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Abstract

The focus on locally refined spline spaces has grown rapidly in recent years due to the
need in Isogeometric Analysis (IgA) of spline spaces with local adaptivity: a property not
offered by the strict regular structure of tensor product B-spline spaces. However, this
flexibility sometimes results in collections of B-splines spanning the space that are not linearly
independent. In this paper we address the minimal number of Minimal Support B-splines (MS
B-splines) and of Locally Refined B-splines (LR B-splines) that can form a linear dependence
relation. We show that such minimal numbers are six for MS B-splines and eight for LR B-
splines. Further results are established to help detecting collections of B-splines that are
linearly independent.
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1. Introduction

In 2005 Thomas J.R. Hughes et al. [1] proposed to reconstitute finite element analysis
(FEA) within the geometric framework of CAD technologies. This gave rise to Isogeometric
Analysis (IgA). It unifies the fields of CAD and FEA by extending the isoparametric concept
of the standard finite elements to other shape functions, such as B-splines and non-uniform
rational B-splines (NURBS), used in CAD. This does not only allow for an accurate geo-
metrical description, but it also improves smoothness properties. As a consequence, IgA
methods often reach a required accuracy using a much smaller number of degrees of freedom
[2]. Moreover, in some situations, the increased smoothness also improves the stability of the
approximations resulting in fewer nonphysical oscillations [1, 3].

However, in numerical simulations, local (adaptive) refinements are frequently used for
balancing accuracy and computational costs. Traditional B-splines and NURBS spaces are
formulated as tensor products of univariate B-spline spaces. This means that refining in one
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of the univariate B-spline spaces will cause the insertion of an entire new row or column of
knots in the bivariate spline space, resulting in a global refinement. In order to break the
tensor product structure of the underlying mesh, new formulations of multivariate B-splines
have been introduced addressing local refineability.

1.1. Overview of locally refined spline methods

The first local refinement method introduced were the Hierarchical B-splines, or HB-
splines [4], whose properties were further analyzed in [5]. The HB-splines are linearly inde-
pendent and non-negative. However, partition of unity, which is a necessary for the convex
hull property (essential for interpreting the B-spline coefficients as control points), was still
missing. To rectify this, Truncated Hierarchical B-splines, or THB-splines, were proposed
in [6] and further analyzed in [7]. In [7] they show how the construction of HB-splines can
be modified while preserving the properties of HB-splines, gaining the partition of unity and
smaller support of the basis functions.

A different approach, for local refinement, was introduced in [8] with the T-splines. These
are defined over T-meshes, where T-junctions between axis aligned segments are allowed. T-
splines have been used efficiently in CAD applications, being able to produce watertight
and locally refined models. However, the use of the most general T-spline concept in IgA
is limited by the risk of linear dependence of the resulting splines [9]. It is desirable in
numerical simulations to use linearly independent basis functions to ensure that the resulting
mass and stiffness matrices have full rank and avoid the algorithmic complexity posed by
singular matrices. Analysis-Suitable T-splines, or AST-splines, were therefore introduced in
[10]. As T-splines, AST-splines provide watertight models, obey the convex hull property,
and moreover are linearly independent.

There are many other definitions of B-splines over meshes with local refinements, such
as PHT-splines [11], PB-splines [12] and LR B-splines [13]. A discusssion of the differences
and similarities of HB-splines, THB-splines, T-splines, AST-splines and LR B-splines can be
found in [14].

1.2. LR B-splines and MS B-splines

In this paper we look at Locally Refined B-splines, or LR B-splines, introduced in [13].
The idea is to extend the knot insertion refinement of univariate B-splines to insertion of
local line segments in tensor meshes. The process starts by considering the tensor product
B-spline space over a coarse tensor mesh. Then, when a new inserted local line segment
divides the support of one or more LR B-splines in two parts, we perform knot insertion to
split such B-splines into two (or more) new ones. The final collection of functions does not
sum to one in general. However, it is possible to scale them by means of positive weights so
that they form a partition of unity; see [13, Section 7].

The LR B-splines are a subset of the Minimal Support B-splines, or MS B-splines. As
one can guess from their name, MS B-splines are the tensor product B-splines with minimal
support, i.e., without superfluous line segments crossing their support, identifiable on the
locally refined mesh. The main difference between LR and MS B-splines is that the former
ones are defined algorithmically, while the latter are defined by the topology of the mesh.
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1.3. Content of the paper

The freedom in the refinement process can result in undesirable collections of LR B-
splines. Namely, the LR B-splines obtained at the end of the refinement process may be
linearly dependent. Assumptions on the refinement process have to be established in order
to ensure linear independence. We start such analysis by looking at conditions on the mesh
necessary for linear dependence. We say that functions φ1, . . . , φn ∶ Rd → R are actively
linearly dependent on Rd if there exist αi ∈ R, αi ≠ 0 for all i = 1, . . . , n, such that

n

∑
i=1

αiφi(xxx) = 0, ∀ xxx ∈ Rd.

Note that we consequentially look at the minimal set of linearly dependent functions by
forbidding zero coefficients in the linear combination.

In this work we show that:

� For any bidegree ppp, the minimal number of active MS B-splines in a linear dependence
relation is six, while for LR B-splines it is eight.

� These numbers are sharp for any bidegree ppp = (p1, p2) for the MS B-splines and with
pk ≥ 2, for some k ∈ {1,2}, for the LR B-splines.

We look at the minimal configurations of linear dependence because we conjecture that any
linear dependence relation is a refinement of one of these minimal cases. In other words, they
are the roots for the linear dependence. In particular, if this is true, by avoiding the minimal
cases, the MS B-splines and LR B-splines are always linearly independent and form a basis.
Furthermore, to get such lower bounds, we prove results that can be used to understand if
the set of B-splines considered is linearly independent or not. In particular, they can be used
to improve the Peeling Algorithm [13, Algorithm 6.3] to verify if the LR B-splines defined
on a given mesh are linearly independent.

1.4. Structure of the paper

In Section 2 we provide an introduction to the concepts of box-partitions, meshes and LR-
meshes. In Section 3 we define the univariate spline space over a knot vector sequence and the
bivariate spline space over a box–partition and we recall the dimension formula presented
in [15]. Then we discuss conditions on the mesh for ensuring that the dimension formula
depends only on the topology of the mesh. In Section 4 we recall univariate and bivariate B-
splines, their basic properties and the knot insertion procedure. In Section 5 we define the MS
B-splines and the LR B-splines and we show when these two sets are different. In Section 6 we
study the spanning properties of the LR and MS B-splines. In particular we state necessary
and sufficient conditions for spanning the full spline space. Knowing the dimension of the
spline space, we can check linear dependencies just by counting the elements in the LR, or
MS, B-spline set. In Section 7, we identify necessary features for a linear dependence relation
and we derive the minimal number of active MS B-splines needed in a linear dependence
relation. In Section 8, we compute the minimal number of active LR B-splines in a linear
dependence relation. In Section 9 we recall briefly the Peeling Algorithm for checking linear
independence and we show how to improve it by using the results of Section 7. Finally, we
summarize the main results and discuss future work in Section 10.
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2. Box–partitions and LR–meshes

The purpose of this section is to describe box–partitions in 2D and define bivariate LR–
meshes. For our scope, and sake of simplicity, we decided to restrict general definitions, valid
in any dimension, to the 2D case; we refer to [13] for the general theory.

Definition 2.1. Given an axis-aligned rectangle Ω ⊆ R2, a box-partition of Ω is a finite
collection E of axis-aligned rectangles in Ω, called elements, such that:

1. β̊1 ∩ β̊2 = ∅ for any β1, β2 ∈ E , with β1 ≠ β2.

2. ⋃β∈E β = Ω.

Definition 2.2. Given a box–partition E , we define the vertices of E as the vertices of its
elements. In particular, a vertex of E is called T-vertex if it is the intersection of three
elements edges. We denote as V the set of vertices of E .

Definition 2.3. Given a box–partition E of a rectangle Ω ∈ R2, a meshline of E is a segment
contained in an element edge, connecting two and only two vertices of V at its end–points.
The collection of all the meshlines of the box-partition is called mesh, M. Given a meshM,
one can define a multiplicity function µ ∶M → N∗ that associates a positive integer to every
meshline, called multiplicity of the meshline. A mesh that has an assigned multiplicity
function µ is called µµµ-extended mesh.

When the T-vertices of E occur only on ∂Ω and every colinear meshlines have same
multiplicity, the corresponding µ-extended mesh is called tensor mesh.

Finally, if every meshline of a box-partition E has the same multiplicity m we say that
the corresponding µ-extended mesh has multiplicity m.

In this work we only consider µ-extended meshes. Therefore, we will only write meshes
for µ-extended meshes to simplify the notation.

Figure 1 shows an example of box-partition and associated mesh: in (a) the box–partition
E and in (b) the corresponding mesh M. The meshlines are identified by squares reporting
the associated multiplicities.
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Figure 1: Example of box–partition and corresponding mesh.

A meshline can be expressed as the Cartesian product of a point in R and a finite interval.
Let α ∈ R be the value of such a point and let k ∈ {1,2} be its position in the Cartesian
product. If k = 1 the meshline is vertical and if k = 2 the meshline is horizontal. We
sometimes write k-meshline to specify the direction of the meshline and (k,α)-meshline to
specify exactly on what axis-parallel line in R2 the meshline lies.
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Definition 2.4. Given a box-partition E and an axis-aligned segment γ, we say that γ tra-
verses β ∈ E if γ ⊆ β and the interior of β is divided into two parts by γ, i.e., β/γ is not
connected. A split is a finite union of contiguous and colinear axis-aligned segments γ = ∪iγi
such that every γi either is a meshline of the box-partition or γi traverses some β ∈ E .

