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Abstract

Although Lyapunov exponents have been widely used to characterize the

dynamics of nonlinear systems, few methods are available so far to obtain

a-priori bounds on their magnitudes. In this thesis, sufficient conditions to

rule out the existence of attractors with positive Lyapunov exponents and

to ensure 2-contractivity of the system are derived via a Lyapunov approach

based on the second additive compound matrices of the system Jacobian.

Moreover, insights into this approach are provided by showing how several

available techniques for computing Lyapunov functions can be fruitfully ap-

plied to Lorenz and Thomas systems to derive explicit conditions on their

system parameters, which ensure that there are no attractors with positive

Lyapunov exponents. Then, the approach is extended to the case of nonlinear

systems with a first integral of motion and its application to the memristor

Chua’s circuit is discussed. Furthermore, sufficient small-gain like conditions

for 2-contraction of feedback interconnected systems, on the basis of individ-

ual gains of suitable subsystems arising from a modular decomposition of the

second additive compound equations, are introduced. The condition applies

even to cases when individual subsystems might fail to be contractive (due

to the extra margin of contraction afforded by the second additive compound

matrix). Some examples are provided to illustrate the theory and show its

degree of conservatism and scope of applicability. Finally, the second ad-

ditive compound approach is also used to derive conditions, formulated in

terms of 2-contractivity of the closed loop system, for designing a feedback

control law to remove the dense set of Unstable Periodic Orbits (UPOs) and

chaotic attractors, while preserving the system equilibrium points. Matrix

inequalities for computing the control gain matrix are derived and applied

to the Lorenz and Thomas systems.
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Introduction

The long-term behavior of solutions of differential equations is one of the

most investigated topic in the analysis of dynamical systems, also for the

strict connection with the stability and instability properties [46]. Among

several other approaches, Lyapunov exponents have been largely employed

to characterize the attractors of finite dimensional continuous-time nonlinear

systems [17]. Conditions for the existence of the Lyapunov exponents are

known since long time [40,44] and a-priori bounds on their location [26] are

usually obtained through the spectral analysis of the variational equation,

also exploiting the fact that they are invariant under fairly general coordi-

nate transformations. Indeed, several algorithms are nowadays available to

numerically compute the Lyapunov exponents for a given system [15, 16].

Conversely, it remains an open problem how to derive conditions on the

system parameters which guarantee bounded Lyapunov exponents within

prescribed regions of the complex plane. In this respect, the presence/ab-

sence of positive Lyapunov exponents is of particular importance as it allows

to classify the nature of the system attractors (see [45] for a related discus-

sion on this issue).

In this thesis, a new approach to rule out the existence of attractors with

positive Lyapunov exponents in continuous-time nonlinear systems is pro-

posed, extending previous conditions ensuring the non-existence of periodic

and almost periodic solutions [1]. The approach is based on the properties

pertaining to the second additive compound of the Jacobian matrix which

have been characterized by James Muldowney in the seminal paper [36].

Muldowney ruled out the existence of non-constant periodic solutions by

formulating conditions on the matrix norm of the second additive compound

of the Jacobian. Indeed, compound matrices have been widely used in the

study of nonlinear dynamics, mainly focused on the estimation of attractors

dimension (see [23] and references therein). Up-to-date introductions to ad-

xi



xii Introduction

ditive and multiplicative compound matrices were recently reported in [6,53],

where their application to contracting systems is thoroughly discussed. The

approach here presented shows that the non-existence of attractors with

positive exponents can be tackled via the Lyapunov’s direct method, i.e.,

determining a Lyapunov function for the second additive compound of the

Jacobian matrix. Notably, this means that to rule out the existence of pos-

itive Lyapunov exponents one can exploit the several available techniques

for computing Lyapunov functions. In some cases, these conditions can be

formulated as a feasibility Linear Matrix Inequality (LMI) problem involving

matrices of dimension
(
n
2

)
×
(
n
2

)
.

Recently, a lot of attention has been devoted the so called k-Contraction

Theory [52], which provides conditions ensuring that arbitrary k-dimensional

submanifolds of state space contract in volume along solutions of the system

(see [6] for more details). This approach, for k = 1, recovers the classi-

cal Contraction Theory, while for k = 2 we obtain Muldowney’s conditions.

At the same time, stability analysis of interconnected dynamical systems

has also become a very active area of research. The general idea behind a

Small-Gain Theorem is the formulation of a sufficient stability condition, for

a feedback interconnected system of some sort, on the basis of the stabil-

ity of its modular components, and the calculation of some notion of “loop

gain,” which, if sufficiently low (typically smaller than unity), is adequate

for assessing the stability of the whole interconnection. Many versions of

such result exist, ranging from Input-to-State-Stability (ISS) systems [21] to

an LMI set-up [8], and passing for large-scale interconnected systems [13].

See [10] for a recent and up-to-date reference, where modular techniques

for contraction analysis of large-scale networks are perfected and treated in

depth. The special case of k-contraction for two cascaded systems is studied

in [38], while in [39] the case of static nonlinear feedback (of the Lurie form)

is considered.

In the present thesis, we formulate a small-gain theorem result for 2-contraction

of feedback interconnected systems, based on the second additive compound

matrix of individual subsystems and of an auxiliary coupling systems, which

captures the dynamics of their interconnections. In particular, rather than

resolving a unique LMI condition of size
(
n
2

)
×
(
n
2

)
, we consider subsystems

of dimension n1 and n2 (with n1 + n2 = n) and we solve 3 separate LMIs

with unknowns of size
(
n1

2

)
,
(
n2

2

)
and n1 · n2 respectively.

Since the compound matrices allow expressing conditions directly on the
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Lyapunov exponents of a system, one may think to exploit the machinery of

compound matrices to formulate condition for removing chaotic behaviours

from the system through a feedback control law. Chaos was experimentally

observed for the first time by Edward N. Lorenz in his work on deterministic

non-periodic flows [32], showing that a chaotic system exhibits high sensi-

tivity with respect to initial conditions, i.e., the so called “butterfly effect”.

Since then, chaotic systems were discovered in several fields of biological,

ecological, chemical, physical sciences and engineering ( [18]). Moreover,

other peculiar aspects of chaotic systems started to be clear, such as the

coexistence of unstable periodic orbits (UPOs) and the fact that, due to

ergodicity, the neighborhood of each UPO is continuosly visited during the

system time evolution ( [29]).

Subsequently, the idea of taking advantage of chaos gained momentum. In

particular, it was observed that many different oscillatory behaviours can be

derived from a single chaotic system, without significant input injections in

steady state, by stabilizing individual UPOs via the application of the right

perturbation to the system. The first approach to stabilize a given UPO

of a chaotic system was introduced by Ott-Grebogi-Yorke (OGY) in [41].

The method suggests to tackle the problem of stabilizing UPOs as a lo-

cal stabilization of a fixed point of the system’s Poincarè map. Therefore,

knowledge of the right perturbation to apply as well as of the considered

Poincarè section is needed. Since then, the field of chaos control has gained

ground and different alternative methods were introduced. For example,

in [42] the author suggests the well known delayed feedback control (DFC),

which has undergone several modifications over the years ( [43]). The Pyra-

gas’ approach needs a priori knowledge of the UPO period and it exploits

as a control input a signal proportional to the difference of the actual sys-

tem’s output and a delayed one, with some constant gain that has to be

properly tuned numerically or experimentally. Unfortunately, the stability

analysis is complex since the resulting controller and closed-loop system is

not finite dimensional ( [50]). To overcome this issue, in the case of har-

monically forced nonlinear systems, finite-dimensional controllers have been

introduced, which are obtained by solving linear matrix inequalities (LMIs)

in [7] and [5]. It is important to note that both the OGY and DFC methods

are non-invasive methods, since the stabilized periodic orbit coincides with

the uncontrolled UPO.

In this thesis, a different perspective on chaos control is adopted by exploit-
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ing the variational equation associated to the second additive compound of

the Jacobian. In particular, the method allows designing nonlinear time-

invariant state feedback controllers capable to remove the dense set of UPOs

and chaotic attractors, while preserving equilibria, by making the closed loop

system 2-contractive. Moreover, it will be shown how the feedback gain ma-

trix can be obtained by solving some matrix inequalities which involve the

second additive compound of the Jacobian of the closed loop system.

The aim of this thesis is to propose alternative techniques to address the

problem of finding some convergence conditions for systems that exhibit

multistability, i.e. the presence of stable and unstable fixed points. In par-

ticular, it is proposed to exploit the connection between compound matrices

and dynamical systems for the analysis of the dynamics and the control of

nonlinear systems in such a scenario, where most of the global stability tech-

niques fail.

Initially, some known preliminary results and a background on compound

matrices are introduced in Chapter 1. Then, in Chapter 2, it is presented

a new technique to exclude attractors with positive Lyapunov exponents,

based on the exponential contraction of the surface area spanned by arbi-

trary pairs of infinitesimal perturbations of initial conditions, propagated

along the solutions of the system. Initially, it is shown the connection be-

tween the Lyapunov spectra of the standard variational equation and the

compound variational equation of second order (Proposition 8), since it is a

crucial point for the result in Lemma 1, Theorem 4 and Theorem 5. Then,

some final remarks and insights on the results are discussed at the end of

the chapter, together with the extension to systems with a first integral of

motion in Theorem 6. Subsequently, in Chapter 3, suitable notions of gains

for linear systems are formulated in terms of LMIs via the introduction of

a small-gain theorem in Theorems 7 and 8. As a consequence, the results

are extended to the case of nonlinear systems and state-dependent contrac-

tion metrics (Theorems 9 and 10), in order to provide sufficient small gain

conditions for the assessment of 2-contraction for both linear and nonlinear

systems. In Chapter 4 it is shown how the technique presented in Chapter

2 can be exploited to design a non-invasive feedback control law for control-

ling chaos ensuring the closed loop system to be 2-contractive. A notion of

2-contraction stabilizability is first defined, in order to highlight the key con-

cept at the basis of the result in Theorem 11. Subsequently, Propositions 20

and 21 provide a new technique, arising from Theorem 4, to design a control
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law with derivative feedback ensuring no positive Lyapunov exponents for

the controlled system. Chapter 5 is devoted to some examples of applica-

tion and case studies of the techniques presented in the previous chapters.

Finally, some final conclusions as well as some future research directions end

the thesis.





Chapter 1

Compound matrices and

dynamical systems

This chapter provides the adopted notation and a brief introduc-

tion on the algebra of compound matrices. The first part intro-

duces the notion of k-multiplicative and k-additive compound of

a matrix, together with some important properties, while the sec-

ond part is devoted to the connection between compound matrices

and linear and nonlinear dynamical systems. The material of the

chapter can be found in [6,9,33,36].

1.1 Notation

• N, R, C: sets of nonnegative integers, real numbers, complex numbers;

• ei: the i-th canonical basis vector;

• J(x): Jacobian ∂f(x)/∂x of f(x);

• Re(λ), Im(λ), |λ|; real part, imaginary part, magnitude of λ ∈ C;
• In: n× n identity matrix;

• A⊤: transpose of matrix A;

• A ≥ 0: positive semidefinite (resp. definite) matrix A;

• Ker(A): kernel of matrix A;

• spec(A): spectrum of matrix A;

• conv(A1, A2, . . .) (resp. A > 0): convex hull of matrices A1, A2, . . .;

• Q(k, n): set of increasing sequences of k nonnegative integers with

values in {1, 2, . . . , n} listed in lexicographical order;

1



2 Compound matrices and dynamical systems

• A(α|β): minor of matrix A corresponding to the pair (α, β) ∈ Q(k, n)×
Q(k,m);

• A(k): k-multiplicative compound matrix of matrix A;

• A[k]: k-additive compound matrix of matrix A;

• [v1, v2, . . . , vm]: matrix with column vectors v1, v2, . . . , vm;

• v1 ∧ v2: wedge product of vectors v1 and v2.

1.2 Multiplicative compound matrix

Definition 1 [6] For a matrix A ∈ Rn×m and any positive integer k ≤
min{n,m}, the k-th multiplicative compound matrix is the matrix A(k) ∈
R(

n
k)×(

m
k ) whose entries are all the k dimensional minors of A listed in lexi-

cographical order.

Example 1 Let A ∈ R3×3 and k = 2. Q(2, 3) denote the set of increasing

sequences of k = 2 integers in lexicographical order, i.e.

Q(2, 3) = {{1, 2}, {1, 3}, {2, 3}}.

The 2-multiplicative compound of A reads:

A(2) =


A({1, 2}|{1, 2}) A({1, 2}|{1, 3}) A({1, 2}|{2, 3})

A({1, 3}|{1, 2}) A({1, 3}|{1, 3}) A({1, 3}|{2, 3})

A({2, 3}|{1, 2}) A({2, 3}|{1, 3}) A({2, 3}|{2, 3})

 =

=



∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣ a11 a13
a21 a23

∣∣∣∣ ∣∣∣∣ a12 a13
a22 a23

∣∣∣∣∣∣∣∣ a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ ∣∣∣∣ a12 a13
a32 a33

∣∣∣∣∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ ∣∣∣∣ a21 a23
a31 a33

∣∣∣∣ ∣∣∣∣ a22 a23
a32 a33

∣∣∣∣


Proposition 1 [6] Let A ∈ Rn×m and k ≤ min{n,m} be a positive integer.

The following properties hold true:

1. A(1) = A.

2. If n = m =⇒ A(n) = det(A).
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3. (AB)(k) = A(k)B(k)(Cauchy-Binet formula).

4. Let is I
(k)
n = Ir, where r :=

(
n
k

)
, the identity matrix of

(
n
k

)
-order.

If A is non-singular then (AA−1)(k) = Ir and (A−1)(k) = (A(k))−1.

Furthermore, if A is non-singular then so is A(k).

5. (A(k))T = (AT )(k).

Multiplicative compound matrices allow denoting in a synthetic way the

wedge product between vectors, as it is shown in the next statement.

Proposition 2 Let vi, vj ∈ Cn be any complex vectors. The wedge prod-

uct (or exterior product) between vectors can be computed through the 2-

multiplicative compound of the matrix that has the vectors vi and vj as

columns, i.e.

vi ∧ vj = [vi, vj ]
(2).

In the case of square matrices, multiplicative compound matrices have an

important spectral property.

Proposition 3 [6] Let {λ1, λ2, . . . , λn} be the eigenvalues of A. Then, the

spectrum of the k-multiplicative compound matrix of A is equal to:

{λi1λi2 · · ·λik , 1 ≤ i1 < i2 < · · · < ik ≤ n}.

Furthermore, if v1, v2, . . . , vk are independent eigenvector of A corresponding

to eigenvalues λ1, λ2, . . . , λk, then the wedge product v1 ∧ v2 ∧ · · · ∧ vk is an

eigenvector of A(k) with corresponding eigenvalue λ1λ2 . . . λk.

1.3 Additive compound matrix

Definition 2 [6] Let A be a square matrix, A ∈ Rn, and consider any

positive integer k such that k ≤ n. The k-additive compound matrix is the

matrix A[k] ∈ R(
n
k)×(

n
k) defined as:

A[k] =
d

dε
(I + εA)(k)

∣∣∣∣
ε=0

.

Definition 2 implies that A[k] = d
dε (exp[Aε])(k)|ε=0 (see [6]), so that:

(I + εA)(k) = I + εA[k] + o(ε) .
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Therefore, A[k] is the first-order approximation of the Taylor expansion of

(I + εA)(k). The next proposition gives an explicit formula to construct the

k -additive compound of a matrix.

Proposition 4 [6] Let α, β ∈ Q(k, n) with α = {i1, . . . , ik} and β =

{j1, . . . , jk}, where 1 ≤ i1 < i2 < · · · < ik ≤ n and 1 ≤ j1 < j2 < · · · < jk ≤
n. Then, the entry of A[k] corresponding to (α, β) is obtained as:

•
∑k

l=1 ailil , if il = jl ∀l ∈ {1, . . . , k}

• (−1)l+mailim , if all the elements of α and β agree except for one

element of index il ̸= jm

• 0, otherwise

Example 2 Let A ∈ C3×3 and k = 2, then the 2-additive compound A[2] is

equal to:

Q(2, 3) = {{1, 2}, {1, 3}, {2, 3}}

A[2] =

 a11 + a22
a32
−a31

a23
a11 + a33

a21

−a13
a12

a22 + a33


Proposition 5 [6] Let A ∈ Rn×n and k ≤ n be a positive integer. The

following properties hold true:

1. (A+B)[k] = A[k] +B[k] =⇒ the map A → A[k] is linear.

2. A[1] = A.

3. A[n] = tr(A).

Similar to multiplicative compound, also additive compound matrices have

an important spectral property.

Proposition 6 [6] Let {λ1, λ2, . . . , λn} be the eigenvalues of A, then:

{λi1 + λi2 + · · ·+ λik , 1 ≤ i1 < i2 < · · · < ik ≤ n}

is the spectrum of A[k]. Furthermore, if v1, v2, . . . , vk are independent eigen-

vector of A corresponding to eigenvalues λ1, λ2, . . . , λk, then the wedge prod-

uct v1 ∧ v2 ∧ · · · ∧ vk is an eigenvector of A[k] with corresponding eigenvalue

λ1 + λ2 + · · ·+ λk.
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Example 3 Let A ∈ R3×3 and let {λ1, λ2, λ3} be the eigenvalues of A. Then,

the eigenvalues of A[2] are:

spec(A[2]) = {λ1 + λ2, λ1 + λ3, λ2 + λ3}

Remark 1 It is worth noting that, due to the spectral property of additive

compound matrices in Proposition 6, the 2-additive compound matrix A[2]

can be Hurwitz only if the matrix A has maximum one eigenvalue with pos-

itive real part.

1.4 Connection between compound matrices

and linear time-varying systems

Besides interesting algebraic properties, compound matrices are noteworthy

for their links with differential equations. Indeed, let X(t) ∈ Rn×m be a

matrix solution of the differential equation

ẋ(t) = A(t)x(t), (1.1)

where A(t) is a square matrix of compatible dimension. For any positive

integer k ≤ min{n,m} the following holds:

ẋ(k)(t) = A[k](t)x(k)(t). (1.2)

Equation (1.2) highlights how the k order minors of the matrix X(t) evolve

according to linear dynamics, which are determined by the k-additive com-

pound of the matrix A(t).

Remark 2 [6] If A(t) ≡ A, then X(t) = exp[At] and X(k)(t) = (exp[At])(k),

from which follows the property:

(exp[At])(k) = exp[A[k]t].

Furthermore, for k = n we obtain

d

dt
det(X(t)) = tr(A(t)) det(X(t))

that is the Abel-Jacobi-Liouville identity.
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1.4.1 Lozinskĭı logaritmic norm

Let A be a matrix of order n× n. The Lozinskĭı logaritmic norm is defined

as the right-hand derivative [36]:

µ(A) = lim
ε→0+

|I + εA|ε=0 (1.3)

where | · | is any norm in Rn. The Lozinskĭı norm has the following property.

Proposition 7 [36] Let x(t) be a solution of the LTV system (1.1). Then:

|x(t)| exp
(
−
∫ t

t0

µ(A)dt

)
, |x(t)| exp

(∫ t

t0

µ(−A)dt

)
are non-increasing and non-decreasing, respectively. Subsequently, we have

the following properties:

• If the LTV system (1.1) is stable =⇒
∫ t

t0
µ(A)dt ≤ K , t0 ≤ t < ∞

(K independent of t)

• If the LTV system (1.1) is asymptotically stable =⇒ lim
t→+∞

∫ t

t0
µ(A)dt =

−∞

• If the LTV system (1.1) is uniformly stable =⇒
∫ t

s
µ(A)dt ≤ M , t0 ≤

s ≤ t < ∞ (M independent of t and s)

Replacing µ(A) with −µ(−A), we obtain necessary conditions for the LTV

system (1.1) to have the corresponding stability properties.

Remark 3 [36] The Lozinskĭı norm µ(A) depends on the used norm. For

the main norms, we have the following explicit formulas:

• |x|∞ = sup
i

|xi| ⇒ µ∞(A) = sup
i
(Re(aii) +

∑
j ̸=i |aij |)

• |x|1 =
∑

i |xi| ⇒ µ1(A) = sup
j
(Re(ajj) +

∑
i ̸=j |aij |)

• |x|2 = (
∑

i |xi|2)
1
2 ⇒ µ2(A) = λ1 , where λ1 ≥ λ2 ≥ · · · ≥ λn

are the eigenvalues of (A∗ +A)/2, A∗ conjugate transpose of A
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In general, with the additive compound of A of order k = 1, 2, . . . , n, we have

the formulas:
µ∞(A[k]) = sup

α∈Q(k,n)

(
Re(ai1i1 + · · ·+ aikik) +

∑
j /∈α(|ai1j |+ · · ·+ |aikj |)

)
µ1(A

[k]) = sup
α∈Q(k,n)

(
Re(aj1j1 + · · ·+ ajkjk) +

∑
i/∈α(|aij1 |+ · · ·+ |aijk |)

)
µ2(A

[k]) = λ1 + · · ·+ λk

(1.4)

An important result is given by J. S. Muldowney in [36], where the stability

properties of system (1.1) are provided in terms of the Lozinskĭı norm of the

k-additive compound matrices of A.

Corollary 1 [36] Suppose there exists a constant M such that∫ t

s

µ(A)dt ≤ M , 0 ≤ s ≤ t < ∞ ,

where M is independent of s and t. Then (1.1) has an (n−k+1)−dimensional

set of solutions x such that lim
t→∞

x(t) = 0 if

lim inf
t→∞

∫ t

0

µ(A[k])dt = −∞

and only if, for 1 ≤ l ≤ n,

lim
t→∞

∫ t

0

µ(−A[l])dt = ∞

1.4.2 Connections between compound and skew-symmetric

matrices

Definition 3 [30] If A ∈ Rn×n satisfies A = A⊤, then A is called symmet-

ric. If A = −A⊤, then A is called skew-symmetric.

