

Contents

Introduction 3

1 Introducing and improving the Spectral Learning 7
1.1 Introduction . 7
1.2 The spectral learning . 9
1.3 Improving the spectral scheme and testing it 10
1.4 Imposing sparsity with spectral method 14
1.5 Conclusion . 14

2 Spectral Pruning 17
2.1 Introduction . 17
2.2 Conventional Pruning Techniques 18
2.3 Results . 20

2.3.1 Single hidden layer (ℓ = 3) 20
2.4 Methods . 24
2.5 Conclusions . 25

3 Recurrent Spectral Networks - RSN 29
3.1 Introduction . 29
3.2 The mathematical foundation . 31
3.3 Testing RSN: a simple dataset in R2 33
3.4 Applying RSN to the MNIST dataset 37
3.5 Sequential learning . 42
3.6 Conclusions . 46

4 Complex Recurrent Spectral Networks- C-RSN 49
4.1 Introduction . 49
4.2 Neural network as a discrete map 50
4.3 Forward evolution of the map M 52
4.4 Classification task . 53
4.5 Results . 54

4.5.1 The role of the basis . 55
4.5.2 Multiple evaluations . 57

4.6 Conclusion . 59

1

2 CONTENTS

5 Mobility-based prediction of SARS-CoV-2 spreading 61
5.1 Introduction . 61
5.2 Methods . 62

5.2.1 Architecture . 62
5.2.2 Data set . 63

5.3 Results . 66
5.3.1 Change the mobility . 67

5.4 Conclusions . 71

6 GAIA, a novel Deep Learning-based tool for volcano plumbing
systems 73
6.1 Introduction . 74
6.2 GAIA, a novel Machine Learning-based strategy to P-T estimates

in volcanic systems . 74
6.3 Dataset . 74

6.3.1 Calculation of clinopyroxene components 75
6.4 Dataset elaboration and bootstrap 75
6.5 GAIA architecture and training details 76
6.6 Results of training and comparison 77
6.7 Application to the Italian volcanoes 80

6.7.1 Etna, 3357 m a.s.l. 81
6.7.2 Stromboli, 924 m a.s.l. 82
6.7.3 Vulcano and Vulcanello, 501 m a.s.l. 83
6.7.4 Somma-Vesuvio, 1281 m a.s.l. 84
6.7.5 Campi Flegrei (caldera assumed at sea level) 84

6.8 A web app to facilitate research 85
6.9 Conclusions . 87

7 Conclusion 95

A Improving the spectral learning 97
A.1 Analytical characterisation of inter-nodes weights in direct space . 97
A.2 Testing on F-Mnist and CIFAR10 98
A.3 Reducing parameters in S-QR . 100
A.4 Multi-layered architecture . 102

B Eigenvalues driven pruning 105
B.1 MNIST and Fashion-MNIST: single hidden layer with different

activation functions. 105
B.2 MNIST and Fashion-MNIST: multiple hidden layers with different

activation functions. 105
B.3 Trimming strategies on CIFAR10 105

Introduction

Artificial intelligence (AI) has revolutionized numerous sectors, but its theoreti-
cal foundations remain a subject of intense research and debate. The extreme
efficiency of this new technology too often tends to overshadow the importance of
providing a more complete understanding of the mechanisms behind it. Under-
standing the fundamentals of AI is crucial both because it allows us to develop
more efficient and interpretable models and also because it enables us to ac-
company the use of such technologies with an appropriate error theory that can
quantify the associated degree of reliability. In this context, physics offers a
rigorous and systematic approach. In fact, physicists, accustomed to studying the
laws and principles that govern the physical world, can bring a unique perspective
to the analysis of the foundations of AI.
One of the central algorithm of AI that has catalyzed scholars’ attention are
Artificial Neural Networks (ANNs), fascinating computational models inspired
by the human brain. These networks, consisting of an interconnected set of
artificial neurons, are capable of learning from data and adapting to changes in
the environment.
The theory of networks, with its solid conceptual structure, can provide a coherent
framework for describing the complex structures of artificial neural networks.
In particular, the physics of complex systems has dedicated years of study to
network theory, exploring the properties of dynamics evolving on networks, trying
to understand how the interactions between individual components can give rise
to collective behaviors and complex phenomena. During the years, scientists
have revealed general principles that can be applied to a wide range of systems
evolving on networks: from information propagation in social networks to the
spread of diseases in a network of contacts.
The application of concepts and tools typical of network theory therefore con-
tribute to shed novel light on the foundational aspect of AI and artificial neural
networks. This multidisciplinary approach opens up new possibilities for under-
standing the functioning of neural networks, exploring their learning capabilities,
analyzing the mechanisms of generalization and studying the emerging properties
that characterize their behavior. In addition, network theory offers a fertile ground
for developing new models of artificial neural networks, capable of overcoming
current challenges and improving performance in various application areas.
Another highly promising research direction is to bridge the gap between artificial
neural network models and biological neural networks. Neuroscience has made
important progress in developing models of biological neural networks that try to

3

4 CONTENTS

describe the complex functioning of the human brain. The goal is to better un-
derstand the mechanisms of learning, information processing and communication
dynamics that characterize biological neural networks.
The integration of knowledge and techniques from both the field of artificial
intelligence and neuroscience could open up new perspectives for a deeper under-
standing of artificial neural networks and for the advancement of neuroscience
itself. Identifying and exploring correspondences between artificial neural network
models and their biological counterparts can help defining general principles that
guide the functioning of neural networks in both contexts. This synergy between
artificial neural networks and neuroscience could lead to important discoveries and
applications in both fields. A better understanding of biological neural networks
could provide inspiration for the development of new models of artificial neural
networks capable of mimicking the cognitive abilities of the human brain. At the
same time, models of artificial neural networks can serve as tools for exploring and
testing hypotheses about the functioning of biological neural networks, allowing
for advances in understanding their complex dynamics.
During my doctoral project, we explored the points of contact between artificial
neural networks, network theory and neuroscience. Particular attention was given
to a novel way of parameterizing artificial neural networks known as Spectral
Learning [1]. In this formulation, new trainable parameters are identified that
can be interpreted, under appropriate assumptions, as the eigenvalues and eigen-
vectors of matrices that perform linear transformations between adjacent layers
of a feedforward network.
In the first chapter of this thesis, we will illustrate the spectral method and discuss
the relevant mathematical background. An improvement of the original version
of the spectral parametrization will be also introduced, where additional decom-
positions (SVD and QR) are performed in synergy with spectral decomposition.
By doing so, we achieve two distinct objectives: 1) obtain a level of accuracy
comparable to that obtained when working with standard feedforward networks
by training a significantly reduced number of parameters, 2) define a strategy
whereby sparse networks can be obtained while maintaining high performance.
In the second chapter, we will introduce a pruning technique based on ranking
the nodes of a feed forward neural network according to the eigenvalues obtained
after the training. This strategy, which is achievable only within the framework of
spectral training, seems to be particularly effective in generating highly compact
networks in terms of the number of nodes, a characteristic in high demand in
various application domains.
With the third chapter of this thesis, we will begin to bridge the gap between
artificial neural networks and neuroscience models by making use of concepts
derived from the new spectral formulation. In particular, in this chapter, we will
present a new model of recurrent neural network called the Recurrent Spectral
Network (RSN). This model represents a first attempt to introduce dynamics in
the evaluative steps of neural networks. The learning process in RSN involves
modeling the attraction basins of a discrete map in such a way that the dy-
namics associated with this map cause different inputs belonging to the same

CONTENTS 5

class to converge to the same final state, thereby accomplishing classification
tasks. Thanks to the unique characteristics of this model, a strategy has been
defined through which multiple datasets can be successively processed without
encountering the catastrophic forgetting phenomenon, a typical problem that
arises when attempting to address sequential learning with standard feedforward
networks.
In chapter four, we will introduce an extended and generalized version of the
RSN model, referred to as Complex Recurrent Spectral Network (C-RSN). In
this updated model, the network’s final state becomes localized and exhibits
oscillatory behavior over time. This improved version addresses certain critical
issues that exist in the original RSN model. Additionally, the trained model has
the capability to sequentially process different inputs and to keep memory of
multiple classifications made at subsequent moments.
Finally, in the fifth and sixth chapters, we will delve into two practical appli-
cations of neural networks within distinct research domains: epidemiology and
geothermobarometry. In the first case we will use a particular neural network
architecture (LSTM) to predict the trend of Covid19 cases starting from past
time series of health and mobility indicators. In the second case, we will employ
neural networks to derive insights into the internal morphology of volcanoes based
on the chemical compositions of minerals collected after an eruption.
This thesis is strongly based on some of the papers published during my PhD. In
particular, the papers used are: [2] for the first chapter, [3] for the second chapter,
[4] for the third chapter an [5], [6] for fifth and sixth chapters respectively.

6 CONTENTS

Chapter 1

Introducing and improving the
Spectral Learning

Machine learning (ML) technologies nowadays play a pivotal role in systematizing
complex data via self-consistent elucidation of intertwined data correlations. To
this end, ML models learn from data by identifying distinctive features, which
form their basis for decision-making. This task is accomplished by solving an
optimisation problem that seeks to minimise a suitably defined loss function
which compares expected and actual output. When operating with deep learning
architectures with a feedforward structure, data supplied as input are processed
via a repeated sequence of linear and non-linear transformations. These latter
reflect the spatial sorting of the chosen reservoir of computing neurons. The linear
transformation, indeed, maps the signal from any given layer to its immediate
analogue, following the assigned neural network arrangement. Customarily, the
matrix elements of the linear transformation (weights) are the target of the
optimisation (i.e. loss minimization). In [1] a radically new approach to this
learning scheme, which anchors the process to reciprocal space, was first proposed.
The training there seeks to modify the eigenvectors and eigenvalues of transfer
operators in direct space. By acting on the spectral coordinates no increase
in terms of computational and complexity load is produced, as compared to
conventional algorithms. In this chapter we will introduce such parametrization
and discuss further improvement of the technology.

1.1 Introduction

By reformulating the learning in reciprocal space enables one to shape key collec-
tive modes, the eigenvectors, which are implicated in the process of progressive
embedding, from the input layer to the detection point. Even more interestingly,
one can assume the eigenmodes of the inter-layer transfer operator to align along
suitable random directions and identify the associated eigenvalues as target for
the learning scheme. This results in a dramatic compression of the training
parameters space, yielding accuracies which are superior to those attained with
conventional methods restricted to operate with an identical number of tunable

7

8CHAPTER 1. INTRODUCING AND IMPROVING THE SPECTRAL LEARNING

parameters. Nonetheless, neural networks trained in the space of nodes with no
restrictions on the set of adjusted weights, achieve better classification scores,
as compared to their spectral homologues with quenched eigendirections. In the
former case, the number of free parameters grows as the product of the sizes of
adjacent layer pairs, thus quadratically in terms of hosted neurons. In the latter,
the number of free parameters increases linearly with the size of the layers (hence
with the number of neurons), when the eigenvalues are solely allowed to change.
Also training the eigenvectors amounts to dealing with a set of free parameters
equivalent to that employed when the learning is carried out in direct space: in
this case, the two methods yield performances which are therefore comparable.

Starting from this setting, we begin by discussing a straightforward general-
isation of the spectral learning scheme presented in [1], which proves however
effective in securing a significant improvement on the recorded classification scores,
while still optimising a number of parameters which scales linearly with the size
of the network. The proposed generalisation paves the way to a biomimetic
interpretation of the spectral training scheme. The eigenvalues can be tuned so
as to magnify/damp the contribution associated to the input nodes. At the same
time, they modulate the excitability of the receiving nodes, as a function of the
local field. This latter effect is reminiscent of the homeostatic plasticity [7] as
displayed by living neurons. Further, we will show that the residual gap between
conventional and spectral trainings methods can be eventually filled by resorting
to apt decompositions of the non trivial block of the eigenvectors matrix, which
place the emphasis on a limited set of collective variables. Finally, we will prove
that working in reciprocal space turns out to be by far more performant, when
aiming at training sparse neural networks. Because of the improvement in terms
of computational load, and due to the advantage of operating with collective
target variables as we will make clear in the following, it is surmised that modified
spectral learning of the type here discussed should be considered as a viable
standard for deep neural networks training in artificial intelligence applications.

Stated differently, the results reported in this chapter provide evidence that
neural networks can be efficiently trained with substantially lower computational
cost while maintaining comparable accuracy. The quest for innovative neural
network schemes beyond state-of-the-art technology constitutes a rather fertile
field of investigation which can be tackled via diverse strategies [3], [8], [9].
Compression and acceleration techniques are routinely employed to suit the scope.
These are customarily divided into four distinct categories (parameter pruning
and quantization, low-rank factorization, transferred or compact convolutional
filters, and knowledge distillation) as thoroughly reviewed in the comprehensive
survey [10]. We here face the problem from a different angle by aiming at reducing
the number of trainable parameters rather than compactifying the underlying
network as a whole. This is also the spirit of the methods put forward in [11],
[12].

1.2. THE SPECTRAL LEARNING 9

1.2 The spectral learning

To test the effectiveness of the proposed method we will consider classification
tasks operated on three distinct database of images. The first is the renowned
MNIST [13], composed by greyscale images of dimension 28 × 28 pixels. The
second is Fashion-MNIST (F-MNIST) [14] which are still depicted with a greyscale
with dimension 28× 28 but display an enhanced degree of inherent complexity for
what concerns the type of classification requiredas compared to the basic MNIST
benchmark model (more complex shapes, patterns on items). The last one is
CIFAR-10 [15] a richer dataset composed by 32 × 32 RGB images of complex
real-world objects divided in 10 classes (airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks). In all considered cases, use can be made of a
deep neural network to perform the sought classification, namely to automatically
assign the image supplied as an input to the class it belongs to. The neural
network is customarily trained via standard backpropagation algorithms to tune
the weights that connect consecutive stacks of the multi-layered architecture.
The assigned weights, target of the optimisation procedure, bear the information
needed to allocate the examined images to their reference category.

Consider a deep feedforward network made of ℓ distinct layers and label
each layer with the progressive index i (= 1, ..., ℓ). Denote by Ni the number
of computing units, the neurons, that belong to layer i. The total number of
parameters that one seeks to optimise in a dense neural network setting (all
neurons of any given layer with i < ℓ − 1 are linked to every neurons of the
adjacent layer) equals

∑ℓ−1
i=1 NiNi+1, when omitting additional bias. As we shall

prove in the following, impressive performance can be also achieved by pursuing a
markedly different procedure, which requires acting on just N1 +Nℓ + 2

∑ℓ−1
i=2 Ni

free parameters (not including bias). To this end, let us begin by reviewing the
essence of spectral learning method as set forth in [1].

Introduce N =
∑ℓ

i=1Ni and create a column vector n⃗1, of size N , whose
first N1 entries are the intensities (from the top-left to the bottom-right, moving
horizontally) as displayed on the pixels of the input image. All other entries
of n⃗1 are set to zero. The ultimate goal is to transform n⃗1 into an output
vector n⃗ℓ , of size N , whose last Nℓ elements reflect the intensities of the output
nodes where reading takes eventually place. This is achieved with a nested
sequence of linear transformations, as exemplified in the following. Consider
the generic vector n⃗k, with k = 1, ..., ℓ− 1, as obtained after k compositions of
the above procedure. This latter vector undergoes a linear transformation to
yield n⃗k+1 = A(k)n⃗k. Further, n⃗k+1 is processed via a suitably defined non-linear
function, denoted by f (·, βk), where βk stands for an optional bias. Focus now
on A(k), a N × N matrix with a rather specific structure, as we will highlight
hereafter. Posit A(k) = Φ(k)Λ(k)

(
Φ(k)

)−1, by invoking a spectral decomposition.
Λ(k) is the diagonal matrix of the eigenvalues of A(k). By construction we
impose,

(
Λ(k)

)
jj

= 1 for j <
∑k

i=1Ni and j >
∑k+1

i=1 Ni. The remaining Nk

elements are initially set to random numbers, e.g. extracted from a uniform

10CHAPTER 1. INTRODUCING AND IMPROVING THE SPECTRAL LEARNING

distribution, and define the target of the learning scheme 1. Back to the spectral
decomposition of A(k), Φ(k) is assumed to be the identity matrix IN×N , with
the inclusion of a sub-diagonal rectangular block ϕ(k) of size Nk+1 × Nk. This
choice corresponds to dealing with a feedforward arrangements of nested layers. A
straightforward calculation returns

(
Φ(k)

)−1
= 2IN×N −Φ(k), which readily yields

A(k) = Φ(k)Λ(k)
(
2IN×N −Φ(k)

)
. In the simplest setting that we shall inspect

in the following, the off-diagonal elements of matrix Φ(k) are frozen to nominal
values, selected at random from a given distribution. In this minimal version,
the spectral decomposition of the transfer operators A(k) enables one to isolate
a total of N =

∑ℓ
i=1Ni adjustable parameters, the full collection of non trivial

eigenvalues, which can be self-consistently trained. To implement the learning
scheme on these premises, we consider n⃗ℓ, the image on the output layer of the
input vector n⃗1:

n⃗ℓ = f
(
A(ℓ−1)...f

(
A(2)f

(
A(1)n⃗1, β1

)
, β2

)
, βℓ−1

)
(1.1)

and calculate z⃗ = σ(n⃗ℓ) where σ(·) stands for the softmax operation. We
then introduce the categorical cross-entropy loss function CE(l(n⃗1), z⃗) where the
quantity l(n⃗1) identifies the label attached to n⃗1 reflecting the category to which
it belongs via one-hot encoding [16]. More specifically, the k-th elements of vector
l(n⃗1) is equal to unit (the other entries being identically equal to zero) if the
image supplied as an input is associated to the class of items grouped under label
k.

The loss function can be minimized by acting on a limited set of free parameters,
the collection of N non trivial eigenvalues of matrices Ak (i.e. N1+N2 eigenvalues
of A(1), N3 eigenvalues of A(2),..., Nℓ eigenvalues of A(ℓ−1)). In principle, the
sub-diagonal blocks ϕ(k) (the non orthogonal entries of the basis that diagonalises
A(k)) can be optimised in parallel, but this choice nullifies the gain in terms
of parameters containment, as achieved via spectral decomposition, when the
eigenvalues get solely modulated. The remaining part of this chapter is entirely
devoted to overcoming this limitation, while securing the decisive enhancement
of the neural network’s performance.

1.3 Improving the spectral scheme and testing it
The first idea, as effective as it is simple, is to extend the set of trainable
eigenvalues. When mapping layer k into layer k + 1, we can in principle act on
Nk + Nk+1 eigenvalues, without restricting the training to the Nk+1 elements,
which were identified as the sole target of the spectral method in its original
conception (except for the first mapping, from the input layer to its adjacent
counterpart). As we shall clarify in the following, the eigenvalues can be trained
twice, depending on whether they originate from incoming or outcoming nodes,
along the successive arrangement of nested layers. The global number of trainable

1The only noticeable exception is when k = 1. In this case, the first N1 diagonal elements of
Λ(1) take part to the training.

1.3. IMPROVING THE SPECTRAL SCHEME AND TESTING IT 11

parameters is hence N1+Nℓ+2
∑ℓ−1

i=2 Ni, as anticipated above. A straightforward
calculation, carried out in the appendix (A), returns a closed analytical expression
for w(k)

ij , the weights of the edges linking nodes i and j in direct space, as a
function of the underlying spectral quantities. In formulae:

w
(k)
ij =

(
λ
(k)
m(j) − λ

(k)
l(i)

)
Φ

(k)
l(i),m(j) (1.2)

where l(i) =
∑k

s=1Ns + i and m(j) =
∑k−1

s=1 Ns + j, with i ∈ (1, ..., Nk+1)
and j ∈ (1, ..., Nk). More specifically, j runs on the nodes at the departure layer
(k), whereas i identifies those sitting at destination (layer k + 1). In the above
expression, λ(k)m(j) stand for the first Nk eigenvalues of Λ(k). The remaining Nk+1

eigenvalues are labelled λ(k)l(i). To help comprehension denote by x(k)j the activity
on nodes j. Then,

x
(k+1)
i =

Nk∑
j=1

(
λ
(k)
m(j)Φ

(k)
l(i),m(j)x

(k)
j

)
− λ

(k)
l(i)

Nk∑
j=1

(
Φ

(k)
l(i),m(j)x

(k)
j

)
. (1.3)

The eigenvalues λ(k)m(j) modulate the density at the origin, while λ(k)l(i) appears
to regulate the local node’s excitability relative to the network activity in its
neighbourhood. This is the artificial analogue of the homeostatic plasticity, the
strategy implemented by living neurons to maintain the synaptic basis for learning,
respiration, and locomotion [7].

To illustrate the effectiveness of the proposed methodology we make reference
to Fig. 1.1, which summarises a first set of results obtained for MNIST. To keep
the analysis as simple as possible we have here chosen to deal with ℓ = 3. The
sizes of the input (N1) and output (N3) layers are set by the specificity of the
considered dataset. Conversely, the size of the intermediate layer (N2) can be
changed at will. We then monitor the relative accuracy, i.e. the accuracy displayed
by the deep neural networks trained according to different strategies, normalised
to the accuracy achieved with an identical network trained with conventional
methods. In the upper panel of Fig. 1.1, the performance of the neural networks
trained via the modified spectral strategy (referred to as to Spectral) is displayed
in blue (triangles). The recorded accuracy is satisfactory (about 90% of that
obtained with usual means and few percent more than that obtained with the
spectral method of original conception [1]), despite the modest number of trained
parameters. To exemplify this, in the bottom panel of Fig. 1.1 we plot the
relative ratio of the number of tuned parameters (Spectral) vs. conventional one)
against N2 (blue triangles) : the reduction in the number of parameters as follows
the modified spectral method is staggering. Working with the other employed
dataset, respectively F-MNIST and CIFAR-10, yields analogous conclusions (see
appendix (A)).

One further improvement can be achieved by replacing ϕ(k) with its equivalent
singular value decomposition (SVD), a factorization that generalizes the eigen-
decomposition to rectangular (in this framework, Nk+1 ×Nk) matrices (see [17]
for an application to neural networks). In formulae, this amounts to postulate

12CHAPTER 1. INTRODUCING AND IMPROVING THE SPECTRAL LEARNING

Figure 1.1: The case of MNIST. Upper panel: the accuracy of the different
learning strategies, normalised to the accuracy obtained for an identical deep
neural network trained in direct space, as a function of the size of the intermediate
layer, N2. Triangles stand for the the relative accuracy obtained when employing
the spectral method (Spectral). Pentagons refer to the setting which extends
the training to the eigenvectors’ blocks via a SVD decomposition. Specifically,
matrices Uk and Vk are randomly generated (with a uniform distribution of
the entries) and stay unchanged during optimisation. The singular values are
instead adjusted together with the eigenvalues which stem from the spectral
method (this configuration is labelled S-SVD). Diamonds are instead obtained
when the eigenvalues and the elements of the triangular matrix R (as follows a
QR decomposition of the eigenvectors’ blocks) are simultaneously adjusted S-QR).
Here, Q is not taking part to the optimisation process (its entries are random
number extracted from a uniform distribution). Errors are computed after 10
independent realisations of the respective procedures. Lower panel: ρ the ratio of
the number of tuned parameters (modified spectral, S-SVD, S-QR methods vs.
conventional one) is plotted against N2. In calculating ρ the contribution of the
bias is properly acknowledged. As a reference, the best accuracy obtained over
the explored range for the deep network trained with conventional means is 98%.

1.3. IMPROVING THE SPECTRAL SCHEME AND TESTING IT 13

ϕ(k) = UkΣkV
T
k where Vk and Uk are, respectively, Nk ×Nk and Nk+1 ×Nk+1

real orthogonal matrices. On the contrary, Σk is a Nk+1 × Nk rectangular di-
agonal matrix, with non-negative real numbers on the diagonal. The diagonal
entries of Σk are the singular values of ϕk. The symbol (·)T , stands for the
transpose operation. The learning scheme can be hence reformulated as follows.
For each k, generate two orthogonal random matrices Uk and Vk. These latter
are not updated during the successive stages of the learning process. At variance,
the Mk+1 = min(Nk, Nk+1) non trivial elements of Σk take active part to the
optimisation process. For each k, Mk+1 + Nk + Nk+1 parameters can be thus
modulated to optimize the information transfer, from layer k to layer k+1. Stated
differently, Mk+1 free parameters adds up to the Nk +Nk+1 eigenvalues that get
modulated under the original spectral approach. One can hence count on a larger
set of parameters as compared to that made available via the spectral method,
restricted to operate with the eigenvalues. Nonetheless, the total number of
parameters scales still with the linear size N of the deep neural network, and not
quadratically, as for a standard training carried out in direct space. This addition
(referred to as the S-SVD scheme) yields an increase of the recorded classification
score, as compared to the setting where the Spectral method is solely employed,
which is however not sufficient to fill the gap with conventional schemes (see
Fig. 1.1). Similar scenarios are found for F-MNIST and CIFAR-10 (see appendix
(A)), with varying degree of improvement, which reflects the specificity of the
considered dataset.

A decisive leap forward is however accomplished by employing a QR factoriza-
tion of matrix ϕ(k). For Nk+1 > Nk, this corresponds to writing the Nk+1 ×Nk

matrix ϕk as the product of an orthogonal Nk+1 ×Nk matrix Qk and an upper
triangular Nk ×Nk matrix Rk. Conversely, when Nk+1 < Nk, we factorize ϕT

k ,
in such a way that the square matrix Rk has linear dimension Nk+1. In both
cases, matrix Qk is randomly generated and stays frozen during gradient descent
optimisation. The Mk+1(Mk+1 + 1)/2 entries of the Mk+1 ×Mk+1 matrix Rk

can be adjusted so as to improve the classification ability of the trained network
(this strategy of training, integrated to the Spectral method, is termed S-QR).
Results are depicted in Fig. 1.1 with (red) diamonds. The achieved performance
is practically equivalent to that obtained with a conventional approach to learning.
Also in this case ρ < 1, the gain in parameter reduction being noticeable when
N1 is substantially different (smaller or larger) than N2, for the case at hand.
Interestingly enough, for a chief improvement of the performance, over the SVD
reference case, it is sufficient to train a portion of the off diagonal elements of R.
In the appendix (A), we report the recorded accuracy against p, the probability
to train the entries that populate the non null triangular part of Rk. The value
of the accuracy attained with conventional strategies to the training is indeed
approached, already at values of p which are significantly different from unit.