As for meshlines, we sometimes write k-split with k ∈ {1,2} to specify the direction of the
split or (k,α)-split to specify on what axis-parallel line in R2 the split lies, that is, to specify
that it lies on the line {(x1, x2) ∶ xk = α}.

Definition 2.5. A mesh M has constant splits if any split γ in M is made of meshlines
of the same multiplicity.

When a split γ is inserted in a box–partition E , any traversed β ∈ E is replaced by the two
subrectangles β1, β2 given by the closures of the connected components of β/γ. The resulting
new box-partition is indicated as E + γ and its corresponding mesh as M + γ. Assigned a
positive integer µγ to γ, the multiplicities of the meshlines in M ∩ (M + γ) not contained in
γ are unchanged, while the multiplicities of those that are in γ are increased by µγ. The new
meshlines contained in (M + γ)/M have multiplicity equal to µγ. If µ was the multiplicity
function associated to M, the multiplicity function on the refined mesh M + γ is denoted
as µ + µγ. The meshes used in applications are often result of a mesh refinement process,
that is, given an initial coarse tensor mesh M1 and a sequence of splits γi with associated
integers µγi for i = 1, . . . ,N − 1, the meshes considered are the final element of a sequence of
meshes of the form Mi+1 =Mi + γi where the associated multiplicity are µi+1 = µi + µγi . The
LR–meshes are a particular subclass of this kind of meshes.

Definition 2.6. An LR-mesh is a mesh M obtained through a sequence of split insertions:

M1 is a tensor mesh,

Mi+1 =Mi + γi has constant splits, for i = 1, . . . ,N − 1

and M =MN , for some N .

In the remaining of this section we introduce the knot vector on a split and the length of
it. These concepts will help us to analyze the spanning properties of the LR B-splines and
the increase in the spline space dimension due to a mesh refinement.

Definition 2.7. Given a mesh M corresponding to a box-partition E , for any vertex vvv in V
we define

µ1(vvv) = max{µ(γ) ∶ vvv ∈ γ and γ 1-meshline of M}
µ2(vvv) = max{µ(γ) ∶ vvv ∈ γ and γ 2-meshline of M}

µ1(vvv) is called vertical multiplicity and µ2(vvv) horizontal multiplicity of vertex vvv.

In Figure 2 is reported an example of computation of horizontal and vertical multiplicities
for two vertices of a box–partition. The meshlines on the left and right hand-side of vvv1 have
multiplicity 1 and 2 respectively. So µ2(vvv1) = max{1,2} = 2. The meshlines above and below
vvv1 have both multiplicity 1, so that µ1(vvv1) = 1. Concerning vvv2, we have µ2(vvv2) = 2, whereas
µ1(vvv2) = max{1} = 1 since there is no meshline below vvv2.
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Figure 2: Example of computation of vertical and horizontal multiplicities.

Definition 2.8. Given a (k,α)-split γ in a mesh M, all the vertices where γ intersects the
meshlines of M, orthogonal to it, have kth-coordinate equal to α and different (3 − k)th–
coordinate. We define the knot vector on γ as the increasing sequence τττ ⊆ R given by such
(3−k)th–coordinates. The elements of such sequence are called knots. We further define the
multiplicity function of the knot vector as the µ3−k multiplicity function of the corresponding
vertices. We say that τττ has length d if the multiplicities of its knots sum to d.

3. Spline spaces

In this section we define the univariate spline space over a knot vector and the bivariate
spline space over a box-partition. In particular we provide the dimension formula of such
spaces. For the bivariate space, the formula, introduced in [15], presents terms depending on
the size of the box–partition elements. This means that the dimension is unstable, i.e., spline
spaces on meshes with the same topology might have a different dimension. Therefore, we
recall sufficient conditions for avoiding such terms, making the formula dependent only on
the mesh topology.

3.1. Spline space on a knot vector sequence

Definition 3.1. Given an increasing sequence τττ = (τ1, . . . , τn) of real numbers, a positive
integer p and a function µ ∶ τττ → N∗ such that 0 ≤ µ(τi) ≤ p + 1 for all i, we define the
corresponding spline knot vector as the triple τττµp = (τττ , µ, p).

Given a spline knot vector τττµp , we say that τi ∈ τττ has full multiplicity if µ(τi) = p + 1
and we say that τττµp is open if τ1 and τn have full multiplicity.

Sometimes it is more convenient to write a spline knot vector, in the equivalent way, as
the couple tttp = (ttt, p) where ttt is a non–decreasing sequence ttt = (t1, . . . , t`), i.e, with ti ≤ ti+1,
where ` = ∑n

i=1 µ(τi) and

t1 = . . . = tµ(τ1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= τ1

< tµ(τ1)+1 = . . . = tµ(τ1)+µ(τ2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= τ2

< . . .

We use bold Greek letters with the multiplicity function in superscript in the first way of
expression and bold Latin letters for the second way.

Given a degree p, we denote as Πp ⊂ R[t] the vector space spanned by the monomials tj

such that 0 ≤ j ≤ p.
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Definition 3.2. Given a spline knot vector τττµp = (τττ , µ, p) with τττ = (τ1, . . . , τn), we define
the univariate spline space on the spline knot vector τττµp , denoted S(τττµp) or equivalenty
S(tttp), as the set of all functions f ∶ R→ R such that

1. f is zero outside [τ1, τn],
2. the restrictions of f to the intervals [τi, τi+1) for i < n−1 and [τn−1, τn] are polynomials

in Πp,

3. f is Cp−µ(τi)-continuous at τi.

The following is the dimension of the spline space over a knot vector. It is a well-known
result, proved, e.g., in [16].

Theorem 3.3. Given a spline knot vector τττµp = (τττ , µ, p) with τττ = (τ1, . . . , τn), the correspond-
ing spline space S(τττµp) has dimension

dimS(τττµp) = max{
n

∑
i=1

µ(τi) − (p + 1),0} . (1)

Therefore, if tttp has cardinality p+r+1 for some r ≥ 1, then dimS(tttp) = r. There are many
possible bases for S(tttp). One possibility is provided by a classical result in spline theory,
called Curry-Schoenberg Theorem [17, Theorem 44]. It ensures that the so called B-spline
functions of degree p, defined on the knot vector tttp, can be used as a possible basis:

S(tttp) = span{B[tttip]}ri=1 with tttip = (ti, . . . , ti+p+1) ⊆ tttp.

For a brief introduction to B-splines we refer to Section 4.

3.2. Spline space on a box–partition

Definition 3.4. A spline mesh in R2 is a triple N = (M, µ,ppp) where M is a mesh from
a box–partition E , ppp = (p1, p2) is a pair of positive integers and µ ∶M → N∗ is a multiplicity
function such that 1 ≤ µ(γ) ≤ pk+1 for every k-meshline γ ∈M. In particular, if a k-meshline
γ has multiplicity pk + 1 we say that γ has full multiplicity and a spline mesh N is open
if every boundary meshline has full multiplicity. A spline mesh N where M is an LR-mesh
will be called spline LR-mesh.

Remark 3.5. Given a spline mesh N = (M, µ,ppp), one can define a spline knot vector on any
k-split of M, for k ∈ {1,2}: the sequence τττ and the multiplicity function µ3−k are described
in Definition 2.8 and the degree is p3−k.

Given a bidegree ppp = (p1, p2), we denote as Πppp ⊂ R[x, y] the vector space spanned by the
monomials xi1yi2 such that 0 ≤ ik ≤ pk for k = 1,2.

Definition 3.6. Given a spline mesh N = (M, µ,ppp) corresponding to a box–partition E of a
rectangle Ω = [a1, b1]× [a2, b2], for any element β ∈ E , β = J1 × J2 with Jk = [aβ,k, bβ,k], we set

β̃ = J̃1 × J̃2 with J̃k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[aβ,k, bβ,k) if bβ,k < bk

[aβ,k, bβ,k] if bβ,k = bk.
(2)

The spline space on N , denoted by S(N ), is the set of all functions f ∶ R2 → R such that
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1. f is zero outside Ω,

2. for each element β ∈ E , the restriction of f to β̃ is a bivariate polynomial function in
Πppp,

3. for each k-meshline γ ∈M, f is Cpk−µ(γ)-continuous across γ.

The general dimension formula of the spline space over spline meshes is presented in [15]
and has terms depending on the size of the box–partition elements. This makes the dimension
of the spline space unstable [18], i.e., not only dependent on the mesh topology. However, if
we consider the spline space over a spline LR-mesh built so that

LR-rule 1 the starting tensor meshM1 has at least p1+2 vertical splits and p2+2 horizontal splits
counting their multiplicities,

LR-rule 2 for k ∈ {1,2}, the knot vector on any maximal k-split has length at least p3−k +2 at any
step in the construction of the LR-mesh,

then, one can prove, by using the results in [15], that, calledMk the set of all the k-meshlines
in M, for k ∈ {1,2}, and ∣E ∣ the cardinality of E , we have

dimS(N ) =∑
vvv∈V

[(p1 − µ1(vvv) + 1)(p2 − µ2(vvv) + 1)]

− (p2 + 1) ∑
β∈M1

[(p1 − µ(β) + 1)] − (p1 + 1) ∑
β∈M2

[(p2 − µ(β) + 1)]

+ ∣E ∣(p1 + 1)(p2 + 1),

(3)

which depends only on the topology of the mesh. In this paper we will always assume the
LR-rules for constructing LR-meshes.

Remark 3.7. In the LR-mesh building process, any extension of an older split is allowed
being LR-rule 2 satisfied on the new mesh.