For a n×n skew-symmetric matrix X we denote by X⃗ the
(
n
2

)
column vector:

X⃗ = [x12, x13, . . . , x1n, x23, x24, . . . , x2n, . . . , x(n−1)n]
T . (1.5)

Instead, for a m × n rectangular matrix X, we denote by vec(X) the n ·m
column vector:

vec(X) = [x11, x12, . . . , x1n, x21, x22, . . . , x2n, . . . , xm1, . . . , xmn]
T . (1.6)
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In [37] it has been shown that for any skew symmetric matrix X ∈ Rn×n

there exists a matrix Mn ∈ Rn2×(n2) such that

vec(X) = MnX⃗. (1.7)

In particular, Mn is given as:

Mn =
∑

1≤i ̸=j≤n

sign(j − i)e[(i−1)n+j]e
T
k(i,j)

where

k(i, j) = |i− j|+
(
n

2

)
−
(
n+ 1−min{i, j}

2

)
.

For clarity, matrix M4 ∈ R16×6 is shown next:

M4 =



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 −1 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 −1 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 0 0


Conversely, there exists a matrix Ln ∈ R(

n
2)×n2

such that for any skew-

symmetric matrix X ∈ Rn×n (see [37]):

X⃗ = Lnvec(X), (1.8)

where Ln is given as:

Ln =
∑

1≤i<j≤n

ek(i,j)e
T
[(i−1)n+j].
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As an example, L4 ∈ R6×16 is of the form:

L4 =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


(1.9)

Skew-symmetric matrices are useful due to the following result linking them

to 2-additive compound matrices. Consider the linear system:

ẋ = Ax, (1.10)

and assume that a given skew-symmetric matrix function X fulfills the ma-

trix differential equation:

Ẋ = AX +XAT . (1.11)

It can be verified that the linear operator L(X) = AX + XAT preserves

skew symmetry. In particular, L(X)T = −L(X) for all skew-symmetric X.

Moreover, the vector X⃗ in (1.5) fulfills the differential equation:

˙⃗
X = A[2]X⃗, (1.12)

where A[2] is the 2-additive compound matrix of A. Some applications of

this operators on the stability of LTV systems can be found in [3, 9, 33, 37]

and references therein.

1.5 Connection between compound matrices

and nonlinear systems

Consider the nonlinear autonomous system

ẋ = f(x) (1.13)

where f ∈ C1(Rn → Rn). Let x = x(t, x0), x0 ∈ Rn be a the solution

of (1.13) which satisfies x(0, x0) = x0. We consider the linear time-varying

system

ẏ = J [k](x(t, x0))y , k = 1, . . . , n (1.14)



10 Compound matrices and dynamical systems

where y ∈ R(
n
k) and J [k](x(t, x0)) is the k-additive compound of the Jacobian

calculated along the trajectory x(t, x0).

We observe that, for k = 1, (1.14) is the standard variational equation

of (1.13), while the other cases of (1.14) define the compound variational

equations. In particular, when k = n, we have the scalar linear equation

ẏ = divf(x(t, x0))y (1.15)

Remark 4 [36] The matrix Y (t) = ∂x(t, x0)/∂x0 is a fundamental matrix

for the standard variational equation and satisfies Y (0) = I. Thus, Y (k)(t),

the matrix of Jacobian determinants ∂(xi1 , . . . , xik)(t, x0)/∂(x0j1 , . . . , x0jk),

1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n is the fundamental matrix for

(1.14) satisfying Y (k)(0) = I. From (1.15) we have the formula:

∂(x1, . . . , xn)

∂(x01, . . . , x0n)
(t, x0) = exp

[∫ t

0

div f(x(s, x0)) ds

]
As it was observed in the linear case, equations (1.14) can be used to describe

the local evolution in Rn of the measure of k-dimensional surfaces under the

dynamics of the nonlinear system (1.13). The following two theorems extend

the classical result of Bendixson and Poincarè to higher dimensions [36].

Theorem 1 [36] Suppose that one of the inequalities

µ

(
∂f [2]

∂x

)
< 0 , µ

(
−∂f [2]

∂x

)
< 0

holds for all x ∈ Rn. Then the system (1.13) has no nonconstant periodic

solutions.

Theorem 2 [36] A sufficient condition for a periodic trajectory γ = {p(t) :
0 ≤ t ≤ ω} of (1.13) to be orbitally asymptotically stable is that the linear

system

ẏ =
∂f [2]

∂x
(p(t))y

is asymptotically stable.

Corollary 2 [36] Suppose that, for some Lozinskĭı norm µ,∫ ω

0

µ

(
∂f [2]

∂x
(p(t))

)
dt < 0 .

Then, γ is orbitally asymptotically stable.
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If some boundedness assumptions on the solutions of the nonlinear system

(1.13) are enforced, then sufficient conditions ensuring convergence towards

the equilibrium points can be given under the hypotheses of Theorem 1 [52].

Theorem 3 [28] Consider the nonlinear time-invariant system (1.13), where

f : Rn → R is C1. Assume that its trajectories evolve on a convex and com-

pact set Ω, and that

µ
(
J [2](x)

)
< 0 for all x ∈ Ω.

Then every solution emanating from Ω converges to the set of equilibria.

If in addition there exists a unique equilibrium e ∈ Ω then every solution

emanating from Ω converges to e.





Chapter 2

Connection between compound

matrices and Lyapunov

exponents

As discussed in the final part of the introduction, this chapter is

devoted to highlight the relation between the algebra of compound

matrices and the Lyapunov exponents of a nonlinear system, in

order to tackle the problem of analysing some dynamical proper-

ties of the solutions in a multistability scenario, ruling out the

presence of positive Lyapunov exponents, also including the case

of convergence towards the equilibrium points. Firstly, the con-

sidered problem is formulated and the relation between the Lya-

punov exponents of the standard variational equation and those of

the second compound variational equation is introduced in Propo-

sition 8. Then, the main results are presented in Theorem 4

and Theorem 5, which provide conditions ensuring the absence

of positive Lyapunov exponents, while some remarks and insights

are given in Subsection 2.2.1. Subsequently, the extension of the

method to systems with a first integral of motion is provided in

Theorem 6. The material of the Chapter has been collected and

published in the scientific papers [34,35].

13
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2.1 Problem formulation

Consider the dynamical system described by the following set of first-order

differential equations:

ẋ(t) = f(x(t)), (2.1)

with state x(t) ∈ X ⊂ Rn for some open setX and initial condition x(0) = x0

and f : X → Rn of class C1. As customary, one may associate to 2.1 a

variational equation:

ẋ(t) = f(x(t))

δ̇(t) = ∂f
∂x (x(t))δ(t),

(2.2)

whose the component δ(t) ∈ Rn propagates, along solutions of (2.1), the

effect of infinitesimal perturbations of initial conditions in the direction of

δ(0). A matrix version of (2.2) is also handy, and defined as follows:

ẋ(t) = f(x(t))

Ẋ(t) = ∂f
∂x (x(t))X(t),

X(0) = In,

(2.3)

where X(t) ∈ Rn×n is the transition matrix of the ‘time-varying’ linear

system describing the evolution of δ in (2.2) and In denotes the identity

matrix of order n. In particular, δ(t), solution of (2.2) for a given x(0) and

δ(0), fulfills δ(t) = X(t)δ(0), where X(t) is a solution of (2.3) for the same

initial condition x(0). Indeed, we have

d

dt
X(t)δ(0) = Ẋ(t)δ(0) =

∂f

∂x
(x(t))X(t)δ(0).

Definition 4 Lyapunov Exponents: for a given initial condition x(0) (and

assuming x(t) is uniformly bounded over [0,+∞)), n non-zero (and orthog-

onal) vectors v1, v2, . . . , vn, and n real numbers, λ1 ≥ λ2 ≥ . . . ≥ λn, are

defined (the Lyapunov exponents), such that:

λi = lim
t→+∞

log(|X(t)vi|)
t

, (2.4)

where | · | denotes the Euclidean norm of a vector.

Conditions for existence of the Lyapunov exponents are relatively mild and

have been first established in [40] and later generalised in [44]. Lyapunov
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exponents are invariant under fairly general coordinate transformations and

along solutions, thus providing an intrinsic characterization of how an at-

tractor responds to perturbations of initial conditions in different directions.

Finding a-priori bounds on their location yields insight into the dynamics of

a system and is normally approached through the study of the variational

equation (2.2), see for instance [26], where a direct estimation of the growth

rate of the variational equation is proposed.

We propose to study the Lyapunov exponents by using an alternative,

possibly higher-order, linearized dynamics, involving the 2-additive com-

pound matrix ∂f
∂x

[2]
of the Jacobian. In particular,

ẋ(t) = f(x(t))

η̇(t) = ∂f
∂x

[2]
(x(t))η(t),

(2.5)

where η(t) ∈ R(
n
2), can be interpreted, when ascribable as δ1(t) ∧ δ2(t) :=

[δ1(t), δ2(t)]
(2) for some solutions δ1, δ2 of (2.2), as the propagation in time

of an infinitesimal area perturbation in the direction of δ1(0), δ2(0). In

particular, if η(0) = δ1(0)∧ δ2(0), then η(t) = δ1(t)∧ δ2(t). A matrix version

of (2.5) can also be introduced as follows:

ẋ(t) = f(x(t))

Ẏ (t) = ∂f
∂x

[2]
(x(t))Y (t),

Y (0) = I(n2)

(2.6)

where Y (t) ∈ R(
n
2)×(

n
2). Notice that Y (t) = X(2)(t), the 2-multiplicative

compound matrix of X(t). Our objective is to use (2.6) and its Lyapunov

exponents in order to gain insight into the Lyapunov exponents of (2.3).

Definition 5 [34] Lyapunov Exponents of (2.6): for a given initial con-

dition x(0) (and assuming x(t) is uniformly bounded over [0,+∞)), there

exists
(
n
2

)
non-zero (and orthogonal) vectors wij ∈ R(

n
2), 1 ≤ i < j ≤ n, and(

n
2

)
real numbers, µij, (the Lyapunov exponents of (2.6)), such that:

µij = lim
t→+∞

log(|Y (t)wij |)
t

, (2.7)

where | · | denotes the Euclidean norm of a vector.
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More specifically, we aim to find a bound on the maximal Lyapunov ex-

ponent of (2.2) by expressing suitable conditions to bound the Lyapunov

exponents of (2.5). While the proposed approach is tight, dimension of Y

grows quadratically in n, potentially making its application challenging in

high-dimensional examples.

2.2 Ruling out positive Lyapunov exponents

by means of 2-additive compound

In order to accomplish our aims, deriving a link between the Lyapunov spec-

tra of (2.2) and (2.5) is essential.

Proposition 8 [34] For any given initial condition x(0), such that x(t) is

uniformly bounded, the following relationship holds, (for a suitable ordering

of the µij and rescaling of vectors) :

µij = λi + λj , 1 ≤ i < j ≤ n

wij = vi ∧ vj
(2.8)

In order to make full use of the powerful algebraic machinery of compound

matrices, we adopt the following equivalent characterization of Lyapunov

exponents. This will be suitable for addressing the proof of Proposition 8.

Proposition 9 For any given initial condition x(0) the Lyapunov exponents

of a matrix variational equation of solution X(t) and the corresponding di-

rections are given by the spectrum of the symmetric real matrix:

H̄ := lim
t→+∞

log
(
X(t)TX(t)

)
2t

(2.9)

and by its associated orthonormal basis of eigenvectors.

Accordingly, the Lyapunov exponents of the 2-additive compound variational

equation (2.6) can be computed as follows.

Proposition 10 [34] For any given initial condition x(0) = x0 the Lya-

punov exponents of (2.6) and the corresponding orthogonal directions are

given by the spectrum of the symmetric real matrix

M̄ := lim
t→+∞

log
(
Y (t)TY (t)

)
2t

(2.10)

and by its associated orthonormal basis of eigenvectors.
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The equivalence between the definition of the Lyapunov exponents in Defi-

nition 5 and the one in Proposition 9 can be found in [15] and [44], where

the Lyapunov exponents are defined as the logarithm of the eigenvalues of

the following limit matrix Λ(x0)

Λ(x0) = lim
t→+∞

(X(t, x0)
TX(t, x0))

1
2t (2.11)

where the notation X(t, x0) is adopted to remark that the solution of the

matrix varational equation depends on the initial condition x(0) = x0.

Proof of Proposition 8 is here reported since it is useful for a better under-

standing of the analysis.

Proof.(Proposition 8) By observing that Y (t) = X(2)(t) and exploiting the

definition of the related Lyapunov exponents in Proposition 10 we have

M̄ = lim
t→+∞

log
(
Y T (t)Y (t)

)
2t

= lim
t→+∞

log
((

X(2)(t)
)T

X(2)(t)
)

2t

= lim
t→+∞

log
((

XT (t)
)(2)

X(2)(t)
)

2t

= lim
t→+∞

log
((

XT (t)X(t)
)(2))

2t

= lim
t→+∞

log

((
explog(X

T (t)X(t))
)(2))

2t

= lim
t→+∞

log
(
exp[log(X

T (t)X(t))]
[2])

2t

= lim
t→+∞

[
log
(
XT (t)X(t)

)][2]
2t

= H̄ [2]

where the third and fifth properties in Proposition 1, the exponential prop-

erty in Remark 2 and the definition of the Lyapunov exponents in Proposition

9 have been exploited. The first part of the claim is completed by recalling

the spectral property of 2-additive compound. Let vi and vj be eigenvectors

of H̄ associated to eigenvalues λi and λj respectively. Then:

H̄[vi, vj ] = [vi, vj ]diag(λi, λj).
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We exploit the latter equation in the following derivation:

M̄(vi ∧ vj) = H̄ [2][vi, vj ]
(2) =

d

dε
(I + εH̄)(2)

∣∣∣∣
ε=0

[vi, vj ]
(2)

=
d

dε

(
(I + εH̄)[vi, vj ]

)(2)∣∣∣∣
ε=0

=
d

dε

(
[vi, vj ](I + εdiag(λi, λj))

)(2)∣∣∣∣
ε=0

=
d

dε
[vi, vj ]

(2)(I + εdiag(λi, λj))
(2)

∣∣∣∣
ε=0

=
d

dε
[vi, vj ]

(2)(1 + ελi)(1 + ελj)

∣∣∣∣
ε=0

= (λi + λj)(vi ∧ vj).

This concludes the proof of the Proposition.

Proposition 8 characterizes the Lyapunov exponents of the variational

equation (2.5), i.e. of its matrix version (2.6). Our goal, however, is to find a

bound to the maximal Lyapunov exponent of (2.2), i.e. of its matrix version

(2.3). To this end we exploit that whenever the ω-limit set is non trivial

(see e.g. [46] for a definition) there always exists a 0 Lyapunov exponent.

This well known fact is recalled in the Lemma that follows for the sake of

completeness.

Lemma 1 Consider the non-linear dynamical system with its associate vari-

ational equation (2.3) with f : Rn → Rn, f ∈ C1. Let ω(x0) be the ω-limit

set and let f(x) ̸= 0 for all x ∈ ω(x0) (i.e. the ω-limit set does not con-

tain equilibria). Then, there exists i ∈ {1, . . . , n} such that λi = 0, where

λ1, . . . , λn are the Lyapunov exponents of the system (2.1).

Proof. First, we observe that the function f(x(t)) is a solution of the varia-

tional equation, since

ḟ(x(t)) =
∂f

∂x
(x(t))ẋ(t) =

∂f

∂x
(x(t))f(x(t)) .

Hence, it follows that

f(x(t)) = X(t)f(x(0)).

For systems with bounded solutions, the ω-limit set is compact. Therefore

f(x) is uniformly bounded for x ∈ ω(x0) and, since by hypothesis f(x) ̸= 0

in ω(x0), we have for sufficiently small ε and sufficiently large M :

0 < ε ≤ |f(x(t))| ≤ M, ∀ t ≥ 0.
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Considering the direction v = f(x(0)), we have that

λ = lim
t→+∞

log (|X(t)v|)
t

= lim
t→+∞

log (|f(x(t))|)
t

≤ lim
t→+∞

log (M)

t
= 0

and

lim
t→+∞

log (|f(x(t))|)
t

≥ lim
t→+∞

log (ε)

t
= 0 .

Hence, it follows that

0 = lim
t→+∞

log (ε)

t
≤ λ ≤ lim

t→+∞

log (M)

t
= 0

which implies λ = 0. Therefore, there exists at least one Lyapunov exponent

equal to zero.

We are now ready to state our main result.

Theorem 4 [34] Consider the system

ẋ(t) = f(x(t))

δ̇(2)(t) = ∂f
∂x

[2]
(x(t))δ(2)(t),

(2.12)

with state x(t) ∈ Rn and initial condition x(0) = x0. Assume further that f :

Rn → Rn of class C1 and f(x) ̸= 0 for all x ∈ ω(x0). Let V : Rn×R(
n
2) → R

of class C1 and let α1, α2 : [0,+∞) → [0,+∞) functions of class K∞ such

that

• α1

(∣∣δ(2)∣∣) ≤ V
(
x, δ(2)

)
≤ α2

(∣∣δ(2)∣∣)
• V̇

(
x, δ(2)

)
≤ 0

for all x ∈ Rn and δ(2) ∈ R(
n
2), where

V̇ (x, δ(2)) :=
∂V

∂x
(x, δ(2))f(x) +

∂V

∂δ(2)
(x, δ(2))

∂f

∂x

[2]

(x)δ(2) .

Then, all Lyapunov exponents relative to the considered solution are less or

equal than 0.
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Proof. By Lemma 1 it follows that 0 is a Lyapunov exponent of (2.2) and

an eigenvalue of

(
lim

t→+∞

log(X(t)TX(t))
2t

)
.

From the assumptions on the candidate Lyapunov function V, it follows that

along any solution of (2.12).

α1(|δ(2)(t)|) ≤ V (x(t), δ(2)(t))

≤ V (x(0), δ(2)(0)) ≤ α2(|δ(2)(0)|).

Hence |δ(2)(t)| ≤ α−1
1 (α2(|δ(2)(0)|)), proving uniform boundedness of |δ(2)(t)|.

By Proposition 8 follows that

µij = lim
t→+∞

log (|Y (t)wij |)
t

= λi + λj

where wij = vi ∧ vj and λi, λj with 1 ≤ i < j ≤ n are the Lyapunov

exponents of the system (2.1). Hence, denoting by M := α−1
1 (α2(|Y (0)wij |))

the uniform bound on |Y (t)wij |, we see that:

lim
t→+∞

log (|Y (t)wij |)
t

≤ lim
t→+∞

log (M)

t
= 0

for all 1 ≤ i < j ≤ n. From the last inequality it follows that

λi + λj ≤ 0 ∀ i ̸= j .

In particular, by Lemma 1, there exists at least one λi = 0, and therefore we

have

0 + λj ≤ 0 ∀ j .

As a consequence, all Lyapunov exponents are less than or equal to zero,

which concludes the proof of the claim.

When the Lyapunov function V in Theorem 4 is quadratic with respect

to δ(2), one can formulate the condition on V̇ through suitable Linear Matrix

Inequalities involving the 2-additive compound matrix of the Jacobian. We

formulate this in the next Theorem.

Theorem 5 [34] Consider system (2.1) with state x ∈ Rn and initial con-

dition x(0) = x0. Assume that f(x) ̸= 0 for all x ∈ ω(x0). Consider a

state-dependent symmetric matrix P (x) ∈ R(
n
2)×(

n
2) such that:

P (x) ≥ εI (2.13)
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for all x in a neighborhood of ω(x0), and assume:(
∂f

∂x

[2]

(x)

)T

P (x) + P (x)

(
∂f

∂x

[2]

(x)

)
+ Ṗ (x) ≤ 0 (2.14)

then all Lyapunov exponents relative to the considered solution are less or

equal than 0.

Proof. The result simply follows by defining function V (x, δ(2)) := (δ(2))TP (x)δ(2)

and applying Theorem 4. Indeed taking derivatives of V along solutions of

(2.12) we see that:

V̇ = δ(2)
T

[
∂f

∂x

[2]T

P (x) + P (x)
∂f

∂x

[2]

+ Ṗ (x)

]
δ(2) ≤ 0,

where the last inequality follows by (2.14).

2.2.1 Some insights on the result

Remark 5 Theorem 5 provides a sufficient condition to the problem of as-

sessing if, inside some given invariant set D of (2.1), all the attractors whose

ω-limit set does not contain equilibria, have no positive Lyapunov exponents.

Furthermore, if condition (2.14) holds with the strict inequality, then exploit-

ing the results in [1], it can be shown that (2.1) is a non-oscillatory system

inside D. Hence, in this case all the solutions x(t) with x(0) = x0 ∈ D
converge towards the equilibria in D, except for some particular dynamical

behaviors such as certain kinds of homoclinic and heteroclinic orbits. Clearly,

if all the solutions x(t) of (2.1) with x0 /∈ D converge towards the invariant

set D, then such a dynamical scenario is enjoyed by system (2.1).

We provide now further insights on condition (2.14) which are useful for the

successive developments. It is worth noting that for each x ∈ D condition

(2.14) amounts to solve a (Lyapunov-like) Linear Matrix Inequality (LMI).

In particular, the following result holds for the equilibrium points of system

(2.1).

Proposition 11 [35] Let xe ∈ D be an equilibrium point for system (2.1).

1. If the Jacobian
∂f

∂x
(xe) is Hurwitz, i.e., xe is an asymptotically stable

equilibrium point, then also
∂f

∂x

[2]

(xe) is Hurwitz.



22
Connection between compound matrices and Lyapunov

exponents

2. Condition (2.14) holds for some P (x) only if the 2-additive compound

∂f

∂x

[2]

(xe) is marginally stable.

Proof. Condition 1) directly follows from the spectral relations between the

Jacobian
∂f

∂x
(xe) and its 2-additive compound

∂f

∂x

[2]

(xe). In fact, we have

that if λ1, . . . , λn, are the eigenvalues of
∂f

∂x
(xe) then the eigenvalues of

∂f

∂x

[2]

(xe) are µij = λi + λj , 1 ≤ i < j ≤ n.

For condition 2) it can be observed that at the equilibrium point, Ṗ (xe) =∑n
i=1

∂P

∂xi
(xe) · fi(xe) = 0 and hence condition (2.14) boils down to

(
∂f

∂x

[2]

(xe)

)T

P (xe) + P (xe)

(
∂f

∂x

[2]

(xe)

)
≤ 0 . (2.15)

It is known that Lyapunov equation (2.15) is solved for some positive definite

P (xe) only if
∂f

∂x

[2]

(xe) is marginally stable.