14CHAPTER 1. INTRODUCING AND IMPROVING THE SPECTRAL LEARNING

1.4 Imposing sparsity with spectral method

The quest for a limited subset of key parameters which define the target of a global
approach to the training is also important for its indirect implications, besides
the obvious reduction in terms of algorithmic complexity. As a key application to
exemplify this point, we shall consider the problem of performing the classification
tasks considered above, by training a neural network with a prescribed degree
of imposed sparsity. This can be achieved by applying a non linear filter on
each individual weight wij. The non linear mask is devised so as to return zero
(no link present) when |wij| < C. Here, C is an adaptive cut-off which can be
freely adjusted to allow for the trained network to match the requested amount of
sparsity. This latter is measured by a scalar quantity, spanning the interval [0, 1]:
when the degree of sparsity is set to zero, the network is dense. At the opposite
limit, when the sparsity equals one, the nodes of the network are uncoupled and
the information cannot be transported across layers. Working with the usual
approach to the training, which seeks to modulate individual weights in direct
space, one has to face an obvious problem. When the weight of a given link is
turned into zero, then it gets excluded by the subsequent stages of the optimisation
process. Consequently, a weight that has been silenced cannot regain an active
role in the classification handling. This is not the case when operating under
the spectral approach to learning, also when complemented by the supplemental
features tested above. The target of the optimisation, the spectral attributes of
the transfer operators, are not biased by any filtering masks: as a consequence,
acting on them, one can rescue from oblivion weights that are deemed useless
at a given iteration (and, as such, silenced), but which might prove of help, at
later stages of the training. In Fig. 1.2, the effect of the imposed sparsity on the
classification accuracy is represented for conventional vs. S-QR method. The
latter is definitely more performant in terms of displayed accuracy, when the
degree of sparsity gets more pronounced. The drop in accuracy as exhibited by
the sparse network trained with the S-QR modality is clearly less pronounced,
than that reported for an equivalent network optimised in direct space. Deviations
between the two proposed methodologies become indeed appreciable in the very
sparse limit, i.e. when the residual active links are too few for a proper functioning
of the direct scheme. In fact, edges which could prove central to the classification,
but that are set silent at the beginning, cannot come back to active. At variance,
the method anchored to reciprocal space can identify an optimal pool of links
(still constraint to the total allowed for) reversing to the active state, those that
were initially set to null. Interestingly, it can be shown that a few hubs emerge in
the intermediate layer, which collect and process the information delivered from
the input stack.

1.5 Conclusion

Taken altogether, it should be unequivocally concluded that a large body of
free parameters, usually trained in machine learning applications, is de facto

1.5. CONCLUSION 15

Figure 1.2: Training sparse networks. The accuracy of the trained network
against the degree of imposed sparsity. Black diamonds refer to the usual training
in direct space, while red pentagons refer to the S-QR method. From top to
bottom: results are reported for MNIST, F-MNIST and CIFAR-10, respectively.
In all cases, ℓ = 3.

16CHAPTER 1. INTRODUCING AND IMPROVING THE SPECTRAL LEARNING

unessential. The spectral learning scheme, supplemented with a QR training of
the non trivial portion of eigenvectors’ matrix, enabled us to identify a limited
subset of key parameters which prove central to the learning procedure, and
reflect back with a global impact on the computed weights in direct space. This
observation could materialise in a drastic simplification of current machine learning
technologies, a challenge at reach via algorithmic optimisation carried out in dual
space. Quite remarkably, working in reciprocal space yields trained networks
with better classification scores, when operating at a given degree of imposed
sparsity. This finding suggests that shifting the training to the spectral domain
might prove beneficial for a wide gallery of deep neural networks applications.

In the next chapter, we will show that the spectral method can be employed
to devise an effective pruning strategy that ranks nodes based on their associated
eigenvalues as obtained during training

Chapter 2

Spectral Pruning

As seen in the previous chapter, training of neural networks can be reformulated
in spectral space, by allowing eigenvalues and eigenvectors of the network to
act as target of the optimization instead of the individual weights. Working
in this setting, we show that the eigenvalues can be used to rank the nodes’
importance within the ensemble. Indeed, we will prove that sorting the nodes
based on their associated eigenvalues, enables effective pre- and post-processing
pruning strategies to yield massively compacted networks (in terms of the number
of composing neurons) with virtually unchanged performance. The proposed
methods are tested for different architectures, with just a single or multiple hidden
layers, and against distinct classification tasks of general interest.

2.1 Introduction

In this chapter we will discuss a relevant byproduct of the spectral learning scheme.
More specifically, we will argue that the eigenvalues do provide a reliable ranking
of the nodes, in terms of their associated contribution to the overall performance
of the trained network. Working along these lines, we will empirically prove
that the absolute value of the eigenvalues is an excellent marker of the node’s
significance in carrying out the assigned discrimination task. This observation
can be effectively exploited, downstream of training, to filter the nodes in terms
of their relative importance and prune the unessential units so as to yield a more
compact model, with almost identical classification abilities. The effectiveness of
the proposed method has been tested for different feed-forward architectures, with
just a single or multiple hidden layers, by invoking several activation functions,
and against distinct datasets for image recognition, with various levels of inherent
complexity. Building on these findings, we will also propose a two stages training
protocol to generate minimal networks (in terms of allowed computing neurons)
which outperform those obtained by hacking off dispensable units from a large,
fully trained, apparatus. This strategy can be seen as an effective way to discover
sub-networks (a.k.a. “winning tickets” [18]) with recorded performance comparable
to those displayed by their unaltered homologues, after a proper round of training
[18]. More specifically, after a first round of training which solely acts on the

17

18 CHAPTER 2. SPECTRAL PRUNING

eigenvalues, one can identify the most relevant nodes, as follows the magnitude
of the associated eigenvalues. Since the first training stage is just targeted to
eigenvalues, the eigenvectors obtained after pruning are still bearing reflexes of
the random initialization and thus represent a sort of “winning ticket”[18]. In this
respect, according to the above reasoning, the proposed two stages strategy can
be seen as a novel and efficient way to discover optimal sub-networks.

2.2 Conventional Pruning Techniques

Generally speaking, it is possible to ideally group various approaches for network
compression into five different categories: Weights Sharing, Network Pruning,
Knowledge Distillation, Matrix Decomposition and Quantization [10], [19].

Weights Sharing defines one of the simplest strategies to reduce the number of
parameters, while allowing for a robust feature detection. The key idea is to have
a shared set of model parameters between layers, a choice which reflects back in
an effective model compression. An immediate example of this methodology are
the convolutional neural networks [20]. A refined approach is proposed in Bat
et al. [21] where a virtual infinitely deep neural network is considered. Further,
in Zhang et al. [12] an ℓ1 group regularizer is exploited to induce sparsity and,
simultaneously, identify the subset of weights which can share the same features.

Network Pruning is arguably one of the most common technique to compress
Neural Network: in a nutshell it aims at removing a set of weights according
to a certain criterion (magnitude, importance, etc). Chang et al. [22] proposed
an iterative pruning algorithm that exploits a continuously differentiable version
of the ℓ 1

2
norm, as a penalty term. Molchanov et al. [23] focused on pruning

convolutional filters, so as to achieve better inference performances (with a modest
impact on the recorded accuracy) in a transfer leaning scenario. Starting from
a network fine-tuned on the target task, they proposed an iterative algorithm
made up of three main parts: (i) assessing the importance of each convolutional
filter on the final performance via a Taylor expansion, (ii) removing the less
informative filters and (iii) re-training the remaining filters, on the target task.
Inspired by the pioneering work in [18], Pau de Jorge et al. [24] proved that
pruning at initialization leads to a significant performance degradation, after a
certain pruning threshold. In order to overcome this limitation they proposed
two different methods that enable an initially trimmed weight to be reconsidered
during the subsequent training stages.

Knowledge Distillation is yet another technique, firstly proposed by Hinton
et al. [11]. In its simplest version Knowledge Distillation is implemented by
combining two objective functions. The first accounts for the discrepancy between
the predicted and true labels. The second is the cross-entropy between the output
produced by the examined network and that obtained by running a (generally
more powerful) trained model. In [25] Polino et al. proposed two approaches to
mix distillation and quantization (see below): the first method uses the distillation
during the training of the so called student network under a fixed quantization

2.2. CONVENTIONAL PRUNING TECHNIQUES 19

scheme while the second exploits a network (termed the teacher network) to
directly optimize the quantization. Mirzadeh et al. [26] analyzed the regime in
which knowledge distillation can be properly leveraged. They discovered that
the representation power gap of the two networks (teacher and student) should
be bounded for the method to yield beneficial effects. To resolve this problem,
they inserted an intermediate network (the assistant), which sits in between the
teacher and the student, when their associated gap is too large.

Matrix Decomposition is a technique that remove redundancies in the pa-
rameters by the means of a tensor/matrix decomposition. Masana et al. [27]
proposed a matrix decomposition method for transfer learning scenario. They
showed that decomposing a matrix taking into account the activation outperforms
the approaches that solely rely on the weights. In [28], Novikov et al. proposed to
replace the dense layer with its Tensor-Train representation [8]. Yu et al. [29] in-
troduced a unified framework, integrating the low-rank and sparse decomposition
of weight matrices with the feature map reconstructions.

Quantization, as also mentioned above, aims at lowering the number of bits
used to represent any given parameter of the network. Stock et al. [30] defined
an algorithm that quantize the model by minimizing the reconstruction error for
inputs sampled from the training set distribution. The same authors also claimed
that their proposed method is particularly suited for compressing residual network
architectures and that the compressed model proves very efficient when run on
CPU. In Banner et al. [31] a practical 4-bit post-training quantization approach
was introduced and tested. Moreover, a method to reduce network complexity
based on node-pruning was presented by He et al. in [32]. Once the network
has been trained, nodes are classified by means of a node importance function
and then removed or retained depending on their score. The authors proposed
three different node ranking functions: entropy, output-weights norm (onorm)
and input-weights norm (inorm). In particular, the input-weights norm function
is defined as the sum of the absolute values of the incoming connections weights.
As we will see this latter defines the benchmark model that we shall employ to
challenge the performance of the trimming strategy here proposed. Finally, it is
worth mentioning the Conditional Computation methods [33]–[35]: the aim is to
dynamically skip part of the network according to the provided input so as to
reduce the computational burden.

Summing up, pruning techniques exist which primarily pursue the goal of
enforcing a sparsification by cutting links from the trained neural network and
have been reviewed above. In contrast with them, the idea of our method is to a
posteriori identify the nodes of the trained network which prove unessential for a
proper functioning of the device and cut them out from ensemble made of active
units. This yields a more compact neural network, in terms of composing neurons,
with unaltered classification performance. The method relies on the spectral
learning [2], [36] and exploits the fact that eigenvalues are credible parameters to
gauge the importance of a given node among those composing the destination
layer. In short, our aim is to make the network more compact by removing nodes
classified as unimportant, according to a suitable spectral rating.

20 CHAPTER 2. SPECTRAL PRUNING

2.3 Results

In order to assess the effectiveness of the eigenvalues as a marker of the node’s
importance (and hence as a potential target for a cogent pruning procedure) we
will consider a fully connected feed-forward architecture. Applications of the
explored methods will be reported for ℓ = 3 and ℓ > 3 configurations. The
nodes that compose the hidden layers are the target of the implemented pruning
strategies. As we shall prove, it is possible to get rid of the vast majority of
nodes without reflecting in a sensible decrease in the test accuracy, if the filter,
either in its pre- or post-training versions, relies on the eigenvalues ranking.
Moreover, it is also important to stress that, in general terms, the pruning of
unessential nodes improves the computational efficiency of the network. As a
matter of fact, reducing the number of output nodes leads a compression in terms
of both memory and inference time which is directly proportional to the number
of removed elements. As an example, by pruning a fraction α (< 1) of the total
nodes, we obtain a new layer with α ·N less neurons and a memory reduction of
α ·N times the number of input features.

For our test, we used three different datasets of images, already presented in
the previous chapter. The first is the celebrated MNIST database of handwritten
digits [13], the second is Fashion-MNIST (F-MNIST), a dataset of Zalando’s
article images, the third is CIFAR-10 a collection of images from 10 different
classes. In the main text we report our findings for Fashion-MNIST. Analogous
investigations carried out for MNIST and CIFAR10 will be reported as supple-
mentary information in appendix (B). Further, different activation functions
have been employed to evaluate the performance of the methods. In this chapter,
we will show the results obtained for the ELU. The conclusion obtained when
operating with the ReLU and tanh are discussed in the appendix (B). In the
following we will report into two separate sub-sections the results pertaining to
either the single or multiple hidden layers settings.

2.3.1 Single hidden layer (ℓ = 3)

In Figure 2.1 the performance of the inspected methods are compared for the
minimal case study of a three layers network. The intermediate layer, the sole
hidden layer in this configuration, is set to N2 = 500 neurons. The accuracy of
the different methods are compared, upon cutting at different percentile, following
the strategies discussed in the Methods and compared with the benchmark model
(the orange profile). In the benchmark model, the neural network is trained in
direct space, by adjusting the weights of each individual inter-nodes connection.
Then, the absolute value of the incoming connectivity is computed and used as
an importance rank of the nodes’ influence on the test accuracy (analogous to
the way in which we use the eigenvalues). Such a model has been presented and
discussed by He et al. in [32]. Following this assessment, nodes are progressively
removed from the trained network, depending on the imposed percentile, and
the ability of the trimmed network to perform the sought classification (with

2.3. RESULTS 21

no further training) tested. We choose this particular type of trimming as a
benchmark to our spectral pruning technique for the following reasons. First,
it also amount to removing nodes from the collection, and not just sparsify the
weight of the associated transfer matrices. Then, both approaches build on the
concept of nodes ranking, as obtained from a suitable metric, which is respectively
bound to direct vs. spectral domains. The abovementioned procedure is repeated
5 times and the mean value of the accuracy plotted in the orange curve of Figure
2.1. The shaded region stands for the semi dispersion of the measurements. A
significant drop of the network performance is found when removing a fraction of
nodes larger than 60 % from the second layer.

The blue curve Figure 2.1 refers instead to the post-processing spectral pruning
based on the eigenvalues and identified, as method (ii), in the Methods Section.
More precisely, the three layers network is trained by simultaneously acting on the
eigenvectors and the eigenvalues of the associated transfer operators, as illustrated
above. The accuracy displayed by the network trained according to this procedure
is virtually identical to that reported when the learning is carried out in direct
space, as one can clearly appreciate by eye inspection of Figure 2.1. Removing
the nodes based on the magnitude their associated eigenvalues, allows one to
keep stable (practically unchanged) classification performance for an intermediate
layer that is compressed of about 70% of its original size. In this case the spectral
pruning is operated as a post-processing filter, meaning that the neural network
is only trained once, before the nodes’ removal takes eventually place.

At variance, the green curve in Figure 2.1 is obtained following method
(i) from the Methods Section, which can be conceptualized as a pre-training
manipulation. Based on this strategy, we first train the network on the set
of tunable eigenvalues, than reduce its size by performing a compression that
reflects the ranking of the optimized eigenvalues and then train again the obtained
network by acting uniquely on the ensemble of residual eigenvectors. The results
reported in Figure 2.1 indicate that, following this procedure, it is indeed possible
to attain astoundingly compact networks with unaltered classification abilities.
Moreover, the total number of parameters that need to be tuned following this
latter procedure is considerably smaller than that on which the other methods
rely. This is due to the fact that only the random directions (the eigenvectors)
that prove relevant for discrimination purposes (as signaled by the magnitude of
their associated eigenvalues) undergoes the second step of the optimization. This
method can also be seen as a similar kind of [18]. As a matter of fact, the initial
training of the eigenvalues uncovers a sub-network that, once trained, obtains
performances comparable to the original model. More specifically, the uncovered
network can be seen as a winning ticket [18]. That is, a sub-network with an
initialization particularly suitable for carrying out a successful training.

Next, we shall generalize the analysis to the a multi-layer setting (ℓ > 3),
reaching analogous conclusions.

22 CHAPTER 2. SPECTRAL PRUNING

Figure 2.1: Accuracy on the Fashion-MNIST database with respect to the per-
centage of trimmed nodes (from the hidden layer), in a three layers feedforward
architecture. Here, N2 = 500, while N1 = 784 and N3 = 10, as reflecting the
structural characteristics of the data. In orange the results obtained by pruning
the network trained in direct space, based on the absolute value of the incoming
connectivity (see main text). In blue, the results obtained when filtering the
nodes after a full spectral training (post-training). The curve in green reports the
accuracy of the trimmed networks generated upon application of the pre-training
filter. Symbols stand for the averaged accuracy computed over 5 independent
realizations. The shadowed region is traced after the associated semi-dispersion.

2.3. RESULTS 23

Multiple hidden layers (ℓ > 3)

Quite remarkably, the results achieved in the simplified context of a single hidden
layer network also apply within the framework of a multi-layers setting.
To prove this statement we set to consider a ℓ = 5 feedforward neural network
with ELU activation. Here, N1 = 784 and N5 = 10 as reflecting the specificity of
the employed dataset. The performed tests follows closely those reported above,
with the notable difference that now the ranking of the eigenvalues is operated on
the pool of N2 +N3 +N4 neurons that compose the hidden bulk of the trained
network. In other words, the selection of the neuron to be removed is operated
after a global assessment, i.e. scanning across the full set of nodes, without any
specific reference to an a priori chosen layer.

In Figure 2.2 the results of the analysis are reported, assuming N2 = N3 =
N4 = 500. The conclusions are perfectly in line with those reported above for the
one layer setting, except for the fact that now the improvement of the spectral
pruning over the benchmark reference are even superior. The orange curve drops
at percentile 20, while the blue begins its descent at about 60 %. The green curve,
relative to the sequential two steps training, stays stably horizontal up to about
90 %.

Figure 2.2: Accuracy on the Fashion-MNIST database with respect to the per-
centage of pruned nodes (from the hidden layers), in a five layers feedforward
architecture. Here, N2 = N3 = N4 = 500, while N1 = 784 and N5 = 10, as
reflecting the structural characteristics of the data. Symbols and colors are chosen
as in Figure 2.1.

24 CHAPTER 2. SPECTRAL PRUNING

2.4 Methods

We detail here the spectral procedure to make a trained network smaller, while
preserving its ability to perform classification.

To introduce the main idea of the proposed method, we make reference to
formula (1.2) and assume the setting where λ(k)m(j) = 0. The information travelling
from layer k to layer k + 1 gets hence processed as follows: first, the activity on
the departure node j is modulated by a multiplicative scaling factor Φ

(k)
l(i),m(j),

specifically linked to the selected (i, j) pair. Then, all incoming (and rescaled)
activities reaching the destination node i are summed together and further
weighted via the scalar quantity λ(k)l(i). This latter eigenvalue, downstream of the
training, can be hence conceived as a distinguishing feature of node i of layer
k + 1. Assume for the moment that Φ

(k)
l(i),m(j) are drawn from a given distribution

and stay put during optimization. Then, every individual neuron bound to layer
k + 1 is statistically equivalent (in terms of incoming weights) to all other nodes,
belonging to the very same layer. The eigenvalues λ(k)l(i) gauge therefore the relative
importance of the nodes, within a given stack, and as reflecting the (randomly
generated) web of local inter-layer connections (though statistically comparable).
Large values of |λ(k)l(i)| suggest that node i on layer k+1 plays a central role in the
economy of the neural network functioning. This is opposed to the setting when
|λ(k)l(i)| is found to be small. Stated differently, the subset of trained eigenvalues
provide a viable tool to rank the nodes according to their degree of importance.
As such, they can be used as reference labels to make decision on the nodes that
should be retained in a compressed analogue of the trained neural network, with
unaltered classification performance. As empirically shown in the Results section
with reference to a variegated set of applications, the sorting of the nodes based
on the optimized eigenvalues turns out effective also when the eigenvectors get
simultaneously trained, thus breaking, at least in principle, statistical invariance
across nodes.

As we will clarify, the latter setting translates in a post-training spectral
pruning strategy, whereas the former materializes in a rather efficient pre-training
procedure. The non linear activation function as employed in the training scheme
leaves a non trivial imprint, which has to be critically assessed.

More specifically, in carrying out the numerical experiments here reported we
considered two distinct settings, as listed below:

• (i) As a first step, we will begin by considering a deep neural network
made of N neurons organized in ℓ layers. The network will be initially
trained by solely leveraging on the set of tunable eigenvalues. Then, we
will proceed by progressively removing the neurons depending on their
associated eigenvalues (as in the spirit discussed above). The trimmed
network, composed by a total of M < N units, still distributed in ℓ distinct
layers, can be again trained acting now on the eigenvectors, while keeping
the eigenvalues frozen to the earlier determined values. This combination of
steps, which we categorize as pre-training, yields a rather compact neural

2.5. CONCLUSIONS 25

network (M can be very small) which performs equally well than its fully
trained analogue made of N computing nodes.

• (ii) We begin by constructing a deep neural network made of N neurons
organized in ℓ layers. This latter undergoes a full spectral training, which
optimizes simultaneously eigenvectors and the eigenvalues. The trained
network can be compressed, by pruning the nodes which are associated
to eigenvalues (see above) with magnitude smaller that a given threshold.
This is indeed a post-training pruning strategy, as it acts ex post on a fully
trained device.

To evaluate the performance of the proposed spectral pruning strategies
(schematically represented in the flowchart of Figure 2.3), we also introduced a
reference benchmark model. This latter can be conceptualized as an immediate
overturning of the methods in direct space. Simply stated, we train the neural
network in the space of the nodes, by using standard approaches to the learning.
Then, we classify the nodes in terms of their relevance using a proper metric to
which shall make reference below, and consequently trim the nodes identified as less
important. When adopting the spectral viewpoint, one can rely on the eigenvalues
to rank the nodes importance. As remarked above, in fact, the eigenvalues at the
receiver nodes set a local scale for the incoming activity, the larger the eigenvalue
(in terms of magnitude) the more important the role played by the processing
unit. As a surrogate of the eigenvalues, when anchoring the train in direct space,
we can consider the quantity

∑Nk

j=1 |wij|, for each neuron i belonging to layer
k + 1, see also [32]. The absolute value prevents mutual cancellations of sensible
contributions bearing opposite signs, which could incidentally hide the actual
importance of the examined node.

In all explored cases, the pruning is realized by imposing a threshold on the
reference indicator (be it the magnitude of the eigenvalues or the cumulated flux
of incoming –and made positive– weights). Pointedly, the respective indicator is
extracted for every node in the arrival layer. Then a percentile q is chosen and the
threshold fixed to the q-th percentile. Nodes displaying an indicator below the
chosen threshold are removed and the accuracy of the obtained (trimmed) neural
network assessed on the test-set. The codes employed, as well as a notebook to
reproduce our results, can be found in the public repository of this project 1.

2.5 Conclusions
The eigenvalues of the transfer operator that connects adjacent stacks in a multi-
layered architecture provide an effective measure of the nodes importance in
handling the information processing. By exploiting this fact we have introduced
and successfully tested two distinct procedures to yield compact networks –in
terms of number of computing neurons– which perform equally well than their
untrimmed original homologous. One procedure (referred as (ii) in the description)

1https://github.com/Buffoni/spectral_learning

26 CHAPTER 2. SPECTRAL PRUNING

Train Λ, Φ	with Spectral
Method

Evaluate 𝜆!"# , the 𝑞#$
percentile of the distribution of

eigenvalues Λ

Prune all the marked nodes, i.e.
put their respective eigenvalue

Λ % = 0.

Spectral Pruned Network

Train only Λ	with Spectral
Method

Train remaining Λ, Φ	with
Spectral Layer

Spectral Pruned Network

Post-training method (ii) Pre-training method (i)

Light pre-training

Full training on the
reduced network

Full training

Spectral Pruning Spectral Pruning

For each layer 𝑘 mark all the
nodes 𝑖 such that Λ % < 𝜆!"# ,

with 𝑖 ∈ 𝑁&'(+ 1,…	N&

Figure 2.3: Flowchart of the pre- and post- speactral training pruning strategies
as presented in section 2.4.

is acknowledged as a post processing method, in that it acts on a multi-layered
network downstream of training. The other (referred as (i)) is based on a
sequence of two nested operations. First the eigenvalues are solely trained. After
the spectral pruning took place, a second step in the optimization path seeks to
adjust the entries of the eigenvectors that populate a trimmed space of reduced
dimensionality. The total number of trained parameters is small as compared to
that involved when the pruning acts as a post processing filter. Despite that, the
two steps pre-processing protocol yields compact devices which outperform those
obtained with a single post-processing removal of the unessential nodes.

As a benchmark model, and for a neural network trained in direct space, we
decided to rank the nodes importance based on the absolute value of the incoming
connectivity. This latter appeared as the obvious choice, when aiming at gauging
the local information flow in the space of the nodes, see also [32]. In principle,
one could consider to diagonalizing the transfer operators as obtained after a
standard approach to the training and make use of the computed eigenvalues to
a posteriori sort the nodes relevance. This is however not possible as the transfer
operator that links a generic layer k to its adjacent counterpart k + 1, as follows
the training performed in direct space, is populated only below the diagonal, with
all diagonal entries identically equal zero. All associated eigenvalues are hence
are zero and they provide no information on the relative importance of the nodes
of layer k + 1, at variance with what happens when the learning is carried out in
the reciprocal domain.

Summing up, by reformulating the training of neural networks in spectral
space, we identified a set of sensible scalars, the eigenvalues of suitable operators,
that unequivocally correlate with the influence of the nodes within the collection.

2.5. CONCLUSIONS 27

This observation translates in straightforward procedures to generate efficient
networks that exploit a reduced number of computing units. Tests performed on
different settings corroborate this conclusions. As an interesting extension, we
show in the appendix (B)n that a suitable regularization of the eigenvalues yields
a general improvement of the proposed method.

With this chapter we conclude the general discussion aimed at introducing the
background and application of the spectral parametrization of feedforward neural
networks.We have shown how through such new training scheme (which acts on
global parameters, eigenvalues and eigenvectors) fundamental contribution can
be identified that hide inside the global structure of the network. These sub-
structures (the nodes identified by the largest eigenvalues) emerge spontaneously
during the training phase. Understanding what the fundamental structures are
could be a the target for future investigations to shed light on the relevant
explainability issue. However, as we will discover in the next two chapters, the
spectral formulation can also be valuable in developing machine learning models
that, albeit with a modest level of approximation, emulate biological decision-
making processes. In the next chapter, we will begin by exploring the possibility
of incorporating dynamics within the process of decision making that underlies
the actual functioning of an artificial neural networks. Indeed, biological neural
processes follow highly complex temporal dynamics and introducing temporal
evolution in ANNs defines a fundamental step forward for the development of
bio-inspired models. In the following two chapters we will delve into this direction.
We will start by introducing a model called Recurrent Spectral Network (RSN)
consisting of a discrete map that, thanks to constraints imposed in the spectral
regime, naturally evolves towards a stable subspace where classification is carried
out.