From equation (3), it is possible to prove the dimension increasing formula [13, Theorem
5.5]. Knowing dimS(N ), through this formula, one can easily compute the dimension of the
spline space on a refined spline mesh N + γ ∶= (M+ γ,µ+µγ,ppp). First, we need to introduce
the concept of expanded spline knot vector on a split.

Definition 3.8. When a spline mesh N = (M, µ,ppp) is refined by inserting a k-split γ, since
it is a split in M + γ, γ has a spline knot vector on it, τττµ3−k

p3−k , with assigned multiplicity µ3−k.
The expanded spline knot vector on γ, τττ µ̃3−k

p3−k , has same sequence τττ , same degree p3−k and
same multiplicity function µ3−k except that, in case γ is an extension of a split of M, it is
assigned full multiplicity to the point of τττ corresponding to the joint vertex of the extension.

In particular, if γ is an extension of two splits γ1, γ2 inM, i.e., γ is the link between γ1, γ2,
then the first and last knots in the expanded spline knot vector on γ have full multiplicity.

We can now give the dimension increasing formula.

Theorem 3.9. Given a spline LR-mesh N and a new k-split γ such that the expanded spline
knot vector τττ µ̃3−k

p3−k on γ has length p3−k + r + 1 with r ≥ 1, then the spline space on the refined
spline mesh N + γ ∶= (M + γ,µ + µγ,ppp) has dimension

dimS(N + γ) = dimS(N ) + dimS(τττ µ̃3−k
p3−k

) = dimS(N ) + r.
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4. Univariate B-splines and bivariate B-splines

In this section we recall the definition of B-splines and their main properties. In particular,
we state the knot insertion algorithm, which is used for the definition of LR B-splines. For
a complete overview on B-splines we refer to [17] and [16].

4.1. Univariate B-splines

Definition 4.1. For a non-decreasing sequence ttt = (t1, t2, . . . , tp+2) we define a B-spline
B[ttt] ∶ R→ R of degree p ≥ 0 recursively by

B[ttt](t) = t − t1
tp+1 − t1

B[t1, . . . , tp+1](t) +
tp+2 − t
tp+2 − t2

B[t2, . . . , tp+2](t), (4)

where each time a fraction with zero denominator appears, it is taken as zero. The initial
B-splines of degree 0 on ttt are defined as

B[ti, ti+1](t) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if ti ≤ t < ti+1;

0 otherwise;
for i = 1, . . . , p + 1. (5)

The sequence ttt is called knot vector of B[ttt] and tj are its knots. A knot tj has multiplicity
µ(tj) if it appears µ(tj) times in ttt.

Proposition 4.2 (Properties). Given a degree p ≥ 0 and a knot vector ttt = (t1, . . . , tp+2),

� suppB[ttt] = [t1, tp+2],

� B[ttt] restricted to every nontrivial half-open element [ti, ti+1) is in Πp,

� B[ttt] is Cp−µ(tj)-continuous at any knot tj of multiplicity µ(tj).

Theorem 4.3 (knot insertion). Given a degree p and a knot vector ttt = (t1, . . . , tp+2), suppose
we insert a knot t̂ ∈ (t1, tp+2). We obtain two knot vectors ttt1 and ttt2, considering the first and
the last p + 2 knots respectively in (t1, . . . , t̂, . . . , tp+2). Then there exist α1, α2 ∈ (0,1) such
that

B[ttt] = α1B[ttt1] + α2B[ttt2]. (6)

4.2. Bivariate B-splines

Definition 4.4. Consider a bidegree ppp = (p1, p2). Let xxx = (x1, . . . , xp1+2) and yyy = (y1, . . . , yp2+2)
be nondecreasing sequences. We define the tensor product B-spline B[xxx,yyy] ∶ R2 → R by

B[xxx,yyy](x, y) ∶= B[xxx](x)B[yyy](y), (7)

where B[xxx] and B[yyy] are the univariate B-splines defined on xxx and yyy respectively.

The pair xxx,yyy identifies a tensor mesh in [x1, xp1+2] × [y1, yp2+2], M[xxx,yyy]. In fact, a knot
in the x-direction xi corresponds to the 1-split

γ =
p2+1

⋃
j=1

γj with γj = {xi} × [yj, yj+1]

and multiplicity µ[xxx,yyy](γj) equal to the multiplicity of xi in xxx, for all j. In the same way
the knots yj in yyy identify the 2-splits in M[xxx,yyy] and their assigned multiplicities.

The properties of univariate B-splines are conserved by the tensor product B-splines:
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� suppB[xxx,yyy] = [x1, xp1+2] × [y1, yp2+2].

� B[xxx,yyy] is a piecewise bivariate polynomial of bidegree ppp.

� B[xxx,yyy] is Cpk−µ(γ)-continuous across each k-meshline γ of M[xxx,yyy].

As in the univariate case, after the insertion of a knot x̂ in xxx, we define xxx1 and xxx2 considering
in (x1, . . . , x̂, . . . , xp1+2) the first and last p1 + 2 knots respectively and we can write B[xxx,yyy]
in terms of two B-splines defined on the two new pairs of knot vectors

B[xxx,yyy] = α1B[xxx1,yyy] + α2B[xxx2,yyy] with α1, α2 ∈ (0,1). (8)

The same holds when inserting a knot ŷ in yyy.
Finally, consider a spline mesh N = (M, µ,ppp) with M a tensor mesh. Then there exist

two spline knot vectors xxxp1 and yyyp2 that identify M, M =M[xxxp1 ,yyyp2], as explained before
for the tensor meshM[xxx,yyy] in the support of B[xxx,yyy]. Assume that xxxp1 and yyyp2 have length
p1 + r1 + 1 and p2 + r2 + 1 respectively, with r1, r2 ≥ 1. We can apply the Curry-Schoenberg
Theorem on each spline knot vector and state that

S(N ) = span{B[xxxip1
,yyyjp2

]} with i = 1, . . . , r1 and j = 1, . . . , r2,

where xxxip1
= (xi, . . . , xi+p1+1) ⊆ xxxp1 and yyyjp2 = (yj, . . . , yj+p2+1) ⊆ yyyp2 .

5. Minimal Support B-splines and Locally Refined B-splines

In this section we define first the Minimal Support B-splines, or MS B-splines, and then
the Locally Refined B-splines, or LR B-splines. As we will see the LR B-splines are created
algorithmically, refining, after the insertion of a split in the mesh, the B-splines whose support
is traversed by the split through the knot insertion procedure. The main difference with the
MS B-splines is that these latter are not always the result of a knot insertion. For a given
bidegree, they depend only on the position and multiplicities of the meshlines on the mesh.

Definition 5.1. Given a bivariate B-spline B[xxx,yyy] and a split γ, we say that γ traverses
B[xxx,yyy] if suppB[xxx,yyy]/γ is not connected.

Definition 5.2. Given a mesh M and a B-spline B[xxx,yyy], we say that B[xxx,yyy] has support
on M if the meshlines in M[xxx,yyy] can be obtained as unions of meshlines in M, and their
multiplicities in M[xxx,yyy] are less than or equal to the multiplicities of the corresponding
meshlines in M. Furthermore, we say that B[xxx,yyy] has minimal support on M if it
has support on M, the multiplicities of the interior meshlines in M[xxx,yyy] are equal to the
multiplicities of the corresponding meshlines in M and there is no split γ in M/M[xxx,yyy]
that traverses B[xxx,yyy]. Given a spline mesh N = (M, µ,ppp), the set of the minimal support
B-splines, or MS B-splines, on N of bidegree ppp is denoted as BMS(N ).

Figure 7.17 shows examples of B-splines of bidegree (2,2) with support on a mesh of
multiplicity 1. In particular, the B-splines considered in Figure 7.17(b)–(c) have minimal
support, while the support of the B-spline in Figure 7.17(d) can be disconnected by the split
γ, visualized by dashed lines in the figure.
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(a) (b) (c) (d)

Figure 3: Support of B-splines of bidegree (2,2) on an mesh M of multiplicity 1. The mesh is shown in
(a). The B-splines whose supports are depicted in (b) and (c) have minimal support on M. The tensor
meshes defined by their knots in their supports are highlighted with thicker lines. On the other hand, the
B-spline in (d) does not have minimal support on M: the collection of meshlines contained in the dashed
line disconnects the support.

Given a mesh M and a B-spline B[xxx,yyy] with support in M, assume that there exists
a (k,α)–split γ in M/M[xxx,yyy] that traverses B[xxx,yyy]. Assume also that the meshlines in γ
have all the same multiplicity m. One could then consider α as an extra knot of multiplicity
m in the kth knot vectors of B[xxx,yyy] (in xxx if k = 1 and in yyy if k = 2) and perform the knot
insertion on B[xxx,yyy]. The resulting generated B-splines would still have support on M and
eventually they would also have minimal support on M. The LR B-splines are generated
throughout the construction of an LR-mesh following this procedure.