Remark 6 It is worth noting that, from Proposition 11, the 2-additive com-

pound
∂f

∂x

[2]

(xe) has to be marginally stable for all the equilibrium points

inside the invariant set D. Therefore, as a consequence of Remark 1, the Ja-

cobian of the system
∂f

∂x
(xe), in every equilibrium point inside D, can have

only one eigenvalue with positive real part.

The matrix P (x) in condition (2.14) can be any state-dependent symmetric

matrix, but taking suitable forms can simplify the computational effort. In

this thesis, two forms of the matrix P (x) are considered, one constant P (x) =

P and one state-dependent P (x) = P exp[V (x)] where V (x) : Rn → R .

Proposition 12 [35]

1. If P (x) = P , P ∈ R(
n
2)×(

n
2) symmetric and positive definite, then con-

dition (2.14) boils down to(
∂f

∂x

[2]

(x)

)T

P + P

(
∂f

∂x

[2]

(x)

)
≤ 0 ∀x ∈ D . (2.16)
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2. If P (x) = P ·exp[V (x)], P ∈ R(
n
2)×(

n
2) symmetric and positive definite,

and V (x) : Rn → R is of class C1. Then, condition (2.14) reduces to(
∂f

∂x

[2]

(x)

)T

P + P

(
∂f

∂x

[2]

(x)

)
+ V̇ (x)P ≤ 0 ∀x ∈ D . (2.17)

Proof. It readily follows by computing Ṗ (x) in both cases.

Remark 7 It is worth noting that condition (2.16) is solved for some con-

stant symmetric and positive definite matrix P only if the 2-additive com-

pound of the Jacobian
∂f

∂x

[2]

(x) is marginally stable for all x ∈ D. Indeed,

the sought matrix P exists if all the 2-additive compounds
∂f

∂x

[2]

(x), x ∈ D,

share a common quadratic Lyapunov function. Also, since V̇ (x) vanishes at

the equilibrium points xe ∈ D, it turns out that condition (2.17) holds only

if the 2-additive compounds
∂f

∂x

[2]

(xe), xe ∈ D, share a common quadratic

Lyapunov function.

Remark 8 It is worth noting that if
∂f

∂x

[2]

(x) depends affine linearly on

x and the invariant set D is the convex hull of given vertices x(i) ∈ Rn,

i = 1, . . . , l, condition (2.16) greatly simplifies from a computational point of

view. Indeed, condition (2.16) boils down to(
∂f

∂x

[2]

(x(i))

)T

P + P

(
∂f

∂x

[2]

(x(i))

)
≤ 0 ∀x(i), i = 1, . . . , l , (2.18)

which amounts to solve a finite number of LMIs, a problem for which effi-

cient software is available. Finally, observe that a similar conclusion can be

reached for condition (2.17) once also V̇ (x) depends affine linearly on x.

2.3 Extension of the method to systems with

a first integral of motion

Dynamic systems with a first integral of motion are characterized by some

non-trivial function of state which is constant along solutions. This implies

that, for each initial condition, the system’s state is confined to evolve on a
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single leaf of manifolds foliation. Such a peculiar structure of the system’s

state space makes it possible to investigate its dynamics in a space of reduced

dimension. In particular, this is very useful when the 2-additive compound

of the Jacobian is employed, since its dimension is equal to r =
(
n
2

)
with n

the dimension of the system. Hence, it grows quadratically as n increases.

For example, a system with dimension n = 4 and a first integral of motion

evolves in a submanifold of dimension n = 3, so that the 2-additive com-

pound of the Jacobian is of dimension 3× 3 instead of 6× 6.

Consider the nonlinear autonomous system (2.1) with its associated varia-

tional equation (2.2), i.e.

ẋ(t) = f(x(t))

δ̇(t) =
∂f

∂x
(x(t))δ(t)

(2.19)

and assume that for some g : Rn −→ R of class C1 the following equality

∂g

∂x
(x) · f(x) = 0 , ∀x ∈ Rn , (2.20)

holds with non-zero gradient (globally or on some forward invariant open

set). Then, it follows that the variation in time of g(x) is equal to zero.

That is

d

dt
g(x(t)) =

∂g

∂x
(x(t)) · ẋ(t) = ∂g

∂x
(x(t)) · f(x(t)) = 0 , ∀t ≥ 0 . (2.21)

Hence, the solution x(t) of (2.19) with initial condition x(0) = x0 is con-

strained to evolve ∀t ≥ 0 onto the invariant manifold described by

{x ∈ Rn : g(x) = g(x0)} . (2.22)

The next result shows that also the variational equation in (2.19) satisfies a

similar constraint.

Lemma 2 Consider system (2.19) and let g : Rn −→ R (of class C2) satisfy

(2.20). Then,

∂g

∂x
(x(t)) · δ(t) = ∂g

∂x
(x(0)) · δ(0) , ∀t ≥ 0 . (2.23)

Proof. Observe that from (2.20) the following equality

∂

∂x

(
∂g

∂x
(x) · f(x)

)
=

∂g

∂x
(x)

∂f

∂x
(x) + f⊤(x)

∂2g

∂x2
(x) = 0 (2.24)
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can be derived. Since the time-derivative of the left-hand side of (2.23) reads

d

dt

(
∂g

∂x
(x(t)) · δ(t)

)
= f⊤(x(t))

∂2g

∂x2
(x(t))δ(t) +

∂g

∂x
(x(t))

∂f

∂x
(x(t))δ(t)

=

(
∂g

∂x
(x(t))

∂f

∂x
(x(t)) + f⊤(x(t))

∂2g

∂x2
(x(t))

)
δ(t)

,

from (2.24) it follows that

d

dt

(
∂g

∂x
(x(t)) · δ(t)

)
= 0 ,

thus proving (2.23).

Remark 9 It is worth noting that if δ(0) is tangential to the invariant

manifold at x = x0, viz. ∂g
∂x (x(0))δ(0) = 0, condition (2.23) boils down

to
∂g

∂x
(x(t)) · δ(t) = 0, ∀t ≥ 0.

To characterize the reduced dynamics onto the invariant manifolds we con-

sider a local change of coordinates for the infinitesimal perturbation in the

direction of δ:

δ(t) := T (x(t))δ̃(t) , (2.25)

where δ̃ ∈ Rn are the new coordinates. Specifically, the transformation

matrix T (x) is defined as

T (x) :=

((
∂g

∂x

)⊥

,

(
∂g

∂x

)⊤
)

, (2.26)

where the columns of the matrix

(
∂g

∂x

)⊥

∈ Rn×n−1 represent one of the

several possible local bases for the tangent plane at the invariant manifold,

i.e.

(
∂g

∂x

)
·
(
∂g

∂x

)⊥

= 0. From Remark 9 it follows that all the perturbations

δ(t) belonging to the invariant manifold are obtained from (2.26) once δ̃(t)

has the following form

δ̃(t) =
(
(δ̃∗(t))

⊤, 0
)⊤

, δ̃∗ ∈ Rn−1 , (2.27)
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i.e. its nth-coordinate is equal to zero. By computing the time-derivative of

(2.25) we derive the following equalities

δ̇(t) = T (x(t))
˙̃
δ(t) + Ṫ (x(t))δ̃(t) ⇒ ∂f

∂x
(x(t))δ(t) = T (x(t))

˙̃
δ(t) + Ṫ (x(t))δ̃(t)

⇒ ∂f

∂x
(x(t))T (x)δ̃(t) = T (x(t))

˙̃
δ(t) + Ṫ (x(t))δ̃(t) .

(2.28)

From the last one we get that the variational equation in the new coordinates

δ̃ enjoys the following form

˙̃
δ(t) = H(x(t))δ̃(t) , (2.29)

where H(x) ∈ Rn×n is given by

H(x) := T−1(x(t))

(
∂f

∂x
(x(t))T (x(t))− Ṫ (x(t))

)
. (2.30)

Clearly, (2.29) holds also when δ̃ has the form (2.27), i.e., δ(t) is constrained

to lie on the invariant manifold. This implies that H(x) enjoys the following

structure:

H(x) =


∗ · · · ∗ ∗
...

...
...

...

∗ · · · ∗ ∗
0 · · · 0 ∗

 ,

which in turn yields that the variational equation onto the invariant manifold

is completely characterized by the following reduced form

˙̃
δ∗(t) = J̃(x(t))δ̃∗(t) (2.31)

where J̃(x) ∈ Rn−1×n−1 is obtained eliminating the nth-row and nth-column

of the matrix H(x) in (2.30) and it represents the Jacobian of reduced di-

mension. Hence, associating the variational equation (2.31) to system (2.1)

allows one to state the next result, which has validity onto the invariant

manifolds.

Theorem 6 [35] Consider system (2.1) with x ∈ Rn and f : Rn → Rn of

class C1. Let D ⊆ Rn be a positively invariant set of (2.1) and g : Rn −→
R be such that (2.20) holds. Suppose that there exists a state-dependent
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symmetric matrix P (x) ∈ R(
n−1
2 )×(n−1

2 ) which is positive definite for all x ∈
D and such that:(

J̃ [2](x)
)⊤

P (x) + P (x)J̃ [2](x) + Ṗ (x) ≤ 0 ∀x ∈ D , (2.32)

where J̃ [2](x) is the 2-additive compound of J̃(x) in (2.31). Then, all the

Lyapunov exponents relative to each solution x(t) of (2.1), with initial con-

dition x0 ∈ D such that f(x) ̸= 0 for all x ∈ ω(x0), are less or equal than

0.

Proof. It follows by observing that the variational equation (2.31) plays the

role of (2.2) in Theorem 4. For the last Lyapunov exponent, recall that:

H(x) = T−1(x)

(
∂f

∂x
(x)T (x)− Ṫ (x)

)
. (2.33)

We aim to compute:

Hnn(x) = eTnH(x)en (2.34)

Notice that T (x)en = ∂g
∂x (x)

T . Also:

∂2g

∂x2
(x)f(x) +

∂f

∂x
(x)

∂g

∂x
(x)T = 0 (2.35)

Since T (x) =
[
∂g
∂x (x)

⊥, ∂g
∂x (x)

T
]
we have:

eTnT
−1(x) =

∂g
∂x (x)∣∣∣ ∂g∂x (x)∣∣∣2 . (2.36)

Hence, exploiting the previous expressions yields:

Hnn(x) = eTnT
−1(x)

(
∂f

∂x
(x)T (x)− Ṫ (x)

)
en

=

∂g

∂x
(x)∣∣∣∣∂g∂x (x)
∣∣∣∣2
(
∂f

∂x
(x)

∂g

∂x
(x)T −

˙∂g

∂x

T
)

= −2

∂g

∂x
(x)

∂̇g

∂x
(x)T∣∣∣∣∂g∂x (x)
∣∣∣∣2

= − ∂

∂x
log

(∣∣∣∣∂g∂x (x)
∣∣∣∣2
)

· f(x)

(2.37)
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In particular then:∫ T

0

Hnn(x(t))dt = log

(∣∣∣∣∂g∂x (x(0))
∣∣∣∣2
)

− log

(∣∣∣∣∂g∂x (x(T ))
∣∣∣∣2
)

, (2.38)

so that:

lim
T→+∞

∫ T

0
Hnn(x(t))dt

T
= 0, (2.39)

whenever x(t) is bounded. We exploit this result to show that the remaining

Lyapunov exponent is 0. Let X(t) be the solution of:

Ẋ(t) = H(x(t))X(t), X(0) = In. (2.40)

Since H is upper block-triangular, X(t) has the same structure. In particu-

lar:

eTn Ẋ(t) = Hnn(x(t))e
T
nX(t). (2.41)

Integration of this scalar equation yields:

eTnX(t) = e
∫ t
0
Hnn(x(τ)) dτeTn , (2.42)

where we exploited eTnX(0) = eTn . Hence, en is a left eigenvector of X(t),

relative to the eigenvalue e
∫ t
0
Hnn(x(τ)) dτ . Let v(t) be the corresponding

right eigenvector of unitary norm (and assume v(t) is a continuous function

without loss of generality). We see that:

X(t)v(t) = e
∫ t
0
Hnn(x(τ)) dτv(t). (2.43)

Let tk → +∞ be a sequence of times such that v(tk) → v̄ as k → +∞. Such

a sequence exists, by compactness of the unit sphere. Then:

lim
k→+∞

log(|X(tk)v̄|)
tk

= lim
k→+∞

log(|X(tk)v(tk)|)
tk

= lim
k→+∞

∫ tk
0

Hnn(s) ds

tk
= 0.

(2.44)

Remark 10 It is worth noting that the results introduced in the paragraph

2.2.1 can be rewritten also in the case of system with a first integral of mo-

tion. Specifically, the analogue of Proposition 11, Proposition 12, Remark 7

and Remark 8 can be readily state once the 2-additive compound
∂f

∂x

[2]

(x) is

replaced with the 2-additive compound of J̃(x).



Chapter 3

A small-gain theorem for

2-contraction

As soon as the dimension of the system n grows, the dimension

of the 2-additive compound grows as
(
n
2

)
, i.e. quadratically in

n. Therefore, the size of the problem that has to be solved grows

rapidly. In this chapter it is shown how the 2-additive approach

can be exploited to find small-gain like conditions considering the

system as the interconnection of two different subsystems and, as

a consequence, it allows tackling the problem via LMIs of lower

dimension. It will be introduced a suitable notion of gain for lin-

ear systems in Definitions 6 and 7 and for nonlinear systems in

Definitions 8 and 9. Then, Theorems 7 and 8 and Theorems 9

and 10 provide small-gain like conditions for linear and nonlin-

ear systems, respectively. The material of the Chapter has been

collected in the scientific paper [4]. The proof of the various re-

sults is reported since it is useful for a better understanding of

the analysis and for the development of the results in the next

Chapter.

29
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3.1 Small-gain theorems for stability of A[2]

Consider an interconnected linear system of the following form:[
ẋ1

ẋ2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
, (3.1)

where x1 and x2 are vectors of dimension n1, n2 ≥ 2, and A11, A12, A21 and

A22 are blocks of compatible dimensions, with A11 and A22 being square.

We interpret equation (3.1) as the equation of a feedback interconnection of

the x1 and x2 sub-systems. In particular, off-diagonal blocks may be of low

rank, (corresponding to fewer input and output variables), but this is not

needed for the results to follow. We are interested in modular conditions

to guarantee asymptotic stability of the 2-additive compound matrix A[2],

where A is the block matrix:

A =

[
A11 A12

A21 A22

]
. (3.2)

Consider next a skew-symmetric matrix X, which is partitioned according

to A as in (3.2), i.e.,

X =

[
X11 X12

X21 X22

]
. (3.3)

By skew-symmetry we have that XT
11 = −X11 and XT

22 = −X22, viz. di-

agonal blocks are themselves skew-symmetric. In addition, XT
21 = −X12.

The 2-additive compound A[2] characterizes the dynamics of the operator X⃗

according to (1.12), viz.
˙⃗
X = A[2]X⃗. (3.4)

Our goal is to decompose the dynamics of (3.4) by looking at the different

state-components X⃗11, X⃗22 and vec(X12).

Proposition 13 [4] Consider the matrix-valued differential equation

Ẋ = AX +XAT .

and assume that its unknown X is a skew-symmetric matrix partitioned ac-

cording to (3.3). Then, the vectors X⃗11, X⃗22 and vec(X12) fulfill the following

linear system of coupled differential equations:
˙⃗
X11 = A

[2]
11X⃗11 +B1vec(X12)

˙⃗
X22 = A

[2]
22X⃗22 +B2vec(X12)

vec(Ẋ12) = (A11 ⊕A22)vec(X12) +G1X⃗11 +G2X⃗22

(3.5)
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where the matrices B1, B2, G1 and G2 are given by:

B1 = Ln1(In1 ⊗A12)− Ln1(A12 ⊗ In1)Hn1,n2 (3.6)

B2 = Ln2
(In2

⊗A21)− Ln2
(A21 ⊗ In2

)Hn2,n1
(3.7)

G1 = (In1
⊗A21)Mn1

(3.8)

G2 = (A12 ⊗ In2)Mn2 (3.9)

and the matrix Hn1,n2 is defined as

Hn1,n2 =

n1∑
i=1

n2∑
j=1

e[(j−1)n1+i]e
T
[(i−1)n2+j] ,

converts row vectorisation to column vectorisation, viz. vec(XT
12) = Hn1,n2

vec(X12).

Proof. To see the result, compute the block-partitioned expression of Ẋ

according to:

Ẋ =

[
A11 A12

A21 A22

] [
X11 X12

X21 X22

]

+

[
X11 X12

X21 X22

] [
A11 A12

A21 A22

]T
=

[
A11 A12

A21 A22

] [
X11 X12

X21 X22

]
+

[
X11 X12

X21 X22

] [
AT

11 AT
21

AT
12 AT

22

]
Then, Ẋ assumes the following formulation:

Ẋ =

 A11X11 +A12X21 +X11A
T
11 +X12A

T
12

A21X11 +A22X21 +X21A
T
11 +X22A

T
12

A11X12 +A12X22 +X11A
T
21 +X12A

T
22

A21X12 +A22X22 +X21A
T
21 +X22A

T
22

 (3.10)

Recalling that X21 = −XT
12, we may remark that:

Ẋ11 = A11X11 +X11A
T
11 +X12A

T
12 −A12X

T
12
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Ẋ22 = A22X22 +X22A
T
22 +A21X12 −XT

12A
T
21

Ẋ12 = A11X12 +A12X22 +X11A
T
21 +X12A

T
22

Taking vec(·) in both sides of the last equation and exploiting the row vec-

torisation identity vec(AXBT ) = (A⊗B)vec(X) yields:

vec(Ẋ12) = vec(A11X12) + vec(X12A
T
22)

+ vec(A12X22) + vec(X11A
T
21)

= (A11 ⊗ In2
)vec(X12) + (In1

⊗A22)vec(X12)

+ (A12 ⊗ In2)vec(X22) + (In1 ⊗A21)vec(X11)

= (A11 ⊕A22)vec(X12) + (A12 ⊗ In2
)vec(X22)

+ (In1 ⊗A21)vec(X11)

= (A11 ⊕A22)vec(X12) + (A12 ⊗ In2
)Mn2

X⃗22

+ (In1 ⊗A21)Mn1X⃗11.

Next, taking the (⃗·) operator in both sides of Ẋ11 and Ẋ22 equations yields:

˙⃗
X11 =

−−−−−−−−−−−−−−→
(A11X11 +X11A

T
11) +

−−−−−−−−−−−−−−→
(X12A

T
12 −A12X

T
12)

= A
[2]
11X⃗11 + Ln1

vec(X12A
T
12 −A12X

T
12)

= A
[2]
11X⃗11 + Ln1vec(X12A

T
12)− Ln1vec(A12X

T
12)

= A
[2]
11X⃗11 + Ln1

(In1
⊗A12)vec(X12)

− Ln1
(A12 ⊗ In1

)vec(XT
12).

We next make use of matrix Hn1,n2 which converts row vectorisation to

column vectorisation, viz. vec(XT
12) = Hn1,n2vec(X12). Exploiting the latter

identity in the previous equation we prove that:

˙⃗
X11 = A

[2]
11X⃗11 + Ln1

(In1
⊗A12)

− Ln1(A12 ⊗ In1)Hn1,n2vec(X12).

Hence, B1 = Ln1
(In1

⊗ A12) − Ln1
(A12 ⊗ In1

)Hn1,n2
. A similar expression

can be proved for
˙⃗
X22.

We introduce now the following notions of gain.
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Definition 6 For a system of equations:

ẋ = Ax+Bw

we denote its L2 gain as the minimum γ ≥ 0 such that the following LMI

admits a positive definite solution P > 0:[
ATP + PA+ I PB

BTP −γ2I

]
≤ 0 .

Consider the L2 gains γ1, γ2 and γ12 for the X⃗11, X⃗22 and vec(X12)

subsystems of (3.5). They fuflill the following LMIs:[
A

[2]
11

T
P1 + P1A

[2]
11 + I P1B1

BT
1 P1 −γ2

1I

]
≤ 0 (3.11)[

A
[2]
22

T
P2 + P2A

[2]
22 + I P2B2

BT
2 P2 −γ2

2I

]
≤ 0 (3.12)[

Q12 P12[G1, G2]

[G1, G2]
TP12 −γ2

12I

]
≤ 0 (3.13)

where Q12 is defined as

Q12 = (A11 ⊕A22)
T
P12 + P12(A11 ⊕A22) + I . (3.14)

In the case of subsystem vec(X12) in (3.5), an alternative notion of L2

gain can be introduced when the input vector is explicitly partitioned into

two different signals.

Definition 7 For a linear system:

ẋ = Ax+B1u1 +B2u2

whose input vector is decomposed according to u = [uT
1 , u

T
2 ]

T , the “parti-

tioned” L2 gains η1 ≥ 0 and η2 ≥ 0 are defined with respect to the individual

inputs components, provided that the following condition ATP + PA+ I PB1 PB2

BT
1 P −η21I 0

BT
2 P 0 −η22I

 ≤ 0

holds for some symmetric matrix P > 0.
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Definition 7 implies that the partitioned L2 gains η1 and η2 of subsystem

vec(X12) in (3.5) fulfill for some P12 = PT
12 > 0 the following LMI: Q12 P12G1 P12G2

GT
1 P12 −η21I 0

GT
2 P12 0 −η22I

 ≤ 0 (3.15)

where Q12 is as in (3.14).

Remark 11 It is worth noting that in Definition 7, differently from Defi-

nition 6, we do not look for the minimal values η1, η2 of such “partitioned”

gains, as a priori it is not obvious that one can simultaneously minimize η1
and η2. In particular, a non-trivial Pareto front of minimal values for η1
and η2 might occur, i.e., they may not be independent from each other.

Theorem 7 [4] Consider an interconnected system formulated as in (3.1),

and let γ1 and γ2 denote the L2 gains of subsystems A
[2]
11 and A

[2]
22 computed

according to Definition 6 and (3.11)-(3.12). Then, the related 2-additive

compound matrix A[2] is Hurwitz, if ∃ ε > 0 such that the following small-

gain condition is satisfied

1 > min
P12,η̃1,η̃2

γ2
1 η̃1 + γ2

2 η̃2 (3.16) Q12 P12G1 P12G2

GT
1 P12 −η̃1I 0

GT
2 P12 0 −η̃2I

 ≤ 0

P12 = PT
12 ≥ εI

η̃1 ≥ 0, η̃2 ≥ 0

where Q12 is as in (3.14).