28 CHAPTER 2. SPECTRAL PRUNING

Chapter 3

Recurrent Spectral Networks - RSN

In this chapter a novel strategy to automated classification is introduced which
exploits a fully trained dynamical system to steer items belonging to different
categories toward distinct asymptotic target destinations. These latter are incor-
porated into the model by taking advantage of the spectral decomposition of the
operator that rules the linear evolution across the processing network. Non-linear
terms act for a transient and allow to disentangle the data supplied as initial
condition to the discrete dynamical system. The system effectively aligns along
assigned directions, which reflect the specificity of the provided input and that are
encoded in the loss function via suitable spectral projections. The network can
be equipped with several memory kernels which can be sequentially activated for
serial datasets handling. Our novel approach to classification, that we here term
Recurrent Spectral Network (RSN), is successfully challenged against a simple
test-bed model, created for illustrative purposes, as well as a standard dataset
for image processing training.

3.1 Introduction

In the standard feedforward scheme the target of the optimization are the weights
of the links that connect pair of nodes belonging to adjacent stacks of the multi-
layered arrangement. In the previous chapters an alternative training scheme has
been proposed and explored which anchors the learning to reciprocal domain: the
eigenvalues and the eigenvectors of the transfer operators get adjusted by the
optimization.

Delving into the principles of the spectral methodology, we here propose a
radically novel approach to computational deep learning which is deeply rooted
into the theory of discrete dynamical systems. In a nutshell, the incoming signal
is processed by successive iterations across the very same constellation of nodes.
The links, and thus the topology of the ensuing network, are fixed and shaped
under the spectral paradigm, upon optimization at a given number of iterations.

29

30 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

Non-linearities acting on the nodes are imposed a priori or, conversely, learned
self-consistently via an apposite deep neural network, which is embedded into
the cost function. In either settings, non-linear terms acting in real space at the
nodes locations, are forced to vanish asymptotically, iteration after iteration, in
such a way that the dynamics eventually turns purely linear. The linear operator,
mirroring the processing network, possesses a high dimensional attracting linear
manifold spanned by the eigenvectors associated to the eigenvalues equal to
one. These latter come in a number that matches the classes to be eventually
categorised. A suitable non linear spectral filter is enforced in the loss function to
project the ensuing direction along a given eigenvector, assumed as the destination
target of a class of homologous entities and selected from those displaying unitary
eigenvalues 1. Stated differently, the classification is accomplished when the
processed output - approximately - aligns along a specific direction in dual space,
instead of turning active a single node in direct space, as customarily done. This
formulation yields a rather natural interpretation of the classifier operational
mode: non-linearities, acting at the early stages of the dynamical evolution, drive
the discrete dynamical system towards distinct effective stationary equilibria, self-
consistently sculpted across the learning scheme and associated to different classes
of supplied items. Delineating the non-trivial contours that separate the inspected
classes in the input space constitutes the tangible outcome of the learning scheme.
Remarkably, the trained dynamical system can be iterated forward in time,
beyond the limited horizon of the learning procedure: the ability of classifying
stays unchanged. The eigenvectors associated to eigenvalues equal to one, are
hence veritable memory kernels where the information is kept stored. We name
Recurrent Spectral Network (RSN) our novel approach to automated classification
via sculpting the attracting invariant subspace of a discrete dynamical map.

Points of connections are found with the framework of reservoir computing. In
this latter case, input signals are mapped into higher dimensional computational
spaces through the dynamics of a fixed, non-linear system termed reservoir [37]–
[39]. Within the RSN, the bulk model is not fixed but self-consistently tailored
to the assigned task.

A straightforward variant of the RSN recipe, which accounts for quasi-
orthogonal eigen-directions for each processed task, can be also introduced. This
latter enables for the sequential handling of different datasets. In simple terms,
an artificial computing unit can be assembled which keeps memory of a task, for
which it was initially trained, while being exposed to another training session,

1In principle, the system could eventually align along any direction in the manifold spanned
by the eigenvectors (of the linear operator) relative to unit eigenvalues. Indeed the learning
process, as encoded in the chosen loss function, forces the system to align (as much as possible)
along a specific direction - a given eigenvectors selected from those that are associated to
eigenvalues identically equal to one. The effectiveness of the procedure is confirmed by a
posteriori inspection, as we shall discuss in the following. The proposed method proves indeed
remarkably successfully beyond the toy model setting investigated for pedagogical reasons and
against classical benchmark datasets. The approximate alignment along the target direction
can be made exact by a non linear projection filter that singles out the most prominent among
residual directions, in reciprocal space at the time of decision.

3.2. THE MATHEMATICAL FOUNDATION 31

with an independent dataset to be processed. This is at present arduous with
standard approaches to deep learning, as the second learning stage causes the
so-called catastrophic forgetting taking over any form of digital consciousness
inherited from the first [40]–[42]. Few attempts have been so far reported which
aim at overcoming this limitation [43]–[45].

In the next Section we intoduce the mathematical notation and the relevant
model setting. Then, in the subsequent Section, we will turn to considering a
simple example of a dataset defined in R2 that will prove useful for clarifying
the essence of the proposed methodology. In particular we will show, that the
system can effectively trace the boundaries that non-linearly separate different
classes within a given datasets. Each class is evolved toward a distinct target,
that we identify with a specific direction of the attracting subspace possessed by
the underlying linear system. Further, we will proceed by applying the proposed
technique to the celebrated MNIST dataset [13]. We will also show that the RSN
can also handle multiple datasets with a modest drop in the peak accuracy, and
following sequential stages of learning. Finally, we will sum up and draw our
conclusions.

3.2 The mathematical foundation

Consider N isolated nodes. Our aim is to assign weighted links among the latter,
in such a way that the ensuing network can cope with the assigned task, as e.g.,
classification of different items in distinct categories. Here, N can coincide with
the number of input variables (e.g., the pixels of a supplied image): in this case,
the nodes where reading is performed match the units where calculations are
carried out. This is at variance with usual feedforward deep neural networks,
where the information to be processed flows from the input to the output, the
collection of computing neurons growing with the number of layers that define the
underlying architecture [46]–[48]. Working within the proposed framework, the
topology of the network will unfold as an emerging byproduct of the optimization
procedure. As we shall discuss, N can be larger than the characteristic dimension
of the input data, a setting that we will specifically assume when dealing with
the problem of sequential learning, with dedicated memory kernels.

Denote by x⃗(0) the input vector, made of N entries organized in a column. The
idea that we shall hereafter develop is to set up a recursive scheme, the Recurrent
Spectral Network (RSN), that takes x⃗(0) as the initial condition and transforms
it via successive iterations into a stationary stable output. This latter should
somehow reflect the specific traits of the input items, as identified self-consistently
upon dedicated training sessions. Different objects should eventually align along
distinct directions of the attracting manifold, depending on the category of specific
pertinence. Stated differently, the multidimensional space where the examined
objects belong to gets partitioned in mutually exclusive portions, as tailored by
suited non-linearities, each associated to a definite asymptotic destination. In
the following, we shall label with n the number of independent target directions,

32 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

namely the number of independent classes in which the inspected dataset can be
eventually partitioned.

Assume x⃗(k) to represent the image of the input vector x⃗(1) after k application
of the iterative scheme. Then:

x⃗(k+1) = f⃗k
(
Ax⃗(k)

)
(3.1)

where A is a N ×N weighed adjacency matrix that defines the patterns of
interactions among nodes; f⃗k(·) is a non-linear (N - dimensional) function that
depends on the iteration parameter k and which acts at the level of individual
nodes. We require in particular limk→∞ f⃗k → 1⃗ ≡ (1, 1, ..., 1)T , in such a way
that, for large enough k, the system approximately follows a linear update rule.
This is achieved by setting:

f⃗k(·) = 1⃗+
g⃗(·)
kγ

(3.2)

where g⃗(·) is a non-linear function which can be imposed a priori or determined
self-consistently via a neural network regression model and γ is a parameter that
can be freely adjusted (here we chose to set γ = 1.5). Focus now on the linear
component of the dynamics, as encapsulated in matrix A, which takes over for
sufficiently large k. We cast in particular A = ΦΛ (Φ)−1, by invoking spectral
decomposition. Here, Λ is the diagonal matrix of the eigenvalues (λ1, λ2, ..., λN).
Working in the spectral domain enables us to enforce n-dimensional attracting
subspace. To this end, we impose λ1 = λ2 = ... = λn = 1, and assume |λi| < 1 for
i > n. These latter N − n quantities are among the target of the optimization
scheme. Moreover, we assume ϕ⃗1, ϕ⃗2,..., ϕ⃗n, namely the eigenvectors relative to
the eigenvalues identically equal to one, to identify frozen linearly independent
directions of the embedding N -dimensional space. The remaining eigenvectors
(ϕ⃗i, with i > n, relative to eigenvalues λi) can be freely adjusted, so contributing
with a total of (N − n) × N tunable parameters to the optimization scheme.
When k >> 1, non-linear terms fade away and the iterative scheme converges to
a linear map, x⃗(k+1) ≃ Ax⃗(k).

By definition, ϕ⃗i, with i ≤ n are stationary solutions of the above system. This
latter is hence associated with a high dimensional attracting invariant manifold:
any linear combination of ϕ⃗i with i ≤ n is in fact a stationary solution of the
linear dynamics that is approached by the examined non linear system, for large
enough iterations k. By acting on the collection of tunable spectral parameters,
which ultimately echo on the topology of the network made of N computing
nodes, and exploiting the non-linearities that act over a finite transient, we aim
at steering different input objects toward distinct target solutions, which can
be stably maintained beyond the limited horizon of the performed training. To
rephrase in words, we postulate that any generically complex classification task is
eventually amenable to a multi-dimensional linear problem, with properly tuned
interactions strengths and provided non-linearities, imposed or self-consistently
learned, are made to initially deform the features landscape.

3.3. TESTING RSN: A SIMPLE DATASET IN R
2 33

To implement the learning scheme on these basis, we consider x⃗(k̄), the image
on the output layer of the input vector x⃗(0) after k̄ iterations of the iterative
algorithm, where k̄ is sufficiently large for the linear approximation to hold true.
Then, we calculate c⃗k̄ = (Φ)−1 x⃗(k̄): the i-th element (c⃗k̄)i represents the projection
of x⃗(k̄) along the eigen-direction ϕ⃗i. Each element of the training set is associated
to a label ℓ ≤ n to identify the category to which x⃗(0) belongs to. Then, an
optimization is carried out which seeks at minimizing the squared distance of c⃗k̄
(that implicitly depend on the training parameters) with a target n-dimensional
column vector c⃗ℓ, made by zeroes except for the element in position ℓ which
is set to unit. In such a way, we require that after sufficiently many iterations
the dynamical map aligns (as much as possible) along the direction ϕ⃗ℓ, where ℓ
identifies the class to which the supplied entry refers. Different initial conditions,
decorated with their reference labels pointing to one of the n classes, are forced
(by a proper use of the non-linearities, as vehiculated by the network arrangement)
to yield different asymptotic equilibria, which approximately align along distinct
directions in reciprocal space. A perfect alignment along the eigen-modes that
flag distinct classes can be eventually forced by performing a projection along
the most represented direction, at the end of the iterative update.

Operatively, we begin by initializing the trainable portion of the eigenvectors
matrix Φ with a random uniform distribution of the assigned entries. Similarly,
for the N−n trainable eigenvalues that enter the definition of matrix Λ. Then, we
define a global model (via Tensorflow [49]) that implements a chain of successive
applications of the linear mapping A. Each linear transfer is followed by the
application of the non-linear filter as specified by equation (3.2), which acts at
the nodes location. Matrix A is written in terms of its spectral decomposition
by composing together the three matrices (Φ)−1, Λ and Φ, as introduced above.
The number of iterations is set to k̄, a parameter supplied as an input. After
iteration k̄, we apply one more time matrix (Φ)−1 to obtain the coefficients c⃗k̄
that enter the definition of the loss function. The trainable weights of the model
are updated according to the gradient descent rule, the loss function gradients
being estimated via a standard backpropagation algorithm.

In the following Section, to challenge the effectiveness of the proposed recipe,
we set to study a simple dataset defined in R2, which bears pedagogical interest.
We will then turn, in a subsequent Section, to examining the ability of the RSN
methodologies to cope with a standard datasets of image.

3.3 Testing RSN: a simple dataset in R2

As mentioned above, we aim at testing the RSN as outlined above against a
simple dataset, created for this specific purpose. The goals are twofolds. On the
one side, we wish to provide the first consistent implementation of the procedure,
by showing that a dynamical system can be trained which preserves its ability to
discern beyond the horizon of the training (as instead it is the case for conventional
recurrent neural networks). This is an indirect mark of the imposed convergence

34 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

towards an asymptotic equilibrium, inherent to the dynamical scheme, which
flags the class to be identified. Then, we shall convincingly demonstrate that
classification by RSN amounts to segmenting the space of the initial conditions in
disconnected domains, each pointing to a distinct asymptotic direction, within the
invariant attracting manifold. Indeed, the trained map will make a single target
mode, representative of the processed class, to stand out as compared to the other.
The degree of alignment as observed empirically improves with the complexity
of the explored dataset, as we shall remark in the following section. A perfect
alignment can be forced by means of a suitable non-linearity that implements a
punctual projection along the most represented direction, at final iteration.

The dataset that we shall here consider as a proof of concept is composed
by two sets of points, laying on the plane. The points falling inside the unitary
circle, centred at the origin, define the first class (displayed in yellow, in Figure
3.1). Those situated outside the circle and inside a square domain of linear width
L =

√
2π, contribute to the second reservoir of datapoints (shown in blue, in

Figure 3.1). The size of the square has been chosen in such a way that the surface
of the two regions where the dataset insists is equal. The two sets are divided by
a non-linear boundary that coincides with the perimeter of the unitary circle. Our
objective is to train a RSN, following the prescriptions of the preceding Section,
so as to associate any given point - randomly generated to belong to the square
domain of width L - to its reference portion, as introduced above.

Figure 3.1: The dataset used as a validation test for the RSN scheme. Points
populate two different regions, of equal relevance, separated by a sharp non-linear
boundary, which we identify as the unitary circle.

For the sake of definiteness we cast N = 10. Every point of coordinates (x, y)
(constrained so as to fall inside the square of linear size L) yields an initial condition
for the RSN that we wish at training, i.e. (x⃗(1)) = (x, y, 0, 0, 0, 0, 0, 0, 0, 0). During
the training stage, we generate a sufficiently large reservoir of (M) points, each
complemented with a scalar label that specifies the class, or domain, where the
corresponding point falls. The first two eigenvalues of Λ are set to unit and
the corresponding eigenvectors, respectively ϕ⃗1 and ϕ⃗2, are fixed and identify
randomly selected (linearly independent) directions in R10. The eigenvalues λi,

3.3. TESTING RSN: A SIMPLE DATASET IN R
2 35

as well and the entries of the vectors ϕ⃗i, for i > 2, contribute to the pool of
parameters that one can freely adjust during optimization. Moreover, and to
test the method in its general formulation, we do not impose a priori the non-
linear function g(·) (the very same function for each node of the RSN). Rather,
we represent g(·) as a two layered neural network, whose parameters are to be
self-consistently adjusted during optimisation. Each of these latter layers is made
of 30 neurons and nodes are entitled with a tanh activation function. We label
with k̄ the number of iterations of the RSN, assumed during training. Recall that
we will also be interested in assessing the behavior of the fully trained systems
for k > k̄. In the following k̄ = 60. The number of epochs is set to 200 and an
early stopping technique has been employed.

In Figure 3.2, the test-accuracy and the corresponding loss are plotted for
k < k̄ and for k̄ < k < 100. As it can be visually appreciated, the accuracy (and
the loss) is stable for k > k̄, i.e., when extending the RSN beyond the iteration
number assumed for training.

Figure 3.2: Accuracy (in blue) and loss (in red) against the iteration k, for a
trained RSN with k̄ = 60 (vertical dashed line). Data refer to just one realization
of the training procedure.

The trained RSN classifies points (x, y) ∈ R
2, provided as an input, by

generating a late time output in R
10 which tentatively aligns along different

target directions: points in the plane contained within the unitary circle with
center in the origin, should predominantly activate the spectral mode ϕ⃗1. In this
case, c1 is thus expected to stand out, as compared to all others coefficients, after
sufficiently many iterations. At variance, points falling outside the unitary circle
are dynamically driven towards a final equilibrium which selectively favours the
eigen-direction ϕ⃗2. The coefficient c2 should therefore prevail over the others.
This scenario is confirmed by inspection of Figure 3.3, where c1 and c2 are plotted
against the iteration number for data points falling respectively inside (top panel)
and outside (lower panel) the unitary circle. Different classes are hence flagging
distinct solutions, as stipulated a priori. It is worth recalling that any direction
obtained as a linear combination of ϕ⃗i with i = 1, 2, is also, by construction, a
stationary solution of the RSN. This is why a residual activation of the other
modes - those relative to eigenvalues one but different from that identified as

36 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

the target for the class under scrutiny - can in principle manifest when the
RSN is challenged against the test-set. A projection along the most represented
eigen-mode would enforce a perfect alignment along the sought target direction,
with no impact on the performance of the trained device.

Figure 3.3: The evolution of the coefficients c1 (orange) and c2 (green) is plotted
for points of the test set positioned respectively inside (top panel) and outside
(lower panel) the unitary circle. The shadowed region points to the standard
deviation of the collected signal when averaging over the population of supplied
input, organized in groups which reflect their domain of pertinence.

The above analysis carried out for a simple benchmark model allowed us
to grasp some intuition on the decision making scheme as implemented via
the dynamical RSN. Classification is here synonym of convergence towards a
specific direction of the attracting manifold. This latter direction is flagged as the
destination target of the dynamics, for a homogeneous ensemble of input items.
Different classes are hence associated by the RSN to the the eigen-directions of
A associated to eigenvalues equal to one. For the case at hand, the separatrix
between the domains inR2 which defines the two classes to be eventually identified
matches the unitary circle. To show that the RSN is able to correctly spot out the
non-linear separation between the two contiguous domain in R2, and so resolve
the distinctive features of the dataset under exam, we consider ⟨ci⟩, the average of
the i-th coefficient, across successive phases of the RSN evolution and for different
input choices (x, y) ∈ R2. More specifically, ⟨ci⟩(x, y) = 1

kF−kI

∑kF
k=kI

(ck)i(x, y),
for all specific coefficients i - including those which will fade away after a transient
- and as function of the departure point. In Figure 3.4 the computed coefficients
are displayed in the reference plane (x, y), with an apposite colorcode and for
different choices of (kI , kF). The panels on the top refers to the initial stages
of the evolution (kF = 5, kI = 1): the separation between the two classes here
considered leaves a clear imprint in the distribution of the ⟨ci⟩ (in particular those
with i > 2) across (x, y) (in Figure 3.4 we plot ⟨c6⟩, as an illustrative example
as well as ⟨c⟩ =

(∑10
i=3⟨ci⟩

)
/7). An abrupt transition is indeed observed for ⟨ci⟩,

with i > 2, when crossing the unitary circle, namely the separatrix between the

3.4. APPLYING RSN TO THE MNIST DATASET 37

two adjacent classes that defines our test model. For small kF (see top panels), the
aforementioned coefficients are in fact remarkably different inside and outside the
sepratrix. On the other hand, for large kF , they are spatially uniformly vanishing
(see lower panels, referred to kF = 50, kI = 40). The patterns associated to ⟨c1⟩
and ⟨c2⟩ are less clear, at short times, but become evidently distinct when the
iterations number is made to increase (see lower panels). Transient modes (those
associated to eigenvalues with magnitude smaller than unit) are employed for
an early assessment of the examined dataset and get progressively disangaged,
at later times. The processed information is in fact passed over the stationary
directions, where it is eventually crystallized for classification purposes. Averaged
projection coefficients can be employed to trace out, in direct space, key distinctive
features that form the basis of decision making. It is here speculated that this
is a general attribute of the RSN that can be exported to other, more complex,
settings for an a posteriori understanding of the principles that guide artificial
reasoning. As a side complement, in Figure 3.5 we depict the non-linear function
g(·) self-consistently obtained via the regression neural model accommodated for
in the RSN. In this specific case, it looks like an inverted ReLu (a rectified linear
unit) with an additional offset.

Figure 3.4: The quantities ⟨ci⟩ for i = 1, 2, 6 and ⟨c⟩ are plotted, for different (x, y),
i.e moving on the plane of the initial condition. Top panels refer to kF = 5, kI = 1.
Lower panel to kF = 50, kI = 40. The separatrix between the two considered
classes (which coincides with the unitary circle centered at the origin) is sensed,
at short times, by the transient directions. The projections of the generated
output along these latter directions fade asymptotically away and the existence of
the two classes, as well as the relative domain of definition, leave an imperishable
trace in ⟨c1⟩ and ⟨c2⟩.

Building on these preliminary observations, we will turn in the next Section
to considering the application of RSN to MNIST dataset.

3.4 Applying RSN to the MNIST dataset

As a further step in the analysis, we apply the RSN to the celebrated MNIST
dataset of handwritten digits [13], which has been previously used in the preceding

38 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

Figure 3.5: The non-linear function g(x) as obtained from the regression neural
model that is associated to each computing neuron of the RSN.

chapters. Each image of the dataset is made of N = 28×28 = 784 pixels and each
pixel bears an 8-bit numerical intensity value. The images are to be classified
in 10 distinct groups (the numbers from 0 to 9). Each element of the training
set is associated with an integer label to point to the class to which the selected
image belongs to. In the following we will set to train a RSN made by N = 784
nodes: the nodes that receive the information as an input are the very same
nodes that carry out the classification, through a dynamical segmentation that
originates from the underlying RSN. The network of excitatory (positive weight)
or inhibitory (negative weight) interactions is shaped by the optimization scheme
which seeks at adjusting the non trivial eigenvalues and eigenvectors of matrix Φ.
The first 10 eigenvalues are set to unit, as in the spirit of the above, and refer to
the eigen-directions employed for discrimination. These latter eigenvectors are a
priori fixed and can be engineered so as to return evocative patterns in the space
of the inspected images, as we shall demonstrate in the following. Further, we
assume g(·) = tanh(·), for the sake of simplicity. Summing up, we can count on a
total of N × (N − 10) + (N − 10) adjustable parameters to yield a fully trained
RSN which can efficiently classify MNIST images.

In Figure 3.6, we challenge the ability of the trained RSN to discern images of
the test set that respectively corresponds to four (top panel) and five (lower panel).
In the former case, as expected, c4 (depicted in orange) sticks out as the only
residual coefficients after sufficiently many iterations of the RSN machinery. All
other coefficients (including c5, plotted in green) are eventually bound to almost
disappear, thus implying that all items belonging to the very same reservoir
of images align along a specific direction that can be here traced back to one
individual eigen-mode. Remarkably, all coefficients - except for the one that
stands for the selected direction - become rapidly negligible. The system is hence
directed towards the chosen asymptotic state, without forcing the projection.
The shadowed regions that are associated to each average curve refer to the
degree of variability inherent to the examined gallery of images. The lower plot in
Figure 3.6 shows the response of the RSN when the images displaying a number
five are read as an input, and the interpretation is in line with the above. In

3.4. APPLYING RSN TO THE MNIST DATASET 39

both cases, the training is performed by arresting the RSN at iteration k̄ = 10:
the outcome is however stably maintained well beyond the training horizon,
with a modest, although significative in terms of its philosophical implications,
improvements in terms of confidence of the assessment. When it comes to the
overall performance, the accuracy on the train set is of about 98%, while on
the test set the RSN scores 97%, in line with what usually reported when using
conventional approaches to deep learning. Figure 3.7 illustrates the progressive

Figure 3.6: Top panel: the full set of handwritten four available in the test set is
provided as an input to the trained RSN and the response monitored in terms of
the obtained ci, with i = 1, ..., 10. As expected, c4 (orange) emerges and converges
to unit, for k > 10 (k̄ = 10 being the maximum iteration number set during
training). All other coefficients, including c5 (green) disappear. Lower panel:
the situation is analogous to that analyzed in the top panel with the notable
exception that now handwritten five are analyzed by the RSN. Hence, c5 (green)
converges to unit while, ci with i ̸= 5 (including c4, in orange) fade away. In both
cases, the shadowed regions reflect the variability of the images, within any given
class of the test set.

convergence of the scheme, for two distinct exemplaries of input images. The RSN
converges asymptotically to the deputed solutions, which respectively correspond
to eigenvectors ϕ⃗4 (left) and ϕ⃗5 (right). The entries of these latter eigenvectors are
shaped so as to return a stylised version of the digits that define the categories in
which the dataset is partitioned. The outcome of the analysis is hence a stationary
stable image, the plastic modulation of the input that is dynamically steered
towards a final destination shaped at will by the operator. It is worth stressing
that the performances of the method are not affected by the specificity of the
target eigenvectors. Stated differently there is no need for them to align with the
category that we aim at identifying. Any random eigenvectors would equivalently
serve the scope.

As mentioned earlier, a specific advantage of the RSN model is the ability to
keep memory of the final state for k > k̄. This is a byproduct of the fact that,

40 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

Figure 3.7: In each row we plot the activity on each node of the RSN, at different
iterations and for two input numbers that belong to two distinct categories,
respectively a four (left) and a five (right), see top panels. After a few iterations
the RSN converges asymptotically to the eigenvectors ϕ⃗4 (left) and ϕ⃗5 (right))
that are triggered by the provided input. Note that the asymptotic solutions can
be shaped to manifest as a stylized version of the number to be classified. The
more yellow the pixels, the more intense the activity on the associated nodes.

for sufficiently large times, the non-linear activation terms are virtually silenced
and the update rule converges to a simple linear scheme. The dynamics aligns
by construction towards stationary directions of the linear mapping, and this
makes it possible to operate the RSN for any k larger than the training horizon
k̄. As a benchmark model, we consider a standard Recurrent Neural Network
(RNN) trained in direct space [50]–[52]. The RNN in its simplest version is
conceived as a single transfer layer between two adjacent stacks made of N = 784
nodes, iterated k times (recognition is performed on the first 10 nodes of the final
layer). The number of trainable parameters is thus N ×N , comparable to the
number of parameters adjusted by the RSN model. In Figure 3.8, we compare
the accuracy measured for the MNIST dataset, for both the RSN and the RNN
trained upon completion of iteration k̄. The accuracy recorded for the RSN (red
symbols) converges rapidly and the achieved score is stably maintained for k > k̄

3.4. APPLYING RSN TO THE MNIST DATASET 41

(here k̄ = 5). Conversely, the RNN (blue symbols) returns its largest accuracy
(basically identically to that obtained with the RSN) only for k = k̄. By taking
just one step further (i.e. adding one additional layer to the RNN) is enough to
lose predictive power.