Definition 5.3. Given a spline LR-mesh N = (M, µ,ppp) with M = MN final mesh of a
mesh sequence as described in Definition 2.6, the LR B-spline set BLR(N ) is provided
algorithmically as follows. We start by considering the set B1 of standard B-splines on the
initial coarse tensor mesh M1. Then, for any intermediate step Mi+1 = Mi + γi with i =
1, . . . ,N − 1 in the construction of the LR–mesh, we produce a new set of B-splines Bi+1 by
the following algorithm:

1. initialize Bi+1 ← Bi,
2. as long as there exists B[xxxj,yyyj] ∈ Bi+1 with no minimal support on Mi+1,

(a) apply knot insertion: ∃B[xxxj1,yyy
j
1],B[xxxj2,yyy

j
2] ∶ B[xxxj,yyyj] = α1B[xxxj1,yyy

j
1] + α2B[xxxj2,yyy

j
2],

(b) update the set: Bi+1 ← (Bi+1/{B[xxxj,yyyj]}) ∪ {B[xxxj1,yyy
j
1],B[xxxj2,yyy

j
2]},

3. BLR(N ) ∶= BN .

Remark 5.4. For any spline LR-mesh N = (M, µ,ppp), spanBLR(N ) ⊆ spanBMS(N ) ⊆
S(N ). If M is a tensor mesh then BLR(N ) = BMS(N ) and they are nothing more than the
standard bivariate B-splines. The Curry-Schoenberg Theorem ensures that spanBLR(N ) =
spanBMS(N ) = S(N ) and the elements of BLR(M) = BMS(M) are linearly independent.
However, there are other cases where this equality holds; we will see them in the next section.

After performing the LR B-splines generation algorithm, the functions created will gen-
erally not sum to one. For this reason, in [13, Section 7] is provided a procedure for positive
scaling weights of the LR B-splines to reinstate the partition of unity.

Example 5.5 (BLR(N ) ≠ BMS(N )).
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(a)

, , , ,

, , ,
(b) (c)

Figure 4: (a) an LR-mesh M of multiplicity 1. (b) Supports of the biquadratic LR B-splines defined on M.
(c) Support of a minimal support B-spline on the mesh but not in BLR(N ).

In Figure 4(a) we have an LR-mesh M of multiplicity 1. Suppose ppp = (2,2). This mesh is
obtained by inserting two 2-splits and two 1-splits in a tensor meshM1. In Figure 4(b) we see
the supports of the LR B-splines onM, i.e., the elements of BLR(N ), with N = (M,1, (2,2)),
obtained by refining the B-splines with no minimal support during the insertion of the splits.
However if we look at the final meshM in Figure 4(a), we see that there is one MS B-spline,
whose support is depicted in Figure 4(c), not in BLR(N ), defined on the mesh.

6. Hand-in-hand principle

In this section we describe the spanning properties of the sets BMS(N ) and BLR(N ).
Any LR-mesh M = MN is defined through a sequence Mi+1 = Mi + γi starting from a
tensor mesh M1. We know that on N1 = (M1, µ1,ppp), spanBMS(N1) = S(N1) as well as
spanBLR(N1) = S(N1). We want to preserve these equalities throughout the construction
of MN for two reasons. First, we maximize the approximation power of the considered
B-splines because the full spline space is spanned, and second, since we have a dimension
formula for the spline space, we can use it to determine if the B-splines are linearly dependent
or not. Indeed, since they span the whole spline space, if there are more B-splines than the
dimension, they must be linearly dependent.

Definition 6.1. Given a spline LR-mesh N = (M, µ,ppp), assume that spanBMS(N ) = S(N ),
or spanBLR(N ) = S(N ) respectively. Let γ be a new split and let N + γ = (M + γ,µ + µγ,ppp)
be the refined spline mesh. We say that N + γ goes MS-wise, or LR-wise respectively,
hand-in-hand with N if spanBMS(N + γ) = S(N + γ), or spanBLR(N + γ) = S(N + γ)
respectively.

In other words, going hand-in-hand means that if the considered B-splines on the spline
mesh N span the whole spline space S(N ), then also the refined B-splines defined on N + γ
will span the refined spline space S(N + γ).

Remark 6.2. If N + γ goes LR-wise hand-in-hand with N , then it also goes MS-wise hand-
in-hand with N . This is trivial because BLR(N +γ) ⊆ BMS(N +γ). The converse is not true
in general.

In order to keep spanning the spline space during the construction of an LR-mesh, we
have to ensure that all the intermediate spline meshes go MS-wise, or LR-wise, hand-in-hand.
A condition to achieve this is stated in the following result, which is a reformulation of [13,
Theorem 5.10].
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Theorem 6.3. Let N = (M, µ,ppp) be a spline LR-mesh. Assume that spanBMS(N ) = S(N ),
or spanBLR(N ) = S(N ) respectively. Let γ be a new k-split to insert and τττ µ̃3−k

p3−k be the
expanded spline knot vector on it. Let BMS(γ), or BLR(γ) respectively, be the collections of
the new B-splines created in the MS, or LR, B-spline set after the insertion of γ. For any
B ∈ BMS(γ), or B ∈ BLR(γ) respectively, let Bγ be the univariate B-spline in the y variable
if k = 1 or in the x variable if k = 2, in the expression of B as in Definition 4.4. Then N + γ
goes MS-wise, or LR-wise respectively, hand-in-hand with N if and only if

span{Bγ}B∈BMS(γ)(or BLR(γ) resp.) = S(τττ µ̃3−k
p3−k

).

Theorem 6.3 allows to check the hand-in-hand of the meshes by looking at the span of
univariate B-splines. Note that, since all the Bγ are contained in S(τττ µ̃3−k

p3−k ), we always have

dim span{Bγ}B∈BMS(γ)(or BLR(γ) resp.) ≤ dimS(τττ µ̃3−k
p3−k

).

We distinguish two cases when this is a strict inequality:

1. The cardinality of BMS(γ), or BLR(γ) respectively, is less than dimS(τττ µ̃3−k
p3−k ),

2. the cardinality of BMS(γ), or BLR(γ) respectively, is at least equal to dimS(τττ µ̃3−k
p3−k ) but

the linearly independent univariate B-splines Bγ are less than such dimension.

The cardinality of BMS(γ), or BLR(γ), depends on the mutual position of the splits in
M + γ. However, by slight modifications of the mesh or by extending γ we can always
guarantee that BMS(γ) and BLR(γ) have at least dimS(τττ µ̃3−k

p3−k ) elements, as explained in
Figure 5. There we consider bidegree ppp = (2,2) and a 1-split γ to insert into the LR-mesh
M of multiplicity 1 as shown in Figures 5(a). Since the expanded spline knot vector on γ
has length 4, dimS(N + γ) = dimS(N )+ 1 by Theorem 3.9. Therefore, a new B-spline of the
considered kind must be generated to have N + γ going MS-wise or LR-wise hand-in-hand
with N .

(a) (b) (c) (d) (e)

Figure 5: (a) LR-meshM of multiplicity 1 and a new split (dashed) to insert. (b) modification ofM (dashed)
to go MS-wise hand-in-hand. (c),(d),(e) modification of M (dashed) to go LR-wise hand-in-hand.

Unfortunately, no B-splines are created after the insertion due to the splits mutual po-
sition. Thus BMS(N + γ) = BMS(N ), BLR(N + γ) = BLR(N ) and N + γ cannot go neither
LR-wise nor MS-wise hand-in-hand with N . However, if we extend by one meshline a split
on N , we create a new MS B-spline when inserting γ, whose support is highlighted in Figure
5(b). In this case, N +γ goes MS-wise hand-in-hand (but not LR-wise). Instead, if we extend
by two meshlines the same split, as in Figure 5(c), or we extend by one meshlines both the
splits, as in Figure 5(d), there is an LR B-spline on the mesh to refine after the insertion of
γ and N + γ goes LR-wise hand-in-hand with N . Another strategy is to extend γ. Indeed, if
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we decide to insert γ one meshline longer, as in Figure 5(e), then the spline space increases
by 2 for Theorem 3.9 but N +γ goes LR-wise, and so MS-wise, hand-in-hand with N because
the two LR B-splines with supports in the upper left and upper right corner of M will be
refined.

However, although the cardinality of such sets is sufficiently large, the linearly independent
univariate B-splines Bγ can be insufficient for spanning the whole spline space S(τττ µ̃3−k

p3−k ). An
example is reported in Figure 6. We again consider bidegree (2,2), an LR-mesh M of
multiplicity 1 and a new 2-split γ as shown in Figure 6(a).

(a) (b)

B1
γ B3

γ B2
γ B4

γ = B5
γ

(c)

Figure 6: (a) LR-meshM of multiplicity 1 and a new 2-split γ (dashed) with their intersections (black dots).
Consider bidegree (2,2). In (b) the supports of the LR B-splines B1,B2 (top), B3 (center), B4,B5 (bottom)
in BLR(γ). In (c) their corresponding univariate B-splines.

The expanded spline knot vector on γ has length 7 so that dimS(N +γ) = dimS(N )+4 by
Theorem 3.9. Moreover, it is easy to check that N can be constructed LR-wise hand-in-hand.
Therefore, BLR(N ) = BMS(N ) and they span the spline space S(N ). When γ is inserted,
there are 5 LR B-splines, B1,B2,B3,B4,B5, in BLR(γ), whose support is depicted in Figure
6(b). The cardinalities ∣BLR(γ)∣, ∣BMS(γ)∣ are therefore large enough for N + γ to go hand-
in-hand with N . However, if we look at the univariate B-splines Bγ, depicted in Figure 6(c),
we can see that the B4

γ = B5
γ and B3

γ can be easily written, via knot insertion, as a linear
combination of B1

γ,B
2
γ. Thus, there are only 3 linearly independent B-splines in {Bγ}B∈BLR(γ)

and the spline mesh N + γ cannot go neither LR-wise nor MS-wise hand-in-hand with N .
Nevertheless, if the expanded spline knot vector on γ has length p3−k + 2 or p3−k + 3, this

phenomenon cannot happen. Indeed, if it has length p3−k + 2, the spline space on it has
dimension one and there exists at least one Bγ. Similarly, if it has length p3−k + 3, the spline
space on it has dimension 2 and there are at least two different (and so linearly independent)
univariate restrictions Bγ.