Proof. - As a preliminary observation, notice that the LMI in (3.16) is

just a more convenient formulation of (3.15), where η21 and η22 have been

replaced with η̃1 and η̃2 in order to keep the matrix inequality linear with

respect to its unknowns. The proof is based on the construction of a block-

diagonal quadratic Lyapunov function, exploiting the equivalent formulation

of A[2] dynamics provided by equation (3.5). To this end, notice that, after

a suitable reordering of state-variables, the matrix A[2] can be transformed

as:

A =

 A
[2]
11 B1 0

G1 A11 ⊕A22 G2

0 B2 A
[2]
22

 .
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We consider a quadratic Lyapunov function defined by the following sym-

metric definite matrix:

P =

 λ1P1 0 0

0 P12 0

0 0 λ2P2

 .

Matrices P1 and P2 are as in (3.11) and (3.12) and λ1 > 0, λ2 > 0 are to be
chosen later. Direct calculations show that ATP +PA gets the formulation
reported in (3.17) and it satisfies the inequalities (3.18) and (3.19) by virtue
of LMIs (3.11) and (3.12).

ATP + PA = λ1

(
A

[2]
11

T
P1 + P1A

[2]
11

)
λ1B

T
1 P1 + P12G1

0

λ1P1B1 +GT
1 P12

(A11 ⊕A22)
TP12 + P12(A11 ⊕A22)

λ2P2B2 +GT
2 P12

0

λ2B
T
2 P2 + P12G2

λ2

(
A

[2]
22

T
P2 + P2A

[2]
22

)
 (3.17)

≤

 −λ1I GT
1 P12

P12G1 λ1γ
2
1I + (A11 ⊕A22)

TP12 + P12(A11 ⊕A22)

0 λ2P2B2 +GT
2 P12

0

λ2B
T
2 P2 + P12G2

λ2

(
A

[2]
22

T
P2 + P2A

[2]
22

)
 (3.18)

≤

 −λ1I GT
1 P12 0

P12G1 (λ1γ
2
1 + λ2γ

2
2)I + (A11 ⊕A22)

TP12 + P12(A11 ⊕A22) P12G2

0 GT
2 P12 −λ2I


(3.19)

The inequality (3.19) can be rearranged via a suitable permutation matrix

S, so that the same inequality assumes the form

ST
(
ATP + PA

)
S ≤ (λ1γ

2
1 + λ2γ

2
2)I + (A11 ⊕A22)

TP12 + P12(A11 ⊕A22) P12G1 P12G2

GT
1 P12 −λ1I 0

GT
2 P12 0 −λ2I


(3.20)
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Finally, if we select P12 = P ∗
12 and λ1 = η̃∗1 + σ, λ2 = η̃∗2 + σ for some

σ > 0 to be chosen later, where P ∗
12, η̃

∗
1 , η̃

∗
2 solve the small-gain condition

(3.16), we get

S(ATP + PA)S ≤

 −αI 0 0

0 −σI 0

0 0 −σI

 (3.21)

with

α = 1− (η̃∗1γ
2
1 + η̃∗2γ

2
2)− σ(γ2

1 + γ2
2).

If we choose σ such that

σ <
1− (η̃∗γ2

1 + η̃∗γ2
2)

γ2
1 + γ2

2

,

we get α > 0, which by virtue of (3.21) implies that A is Hurwitz, thus

proving 2-contraction of the matrix A[2].

A similar result can be formulated without involving the partitioned L2

gains of Definition 7, as follows.

Theorem 8 [4] Consider an interconnected system formulated as in (3.1).

The related 2-additive compound matrix A[2] is Hurwitz if the L2 gains γ1,

γ2 and γ12, computed according to Definition 6 and (3.11)-(3.13), fulfill the

small-gain condition:

γ12 ·
√
γ2
1 + γ2

2 < 1. (3.22)

Proof. - The argument proceeds along the same lines as in the proof of

Theorem 7 by constructing a quadratic Lyapunov function defined by the

following symmetric definite matrix:

P =

 P1 0 0

0 λP12 0

0 0 P2

 ,

where P1, P2, P12 are as in (3.11), (3.12), (3.13) and λ > 0 is to be chosen
later. A direct calculation leads to the formulation of ATP+PA as reported
in (3.23), which satisfies condition (3.24) and (3.25) thanks to the LMIs
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(3.11) and (3.12).

ATP + PA = A
[2]
11

T
P1 + P1A

[2]
11 P1B1 + λGT

1 P12

BT
1 P1 + λP12G1 λ

(
(A11 ⊕A22)

TP12 + P12(A11 ⊕A22)
)

0 P2B2 + λGT
2 P12

0

BT
2 P2 + λP12G2

A
[2]
22

T
P2 + P2A

[2]
22

 (3.23)

≤

 −I λGT
1 P12

λP12G1 γ2
1I + λ

(
(A11 ⊕A22)

TP12 + P12(A11 ⊕A22)
)

0 P2B2 + λGT
2 P12

0

BT
2 P2 + λP12G2

A
[2]
22

T
P2 + P2A

[2]
22

 (3.24)

≤

 −I λGT
1 P12 0

λP12G1 (γ2
1 + γ2

2)I + λ
(
(A11 ⊕A22)

TP12 + P12(A11 ⊕A22)
)

λP12G2

0 λGT
2 P12 −I


(3.25)

The last matrix in (3.25) can be properly rearranged through suitable per-

mutations of the state variables via a permutation matrix S to get the for-

mulation

ST
(
ATP + PA

)
S ≤[

(γ2
1 + γ2

2)I + λ
(
(A11 ⊕A22)

TP12 + P12(A11 ⊕A22)
)

λP12[G1, G2]

λ[G1, G2]
TP12 −I

]
,

(3.26)

which finally leads to

ST
(
ATP + PA

)
S ≤

[
(γ2

1 + γ2
2 − λ)I 0

0 (λγ2
12 − 1)I

]
(3.27)

by exploiting LMI (3.13). Hence, from

ST (ATP + PA)S ≤
[

(γ2
1 + γ2

2)I − λI 0

0 λγ2
12I − I

]
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one gets that ATP + PA < 0, if λ is chosen so that:

γ2
1 + γ2

2 < λ <
1

γ2
12

.

Remark 12 It is interesting to remark that A
[2]
11 , A

[2]
22 and A11 ⊕ A22 may

be Hurwitz matrices even if A11 or A22 are not. In particular, asymptotic

stability of the individual subsystems is not a necessary condition for the

application of the proposed small-gain conditions to the stability of A[2].

Remark 13 In the case of systems in cascade, i. e. when A is block-

triangular, the traditional small-gain condition for asymptotic stability of

interconnected systems is automatically satisfied, as soon as one of the gains

of the two subsystems is zero, because the loop gain becomes γ1γ2 = 0 < 1.

One would expect something similar to hold in small-gain conditions for 2-

contraction. In this regard, observe that when matrix A is block-triangular,

so is A[2], albeit up to permutation of variables. For instance, A12 = 0

implies B1 = 0 and G2 = 0 in equation (3.5). As a result, the evolution of

X11 describes an autonomous system, which feeds into subsystem X12, that

in turn forces subsystem X22. Therefore, if matrices A
[2]
11 , A11⊕A22 and A

[2]
22

are Hurwitz, so is matrix A[2] and the overall system is 2-contracting. Then,

consider the small-gain condition (3.16) of Theorem 7 and let us denote by

P ∗
12, η∗1 and η∗2 the optimal values of P12, η1 and η2, respectively. In the

case of cascaded systems this condition is tight, because B1 = 0 and G2 = 0

allows for computing γ1 = 0 and selecting η∗2 = 0, so that γ2
1η

∗
1 + γ2

2η
∗
2 =

0 < 1 is guaranteed. Conversely, in Theorem 8, where a unique gain γ12
is adopted to characterize the amplification introduced by subsystem X12,

the small-gain condition (3.22) is not automatically fulfilled. In the case

exemplified, for instance, γ1 = 0, but this still requires the fulfillment of the

condition γ12 · γ2 < 1 to guarantee 2-contraction of the cascade according to

Theorem 8. This situation is unideal as it hints at some conservatism in this

latter formulation.
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3.2 Modular 2-contraction of nonlinear sys-

tems

We consider next the case of interconnected nonlinear systems, defined by

C1 equations: [
ẋ1

ẋ2

]
=

[
f1(x1, x2)

f2(x1, x2)

]
=: f(x), (3.28)

where x1 and x2 are vectors of dimension n1, n2 ≥ 2. Due to the smoothness

of f1 and f2 we may define the block-partitioned Jacobian matrix J given

below:

J(x) =


∂f1
∂x1

(x) ∂f1
∂x2

(x)

∂f2
∂x1

(x) ∂f2
∂x2

(x)

 . (3.29)

It was shown in [36] that suitable contraction conditions (expressed through

matrix norms) of the 2-additive compound of the Jacobian J [2](x), can be

used to rule out periodic solutions in nonlinear dynamical systems. Such

conditions were reformulated in [2,34] through the use of Lyapunov functions

or LMIs and extended to rule out oscillatory behaviors of periodic, almost

periodic and chaotic nature. The goal of this section is to exploit/extend

the modular criteria proposed in Section 3.1 to the case of interconnected

nonlinear systems as given by (3.28) in order to rule out oscillatory behaviors.

We work under the assumption that a compact forward invariant set

X ⊆ Rn for the dynamics of (3.28) is available or that solutions are a priori

known to be bounded. Then, oscillatory behaviors may be ruled out provided

a symmetric and positive definite x-dependent matrix P (x) ∈ R(
n
2) is known

to satisfy both α1I ≤ P (x) ≤ α2I, for positive α1, α2, and

J [2](x)TP (x) + P (x)J [2](x) + Ṗ (x) ≤ −εI (3.30)

for some ε > 0 and ∀x ∈ X [34].

Similarly to the linear case, the variational equation associated to the 2-

additive compound matrix, i.e.

ẋ = f(x)

δ̇(2) = J [2](x) δ(2)
(3.31)
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can be rearranged according to equation (3.5) as
ẋ = f(x)

δ̇1 = J
[2]
11 (x) δ1 +B1(x)δ12

δ̇12 = (J11(x)⊕ J22(x))δ12 +G1(x)δ1 +G2(x)δ2

δ̇2 = J
[2]
22 (x) δ2 +B2(x)δ12.

(3.32)

Condition (3.30) ensures exponential convergence of δ[2](t) for any initial

condition in X and any initial value of δ[2](0) ∈ R(
n
2). Our goal is the

formulation of small-gain conditions analogous to (3.16) and (3.22) to ensure

(3.30). To this end we introduce the notion of L2 gain for state dependent

matrices according to the following LMIs.

Definition 8 For a system of equations:

δ̇ = A(x)δ +B(x)w

we define its L2 gain as any value γ ≥ 0 such that the LMI:[
A(x)TP (x) + P (x)A(x) + Ṗ (x) + I P (x)B(x)

B(x)TP (x) −γ2I

]
≤ 0.

is fulfilled for all x ∈ X and for some positive definite symmetric matrix

function P (x) of class C1.

It is worth pointing out that Ṗ (x) is the matrix of entries [LfPij(x)] with

i, j ∈ 1, . . . n and Lf denotes the Lie derivative along solutions of ẋ = f(x).

We can now define the gains of the δ1, δ2 and δ12 subsystems in (3.32).

In particular, we say that γ1 is the gain of the δ1 subsystem if for some P1(x)

of class C1 and all x ∈ X it fulfills[
Q1(x) P1(x)B1(x)

B1(x)
TP1(x) −γ2

1I

]
≤ 0 (3.33)

where

Q1(x) = J
[2]
11 (x)P1(x) + P1(x)J

[2]
11 (x) + Ṗ1(x) + I .

Similarly, for subsystem δ2 the gain γ2 is computed according to the following

LMI condition: [
Q2(x) P2(x)B2(x)

B2(x)
TP2(x) −γ2

2I

]
≤ 0 (3.34)
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where

Q2(x) = J
[2]
22 (x)P2(x) + P2(x)J

[2]
22 (x) + Ṗ2(x) + I .

Finally, the gain γ12 of the component δ12 of the variational equation (3.32)

is given by the fulfillment of[
Q12(x) P12(x)[G1(x), G2(x)]

[G1(x), G2(x)]
T
P12(x) −γ2

12I

]
≤ 0 (3.35)

where

Q12(x) =(J11(x)⊕ J22(x))
TP12(x) + P12(x)(J11(x)⊕ J22(x))+

Ṗ12(x) + I .

As for the Definition 7, when a system has the same formulation of subsystem

δ12 in (3.32), an alternative notion of L2 gain can be introduced.

Definition 9 For a system of equations:

δ̇ = A(x)δ +B1(x)u1 +B2(x)u2

whose input vector is decomposed according to u = [uT
1 , u

T
2 ]

T , the “parti-

tioned” L2 gains η1 and η2 are defined with respect to those individual input

components, provided that the LMI condition: Q(x) P (x)B1(x) P (x)B2(x)

B1(x)
TP (x) −η21I 0

B2(x)
TP (x) 0 −η22I

 ≤ 0 ,

where

Q(x) = A(x)TP (x) + P (x)A(x) + I + Ṗ (x) ,

holds for some positive definite symmetric matrix function P (x) of class C1

and for all the x ∈ X .

Definition 9 implies that the partitioned L2 gains η1 and η2 of subsystem

δ12 in (3.32) fulfill the following LMI Q12(x) P12(x)G1(x) P12(x)G2(x)

GT
1 (x)P12(x) −η21I 0

GT
2 (x)P12(x) 0 −η22I

 ≤ 0, (3.36)
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where

Q12(x) =(J11(x)⊕ J22(x))
TP12(x)

+ P12(x)(J11(x)⊕ J22(x)) + ˙P12(x) + I, (3.37)

for some positive definite matrix function P12(x) of class C1 and for all x ∈ X .

Remark 14 While it is in principle possible to use state-dependent matrices

P1(x), P2(x) and P12(x) for the definition of the gains, as in (3.33), (3.34),

(3.35), and (3.36), the computation of the derivatives Ṗ1(x), Ṗ12(x), and

Ṗ2(x) cannot be done in a decoupled fashion. In this respect, a noteworthy

simplification occurs when dealing with constant matrices, as the gains can

be computed independently of each other. Namely, changing f2(x1, x2) for ẋ2

will not affect the gain γ1 of the δ1 subsystem and vice-versa. On the other

hand the γ12 gain is affected both by ẋ1 and ẋ2. An intermediate situation

can be pursued by choosing P1(x1), P2(x2) and P12 constant, so as to still

retain some decoupling in the computation of gains and allow the flexibility

of state-dependent matrices.

Theorem 9 [4] Consider the interconnected system (3.28) and assume

that everywhere in some forward invariant set its Jacobian matrix (3.29)

belongs to the convex hull of the set of matrices V = {Vi}i=1,...,m, i.e.,

J(x) ∈ conv(V) for all x ∈ X . Let γ1 and γ2 be computed according to

Definition 8 and (3.33)-(3.34). Then, the 2-additive compound matrix of the

Jacobian J [2](x) fulfills the contraction property (3.30), if ∃ ε > 0 such that

the following small-gain condition is satisfied for all the matrices Vi

1 > min
P12,η̃1,η̃2

γ2
1 η̃1 + γ2

2 η̃2 (3.38) Q12,i(x) P12G1,i P12G2,i

GT
1,iP12 −η̃1I 0

GT
2,iP12 0 −η̃2I

 ≤ 0 , i = 1, . . . ,m (3.39)

P12 = PT
12 ≥ εI

η̃1 ≥ 0, η̃2 ≥ 0

where Q12,i(x) has the same form as in (3.37) but P12 does not depend on x

and J(x) is played by Vi.

Proof. - To see the result, notice that the variational equation (3.31) can be

rearranged through suitable permutations according to (3.32). In particular,

δ̇ = A(x)δ,
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for the block matrix

A(x) =

 J
[2]
11 (x) B1(x) 0

G1(x) J11(x)⊕ J22(x) G2(x)

0 B2(x) J
[2]
22 (x)

 .

We adopt a candidate solution for (3.30) of the following form:

P(x) =

 λ1P1(x) 0 0

0 P12 0

0 0 λ2P2(x)

 .

A direct computation shows that AT (x)P+PA(x)+ Ṗ(x) assumes the form

AT (x)P(x) + P(x)A(x) + Ṗ(x)

=



λ1

(
J
[2]
11

T
(x)P1(x) + P1(x)J

[2]
11 (x)

)
λ1P1(x)B1(x) +GT

1 (x)P12

+λ1Ṗ1(x)

λ1B
T
1 (x)P1(x) + P12G1(x)

(
J11(x)⊕ J22(x)

)T
P12

+P12

(
J11(x)⊕ J22(x)

)
0 λ2P2(x)B2(x) +GT

2 (x)P12

(3.40)

0

λ2B
T
2 (x)P2(x) + P12G2(x)

λ2

(
A

[2]
22

T
(x)P2(x) + P2(x)A

[2]
22(x)

)
+λ2Ṗ2(x)


(3.41)

Then, the proof follows along similar lines as the proof of Theorem 7 by

applying the inequalities considered in (3.33), (3.34) and (3.39), this latter

evaluated in the vertexes of the hull.

Theorem 10 [4] Consider the interconnected system (3.28). The 2-additive

compound matrix of its Jacobian J [2](x) fulfills the contraction property (3.30)

if the L2 gains γ1, γ2 and γ12, computed according to Definition 8 and (3.33)-

(3.35), satisfy the small-gain condition:

γ12 ·
√
γ2
1 + γ2

2 < 1. (3.42)
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Proof. - The argument proceeds along the same lines as in the proof of

Theorem 8, by constructing a quadratic Lyapunov function defined by the

following symmetric definite matrix:

P(x) =

 P1(x) 0 0

0 λP12(x) 0

0 0 P2(x)

 . (3.43)

Direct computations lead AT (x)P(x)+P(x)A(x)+ Ṗ(x) to the formulation

AT (x)P(x) + P(x)A(x) + Ṗ(x)

=



J
[2]
11

T
(x)P1(x) + P1(x)J

[2]
11 (x) P1(x)B1(x) + λGT

1 (x)P12(x)

+ Ṗ1(x)

BT
1 (x)P1(x) + λP12(x)G1(x) λ(J11(x)⊕ J22(x))

TP12(x)

+ λP12(x)(J11(x)⊕ J22(x)) + λṖ12(x)

0 P2(x)B2(x) + λGT
2 (x)P12(x)

0

BT
2 (x)P2(x) + λP12(x)G2(x)

A
[2]
22

T
(x)P2(x) + P2(x)A

[2]
22(x)

+ Ṗ2(x)

 (3.44)

The proof follows along similar lines as the proof of Theorem 8 by applying

the inequalities considered in (3.33), (3.34) and (3.35).

Remark 15 It is worth noting that in Section 3.1 the dimension n1 and n2

of the subsystems’ states are limited to be greater or equal than two. However,

the approach can be applied in the case of systems of dimension n = 3 as

well. In such case, one of the two subsystems is empty and one is scalar,

for which the gain γ1 can be readily computed. Therefore, conditions (3.22)

and (3.42) become:

γ12 · γ1 < 1. (3.45)



Chapter 4

Controlling Chaos

In this Chapter, the 2-additive compound approach is utilized to

synthesize a feedback control law making the closed loop system 2-

contractive. Some general notions of 2-contraction stabilizability

are provided in Definition 10 and 11 for linear systems, together

with the main result reported in Theorem 11. Consequently, the

extension to nonlinear systems is presented, introducing a no-

tion of 2-contraction stabilizability with derivative feedback in

Definition 12, in order to design a feedback control law that al-

lows removing chaos while preserving equilibria (Propositions 20

and 21).

4.1 Stabilizability and 2-contraction

Consider the finite dimensional linear control system:

ẋ = Ax+Bu, (4.1)

where x ∈ X ⊂ Rn is the state vector, u ∈ Rni is the input vector matrix

and A ∈ Rn×n, B ∈ Rn×ni are given matrices. We assume, for simplicity,

that the state of the system is measured and instantaneously available, and

that the following feedback law is implemented

u = Kx, (4.2)

45
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where K ∈ Rni×n is the matrix gain. Therefore, the closed loop control

system assumes the form

ẋ = (A+BK)x. (4.3)

Our aim is to find conditions that allow concluding existence of a linear

feedback as in (4.2) such that the closed-loop system is 2-contractive. To

this end, the following definitions are needed.

Definition 10 We say that the pair (A,B) is 2-contraction stabilizable if

there exists a matrix K, of suitable dimension, such that (A + BK)[2] is

Hurwitz stable.

Recalling the reachability property of a linear system, a spectral signature

of Definition 10 can be defined as follows.

Definition 11 We say that the pair (A,B) has a pairwise stabilizable spec-

trum, if the following condition

Re(λ1 + λ2) < 0

holds for all pairs (λ1, λ2) of distinct unreachable eigenvalues of A.

Recall, an eigenvalue is unreachable if the associated eigenvector does not

belong to the image of the controllability matrix. Notice that the condition

is always true if there exist less than two unreachable eigenvalues.

The next Proposition provides a useful formula for the 2-additive compound

matrix of a product [3].

Proposition 14 [3] Let A ∈ Rn×m and B ∈ Rm×n. Then, it holds

(AB)[2] = L
A
LB , (4.4)

where the matrix L
A ∈ R(

n
2)×(mn) depends on A and the matrix LB ∈

R(mn)×(n2) depends on B.

The next result completely characterizes 2-contraction stabilizability of (A,B).

Theorem 11 The following facts are equivalent:

1. The pair (A,B) is 2-contraction stabilizable;

2. The pair (A,B) has pairwise stabilizable spectrum;
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3. The pair (A[2], L
B
) is stabilizable;

Before proving Theorem 11, the following facts are needed.

Lemma 3 The pair (A,B) is completely reachable if and only if for all M ∈
R there exists a matrix K of compatible dimension such that

spec(A+BK) ⊂ {s : Re[s] ≤ M}. (4.5)

Proof. If the pair (A,B) is completely reachable, then the eigenvalues of

A + BK can be located arbitrarily in the complex plane via some suitable

gain matrix K and hence condition (4.5) can be satisfied for all M ∈ R.
Conversely, we proceed by contradiction supposing (4.5) holds for all M ∈ R
and the pair (A,B) is not completely reachable. Hence, there exists at least

one eigenvalue, say λu, such that λu ∈ spec(A + BK) for all K, which

implies that (4.5) does not hold for M < Re (λu).