Figure 3.8: Evolution of the accuracy as computed on the test set of the MNIST
dataset. Red symbols stand for a RSN model, trained at k̄ = 5 (black dashed
line); blue symbols refer to a RNN, with k̄ + 1 consecutive layers, i.e. with k̄
nested applications of the same N × N transfer operator. The RSN quickly
converges to the best accuracy, which stays constant for k > k̄. At variance, the
RNN is capable to correctly discriminating the items provided as input entries
only punctually, at k̄ = 5. It loses any predictive power for k > k̄.

As also shown for the case of the simple model discussed in the preceding
session, there is a progressive tendency to crystallize the final output along the
eigen-directions, where recognition is eventually performed. This observation
can be made quantitative - see Figure 3.9 - by monitoring the evolution of the
coefficients ci, as computed from the state vector across successive iterations. In
particular, three sets of ci are identified: each group clusters together the coeffi-
cients associated to eigen-directions relative to eigenvalues that approximately
share the same magnitude (a set relative to small eigenvalues, a set relative
to larger eigenvalues and the final set of eigenvalues equal to one, i.e., those
associated to the eigen-directions where recognition takes place). We evaluate
the three sets of coefficients for each image in the test set displaying a four
and a five and compute the average distance (square norm) between each set
of coefficients, against k, the iteration of the RSN. The coefficients stemming
from the transient modes single out the differences between the analyzed samples,
before converging to zero when the stationary eigen-modes, inactive at first, get
eventually approached

42 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

Figure 3.9: Euclidean distance (normalized to its maximum value) between
the three sets of coefficients as described in the main body of the chapter and
respectively referred to fours and fives, against the iteration index k. The orange
curve refers to (10) coefficients, associated to modes with small magnitude, as
obtained after the training. The green curve is computed by considering the
projections along (10) modes with eigenvalues bearing larger absolute values,
though smaller than one. The curve depicted in blue refers to the values of
the coefficients of the 10 eigen-directions relative to eigenvalues one, where
classification is eventually performed. The peak travels horizontally suggesting
that the information crawls from the transient towards the stationary modes.
The fact that the orange curve seems more persistent that the green at larger k
is just a consequence of the imposed normalization. The vertical dashed line is
set at k̄.

In the next Section we will turn to considering a variant of the RSN which
is constructed to yield sequential handling of different datasets, with a long
term memory effect. To demonstrate our findings, and as a preliminary proof
of concept, we will split MNIST into two distinct, though perfectly balanced,
datasets, the first formed by digits from zero to four, and the other populated
with the remaining elements, ranging from five to nine.

3.5 Sequential learning: spectral quasi-orthogonality
and the memory effects

In this Section we will discuss a generalization of the RNS which allows to keep
track, to some extent, of a learned task, while dealing with an independent session
of training, on a distinct dataset. To elaborate along these lines, and with the
sole aim of providing a preliminary proof of concept of the basic implementation,
we shall split the MNIST into two distinct, though balanced datasets. The
first will be composed by handwritten digits ranging from zero to four. The
remaining images, displaying numbers from five to nine, constitute the second
reservoir. We will then train the RSN to classify the images belonging to the
first dataset. Then, the obtained RSN undergoes a second round of training

3.5. SEQUENTIAL LEARNING 43

focusing on the images that define the complementary dataset. By assuming
sets of quasi-orthogonal eigenvectors with associated memory kernels, yields a
fully coupled network, the backbone of the RSN, which is capable to efficiently
handle novel tasks while preserving notion of past knowledge. This is at variance
of conventional schemes, based on standard deep learning architectures or RNN,
which tend to eradicate former imprints by overwriting existing memory slots, as
we shall hereafter demonstrate [40]–[42].

Figure 3.10: A schematic layout of the architecture employed to handle sequential
learning. The information stemming from the image presented as an input are
passed to the RSN, and therein iteratively elaborated until convergence to the
deputed stationary solution (here exemplified as a stylized version of the input
number).

MNIST images are read as an input by a layer made of N0 = 28 × 28.
This information is passed to the N nodes of the RSN via an all-to-all linear
transformation encoded by a N0 × N matrix A0, see Figure 3.10. Here, A0 is
fixed. As such, the entries of A0 do not take active part to the optimization
process which is instead focused on the RSN component of the dynamics. Further,
N (assumed even, with no loss of generality) can be larger of smaller than N0

without any limitation whatsoever. We then postulate the following form for
matrix Φ:

Φ =

(
Φ11 ϵΦ12

ϵΦ21 Φ22

)
(3.3)

The four blocks Φij, with i, j = 1, 2 have dimensions N/2×N/2, and com-
parable norms. The parameter ϵ sets the importance of the off-diagonal blocks
as compared to those that define the block diagonal terms. In the limiting case
ϵ = 0 the matrix of the eigenvectors is block diagonal. The eigenvectors are hence
organized into two distinct ensemble, mutually orthogonal and the corresponding
network splits into two disconnected parts. When ϵ ̸= 0 instead the two subparts
of the ensuing network get mutually entangled and virtually indistinguishable
for a sufficiently large magnitude of the coupling parameter ϵ. For ϵ ̸= 0, though
relatively small as we shall assume in the following, the eigenvectors form two
quasi-orthogonal blocks. Focus now on the diagonal matrix of the eigenvalues.

44 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

These are also split into two groups of identical cardinality, which will be eventu-
ally structured as follows

(
1, 1, 1, 1, 1, λ6, ..., λN/2

)
and

(
1, 1, 1, 1, 1, λN/2+6, ..., λN

)
.

Trivial eigenvalues are associated to specific eigen-directions, the target of the
RSN, which stay put across optimization. In practice, each eigenvalue equal to
unit points to a specific memory slot which can be filled and, at least partially,
preserved, across multiple learning stages. Starting from this setting we proceed
as follows:

• We set at first to zero the first five eigenvalues belonging to the second
group, as identified above. In doing so, we seek at protecting a specific set
of memory slots, which should not be contaminated during the first round
of training

• We then train the RSN to recognize and correctly classify the first reservoir
made of handwritten digits from zero to four, as outlined above. During
this operation, the optimization acts on λ6...λN/2 and on (the full set or a
limited sub-portion of) the entries of the eigenvectors associated to these
latter eigenvalues. Here, ϵ ̸= 0, which in turn implies that by modulating
the entries of the eigenvectors belonging to the first of the two sets, yields an
indirect signature on all the inter-nodes weights in direct space. At the end
of the optimization, the RSN is capable to correctly classifying analogous
images belonging to the test set.

• We then turn to the second round of training by providing to the above
RSN (namely, the RSN that has been trained to cope with the first dataset)
the elements belonging to the second reservoir of images, those depict-
ing digits ranging from five to nine. The second set of memory slots is
turned on, by setting to unit the eigenvalues initialized to be zero: the
corresponding eigenvectors define the asymptotic solutions that the trained
system should eventually approach. The eigenvalues that identify the target
eigen-directions from the preceding training are instead set to zero.

After completion of the optimization, one can check the performance of the RSN,
which has been trained across two successive stages, referred to two distinct
datasets. To this end we turn on all possible memory slots (trained as follows
the above, two steps, procedure): in practice we set to one the eigenvalues
relative to the (10) eigen-directions where information is asymptotically conveyed.
In Figure 3.11 (top panel), the performance of the RSN, as measured by the
reported accuracy, is tested against the epochs of the optimization scheme. The
optimization is carried out by assuming k̄ = 10 in the RSN, and assuming 100
of epochs for each of the two nested stages of learning. Already after a few
epochs the RSN returns a very high accuracy against images of the test set which
display digits ranging from zero to four. When the RSN gets also trained on the
complementary reservoir of handwritten digits, as follows the sequential scheme
highlighted above, it quickly manages to handle the novel task with an adequate
success rate, while, at the same time, manifesting a relatively modest drop in

3.5. SEQUENTIAL LEARNING 45

performance as referred to the former. Notice that the images, differently from
other methods, are supplied as an input with no extra markings, or alert flags,
to point to the relevant group of destination patterns. To grasp the interest of
the proposed scheme we report in Figure 3.11 the results obtained for a RNN
with a number of layers equal to k̄ + 1. As immediately confirmed by visual
inspection, any knowledge coming from the first round of training is - almost
instantaneously - lost, when the network becomes acquainted with the second
task. Similar conclusions (data not shown) are obtained when dealing with a deep
neural network, with a standard feedforward architecture [40]–[42]. Summing up,
working with a quasi-orthogonal basis, with a set of (almost) mutually exclusive
blocks equal to the number of tasks to be eventually handled, yields a RSN
which can be sequentially trained, while keeping memory of the previous training
sessions. A drop in the recorded accuracy is however found which could be
possibly mitigated for increasing RSN size and/or addressing ad hoc solutions
that require further investigations, beyond the scope of a mere proof of concept.
It is also remarkable that the accuracy displayed against the first dataset, and
after the initial sudden jump that follows the second training round, ramps again,
epoch after epoch, to align to that refereed to the second dataset.

46 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

Figure 3.11: Top panel: accuracy against the epochs number for the RSN. The
first 100 epochs refer to the RSN confronted with the task of classifying the images
of the dataset made of digits from zero to four. Then, the second range of epochs,
refers to the RSN while learning to classify numbers from five to nine, after having
completed the first stage of training. The accuracy drops but the RSN keeps still
memory of the first task, while learning to cope with the second with an almost
identical score of reported success. In this specific example, the elements of the
off diagonal blocks Φ12 and Φ21 are kept fixed, during optimization. Lower panel:
sequential learning is ineffective with usual RNN (and standard feedforward deep
neural networks, data not shown), since any form of pre-installed knowledge
gets washed out during a subsequent, independent, training stage. Here k̄ = 10,
ϵ = 0.25 and N = 1000.

3.6 Conclusions

In this chapter we have introduced and tested a novel approach to automated
learning, which is rooted in reciprocal space and exploits foundational elements of
the theory of discrete dynamical systems. The information under scrutiny is read
by a collection of nodes, typically (but not necessarily) the pixels of the image
provided as an entry, and further processed by the very same nodes, as follows
an iterative update scheme which alternates linear mapping and non-linear filters.
Depending on the characteristics of the signal provided as an input, the ensuing
dynamics is steered (as a byproduct of the training) towards different asymptotic
solutions for the subsequent recognition to take eventually place. The convergence
to the asymptotic state is stable by construction, and the alignment along the
selected direction that we demonstrate empirically for a classical benchmark model
is guaranteed also when pushing the iterations beyond the limited horizon of the

3.6. CONCLUSIONS 47

optimization. We have referred to the proposed methodology as to Recurrent
Spectral Network RSN, to signify the dynamical nature of the process which is
formulated in reciprocal domain.

Neural networks are sometimes called black boxes because it is not immediate
to understand how or why they work as well as they do. At variance, the
operational mode of a RSN is absolutely transparent and, as such, it could
help unveiling the blanked of mystery that surrounds deep learning applications.
Indeed, the RSN asymptotically aligns along different directions within the
attracting manifold of an underlying - linear - discrete dynamical system. Learning
to classify within the RSN amounts to partitioning the high dimensional input
space into separated domains, each pointing to a specific stationary eigen-mode
of the underlying dynamical system, in its linear approximation. Non-linearities
act over a transient and fades eventually away, when the non trivial classification
problem has been de facto turned into a linear one.

A variant of the RSN has been also considered which accounts for quasi-
orthogonal eigen-directions to carry out a sequential handling of different datasets.
In practice, a RSN can be assembled which keeps memory of an initial task, while
being subject to another session of training on an independent dataset.

Several directions for further investigations can be outlined. One interesting
possibility is to modify the loss function by forcing the contribution at iteration
k to be smaller than that at iteration k + 1. Preliminary checks shows that
the RSN tunes self-consistently its convergence rate, which is hence not a priori
imposed as it is here done. It is also tempting to speculate that proceeding along
these lines, one could eventually generate a RSN which is capable of improving
its accuracy score by iterating further beyond the specific window of training.
Another possibility is to introduce apposite frustration mechanisms, which tend
to disfavour the accidental convergence towards directions that have been already
exploited, when operating with the sequential learning protocol. Also, it would
be extremely important to devise other possible strategies, alternative to the
one here employed, to structure the eigenvectors matrix for multiple datasets
handling.

48 CHAPTER 3. RECURRENT SPECTRAL NETWORKS - RSN

Chapter 4

Complex Recurrent Spectral
Networks- C-RSN

4.1 Introduction

In the previous chapter, we introduced a new strategy for machine learning in
which the evaluation process is associated with the evolution of a dynamical
system. The formulation of such strategy is possible thanks to the spectral
parametrization of the adjacency matrix of a fully connected network. The
constraints imposed in the parametrization cause the dynamics to forcibly evolve
towards a vector subspace defined by certain eigenvectors locked in the spectral
decomposition. During the learning process, the parameters are selected in such a
way that, by using a given set of data as initial condition, the system collapses into
one among the possible final states, specifically associated to the class the supplied
data belongs to. By making use of this strategy some important properties have
been observed. Firstly, the evaluation process appears to be independent of the
number of steps (i.e. the system’s integration time) taken during the training
phase. In other words, the accuracy (or equivalently the measured loss) converges
steadily to an asymptotic value which is indefinitely maintained across successive
iterations, also beyond the limited horizon of the training. This property is
not observed, for example, in standard Recurrent Neural Networks where the
number of iterations is a fundamental parameter to be provided for a correct
assessment of the data belonging to the test to be analyzed. Furthermore, as
was discussed in the previous chapter, the problem of sequential learning can be
successfully addressed through RSN . However, the RSN model predicts a static
final state. This is at variance with what it happens for real biological systems,
where dynamics plays a crucial role. Indeed, neurons involved in the examined
process display a continuous activity over time. To try to overcome this critical
issue, in this chapter we will briefly introduce a variant of the RSN model called
Complex Recurrent Spectral Network (C-RSN). The main new ingredients are:

• The non linearity is here localized on a subset of the nodes, call non-linear
part.

49

50CHAPTER 4. COMPLEX RECURRENT SPECTRAL NETWORKS- C-RSN

• The fixed eigenvalues are complex value of the type e2πi/Ti .

• The memory is confined in the linear part.

• The input is read in the non-linear part.

By introducing such new ingredients in the the model, as we shall see in detail
in the next section, the system evolves towards a final state that oscillates in time.
The final state will be a linear combination of the eigenvectors associated with the
complex and fixed eigenvalues. The period of final state depends on the values of
the constants Ti involved in the definition of the eigenvalues kept fixed. Moreover,
the obtained shape of the emergent wavefront reflects the specific combination of
eigenvectors which remains active in the asymptotic state. In other words, the
complex eigenvalues constitute a basis of frequencies (or periods) on which the
state can be written at very large times. Using these frequencies (assuming they
are sufficiently large in number), it is possible to write a functions fc(t) by means
of the activity of the neurons in a sub-portion of the network. Thus, it is possible
to define a classification problem by asking the network to generate a specific
function of time when the initial activity on the network corresponds to one of
the data to be classified. As will be elaborated later, we have here considered the
case where the function fc(t) is ’written’ in a single neuron. Therefore, unlike in
the RSN model, the information acquired during the evaluation process is stored
in a minimal portion of the network, leaving the remaining part of the network
free to perform other evaluation processes.

4.2 Neural network as a discrete map

The mathematical foundation of the C-RSN is here presented. Let be f̃ the
non-linear function involved in the process, W the weighted adjacency matrix of
the fully connected neural network of size N and x⃗ the RN vector describing the
neurons activity.
The non linear function f̃ is defined as follows:

f̃(xi) =

{
tanh (xi) if i ≤ L

xi if i > L
(4.1)

Thus, in the following we will refer to the sets of neurons NL = {1, 2, . . . , L−1, L}
and L = {L,L+ 1, . . . , N − 1, N} as the non-liner part and the linear part of
the network.

The square matrix W is described by means of the spectral decomposition:

W = ΦΛΦ−1 (4.2)

where Λ is the diagonal matrix of the eigenvalues λi and the Φ is the basis of the
decomposition. We introduce some constrains on the eigenvalues and organize

4.2. NEURAL NETWORK AS A DISCRETE MAP 51

them as follows:

λi =

{
e2πi/Ti if i < M

λi | |λi| < 1 if i > M
(4.3)

Figure 4.1: Spectral decomposition used to describe the linear transformation.
The trainable parameters are highlighted in blue. The third matrix is the inverse
matrix of the basis Φ and depend to both trainable elements and fixed elements
of the matrix Φ

Namely, the first M eigenvalues are fixed to be equal to M complex values
with modulus equal to 1 and a phase that depends on the parameter Ti, called
period. The second set of eigenvalues are bounded to have a magnitude lower
than 1.
The columns of the matrix Φ are the eigenvectors ψk of the decomposition. The
first M eigenvectors are fixed and localized in the linear part of the network. In
particular, for k < M , we set:

ψk(j) =

{
1 if j ∈ N,N − k

0 otherwise
(4.4)

That is, in each fixed eigenvector only two neurons are involved: the last one
and one that depends on the specific eigenvector considered. For example, the
last three fixed eigenvectors are:

ψM−2 =

0
...
0
1
0
0
1

ψM−1 =

0
...
0
0
1
0
1

ψM =

0
...
0
0
0
1
1

. (4.5)

Finally, the Complex Recurrent Spectral Network (C-RSN) is defined as the
discrete map:

x⃗n+1 = f̃(ΦΛΦ−1x⃗n) = M(x⃗n). (4.6)

52CHAPTER 4. COMPLEX RECURRENT SPECTRAL NETWORKS- C-RSN

As for the RSN model, the trainable parameters of the C-RSN architecture
are the N −M bounded eigenvalues and the relative eigenvectors. Since the
constrain on the eigenvalues magnitude must be satisfied during every single step
of the training procedure, the trainable eigenvalues λi are hereafter written as:

λi = tanh(ρi) i =M + 1, . . . , N, ρi ∈ R. (4.7)

In the next section some properties of the forward evolution of the C-RSN
will be introduced.

4.3 Forward evolution of the map M
Let call x⃗0 the initial condition for the map M and x⃗t the vector obtained after t
iterations of the discrete map (4.6). Assume the dynamics to be linear for the
sake of argument. Under this condition, due to the constraints on the eigenvalues,
the asymptotic dynamics collapses within the subspace defined by the first M
eigenvectors. However, for some values of the trainable parameters, the effect of
non-linearity can prevent the system to eventually converge towards the deputed
asymptotic manifold, i.e. the subspace spanned by the eigenvectors associated
to fixed (and complex) eigenvalues. It can be however shown that these latter
unsuited behaviours occur on just few occasions over a large sample of statistically
equivalent realizations of the training. Furthermore, as will be clearer later on,
these solutions that we might call divergent with am abuse of language are
unfavorable for the loss minimization problem and they are not explored during
the training phase. In other words, although divergent solutions are theoretically
possible, the typical range of parameter values and the learning process prevent
such solutions from emerging. For this reason, from now on we will consider the
dynamics to evolve iteration by iteration towards the final subspace spanned by
the fixed eigenvectors.

Suppose the dynamics after t∗ iterations be confined in the subspace of the
first M eigenvectors, so that:

x⃗t∗ =
M∑
k=1

αkψk. (4.8)

Since the form of the eigenvectors described by (4.4) and the non-linearity
(4.1), the dynamics on the subspace is linear and the activity is forced to remain
confined in the subspace. In particular after a new application of the map M,
the activity become:

x⃗t∗+1 =
M∑
k=1

αke
2πi/Tkψk. (4.9)

and after t more iterations:

x⃗t∗+t =
M∑
k=1

αk(e
2πi/Tk)tψk =

M∑
k=1

αke
2πit/Tkψk. (4.10)

4.4. CLASSIFICATION TASK 53

The coefficients αk are in general complex values due to the presence of
the complex eigenvalues in the decomposition. Let us recall that the training
parameters are hidden into the definition of the coefficients αk. In fact, depending
on the specific selection of the underlying trainable parameter (the element of
the free eigenvectors and the associated eigenvalues) the system will generate
different evolution patterns. This will leave an indirect mark in the coefficients of
the recorded activity as expressed in the reference basis of the explored manifold.
To keep track of this inherent dependence we make explicit in αk the dependence
of a vector of trainable quantities that we shall label β⃗. Namely:

αk(β⃗) = r(k, x⃗0, β⃗) + ic(k, x⃗0, β⃗), (4.11)

where it has been made explicit the fact that the coefficients depend also on
the initial conditions x⃗0. Thus, the equation (4.10) rewrites as:

x⃗t∗+t =
M∑
k=1

αk(β⃗)e
2πit/Tkψk =

M∑
k=1

(r(k, x⃗0, β⃗) + ic(k, x⃗0), β⃗)e
2πit/Tkψk =

=
M∑
k=1

(
r(k, x⃗0, β⃗) + ic(k, x⃗0, β⃗)

)(
cos(

2πt

Tk
) + i sin(

2πt

Tk
)

)
ψk.

(4.12)

By remembering the chosen form of the eivengectors and in particular that
ψk(N) = 1 ∀ k ∈ {1, ..,M}, the N-th component of x⃗t∗+t is:

x⃗t∗+t(N) =
M∑
k=1

(
r(k, x⃗0, β⃗) + ic(k, x⃗0, β⃗)

)(
cos(

2πt

Tk
) + i sin(

2πt

Tk
)

)
1 =

=
M∑
k=1

(
r(k, x⃗0, β⃗) cos(

2πt

Tk
)− c(k, x⃗0, β⃗) sin(

2πt

Tk
)

)
+

+ i

(
c(k, x0, β⃗)cos(

2πt

Tk
) + r(k, x⃗0), β⃗ sin(

2πt

Tk
)

)
.

(4.13)

Focusing on the real part:

R(t, x⃗0, β⃗) = Re (x⃗t∗+t(N)) =
M∑
k=1

(
r(k, x⃗0, , β⃗) cos(

2πt

Tk
)− c(k, x⃗0, β⃗) sin(

2πt

Tk
)

)
(4.14)

where β⃗ stands for the trainable parameters of the model. This latter equation
will be used in the definition of the loss as explained in the following.

4.4 Classification task
Let be D a data set made by couples (x⃗0, ŷ)d with d = 1, ..., |D|. The vector x⃗0 is
the input vector and ŷ ∈ {1, .., C} is the associated label. Different labels refer

54CHAPTER 4. COMPLEX RECURRENT SPECTRAL NETWORKS- C-RSN

to different classes of the problem. Let now introduce C discrete functions of
time fc(t) one for each class of the problem. A classification task is formulated
by asking the network to minimize the following loss function:

L =
∑
d∈D

L(x⃗ d
0 , β⃗)

where L(x⃗ d
0 , β⃗) =

T∑
t=0

|R(t, x⃗ d
0 , β⃗)− fŷd(t)|2.

(4.15)

The minimization is operated by acting on the trainable spectral parameters β
introduced in the section (4.2). In other words, we ask the network to learn
how reproduce the sought target function of time on one neuron (the last one)
during a time window of length T when an input is used as initial condition of
the dynamics. In the following, we will show the results obtained by working
with the already presented MNIST dataset [13].

4.5 Results

To each image is associated a label corresponding to the class of the image, i.e. the
digit shown in the image. We trained a C-RSN network of size N = 1000. Te non-
linearity (4.1) acts only on the first L = 800 neurons, while the number of fixed
eigenvectors and eigenvalues was set to 5. The model was trained to reproduce
the corresponding target discrete function of time in a 20 steps long time window,
during which the loss is computed. Before that window, the network is left to
evolve for 10 time steps starting from an initial condition which is shaped by the
selected image. More specifically, any item from the MNIST data base is properly
normalized so to have a signal to lay in the range [0, 1] pixelwise. The obtained
information is poured on a selected subset of nodes belonging to the portion of
the network which decorated with the inclusion of the non linear processing units.
During the first ten steps the network carries out the classification by separating
the dynamics resulting from initial conditions belonging to different classes in the
corresponding final states.

In figure 4.2 the discrete time function f(t) produced as an output in the
last neuron is reported in blue. The red line represents the target discrete time
function for the input class. The two curves are very close: the model has
successfully learned to reproduce the target function. Note how the two curves
are close even after the window in which the loss is calculated (indicated in yellow
in the figure). Furthermore, the two curves begin to get closer even before this
time window. Both of these observations are in agreement with what was found
in the RSN model presented in [4]. In particular, the fact that the curves remain
close for successive time steps is a direct consequence of the stability of the final
subspace.

It is possible to calculate the accuracy of the model by evaluating for each
input which of the possible target functions is closest (according to the distance

4.5. RESULTS 55

L2) to the function observed in the last neuron. For the MNIST dataset, we
found an accuracy on the test set of 0.9784.

Figure 4.2: Activity recorded in the last neuron (blue line) compared with the target temporal
function (red line). In yellow the time window during which the loss is calculated. The example
shown refers to an input belonging to the class "1".

4.5.1 The role of the basis

Looking at equation (4.14) it is clear that the function observed in the last neuron
is a linear combination of sinusoidal functions characterized by the periods Ti.
Recall that each of the fixed eigenvectors possesses only two unit entries (the
other being set to zero). They all share one element identically equal to unit
which sits on position N . The other non trivial entry is located in different
positions depending on the considered eigenvector. On this latter node, the
recorded signal will be purely sinusoidal - by definition - with a characteristic
period which reflects the chosen value of Ti in the definition of the associated
eigenvalue. The amplitude of the sinusoidal wave are an indirect measure of the
relative importance of the selected mode in the emerging time resolved pattern
as displayed on node N . In other words, the parameters Ti introduced in (4.3)
select some elements from the Fourier basis that define the basis the network
can use to reproduce the signal in the last neuron. In figure (4.3) the network
is visualized in two different phases of the dynamics: the initial condition and
a successive time that belong to the finite time windows where loss evaluation
is carried out. The activity starts in the non-linear part of the network (panel
A) and flows to the linear part after some iterations. After enough iterations
the activity is completely confined in the linear part (panel B). The real part of
the signal in the last neuron reproduces well the target time function while the
activities in the neurons involved in the fixed eigenvectors are characterized by
sinusoidal activity as we expected.