7. Characterization of linear dependence in BMS(N )
The purpose of this section is to investigate the minimal number of MS B-splines required

for a linear dependence relation on a spline mesh N and features needed in such configura-
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tions. In particular, the main results of this section are that at least six MS B-splines are
necessary for a linear dependence for any bidegree ppp = (p1, p2) (Proposition 7.15) and that
in a configuration of linear dependence with exactly six B-splines, one of them is not an
LR B-spline (Proposition 7.16). We achieve these results by looking at the minimal number
of B-splines needed to satisfy necessary conditions for having a linear dependence relation.
First we introduce the nestedness condition (Proposition 7.3): at any corner of the region
of the mesh where we have linear dependence, there is a B-spline in the linear dependence
relation whose support is fully contained in the support of another larger B-spline in the
linear dependence relation as well. This implies that the number of B-splines involved in the
linear dependence relation is at least five (Corollary 7.4). Then we have to prove that it is
impossible to have a linear dependence with only these five. Therefore, first we show the pos-
sible arrangements of the supports in case a linear dependence relation has only five B-splines
(Lemma 7.5). Then we introduce another necessary condition for linear dependencies regard-
ing the T–vertices in the region of the mesh where the linear dependence occurs (Corollary
7.10). This new condition narrows the possible arrangements of the supports found in Lemma
7.5. Finally, by looking at the position of the five B-splines in this remaining configurations,
one can prove Proposition 7.15 mentioned above.

Remark 7.1. We recall that our meaning of linearly dependent functions is slightly different
from the standard definition. We consider only functions that are actively linearly dependent,
i.e., that have nonzero coefficient in the dependence relation.

Definition 7.2. Given a mesh M and two MS B-splines B[xxx1,yyy1], B[xxx2,yyy2], defined on
M, we say that B[xxx1,yyy1] is nested into B[xxx2,yyy2] if suppB[xxx1,yyy1] ⊂ suppB[xxx2,yyy2] and
suppB[xxx1,yyy1], suppB[xxx2,yyy2] share one, and only one, vertex.

Proposition 7.3 (Nestedness condition). Let BMS(N ) be the set of MS B-splines on a spline
mesh N = (M, µ,ppp). Let B ⊆ BMS(N ) be a subset of linearly dependent MS B-splines and R
be the region in R2 given by the union of their supports. Let (x̄, ȳ) be any (convex) corner in
R and define µx̄ as the maximal multiplicity that is assigned to x̄ among the knot vectors in
the x-direction of the B-splines in B. Consider the set

Bµx̄ ∶= {B[xxx,yyy] ∈ B ∶ x̄ ∈ xxx with µ(x̄) = µx̄}.

Define µȳ as the maximal multiplicity that is assigned to ȳ among the knot vectors in the
y-direction of the B-splines in Bµx̄ and consider the set

B′ = {B[xxx,yyy] ∈ Bµx̄ ∶ ȳ ∈ yyy with µ(ȳ) = µȳ}.

Finally, define hx = minB∈B′ ∣xp1+2 − x1∣, hy = minB∈B′ ∣yp2+2 − y1∣ and the set of MS B-splines
in B′ with smallest support, in both directions:

L = {B[xxx,yyy] ∈ B′ ∶ ∣xp1+2 − x1∣ = hx and ∣yp2+2 − y1∣ = hy}.

Then

1. L has a unique B-spline B[xxxm,yyym],
2. There exists another B-spline B[xxx,yyy] ∈ B′ such that B[xxxm,yyym] is nested into B[xxx,yyy].
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Proof. 1. Let us first show that L ≠ ∅. Consider the element of the box-partition in R
that has (x̄, ȳ) as vertex. If L = ∅, it would mean that such element in the corner of R
is contained in at least the supports of two B-splines B1 = B[xxx1,yyy1], B2 = B[xxx2,yyy2] ∈ B′
such that B2 is taller than B1 but narrower as reported in Figure 7.

B1

B2

(x̄, ȳ)

Figure 7: The support of the two B-splines considered in the proof of Proposition 7.3.

Thus, there are p2 + 2 − µȳ horizontal splits of B1 traversing the interior of suppB2.
Only p2 + 1 − µȳ of them (at most) can be also splits of B2. This is a contradiction
because an extra split traverses the support of B2 and so it has not minimal support on
the mesh. Hence ∣L∣ ≥ 1. Let us assume there are two MS B-splines in L, B1 = B[xxx1,yyy1]
and B2 = B[xxx2,yyy2]. So

x1
1 = x2

1 y1
1 = y2

1

x1
p1+2 = x2

p1+2 y1
p2+2 = y2

p2+2.

If also the internal knots of B1 and B2 are the same in both directions, it would mean
that B2 = B1 and there is nothing to prove. Thus, let us assume there is at least
one different knot in the x- or y-direction. For instance, suppose there is a different
internal knot x2

i ∈ xxx2 for some i, with respect to xxx1. Then the corresponding vertical
split {x2

i }× [y2
1, y

2
p2+2] would traverse the support of B1. This is a contradition because

B1 has minimal support.
2. Bm = B[xxxm,yyym] is in a linear dependence relation, so the smoothness of it at x̄×R and

R × ȳ must be reproduced. Therefore, there must exist at least another B-spline in B′.
Such a MS B-spline B ∈ B′ cannot be fully contained in the support of Bm because of
the minimality of such support. Hence, suppB exceeds on the right, or on the top, or
both on the right and on the top, the support of Bm. By using the same argument
adopted to prove that ∣L∣ ≠ ∅, one shows that only the last case can happen.

Therefore, in every corner ofR there are at least two MS B-splines of the linear dependence
relation, one nested into the other. Note that this nestedness condition cannot be satisfied
if the mesh considered is an LR-mesh and the bidegree is (0,0). Indeed, nesting a B-spline
into another during the LR–mesh building process would imply to end a split in the middle
of an element, which is not allowed. Since Proposition 7.3 is not verified, we conclude that
the set of MS (and LR) B-splines of degree (0,0) is linearly independent on any LR-mesh.
On the other hand, it is possible to have nested MS B-splines at the corners of R in general
meshes, even for bidegree (0,0). Figure 15 (k)–(l), at the end of this section, will illustrate
an example of linear dependence for MS B-splines of bidegree (0,0).
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Corollary 7.4. We need at least 5 MS B-splines for a linear dependence relation in BMS(N ).

Proof. R has at least four corners and there is a MS B-spline at each of them. The minimal
number needed for the nestedness condition is then 5, that is when the 4 MS B-splines at
the corners are all nested into the same MS B-spline whose support coincides with R (see
Figure 8).

B1 =R

B2

B3
B4

B5

Figure 8: Configuration with 5 MS B-splines satisfying the nested supports condition for linear dependence.

The question now is if five MS B-splines are enough for a linear dependence relation. From
the previous results, we know that if so, we have four MS B-splines with supports in the four
corners of R and one larger MS B-spline with support covering the entire region. The rest of
this section is devoted to show that five MS B-splines are not enough. For sake of simplicity,
we keep the notation used in Figure 8. So B1 will be the larger MS B-spline whose support
coincides with R and B2,B3,B4,B5 are the MS B-splines at the corners ordered clockwise
starting from the lower left corner. The knot vectors of Bi, for i = 1, . . . ,5, will be denoted
as xxxi = (xi1, . . . , xip1+2) and yyyi = (yi1, . . . , yip2+2).

In order to have a linear dependence relation, in every point of R we must have at least
two MS B-splines different from zero. In the following Lemma we present how this fact
implies spatial relations of the supports in case the linear dependence relation involves only
B1, B2, B3, B4 and B5.

Lemma 7.5. Suppose only five MS B-splines are in a linear dependence relation on R. Then

1. the supports of B2 and B5 intersect each other as well as the supports of B3 and B4,

2. the supports of B2 and B3 intersect each other as well as the supports of B4 and B5,

3. at least one couple among suppB2, suppB4 and suppB3, suppB5 intersect each other.

Proof. Every point in suppB1 must be inside the support of another B-spline in the linear
dependence relation, i.e., the supports of B2,B3,B4,B5 must be such that there are no white
spots left inside R in Figure 8.

1. We notice that y2
1 = y5

1 and, by Proposition 7.3, the y-widths of the supports of B3

and B4 must be smaller than the y-width of R, i.e., y3
1, y

4
1 > y1

1. Let ȳ ∶= min{y3
1, y

4
1}.

There exists an horizontal band, [x2
1, x

5
p1+2] × (y2

1, ȳ) ⊂ R that cannot be intersected
by suppB3 and suppB4 (see the lower band in Figure 9(a)). We want to prove that
suppB2 ∩ suppB5 ≠ ∅. If suppB2 ∩ suppB5 = ∅ then, defined ¯̄y ∶= min{ȳ, y2

p2+2, y
5
p2+2},

there would exist a point (x, y) ∈ (x2
p1+2, x

5
1) × (y2

1, ¯̄y) where none of the four B-splines
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with supports at the corners of R would be different from zero (see Figure 9(b)). (x, y)
would only be in the support of B1. This is a contradiction. An analogous argument
yields that suppB3 ∩ suppB4 ≠ ∅.

B3
B4

ȳ

y2
1 = y5

1

(a)

¯̄y

B2

B3
B4

B5

y2
1 = y5

1

(x, y)

(b)

Figure 9: In (a) the horizontal band of R not intersected by suppB3 and suppB4 is highlighted. In (b), the
colored subregion of R contains a point (x, y) for the proof of the first item of Lemma 7.5.