Corollary 3 Let A ∈ Rn×n and B ∈ Rn×ni decomposed in the following

form

A =

[
A11 A12

O21 A22

]
, B =

[
B1

O2

]
, (4.6)

where A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , A12 ∈ Rn1×n2 , O21 is a n2 × n1 matrix

of zeros, B1 ∈ Rn1×ni , O2 is a n2 × ni matrix of zeros and n = n1 + n2.

The pair (A,B) is decomposed in the reachability canonical form, with n1

and n2 the dimensions of the reachable and unreachable part, respectively, if

and only if for all M ∈ R there exists a matrix K1 ∈ Rni×n1 such that

spec(A11 +B1K1) ⊂ {s : Re[s] ≤ M}. (4.7)

Proof. Consider the pair (A,B) decomposed in the reachability canonical

form as in (4.6). The pair (A11, B1) is the completely reachable part, while

A22 represents the unreachable part. From Lemma 3 it follows that there

exists K1 of suitable dimensions such that the spectrum of (A11 + B1K1)

can be placed to the left of any real abscissa M .

Conversely, if the spectrum of (A11 + B1K1) can be placed to the left of

any real abscissa M , it follows from Lemma 3 that the pair (A11, B1) is

completely reachable. Therefore, the matrix A in (4.6) is decomposed in the

reachability canonical form.
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Lemma 4 Consider a matrix A ∈ Rn×n decomposed as

A =

[
A11 ∗
O21 A22

]
, (4.8)

where A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , O21 is a n2 × n1 matrix of zeros and

the symbol ∗ denotes an arbitrary matrix whose value is irrelevant to the

subsequent discussion. Furthermore, let X be a skew-symmetric matrix par-

titioned according to A in (4.8), as in Section 3.1, Chapter 3. Consider

further the state vector provided by the coordinates transformation X⃗11

vec(X12)

X⃗22

 = PX⃗, (4.9)

where P is a permutation matrix. The 2-additive compound of A in the new

coordinates can be written as:

A = PA[2]P⊤ =

 A
[2]
11 ∗ 0

0 A11 ⊕A22 ∗
0 0 A

[2]
22

 (4.10)

=

[
A1 ∗
0 A

[2]
22

]
. (4.11)

Moreover, the permutation matrix P enjoys the following structure:

P =

[
P̃ O1

O2 I(n2
2 )

]
, (4.12)

where P̃ ∈ R((
n
2)−(

n2
2 ))×((

n
2)−(

n2
2 )), O1 and O2 are matrices of zeros of di-

mension
((

n
2

)
−
(
n2

2

))
×
(
n2

2

)
and

(
n2

2

)
×
((

n
2

)
−
(
n2

2

))
, respectively, and I(n2

2 )
is the

(
n2

2

)
×
(
n2

2

)
identity matrix.

Proof. Following the same calculations as in Section 3.1, Chapter 3, by

noticing that in this case we have A21 = O21 and A12 = ∗. From equation

(3.6), we have that B̃1 = ∗, B̃2 = 0, G̃1 = 0 and G̃2 = ∗. Therefore, the

matrix A[2] assumes the form as in (4.10).

Since the last part of the vector X⃗ is exactly X⃗22, the final block of the

permutation matrix P is equal to
[
O2, I(nu

2 )

]
, where O2 is a matrix of zeros
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of dimension
(
nu

2

)
×
((

n
2

)
−
(
nu

2

))
and I(nu

2 )
is a

(
nu

2

)
×
(
nu

2

)
identity matrix.

Furthermore, it has also a
((

n
2

)
−
(
n2

2

))
×
(
n2

2

)
block of zeros in position (1, 2)

since when the matrix P selects the components X⃗11 and vec(X12) from the

vector X⃗, the component X⃗22 has not to be selected. Therefore, P can be

decomposed as

P =

[
P̃ O1

O2 I(nu
2 )

]
,

where P̃ ∈ R((
n
2)−(

n2
2 ))×((

n
2)−(

n2
2 )).

Lemma 5 Consider a matrix B ∈ Rn×ni as follows:

B =



b1
...

bnr

bnr+1

...

bn


, (4.13)

where b1, . . . , bn ∈ R1×ni and bnr+1, . . . , bn ≡ 01×ni
. The matrix L

B
in (4.4)

can be decomposed as

L
B
=

[
Lr

Ou

]
, (4.14)

where Lr ∈ R((
n
2)−(

nu
2 ))×(nni), Ou is a matrix of zeros of dimension

(
nu

2

)
×

(nni) and nu = n− nr.

Proof. - Recalling the form of the matrix LB in the case ofB = (b1, b2, b3, b4)
⊤

[3]:

LB =

1 2 3 4



(1,2) b2 −b1 0 0

(1,3) b3 0 −b1 0

(1,4) b4 0 0 −b1
(2,3) 0 b3 −b2 0

(2,4) 0 b4 0 −b2
(3,4) 0 0 b4 −b3

, (4.15)
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and consider a matrix B as in (4.13). It can be understood that the matrix

L
B

can be constructed in blocks, where the first block is (n− 1)× nni, the

second block is (n − 2) × nni and so on until the final vector block of size

1× nni, as it is shown in (4.16).
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LB =



b̄1 −b̄2 0 · · · · · · · · · · · · · · · 0 0
... 0 −b̄2 0 · · · · · · · · · · · ·

...
...

...
... 0

. . .
. . . · · · · · · · · ·

...
...

...
...

...
. . .

. . .
. . . · · · · · ·

...
...

b̄r
...

...
. . .

. . .
. . .

. . . · · ·
...

... n− 1

b̄r+1

...
...

. . .
. . . · · ·

. . .
. . .

...
...

...
...

...
. . .

. . . · · · · · ·
. . .

. . .
...

...
...

...
. . .

. . . · · · · · ·
. . .

. . . 0

b̄n 0 0 · · · · · · · · · · · · · · · 0 −b̄2

0 b̄2 −b̄3 0 · · · · · · · · · · · · 0 0
...

... 0
. . .

. . . · · · · · · · · ·
...

...
...

...
...

. . .
. . .

. . . · · · · · ·
...

...
...

...
...

. . .
. . .

. . . · · · · · ·
...

...
... b̄r

...
. . .

. . .
. . .

. . . · · ·
...

... n− 2
... b̄r+1

...
. . .

. . . . . .
. . .

. . .
...

...
...

...
...

. . .
. . . · · · · · ·

. . .
. . .

...
... b̄n 0 · · · · · · · · · · · · · · · 0 −b̄3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

...
...

... · · · b̄r+1 −b̄r · · · · · · 0
...

...
...

...
...

... 0
. . .

. . .
... nu

...
...

...
...

...
...

...
. . .

. . .
...

...
...

...
...

... b̄n
... · · · · · · −b̄r

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · 0 b̄n −b̄n−1 1

(4.16)

Since the rows br+1, . . . , bn are equal to zero, the block with dimension
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nu × nni in (4.16) is the last block with not all the components equal to

zero. After that, the matrix has all the blocks equal to zero, corresponding

to 1 + 2 + 3 + · · · + (nu − 2) + (nu − 1) =
(
nu

2

)
rows of nni zero elements.

Therefore, the matrix L
B

can be decomposed in

L
B
=

[
Lr

Ou

]
, (4.17)

where Lr ∈ R((n2)−(
nu
2 ))×(nni) and Ou is a matrix of zeros of dimension(

nu

2

)
× nni.

Proof. of Theorem 11 - Without loss of generality, we consider the ma-

trices A ∈ Rn×n and B ∈ Rn×ni in Kalman’s canonical reachability decom-

position, viz.

A =

[
Ar ∗
0 Au

]
, B =

[
Br

0

]
, (4.18)

where Ar ∈ Rnr×nr , Br ∈ Rnr×ni , (Ar, Br) is a completely reachable pair,

and Ar, Au represent the reachable and unreachable dynamics.

We show first the implications (1) ⇐⇒ (2). Considering the matrix of the

closed loop system Acl = (A+BK). Partitioning the matrix K as [Kr,Ku],

where Kr ∈ Rni×nr , the matrix Acl can be written as

Acl =

[
Ar +BrKr ∗

0 Au

]
.

By Lemma 4, after the application of the permutation matrix P in (4.12),

the 2-additive compound A
[2]
cl can be written as

Acl = PA
[2]
cl P

⊤ =

 (Ar +BrKr)
[2] ∗ 0

0 (Ar +BrKr)⊕Au ∗
0 0 A

[2]
u

 ,

since A11 = (Ar + BrKr), A22 = Au. Therefore, it can be readily shown

that the pair (A,B) is 2-contraction stabilizable if and only if the matrix

A
[2]
u is Hurwitz. This is indeed necessary, since A

[2]
u is a block along the

diagonal of the upper triangular matrix Acl. It is also sufficient, since by

complete reachability of the pair (Ar, Br), the eigenvalues of Ar +BrKr can

be allocated arbitrarily to the left of any real abscissas, and in particular

of min {0,−maxRe(spec(Au))}, so that matrices (Ar +BrKr)
[2] and (Ar +

BrKr)⊕Au are simultaneously stabilized.
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We show now the implication (1) ⇒ (3). Assume that (1) holds and let K

be any matrix that makes (A+BK)[2] Hurwitz. By Proposition 14:

(A+BK)[2] = A[2] + (BK)[2] = A[2] + L
B
LK .

Since (A+BK)[2] is Hurwitz, there exists a gain LK which makesA[2]+L
B
LK

Hurwitz. Hence, the pair
(
A[2], L

B
)
is stabilizable, and (3) holds.

Finally, the implication (3) ⇒ (1). Since A11 = Ar, A22 = Au, by Lemma 4

we have:

A = PA[2]P⊤ =

 A
[2]
r ∗ 0

0 Ar ⊕Au ∗
0 0 A

[2]
u


=

[
Ar ∗
0 A

[2]
u

]
,

where P is as in (4.12). Moreover, according with Lemma 4 and 5, the

matrix L
B

can be written as

LB
= P L

B
=

[
L̃r

Ou

]
.

Since (Ar, Br) is completely reachable, all the eigenvalues of the matrix

(Ar +BrKr) can be placed to the left of any real abscissas M . Accordingly,

this is also true for (Ar, L̃r), through the choice of a feedback in the form

LKr by noticing that, for negative M :

Re
(
spec

(
Ar + L̃rL

Kr

))
≤

max {max {Re (spec(Ar +BrKr))}+max {Re (spec(Au))} , 2M} .

Therefore, (A, L
B
) is a canonical reachability decomposition and by (3) A

[2]
u

is Hurwitz and contains all the unreachable eigenvalues. Overall then, the

feedback K = (Kr, 0) achieves 2-contraction for (A + BK) provided eigen-

values of (Ar +BrKr) are to the left of −max{0,Re (spec(Au))}. Then, (1)
follows.

4.1.1 LMIs for checking 2-contraction stabilizability

In order to checking if a linear system is 2-contraction stabilizable, some

well-known LMIs can be used for a given A, B matrix pair, or even for a

polytope of matrices.
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Proposition 15 The following LMI is equivalent to (A,B) being 2-contraction

stabilizable:

A[2]P + PA[2]T < L
B
(L

B
)T P > 0 (4.19)

Proof. This is seen by pre and post multiplying the LMI by P−1:

P−1A[2] +A[2]TP−1 < P−1L
B
(L

B
)TP−1.

Hence, there exists a positive matrix Q, such that:

A[2]TP−1 + P−1A[2] − P−1L
B
(L

B
)TP−1 = −Q

and P−1 is the solution of a Riccati equation for the design of LQ optimal

stabilizing feedback for the pair (A[2], L
B
) .

Proposition 16 For unknowns matrices P > 0 and K, the LMI in equation

(4.19) can be written as the following Bilinear Matrix Inequality (BMI), in

order to find a stabilizing feedback making the system (4.3) 2-contractive

stable.

A[2]P + PA[2]T + L
BK +KT (L

B
)T < 0 P > 0. (4.20)

Proof. Pre and post multiplication of the LMI by P−1 yields:

P−1A[2] +A[2]TP−1 + P−1L
BKP−1 + P−1KT (L

B
)TP−1 < 0 P > 0.

Defining the feedback gain as K̃ := KP−1, we see that the previous LMI

proves that A[2] + L
BK̃ is Hurwitz as it can be rearranged according to:

(A[2] + L
BK̃)TP−1 + P−1(A[2] + L

BK̃) < 0, P−1 > 0 .

Proposition 17 Consider the system (4.3). If the matrix A belongs to the

convex hull

A ∈ conv({A1, . . . , AN}),

the problem (4.20) boils down to the following BMI with unknowns K and

P > 0:

A
[2]
i P + PA

[2]
i

T
+ L

BK +KT (L
B
)T < 0 P > 0, i = 1, . . . N. (4.21)
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While Theorem 11 clarifies that stabilizability (in the classical sense) of

(A[2], LB) ensures 2-contraction stabilizability of (A,B), it does not provide a

constructive mechanism to derive a suitable gain K to achieve 2-contraction

for A + BK. We propose below an algorithm to design LK , initialising the

constant matrix as P = εI(n2)
, with ε ≥ 1, ε ∈ R.

1. Let ε = 1 and P (0) := εI(n2)
. Let h = 0.

2. Repeat:

3. Solve the following LMI optimisation:

(L(h), ∗, ∗) := arg min
L,K,q

{q : Q
(h)
P ≤ qI(n2)

, L = LK}

where

Q
(h)
P = (A[2] + L

B
L)TP (h) + P (h)(A[2] + L

B
L)

4. Solve the following LMI optimisation:

(P (h+1), q∗) = argmin
P,q

{q : Q
(h)
L ≤ qI(n2)

, P ≥ εI(n2)
}

where

Q
(h)
L = (A[2] + L

B
L(h))TP + P (A[2] + L

B
L(h))

5. h = h+ 1;

6. Until q∗ < 0

If the algorithm stops, at step h, we may choose the feedback K, such that

LK = L(h). By construction this is a stabilizing gain for A[2]+L
B
LK and it

corresponds to a 2-contraction stabilizing feedback K for matrix (A+BK).

4.2 Removing chaos while preserving equilib-

ria through 2-contraction

Consider a nonlinear control system of the following form:

ẋ = f(x) +Bu. (4.22)

where x ∈ X ⊂ Rn is the state vector, f : X → Rn is at least of class C1,

B ∈ Rn×ni is the input matrix and u ∈ Rn
i is the input vector. Our aim
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is to design a feedback control law for system (2.1) that allows removing

chaotic behaviours while altering the system dynamics as little as possible.

Specifically, we will follow the approach presented in the previous Chapters

to study the behaviour of a second order perturbation η along solutions of a

system confined within a certain forward invariant subset D of state-space.

In particular, we are looking for conditions that guarantee 2-contraction by

means of a feedback control law that preserves equilibria, thus becoming

inactive in steady-state. We assume, as in the previous Section, that the

state of the system is measured and instantaneously available. Furthermore,

the feedback control law

u = Kf(x), (4.23)

whereK ∈ Rni×n is the matrix gain, is considered. Note that (4.23) amounts

to a derivative feedback control since f(x) = ẋ. Therefore, the closed loop

control system assumes the form

ẋ = f(x) +BKf(x) = (I +BK)f(x), (4.24)

while, the Jacobian of the closed loop system, named Jcl(x), becomes:

Jcl(x) = (I +BK)J(x), (4.25)

where J(x) = ∂f
∂x (x) is the Jacobian of system (2.1).

Consider the case of non-state dependent Jacobian, i.e. J(x) ≡ A, ∀x ∈ X.

Similarly to Definition 10, we may consider a related notion of stabilizability

while adopting a feedback of the form

u = KAx, (4.26)

which preserves the Kernel of A.

Definition 12 We say that the pair (A,B) is 2-contraction stabilizable with

derivative feedback if there exists a matrix K of suitable dimension, such that

[(I +BK)A][2] is Hurwitz stable.

Proposition 18 The following facts are equivalent for a pair (A,B) with A

invertible:

1. (A,B) is 2-contraction stabilizable.

2. (A,B) is 2-contraction stabilizable with derivative feedback.



4.2 Removing chaos while preserving equilibria through 2-contraction 57

Proof. For the proof it is enough to show that (1) =⇒ (2), since the impli-

cation (2) =⇒ (1) is obvious.

Since (A,B) is 2-contraction stabilizable, there existsK such that (A+BK)
[2]

is Hurwitz. If A is non-singular, the following equalities

(A+BK)
[2]

=
(
A+BKA−1A

)[2]
=
[(
In +BK̄

)
A
][2]

hold. Hence, according to Definition 12, the gain matrix K makes the pair

(A,B) 2-contraction stable with derivative feedback, thus completing the

proof.

The next results hold true.

Proposition 19 Consider a closed loop control system as in (4.24). Then,

the feedback control law does not modify the location of open loop equilibria.

Proof. The proof directly follows from observing that equilibria of system

(4.24) trivially fulfill:

{x : f(x) ∈ Ker(I +BK)} ⊃ {x : f(x) = 0}.

Proposition 20 The following matrix inequality, fulfilled for all x ∈ X ⊂
Rn, is a sufficient condition to ensure non positive Lyapunov exponents for

the system (4.24):(
[(I +BK)J(x)][2]

)T
P + P

(
[(I +BK)J(x)][2]

)
≤ 0,

P > 0 , (4.27)

where P = PT and K is the gain matrix of the derivative feedback (4.23) for

system (4.22).

Proof. The proof directly follows from Theorem 5.

Proposition 21 Consider the control system in equation (4.24) and let D
be a globally attractive and forward invariant set for system (2.1). Assume

that:

J(x) ∈ conv(J1, . . . , JN ), ∀x ∈ D

for fixed constant matrices Ji of suitable dimension. Then, the following

matrix inequality for i = 1, . . . , N(
[(In +BK)Ji]

[2]
)T

P + P
(
[(In +BK)Ji]

[2]
)
≤ 0 (4.28)
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is a sufficient condition to ensure that the controlled system (4.24) has no

positive Lyapunov exponents.



Chapter 5

Case studies and examples of

application

This Chapter is devoted to some examples of application and case

studies, in order to integrate and clarify the results presented in

the previous Chapters. The material can be found in [35], [4].

5.1 Examples of application of Theorem 5

5.1.1 Case study: the Lorenz system

The Lorenz system is described by the following equations

ẋ1 = −σ (x1 − x2)

ẋ2 = ρ x1 − x2 − x1 x3

ẋ3 = x1 x2 − b x3

, (5.1)

where x = (x1, x2, x3)
⊤ is the state vector and σ, b and ρ are positive pa-

rameters. In the classical analysis σ = 10, b = 8/3 and ρ ∈ R+ \ 0 is used as

bifurcation parameter.

Several aspects of the dynamics of system (5.1) have been investigated since

long time. A powerful approach based on the Lyapunov’s direct method

was introduced by G. A. Leonov for estimating the dimension of the Lorenz

attractors (see [23] and references therein). Notably, exploiting some known

a-priori bounds on the system solutions and suitably selecting some Lya-

punov functions, this approach permits to obtain conditions on the param-

59
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eters σ, b, ρ under which (5.1) displays convergence towards its equilib-

rium points [24, 25]. It is known that (5.1) has a unique equilibrium point

at x = 0 for 0 < ρ < 1 which undergoes to a (supercritical) pitchfork

bifurcation at ρ = 1 with the birth of two additional equilibrium points

x± = (±
√

b(ρ− 1),±
√
b(ρ− 1), ρ− 1)⊤. If σ > b+ 1 then both these equi-

librium points undergo to a (subcritical) Hopf bifurcation at ρ = ρM , where

ρM = σ(σ + b + 3)/(σ − b − 1). For σ = 10, b = 8/3 we get ρM = 24.74.

It is also known that for all initial conditions the solutions are eventually

confined in some invariant sets [27]. For instance, if b ≥ 2 and σ ≥ 1 then

D =

{
x ∈ R3 : x2

2 + (ρ− x3)
2 ≤ ρ2

ρ2b

}
, (5.2)

where

ρb =
2
√
b− 1

b
, (5.3)

is an invariant set of (5.1). Note that ρb ≤ 1 for b ≥ 2 and hence the

equilibrium point x = 0 belongs to D. It can be checked that x± ∈ D, too.

The Jacobian of the system (5.1) reads

J =

 −σ σ 0

ρ− x3 −1 −x1

x2 x1 −b

 =: J(x) (5.4)

and its 2-additive compound has the following form

J [2](x) =

 −(σ + 1) −x1 0

x1 −(b+ σ) σ

−x2 ρ− x3 −(b+ 1)

 . (5.5)

It can be readily checked that J [2](0) is marginally stable if and only if

ρ ≤ ρs =
(b+ σ)(b+ 1)

σ
, (5.6)

while J [2](x±) is marginally stable if and only if ρ ≤ ρM . Since ρs < ρM
1,

from Proposition 11 it follows that (0, ρs] is the largest positive interval I
such that (2.14) can be solved for some P (x), possibly state-dependent, for

all ρ ∈ I.
1For σ > b+ 1 we have ρM > σ + b+ 3 > σ + b > ρs.
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We first consider the case when P (x) is a constant matrix. Specifically, we

assume that the matrix P has the following form

P =

 1 0 0

0 1 0

0 0 ε

 , (5.7)

where ε is a positive parameter to be designed later.

According to condition (2.16) of Proposition 12, a sufficient condition to rule

out positive Lyapunov exponents for system (5.1) is that the matrix

Q(x) = −
((

J [2]
)⊤

(x)P + P J [2](x)

)

=

 2 (σ + 1) 0 ε x2

0 2 (b+ σ) −σ − ε (ρ− x3)

ε x2 −σ − ε (ρ− x3) 2 ε (b+ 1)

 , (5.8)

is positive semidefinite within the invariant set D in (5.2).

The next result holds true.

Proposition 22 Suppose that the system parameters satisfy the following

conditions

b ≥ 2 , σ > b− 2 , ρ ≤ ρbρs , (5.9)

where ρb and ρs are as in (5.3) and (5.6), respectively. Then, selecting

ε =
σ

ρs
:= ε∗ we have Q(x) ≥ 0 for all x ∈ D.