56CHAPTER 4. COMPLEX RECURRENT SPECTRAL NETWORKS- C-RSN

Figure 4.3: Visual representation of the C-RSN network in two different moments
of the dynamics. To simplify the representation, not all the nodes are represented:
each of the other nodes represents a group of nodes, except for the last node and
the five nodes involved in the fixed eigenvectors. The activity on the last neuron
is represented by the blue line in the bottom sub-panel, while the target function
is shown in red in the same sub-panel. The non trivial entries of the vectors that
shape the attracting manifold are arranged as a linear horizontal layer (just above
the neuron where the final signal is displayed) in the scheme depicted above. The
two sub-panels on the right and on the left show the activity of two of them,
characterized by the periods T1 = ∞ and T5 = 5 respectively. Panel A refers to
the initial condition: the input data enters the network as activity of the neurons
in the non-lnear part. During this phase the neurons belonging to the linear part
are not activated. In panel B a snapshot of the network state during the loss
window is shown. In that phase the activity is entirely confined to the linear part.
The activity on the last neuron is in accordance with the target function. The
activities on the two selected neurons are sinusoidal with amplitude corresponding
to the coefficients of the target function when decomposed in the Fourier basis.

4.5. RESULTS 57

4.5.2 Multiple evaluations

C-RSN networks are able to manage multiple input data sequentially, without the
processing of the new data influencing and disturbing the dynamics relative to
the first data. This is possible provided that the second input data is read after
a sufficiently long time to ensure that the dynamics of the first data is already
collapsed into the stable subspace. Indeed, as we demonstrate in the following,
under that hypothesis the two dynamics evolve separately.

Let introduce a new formalism and split the activity vector x⃗(t) in two
components: one involving the elements belonging to the linear part of the
network, and one for the elements of the non-linear part:

x⃗(t) = x⃗ nl(t) + x⃗ l(t) (4.16)

where:

x⃗ nl(t) =

x1
...
xL
0
...
0

x⃗ l(t) =

0
...
0

xL+1
...
xN

. (4.17)

Under this new formalism, the action of the function f̃ is:

f̃(x⃗(t)) = f̃(x⃗ l(t) + x⃗ nl(t)) = x⃗ l(t) + tanh(x⃗ nl). (4.18)

Let w⃗(t) be the activity vector after t iterations of the map M starting from
the initial condition w⃗0, where t >> t̄ and t̄ is the last time step during which
the loss is computed. As we explained in section (4.3), w⃗(t) is confined in the
subspace defined by the fixed eigenvectors:

w⃗(t) =
M∑
k=1

γkψk = w⃗ l(t), (4.19)

where we have made explicit the fact that the final state includes only neurons of
the linear part. Moreover, eq. (4.9) tells us that also w⃗(t+ 1) is confined in the
same subspace and in particular:

w⃗(t+ 1) = ΦΛΦ−1w⃗(t) = w⃗ l(t+ 1) (4.20)

We now introduce a new activity vector y⃗(t) which is added to the vector
w⃗(t). The activities of the network neurons are now described by the sum vector
s⃗(t) = w⃗(t) + y⃗(t). The action of the map M on the sum vector is:

58CHAPTER 4. COMPLEX RECURRENT SPECTRAL NETWORKS- C-RSN

M(w⃗(t) + y⃗(t)) = f̃(ΦΛΦ−1(w⃗(t) + y⃗(t))) =

= f̃(ΦΛΦ−1w⃗(t) + ΦΛΦ−1y⃗(t)) =

= f̃(w⃗ l(t+ 1) + ΦΛΦ−1y⃗(t)) =

= w⃗ l(t+ 1) + f̃(ΦΛΦ−1y⃗(t)) =

= w⃗(t+ 1) +My⃗(t) = w⃗(t+ 1) + y⃗(t+ 1).

(4.21)

So, the dynamics of the vectors w⃗(t) and y⃗(t) evolve separately. This is a direct
consequence of the fact that the evaluation of the input data leads to a state of
the network that evolves while remaining confined in a subspace involving only
neurons belonging to the linear part of the network.

This property can be used to evaluate and classify different inputs sequentially
by working with a trained C-RSN on a specific dataset. In fact, once the evaluation
process of a first input has converged, a second input can be read by the C-RSN
model which will be classified by the network independently of the first input.
The global final state of the network can be read in the real part of the activity
on the last neuron as a function of time. The resulting time function will be
the linear superposition of the two functions associated with the corresponding
classes of the inputs, shifted by a phase that depends on the time distance elapsed
between the reading of the two inputs. In formulae, calling t1 and t2 the entry
times of the two inputs, the real part of the activity in the last neuron is:

R(t) = fc1(t) + fc2(t+ γ) for t >> t1, t2, (4.22)

where fc1 and fc2 are the target functions for the inputs classes and γ is the
time shift between the two entries. A sequential evaluation example involving
the MNIST data set is represented in the figure (4.4). Four different frames of
the network evolution are shown. In the panel A (t = 0) a first input is put
in the non-linear part of the network. The dynamics evolves following the rule
explained in section (4.3) and after some time steps (t = 39) it collapses into
the linear part showing in the last neuron a temporal evolution that mimic the
target function (panel B). At t = 100 a new input enters the network (panel C).
The global dynamics collapses again into the linear part of the network while
the activity on the last neurons converges to the linear combination of the two
target functions as described by the eq. (4.22). So, by using a C-RSN previously
trained to classify separately the elements of a dataset, it is possible to evaluate
different inputs sequentially. The final information obtained allows to identify
both the two classes of the inputs seen and the time shift separating the entries.
This information is completely stored in the simple function of time obtained
in the last neuron. It is important to note that this property is automatically
obtained from the properties of the C-RSN model and does not require further
adjustments during the training phase.

4.6. CONCLUSION 59

Figure 4.4: Four different steps of the evolution of a C-RSN trained on the MNIST
dataset. Panel A shows the step of entry of the first data. Panel B shows a
subsequent step in which the dynamics and evaluation process of the data reached
convergence. The sub-panel shows how the real part of the activity recorded
in the last neuron (blue line) is in perfect agreement with the target function
(red line). Panel C shows the moment at which a second input is inserted into
the network without the residual activity related to the first data point being
removed. Finally, panel D shows how the global dynamics (the residual one and
the one due to the new input) collapses again towards the linear part of the
network. In particular, the wave front observed in correspondence of the last
node (or entry of the eigenvectors) results from a linear combination of the two
selected target function. Moreover, and surprisingly enough, it also keep memory
of the time delay between the successive insertion of the two examined images.

4.6 Conclusion

Artificial neural network models have historically been inspired by biological
observations of how the human brain works. However, these tools show huge

60CHAPTER 4. COMPLEX RECURRENT SPECTRAL NETWORKS- C-RSN

differences with current neuroscience models and experimental observations. First
of all, brain is a dynamical entity, and different processes are ultimately shaped
by a time resolved evolution of different neuronal populations. In the last two
chapters we have introduced two new artificial neural network models that mimic
some of the behaviors seen in nature. In the previous chapter the RSN model
was presented in detail. This latter model,constitutes a first step in the direction
of creating bio-inspired models but it presents some critical issues. First of all,
it is necessary to define an initial time after which the nonlinearity begins to
vanish. A second criticality is due to the fact that the final state appears to be
a stable and charatcreized by a constant activity level. At variance in nature
we observe continuous dynamics that never converges to a constant state. To
overcome these critical issues in this chapter we have introduced an extension
of the RSN model as discussed in chapter 3 called Complex Recurrent Network
(C-RSN). First of all, in this new version the non-linearity is confined in space
(i.e., in a subset of nodes), rather than vanishing over time. That is, while the
RSN model has a time dependence converging towards a linear model, the C-RSN
does not exhibit this dependence and the model remains unchanged over time.
Similarly to wha introduced in chapter 3 and in [4] for the RSN model, in the
C-RSN the adjacency matrix that defines the interactions between neurons is
described by means of a spectral decomposition. The set of trainable parameters
of the model consists of some of the eigenvectors and their related eigenvalues,
the latter constrained to have a modulus less than one. The other eigenvectors
and eigenvalues are fixed and are not modified during the training phase. In
particular, the subset of fixed complex eigenvalues display unitary modulus. Each
of the fixed eigenvalues is associated with a particular frequency. The structure
of the fixed eigenvectors a the constraints on the eigenvalues mean that once
the dynamics reaches the subspace described by these eigenvectors, it remains
confined. Furthermore, these eigenvectors share the last neuron of the network
which can be used to write a signal as a weighted sum of sinusoidal functions
with frequencies equal to those involved in writing the fixed eigenvalues. Thus, a
classification problem can be defined by asking the network to learn to reproduce
on the last neuron a different temporal activity for different classes of input. The
model was then tested with the MNIST dataset showing excellent accuracy. The
ability to classify remains unchanged over time as the system reaches a stable
steady state. Furthermore, once the model has been trained on a dataset it can
be used to classify multiple inputs sequentially. The final activity read on the
last neuron contains information on the classes of the different inputs read and
the temporal distance elapsed between two successive inputs.

With this chapter we conclude the part of the thesis relating to bio-inspired
models. In the next chapters we will see how the neural networks that we have
studied for the development of the theoretical results presented so far can be
applied to different research areas. In particular, in this manuscript we will present
two different applications: one in the epidemiology and the other concerning the
analysis of the internal morphology of volcanoes.

Chapter 5

Mobility-based prediction of
SARS-CoV-2 spreading

From March 2020, for years the rapid spreading of SARS-CoV-2 and its dramatic
consequences were forcing policymakers to take strict measures in order to keep
the population safe. At the same time, societal and economical interactions
were to be safeguarded. A wide spectrum of containment measures have been
hence devised and implemented, in different countries and at different stages of
the pandemic evolution. Mobility towards workplace or retails, public transit
usage and permanence in residential areas constitute reliable tools to indirectly
photograph the actual grade of the imposed containment protocols. In this
chapter, taking Italy as an example, we will develop and test a deep learning
model which can forecast various spreading scenarios based on different mobility
indices, at a regional level. We will show that containment measures contribute to
“flatten the curve” and quantify the minimum time frame necessary for the imposed
restrictions to result in a perceptible impact, depending on their associated grade.

5.1 Introduction

Machine Learning (ML) [53], [54] has been extensively employed in the context
of time series modeling and forecasting [55]. Groundbreaking applications in
natural language processing [56], financial forecasting [57], speech recognition
[58] have earned this particular subfield of ML lots of investments and attention.
Notably, the use of Deep Neural Networks [46], [47], with respect to traditional
approach to time series analysis, enabled the algorithm itself to learn from the
data the relevant variables and their associated correlations. Following the rapid
spreading of SARS-CoV-2, numerous attempts have been made for predicting
the time evolution of epidemics across different spatial scales [59]–[61]. To this
end ML techniques have been also employed [62]–[64]. Although very accurate
and useful, these models often lack the ability to incorporate the effects of
containment measures as implemented by local governments and solely rely on
selected epidemiological variables (e.g. number of tests performed, number of
deaths) to predict the spreading of the virus. The putative impact of different

61

62CHAPTER 5. MOBILITY-BASED PREDICTION OF SARS-COV-2 SPREADING

containment strategies as devised by local governments is hence customarily
modeled by resorting to standard epidemiological tools [65], [66],a choice which
potentially limits the predictive ability of the trained ML devices. Starting from
these premises, we suggest that mobility indices provide solid, almost real-time,
indicators of the implemented containment strategies. When included in the
training, they are processed as key information for future forecasting of ML
algorithm. A self-consistent argument allows in turn to estimate the time it takes
for the imposed mobility restrictions to materialize in an effective drop of the
curve of infected individuals.

In the following, we will describe the adopted machine learning approach
which is tailored to predicting the SARS-CoV-2 epidemic evolution in the twenty
regions of Italy 1. The model is trained by using the time series of selected
epidemic quantities (number of infections, number of death, etc..) and includes
information on the population mobility. We will show that, by looking at epidemic
and mobility trends during the np past days, the model is able to return sensible
information on the values of a target epidemiological parameter in the next nf

days. Working in the proposed framework, we are also able to estimate the time
needed for the imposed restriction to yield consequences that can be appreciated at
the scale of the whole community in terms of reduction of hospitalized individuals.
To this end, we consider different grades of imposed restrictions on individual
mobility ranging from a complete, nationwide lockdown to milder, regional-level
restrictions to virtually no restrictions at all.

5.2 Methods

5.2.1 Architecture

We worked with Recurrent Neural Networks (RNN) [67], a class of deep learn-
ing architectures widely used in time series machine learning modeling. Such
architecture is designed to be sensitive to the ordering of the elements in the
input sequence [67]. This is achieved by introducing an inner state vector that
is updated by the network itself, during each successive iteration. This latter
vector allows the network to “keep memory” of the past input values. RNNs suffer
of the so-called vanishing gradient problem: the gradients in later steps of the
sequence fade away quickly in the backpropagation process, without reaching
earlier input signals and thus making it hard for the RNN to apprehend and
correctly incorporate long-range dependencies [67]. To oppose this problem,
gating-based architectures, such as the Long short-term memory (LSTM), have
been proposed [68]. Trainable vectors, called gates, are accommodated for in the
architecture and control the inner state update, at each iteration. This technical
solution makes it possible for the network to “forget" or “store" the novel bits of
information that are processed at each time step, along the sequence of collected

1Valle d’Aosta, Piemonte, Lombardia, Trentino - Alto Adige, Veneto, Friuli Venezia Giulia,
Liguria, Emilia Romagna, Toscana, Marche, Umbria Lazio,Abruzzo, Molise, Campania, Apulia,
Basilicata, Calabria, Sicilia e Sardegna

5.2. METHODS 63

events. In this way, early information deemed crucial for handling the forecasting
task can be stored in the bulk while, recent inputs, identified as unessential, are
safetly removed from the memory kernel. This is precisely the reason why we
have decided to employ a LSTM-like architecture for the problem at hand. In
the following we shall operate with a deep architecture composed by two LSTM
hidden layers of 300 and 20 nodes, respectively. Moreover, an additional dense
layer is introduced to produce the sought output. Further, use is made of Adam
[69] optimizer with a learning rate of 0.0005. The batch size is set to 100 and the
number of epochs during the learning procedure is assumed equal to 100. We
hand picked these hyper-parameters without any ad-hoc optimization.

5.2.2 Data set

The dataset consists in discrete daily series of length T of selected epidemic and
mobility parameters for each of the 20 regions in Italy. More specifically, we focus
on the following quantities: (i) number of patients in intensive care (ii) number
of hospitalized patients (iii) number of patients in home isolation (iv) number of
deaths. Data from the COVID-19 Community Mobility Reports of Google [70]
are employed to track the change in time of the degree of mobility, as associated
to different regions of Italy. We calculate in particular the evolution as percentile
change from baseline values2 of the reported mobility indexes in the following
areas:

1. retail and recreation

2. grocery and pharmacy

3. parks

4. transit stations

5. workplaces

6. residential

In Fig. 5.1 the evolution of the reference mobility indicators are displayed for the
case of Lombardy. The impact of the imposed restrictions on the mobility indexes
can be clearly appreciated by visual inspection of the depicted global trends. It
is hence surmised that the aforementioned mobility indicators provide a faithful
barometer to gauge the actual impact of the imposed containment measures. As
such, they could be accounted for when training the LSTM to forecasting the
future evolution of the epidemics.

Combining all these together, for each day of the time series, we access 10
distinct parameters, either referred to the evolution of the epidemics or the
mobility trends. Input entries are normalized so as to operate, during training

2The base value is defined as the average value in the five weeks between 3th January and
6th February 2020 for the considered week day, as explained in [70]

64CHAPTER 5. MOBILITY-BASED PREDICTION OF SARS-COV-2 SPREADING

Figure 5.1: Time evolution of mobility parameters in Lombardy. A seven-days
moving average was performed to filter out the weekly fluctuations and highlight
the global trend.

stage, with quantities that span a definite range (details are provided in the
Figures’ captions). The above information are used in the supervised learning
problem and organized as follows. The input vector collects information referred
to the past np days. Epidemics and mobility data sum up to a total of 10 scalar
parameters per day of acquisition. The output target vector has length nf , the
time horizon of the prediction. More specifically, each entry of the output vector
returns a prediction for the number of patients in intensive care (IC) units, at the
day of forecast, up to nf days in the future. A schematic representation of data
structure and processing handling is provided in Fig. 5.2. The mobile window is
made to slide along the scrutinised time series, day after day. For each position of
the window, the information stemming from the np preceding days (including the
current day of observation) are acquired and confronted with the desired output,
the number of occupied IC units in the future nf days. During the training
phase, this information is used to adjust the weights of the LSTM. When properly
trained, this device is used for forecasting purposes by letting the sliding window
to explore a portion of the times series not supplied during the learning phase.
The computing apparatus is fed with the needed input information referred to
the past np days (including the day of elaboration) to anticipate the future (the
following nf days) in terms of expected COVID-19 patients necessitating IC units.

Summing up, the training data set is made of 20(T − np − nf) examples (that
is, couples input-target) where the factor 20 stems from the number of considered
regions. In the analysis reported below np = 21 (meaning that we process data
from the last 21 days of observation) and nf = 7 (hence, for each position of the
sliding window, we look forward in time with a horizon of prediction that covers
one week in the future).

The data set is divided into two subsets: training and test sets. The first set

5.2. METHODS 65

Figure 5.2: Each data consist of an ensemble of input parameters (concerning
both epidemiological and mobility quantities and associated to the np days that
precede the day where the analysis is carried out.) and an output set that contains
our forecast. This is the number of occupied Intensive Care (IC) units in the
following nf days (from the last day of observation).

is used to train the model, whereas the second one is employed to test the ability
of the trained device to cope with data that were not supplied during the learning
stages. To probe the robustness of the method we have devised two different
procedures to split the data in training and test set, respectively. These are listed
in the following:.

1. The training set consists in a limited segment of the available times series.
In this case, the training procedure is carried out by solely employing data
up a prescribed date. The future evolution of the system, beyond the last
day of the processed observation, is used to test the model. This makes it
possible to test the performance of the LSTM model against data that refer
to a time window not processed during learning.

2. The training set is a sub-set of the available regions. In this second case,
the learning process is carried out over the entire length of the time series
associated to a subset of the 20 regions. The accuracy of the prediction
is tested against data referred to regions that were not used during the
learning phases.

In the next subsection we will discuss the obtained results and validate the model
as a viable tool to anticipate SARS-CoV-2 spreading across the Country.

66CHAPTER 5. MOBILITY-BASED PREDICTION OF SARS-COV-2 SPREADING

5.3 Results

We used the architecture and data set as described in the previous section to
define a learning problem that allows one to predict the evolution of the number
of intensive care units (IC) occupied by COVID-19 patients in different regions
of Italy.
We begin by adopting the first of the two aforementioned frameworks. This
implies dealing with the full set of available time series, up to a given time, for the
training phase. The trained network is then employed to forecast the evolution
of the epidemics. Results are reported in Fig. 5.3 for a subsets of regions, namely
Piedmont, Umbria and Veneto. The evolution of occupied IC units (orange trace)
is nicely predicted by the model (coloured dots).

For each day, the number of truly occupied IC units is compared to the
corresponding value, as predicted by the LSTM with different time horizons.
More specifically, yellow dots refer to predictions which exploit information made
accessible up to the preceding day. On the opposite limit, black dots are forecast
that process information older than one week (7 days). Intermediate color grades
refer to predictions which interpolate between these two extremes. The data
reported (Fig. 5.3) are obtained by training the LSTM with data up to November
16th, where the dashed line is positioned. From here on, predictions are obtained
by sliding the computing window (as depicted in Fig. 5.2) forward in time. The
information relative to the np input days are processed and used to anticipate
the expected load of IC units in the next nf days. The forecasted evolution
agrees pretty well with the observed curve of occupied IC units. Remarkably,
the position of the peak is nicely captured by the computed time series which is
hence capable to anticipating the evolution of the examined system.

In Fig. 5.4 the results obtained when dealing with the alternative setting as
listed above, are depicted. As mentioned, we now train the model by focusing on
a subset of the available regions and use this knowledge to predict the evolution
of IC units occupied by COVID-19 patients in regions that were not supplied as
part of the training set. Color are assigned following the same code introduced
above: yellow dots refer to prediction that looks to just one day in the future.
Black dots stand for the opposite extreme: the LSTM anticipates the evolution
one week ahead in time. The agreement between predicted and observed times
series is again remarkable.

In Fig. 5.5 the Root-Mean-Square Error (RMSE) associated to the predictions
is plotted. Each bar represents the error made when trying to predict the target
values d ∈ [1, nf] days in the future, where the parameter nf defines the forecast
horizon of the model. The RMSE is computed over the test set. Panel A of Fig.
5.5 is referred to nf = 7, whereas panel B is obtained for nf = 14. As expected,
the accuracy goes down when d becomes larger. Although the model with larger
nf allows us to make early predictions, the accuracy of the predictions get worse
when confronted with actual data: a lower accuracy is found not only for distant
predictions but also for closer ones. The choice nf = 7 is a compromise between
the need to cope with reliable predictions, on the one side, and the request of

5.3. RESULTS 67

Figure 5.3: Predicted evolution as compared to the experimentally recorded time
series: the plotted curves refer to the number of occupied Intensive Care (IC)
units by SARS-CoV-2 patients in Piemonte, Umbria and Veneto. Red lines stand
for the observed (hence, real) evolution. Coloured dots represent the forecast of
the LSTM model. Yellow dots are predictions that look at one day in the future.
Black symbols rely instead on processing one week old data. Different color
gradings, ranging from yellow to black, interpolate between these two limiting
scenarios. In this case np is set to 21. Data are rescaled by using, for each variable
of the set, its corresponding maximum value, as displayed in the training interval.
This latter value is also used to normalize data from the test set, so that only
information from the training set are effectively employed.

imposing a plausible temporal horizon, i.e. useful for forecast, on the other.
In the following, we will shortly elaborate on the role of the mobility and

highlight its reflexes on the evolution of the epidemics.

5.3.1 Change the mobility

Different containment measures have been imposed to contrast the spreading of
the COVID-19 epidemic. Such measures, like social distancing and lockdown,
result in a clear impact on the mobility. In Fig. 5.6 the evolution of five normalized
mobility parameters are plotted for Piedmont and Tuscany. Data are processed by
operating a 7 days moving average to obtain smoother profiles and remove weekly
fluctuations. The averaged mobility indexes display global trends which bear the

68CHAPTER 5. MOBILITY-BASED PREDICTION OF SARS-COV-2 SPREADING

Figure 5.4: The number of occupied IC is plotted against time, expressed in days.
Red traces reflect the observed, hence true, numbers. Colored dots stand for the
LSTM forecasst. Here, the analysis is carried out for three regions that were not
part of the training set. The adopted color code is specified in the caption of Fig.
5.3. The analysis is carried out by using np = 21. Here, epidemiological data are
normalized by an arbitrary constant that we assume to extensively scale with the
size of the examined region.

imprint of the containment measures as imposed by national and local authorities.
To support this claim, for each region, five time intervals associated to different
containment measures have been identified. At the beginning of the time series,
a depression of all the mobility scores is detected (except for the parameter that
quantifies mobility in residential areas – purple lines – which in general, and
as expected, shows opposite trends as compared to those stemming from other
parameters). This has to be put in relation with the strict lockdown taken by
the Italian government in the spring of 2020. Subsequently, the curves associated
to the parameters of not-residential areas grow up until they reach a new plateau.
The plateau follows a no-restrictions (or few-restrictions) period, during the
summer, when containment measures had been relaxed. Other characteristic
periods can be indeed identified, specifically at the end of November and at the
beginning of December. This last segment of the recorded time series is indirectly
influenced by the introduced color code labelling of the regions, as reflecting
the degree of local severity of the epidemics. Each region is in fact associated

5.3. RESULTS 69

Figure 5.5: Root-Mean-Square Error (RMSE) computed on the test set: the error
compares the real evolution of IC occupation number and the expected evolution
on the basis of the LSTM prediction at day d ∈ [1, nf], from the last processed
observation. Panel (A) and panel (B) referred to LSTM models with nf = 7 and
nf = 14, respectively.

to a color (respectively, yellow, orange and red in ascending order of severity)
and a different level of restrictions are adopted depending on the region color.
The correlation between the actual severity of the imposed restrictions and the
displayed mobility trends can be clearly appreciated by visual inspection of Fig.
5.6. To help visualization few (colored) vertical stripes are depicted which refer
to different conditions of the mobility, as outlined above. The first bar, colored
in grey, is traced in correspondence of the strict lockdown back in the spring
2020. By averaging over the selected time interval (the width of the greyish bar)
we obtain an average estimate of the mobility parameters, as associated to the
lockdown phase. Similarly, the other depicted bars identify other characteristic
instances of the epidemics evolution: the green stripe is meant to select mobility
score referred to the summer 2020. The red/orange/yellow bars identify the
status of the region, as follow the novel strategy to label the severity of the
disease at the local scale. Also in this case, by averaging over the width of the
corresponding intervals, one obtains a set of values for the mobility indexes which
indirectly reflect the imposed containment action (from draconian lockdown to
no restrictions, via the intermediate settings as associated to different labelling
colors).

This information can be used in the attempt to predict the role of an enforced
modulation of the mobility, as follow the different scenarios recalled above. More
specifically, at any given day, one can change the mobility entries as supplied
to the trained LSTM (by fishing from the aforementioned alternative classes,
identified via the corresponding averaged entries). The aim is examine the ensuing
effect which materializes at the level of the forecasted evolution of the occupied IC
units, the target of the LSTM. In Fig. 5.7 the result of the analysis is displayed
for two reference regions, although the reached conclusion holds in general. A
punctual modulation of the mobility (i.e. a change in the mobility that is confined

70CHAPTER 5. MOBILITY-BASED PREDICTION OF SARS-COV-2 SPREADING

Figure 5.6: Mobility evolution in Piedmont and Tuscany, with reference to five
distinct categories, as outlined in the annexed legend. Data are from [70] and have
been normalized to yield quantities that range in the interval [0, 1]. A moving
average of 7 days is operated so as to remove spurious weekly fluctuations. The
four vertical bars define the time intervals over which the reference mobility values
have been estimated.

to just one day) produced sensible changes in the predicted hospitalization, the
response being more marked the stricter the reduction of the mobility being
imposed. Remarkably, and according to the LSTM, the effect of a local change
in the mobility becomes visible 8-10 days in the future, a plausible outcome of
the analysis which calls for a timely planning of the containment protocols. On
the basis of the above, it is hence surmised that machine learning schemes of
the type here analyzed could help devising optimal strategies for an intelligent
combination of openings and closures, at the local scale. Furthermore, notice that
the lag time quantified above provides an a posteriori justification for choosing
nf = 7 as a forecast horizon of the LSTM machinery.

5.4. CONCLUSIONS 71

Figure 5.7: Predictions of IC units occupied by COVID-19 patients in Piedmont
and Tuscany made under the hypotheses of 6 different past mobility scenarios:
true mobility (blue dots), lockdown (black dots), no restrictions (green dots),
red zone (red dots), orange zone (orange dots) and yellow zone (yellow dots). In
each column, from left to right, the change in the mobility scores is operated at a
different day, as measured from the time the first prediction is made (see annexed
legend).