2. By exchanging the axes, we can use the same argument adopted in the previous item.

3. Assume the B-splines in the two couples B2,B4 and B3,B5 do not intersect. Then,
since the previous statements are proved, we must have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x3
p1+2 < x5

1

y2
p2+2 < y4

1

or

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x2
p1+2 < x4

1

y5
p2+2 < y3

1.

These two cases, depicted in Figure 10(a)–(b), can be treated in the same way, so we
focus only on the first.

B2

B4

B3 B5

y2
p2+2

y4
1

x5
1

x3
p1+2

(x, y)

(a)

B2 B4

B3

B5

y3
1

y5
p2+2

x2
p1+2

x4
1

(x, y)

(b)

Figure 10: (a) and (b) are the two possible arrangements of the supports of B2,B3,B4,B5 inside the support
of B1 when the first two items of Lemma 7.5 hold but not the last.

Consider a point (x, y) ∈ (x3
p1+2, x

5
1) × (y2

p2+2, y
4
1). Since x ∈ (x3

p1+2, x
5
1) we have (x, y) ∉

suppB3, suppB5. While, since y ∈ (y2
p2+2, y

4
1), we have (x, y) ∉ suppB2, suppB4. There-

fore (x, y) is only in suppB1, which is a contradiction.
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Figure 11 shows possible arrangements of the supports of B1,B2,B3,B4,B5 to satisfy
Proposition 7.3 and Lemma 7.5. In Figure 11(a) the supports of B3 and B5 intersect each
other while the supports of B2 and B4 do not intersect. In Figure 11(b)–(c) both the pairs
at opposing corners of R intersect each other. In particular, in Figure 11(c) B2 is as tall as
B5, B3 is tall as B4, B2 is as wide as B3 and B4 is as wide as B5.

B2

B4
B3

B5

(a)

B2

B4
B3

B5

(b)

B2

B4B3

B5

(c)

Figure 11: Arrangements of the four B-splines at corners of suppB1 satisfying Lemma 7.5.

The value of a bivariate B-splines B[xxx,yyy] at the lower and left edges of its support can
be different from zero if the multiplicity of the knots y1 and x1 in yyy and xxx is p2 + 1 and
p1 + 1 respectively. If one of B2,B3,B4,B5 is different from zero on an edge of its support
then some of the support intersections described in Lemma 7.5 can be just a part of an edge.
In particular, this is what happens when (p1, p2) = (0,0). In this case, the intersections
described in Lemma 7.5 1.–2. must be edge intersections in order for the nested B-splines
to have minimal support. However, these edge intersections will be aligned, at least in one
direction, i.e., there would exist at least one split traversing R entirely, that is, B1 would not
have minimal support, which is a contradiction. We conclude that 5 MS B-splines are not
enough for a linear dependence relation if (p1, p2) = (0,0).

In the rest of this section, for sake of simplicity and briefness, we do not treat the cases
with edge intersections. However, the arguments used to get our results can be adapted for
these cases by collapsing the regions we consider in our proofs in splits of meshlines of higher
multiplicities.

We now investigate more the B-spline support arrangements in the presence of a linear
dependence by looking at the T-vertices inside the region R.

Definition 7.6. Let B[xxx,yyy] be a MS B-splines on a mesh M. Then its knots define a
tensor mesh M[xxx,yyy], as described in Section 4. We define the meshlines of B[xxx,yyy] as the
meshlines in M forming the tensor mesh M[xxx,yyy] and the splits of B[xxx,yyy] as the splits in
M made of such meshlines.

Definition 7.7. A vertex (x̄, ȳ) in R is called relevant if it corresponds to a pair of knots
in at least one MS B-spline in the linear dependence relation (see Figure 12).
A meshline γ is called relevant if it is a meshline of a MS B-spline in the linear dependence
relation.

An example of relevant vertices and meshlines in a mesh is reported in Figure 12.
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(a)

, ,

, ,
(b) (c)

Figure 12: Consider the mesh on the region R depicted in (a). Every meshline has multiplicity 1 and consider
bidegree (2,2). In (b) we see the supports of the MS B-splines onR. We will prove they are linearly dependent
in Example 7.17. In (c) we see the relevant vertices in black and the non-relevant vertices in white.

Lemma 7.8. Any relevant vertex in R is the intersection of orthogonal relevant meshlines.

Proof. Let (x̄, ȳ) be a relevant vertex in R. Then it corresponds to a pair of knots of
B[xxx,yyy] for some B-spline B involved in the linear dependence. In particular, (x̄, ȳ) is in the
orthogonal splits [xj1, x

j
p1+2] × {ȳ} and {x̄} × [yj1, y

j
p2+2]. Therefore there must exist at least 2

orthogonal relevant meshlines contained in such splits intersecting in (x̄, ȳ).

Proposition 7.9. Any relevant meshline is a meshline of at least two MS B-splines in the
linear dependence relation.

Proof. Let B = {B[xxxj,yyyj]}nj=1 be the set of linearly dependent MS B-splines. Let γ be any
k-meshline of B[xxx1,yyy1]. Assume that γ is not a meshline of any other MS B-spline in B. We
know that B[xxx1,yyy1] is Cpk−µ(γ)-continuous on γ. The linear dependence relation in B,

α1B[xxx1,yyy1](x, y) +
n

∑
j=2

αjB[xxxj,yyyj](x, y) = 0 ∀ (x, y) ∈R,

can be rewritten expressing B[xxx1,yyy1] in terms of the others

B[xxx1,yyy1](x, y) = − 1

α1

⋅
n

∑
j=2

αjB[xxxj,yyyj](x, y) ∀ (x, y) ∈R (9)

because αj ≠ 0 for every j = 1, . . . , n. Consider now (x, y) ∈ γ ⊂ R. Since γ is not a meshline
of any MS B-spline B[xxxj,yyyj] in B with j ≥ 2, the right-hand side is a C∞-continuous function
on γ while the left-hand side is only Cpk−µ(γ)-continuous on γ, which is a contradiction.

Corollary 7.10. Any relevant T-vertex corresponds to a pair of knots shared by at least two
MS B-splines in the linear dependence relation.

Proof. Let (x̄, ȳ) be a relevant T-vertex as in Figure 13. The other three possible cases of
T-vertex can be treated similarly.

Since (x̄, ȳ) is relevant, γ must be relevant from Lemma 7.8. By Proposition 7.9, γ is
shared by at least two MS B-splines in the linear dependence relation, B[xxx1,yyy1],B[xxx2,yyy2].
This means there are two knots y1

r ∈ yyy1 and y2
s ∈ yyy2 such that y1

r = ȳ = y2
s and [x1

1, x
1
p1+2]× {ȳ},
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γ
(x̄, ȳ)

Figure 13: The T-vertex used in the proof of Corollary 7.10.

[x2
1, x

2
p1+2] × {ȳ} are splits in the mesh containing γ. Since (x̄, ȳ) is a T-vertex, it ends such

splits, that is, (x1
1, y

1
r) = (x̄, ȳ) = (x2

1, y
2
s), i.e., (x̄, ȳ) is a pair of knots shared by B[xxx1,yyy1] and

B2[xxx2,yyy2].

In Section 9 we will see that one can use the previous result to improve the Peeling
Algorithm [13, Algorithm 6.3], a tool to check if the LR B-splines considered are linearly
independent.

Definition 7.11. Any T-vertex vvv in a box–partition is composed of two colinear meshlines
and another meshline γ orthogonal to them. We assign an orientation to these vertices in
the following way. We say that the T-vertex vvv is downward if γ is below vvv, upward if γ is
above vvv, rightward if γ is on the right of vvv and leftward if γ is on the left of vvv.

It might happen that a relevant vertex vvv in R̊ is a cross-vertex, i.e., the intersection of
four meshlines, but one meshline ending in vvv is not relevant. It means that vvv behaves as
a T-vertex for the B-splines in the linear dependence relation. Therefore, we extend the
definition of relevant T-vertex and of its orientation also to these vertices in R̊.

Theorem 7.12. Assume five MS B-splines are linearly dependent inside the region R. Then
there are at least 4 relevant T-vertices in R̊, one per orientation.

Proof. For the sake of simplicity and without loss of generality, we can assume there are only
relevant meshlines in R. Referring to any of the examples in Figure 11, let us consider the
vertical splits of B2 and B5 in the interior of the support of B1, i.e., in R̊. In order to find
the minimal number of relevant T-vertices in R̊, we assume that the parameter values of such
vertical splits are the same for B2 and B5. We assume the same for B3 and B4: the vertical
splits of B4 are included into the vertical splits of B3.

Suppose first that the multiplicities of the knots in the x-direction corresponding to the
vertical edges of R, i.e., xi1, for i = 1,2,3 and xip1+2 for i = 1,4,5, are equal to 1. Then, in R̊
there are p1 + 1 vertical splits of B5 and p1 + 1 for B3, counting the multiplicities. If an end
vertex of a vertical split of B3 or B5 corresponds to a relevant cross-vertex, it is contained
in a split traversing the entire region R, that is, it is contained in a vertical split of B1.
There are p1 vertical splits of B1 in R̊, counting the multiplicities. Therefore, at most p1

vertical splits in R̊ of B3 and B5 can end with a relevant cross-vertex. Thus there exists at
least one relevant vertex of B5 left on the upper edge of suppB5 inside R that cannot be
a cross-vertex. The same holds for the relevant vertices in B3. This proves the existence of
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two relevant T-vertices in R̊, one downward and one upward. If the knots in the x-direction
corresponding to the vertical edges of R have higher multiplicities, one can apply the same
argument, by subtracting such multiplicities from the count of the vertical splits. Still the
difference between the vertical splits in B3,B5 and B1 will be greater than or equal to one
and there will be at least one vertical T-vertex per direction necessarily. Applying the same
argument to the horizontal splits of B3 and B5 we complete the proof.