Proof. It can be readily verified that the matrix Q(x) is positive semidefinite

once its determinant is greater or equal than zero. This condition leads to

the following inequality:

2(σ + 1)(4(b+ σ + 1)(b+ 1)ε− (σ + ε(ρ− x3)
2)− 2(b+ σ)ε2x2

2 ≥ 0 ,

∀x ∈ D . (5.10)

Defining the new variable x̄3 = ρ − x3, the invariant set D becomes the

following cylinder in the (x1, x2, x̄3) coordinates:

D =

{
x ∈ R3 : x2

2 + x̄2
3 ≤ ρ2

ρ2b

}
. (5.11)

Similarly, by setting ε = ε∗ the inequality in (5.10) can be rewritten as

σ + β

σ + 1
x2
2 + (x̄3 + ρs)

2 ≤ 4ρ2s . (5.12)
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For any fixed b and σ, on the (x2, x̄3)-plane (5.12) defines the closed region

bounded by an ellipse centered at x2 = 0, x̄3 = −ρs and symmetric with

respect to the x̄3-axis, while equation (5.11) is a disk centered at x2 = 0,

x̄3 = 0, whose radius grows as ρ increases. Therefore, since x2 = 0, x̄3 = 0

satisfies (5.11), the matrix Q(x) is positive semidefinite on the invariant

set D if the ellipse (5.12) contains the disk. In particular, the maximum

achievable ρ is obtained when the circle bounding the disk is tangent to the

ellipse. Hence, let ρ = ρsρb and denote by x̄3C the values of x̄3 on the circle

with ρ = ρsρb, which implies x2
2 = ρ2s − x̄2

3C . Then, condition (5.12) can be

written as:

4ρ2s −
σ + b

σ + 1
(ρ2s − x̄2

3C )− (x̄3C + ρs)
2 ≥ 0 . (5.13)

The left-hand side of (5.13) is a convex quadratic function of x̄3C and it

achieves its global minimum value at:

x̄∗
3C =

σ + 1

b− 1
ρs . (5.14)

Notice that, for σ + 2− b > 0 we get:

σ + 1

b− 1
ρs > ρs , (5.15)

which implies that the point x = (0, 0, x̄∗
3C )

⊤ /∈ D with ρ = ρbρs. Hence,

the left-hand side of (5.13) assumes its minimum value within the interval of

variation of x̄3C exactly on its boundary, i.e. for x̄3C =
ρsρb
ρb

= ρs. Setting

this value in (5.13), we obtain:

4ρ2s −
σ + b

σ + 1
(ρ2s − ρ2s)− (ρs + ρs)

2
= 0 , (5.16)

thus completing the proof.

Remark 16 It is worth noting that the matrix P ∗ := diag(1, 1, ε∗) ensures

that Q(x) is positive semidefinite for all x ∈ D if ρ = ρbρs and positive defi-

nite for all x ∈ D if ρ < ρbρs. Moreover, for ρ = ρbρs, Q(x) is positive defi-

nite for all x ∈ D except for x = x∗ = (0, 0, x∗
3)

⊤
, x∗

3 = −
(
σ + 1

b− 1
− ρb

)
ρs,

where it vanishes.

For b = 8/3 and σ = 10, we get that ρbρs ≈ 4.4970 and hence positive

Lyapunov exponents are ruled out for ρ less than such number. Figure 5.1
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Figure 5.1: Determinant of Q(x) for x ∈ D (b = 8/3, σ = 10, ρ = 4.4969).

displays the determinant of Q(x) for ε = ε∗ = 2.1531 and ρ = 4.4969 showing

that it is always positive inside the relative set D, which implies that Q(x) >

0 since it is positive definite at x = (0, 0, ρ).

We note that for b = 2 we have ρb = 1, while for b > 2 the upper bound ρs
of ρ is no longer achieved, since ρb < 1. In order to obtain a larger bound for

the value of ρ, a state-dependent matrix P (x) = P exp(V (x)) is considered

where P is as in (5.7) and V (x) is the following quadratic function

V (x) = κ(x2
2 + x3(x3 − 2ρ)) , (5.17)

with κ being a positive parameter to be designed later. In this case, to rule

out the existence of positive Lyapunov exponents condition (2.17) should be

satisfied. This amounts to require that the matrix

S(x) :=Q(x)− PV̇ (x) = 2 (σ + 1)− V̇ (x) 0 ε x2

0 2 (b+ σ)− V̇ (x) −σ − ε (ρ− x3)

ε x2 −σ − ε (ρ− x3) ε
(
2 (b+ 1)− V̇ (x)

)
 ,

(5.18)

where the time-derivative of V (x) reads

V̇ (x) = −2κ
(
x2

2 + bx3(x3 − ρ)
)
, (5.19)
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should be positive semidefinite within the set D in (5.2). Since from Re-

mark 16 we have that Q(x) vanishes at x = x∗, where x∗
2 = 0 and x∗

3 < 0,

it turns out that V̇ (x∗) is negative for all κ > 0. This ensures that S(x) is

positive definite at x = x∗ thus making it possible to enlarge the value of ρ

with respect to the bound (5.9) ensured by Proposition 22. Indeed, we have

the next result where the functions σ1(b) and σ2(b) are defined as

σ1(b) :=
(4b2 − 5b− 7) +

√
(4b2 − 5b− 7)2 − 4(4− b)(6b+ 4− 5b2 − 4b3)

2(4− b)
(5.20)

b ∈ [2, 4) and

σ2(b) :=


b2 − 4 + 2

(
1

ρb
− 1

)
(b2 − 1)

4− b− 2

(
1

ρb
− 1

)
(b− 1)

if b ∈ [2, b0)

+∞ if b ∈ [b0, 4)

, (5.21)

with b0 = 3.48 being the unique positive solution of the scalar equation

4− b− 2

(
1

ρb
− 1

)
(b− 1) = 0 . (5.22)
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Figure 5.2: a) Functions σ1(b) (red) and σ2(b) (blue) for b ∈ [2, 4); b) Func-

tions σ(b) (green) and σl(b) (black) for b ∈ [2, 4).
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Proposition 23 Suppose that the system parameters satisfy the following

conditions

b ∈ [2, 4) , σ ≥ σ(b) , ρ ≤ ρs , (5.23)

where

σ(b) := min{σ1(b), σ2(b)} (5.24)

and ρs is as in (5.6). Then, choosing ε =
σ

ρ
and κ =

γ

ρ2
, with γ =

(b+ σ)(b+ 1)

b(2b+ σ + 1)
, we have S(x) ≥ 0 for all x ∈ D.

Before proving Proposition 23, the following Lemma is needed.

Lemma 6 Consider the matrix

Sρs
(z) :=


2 (σ + 1)− ˙̄V (z) 0 σz2

0 2 (b+ σ)− ˙̄V (z) σ(z3 − 2)

σz2 σ(z3 − 2)
σ

ρs

(
2 (b+ 1)− ˙̄V (z)

)
 ,

(5.25)

where ˙̄V (z) = −2γ(z22 + bz3(z3 − 1)) with γ =
(b+ σ)(b+ 1)

b(2b+ σ + 1)
. If b ∈ [2, b0)

and σ > σ(b), then

min
z∈D̄

detSρs
(z) = min

z3∈[1−1/ρb,2]
detSρs

(z)|z2=0
. (5.26)

Proof. Since S̄(z) depends only on z2 and z3, det S̄(z) reduces to a function

H(z2, z3) which for ρ = ρs can be written as

H(z2, z3) = λ0(z2, z3) + λ1(z2, z3)R(z2, z3) + λ2R
2(z2, z3) + λ3R

3(z2, z3) ,

(5.27)
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where

R(z2, z3) =
z22
b

+

(
z3 −

1

2

)2

− 1

4

λ0(z2, z3) = 2σ2(σ + 1)

(
4− b+ σ

σ + 1
z22 − (z3 − 2)2

)
λ1(z2, z3) = 2γbσ2

(
4

(
1 +

(σ + 1)(2b+ σ + 1)

(b+ 1)(b+ σ)

)
− z22 − (z3 − 2)2

)
λ2 = 4γ2b2

σ2(b+ σ + 1)

(b+ 1)(b+ σ)

λ3 = 8γ3b3
σ2

(b+ 1)(b+ σ)
.

(5.28)

On the (z2, z3)-plane the cylinder D̄ reduces to the disk

D̄◦ =

{
(z2, z3)

⊤ ∈ R2 : z22 + (z3 − 1)2 ≤ 1

ρ2b

}
, (5.29)

and hence z3 is confined to lie in the interval [1 − 1/ρb, 1 + 1/ρb]. Observe

that the function λ0(z2, z3) is constant over the ellipse

Eµ =

{
(z2, z3)

⊤ ∈ R2 :
b+ σ

σ + 1
z22 + (z3 − 2)2 = µ2

}
, (5.30)

parameterized by µ ≥ 0 and centered at z2 = 0, z3 = 2.

Consider the intersection of this ellipse with the disk (5.29), i.e., the set

Γµ = Eµ ∩ D̄◦ , (5.31)

which reduces to the point z2 = 0, z3 = 2 for µ = 0, it is the entire ellipse

for small positive µ, a single arc or a couple of arcs symmetric with respect

to the z3-axis for sufficiently large µ, and the empty set for much larger

µ. Figure 5.3 illustrates this scenario, also showing that in general Γµ may

not intersect the z3-axis. Specifically, this happens when Eµ and the circle

bounding D̄◦ have more than one common point with z2 > 0. From (5.29)

and (5.30) we have that a point of the circle bounding D̄◦ belongs to Γµ only

if its coordinate z3 is such that

b+ σ

σ + 1

(
1

ρ2b
− (z3 − 1)2

)
+ (z3 − 2)2 = µ2 ,
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Figure 5.3: Plot of the disk D◦ and the ellipse Eµ for a different values of µ.

which can be rewritten as

− b− 1

σ + 1
z23 − 2

σ + 2− b

σ + 1
z3 +

b+ σ

σ + 1

1

ρ2b
+

4− b+ 3σ

σ + 1
= µ2 . (5.32)

The left term of is a concave parabola which is positive for z3 = 0 and

whose maximum value is achieved at z3 = −(σ+2− b)/(b− 1). Since for all

b ∈ [2, b0) we have that

σ(b) > b− 2 + (
1

ρb
− 1)(b− 1)

and, hence,

−σ + 2− b

b− 1
< 1− 1

ρb
,

for σ > σ(b). This implies that there is a unique solution of (5.32) z3 lying

in the interval [1− 1/ρb, 1 + 1/ρb], thus yielding that each set Γµ intersects

the z3-axis at z3 = z3µ with z3µ = 2−µ. Specifically, we have that Γµ is the

entire ellipse for 0 < µ ≤ 1/ρb − 1, a single arc for 1/ρb − 1 < µ ≥ 1 + 1/ρb,

while it reduces to the point z2 = 0, z3 = 2 (resp. z2 = 0, z3 = 1− 1/ρb) for

µ = 0 (resp. for µ = 1 + 1/ρb).

Observe that λ1(z2, z3) is constant along circles centered at z2 = 0, z3 = 2

and it decreases as the distance from the center increases. Since b + σ >
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σ + 1 for all b ∈ [2, b0) and σ > 0, it can be readily checked that for any

µ ∈ [0, 1 + 1/ρb] we have:

λ1(z2, z3) ≥ λ1(0, z3µ) = λ1(0, 2− µ) , ∀ (z2, z3)
⊤ ∈ Γµ (5.33)

i.e., the minimum of λ1(z2, z3) on any set Γµ is achieved at (z2, z3)
⊤ =

(0, z3µ)
⊤.

The function R(z2, z3) is constant along ellipses centered at z2 = 0, z3 = 1/2

and it decreases as the distance from the center decreases. In particular,

consider the ellipse

Rµ =

{
(z2, z3)

⊤ ∈ R2 :
z22
b

+

(
z3 −

1

2

)2

=

(
3

2
− µ

)2
}

(5.34)

and assume that µ ∈ [0, 3/2]. It can be readily checked that Γµ is tangent to

Rµ at (z2, z3)
⊤ = (0, z3µ)

⊤, while all other points are outside the bounded

region defined by Rµ. This implies that

R(z2, z3) ≥ R(0, z3µ) = R(0, 2−µ) , ∀ (z2, z3)
⊤ ∈ Γµ , µ ∈ [0, 3/2] . (5.35)

By construction, Rµ intersects Γµ, and hence Eµ, at (z2, z3)
⊤ = (0, z3µ)

⊤

also for µ ∈ (3/2, 1 + 1/ρb]. From (5.30) and (5.34) it follows that Eµ and

Rµ have another intersection if and only if the relation

b+ σ

σ + 1
b

((
3

2
− µ

)2

− (z3 −
1

2
)2

)
+ (z3 − 2)2 = µ2 , (5.36)

is solved for some z3 ∈ (2 − µ, 2 + µ]. Since (5.36) can be equivalently

expressed as

− (b− 1)(b+ σ + 1)

σ + 1
(z3 − 2 + µ)

(
z3 + 2− µ+

(4− b)σ − b2 + 4

(b− 1)(b+ σ + 1)

)
= 0 ,

it follows that the condition for the existence of such additional intersection

boils down to
(4− b)σ − b2 + 4

(b− 1)(b+ σ + 1)
< 2(µ− 2) .

However, since σ > σ(b) implies

σ >

b2 − 4 + 2(
1

ρb
− 1)(b2 − 1)

4− b− 2(
1

ρb
− 1)(b− 1)
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which can be rewritten as

(4− b)σ − b2 + 4

(b− 1)(b+ σ + 1)
> 2(

1

ρb
− 1) ,

it follows that for any µ ∈ [3/2, 1 + 1/ρb] the ellipses Rµ and Eµ, and hence

Γµ, do not have the additional intersection. This means that all the points of

the Γµ with z2 ̸= 0 are outside the bounded region defined by Rµ, implying

that condition (5.35) indeed holds for all µ ∈ [0, 1 + 1/ρb].

Conditions (5.33) and (5.35) ensure that for each µ ∈ [0, 1+1/ρb] the relation

H(z2, z3) ≥λ0(0, z3µ) + λ1(0, z3µ)R(0, z3µ) + λ2R
2(0, z3µ) + λ3R

3(0, z3µ)

= H(0, z3µ) , ∀ (z2, z3)
⊤ ∈ Γµ ,

holds. Taking into account that z3µ = 2−µ and D̄0 ≡
⋃

µ Γµ, µ ∈ [0, 1+1/ρb],

we can conclude that

min
(z2,z3)⊤∈D̄0

H(z2, z3) = min
z3∈[1−1/ρb,2]

H(0, z3) ,

thus completing the proof.

Proof. of Proposition 23 - By introducing the scaled variables z1 =
x1

ρ
,

z2 =
x2

ρ
, z3 =

x3

ρ
and taking into account the expressions of ε and κ, it

turns out that S(x) is semidefinite positive for all x ∈ D if and only if the

matrix

Sρ(z) :=
2 (σ + 1)− ˙̄V (z) 0 σz2

0 2 (b+ σ)− ˙̄V (z) σ(z3 − 2)

σz2 σ(z3 − 2)
σ

ρ

(
2 (b+ 1)− ˙̄V (z)

)
 ,

(5.37)

where ˙̄V (z) = −2 γ
(
z2

2 + bz3(z3 − 1)
)
, is positive semidefinite for all z be-

longing to the following cylinder

D̄ =

{
z ∈ R3 : z22 + (z3 − 1)2 ≤ 1

ρ2b

}
, (5.38)

which depends only on the system parameter b. Since ˙̄V (z) does not depend

on ρ, the structure of Sρ(z) yields that if Sρ(z) is positive semidefinite on
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D̄ for ρ = ρs then it is also positive semidefinite for all ρ < ρs. Hence, it is

enough to consider the case ρ = ρs and hence the matrix Sρs
(z).

The first step is to show that the determinant of Sρs
(z) has a local minimum

at z = 0 where it vanishes. Tedious though straightforward computations

lead to:
detSρs(z)

∣∣
z=0

= 0 (5.39)

∂ detSρs(z)

∂z2

∣∣∣
z=0

= 0

∂ detSρs(z)

∂z3

∣∣∣
z=0

= 0

(5.40)

∂2 detSρs
(z)

∂z22

∣∣∣
z=0

= 4
σ2

b
(4(σ + 1)− b(b+ σ))

∂2 detSρs
(z)

∂z2∂z3

∣∣∣
z=0

= 0

∂2 det Sρs
(z)

∂z23

∣∣∣
z=0

= 4σ2(σ + 1)

(
3 + 4

(b+ 1)(b+ σ)

(2b+ σ + 1)2

) . (5.41)

Clearly, z = 0 is a local minimum if and only if (4− b)σ + 4− b2 > 0, which

in turn implies b ∈ [2, 4) and

σ >
b2 − 4

4− b
=: σl(b) . (5.42)

Since σ(b) ≥ σl(b) for b ∈ [2, 4) (see also Fig. 5.2), we have that detSρs
(z)

has a local minimum at z = 0.

The second step is to show that this is indeed a global minimum if σ ≥
σ(b). Taking into account (5.24) and (5.20)-(5.21), this is accomplished by

considering two cases: I) σ > σ1(b), b ∈ [2, 4); II) σ > σ2(b), b ∈ [2, b0).

Case I). It can be observed that the inequality Sρs(z) ≥ S̄ρs(z) holds for all

z ∈ D̄, where

S̄ρs(z) =

 2(σ + 1 +G(z3)) 0

0 2(b+ σ +G(z3))

σz2 σ(z3 − 2)

σz2
σ(z3 − 2)

2σ2

(b+ 1)(b+ σ)

(
1 +

(b+ 1)(b+ σ)

b(2b+ σ + 1)
z22 +G(z3)

)
 ,
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and

G(z3) =
1

2

(
˙̄V (z)− (b+ 1)(b+ σ)

b(2b+ σ + 1)
z22

)
=

(b+ 1)(b+ σ)

2b+ σ + 1
z3(z3 − 1) .

The determinant of S̄ρs
(z) can be written as

det S̄ρs
(z) = M(z3) +N(z3)z

2
2

where

M(z3) = 2σ2 (σ + 1 +G(z3))

(
3 + 4

(b+ 1)(b+ σ)

2b+ σ + 1
(z3 − 1)2

)
z23

N(z3) =
2σ2

b(2b+ σ + 1)
(b+ σ +G(z3)) (4(σ + 1 +G(z3))− b(2b+ σ + 1))

.

Taking into account that b ∈ [2, 4), we have that M(z3) and N(z3) are both

non-negative if the following condition

min
1−1/ρb≤z3≤1+1/ρb

4(σ+1+G(z3)) = 4(σ+1)− (b+ 1)(b+ σ)

2b+ σ + 1
≥ b(2b+σ+1),

which can be rewritten as

(4− b)σ2 − (7 + 5b− 4b2)σ + 4 + 6b− 5b2 − 4b3 ≥ 0 ,

holds. Since such a condition is satisfied if and only if σ ≥ σ1(b), it follows

that Sρs(z) ≥ S̄ρs(z) ≥ 0 for all z ∈ Sρs(z), which proves that the local

minimum is indeed a global one.

Case II). To show that z = 0 is a global minimum when σ > σ2(b), b ∈ [2, b0),

we exploit condition (5.26) of Lemma 6 in the appendix which states that it

is enough to prove that z3 = 0 is the global minimum of detSρs(z)|z2=0
. It

can be verified that detSρs(z)|z2=0
can be written as

detSρs(z)|z2=0
= 2σ2

(
σ + 1 +

(b+ 1)(b+ σ)

(2b+ σ + 1)
z3(z3 − 1)

)
·(

3 + 4
(b+ 1)(b+ σ)

(2b+ σ + 1)2
(z3 − 1)2

)
z23 , (5.43)

thus proving that z = 0 is a global minimum since

min
z3∈[1−1/ρb,2]

σ + 1 +
(b+ 1)(b+ σ)

(2b+ σ + 1)
z3(z3 − 1) = σ + 1− (b+ 1)(b+ σ)

4(2b+ σ + 1)
> 0.
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a) b)

c) d)

Figure 5.4: Determinant of S(x) for x ∈ D: a) σ = 2.4, ρ = 7.73; b) σ = 2.5,

ρ = 7.57; c) σ = 2.6, ρ = 7.42; d) σ = 2.7, ρ = 7.28.

Comments and final remarks It is worth noting that Proposition 23

applies to the standard values b = 8/3 and σ = 10 since σ(8/3) = 2.8692.

Also, as shown in Fig. 5.2, there is a gap between σ(b) and σl(b), i.e., if σ ∈
(σl(b), σ(b)) it is proven that x = 0 is a local minimum of detS(x) for ρ = ρs
but not that it is a global one. Since condition (5.26) of Lemma 6 in the

appendix is somewhat conservative, it can be conjectured that Proposition 23

holds even if conditions (5.23) are replaced with

b ∈ [2, 4) , σ >
b2 − 4

4− b
, ρ ≤ ρs .

Indeed, extensive numerical simulations confirm the validity of the conjec-

ture. As an example, Fig. 5.4 displays the determinant of S(x) for b = 8/3,

ρ = ρs(b, σ)− δ, where δ = 0.01 and some values of σ ∈ [σl(8/3), σ(8/3)] =
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(2.3333, 2.8692). According to Remark 5, we can conclude that if the system

parameters satisfy either condition (5.9), with ρ < ρbρs, or condition (5.23),

with ρ < ρs, all the solutions of (5.1) converge towards one of two asymptot-

ically stable equilibrium points x± = (±
√
b(ρ− 1),±

√
b(ρ− 1), ρ− 1)⊤. As

an example, this convergent scenario is illustrated in Fig. 5.5 for the case of

Lorenz system with parameters b = 8/3, σ = 10, and ρ = 4.6.
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a) b)

Figure 5.5: Trajectories of Lorenz system with parameters b = 8/3,

σ = 10, ρ = 4.6. Stable equilibrium points (marked by ◦): x± =

(±3.099,±3.099, 3.6); unstable equilibrium point at x = 0 (marked

by ∗). The initial conditions (x1(0), x2(0), x3(0)) (marked by ×) are:

a) (4,−4.75, 4.6), (4, 0, 4.6), (4, 4.75, 4.6), (−4,−4.75, 4.6), (−4, 0, 4.6),

(−4, 4.75, 4.6); b) (−0.5,−0.5, 0), (0.5, 0.5, 0).

