molecular Graphs
	Dataset
	Model
	Experimental Setup
	Results and Discussion
	Comparison with Other Models
	Usability

	DSE Prediction with DL Molecular Embedding
	Dataset
	Model
	Experimental Setup
	Results and Discussion
	Comparison with Other Models
	Ablation Study
	Usability

	Conclusions and Future Work

	GNN for the prediction of PPI
	Dataset
	Model
	Experimental Setup
	Results and Discussion
	Conclusions and Future Work

	Other Works
	GNN–Based Caregiver Matching
	Multi–Modal Data Analysis
	Visual Sequential Search Test
	Validation of Ribo–Seq Profiles

	DL Applications for Image Analysis
	Dragonfly Action Recognition
	Oocyte Segmentation

	Conclusions and Future Developments