5.4 Conclusions

To summarize our findings, using a simple LSTM model trained on both epidemi-
ological and mobility data we were able to correctly forecast the spreading of
SARS-CoV-2 across different regions and at different times. Our model proved
robust to alternative train/test splits in the spatial (hold out a region) and tem-
poral (hold out a temporal interval) domains. The choice of employing available
information on human mobility constitutes the novelty of the proposed approach.
The obtained forecasts are indeed shown to sensibly depend on the imposed
mobility scores. When artificially reducing the degree of imposed mobility, yields
a consistent flattening of the curve of expected occupied intensive care units.
Importantly, the effect of an abatement of the mobility materializes in a conse-
quent contraction of the occupied IC. The contraction becomes visible after 8-10
days, from the time the mobility change became effective. Interestingly, punctual
mobility stops (one day) seem to generate a noticeable effect on the predicted IC
occupation curve. Elaborating further along these lines could help devising viable

72CHAPTER 5. MOBILITY-BASED PREDICTION OF SARS-COV-2 SPREADING

strategies to oppose the spreading of the epidemics, with a minimal impact on
both social and economical activities.

In the next chapter we will show how neural networks can be successfully
applied in the field of geothermobarometry. In particular, a deep architecture of
feed forward neural networks was trained to obtain an estimate of the temperature
and pressure at which a sample of volcanic rock was created starting from the
data obtained from geochemical analyses. Furthermore, an open source web app
will be presented, called GAIA, which allows to easily use the trained models to
obtain estimates of the quantities mentioned above.

Chapter 6

GAIA, a novel Deep Learning-based
tool for volcano plumbing systems

The anatomy of the plumbing system of active volcanoes is fundamental to
understand how magma is stored and channeled to the surface. Reliable geother-
mobarometric estimates are, therefore, critical to assess the depths and tem-
peratures of the complex system of magmatic reservoirs that form a volcano
apparatus. Here, we developed a novel Machine Learning approach (named
GAIA, Geo Artificial Intelligence thermobArometry) based upon Feedforward
Neural Networks to estimate P-T conditions of magma (clinopyroxene) storage
and migration within the crust. Our Feedforward Neural Network method applied
to clinopyroxene compositions yields better uncertainties (Root-Mean-Square
Error and R2 score) than previous Machine Learning methods and set the basis
for a novel generation of reliable geothermobarometers, which extends beyond the
paradigm associated to crystal-liquid equilibrium. Also, the bootstrap procedure,
inherent to the Feedforward Neural Network architecture, permits to perform
a rigorous assessment of the P-T uncertainty associated to each clinopyroxene
composition, as opposed to the Root-Mean-Square Error representing the P-T
uncertainty of whole set of clinopyroxene compositions. As a test, we applied
GAIA to assess P-T conditions of five Italian volcanoes (Somma-Vesuvio, Campi
Flegrei, Etna, Stromboli, Volcano), which are among the most dangerous volcanic
centres in Europe. The results on the depths of the plumbing systems are in
excellent agreement with those obtained with independent geophysical and geode-
tic surveys, and provide further evidence to current models of volcano plumbing
systems consisting of physically-separated reservoirs interconnected by a network
of conduits channelling magma en route to the surface. The results on the magma
(clinopyroxene crystallization) temperatures are also in agreement with other
estimates, albeit obtained considering - mainly but not only - thermodynamically-
based clinopyroxene-liquid geothermometers. GAIA can set robust estimates of
magma storage, segregation, and ascent conditions within the plumbing system of
active volcanoes, helping to unravel P-T variations, if any, during their eruptive
history and providing robust clues to volcanic hazard assessment.

73

74 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

6.1 Introduction
Understanding the dynamics of active volcanic systems is paramount to volcanic
hazard assessment and can set the basis to forecast volcanic eruptions. This
includes the geochemical and rheological characteristics of primary and evolved
magmas, crustal storage conditions (P-T), ascent dynamics and interaction
with crustal rocks, timescales of pre-eruptive magmatic processes, along with
geophysical surveys [71]–[79]. In the last decades, our understanding of how
magma is stored, migrates and feeds volcanoes has changed from a “relatively
simple” melt-dominated magma chamber to more complex networks of lenses of
melts, crystal mushes, and exsolved volatiles that extend throughout the crust up
to the uppermost mantle [75]. This network plays an integral role in the eruption
dynamics triggered by influx of fresh, hot, and deeper magmas into shallower
reservoirs through prolonged magma segregation, stoping, and crystallization. In
this context, thermobarometry is critical to decipher the anatomy of the plumbing
system of active volcanoes, providing clues on the depth of magmatic reservoirs
and their time-related migration. This information, which is among the main
parameters controlling magma properties and eruptive styles, is fundamental
for volcanic hazard assessment. Among minerals employed to routinely assess
magma storage conditions, clinopyroxene is definitely the best candidate, as
it is widespread in mafic to intermediate and even evolved magmas [80]–[82].
Here, we present GAIA (Geo Artificial Intelligence thermobArometry), a new
geothermobarometer based on clinopyroxene-only compositions able to assess
P-T conditions of magma storage and ascent within the crust, which relies on
Machine Learning technology [83]–[85]. More specifically, a Feedforward Neural
Network (FNN) has been trained to predict the anatomy of the plumbing systems
in active volcanoes. GAIA provides more robust results than thermodynamically-
based clinopyroxene-liquid geothermobarometers [80]–[82], [86] and other machine
learning-based geothermobarometers developed in the last years [85], [87]–[89].

6.2 GAIA, a novel Machine Learning-based strat-
egy to P-T estimates in volcanic systems

To overcome the abovementioned pitfalls that are inherently enfolded in the
customarily employed geothermobarometers in volcanic systems, we used ded-
icated Machine Learning (ML) strategies for supervised assessment [83], [84].
In particular, FNN bear an unprecedented - still largely unexplored – potential
to yield a novel generation of reliable geothermobarometer sensors, that extend
beyond the equilibrium paradigm.

6.3 Dataset
We have worked on the same LEPR [90] dataset as Putirka [80] supplemented
with recent compilations of experimental petrology data. The dataset consists

6.4. DATASET ELABORATION AND BOOTSTRAP 75

of clinopyroxene-liquid pairs, covering a range of some 40 years and retrieving
6768 experimental data. To this dataset we have applied a few filters to focus the
Feedforward Neural Network (FNN) method on volcanic systems. The intensive
parameter P was filtered between 1 bar and 10 kbar (6118 data), while T was
limited to <1500°C (6689 data). Melt composition was restricted to SiO2 >35
wt.% (6190 data) and MgO <20wt.% (6606 data) to have a wide spectrum of
melts from mafic to felsic compositions. Clinopyroxenes were filtered on the basis
of multiple parameters to check chemical analysis quality and include mainly
quadrilater compositions and a few Ca-Na pyroxenes. The details on the applied
filters are shown in [6]. In the end, the combination of all applied filters resulted
in 5594 clinopyroxene-melt pairs and 5599 clinopyroxenes, which were used in
the FNN method.

6.3.1 Calculation of clinopyroxene components

Chemical analysis of experimental mineral samples is commonly conducted by us-
ing an electronic microprobe, which enables non-destructive analysis of small sam-
ple portions. Through these analyses, the concentrations of the elements within
the examined sample are determined. By leveraging on the known structural
properties and composition of clinopyroxenes, reconstructing the concentrations
of the various clinopyroxenes present within the sample becomes feasible. We
then calculated clinopyroxene components following a novel procedure, slightly
different from that commonly used [80]. We wish to point out that this procedure
is not meant to reproduce the actual components occurring in clinopyroxene,
simply it is a working procedure to be used in our FNN method. For the purpose
of this thesis, we have chosen not to report onto the technical details of this
procedure. However, these details are explicitly documented in [6]. The computed
components were then used as data input to the FNN method.

6.4 Dataset elaboration and bootstrap procedure
The available dataset was initially divided into two distinct portions: the data
points belonging to the first group were kept aside for subsequent inspection (the
test set), while the elements defining the second ensemble were employed for
training the neural network (the global training set). Two different fractions of
the dataset were kept aside as test set for temperature and pressure regression,
because pressure, contrary to temperature, is heterogeneously distributed across
the explored range (1 bar < P < 10 kbar). For this reason, and to maximize
the chance that sparsely populated pressure ranges were adequately represented,
we have chosen to include in the test set only 5% of the total dataset. In
contrast, we have decided to use a larger test set for temperature (20% of the
total dataset) because it is evenly distributed across the considered temperature
interval (<1500°C). To this end, data were first normalized to belong to the
interval [0,1]. This was achieved by dividing each individual instance by the
corresponding maximum, that is the largest value displayed by the homologous

76 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

quantities defining the training set. A bootstrap procedure was then implemented
following the prescriptions recalled hereafter. The global training set was split
into two parts, the actual training set and the so-called validation set. The
training set contains a number of items equal to 80% of the total. The instances
that populate the set are sampled with replacement. The elements that have not
been selected (at least 20% of the total) define the validation set. This operation
is repeated M times and each configuration employed to train a selected model.
After training has been completed, we are hence left with M distinct feedforward
models that can be challenged against data. The accuracy of the predictions can
be assessed versus the validation set (for each of the trained model) and, more
importantly, against the test set, that has been protected from further scrutiny
at the beginning of the procedure. Dealing with M distinct trained feedforward
networks allows for a careful assessment of the prediction of the uncertainty (1σ)
associated to each analyzed instance.

6.5 GAIA architecture and training details

Data were processed via a deep neural network with a feedforward architecture
[84], [91]–[93]. Two separate networks were used for temperature and pressure
regressions. The architecture was chosen after careful evaluation of the per-
formance of different candidate models against validation set. In particular, a
network consisting of three hidden layers of 1000 nodes each was used for tem-
perature regression, while a network made of three hidden layers of 100 nodes
each was employed to forecast the associated pressure. In both applications, a
batch normalization (a dedicated normalization of the outputs in each layer to
enhance training stability and convergence) is performed and a dropout layer (a
regularization technique that randomly deactivates neurons during training, so as
to prevent overfitting and promoting generalization) with rate=0.1 is inserted,
after the first hidden layer. The last layer is linear with no activation function.
Hence, the model has not been forced to yield positive defined output values,
meaning that negative predictions for the estimated pressure are not excluded
(the range of pertinence including zero at one side of the interval). The fact
that negative outputs are only rarely obtained (see results) constitutes an a
posteriori check on the overall reliability of the proposed methodology. Forcing
the network to generate positive outputs represents an a priori bias that we have
deliberately chosen to omit, relying on the inherent ability of the trained network
to self-consistently cope with the relevant interval of definition for the examined
variables. Each training iteration consisted in 500 epochs with a batch size fixed
to 50. The Adam algorithm [94] has been used as optimizer, with a learning rate
of 5·10-5. Interestingly, a larger network is required for the temperature to be
adequately predicted. We believe that this is somehow related to the distribution
of the input temperatures which cover - almost uniformly - a bound, though
extended domain, across the real axis. Conversely, pressures are adequately
predicted by means of a significantly smaller network. This is probably because,

6.6. RESULTS OF TRAINING AND COMPARISON 77

within the analyzed dataset, pressures tend to cluster around a few representative
values. Results are stable for network larger than those employed in our analysis,
at fixed architecture. The code1, available on GitHub, was written in Python
3.7.9, the architecture and the fitting procedure were defined by means of the
tensorflow library (2.1.0) [83].

6.6 Results of training and comparison with other
machine learning methods

In recent years, a few works have begun to employ machine learning-based
methods to estimate pressure and temperature of magmatic reservoirs. The first
work that aimed at applying model free regression techniques to predict P-T
conditions from clinopyroxene-melt and clinopyroxene-only, dates back to 2020
[87]. In this work, Petrelli and co-workers employed a wide range of methods,
including gradient boosting, extremely randomised trees, random forest, k-nearest
neighbours and decision trees to establish a causal relation between the supplied
input to the sought output. Successive refinements of the above procedures
have been reported in Li and Zhang [85] and involved either linear (principal
component regression, partial least square and elastic net regression) and non-
linear models (multivariate adaptive regression, k-nearest neighbours, support
vector machine with radial kernel, random forest and extremely randomised trees).
It is also worth mentioning the work by Higgins et al. [88] and Jorgenson et al.
[89], who applied random forest methods. To the best of our knowledge, our
work reports the first attempt to apply Feedforward Neural Networks (FNN)
to geothermobarometry. Remarkably, and as we shall prove in the following
paragraphs, the performance of the trained FNN overcome those reported in the
literature, in terms of ability to accurately predict temperature and pressure of
magmatic reservoirs from clinopyroxene-only data.

The results of the FNN model are subdivided in sequential steps. Temperature
predictions of the validation set using clinopyroxene-only and clinopyroxene-liquid
pairs plotted against the experimental temperature are reported in the two panels
of Fig. 6.1. The accuracy (indicated by the R2 score) and the RMSE at 1σ
level is excellent in both cases, albeit the performance of the clinopyroxene-liquid
geothermometer is better than the clinopyroxene-only geothermometer. Pressure
predictions of the validation set are reported in the two panels of Fig. 6.2 plotted
against experimental pressure. The accuracy and the RMSE is excellent also in
these two cases and, as with temperature, the clinopyroxene-liquid geobarometer
performs better than the clinopyroxene-only geobarometer. Then, we compared
the results of the validation set of the clinopyroxene-only and clinopyroxene-liquid
pairs geothermobarometers in the two panels of Fig. 6.3. The excellent agreement
between the two geothermobarometers in terms of accuracy and RMSE, gave us
confidence to apply the FNN method to estimate P and T using clinopyroxene
data only, even though the uncertainties on P-T estimates are worse than those

1github.com/GAIA-geothermobarometry/GAIA

78 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

Figure 6.1: Predicted temperature of the validation dataset vs. experimental temperature
using the Feedforward Neural Network method. (a) Clinopyroxene-only geothermometer, and
(b) linopyroxene-liquid geothermometer. Each data point represents the average prediction and
associated uncertainty (1σ) computed after M independent replicas trained with the bootstrap
procedure (see text). Regression statistics [R2 score, Root-Mean-Square Error (RMSE), and
number of data (n)] is reported in the two insets.

of clinopyroxene-liquid pairs (Figs. 6.1 and 6.2). We reckon, however, that the
slightly worse P-T uncertainties are counterbalanced by the fact that considering
only clinopyroxene does not require any equilibrium test on the coexisting melt,
which, as we have shown above, is rather questionable. The next step has been
to assess the performance of the FNN method using the test set, that is the
clinopyroxene data kept aside from the training procedure during the global
training set (see dataset elaboration). The P-T prediction are reported in the two
panel of Fig. 6.4 in terms of the difference between experimental and estimated
P-T. The two different sizes of the test sets (P = 280 cpx, T = 1120 cpx) are due
to the fact that they represent 5% (P) and 20% (T) of the total clinopyroxene
dataset, respectively (see dataset elaboration). The regression statistics yields an
accuracy (R2 score) of 0.90 and 0.88 for temperature and pressure, respectively,
whereas the RMSE attests to ± 28°C and ± 0.90 kbar (Fig. 6.4). Analogous
results have been obtained for different (random) selections of the test set. Overall,
the performance of GAIA is much better than the best uncertainties reported in
previous machine learning-based approaches on clinopyroxene-only data (RMSE
= ± 57°C, and ± 2.3 kbar, Higgins et al.,[88]). To help comparison we have also
assessed the performance of our Deep Learning method on the subset of data
provided by Higgins et al. [88]. The obtained uncertainty is equal to ±0.9 kbar,
identical to that obtained for the whole dataset. It is also worth emphasising
that we have here carried out a rigorous assessment of the uncertainty associated
with predictions by improving on other reported approaches [85], [87]–[89], and
accounting for the peculiarities of the employed dataset. In particular, the
bootstrap procedure allows us to associate an error to a given prediction. This is

6.6. RESULTS OF TRAINING AND COMPARISON 79

Figure 6.2: Predicted pressure of the validation dataset vs. experimental pressure using
the Feedforward Neural Network method. (a) Clinopyroxene-only geobarometer, and (b)
clinopyroxene-liquid geobarometer. Each data point represents the average prediction and
associated uncertainty (1σ) computed after M independent replicas trained with the bootstrap
procedure (see text). Regression statistics [R2 score, Root-Mean-Square Error (RMSE), and
number of data (n)] is reported in the two insets.

achieved by looking at the statistical distribution of the responses obtained when
operating the collection of trained models on the very same data supplied as an
input. The bootstrap error can be computed for any given input as opposed to
the RMSE which can be solely computed for datapoints belonging to training,
validation, and test sets (Figs. 6.2, 6.3 and 6.4). Moreover, to account for the
inherent degree of heterogeneity in the distribution of recorded pressures, we
performed an analysis of the associated uncertainties on validation set. We aimed,
in particular, to a quantitative assessment of the reliability of a given prediction,
depending on the position it occupies in the space of the output variables (Fig.
6.5b). The analysis demonstrates that the data points sampled from the most
represented experimental pressure values (1 bar, 2 kbar, 4 kbar, 8 kbar, and 10
kbar, Fig. 6.5a) are correctly identified by the trained FNN model, whereas the
data points laying in between (e.g., from 2 to 4 kbar) are also traced back to their
correct domain of pertinence although yielding higher uncertainties (see Fig. 6.5
for details). The uncertainty in P prediction is better visualized in the 9 panels
of Fig. 6.6. P estimates falling within the 5 classes most represented by the
experimental data points (1 bar, 2 kbar, 4 kbar, 8 kbar, and 10 kbar, Fig. 6.6) are
associated with low uncertainty (<< 1 kbar), whereas P estimates falling within
the intermediate ranges yield, as expected, larger, although limited, uncertainty.
Overall, the statistical treatment we have performed on prediction uncertainties
with our FNN model (Figs. 6.5 and 6.6) constitutes an a posteriori proof of the
ability of the network to cope with the supplied dataset and eventually materialize
in reliable predictions for both pressure and temperature (Figs. 6.1, 6.2 and 6.4).

80 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

Figure 6.3: Comparison between clinopyroxene-only and clinopyroxene-liquid geothermometer
(a) and geobarometer (b) of the validation dataset using the Feedforward Neural Network method.
Each data point represents the average prediction and associated uncertainty (1σ) computed
after M independent replicas trained with the bootstrap procedure (see text). Regression
statistics [R2 score, Root-Mean-Square Error (RMSE), and number of data (n)] is reported in
the two insets.

The uncertainty in pressure estimates will be assumed to be ± 1 kbar (Fig. 6.4,
Fig. 6.6) in all pressure ranges

6.7 Application to the Italian volcanoes
Italy, along with Greece, has the most spectacular active volcanic centres in Europe.
Etna and Vesuvius, in particular, are located within densely populated areas
and the International Association of Volcanology and Chemistry of the Earth’s
Interior (IAVCEI) has included them into the list of volcanoes to be kept under
closer surveillance (http://www.sveurop.org/gb/articles/articles/decade.htm).
Here, as an example, we want to apply and compare GAIA to assess the P-T
conditions of magma storage and ascent within the crust to five active Italian
volcanoes, namely: Etna and Stromboli (currently active), Campi Flegrei and
Vulcano-Vulcanello (in volcanic unrest), and Somma-Vesuvio (quiescent). Their
clinopyroxene compositions were downloaded from the GEOROC Data Repository
(https://georoc.eu/georoc), and the results obtained with our FNN model have
been compared, whenever possible, to those coming from geophysical and geodetic
investigations. Exhaustive reviews on the volcanological history of these volcanoes
have been reported elsewhere [71], [72], [95]–[103]. Before discussing the results of
the FNN model (Figs. 6.7, and 6.8), we wish to make the following preliminary
considerations on the clinopyroxene dataset downloaded from the GEOROC Data
Repository:

(i) The clinopyroxene dataset has not been subdivided according to the different

6.7. APPLICATION TO THE ITALIAN VOLCANOES 81

eruptive periods of each volcano, implying that we are dealing with their
overall plumbing system. We acknowledge that during the history of
each volcano, different magmatic reservoirs may have contributed to a
given eruption, but the main objective of the present study is to critically
compare the outcome of our Neural Network model with geophysical surveys,
deferring the analysis of the plumbing system of each single volcano (e.g.,
correlation with VEI of single eruptions) to other companion works;

(ii) Also, the clinopyroxene dataset is not necessarily and homogeneously repre-
sentative of all magmatic reservoirs of the plumbing system of each volcano,
because it depends on the crystal cargo sampled by a given eruption;

(iii) The estimated depth of the different magmatic reservoirs is always reported
in kbar from the summit of the volcanic cone down to the Moho using the
crustal stratigraphy - and corresponding rock density - of each volcanic
centre;

(iv) The uncertainty (1σ) on the predicted pressures and temperature of crys-
tallization of the clinopyroxene-only geothermobarometer is generally <1
kbar (Figs. 6.4b, and 6.6) and < 30°C (Fig. 6.4a), respectively;

(v) The frequency of negative pressure estimates is generally <2% for all
volcanoes, also considering that pressure estimates from 0 to -1 kbar are
within error with positive values, indicating a very shallow, just below the
surface, clinopyroxene crystallization;

(vi) Temperature estimates refer to that of magma during clinopyroxene crys-
tallization.

6.7.1 Etna, 3357 m a.s.l.

The magmas of Mt. Etna are hawaiites and mugearites and erupt mainly as
lava flows and lava fountains [72]. The plumbing system structure of Mt. Etna
has been imaged from the summit crater (3357 m a.s.l.) down to ca. 6 kbar
(ca. 20 km b.s.l.) using volcanic tremor, geodetic and geophysical data along
with thermodynamic equilibria [104]–[107]. The main magmatic reservoirs (M),
physically separated and variably connected to each other, have been located at
(i) ≤ 0.3 kbar (M2) (>1.9 km a.s.l), (ii) 1.2-1.6 kbar (M1b) (ca. 1.5-3.1 km b.s.l.)
(; (iii) 2.3-2.9 kbar (M1a) (ca. 6-8 km b.s.l.); (iv) 3.8-4.0 kbar (M0) (ca. 11-13
km b.s.l.); (v) 5.5-6.5 kbar (M00) (ca. 18-22 km b.s.l.). The inferred depths of
these magmatic reservoirs are totally consistent with the results obtained with
GAIA (Fig. 6.7a). Neglecting the 10% clinopyroxenes yielding -1<P<0 kbar,
which, taking into account the uncertainty, indicate crystallization just below
the surface, most clinopyroxenes (>70%) yield pressures corresponding to the
shallower reservoirs (M2, M1b, M1a) from 0 to 3 kbar with a peak (ca. 30%)
between 0 and 1 kbar. The Kernel density estimate (KDE) reveals other two
small peaks at 3.5-4 kbar (ca. 5%) and 5.5-6.5 kbar (ca. 2%) corresponding to

82 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

the depths of the M0 and M00 reservoirs. It is worth noting that the pressure
distribution indicates a continuum of clinopyroxene crystallization, supporting a
mechanism of crystallization during magma rising and transfer along a network
of interconnected reservoirs [72]. The temperature of Etnean basalts ranges from
1080°C to 1136°C into the M2, M1b, and M1a reservoirs and from 1150°C to
1210°C in the deepest reservoirs [72], [108]. The KDE temperature distribution
of GAIA has a quasi-gaussian shape with a peak at 1075±30°C, and ca. 85% of
data between 1025 and 1125°C (Fig. 6.8a). These results are in agreement with
temperature estimates of Etnean basalts of the M2, M1b, and M1a reservoirs as
P estimates (>70% clinopyroxenes) indicate a provenance from the shallowest
reservoirs (Fig. 6.7a). The limited data frequency between 1125°C and 1150°C
(<7%) suggests that clinopyroxene did not start to crystallize in the deepest
reservoirs and the liquidus phase was olivine [72].

6.7.2 Stromboli, 924 m a.s.l.

The Stromboli stratovolcano has a current steady-state activity where continuous
input of high-K calcalkaline basalts has maintained persistent volcanism for
centuries, with mild eruptions of crystal-rich black scoriae (i.e., Strombolian
activity). The Strombolian activity is periodically interrupted by more energetic
short-lived eruptions and basaltic lava flows (e.g., Francalanci et al., 1999, 2005,
2013; Bragagni et al., 2014; Petrone et al., 2018). The anatomy of the plumbing
system of Stromboli has been reconstructed from the summit crater (924 m a.s.l.)
down to ca. 5.5 kbar (ca. 20 km b.s.l.) using artificial and natural seismic
data sources, volcano-tectonic events, volcanic tremor, geodetic data, volatile
(CO2, H2O, S and Cl) content in melt inclusions along with thermodynamic
equilibria (Allard et al., 1994; Vaggelli et al., 2003; Mattia et al., 2008; Métrich
et al., 2010; Patanè et al., 2017; Gambino et al., 2018; Ubide et al., 2019).
According to these studies, the architecture of the plumbing system consists of a
succession of magmatic reservoirs at different depths, where magma accumulates
and differentiates, interconnected by channels that form preferential pathways of
magma en route to the surface. These interconnected magmatic reservoirs are
located from 3.9-4.4 kbar (14-16 km b.s.l.) to 1.8-2.6 kbar (6-9 km b.s.l.), 0.5-1.3
kbar (1-4 km b.s.l.), and at ca. 0.1 kbar (500 m a.s.l.), just beneath the craters.
Pressure estimates of GAIA mimic the distribution of these magmatic reservoirs
(Fig 6b). Most clinopyroxenes (ca 80%) crystallized in the last 2.5 kbar of the
plumbing system although the KDE indicates a minor peak (some 4-5%) at 4
kbar as well, i.e., the onset of clinopyroxene crystallization in the deepest reservoir
beneath Stromboli. It is to note that the largest peak at 1-1.5 kbar (>25%)
provides evidence for a clinopyroxene cargo originating in the magmatic reservoir
located at the root of the volcanic edifice. As observed for Etna (and other
volcanoes studied in this work, see below) the continuum pressure distribution of
clinopyroxene supports a process of crystallization both in the magmatic reservoirs
and along the network of conduits that channel magma en route to the surface.
The most recent temperature estimates on clinopyroxenes of Stromboli basalts

6.7. APPLICATION TO THE ITALIAN VOLCANOES 83

have been thermodynamically determined and have a variation from 1082±7°C
(Ubide et al., 2019) to 1180-1090°C and 1140-1060°C (Scarlato et al., 2021). The
KDE temperature distribution obtained with GAIA has a gaussian shape with a
peak at 1100±30°C, and >80% of data between 1075°C and 1125°C (Fig. 6.8b),
in remarkable agreement with previous estimates.