5.1.2 Thomas system

The three-dimensional Thomas system is described by the following equa-

tions
ẋ1 = sin(x2)− b x1

ẋ2 = sin(x3)− b x2

ẋ3 = sin(x1)− b x3

, (5.44)

where x = (x1, x2, x3)
⊤ ∈ R3 is the state vector and b is a positive parameter.

This simple system displays quite a rich dynamics including the so-called

‘labyrinth chaos’ [49]. It is known that

D := {x ∈ R3 : b∥x∥∞ ≤ 1} (5.45)
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is an invariant set of (5.44).

A detailed analysis of the route to chaos for decreasing values of b can be

found in [47], where the behavior of the maximum Lyapunov exponent is also

reported. For all b > 1 there is a unique equilibrium point at x = 0 inside

D. At b = 1 this equilibrium point undergoes to a (supercritical) pitchfork

bifurcation with the birth of two additional symmetrical equilibrium points

at x = ±(η, η, η)⊤, with η such that η = sin η/b. Both these equilibrium

points undergo to a (supercritical) Hopf bifurcation when η is such that

tan(η) = −0.5η which yields η = ηh = 2.2889 and corresponds to bH =

0.3290. As b decreases within the range between 0.11 < b < bH, the system

displays quite a rich dynamical scenario characterized by a succession of

period-doubling bifurcations and the presence of strange attractors

To obtain conditions ruling out positive Lyapunov exponents, we compute

the Jacobian of the system (5.44)

J(x) =

 −b cos(x2) 0

0 −b cos(x3)

cos(x1) 0 −b

 (5.46)

and its 2-additive compound

J [2](x) =

 −2 b cos(x3) 0

0 −2 b cos(x2)

− cos(x1) 0 −2 b

 . (5.47)

It can be verified that J [2](0) is marginally stable if and only if b ≥ 0.25,

while J [2](±(ηh, ηh, ηh)) is marginally stable if and only if b ≥ 0.3290. Hence,

according to Proposition 11, condition (2.14) can admit a solution P (x) only

if

b ≥ bl = 0.3290 . (5.48)

It is worth noting that for any fixed b ≥ bl the set of compound matri-

ces J [2](x) for x ∈ D can be equivalently described by the set of matri-

ces obtained by introducing the new variables z1 = cos(x1), z2 = cos(x2),

z3 = cos(x3). Specifically, the matrices in (5.117) are replaced with

J̄ [2](z) =

 −2 b z3 0

0 −2 b z2
−z1 0 −2 b

 , (5.49)
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and the set D is transformed into

D̄ := {z ∈ R3 : cos

(
1

b

)
≤ zi ≤ 1 , i = 1, 2, 3} . (5.50)

According to condition (2.16) of Proposition 12, system (5.44) has no attrac-

tors with positive Lyapunov exponents if the following condition(
J̄ [2]
)⊤

(z)P + P J̄ [2](z) ≤ 0 (5.51)

holds for all z ∈ D̄. Observe that J̄ [2](z) depends affine linearly on z and D̄
is the convex hull of the following 8 vertices:

V = { (1, 1, 1)⊤, (cos(1/b), 1, 1)⊤, (1, cos(1/b), 1)⊤, (1, 1, cos(1/b))⊤,

(cos(1/b), cos(1/b), 1)⊤, (1, cos(1/b), cos(1/b))⊤,

(cos(1/b), 1, cos(1/b))⊤, (cos(1/b), cos(1/b), cos(1/b))⊤
}

. (5.52)

Hence, we can exploit Remark 8 which ensures that there are no positive

Lyapunov exponents if there is P > 0 such that the LMI (5.51) holds on

these vertices, a feasibility problem that can solved numerically in an efficient

way.

However, due to the strong symmetry enjoyed by J̄ [2](z) and D̄, an analytic

bound can be readily obtained by choosing P as the identity matrix, which

makes the problem reducing to verify that the matrix

Q(z) =

 4 b −z3 z1
−z3 4 b −z2
z1 −z2 4 b

 (5.53)

is positive semidefinite for all z ∈ V. The next result holds true.

Proposition 24 Let b0i , i = 1, . . . , 4, be the largest positive solution for

b > 0 of the scalar equation Fi(b) = 0, i = 1, . . . , 4, where

F1(b) = 64 b3 − 2 + 12 b

F2(b) = 64 b3 + 2 cos

(
1

b

)
− 4 b

(
2 + cos2

(
1

b

))
F3(b) = 64 b3 + 2 cos2

(
1

b

)
− 4 b

(
1 + 2 cos2

(
1

b

))
F4(b) = 64 b3 + 2 cos3

(
1

b

)
− 12 b cos2

(
1

b

) (5.54)
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Then, Q(z) ≥ 0 for all z ∈ V if and only if

b ≥ b∗ = max
i=1,...,4

b0i . (5.55)

Proof. It can be readily checked that for any fixed b ≥ bl the first two leading

principal minors of (5.53) are positive, thus implying that it is enough to

prove that detQ(z) ≥ 0 for all z ∈ V. Since

detQ(z) = 64 b3 + 2 z1 z2 z3 − 4 b
(
z21 + z22 + z23

)
, (5.56)

setting z as any vertex (5.52) makes detQ(z) being equal to one the four

scalar equations Fi(b), i = 1, . . . , 4, in (5.54). By definition of b0i , i = 1, . . . , 4,

we have that Fi(b) ≥ 0 for all b ≥ b0i and hence all the four functions Fi(b)

are non-negative for all b ≥ b∗, which implies that detQ(z) ≥ 0 for all

z ∈ V.
Figure 5.6 reports the functions Fi(b), i = 1, . . . , 4. Note that F2(b),

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

b
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20

F
i(b
)

Figure 5.6: Functions F1 (blue), F2 (red), F3 (black) and F4 (green) as a

function of the parameter b.

which corresponds to the determinant of Q(z) for z ∈ {1, (cos(1/b), 1))⊤,
(cos(1/b), 1, 1))⊤, (1, 1, cos(1/b)))⊤} and hence for x ∈ {(1/b, 0, 0))⊤,
(0, 1/b, 0))⊤, (0, 0, 1/b))⊤}, is the function having the largest positive solu-

tion. Specifically, we get b∗ = b02 = 0.442. Clearly, b∗ is relatively close to the

lower bound bl in (5.48), suggesting that a different choice for P might work
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better. However, from Remark 7 we have that J [2](x) must be marginally sta-

ble for all x ∈ D. In particular, it turns out that J [2]((1/b, 0, 0)) is marginally

stable if and only if b ≥ 0.436, thus showing the identity matrix is indeed a

good choice for P . This is confirmed by numerically solving the LMI prob-

lem (5.51) for z ∈ V.
According to Remark 5, if b > b∗ the solutions of (5.44) converge towards

one of two asymptotically stable equilibrium points x± = ±(η, η, η)⊤. This

convergent scenario is confirmed by numerical simulations, as illustrated in

Fig. 5.7 where some state space trajectories are reported in the case b = 0.44.

This result complements that derived in [6, 53] where it is shown that the

Thomas system is 2-contracting for b > 1/2.
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Figure 5.7: Trajectories of Thomas system with b = 0.44. Stable equilibrium

points at x = ±(2.034, 2.034, 2.034) (marked by ◦); unstable equilibrium

point at x = 0 (marked by ∗). The initial conditions (x1(0), x2(0), x3(0))

(marked by ×) are: (−1.8, 1.8, 2.2), (−1.8,−1.8, 2.2), (1.8,−1.8, 2.2),

(1.8, 1.8, 2.2), (−1.8, 1.8,−2.2), (−1.8,−1.8,−2.2), (1.8,−1.8,−2.2),

(1.8, 1.8,−2.2), (−0.2,−0.2,−0.2), (0.2, 0.2, 0.2).
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5.1.3 System with a first intregral of motion: the Chua’s

memristor circuit

In the last decade memristor circuits have gained a prominent role as a viable

approach to develop new computing paradigms to potentially overcome some

of the limitations of conventional digital computer architectures [22, 51, 54].

The memristor (a shorthand for memory resistor) is the fourth basic passive

circuit element theoretically introduced by L.O. Chua in 1971 [11], whose

first electronic implementation was given in 2008 [48]. Later, it became clear

that circuits containing (ideal) memristor are systems with a first integral

of motion, i.e., their state space can be decomposed into a continuum of

invariant manifolds (see [12,19] and references therein).

In this section we consider the memristor Chua’s circuit introduced in [20],

where the nonlinear resistor of the classical Chua’s circuit is replaced with

a flux-controlled memristor. According to [14], such a memristor circuit

admits the following state space representation

ξ̇(t) = Aξ(t)−BN ′(φ(t))Cξ(t)

φ̇(t) = Cξ(t)
, (5.57)

where ξ = (ξ1, ξ2, ξ3)
⊤ is the state vector of the linear part of the circuit, φ

is the memristor flux, N : R −→ R is the memristor flux-charge nonlinear

characteristic and N ′(φ) denotes its first-derivative with respect to φ, and

A, B, C read:

A =

 −α α 0

1 −1 1

0 −β γ

 B =

 α

0

0

 C =
(
1 0 0

)
, (5.58)

with α > 0, β > 0, and γ ≥ 0 being constant parameters. In the sequel, we

consider the case γ = 0 and assume that the memristor nonlinear character-

istic has the following form

N(φ) = m0φ+m1φ
3 , (5.59)

where m0 and m1 are constant parameters. It is worth noting that system

(5.57)-(5.59) has an equilibrium point at x = (0, 0, 0, φe)
⊤ for all φe ∈ R, i.e.

there exist infinitely many non-isolated equilibrium points.

It can be readily verified that the memristor Chua’s circuit admits a first

integral of motion. In fact, since A is non-singular, from the first equation
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of (5.57) we get

ξ(t) = A−1
(
ξ̇(t) +BṄ(φ(t))

)
,

which yields

φ̇(t)− CA−1ξ̇(t)− CA−1BṄ(φ(t)) = 0 ,

thus implying that

φ(t)−CA−1ξ(t)−CA−1BN(φ(t)) = constant = φ0−CA−1ξ0−CA−1BN(φ0) .

(5.60)

The 4th-order system (5.57) can be represented in the form (2.1) once the

state x = (x1, x2, x3, x4)
⊤ ∈ R4 is defined as x := (ξ⊤, φ)⊤ and

f(x) =

(
A 0(n−1)×1

C 0

)
x−BN ′(e⊤4 x)

(
C 0

)
x , (5.61)

where 0(n−1)×1 is the column vector with n− 1 zeros and e4 = (0, 0, 0, 1)⊤.

The invariant manifold (2.22) can be derived from (5.60), taking into account

that CA−1 =

(
− 1

α
, 0 ,− 1

β

)
and CA−1B = −1. Indeed, we get

g(x) =
1

α
x1 +

1

β
x3 + (1 +m0)x4 +m1x

3
4

=
1

α
x1(0) +

1

β
x3(0) + (1 +m0)x4(0) +m1x

3
4(0) =: I, (5.62)

where I is a constant parameter which can assume any real value as the

initial conditions (x1(0), x2(0), x3(0), x4(0))
⊤ are varied. This implies that

the system state space is composed by a continuum of invariant manifolds. It

is known that the system (5.57)-(5.59) is capable to display onto its invariant

manifolds either convergent or oscillatory and more complex behaviors for

suitable values of the parameters α, β, m0, m1 [12, 14].

To apply Theorem 6 to system (5.57)-(5.59) we need to compute J̃ [2](x).

From (5.62) it follows that

∂g

∂x
=

(
1

α
, 0 ,

1

β
, 1 +m0 + 3m1x

2
4

)
. (5.63)
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The transformation matrix T (x) in (2.26) is chosen as

T (x) =



−3m1 x
2
4 −m0 − 1 − 1

β
0

1

α

0 0
1

α
0

0
1

α
0

1

β
1

α
0 0 3m1 x

2
4 +m0 + 1


,

(5.64)

which clearly satisfies the perpendicularity condition between the first n− 1

columns and the last one. From the Jacobian of system (5.57)-(5.59), which

is given by

J(x) =


−3αm1 x

2
4 − α− αm0 α 0 −6αm1 x1 x4

1 −1 1 0

0 −β 0 0

1 0 0 0

 ,

(5.65)

we can derive the matrix H(x) in (2.30) as

H(x) =


−α

(
3m1 x

2
4 +m0 + 1

)
−α

β
0 ∗

0 0 −β ∗

−α
(
3m1 x

2
4 +m0 + 1

)
−α− β

β
−1 ∗

0 0 0 ∗

 . (5.66)

It turns out that J̃(x) and its 2-additive compound J̃ [2](x) read:

J̃(x) =


−α

(
3m1 x

2
4 +m0 + 1

)
−α

β
0

0 0 −β

−α
(
3m1 x

2
4 +m0 + 1

)
−α− β

β
−1

 (5.67)

J̃ [2](x) =
−α

(
3m1 x

2
4 +m0 + 1

)
−β 0

−α− β

β
−α

(
3m1 x

2
4 +m0 + 1

)
− 1 −α

β
α
(
3m1 x

2
4 +m0 + 1

)
0 −1

 .

(5.68)
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Let us now apply Theorem 6 in the case of P (x) being a constant positive

definite matrix P = P⊤ ∈ R3×3 and setting D = R4. First, we find con-

venient to introduce the new variable z := x2
4 and to rewrite the 2-additive

compound (5.68) as:

J̃ [2](z) = J̃
[2]
0 + 3αm1zJ̃

[2]
1 , (5.69)

where J̃
[2]
0 ans J̃

[2]
1 are the following constant matrices

J̃
[2]
0 :=


−α (m0 + 1) −β 0

−α− β

β
−α (m0 + 1)− 1 −α

β
α (m0 + 1) 0 −1

 ,

J̃
[2]
1 :=

 −1 0 0

0 −1 0

1 0 0

 . (5.70)

It can be readily verified that condition (2.32) of Theorem 6 boils down to

Q(z) := Q0 + 3αm1zQ1 ≥ 0 , ∀z ∈ [0,+∞) , (5.71)

where

Qi = −
(
J̃
[2]
i

)⊤
P − P J̃

[2]
i , i = 0, 1 . (5.72)

To show thatQ(z) is positive semidefinite for all z ∈ [0,+∞), we can resort to

an argument similar to that in Remark 8, since Q(z) depends affine linearly

on z. Indeed, the next result holds true.

Proposition 25 Let m1 ≥ 0 and suppose that there exists P = P⊤ > 0

such that Qi ≥ 0, i = 0, 1. Then, Q(z) ≥ 0 for all z ∈ [0,+∞).

Proof. For any z ∈ [0,+∞) and m1 ≥ 0 we have that the following equality

ζ⊤Q(z)ζ = ζ⊤Q0ζ + 3αm1zζ
⊤Q1ζ

holds for all ζ ∈ R3. Hence, the proof follows by observing that ζ⊤Qiζ ≥ 0,

i = 0, 1, for all ζ ∈ R3.

To illustrate Proposition 25, we consider the case when α = 0.25, β = 3,

m0 = −1.05. The matrices A and B in (5.57) become

A =

 −0.25 0.25 0

1 −1 1

0 −3 0

 B =

 0.25

0

0

 , (5.73)
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while (5.62) boils down to

4x1 +
1

3
x3 − 0.05x4 +m1x

3
4 = I . (5.74)

It can be checked that J̃
[2]
1 is marginally stable and

J̃
[2]
0 =

 0.013 −3 0

0.917 −0.988 −0.083

−0.013 0 −1

 (5.75)

is Hurwitz. Hence, the necessary condition for the solution of the LMI

problem 
P = P⊤ > 0(
J̃
[2]
0

)⊤
P + P J̃

[2]
0 ≤ 0(

J̃
[2]
1

)⊤
P + P J̃

[2]
1 ≤ 0

(5.76)

are satisfied. By numerically solving (5.76), we get

P =

 3.85 −0.7 1.34

−0.7 8.54 0

1.34 0 1.34

 ,

while the matrix Q0 and Q1 are equal to

Q0 =

 1.22 3.08 1.28

3.08 12.59 4.73

1.28 4.73 2.68

 Q1 =

 5.02 −1.4 0

−1.4 17.0 0

0 0 0

 .

It can be readily verified that P is positive definite and Qi, i = 0, 1, are

positive semidefinite. Hence, we can conclude that for α = 0.25, β = 3,

m0 = −1.05 and all m1 ≥ 0 the Lyapunov exponents of all the attractors of

the memristor Chua’s circuit (5.57)-(5.59), whose ω-limit set does not con-

tain equilibrium points, are non-positive.

Figure 5.8 illustrates the dynamics in the case m1 = 1. The invariant man-

ifolds (5.74) with I = 0 (red), I = 0.5 (blue), and I = −0.5 (black) are

reported in Fig. 5.8 a). It is worth noting that in the case I = ±0.5 there

exists a unique equilibrium at x = ±(0, 0, 0, 0.815)⊤ to which all the trajecto-

ries converge. As highlighted in Fig. 5.8 b), for I = 0 the invariant manifolds

have two stable and one unstable equilibrium points at x = ±(0, 0, 0, 0.224)⊤
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and x = (0, 0, 0, 0)⊤, respectively, and all the (non-trivial) trajectories con-

verge towards the two stable ones. Extensive numerical simulations show

that similar convergent behaviors are displayed onto the other manifolds

and also for different values of m1.

Comments and final remarks It is worth noting that in the case of the

Chua’s circuit just discussed, the 2-additive compound approach depends on

the choice of the matrix T (x) in (2.26). In particular, different choices of

the matrix T (x) may simplify the treatment.
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Figure 5.8: System (5.57)-(5.59) with α = 0.25, β = 3, γ = 0,

m0 = −1.05, m1 = 1. The stable and unstable equilibrium points

are marked with ◦ and ∗, respectively, the initial conditions x(0) are

marked with ×. a) Trajectories onto the invariant manifolds with x(0) =

(0.01,−0.05,−0.12, 0.08)⊤ and x(0) = (−0.01,−0.05, 0.12,−0.08)⊤ for I = 0

(red), x(0) = (0.15,−0.05,−0.3, 0.08)⊤ and x(0) = (0.1,−0.05, 0.25, 0.08)⊤

for I = 0.5 (blue), x(0) = (0.01,−0.05,−0.12, 0.08)⊤ and x(0) =

(−0.15,−0.05, 0.32, 0.08)⊤ for I = −0.5 (black). b) Trajectories onto

the invariant manifolds with I = 0 (red). The initial conditions are

x(0) = (−0.01,−0.05,−0.17, 0.5)⊤, x(0) = (−0.04,−0.05, 0.19, 0.5)⊤, x(0) =

(0.01,−0.05, 0.17,−0.5)⊤, x(0) = (0.04,−0.05,−0.19,−0.5)⊤.
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Figure 5.9: Oscillatory solution of system (5.77), when the configuration is

set at k = 1.1, a value for which the model can be regarded as the feedback

interconnection of the two subsystems illustrated in Section 5.2.1.

5.2 Examples of application of the results in

Chapter 3

5.2.1 Transition from multistability to limit cycles

Consider the system of equations:

ẋ1 = x2

ẋ2 = −x1 + atan(2x1)− 2x2 + x3

ẋ3 = −x3 + x4

ẋ4 = −kx1 − x4

. (5.77)

The system can be regarded as the feedback interconnection of the (x1, x2)

and (x3, x4) subsystems through the linking signals x1 and x3. Notably,

for k = 0 the system boils down to the cascade (series) interconnection of
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the asymptotically stable linear subsystem (x3, x4), forced with vanishing

intensity by the multistable bidimensional subsystem (x1, x2). In this latter

case, nonoscillatory behaviors of the multistable system for x3(t) ≡ 0 can be

shown by considering the Lyapunov functional

V (x1, x2) =
x2
2

2
+

∫ x1

0

[ξ − atan(2ξ)]dξ.

Hence, for k = 0 this system is multistable and it has two asymptotically

stable equilibria, and a third, unstable, saddle in 0. Our goal is to find

sufficient conditions that guarantee non-oscillatory behaviors (2-contraction)

of the system also for some range of k > 0.

It is easy to see, through simulations, that for k sufficiently large the

system admits oscillatory solutions, as shown in Fig. 5.9. In fact, this occurs

for all k > 1. The Jacobian J(x) is given as:

J(x) =


0 1 0 0

−1 + 2
1+4x2

1
−2 1 0

0 0 −1 1

−k 0 0 −1


Notice that, no matter what x1 is, the Jacobian J(x) belongs to the interval

matrix

J(x) ∈


0 1 0 0

[− 1, 1] −2 1 0

0 0 −1 1

−k 0 0 −1

 = conv (J1(k), J2(k))

where J1(k) and J2(k) read

J1(k) =


0 1 0 0

−1 −2 1 0

0 0 −1 1

−k 0 0 −1

 ,

J2(k) =


0 1 0 0

1 −2 1 0

0 0 −1 1

−k 0 0 −1

 .