Theorem 7.12 holds also if the number of B-splines involved in the linear dependence
relation is larger than 5 because of the necessary presence of nested B-splines at the corners.

In order to carry out the proof of the next Proposition 7.15, we need the following defi-
nition.

Definition 7.13. Given a spline mesh N = (M, µ,ppp), let γ be a (k,α)-split in M for some
k ∈ {1,2}. For instance, assume k = 1. Let F ∶ R2 → R be a spline function in S(N ). F is a
piecewise polynomial and therefore, for sufficiently small ε > 0, the functions F + = F∣(α,α+ε)×R
and F − = F∣(α−ε,α)×R are polynomials in x (but splines in y), i.e.,

F + =
p1

∑
i=0

f+i (y) ⋅ (x − α)i, F − =
p1

∑
i=0

f−i (y) ⋅ (x − α)i

for f+i , f
−
i univariate spline functions. Then we can extend the expression of F + and F − to

R2. We define the jump function of F with respect to γ as J(F )(x, y) = F + − F −.

Remark 7.14.

� If γ is not in a split traversing the support of F and is not on its boundary, then F is
C∞(γ) and in particular F + = F − so that J(F )(x, y) = 0.

� When F is a bivariate B-spline, F = B[xxx,yyy] and γ corresponds to a knot in xxx, that is
xj = α for some j and γ = {xj} × [y1, yp2+2], then

J(B)(x, y) = J ′(B[xxx])(x) ⋅B[yyy](y)

where J ′(B[xxx])(x) is a polynomial of the form:

J ′(B[xxx])(x) =
p1

∑
i=p1−µ(γ)+1

ai(x − α)i.

� Let c1, c2 be real numbers and F1, F2 be spline functions. Then J(c1F1 + c2F2)(x, y) =
c1J(F1)(x, y) + c2J(F2)(x, y).

Proposition 7.15. We need at least 6 minimal support B-splines for a linear dependence
relation in R for any bidegree.

Proof. Referring to any configuration in Figure 11, consider a relevant T-vertex vvv in B5. By
Corollary 7.10, it has to be shared with at least another MS B-spline. It cannot be shared
with B2 if B2 is shorter than B5, and of course it cannot be shared with B3 or B4 because
it would not be a T-vertex. Then we have two cases:
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� There exists a new MS B-spline in the linear dependence relation with support in the
y-direction covering the space between the supports of B5 and B2 and having vvv as pair
of knots, or

� B2 is as tall as B5.

In the first case we have finished the proof. Let us assume then that B2 is as tall as B5.
Applying the same procedure to the other relevant T-vertices, we either have at least a new
MS B-spline in the linear dependence relation, or it must be that B4 is as tall as B3, B2 is
as wide as B3 and B4 is as wide as B5. In the first case we have completed the proof. In the
second, if no other B-splines are involved, we can write B1 in terms of B2,B3,B4,B5:

B1(x, y) = α2B
2(x, y) + α3B

3(x, y) + α4B
4(x, y) + α5B

5(x, y) with αj ≠ 0. (10)

Now, consider any T-vertex downward, corresponding to a 1-split γ in B2 and B5. The jump
functions of B2 = B[xxx2,yyy2] and B5[xxx5,yyy5] corresponding to γ, in order to represent B1 as in
equation (10), must satisfy

α2J
′(B[xxx2])(x) ⋅B[yyy2](y) = −α5J

′(B[xxx5])(x) ⋅B[yyy5](y) (11)

because B1 is smooth on γ and there are no other MS B-splines in the linear dependence
relation with less regularity in the x-direction on γ. However, the knots of yyy2 and yyy5 are
different because of the presence of T-vertices leftward and rightward, and equation (11) is
impossible to achieve because B[yyy2] and B[yyy5] are defined on different knots and cannot be
proportional everywhere.

Proposition 7.16. In a linear dependence relation with six MS B-splines on an LR-mesh,
the sixth MS B-spline, B6, is not an LR B-spline.

Proof. If B6 is an LR B-spline it has been obtained through knot insertion from an LR B-
spline in a coarser mesh. When the knot insertion is applied the size of the refined B-splines
is smaller only in the direction where the knot has been inserted. Therefore, for B6, in order
to be an LR B-spline and be in the linear dependence relation there would exist another
B-spline among B2,B3,B4 and B5 whose support is either as tall or as wide as the support
of B6 and intersects with the support of B6. Assume we are in the first case of the proof of
Proposition 7.15 and there are exactly six MS B-splines in linear dependence. Then there are
4 relevant T-vertices in R̊ shared with B6 and indentifying the edges of suppB6. Therefore,
suppB6 ⊆ R̊ and cannot be the same as the size of any of B2,B3,B4,B5 in any direction.

In the second case of the proof of Proposition 7.15, if B6 is an LR B-spline, we can assume
that B6 is as tall as B2 and B5 (the other cases can be treated similarly). Then there would
exist a vertical split of B6 that traverses the support of B2, or B5, without being a split of
it. This is impossible for the minimality of their supports.

Example 7.17 (Linear dependence relation in BMS(N ) with 6 minimal support B-splines).
In this example we prove that 6 MS B-splines are enough for a linear dependence relation for
any bidegree ppp = (p1, p2). We start with ppp =(2,2). Consider the LR-mesh M of multiplicity
one depicted in Figure 4(a). The supports of the 10 MS B-splines defined on it are represented
in Figure 4(b)–(c). By using the dimension increasing formula in Theorem 3.9, since
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� the dimension of the underlying tensor mesh is 3,

� by inserting first the horizontal splits, the expanded spline knot vectors on them have
length 4, which results in a dimension increase of 1 per insertion, and

� then, by inserting the two vertical splits, the dimension increases by 2 each time,

we easily compute the dimension of the spline space on N = (M,1, (2,2)),

dim S(N ) = 3 + 1 + 1 + 2 + 2 = 9.

Moreover, the construction of N went LR-wise, and so MS-wise, hand-in-hand. Therefore,
we can conclude that there is a linear dependence relation in BMS(N ). The necessary con-
ditions to be in linear dependence, given in this section, are satisfied by the six MS B-splines
whose support is depicted in Figure 14. Finally, we notice that the 9 LR B-splines on M,
reported in Figure 4(b), are still linearly independent and span the spline space on N .

Figure 14: The supports of the six MS B-splines of degree (2,2) in linear a dependence relation on the
LR-mesh depicted in Figure 4(a).

For any other bidegree (p1, p2) ≠(0,0), one can build an LR-mesh preserving the same struc-
ture of Figure 4(a). Figure 15(a)-(j) shows the cases for (p1, p2) =(3,3),(4,4),(1,1),(1,0),
(3,1). The insertions are the same as for bidegree (2,2) if pk ≥ 2 for some k ∈ {1,2}, while if
(p1, p2) =(1,0), (0,1), (1,1), then it is necessary to use some extensions to get an equivalent
arrangement (see the dashed meshlines in the mesh (e) and (g) of Figure 15). Again the
dimension of the spline space is 9 while there are 10 MS B-splines in all the cases. Figure 15
(k)-(l) shows an equivalent arrangement for bidegree (0,0). However, the mesh in (k) is not
an LR-mesh. As we already pointed out, it is not possible to satisfy the necessary nestedness
condition for a linear dependence when considering LR-meshes. However, it can be verified
on general meshes. For this example, dimS(N ) = 5 and it is spanned by the characteristic
functions of the elements of the box-partition. Therefore, the MS B-splines on the mesh span
the spline space but are more than its dimension.

8. Minimal number of LR B-splines for a linear dependence relation

In this section we show that at least eight B-splines must be involved for a linear de-
pendence relation in BLR(N ). Then we provide examples for any bidegree ppp = (p1, p2) with
pk ≥ 2 for some k ∈ {1,2} where the LR B-splines in linear dependence are exactly eight. In
such examples the meshes will be refinements of the meshes presented in Example 7.17. As
we pointed out in Proposition 7.16, the sixth MS B-spline B6 in Example 7.17 is not an LR
B-spline on the meshM. In these new examples we show how to refineM in order to refine
B6 into two B-splines that can be now obtained through the knot insertion algorithm from
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Figure 15: In (a) an LR-mesh providing MS B-splines of bidegree (3,3) in an equivalent arrangement of the
MS B-splines of bidegree (2,2) on the mesh in Figure 4(a). In (b) are shown the supports of the six B-splines in
the linear dependence relation. In (c)-(d) the same for bidegree (4,4). In (e)-(f) we have the same for bidegree
(1,1). Note that we have used two extensions (dashed meshlines) to obtain an equivalent arrangement as for
the other bidegrees. In (g)-(h) and (i)-(j) we show the equivalent configuration for bidegrees (1,0) and (3,1).
Finally, in (k)-(l) we have a comparable arrangement for bidegree (0,0). However, the mesh in (k) is not an
LR-mesh.
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LR B-splines on coarser meshes. This will move the number of MS B-splines involved in the
linear dependence from six to eight but all of them will now be LR B-splines.

Lemma 8.1. Given a spline LR-mesh N = (M, µ,ppp), assume the elements in BLR(N ) are
linearly independent. If the insertion of a k-split γ causes a linear dependence relation in
BLR(N +γ), then the expanded spline knot vector on γ, τττ µ̃3−k

p3−k , has length at least p3−k +3 and
the growth of cardinality is ∣BLR(N + γ)∣ − ∣BLR(N )∣ > 2.