6.7.3 Vulcano and Vulcanello, 501 m a.s.l.

Vulcano and Vulcanello consist of high-K calcalkaline and shoshonitic magmas
exhibiting a wide sprectrum of compositions with a progressive increase in silica
and potassium contents with time from basalts and shoshonites to trachytes and
rhyolites. The volcanic activity mainly consists of fallout deposits, lava flows,
pyroclastic flows, and hydrothermal eruptions (Peccerillo et al., 2006; De Astis
et al., 2013; Costa et al., 2020). The internal structure of the plumbing system
of Vulcano has been assessed by integrated geophysical surveys, fluid-inclusion
studies, and thermodynamic equilibria (Clocchiatti et al., 1994, Zanon et al.,
2003, Peccerillo et al., 2006; De Astis et al., 2013, Costa et al., 2020). The
magmatic reservoirs consist of two major storage zones at 4.8-6 kbar (17–21.5
km bsl) and 2.2-3.7 kbar (7.8–13.5 km b.s.l.), and a minor shallower storage
zone, beneath La Fossa Cone, at 0.4-1.6 kbar (1.3–5.5 km b.s.l). The deepest
magmatic reservoir is located at the transition between the upper mantle and
a granulitic lower crust, and a network of conduits connects these three magma
accumulation reservoirs. The pressure distribution yielded by GAIA is able to
locate these reservoirs (Fig. 6.7c). The KDE delineates 5 major peaks at 5.5, 4,
3, 2, and 1 kbar. The clinopyroxenes indicating a pressure of 5.5 kbar (ca. 3%)
originate from the deepest reservoir at the crust-mantle transition, whereas those
resulting in a pressure of 1 kbar (ca. 15%) originate from the shallowest magmatic
reservoir beneath La Fossa Cone. The intermediate reservoir at 2.2-3.7 kbar is
indicated, considering an error of ±1 kbar, by most of the other clinopyroxenes.
Temperature estimates of Vulcano and Vulcanello magmas have a wider spectrum
owing to the compositional range from basalts to rhyolites. Latites and trachytes
yield 1080±10°C and 1050±10°C, respectively (Clocchiatti et al., 1994). A lower
temperature of 1010°C is reported for latites by Vetere et al. (2015) along with
950°C for rhyolite. Other studies reported 1004±14°C for a K-rich trachyte,
1007±9°C for other trachytes, 1027±5°C for latites, 955±8°C for rhyolites (Costa
et al., 2020). The KDE temperature distribution obtained with GAIA is consistent
with these estimates and reveals three major peaks at ca. 1000±30°C, 1050±30°C,
and 1125±30°C (Fig. 6.8c). The highest temperature (1100-1150°C, ca. 22%
of data) potentially reflects the temperature of basaltic magmas s.l., which are
not included in the abovementioned estimates. The intermediate temperature
(1025-1075°C, ca. 33% of data) agrees with the temperature reported for latites
and trachytes (Clocchiatti et al., 1994), whereas the lowest temperature (975-
1025°C, ca. 26% of data) is consistent with that reported for other trachytes and
latites (Costa et al., 2020). The temperature related to rhyolites (955±8°C) has
been determined using the plagioclase-liquid thermometer (Putirka, 2008), hence

84 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

cannot be established by our clinopyroxene-only geothermometer.

6.7.4 Somma-Vesuvio, 1281 m a.s.l.

The Somma-Vesuvio stratovolcano consists of a wide spectrum of compositions
from leucite-bearing trachybasalts to leucite latites and trachytes, along with
leucite basanites, leucite tephrites and phonolites. The volcanic activity is
characterized by explosive Plinian and Subplinian eruptions in addition to effusive
lava flows (Cioni et al., 1998; Scaillet et al., 2008). As for other volcanoes of this
study, the anatomy of the plumbing system of Mt. Vesuvio consists of multi-depth
magmatic reservoirs detected on the basis of geophysical and geodetic surveys,
magnetotelluric data, and electrical conductivity measurements (Iuliano et al.,
2002; Nunziata et al., 2006; De Natale et al., 2006; Pommier et al., 2010; Fedi et
al., 2018). The magmatic reservoirs are randomly distributed and interconnected
to each other from the mantle-crust transition at ca. 7.5 kbar (25 km bsl) up to
2.5 kbar (8 km bsl), and then between 1.9 and 0.8 kbar (6 and 2km bsl). The
KDE pressure distribution obtained with GAIA (Fig. 6.7d) indicates 4 peaks at
1.5, 3.5, 6, and 9 kbar. The major peak at 1.5 kbar (ca. 34% of data) is consistent
with an origin of clinopyroxenes from the shallowest magmatic reservoirs, whereas
the other two peaks at 3.5 and 6 kbar (ca. 16% and 4% of data) delineate a
reservoir located in the mid-crust and another one close to the mantle-crust
transition, likely representing magma ponding and crystallizing at the base of
the crust. It is to note that the very minor amount of clinopyroxenes yielding a
pressure of 9 kbar (ca. 1% of data) is suggestive of magma crystallization during
rising from the mantle (Fedi et al., 2018). The other pressure distributions of
clinopyroxene can indicate either other reservoirs randomly distributed in the 7.5-
2.5 kbar range or the network of channels interconnecting the different magmatic
reservoirs. Temperature estimates of Somma-Vesuvio have been related to three
stages of evolution of the plumbing system: an initial stage with mafic magma at
ca. 1100°C, a young stage with evolved mafic magma at ca.1050°C progressively
grading to felsic magma at 850-900°C, and a mature stage with evolved mafic
magma at ca. 1050°C and a stratified upper portion of felsic magma at 800-950°C
(Cioni et al., 1998). The GAIA KDE temperature distribution (Fig. 6.8d) yields a
major peak at 1075±30°C and two minor peaks at 950°C and 900°C. The high-T
peak from 1025°C to 1125°C (ca. 75% of data) is consistent with temperature
estimates of the mafic magma (trachybasalt, basanite) feeding the magmatic
reservoirs of Somma-Vesuvio, and the evolved mafic magma (tephrite), whereas
the other minor peaks from 850°C to 1000°C (ca. 12% of data) correspond to the
temperatures of felsic magma (latite, phonolite).

6.7.5 Campi Flegrei (caldera assumed at sea level)

The Campi Flegrei volcanic field consists predominantly of pyroclastic rocks
and subordinate lavas flows and domes, with a compositional range from minor
shoshonites to more abundant trachytes and trachyphonolites (e.g., Orsi et al.,

6.8. A WEB APP TO FACILITATE RESEARCH 85

2022). The anatomy of the plumbing system of Campi Flegrei volcanic field is
similar to that of the nearby Somma-Vesuvio on the basis of geophysical and
geodetic surveys, and volatile (H2O, CO2, H2S, Ar, N2, H2, He, CH4, and CO)
content of fumarolic gases (e.g., De Siena et al., 2017, Buono et al., 2022, Calò
et al., 2018; Costanzo and Nunziata, 2017; De Natale et al., 2006; Fedi et al.,
2018; Zollo et al., 2008; Fedi et al., 2018). According to these studies the deepest
reservoirs are located from ca. 7.1-2.1 kbar (ca. 8 to 25 km b.s.l.) and consist of a
continuum of several melt pockets and crystal mushes variably interconnected to
each other which, through decompression-induced, recharge shallower reservoirs
at 0.5-1.2 kbar (2.-4.5 km b.s.l). The former possibly represents permanent
long-lived reservoirs where magma is stored and differentiates, whereas the latter
could represent small and ephemeral reservoirs, further differentiating and mixing
(Pappalardo et al., 2012; Fedi et al., 2018). The GAIA KDE pressure distribution
(Fig. 6.7e) yields two major peaks at 3-4 kbar (ca. 30% of data) and 0-1.5 kbar
(ca. 27% of data). The former, along with the tail towards higher depths (ca.
15% of data), provide evidence for the origin of clinopyroxenes from the melt
pockets and crystal mushes of the deepest reservoirs, whereas the latter indicates
an origin from the shallower reservoirs. Similar to Somma-Vesuvio, clinopyroxenes
of Campi Flegrei have a small peak (ca. 2% of data) at 5.5-7 kbar suggestive
of magma ponding and crystallizing at the base of the crust. The P values
between -1 and 0 kbar are within error of positive values, indicating a subsurface
crystallization. Based upon thermodynamic equilibria, Forni et al. (2018) and
Pelullo et al. (2022) reported a temperature range of Campi Flegrei magmas
from ca. 1120°C to 870°C during the evolution from shoshonite to trachyte and
trachyphonolite, with most magmas falling in the 1000°C-900°C range (Fig. 6.5 in
Forni et al., 2018). The KDE temperature distribution obtained with GAIA (Fig.
6.8e) yields a major peak at 1100±30°C (ca. 70% of data) with a tail towards lower
temperatures of 900°C (<20% of data). Broadly speaking, the two temperature
estimates approaches (GAIA and thermodynamic equilibria geothermometers) are
consistent to each other, although, to a more careful attention, we note that most
magmas have 1000°C-900°C using the thermodynamic equilibria geothermometer,
in contrast to the peak at 1100°C yielded by GAIA. We think that this 100-
200°C difference could be ascribed to the fact that most phenocrysts (olivine,
clinopyroxene, feldspar) of Campi Flegrei magmas are not in equilibrium with
their host liquid (Pelullo et al., 2022). This may severely undermine the results
of the thermodynamic approach, and it is the main reason why we decided to
tackle P-T estimates using a machine learning strategy.

6.8 A web app to facilitate research

To make our model easy to be used by researchers, we have developed a web free
and open-source app. The app, which can be reached at this link: https://gaia-
geothermobarometry-gaia-home-6ol8kg.streamlit.app/, was developed in Python
with the help of the open-source app framework Streamlit. To use the app, one

86 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

can simply upload a file in “.xlsx" format which contains the results obtained
from the analysis of the samples whose temperature and pressure one wants to
recover. you can download a blank file with the correct formatting, as well as
view an example of input. Once the file has been uploaded, it is possible to start
the calculation process. The app will first of all calculate the components of the
clinopyroxenes which will be fed to the neural networks. Finally, an output file is
produced in which estimates for pressure and temperature are reported for each
of the data entered.

Figure 6.9: Home page of the web app GAIA.

6.9. CONCLUSIONS 87

Figure 6.10: The input data are processed and a file with the predictions is made. The file
can be easily downloaded and two histograms, for the pressure and the temperature respectively,
are shown.

6.9 Conclusions

We have developed GAIA, a new Deep Learning Feedforward Neural Network
approach, to assess intensive parameters (P-T) of volcano plumbing systems re-
quiring no assessment of equilibrium with coexisting melt (Figs. 6.1 6.2 6.4). The
application of GAIA to five Italian volcanoes yielded strict and comparable depth
storage conditions obtained with independent geophysical and gravimetric meth-
ods (Fig. 6.7). The pressure estimated results reinforce current models of volcano

88 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

plumbing systems (e.g., Cashman et al., 2017) consisting of physically-separated
reservoirs interconnected by a network of conduits channelling magma en route
to the surface. Overall, we are confident that GAIA can provide a robust tool
to unravel magma storage, segregation, and ascent conditions (P-T) within the
plumbing system of active volcanoes. These results, coupled with the timescales
of pre-eruptive processes (radiogenic isotopes, diffusion geochronometry) and
volatile emissions will set further basis for one of the key research in modern
volcanology, that is the prevention and mitigation of volcanic hazard.

In a subsequent development of this work, the spectral method presented in
the first two chapters of this thesis was successfully used to address the same
regression problem shown here. The use of the spectral method has multiple
advantages. First of all, through the pruning strategy (see chapter 2), It is
possible to obtain more compact networks that can be managed more easily
and implemented more efficiently in the web app. Moreover, by assigning an
eigenvalue to each input node in the network, you can derive an importance
ranking for the input features based on the post-training eigenvalue values. This
approach allows us to estimate the significance of each input element for pressure
and temperature estimation.

While this remains an ongoing development, the results obtained so far
suggest that employing the spectral method to tackle this problem (and regression
problems in general) could be an effective strategy.

6.9. CONCLUSIONS 89

Figure 6.4: Difference between experimental intensive parameters and predicted inten-
sive parameters of the test set using the Feedforward Neural Network method applied to
clinopyroxene-only. (a) temperature, test set 20% of the total available dataset, (b) pressure,
test set 5% of the total available dataset (see text). Each data point represents the average
difference and associated uncertainty (1σ) computed after M independent replicas trained with
the bootstrap procedure (see text). Regression statistics [R2 score, Root-Mean-Square Error
(RMSE), and number of data (n)] is reported in the two insets. For the sake of clarity, the data
points have been reported as sequential data from the lowest T and P values (bottom of the
y-axis) to the highest T and P values (top of the y-axis) to have a better visualization of the
difference between experimental and predicted T and P. This is particularly important in the
case of pressure because of its localized distribution (1 bar, 2 kbar, 4 kbar, 8 kbar, 10 kbar)
across the explored range (Fig. 6.5).

90 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

Figure 6.5: Top panel (a): distribution of the experimental pressure values used as target for
the training procedure. The distribution displays a few localized peaks corresponding to the
pressure values most represented within the employed dataset. Bottom panel (b): distribution
of the pressure values as predicted by the Feedforward Neural Network method using the
clinopyroxene-only geobarometer. Each color corresponds to a different class, as identified from
direct inspection of the examined dataset (top panel). Data points sampled from the peaks
(five classes representing the most represented pressure values in the data set) are correctly
identified by the trained network, with a small degree of uncertainty. Data points laying in
between peaks (four classes) are also traced back to their correct domain of pertinence, although
with a higher degree of uncertainty. This constitutes an a posteriori proof of the ability of the
Feedforward Neural Network to cope with the supplied dataset and eventually materialize in
reliable predictions.

6.9. CONCLUSIONS 91

Figure 6.6: Absolute error distribution (i.e., difference between predicted and experimental
pressure) of the clinopyroxene-only geobarometer for the nine different classes, as introduced
in Fig. 6.5 Each data point has been associated to a class based on the values of the model
prediction. Predictions that fall within the five peaks of the global distribution are associated
with uncertainty << 1 kbar, whereas predictions that fall within the intermediate regions
display as expected a larger, although limited, uncertainty. Overall, the average pressure
uncertainty can be safely assumed to be ±1kbar.

92 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

Figure 6.7: Histograms of pressure predictions from the Feedforward Neural Network method
applied to the plumbing system of the five Italian volcanoes: (a) Etna, (b) Stromboli, (c)
Vulcano and Vulcanello, (d) Somma-Vesuvio, (e) Campi Flegrei. The frequency of pressure
prediction is every 0.5 kbar. The Kernel Density Estimates (KDEs) highlight the major peaks
of pressure distribution within the plumbing system of each volcano (see text).

6.9. CONCLUSIONS 93

Figure 6.8: Histograms of temperature predictions from the Feedforward Neural Network
method applied to the plumbing system of the five Italian volcanoes: (a) Etna, (b) Stromboli, (c)
Vulcano and Vulcanello, (d) Somma-Vesuvio, (e) Campi Flegrei. The frequency of temperature
prediction is every 25 °C. The Kernel Density Estimates (KDEs) highlight the major peaks of
temperature distribution within the plumbing system of each volcano (see text).

94 CHAPTER 6. GAIA, DEEP LEARNING FOR VOLCANO

Chapter 7

Conclusion

Over the course of the last three years, I have explored a few ideas for improving
artificial neural network models beyond current state of the art. In particular, the
spectral formulation introduced in the firts chapter has proven to be remarkably
valuable. We explored how the spectral formulation can be extended by intro-
ducing additional decompositions to achieve performances akin to those obtained
with standard architectures, while still employing a total number of parameters
which scales linearly with the number of nodes. Moreover, through the presented
extension, we have also shown how to define an effective strategy for training
sparse networks.

As described in the second chapter, the introduction of the global parameters
on which the spectral formulation is based provides us with strategies for iden-
tifying the fundamental nodes of a network, i.e. where the information learned
during the training phase it is actually stored. The ability to identify a funda-
mental subnetwork dedicated to task-solving enables the removal of a significant
amount of residual noise within the network. Consequently, this could enhance
the interpretability of the remaining network components.

In the third and fourth chapters, we introduced a novel artificial neural network
model inspired to biological systems that we termed RSN . Data processing and
subsequent evaluation (classification) are performed by a discrete-time dynamic
system described by a map. Each class is linked to a final state of the dynamics
and this marks a distinction as compared to conventional approaches.

Finally, in the last two chapters of the thesis, we demonstrated successful
applications of various neural network architectures in two distinct research
areas: epidemiology and thermobarometry. Notably, the second application
led to the creation of a web app (GAIA) accessible to researchers interested
in thermobarometry. This app can provides valuable insights into the internal
morphology of volcanoes based on geochemical analysis of rock samples.

The results found during my doctoral experience constitute encouraging
evidence of the contribution that the physics community can bring to the study
of the foundations of artificial intelligence. Too often, in fact, we rely on these
innovative tools based only on empirical results. The scientific approach must play
a fundamental role in understanding machine learning models: one of the central

95

96 CHAPTER 7. CONCLUSION

challenges of these years. Furthermore, as shown in this thesis, the convergence
of ideas from various fields can allow the necessary change of perspective. In
particular, the use of the typical concepts of the theory of networks and dynamical
systems in the context of artificial neural networks has allowed the formulation
of new models. These models, on one hand, offer greater control over the roles of
architectural components (spectral pruning), and on the other hand, emulate to
some extent the behavior of a biological neuronal system (RSN, C-RSN).

These two latter directions may be explored further in the future and some
steps forward have already been made. In particular, in [109] we show how the
spectral formulation can allow us to obtain an estimate of the complexity of
the target function. This is possible by applying the spectral method in the
teacher-student paradigm where a randomly initialized neural network acts as a
target function for another neural network. By placing a regularization on the
eigenvalues of the network written in the spectral formulation, it is possible to
identify a sub-structure of the network that shares the same topological properties
of the target network. At the same time, we started to explore developments
of the RSN and C-RSN models by working with continuous dynamic systems,
rather than discrete maps as in the case of the models described in this thesis.
In these models under development it will therefore be possible to study typical
properties of dynamical systems such as, for example, the characterization of the
basins of attraction. Furthermore, the continuous dynamic systems to be trained
will become progressively more similar to the models used in neuroscience, thus
reducing the gap between computational neuroscience and artificial intelligence.

Appendix A

Improving the spectral learning

A.1 Analytical characterisation of inter-nodes weights
in direct space

In the following, we will derive Eq. (1.2) as reported in the chapter 1 of the
thesis. Recall that A(k) is a N × N matrix. From A(k) extract a square block
of size (Nk + Nk+1) × (Nk + Nk+1). This is formed by the set of elements
A

(k)
i′,j′ with i′ =

∑k−1
s=1 Ns + i and j′ =

∑k−1
s=1 Ns + j, with i = 1, ..., Nk + Nk+1,

j = 1, ..., Nk + Nk+1. For the sake of simplicity, we use A(k) to identify the
obtained matrix. We proceed in analogy for Λ(k) and Φ(k). Then:

A
(k)
ij =

[
Φ(k)Λ(k)

(
2I −Φ(k)

)]
ij

=
[
2Φ(k)Λ(k)

]
ij
−
[
Φ(k)Λ(k)Φ(k)

]
ij

=α
(k)
ij − β

(k)
ij

(A.1)

From hereon, we shall omit the apex (k). Let λ1 . . . λNk+Nk+1
identify the eigen-

values of the transfer operator A, namely the diagonal entries of Λ. In formulae,
Λij =

∑Nk+Nk+1

j=1 δijλj.
The quantities αij and βij can be cast in the form:

αij = 2

Nk+Nk+1∑
k=1

Φikλkδkj = 2Φijλj

βij =

Nk+Nk+1∑
k,m=1

ΦikλkδkmΦmj =
∑

m∈I∪J

δimλmΦmj

where j ∈ J = (1, ..., Nk) runs on the nodes at the departure layer (k), whereas
i ∈ I = (Nk + 1, ..., Nk +Nk+1). Hence, I ∪ J = [1, ..., Nk +Nk+1]. The above
expression for βij can be further processed to yield

βij =
∑
m∈J

ΦimλmΦmj +
∑
m∈I

ΦimλmΦmj = Φijλj + λiΦij

97

98 APPENDIX A. IMPROVING THE SPECTRAL LEARNING

Finally we can express the difference in (A.1) as

αij − βij = 2Φijλj − Φijλj − λiΦij = (λj − λi)ϕij (A.2)

From the above expression, one readily obtains the sought equation, upon
shifting the index i to have it spanning the interval [1, ..., Nk+1]. Recall in fact
that, by definition, w (the matrix of the weights, see chapter (1) is a Nk ×Nk+1

matrix.

A.2 Testing the S-SVD and S-QR methods on F-
MNIST and CIFAR-10 database

In the following we report on the accuracy of the S-SVD and S-QR methods
when applied to the case of F-MNIST and CIFAR-10. The analysis refers to a
three layers setting. The results displayed in Figs. A.1 and A.2 are in line with
those discussed in the chapter (1) of this thesis.

A.2. TESTING ON F-MNIST AND CIFAR10 99

Figure A.1: The case of F-MNIST. Upper panel: the accuracy of the different
learning strategies, normalised to the accuracy obtained for an identical deep
neural network trained in direct space, as a function of the size of the intermediate
layer, N2. Triangles stand for the relative accuracy obtained when employing
the spectral method (Spectral). Pentagons refer to the setting which extends
the training to the eigenvectors’ blocks via a SVD decomposition. Specifically,
matrices Uk and Vk are randomly generated (with a uniform distribution of the
entries) and stay unchanged during optimisation. The singular values are instead
adjusted together with the eigenvalues which originate from the spectral method
(S-SVD). Diamonds are instead obtained when the eigenvalues and the elements of
matrix R (in a QR decomposition of the eigenvectors’ blocks) are simultaneously
adjusted S-QR). Errors are computed after 10 independent realisations of the
respective procedures. Lower panel: the ratio of the number of tuned parameters
(Spectral, S-SVD, S-QR methods) is plotted against N2. As a reference, the best
accuracy obtained over the explored range for the deep network trained with
conventional means is 90%.

100 APPENDIX A. IMPROVING THE SPECTRAL LEARNING

Figure A.2: The case of CIFAR-10. Same as in Fig. A.1. The best accuracy
obtained over the explored range for the deep network trained with conventional
means is 52%.

A.3 Reducing the number of trainable parameters
in the S-QR method

Introduce p ∈ [0, 1]. When p = 0, the diagonal elements of R in the S-QR
method are solely trained. The off-diagonal elements are instead frozen to random
values. In the opposite limit, when p = 1 all elements of matrix R are assumed
to be trained. Intermediate values of p interpolate between the aforementioned
limiting conditions. More specifically, the entries that undergo optimisation, are
randomly chosen from the pool of available the available ones, as reflecting the
selected fraction. In Fig. A.3 the relative accuracy for MNIST is plotted against
p. Here, the network is made of ℓ = 3 layers with N2 = 500. A limited fraction
of parameters is sufficient to approach the accuracy displayed by the network
trained with conventional means. In Figs. A.4 and A.5 the results relative to
F-MNIST and CIFAR-10 are respectively reported.

A.3. REDUCING PARAMETERS IN S-QR 101

Figure A.3: The case of MNIST. The (relative) classification accuracy is
plotted (red, diamond and solid line) against p, the probability to train the entries
that populate the non null triangular part of R. The corresponding value of the
relative accuracy as computed via the S-SVD is also reported (green, pentagons
and solid lines). Here, ℓ = 3, with N2 = 500.

Figure A.4: The case of F-MNIST. As in the caption of Fig. A.3. Here,
N2 = 500.The averages are carried out over 10 independent realisations.

102 APPENDIX A. IMPROVING THE SPECTRAL LEARNING

Figure A.5: The case of CIFAR-10. As in the caption of Fig. A.3. Here,
N2 = 700. The averages are carried out over 5 independent realisations.

A.4 Testing the performance of the introduced
methods on a multi-layered architecture.

In this section we will test the setting of a multi-layered architecture by generalising
beyond the case study ℓ = 3 that we employed in chapter (1). More specifically,
we have trained according to different modalities a four-layer (ℓ = 4) deep neural
network, by modulating N2 = N3 over a finite window. As usual, the size of
the incoming and outgoing layers are set by the specificity of the examined
datasets. The results reported in Fig. A.6 refer to F-MNIST and confirm that
the S-QR strategy yields performance that are comparable to those reached with
conventional learning approaches, but relying on a much smaller set of trainable
parameters. In Fig. A.7 the effect of the imposed sparsity on the classification
accuracy is displayed for both conventional and S-QR method. Similar conclusions
can be reached for MNIST and CIFAR-10.

A.4. MULTI-LAYERED ARCHITECTURE 103

Figure A.6: The case of a multi-layered architecture: the relative accu-
racy. The relative accuracy as obtained by training a four layer network with
N2 = N3 via different strategies. The symbols are as specified in Fig. A.1. The
analysis refers to F-MNIST.

Figure A.7: The case of a multi-layered architecture: training a sparse
network. The accuracy of the trained network against the degree of imposed
sparsity. Black diamonds refer to the usual training in direct space, while red
pentagons refer to the S-QR method.The analysis is carried out for F-MNIST.
Here, N2 = N3 = 500.

104 APPENDIX A. IMPROVING THE SPECTRAL LEARNING

Appendix B

Eigenvalues driven pruning

B.1 MNIST and Fashion-MNIST: single hidden
layer with different activation functions.

We shall here report (see Figures B.1a, B.1b, B.1c, B.2a and B.2b) on the
performance of the proposed trimming strategies, as applied to MNIST and
Fashion-MNIST, for a single hidden layer architecture and beyond the setting
reported in the chapter (2). In particular, we will assume (i) ELU, tanh and
ReLU for MNIST (ii) tanh and ReLU activation function for Fashion-MNIST
(the ELU activation was employed in the results shown in chapter (2)). Here,
N2 = 500, while N1 = 784 and N3 = 10.

B.2 MNIST and Fashion-MNIST: multiple hidden
layers with different activation functions.

We will here generalize the analysis carried out in the preceding section to the
case of a multilayered (ℓ > 3) architecture (see Figures B.3a, B.3b, B.3c, B.4a and
B.4b). In line with the choice operated in chapter (2, we will assume a five layered
deep neural network with N2 = N3 = N4 = 500, and N1 = 784 and N5 = 10.

B.3 Testing the trimming strategies on CIFAR10
dataset.

