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ABSTRACT: We study higher order biased non-parametric estimators for circular
densities. The idea is optimizing a local version of the log-likelihood function where
the unknown log-density is replaced by a series expansion. It will be seen that the
asymptotic bias will be reduced depending on the order of the expanding polynomial.
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1 Introduction

A circular (or directional) observation can be considered as a point on the cir-
cumference of the unit circle (or a unit vector in the plane) and measured (in
radians) by an angle in [−π,π) after both an origin and an orientation have
been chosen. When dealing with circular data, the angle θ ∈ [−π,π) can be
represented by any element in the set {2mπ+ θ,m ∈ Z}: this sets apart cir-
cular statistical analysis from standard real-line methods. Typical examples
of circular data include flight direction of birds from a point of release, wind,
and ocean current direction. A multidimensional directional observation lies
in d-dimensional torus, i.e. the space [−π,π)d , or in the hyper-sphere.

We propose a local likelihood approach for estimating toroidal densities.
To the best of author’s knowledge, the only specific contribution on den-

sity estimation on the torus is due to Di Marzio et al., 2011. Tibshirani &
Hastie, 1987 introduced the concept of local likelihood. They proposed to fit
a regression function using only the observations falling within a certain win-
dow around the estimation point. In the context of density estimation, local
likelihood requires spatially weighting of the log-densities.



The local likelihood equations are obtained as an approximation of a count-
ing process over the torus. A way to represent the curse of dimensionality in
kernel density estimation is observing that, as the dimension increases, the
classical bias-variance tradeoff is subject to failure since the optimal band-
widths must be large, and are generally too wide to avoid substantial bias.
Therefore, higher order estimation should have the potential of improving the
efficiency, especially in the regions where the bias is severe.

2 The toroidal likelihood model

Let f be a toroidal density, i.e. a 2π-periodic non-negative function defined
on [−π,π)d , d ≥ 1, with

∫
[−π,π)d f (θθθ)dθθθ = 1. The objective is to estimate f at

θθθ ∈ [−π,π)d , using a random sample θθθ1, . . . ,θθθn drawn from f .
Once the torus has been partitioned into S equal bins, say C1, . . . ,CS, let

Ps and ns denote the integral of f over Cs, s ∈ (1, . . . ,S), and the number of
sample observations in Cs, respectively. Then, with respect to Cs, each sample
observation can be seen as a Bernoulli random variable with parameter Ps,
and, due to the Mean Value Theorem, it results Ps = f (θθθs)(2π)d/S, for some
θθθs ∈ Cs, which is O(S−1) for bounded f and finite d. Then, the likelihood
is L( f ) := ∏P ns

s (1−Ps)
n−ns , and, letting `s := log(Ps/(1−Ps)), and the log-

likelihood is L( f ) := ∑{ns`s−n log
(
1+ e`s

)
}.

Hence, assuming sparse asymptotics, i.e. both n and S go to infinity in such
a way that just a few observations fall in each bin, we have that n≈ S, ns→ 1,
and Ps → 0. Consequently, L( f ) ≈ ∑(logPs− nPs). Using a spatial weight
KKKκ1,...,κd , approximating the second sum with an integral, and ignoring con-
stants, we motivate the following definition of local likelihood at θθθ ∈ [−π,π)d ,

Lθθθ( f ) :=
n

∑
i=1

KKKκ1,...,κd (θθθi−θθθ) log f (θθθi)−n
∫

[−π,π)d

KKKκ1,...,κd (ααα−θθθ) f (ααα)dααα,

where the weight function is a toroidal kernel, i.e. KKKκ1,...,κd (βββ) := ∏Kκ j(βββ
( j)),

βββ ∈ [−π,π)d , with Kκ j being a circular kernel with zero mean direction and
concentration parameter κ j ∈ (0,∞), j ∈ (1, . . . ,d) (see Di Marzio et al., 2011).
Then, for θθθi belonging to a neighborhood of θθθ, the contribution of log f (θθθi) is
weighted by KKKκ1,...,κd (θθθi−θθθ), with the neighborhood being as wide along the
jth direction as small κ j is. Clearly, here κ j plays the role of the (inverse of
the) smoothing factor along the jth dimension.



Consider the (2π-periodic) pth degree polynomial (Di Marzio et al., 2009)

Pp(λλλ) := a0 +
p

∑
s=1

(SSS′
λλλ
)⊗s aaas

s!
,

with λλλ ∈ [−π,π)d , a0 ∈ R, aaas ∈ Rds
, s ∈ (1, . . . , p), uuu⊗s denoting the sth order

Kronecker power of a vector uuu and SSSλλλ := (sin(λλλ(1)), . . . ,sin(λλλ(d)))′.
Thus, for aaa := (a0,aaa1, · · · ,aaap)

′, we see that Lθθθ(aaa) equals

n

∑
i=1

KKKκ1,...,κd (θθθi−θθθ)Pp(θθθi−θθθ)−n
∫

[−π,π)d

KKKκ1,...,κd (ααα−θθθ)exp(Pp(ααα−θθθ))dααα,

and equating to 000 the associated system of partial derivatives leads to

1
n

n

∑
i=1

A(θθθi−θθθ)KKKκ1,...,κd (θθθi−θθθ)

=
∫

[−π,π)d

A(ααα−θθθ)KKKκ1,...,κd (ααα−θθθ)exp(Pp(ααα−θθθ))dααα, (1)

where A(λλλ) := vec(1,SSS′
λλλ
, . . . ,(SSS′

λλλ
)⊗p). Under the assumption that log f is

smooth enough at θθθ, solving for aaa gives the estimates âaa := (â0, âaa1, · · · , âaap)
′ of

ãaa := (ã0, ãaa1 . . . , ãaap)
′, where, for θθθ ∈ [−π,π)d , ã0 := log f (θθθ) and ãaas is the vec-

tor of the mixed partial derivatives of total order s of log f at θθθ . For example,
ãaa1 is the gradient vector, and ãaa2 = vec(H), where H denotes the Hessian ma-
trix. Clearly, the local-likelihood density estimator of f (θθθ) is f̂ (θθθ) := exp(â0).
Notice that, when p = 0, system (1) reduces to a single equation whose so-
lution coincides with the kernel estimator of a toroidal density considered
by Di Marzio et al., 2011; when p > 0 the estimate is always non-negative,
whereas it is not guaranteed that it is a proper density, and a normalization
step becomes necessary after estimation. Loader, 1996 introduced a likeli-
hood approach that could be considered as an euclidean counterpart of ours.
If p = 0 the estimator has a closed form solution. This allows us to calculate
the accuracy measures explicitly. For the circle case we get a bias equal to
1/2 f ′′(θ)/ f (θ)

∫
sin2 Kκ, and a variance equal to 1/(n f (θ))

∫
K2

κ . A compari-
son between local constant and local linear fit of a0 shows that, when d = 1, this
latter has bias 1/2( f ′′(θ)/ f (θ)− f ′(θ)2/ f (θ)2)

∫
sin2 Kκ, whereas the variance

is identical for both. We can observe that the respective convergence rates are
the same as well. In Figure 1 we show a few population examples and highlight
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Figure 1: Population examples. Continuous line indicates where local linear is
more accurate, dashed line indicates where local constant is superior.

which estimator is better. Around the modes, where f ′′ < 0 we have smaller
bias for the local constant fit, while the opposite situation happens at the tail
regions. Notice that at the stationary points, where f ′ = 0, biases are identical.
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