Proof. Theorem 5.2 of [13] ensures that if τττ µ̃3−k
p3−k has length p3−k + 2 then the elements in

BLR(N + γ) are linearly independent. Assume that τττ µ̃3−k
p3−k has length p3−k + 3. From the

end of Section 6, the refinement goes hand-in-hand only if ∣BLR(N + γ)∣ − ∣BLR(N )∣ ≥ 2 and
there is a linear dependence relation if it is a strict inequality. If the refinement does not go
hand-in-hand then it must be ∣BLR(N +γ)∣− ∣BLR(N )∣ ≤ 1 and the new B-spline (if existing)
is linearly independent of the B-splines in BLR(N ) as it has a split that intersects γ, which
either is not in M or it has an higher multiplicity in M + γ.

Proposition 8.2. Given a spline LR-mesh N = (M, µ,ppp), we need at least 8 LR B-splines
for a linear dependence relation in BLR(N ).

Proof. By Proposition 7.3, we must have four nested B-splines at the four corners of R. In
order to keep the number of B-splines needed as low as possible we assume as in the proof of
Corollary 7.4 that we only need, for the nestedness condition, five B-splines: B2,B3,B4,B5

contained in B1. By Theorem 7.12, this implies that there are at least 4 relevant T-vertices.
Either

1. the nested B-splines share all these relevant T-vertices between them, or

2. a relevant T-vertex is not shared.

In case 1, we have a configuration as the one reported in Figure 11(c) and as we have seen
in the proof of Proposition 7.16, if there are no more relevant meshlines apart from those of
B2,B3,B4,B5, the other MS B-splines that can be generated in R using relevant meshlines
are not LR B-splines. Therefore, in order to make a linear dependence relation in R, there
must exist at least another split that has provided, by Lemma 8.1, a growth in the LR B-
spline set of at least three, bringing the number of LR B-splines involved to at least eight.
Note that such a split necessarily has refined some of the LR B-splines at the four corners
and the LR B-splines generated must all have nonzero coefficients in the linear dependence
relation because created via knot insertion from them.

In case 2, there are T-vertices not shared by two B-splines nested at the corners. There
must exist other LR B-splines sharing these T-vertices and bringing linear dependence.
Hence, there must exist at least another split, aside from those needed for the construc-
tion of the nested LR B-splines, that has provided, by Lemma 8.1, a growth of at least three
in the LR B-spline set, moving the total number to at least eight. Also in this case, we note
that all of these three LR B-splines must have nonzero coefficient in the linear dependence
relation for the following reason. One of the three B-spline, B, has necessarily a nonzero
coefficient because it is used to share a relevant T-vertices. The other two B-splines have
been created together with B and are related to it through knot insertion relations. Therefore
they also must have nonzero coefficients in the linear dependence relation.
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In the following example we show meshes where there are exactly eight LR B-splines in a
linear dependence relation for any bidegree ppp = (p1, p2) with pk ≥ 2 for some k ∈ {1,2}. Such
meshes are refinements of the meshes presented in Example 7.17.

Example 8.3. Consider the spline mesh N = (M,1, (2,2)) with M as in Figure 4(a).
We have shown in Example 7.17 that dim S(N ) = 9 and the construction of M went LR-
wise hand-in-hand. Let us now insert a new split γ, whose expanded spline knot vector has
length p2 + 3 = 5, to get the mesh M + γ as shown in Figure 16(a). Then, by Theorem
3.9, dim S(N + γ) = dim S(N ) + 2 = 11 and N + γ went LR-wise hand-in-hand with N .
Furthermore, the LR B-spline set grows by three, ∣BLR(N +γ)∣ = ∣BLR(N )∣+ 3 = 12 as shown
in Figure 16(b). Therefore, there is a linear dependence relation. The only eight LR B-splines
satisfying Proposition 7.3 and Corollary 7.10 are depicted in Figure 16(c).

(a)

, , , , ,

, , , , ,
(b)

, , , , , , ,

(c)

Figure 16: (a) an LR-mesh of multiplicity 1, (b) the LR B-splines of degree (2,2) on it, (c) the LR B-splines
in the linear dependence relation.

For what concerns the general bidegree (p1, p2), if pk ≥ 2 for some k ∈ {1,2} it is always
possible to arrange the LR B-splines in the same way as for bidegree (2,2). For instance, in
Figure 17 are reported the cases for (p1, p2) =(3,3), (4,4), (3,1), (2,0). Also here dimS(N ) =
11 while ∣BLR(N )∣ = 12. For (p1, p2) =(0,1),(1,0) and (1,1) we are unable to find an LR B-
spline refinement process so that one can insert, via knot insertion, an LR B-spline inside R̊,
to share the relevant T-vertices of the four nested B-splines, without traversing the larger B-
spline B1 with an extra split. This split destroys the linear dependence relation by triggering
a refinement of B1. We conjecture that it is impossible to have a linear dependence relation
in BLR(N ) for such low bidegrees.

We stress that M + γ in Figure 16(a) is obtained by refining the mesh M in Figure 4(a)
considered in Example 7.17. What happens is that with the insertion of a new split, the
MS B-spline in the center of mesh M, B6, is refined into two MS B-splines that can now be
obtained through the knot insertion procedure.

9. Improvement of the Peeling Algorithm

The Peeling Algorithm introduced in [13] is a tool to check if the LR B-splines on a given
LR-mesh are linearly independent. However it does not handle every possible configuration,
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Figure 17: In (a) is shown an LR-mesh providing LR B-splines of degree (3,3) in an equivalent arrangement
of the LR B-splines of bidegree (2,2) on the mesh in Figure 16 (a). In (b) are shown the supports of the eight
B-splines in the linear dependence relation. In (c)-(d) are shown the same for bidegree (4,4), in (e)-(f) for
bidegree (3,1) and (g)-(h) for bidegree (2,0).

that is, it might end without answering whether the LR B-splines’ collection is linearly
independent or not. In this section, we briefly recall it and we show how it can be improved,
by using Corollary 7.10, to sort out more cases.

Definition 9.1. An element of the box-partition E is overloaded if it is in the support of
more B-splines than necessary for spanning the corresponding polynomial space Πppp, that is,
it is in more than (p1 + 1)(p2 + 1) supports. We call a B-spline overloaded if all the elements
in its support are overloaded.

An extra B-spline, in a linear dependence, can be removed without changing spanning
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properties over the elements of E in its support. So, only overloaded B-splines occur in linear
dependencies. A linear dependence relation has to involve at least two overloaded B-splines
on every element. Therefore, if on an element there is the support of only one overloaded
B-spline, such B-spline cannot be active in a linear dependence. This simple observation is
the basis of the Peeling Algorithm.

Peeling Algorithm

1 From the set of LR splines BLR(N ) create the set BO of overloaded B-splines;
2 Let EO be the elements of E in the supports of the B-splines in BO;
3 Initialization of a subset BO1 of BO we are going to define, BO1 = ∅;
4 for every element β in EO do
5 if only one B-spline B of BO has β in its support then
6 BO1 = BO1 ∪ {B}

7 if BO/BO1 = ∅ then
8 linear independence.
9 else

10 if BO1 = ∅ then
11 break, but might have linear dependence.

12 BO = BO/BO1 ;
13 Go to 2;

The implementation of it is described in [13] in terms of matrices.
However, it might happen that every element of EO is shared but yet the overloaded

LR B-splines are linearly independent. An example is reported in Figure 18. We consider

(a)
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,
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3 3
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Figure 18: Consider bidegree (2,2). In the highlighted region in (a) there are the supports of five overloaded
LR B-splines, depicted in (b). The numbers in the elements of the region, reported in (c), indicate how many
supports of these B-splines are on them. The highlighted vertices are the T-vertices corresponding to pair of
knots of the overloaded LR B-splines.

bidegree (2,2) and an LR-mesh of multiplicity one. In the highlighted region in Figure 18(a)
there are the supports of five LR B-splines, reported in Figure 18(b), that form the collection
BO of the algorithm. Then, for each element of the box-partition in such region we count
how many of these supports are on it. If an element is only in one support, the corresponding
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B-spline is placed in the subcollection BO1 of the algorithm. From Figure 18(c), we see that
BO1 = ∅. Therefore, the algorithm stops without answering whether the LR B-splines on the
mesh are linearly independent or not. However, if we now look at the T-vertices in the region,
highlighted in Figure 18(c), we see that none of them is shared, as pair of knots, in two or
more B-splines of BO. Since the necessary condition for linear dependency Corollary 7.10 is
not satisfied, we can conclude that the LR B-splines on the mesh are linearly independent.

The Peeling Algorithm can therefore be improved by inserting in BO1 also the B-splines
of BO that have an exclusive T-vertex as pair of knots.

10. Conclusions, conjectures and future work

In this work we have identified necessary features of the mesh to have a linear dependence
relation in the MS and LR B-spline sets for any bidegree ppp. Namely, if the union of the
supports of the B-splines involved in the linear dependence relation is denoted as R,

� there are nested B-splines at the corners of R, and

� every relevant T-vertex is shared.

Moreover, we have proved that the minimal number of MS B-splines needed for a linear
dependence relation is six while for the LR B-splines is eight. These numbers are sharp for
any bidegree ppp = (p1, p2) for the MS B-splines and for the LR B-splines with pk ≥ 2 for some
k ∈ {1,2}. When (p1, p2) =(0,1), (1,0) or (1,1), we conjecture it is not possible to have a
linear dependence relation in the LR B-spline set.

In our future work, we would like to classify the meshes with a linear dependence relation
involving this minimal number of MS B-splines. The number of possible cases would then
be dependent on the bidegree chosen. Our conjecture is that every possible configuration of
linear dependency is a refinement of one of such cases. Note that this is what happens in the
meshes of Example 8.3.
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Geschäftsstelle, 1997.
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