To assess the flexibility of the schemes outlined in Section III-B we here consider
the CIFAR10 dataset and assume a modified MobileNetV2 [110] adding two dense
layer at the end of the network. During training we freeze all the layers, except for
the two appended dense layers. These latter are trained in the spectral domain.
Working in this setting, the pruning is performed on the first dense layer by using
strategies both (i) and (ii), as introduced in chapter (2. Here again the results
are compared to those obtained when using the absolute value of the incoming

105

106 APPENDIX B. EIGENVALUES DRIVEN PRUNING

connectivity as an alternative trimming criterion (see Figures B.5a, B.5b and
B.5c). As a further step in the analysis, we also introduce and test a ℓ1-norm
regularization acting on the eigenvalues, so as to induce a sparse solution [111].
All experiments are performed by using a MobileNetV2 based architecture. The
first dense layer is made of 512 nodes with an ELU activation function (others
activation functions yield analogous results). The following regularization loss
functions are considered depending on whether the training takes place in the
reciprocal (spectral layer) or direct space:

• Spectral regularization

Lspec
r = γ ∗

Nℓ−1∑
i=1

|λ(ℓ−1)
i |

• Connectivity regularization

Lconn
r = γ ∗

∑
i,j

|w(ℓ−1)
ij |

where γ stands for a suitable regularizer weight.
Clearly Lconn

r is equivalent to a regularization which acts on the incoming absolute
connectivity. In fact, |

∑
i |xi|| =

∑
i |xi|.

The ℓ1 regularization impacts significantly on the classification accuracy, as it
can be clearly appreciated by direct inspection of Figure B.6.
Choosing the correct regularizer weight (γ), the performance of the network are
stable across various range of pruning thresholds, even at the highest percentile.

B.3. TRIMMING STRATEGIES ON CIFAR10 107

(a) (b)

(c)

Figure B.1: Accuracy on the MNIST database with respect to the percentage
of trimmed nodes (selected from the 500 neurons that compose the sole hid-
den layer), in a three layers feedforward architecture. The results reported in
each panel refer to a different selection of the nonlinear activation functions,
respectively ELU (a), ReLU (b) and tanh (c). In orange, the results obtained
by using the trimming procedure based on the absolute value of the incoming
connectivity. In blue, the results obtained when filtering the nodes after a full
spectral training (post-training). The curve in green displays the accuracy of the
trimmed networks generated upon application of the pre-training filter. In this
case, the examined network is initially trained on the set of eigenvalues, while
keeping the eigenvectors frozen. After having removed unessential nodes, based
on their associated eigenvalues, the network undergoes another training phase
that is solely targeted to adjusting the entries of the residual eigenvectors. The
shadowed region represents the semi-dispersion over 5 independent realizations.
When using the Relu function, trimming on the absolute value of the incoming
connectivity yields slightly better results than what found when using the post-
training spectral filter. The two stages spectral trimming proves always more
effective.

108 APPENDIX B. EIGENVALUES DRIVEN PRUNING

(a) (b)

Figure B.2: Accuracy on the Fashion-MNIST database with respect to the
percentage of trimmed nodes (selected from the 500 neurons that compose the
sole hidden layer), in a three layers feedforward architecture. The results reported
in each panel refer to a different selection of the nonlinear activation functions,
respectively ReLU (b) and tanh (c). Symbols and conclusions are in line with
those reported for the case of MNIST.

B.3. TRIMMING STRATEGIES ON CIFAR10 109

(a) (b)

(c)

Figure B.3: Accuracy on the MNIST database with respect to the percentage
of trimmed nodes (from the set of N2 +N3 +N4 neurons). The results in each
panel refer to different choices of the non linear function, ELU (a), ReLU (b) and
tanh (c). Symbols are chosen as for the case of the single hidden layer setting. It
should be remarked that the spectral trimming strategies proves definitely more
effective than the benchmark model anchored to direct space, also when the Relu
function is employed, in the case of multiple hidden layers.

110 APPENDIX B. EIGENVALUES DRIVEN PRUNING

(a) (b)

Figure B.4: Accuracy on the Fashion-MNIST database with respect to the
percentage of trimmed nodes (from the set of N2+N3+N4 neurons). The results
in each panel refer to different choices of the non linear activation function, ReLU
(a) and tanh (b). For the symbols, see the caption of the Figures above. Also in
this case the spectral filters prove always superior.

B.3. TRIMMING STRATEGIES ON CIFAR10 111

(a) (b)

(c)

Figure B.5: Accuracy on the CIFAR10 database with respect to the percentage of
trimmed nodes (from the ℓ− 1 layer). The results in each panel refer to different
non linear functions, respectively ELU (a), ReLU (b) and tanh (c). Symbols are
chosen in analogy with the above (the result drawn in green are based on two
different runs).

112 APPENDIX B. EIGENVALUES DRIVEN PRUNING

(a) (b)

(c)

Figure B.6: Computed accuracy on the CIFAR10 dataset against the percentage of
trimmed nodes (from the first of the two dense layers appended to the MobileNet-
like architecture). The panels displays the performance of the network as according
to each trimming procedure, and using weights (W) for the ℓ1 regularizer. In panel
(a) and (b) pre-training (based on two runs) and post-spectral filter, respectively;
in panel (c) the reduction schem based on the absolute connectivity.

Bibliography

[1] L. Giambagli, L. Buffoni, T. Carletti, W. Nocentini, and D. Fanelli, “Ma-
chine learning in spectral domain,” Nature communications, vol. 12, no. 1,
p. 1330, 2021.

[2] L. Chicchi, L. Giambagli, L. Buffoni, T. Carletti, M. Ciavarella, and D.
Fanelli, “Training of sparse and dense deep neural networks: Fewer param-
eters, same performance,” Physical Review E, vol. 104, no. 5, p. 054 312,
2021.

[3] L. Buffoni, E. Civitelli, L. Giambagli, L. Chicchi, and D. Fanelli, “Spectral
pruning of fully connected layers,” Scientific Reports, vol. 12, no. 1, Jul.
2022. doi: 10.1038/s41598-022-14805-7. [Online]. Available: https:
//doi.org/10.1038/s41598-022-14805-7.

[4] L. Chicchi, D. Fanelli, L. Giambagli, L. Buffoni, and T. Carletti, “Recur-
rent spectral network (rsn): Shaping a discrete map to reach automated
classification,” Chaos, Solitons & Fractals, vol. 168, p. 113 128, 2023.

[5] L. Chicchi, L. Giambagli, L. Buffoni, and D. Fanelli, “Mobility-based
prediction of sars-cov-2 spreading,” arXiv preprint arXiv:2102.08253, 2021.

[6] L. Chicchi, L. Bindi, D. Fanelli, and S. Tommasini, “Frontiers of thermo-
barometry: Gaia, a novel deep learning-based tool for volcano plumbing
systems,” Earth and Planetary Science Letters, vol. 620, p. 118 352, 2023.

[7] D. J. Surmeier and R. Foehring, “A mechanism for homeostatic plasticity,”
Nature neuroscience, vol. 7, no. 7, pp. 691–692, 2004.

[8] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[9] M. Dusenberry, G. Jerfel, Y. Wen, et al., “Efficient and scalable bayesian
neural nets with rank-1 factors,” in International conference on machine
learning, PMLR, 2020, pp. 2782–2792.

[10] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compres-
sion and acceleration for deep neural networks,” arXiv preprint arXiv:1710.09282,
2017.

[11] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

113

114 BIBLIOGRAPHY

[12] D. Zhang, H. Wang, M. Figueiredo, and L. Balzano, “Learning to share:
Simultaneous parameter tying and sparsification in deep learning,” in
International Conference on Learning Representations, 2018.

[13] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[14] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset
for benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[15] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from
tiny images,” Citeseer, 2009.

[16] C. C. Aggarwal, Neural Networks and Deep Learning. Springer, 2018,
pp. 15–16.

[17] M. Gabrié, A. Manoel, C. Luneau, et al., “Entropy and mutual information
in models of deep neural networks,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2019, no. 12, p. 124 014, Dec. 2019. doi:
10.1088/1742-5468/ab3430. [Online]. Available: https://doi.org/10.
1088%2F1742-5468%2Fab3430.

[18] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” arXiv preprint arXiv:1803.03635, 2018.

[19] J. O. Neill, “An overview of neural network compression,” arXiv preprint
arXiv:2006.03669, 2020.

[20] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to
handwritten zip code recognition,” Neural computation, vol. 1, no. 4,
pp. 541–551, 1989.

[21] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” arXiv
preprint arXiv:1909.01377, 2019.

[22] J. Chang and J. Sha, “Prune deep neural networks with the modified
L_{1/2} penalty,” IEEE Access, vol. 7, pp. 2273–2280, 2018.

[23] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning con-
volutional neural networks for resource efficient inference,” arXiv preprint
arXiv:1611.06440, 2016.

[24] P. de Jorge, A. Sanyal, H. S. Behl, P. H. Torr, G. Rogez, and P. K.
Dokania, “Progressive skeletonization: Trimming more fat from a network
at initialization,” arXiv preprint arXiv:2006.09081, 2020.

[25] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distillation
and quantization,” arXiv preprint arXiv:1802.05668, 2018.

[26] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H.
Ghasemzadeh, “Improved knowledge distillation via teacher assistant,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
2020, pp. 5191–5198.

BIBLIOGRAPHY 115

[27] M. Masana, J. van de Weijer, L. Herranz, A. D. Bagdanov, and J. M.
Alvarez, “Domain-adaptive deep network compression,” in Proceedings of
the IEEE International Conference on Computer Vision, 2017, pp. 4289–
4297.

[28] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing neural
networks,” arXiv preprint arXiv:1509.06569, 2015.

[29] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep models by low
rank and sparse decomposition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 7370–7379.

[30] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou, “And the bit
goes down: Revisiting the quantization of neural networks,” arXiv preprint
arXiv:1907.05686, 2019.

[31] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Post-training 4-bit
quantization of convolution networks for rapid-deployment,” arXiv preprint
arXiv:1810.05723, 2018.

[32] T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu, “Reshaping deep neural
network for fast decoding by node-pruning,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014,
pp. 245–249. doi: 10.1109/ICASSP.2014.6853595.

[33] X. Wang, F. Yu, L. Dunlap, et al., “Deep mixture of experts via shallow
embedding,” in Uncertainty in Artificial Intelligence, PMLR, 2020, pp. 552–
562.

[34] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet:
Learning dynamic routing in convolutional networks,” in Proceedings of
the European Conference on Computer Vision (ECCV), Sep. 2018.

[35] E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, “Conditional computa-
tion in neural networks for faster models,” arXiv preprint arXiv:1511.06297,
2015.

[36] L. Giambagli, L. Buffoni, T. Carletti, W. Nocentini, and D. Fanelli, “Ma-
chine learning in spectral domain,” Nature communications, vol. 12, no. 1,
pp. 1–9, 2021.

[37] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. Barbosa, “Next generation
reservoir computing,” Nature communications, vol. 12, no. 1, p. 5564, 2021.

[38] G. Tanaka, T. Yamane, J. B. Héroux, et al., “Recent advances in physical
reservoir computing: A review,” Neural Networks, vol. 115, pp. 100–123,
2019.

[39] W. Maass, T. Natschläger, and H. Markram, “Real-time computing with-
out stable states: A new framework for neural computation based on
perturbations,” Neural computation, vol. 14, no. 11, pp. 2531–2560, 2002.

116 BIBLIOGRAPHY

[40] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist
networks: The sequential learning problem,” in Psychology of learning and
motivation, vol. 24, Elsevier, 1989, pp. 109–165.

[41] S. Lewandowsky and S.-C. Li, “Catastrophic interference in neural net-
works: Causes, solutions, and data,” in Interference and inhibition in
cognition, Elsevier, 1995, pp. 329–361.

[42] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, “Measuring
catastrophic forgetting in neural networks,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 32, 2018.

[43] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, et al., “Overcoming catastrophic
forgetting in neural networks,” Proceedings of the national academy of
sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[44] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An
empirical investigation of catastrophic forgetting in gradient-based neural
networks,” arXiv preprint arXiv:1312.6211, 2013.

[45] X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong, “Learn to grow: A
continual structure learning framework for overcoming catastrophic for-
getting,” in International Conference on Machine Learning, PMLR, 2019,
pp. 3925–3934.

[46] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[47] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[48] L. Deng, D. Yu, et al., “Deep learning: Methods and applications,” Foun-
dations and trends® in signal processing, vol. 7, no. 3–4, pp. 197–387,
2014.

[49] F. Chollet et al., “Keras: The python deep learning library,” Astrophysics
source code library, ascl–1806, 2018.

[50] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network,” Physica D: Nonlinear Phenomena,
vol. 404, p. 132 306, 2020.

[51] Y. Goldberg, Neural network methods for natural language processing.
Springer Nature, 2022.

[52] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and
Applications, vol. 5, no. 64-67, p. 2, 2001.

[53] C. M. Bishop, Pattern Recognition and Machine Learning, English, 1st
ed. 2006. Corr. 2nd printing 2011 edition. New York: Springer, Apr. 2011,
isbn: 978-0-387-31073-2.

[54] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learn-
ing: data mining, inference, and prediction. Springer Science & Business
Media, 2009.

BIBLIOGRAPHY 117

[55] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: A review,” Data Mining and
Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[56] K. Chowdhary, “Natural language processing,” in Fundamentals of Artifi-
cial Intelligence, Springer, 2020, pp. 603–649.

[57] P. Tino, C. Schittenkopf, and G. Dorffner, “Financial volatility trading
using recurrent neural networks,” IEEE Transactions on Neural Networks,
vol. 12, no. 4, pp. 865–874, 2001.

[58] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network
learning for speech recognition and related applications: An overview,”
in 2013 IEEE international conference on acoustics, speech and signal
processing, IEEE, 2013, pp. 8599–8603.

[59] D. Fanelli and F. Piazza, “Analysis and forecast of covid-19 spreading in
china, italy and france,” Chaos, Solitons & Fractals, vol. 134, p. 109 761,
2020.

[60] T. Carletti, D. Fanelli, and F. Piazza, “Covid-19: The unreasonable effec-
tiveness of simple models,” Chaos, Solitons & Fractals: X, vol. 5, p. 100 034,
2020.

[61] A. Vespignani, H. Tian, C. Dye, et al., “Modelling covid-19,” Nature
Reviews Physics, vol. 2, no. 6, pp. 279–281, 2020.

[62] S. Shastri, K. Singh, S. Kumar, P. Kour, and V. Mansotra, “Time series
forecasting of covid-19 using deep learning models: India-usa comparative
case study,” Chaos, Solitons & Fractals, vol. 140, p. 110 227, 2020.

[63] J. Farooq and M. A. Bazaz, “A deep learning algorithm for modeling and
forecasting of covid-19 in five worst affected states of india,” Alexandria
Engineering Journal, vol. 60, no. 1, pp. 587–596, 2020.

[64] J. Mathew, R. K. Behera, et al., “A deep learning framework for covid
outbreak prediction,” arXiv preprint arXiv:2010.00382, 2020.

[65] M. U. Kraemer, C.-H. Yang, B. Gutierrez, et al., “The effect of human
mobility and control measures on the covid-19 epidemic in china,” Science,
vol. 368, no. 6490, pp. 493–497, 2020.

[66] C. Ilin, S. E. Annan-Phan, X. H. Tai, S. Mehra, S. M. Hsiang, and
J. E. Blumenstock, “Public mobility data enables covid-19 forecasting and
management at local and global scales,” National Bureau of Economic
Research, Tech. Rep., 2020.

[67] Y. Goldberg, “Neural network methods for natural language processing,”
Synthesis Lectures on Human Language Technologies, vol. 10, no. 1, pp. 1–
309, 2017.

[68] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

118 BIBLIOGRAPHY

[69] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[70] Google, Mobility reports, 2020. [Online]. Available: https://www.google.
com/covid19/mobility/?hl=en.

[71] B. Scaillet, M. Pichavant, and R. Cioni, “Upward migration of vesuvius
magma chamber over the past 20,000 years,” Nature, vol. 455, pp. 216–219,
2008. doi: 10.1038/nature07232.

[72] M. Kahl, S. Chakraborty, M. Pompilio, F. Costa, and O. Bachmann,
“Constraints on the nature and evolution of the magma plumbing system of
mt. etna volcano (1991-2008) from a combined thermodynamic and kinetic
modelling of the compositional record of minerals,” Journal of Petrology,
vol. 56, pp. 2025–2068, 2015. doi: 10.1093/petrology/egv063.

[73] G. Saccorotti, M. Iguchi, and A. Aiuppa, “In situ volcano monitoring:
Present and future,” in Volcanic Hazards, Risks and Disasters, Elsevier
Inc., 2015, pp. 169–202. doi: 10.1016/B978-0-12-396453-3.00007-1.

[74] C. Petrone, G. Bugatti, E. Braschi, and S. Tommasini, “Pre-eruptive
magmatic processes re-timed using a non-isothermal approach to magma
chamber dynamics,” Nature Communications, vol. 7, pp. 1–11, 2016. doi:
10.1038/ncomms12946.

[75] K. Cashman, R. Sparks, and J. Blundy, “Vertically extensive and unstable
magmatic systems: A unified view of igneous processes,” Science, vol. 355,
pp. 1–9, 2017. doi: 10.1126/science.aag3055.

[76] C.-H. Lin, Y.-C. Lai, M.-H. Shih, H.-C. Pu, and S.-J. Lee, “Seismic de-
tection of a magma reservoir beneath turtle island of taiwan by s-wave
shadows and reflections,” Scientific Reports, vol. 8, pp. 1–12, 2018. doi:
10.1038/s41598-018-34596-0.

[77] C. Magee, C. T. E. Stevenson, S. K. Ebmeier, et al., “Magma plumbing
systems: A geophysical perspective,” Journal of Petrology, vol. 59, pp. 1217–
1251, 2018. doi: 10.1093/petrology/egy064.

[78] A. Mohamed, M. Al Deep, K. Abdelrahman, and A. Abdelrady, “Geometry
of the magma chamber and curie point depth beneath hawaii island:
Inferences from magnetic and gravity data,” Frontiers in Earth Science,
vol. 10, pp. 1–17, 2022. doi: 10.3389/feart.2022.847984.

[79] D. Rasmussen, T. Plank, D. Roman, and M. Zimmer, “Magmatic water
content controls the pre-eruptive depth of arc magmas,” Science, vol. 375,
pp. 1169–1172, 2022. doi: 10.1126/science.abm5174.

[80] K. Putirka, “Thermometers and barometers for volcanic systems,” Reviews
in Mineralogy and Geochemistry, vol. 69, pp. 61–120, 2008. doi: 10.2138/
rmg.2008.69.3.

BIBLIOGRAPHY 119

[81] M. Masotta, S. Mollo, C. Freda, M. Gaeta, and G. Moore, “Clinopyroxene-
liquid thermometers and barometers specific to alkaline differentiated
magmas,” Contributions to Mineralogy and Petrology, vol. 166, pp. 1545–
1561, 2013. doi: 10.1007/s00410-013-0927-9.

[82] D. A. Neave and K. D. Putirka, “A new clinopyroxene–liquid barometer,
and implications for magma storage pressures under icelandic rift zones,”
American Mineralogist, vol. 102, pp. 777–794, 2017. doi: 10.2138/am-
2017-5968.

[83] M. Abadi, A. Agarwal, P. Barham, et al., “Tensorflow: Large-scale ma-
chine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[84] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep
learning techniques for autonomous driving,” Journal of Field Robotics,
vol. 37, pp. 362–386, 2020. doi: 10.1002/rob.21918.

[85] X. Li and C. Zhang, “Machine learning thermobarometry for biotite-
bearing magmas,” Journal of Geophysical Research: Solid Earth, vol. 127,
e2022JB024137, 2022. doi: 10.1029/2022JB024137.

[86] D. Neave et al, “Clinopyroxene–liquid equilibria and geothermobarometry
in natural and experimental tholeiites: The 2014-2015 holuhraun eruption,
iceland,” Journal of Petrology, vol. 60, pp. 1653–1680, 2019. doi: 10.1093/
petrology/egz042.

[87] M. Petrelli, L. Caricchi, and D. Perugini, “Machine learning thermo-
barometry: Application to clinopyroxene-bearing magmas,” Journal of
Geophysical Research: Solid Earth, vol. 125, e2020JB020130, 2020. doi:
10.1029/2020JB020130.

[88] O. Higgins, T. Sheldrake, and L. Caricchi, “Machine learning thermo-
barometry and chemometry using amphibole and clinopyroxene: A window
into the roots of an arc volcano (mount liamuiga, saint kitts),” Con-
tributions to Mineralogy and Petrology, vol. 177, pp. 1–22, 2022. doi:
10.1007/s00410-021-01874-6.

[89] C. Jorgenson, O. Higgins, M. Petrelli, F. Bégué, and L. Caricchi, “A ma-
chine learning-based approach to clinopyroxene thermobarometry: Model
optimization and distribution for use in earth sciences,” Journal of Geo-
physical Research: Solid Earth, vol. 127, e2021JB022904, 2022. doi: 10.
1029/2021JB022904.

[90] M. M. Hirschmann, M. S. Ghiorso, F. A. Davis, et al., “Library of experi-
mental phase relations (lepr): A database and web portal for experimental
magmatic phase equilibria data,” Geochemistry, Geophysics, Geosystems,
vol. 9, 2008. doi: 10.1029/2007GC001894.

[91] N. Sebe, I. Cohen, A. Garg, and T. S. Huang, Machine learning in computer
vision. Springer Science & Business Media, 2005, vol. 29.

120 BIBLIOGRAPHY

[92] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2013, pp. 6645–6649. doi:
10.1109/ICASSP.2013.6638947.

[93] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[94] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations, 2017. doi: 10.48550/arXiv.1412.6980.

[95] L. Francalanci, S. Tommasini, S. Conticelli, and G. R. Davies, “Sr isotope
evidence for short magma residence time for the 20th century activity at
stromboli volcano, italy,” Earth and Planetary Science Letters, vol. 167,
pp. 61–69, 1999. doi: 10.1016/S0012-821X(99)00013-8.

[96] T. Ubide, J. Caulfield, C. Brandt, et al., “Deep magma storage revealed by
multi-method elemental mapping of clinopyroxene megacrysts at stromboli
volcano,” Frontiers in Earth Science, vol. 7, pp. 1–23, 2019. doi: 10.3389/
feart.2019.00239.

[97] G. Orsi, M. D’Antonio, and L. Civetta, Campi Flegrei: a Restless Caldera
in a Densely Populated Area. Springer Berlin Heidelberg, 2022. doi: 10.
1007/978-3-642-85905-7.

[98] L. Francalanci, F. Lucchi, J. Keller, G. De Astis, and C. A. Tranne,
“Eruptive, volcano-tectonic and magmatic history of the stromboli volcano
(north-eastern aeolian archipelago),” Memoirs, vol. 37, pp. 397–471, 2013.
doi: 10.1144/M37.13.

[99] L. Francalanci, G. R. Davies, W. I. M. Lustenhouwer, S. Tommasini,
P. R. D. Mason, and S. Conticelli, “Intra-grain sr isotope evidence for
crystal recycling and multiple magma reservoirs in the recent activity of
stromboli volcano, southern italy,” Journal of Petrology, vol. 46, pp. 1997–
2021, 2005. doi: 10.1093/petrology/egi045.

[100] A. Peccerillo, M. Frezzotti, G. De Astis, and G. Ventura, “Modeling the
magma plumbing system of vulcano (aeolian islands, italy) by integrated
fluid-inclusion geobarometry, petrology, and geophysics,” Geology, vol. 34,
pp. 17–20, 2006. doi: 10.1130/g22117.1.

[101] A. Bragagni, R. Avanzinelli, H. Freymuth, and L. Francalanci, “Recycling
of crystal mush-derived melts and short magma residence times revealed by
u-series disequilibria at stromboli volcano,” Earth and Planetary Science
Letters, vol. 404, pp. 206–219, 2014. doi: 10.1016/j.epsl.2014.07.028.

[102] G. De Astis, F. Lucchi, P. Dellino, et al., “Geology, volcanic history and
petrology of vulcano (central aeolian archipelago),” Memoirs, vol. 37,
pp. 281–349, 2013. doi: 10.1144/M37.11.

BIBLIOGRAPHY 121

[103] C. Petrone, E. Braschi, L. Francalanci, M. Casalini, and S. Tommasini,
“Rapid mixing and short storage timescale in the magma dynamics of
a steady-state volcano,” Earth and Planetary Science Letters, vol. 492,
pp. 206–221, 2018. doi: 10.1016/j.epsl.2018.03.055.

[104] A. Bonaccorso, A. Cannata, R. Corsaro, et al., “Multidisciplinary inves-
tigation on a lava fountain preceding a flank eruption: The 10 may 2008
etna case,” Geochemistry, Geophysics, Geosystems, vol. 12, 2011. doi:
10.1029/2010GC003480.

[105] M. Palano, M. Viccaro, F. Zuccarello, and S. Gresta, “Magma transport
and storage at mt. etna (italy): A review of geodetic and petrological
data for the 2002–03, 2004 and 2006 eruptions,” Journal of Volcanology
and Geothermal Research, vol. 347, pp. 149–164, 2017. doi: 10.1016/j.
jvolgeores.2017.09.009.

[106] A. Borzi, M. Giuffrida, F. Zuccarello, M. Palano, and M. Viccaro, “The
christmas 2018 eruption at mount etna: Enlightening how the volcano
factory works through a multiparametric inspection,” Geochemistry, Geo-
physics, Geosystems, vol. 21, pp. 1–15, 2020. doi: 10.1029/2020GC009226.

[107] M. Giuffrida, D. Scandura, G. Costa, et al., “Tracking the summit activity
of mt. etna volcano between july 2019 and january 2020 by integrating
petrological and geophysical data,” Journal of Volcanology and Geothermal
Research, vol. 418, p. 107 350, 2021. doi: 10.1016/j.jvolgeores.2021.
107350.

[108] M. Giuffrida and M. Viccaro, “Three years (2011–2013) of eruptive activity
at mt. etna: Working modes and timescales of the modern volcano plumbing
system from micro-analytical studies of crystals,” Earth-Science Reviews,
vol. 171, pp. 289–322, 2017. doi: 10.1016/j.earscirev.2017.06.003.

[109] L. Giambagli, L. Buffoni, L. Chicchi, and D. Fanelli, “How a student
becomes a teacher: Learning and forgetting through spectral methods,”
NeurIPS Conference, Dec. 2023.

[110] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2018.

[111] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization with
sparsity-inducing penalties,” Foundations and Trends® in Machine Learn-
ing, vol. 4, no. 1, pp. 1–106, 2012, issn: 1935-8237. doi: 10 . 1561 /
2200000015. [Online]. Available: http://dx.doi.org/10.1561/2200000015.