Rather than considering the full J(x), and the corresponding J [2] matrix

(of dimension 6× 6), we decompose the system into its (x1, x2) and (x3, x4)
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components, respectively. Notice that standard small-gain results do not

apply, as J(0), even for k = 0, has a positive eigenvalue in −1+
√
2

2 . The

modular version of the 2-additive compound variational equation looks like:

δ̇1 = −2δ1 + [1, 0, 0, 0] δ12

δ̇12 =


−1 1 1 0

0 −1 0 1

−1 + 2
1+(2x1)2

0 −3 1

0 −1 + 2
1+(2x1)2

0 −3

 δ12

+


0

0

0

k

 δ1 +


0

0

0

1

 δ2

δ̇2 = −2δ2 + [k, 0, 0, 0]δ12

(5.78)

It is easy to see that γ1 = 1/2 and γ2 = k/2. To apply Theorem 9 we need

to solve the following minimization problem:

min
P12,η̃1,η̃2

γ2
1 η̃1 + γ2

2 η̃2 < 1 (5.79)

subject to AT
1 P12 + P12A1 + I P12G1 P12G2

GT
1 P12 −η̃1I 0

GT
2 P12 0 −η̃2I

 ≤ 0

 AT
2 P12 + P12A2 + I P12G1 P12G2

GT
1 P12 −η̃1I 0

GT
2 P12 0 −η̃2I

 ≤ 0

P12 = PT
12 ≥ εI

η̃1 ≥ 0

η̃2 ≥ 0
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where the matrices A1 and A2 are given by

A1 =


−1 1 1 0

0 −1 0 1

−1 0 −2 1

0 −1 0 −2

 ,

A2 =


−1 1 1 0

0 −1 0 1

1 0 −2 1

0 1 0 −2

 ,

and ε = 0.01. The maximum value of the parameter k for which the min-

imization problem (5.79) turns out to be feasible is k∗ = 0.755, and it is

obtained for

P12 =


1.24 0.68 0.14 0.19

0.68 4.98 0.18 1.48

0.14 0.18 0.85 0.19

0.19 1.48 0.19 1.45


Instead, exploiting Theorem 10, the maximum gain γ12(k) allowed by

the small-gain condition (3.42) as a function of parameter k is given by

γ12(k) = 1/
√
(1/2)2 + (k/2)2. In this case, we have to solve the following

maximization problem:

max
k≥0,P12=PT

12

k (5.80)

subject to[
AT

1 P12 + P12A1 + I P12[G1, G2]

[G1G2]
TP12 −γ2

12(k)I

]
≤ 0[

AT
2 P12 + P12A2 + I P12[G1, G2]

[G1G2]
TP12 −γ2

12(k)I

]
≤ 0

P12 ≥ 0

The maximum value of the parameter k for which the maximization problem

(5.80) is feasible is k∗ = 0.715, which is obtained for

P12 =


1.25 0.68 0.13 0.18

0.68 5.0 0.17 1.47

0.13 0.17 0.89 0.19

0.18 1.47 0.19 1.49

 .
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Figure 5.10: Functions Γ1(k)
.
= γ2

1(k)η̃1(k)+γ2
2(k)η̃2(k) (black) and Γ2(k)

.
=

γ2
12(k)(γ

2
1(k) + γ2

2(k) (blue) as a function of the parameter k ∈ [0, 1].

In Fig. 5.10 are reported the conditions (3.38) and (3.42) as a function of

the parameter k. From the figure it can be observed that the condition

in Theorem 10 is more conservative than the condition in Theorem 9, as

observed in Remark 13.

To measure the conservativeness of the small-gain conditions (3.38) and

(3.42), we compare the value k∗ with the one achievable by means of the

following maximization problem

max
k≥0,P=PT

k (5.81)

subject to

J
[2]
1 (k)TP + PJ

[2]
1 (k) ≤ 0

J
[2]
2 (k)TP + PJ

[2]
2 (k) ≤ 0

P ≥ I
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Figure 5.11: The fourth order Thomas’ system (5.82) of Section 5.2.2 shows

periodic solutions when it is configured with b = 0.35.

which directly involves the additive compound matrix and a proper matrix

P of dimension 6 × 6. It turns out that problem (5.81) is feasible for all

k ∈ [0, 1] and that the maximum value is achieved for

P =



11.45 0 2.43 −0.209 1.99 −1.01

0 14.09 10.88 1.37 3.51 0

2.43 10.88 37.17 2.14 7.31 2.43

−0.209 1.37 2.14 8.49 1.70 −0.21

1.99 3.51 7.31 1.70 9.29 1.99

−1.01 0 2.43 −0.21 1.99 11.45


.

It is worth nothing that for values of k greater than 1 the system starts to

display periodic motions (see Fig. 5.9).
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5.2.2 Thomas’ example of dimension 4

As a further example, let us consider the Thomas’ system (see [49]) of the

fourth order, described by the following set of first order differential equations

ẋ1 = −bx1 + sin(x2)

ẋ2 = −bx2 + sin(x3)

ẋ3 = −bx3 + sin(x4)

ẋ4 = −bx4 + sin(x1)

, (5.82)

where b is a positive scalar parameter. For b > 1 the system has a unique

asymptotically stable equilibrium point at x = 0, which undergoes a (super-

critical) pitchfork bifurcation at b = 1. For b < 1 the system is multistable

and it exhibits quite a rich dynamic behavior as b is decreased towards 0.

For b = 0.35, periodic solutions arise, as seen from numerical simulations

depicted in Fig. 5.11. Moreover, the hypercube [−1/b, 1/b]4 is a forward in-

variant set for system (5.82).

Our aim is to find conditions, similar to conditions (5.80)-(5.81), to rule out

oscillatory behaviors for some range of b < 1.

The Jacobian J(x) of the system has the following form

J(x) =


−b c2 0 0

0 −b c3 0

0 0 −b c4
c1 0 0 −b

 ,

where ci = cos(xi). It is worth noting that, since ci ∈ [−1, 1], then J(x) ∈
conv(V), where V = {Vi}i=1,...,16 collects the Jacobian matrices at the ver-

texes of the hypercube, i.e.,

conv(V) =


−b [−1, 1] 0 0

0 −b [−1, 1] 0

0 0 −b [−1, 1]

[− 1, 1] 0 0 −b

 .

Its 2-additive compound reads

J [2](x) =



−2 b c3 0 0 0 0

0 −2 b c4 c2 0 0

0 0 −2 b 0 c2 0

0 0 0 −2 b c4 0

−c1 0 0 0 −2 b c3
0 −c1 0 0 0 −2 b


.
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We choose to partition the state-space according to (x1, x3) and (x2, x4).

Therefore, the modular version of the 2-additive compound variational equa-

tion of the fourth order Thomas’ system assumes the following form:

δ̇1 = −2bδ1 + [0, c4,−c3, 0] δ12

δ̇12 =


−2b 0 0 0

0 −2b 0 0

0 0 −2b 0

0 0 0 −2b

 δ12

+


c2
0

0

−c1

 δ1 +


0

c3
−c4
0

 δ2

δ̇2 = −2bδ2 + [c1, 0, 0, c2]δ12

(5.83)

The gains γ1 and γ2 can be readily computed, obtaining γ1 = γ2 = 1/
√
2b.

Our aim is to solve the minimization problem

min
P12,η̃1,η̃2

γ2
1 η̃1 + γ2

2 η̃2 < 1 (5.84)

subject to ATP12 + P12A+ I P12G
(h)
1 P12G

(h)
2

G
(h)T
1 P12 −η̃1I 0

G
(h)T
2 P12 0 −η̃2I

 ≤ 0, h = 1, . . . , 16

P12 = PT
12 ≥ εI

η̃1 ≥ 0

η̃2 ≥ 0

where ε = 0.01,

A =


−2b 0 0 0

0 −2b 0 0

0 0 −2b 0

0 0 0 −2b

 ,

G(h) =


v
(h)
2 0

0 v
(h)
3

0 −v
(h)
4

−v
(h)
1 0





92 Case studies and examples of application

and v(h), h = 1, . . . , 16, are the vertices of the hypercube [−1, 1]4. It turns

out that the minimization problem (5.84) is feasible up to b = b∗ ≈ 0.841,

which is obtained for

P12 =


0.595 0 0 0

0 0.595 0 0

0 0 0.595 0

0 0 0 0.595

 . (5.85)

In the case of Theorem 10, since γ1 = γ2 = 1/
√
2b, the maximum gain γ12(b)

allowed by the small-gain condition (3.42) as a function of the parameter b is

given by γ12(b) = b. Therefore, we want to solve the following minimization

problem

min
b≥0,P12=PT

12

b (5.86)

subject to[
ATP12 + P12A+ I P12G

(h)

G(h)TP12 −γ2
12(b)I

]
≤ 0, h = 1, . . . , 16

P12 ≥ 0

It turns out that also problem (5.86) is feasible up to b = b∗ ≈ 0.841, and

it is achieved for the same P12 in (5.85). It is worth notice that, differently

from the previous example, in the case of the Thomas’ system of the fourth

dimension conditions (3.38) and (3.42) provide the same results.

As in the previous case, we compare the value of b∗ obtained with the

small-gain conditions with the one provided by means of direct optimization.

This latter minimization problem assumes the following form:

min
b≥0,P=PT

b (5.87)

subject to

J
[2]
h (b)TP + PJ

[2]
h (b) ≤ 0, h = 1, . . . , 16

P ≥ I
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where

J
[2]
h (b) =



−2 b v
(h)
3 0 0 0 0

0 −2 b v
(h)
4 v

(h)
2 0 0

0 0 −2 b 0 v
(h)
2 0

0 0 0 −2 b v
(h)
4 0

−v
(h)
1 0 0 0 −2 b v

(h)
3

0 −v
(h)
1 0 0 0 −2 b


.

It turns out that problem (5.87) is feasible for all b > 0.5, and that the

minimum value of b is achieved for the following matrix:

P =



7.27 0 0 0 0 0

0 140.26 0 0 0 0

0 0 128.39 0 0 0

0 0 0 7.31 0 0

0 0 0 0 6.53 0

0 0 0 0 0 130.33


.

5.2.3 Thomas’ example of dimension 3

In order to clarify Remark 15, we consider the Thomas’ system of the third

order. Its equations read

ẋ1 = −bx1 + sin(x2)

ẋ2 = −bx2 + sin(x3)

ẋ3 = −bx3 + sin(x1)

,

the cube [−1/b, 1/b]3 is a forward invariant set, and linearization yields a

2-additive compound of the Jacobian of the following form:

J [2](x) =

 −2 b cos(x3) 0

0 −2 b cos(x2)

− cos(x1) 0 −2 b

 . (5.88)

Since cos(xi) ∈ [−1, 1], then J [2](x) ∈ conv(V), where conv(V) is the interval
matrix

conv(V) =

 −2 b [−1, 1] 0

0 −2 b [−1, 1]

[− 1, 1] 0 −2 b

 . (5.89)
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Figure 5.12: Evolution of trajectories started within the forward invariant

set represented by the cube [−1/b, 1/b]3 for b = 0.58. The crosses denote

the initial conditions, while the asterisk is the unstable equilibrium point.

All the other solutions converges to one of the the two stable fixed points

contained in the cube.

The modular version looks like:

δ̇1 = −2bδ1 + [cos(x3), 0] δ12

δ̇12 =

[
−2b cos(x2)

0 −2b

]
δ12 +

[
0

− cos(x1)

]
δ1

. (5.90)

The gain γ1 can be easily computed, obtaining γ1 = 1/(2b). Then, the

minimum value of b allowed by the small-gain condition (3.38) can be found
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by solving the minimization problem

min
η̃1,P=PT

γ2
1 η̃1 < 1 (5.91)

subject to[
AT

hP12 + PAh + I P12Gh

GT
hP12 −η̃1I

]
≤ 0, h = 1, . . . , 4

P12 = PT
12 ≥ εI

η̃1 ≥ 0

where ε = 0.01,

Ah =

[
−2b v

(h)
2

0 −2b

]
, Gh =

[
0

−v
(h)
1

]

and v(h), h = 1, . . . , 4, are the vertices of the square [−1, 1]2, which is the

projection of the forward invariant set in the space of the chosen subsystem.

It turns out that problem (5.91) is feasible for all b > 0.575, and that the

optimal matrix P providing the minimum value of b is

P12 =

[
0.87 0

0 1.52

]
.

As in the case of the fourth order Thomas’ system, it can be proved that

conditions (3.38) and (3.42) provide the same results. In Fig. 5.12 the con-

vergence to two distinct fixed points of the trajectories started within the

forward invariant set is illustrated by numerical simulations obtained for

b = 0.58.

It is interesting also in this case to compare the value of b∗ provided

by the small-gain condition with the one achievable by considering the 2-

additive compound J [2](x). From Section 2, we have that the condition is

b ≥ 0.442, with P equal to the identity matrix.

Comments and final remarks Table 5.1 shows the comparison between

the results obtained with the application of Theorem 5 and with the small

gain condition. As it can be notice, the small gain approach shows some

conservatism, although the differences between the two approach is not so

marked as one may expect.
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Table 5.1: Summary of the results of this section.

Examples Analysis with Analysis with

small-gain conditions Theorem 5

Example in Section 5.2.1 k ≤ k∗ = 0.715 k ≤ k∗ = 1

Thomas of fourth order b ≥ b∗ ≈ 0.841 b > 0.5

Thomas of third order b > 0.575 b ≥ b∗ = 0.442

5.3 Examples of controlling chaos

5.3.1 Lorenz system

The Lorenz system is described by the following system of equations

ẋ1 = −σ (x1 − x2)

ẋ2 = ρ x1 − x2 − x1 x3

ẋ3 = x1 x2 − b x3

, (5.92)

where x = (x1, x2, x3)
⊤ is the state vector and σ, b and ρ are positive

parameters. In the classical analysis σ = 10, b = 8/3 and ρ ∈ R+ \ 0 is used

as bifurcation parameter.

Recalling that for all initial conditions, solutions are eventually confined

in some invariant sets [27], which depends on the parameters value. For

instance, if b ≥ 2 and σ ≥ 1 then

D =

{
x ∈ R3 : x2

2 + (ρ− x3)
2 ≤ ρ2

ρ2b

}
, (5.93)

where

ρb =
2
√
b− 1

b
, (5.94)

is an invariant set of (5.92).

Considering a control law as introducing in (4.24) with u = Kf(x), where



5.3 Examples of controlling chaos 97

the input and the control vectors are chosen as

B =

 0

0

1


K =

[
0 0 k

] , (5.95)

we have that the third equation of (5.92) becomes:

ẋ3 = (k + 1)x1x2 − b(k + 1)x3 . (5.96)

The next result holds true.

Proposition 26 Suppose that the system parameters satisfy the conditions

b ≥ 2 , σ ≥ 1 , (5.97)

and let consider a control law of the form (4.24) with vectors B and K as in

(5.95). Then

Dk =

x ∈ R3 : x2
2 +

(x3 − ρ)2

(1 + k)
=

ρ2 b2

4

(
b− 1

1 + k

)
 , (5.98)

is an invariant set for the closed loop system.

Proof. The proof follows the same line as in [27] by using a different Lyapunov

function of the following form:

V (x) = x2
2 +

(x3 − 2c)2

(1 + k)
.

where c :=
ρ

2
. The time derivative of V (x) reads

1

2
V̇ (x) = −x2

2 − b (x3 − c)
2
+ bc2 .

and hence V̇ (x) ≤ 0 if and only if x satisfies the following condition:

x2
2 + b (x3 − c)

2 ≥ b c2. (5.99)
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This implies that any invariant set of the form V (x) ≤ γ, γ > 0, should

contain the ellipse defined by the equality sign in (5.99). Hence, the smallest

invariant set V (x) ≤ γ∗, γ∗ > 0, can be computed by maximizing V (x)

in (??) for x belonging to this ellipse. It can be readily checked that this

problem can be written as

γ∗ = max
x3∈[0,2c]

W (x3) , (5.100)

where

W (x3) =
(x3 − 2c)2

(1 + k)
− b (x3 − c)2 + b c2 . (5.101)

Since b > 2, W (x3) is a concave parabola with the vertex located at x3 = x̄3

where

x̄3 =

(
b− 2

(1 + k)

)
c(

b− 1

(1 + k)

) ∈ [0, 2c] , ∀k ≥ 0 . (5.102)

This implies that

γ∗ = W (x̄3) =
c2 b2(

b− 1

(1 + k)

) ,

which shows that the smallest invariant set V (x) ≤ γ∗ is indeed Dk.

To prove that the equilibrium point at x = 0 belongs to Dk we have to show

that the condition
1

1 + k
≤ b2

4

(
b− 1

1 + k

)
is satisfied for all k ≥ 0. This can be readily verified since for b ≥ 2 the

following inequalities

1

1 + k
≤ 1 ≤ b2

4 (b− 1)
≤ b2

4

(
b− 1

1 + k

)
hold true.

It is worth noticing that for k > 0 the invariant set (5.98) Dk lengthens

significantly in the x3 direction and shortens slightly in the x2 direction.
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The Jacobian of the system (5.92) reads

J =

 −σ σ 0

ρ− x3 −1 −x1

x2 x1 −b

 =: J(x) (5.103)

and its 2-additive compound has the following form

J [2](x) =

 −(σ + 1) −x1 0

x1 −(b+ σ) σ

−x2 ρ− x3 −(b+ 1)

 . (5.104)

The 2-additive compound of the Jacobian of the closed loop system, named

Jcl(x)
[2], becomes:

J
[2]
cl (x) =

 −(σ + 1) −x1 0

x1 (k + 1) −(σ + b (k + 1)) σ

−x2 (k + 1) ρ− x3 −(b (k + 1) + 1)

 .

(5.105)

Following the same approach as in Section 5.1 in Chapter 2, it can be easily

verified that the matrix J
[2]
cl (0) is marginally stable for all ρ ≤ ρs(k), where

ρs(k) =
(b (k + 1) + σ) (b (k + 1) + 1)

σ
. (5.106)

Since whenever a matrix is Hurwitz also its 2-additive compound matrix is
Hurwitz, it follows that ρs(k) is the maximum reachable ρ by the approach.
How it can be noticed by equation (5.106), the gain k operates in the closed
loop to increase the maximum reachable ρ. In particular, for k > 0, ρs(k)
grows quadratically in k.
In order to remove the chaos from the Lorenz system preserving equilibria,
we are interested in finding a matrix P = PT > 0 and a vector K such
that, for all x inside the invariant set (5.98) and for values of ρ > ρM , the
following minimisation problem admits a solution

min
P,K

qI

subject to(
[(I +BK) Jh(x)]

[2]
)T

P + P
(
[(I +BK) Jh(x)]

[2]
)
≤ 0, h = 1, . . . , 4

P = PT ≥ εI (5.107)

q ≥ −10

k <= kmax

kmax = 8
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where

Jh(x) =

 −σ σ 0

ρ− vh3 −1 −vh1
vh2 vh1 −b

 (5.108)

and vh, h = 1, . . . , 4, are the vertices of the rectangle that contains the

cylinder (5.98) per k = kmax. The constraint q ≥ −10 has been imposed

to ensure that the minimization problem is bounded, while the constraint

k ≤ kmax, where kmax = 8, is introduced to prevent an excessively high

gain. Utilizing the software YALMIP as before, we obtain the control gain

k = 7.91, while the matrix P has the following structure:

P =

 3644.572 0 0

0 85.113 0

0 0 11.142

 . (5.109)

Fig. 5.14 reports some MATLAB simulations of the uncontrolled system

with ρ = 28. While, in Fig. 5.13 is shown the simulation of the closed loop

Lorenz system for a value of ρ = 28. As it can be noticed from the figure,

the closed loop system does not present chaotic behaviours anymore, while

it preserves its equilibrium points.

5.3.2 Thomas system

In the third-order case, the system dynamics is described by the following

system of differential equations:

ẋ1 = sin(x2)− b x1,

ẋ2 = sin(x3)− b x2,

ẋ3 = sin(x1)− b x3,

(5.110)

where x = (x1, x2, x3)
T is the space vector and b is a positive parameter.

Recalling that for all initial conditions the solutions of (5.110) are eventually

confined inside the invariant set

D := {x ∈ R3 : b ||x||∞ ≤ 1}. (5.111)

It is known that for b = 0.1 the system displays chaotic behaviors ( [47]). To

remove chaos, we choose an input vector B and a gain row vector K of the

form
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Figure 5.13: Trajectories of Lorenz system with parameters b = 8/3, σ = 10,

ρ = 28 and k = 7.91. Stable equilibrium points (marked by ◦): x± =

(±8.485,±8.485, 27); unstable equilibrium point at x = 0 (marked by ∗).

B = (0, 0, 1)T

K = (0, 0, k) (5.112)

where k ∈ R. Therefore, the closed-loop system assumes the form:

ẋ = fcl(x) =

 sin(x2)− 0.1x1

sin(x3)− 0.1x2

(k + 1)(sin(x1)− 0.1x3)

 . (5.113)

The equilibrium points of system (5.113) are all the solutions of the system

of equations provided by fcl = 0. The closed-loop system has the same

equilibria of the open loop-system for the same value of b, as it can be easily

verified from equation (5.113). The coordinates of the equilibrium points are
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Figure 5.14: Trajectories of Lorenz system (5.92) with parameters b = 8/3,

σ = 10, ρ = 28. Unstable equilibrium point at x = 0 and x =

(±8.485,±8.485, 27) (marked by ∗).

computed by first solving for x1 the following equation

g1(x1) := bx1 = sin

 sin
(

sin(x1)
b

)
b

 =: g2(x1), (5.114)

which amounts to find all the intersections between the functions g1(x1)

and g2(x1), as it is shown in Fig. 5.15. The other two coordinates are

automatically calculated as

x3 =
sin(x1)

b
,

x2 =
sin(x3)

b
=

sin
(

sin(x1)
b

)
b

.

(5.115)
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Figure 5.15: Functions g1(x1) (red) and g2(x2) (blue): their intersections

provide the coordinate x1 of the equilibrium points of (5.113).

It turns out that the system displays 283 equilibria, 141 of which are unstable

(including the point x = 0) while 142 are stable. It is worth noting that all

equilibria are unstable for the open-loop system and that only 7 equilibrium

points follow the system’s symmetry, i.e. the points xei = (x̄i, x̄i, x̄i)
T where

x̄i are all the solutions of the equation bx̄ = sin(x̄), meaning that most of

them break the system’s symmetry.

The Jacobian of the open-loop system (5.110) reads,

J(x) =

 −b c2 0

0 −b c3
c1 0 −b

 , (5.116)

where ci = cos(xi), while the 2-additive compound of the closed loop system

assumes the form

J
[2]
cl (x) =

 −2b c3 0

0 −b− b (k + 1) c2
−c1 (k + 1) 0 −b− b (k + 1)

 . (5.117)

In order to find the value of the control gain k, we wish to apply Proposition

21 inside the invariant set (5.111). Since the functions cos(xi) ∈ [−1, 1], it
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follows that the matrix J
[2]
cl (x) fulfills

J
[2]
cl (x) ∈

 −2b [−1, 1] 0

0 −b− b (k + 1) [−1, 1]

[− 1, 1] (k + 1) 0 −b− b (k + 1)


.
= conv(V) = conv(J1, J2, . . . , J8). (5.118)

Therefore, our aim is to find a matrix P = PT > 0 and a control gain k such

that the following minimization problem turns out to be feasible:

minP,K q

subject to

Qh ≤ qI, h = 1, . . . , 8

P = PT ≥ εI

q ≥ −10

k ≤ kmax

kmax = 500

(5.119)

where

Qh =
(
[(I +BK) Jh]

[2]
)T

P + P
(
[(I +BK) Jh]

[2]
)

and

Jh =

 −b v
(h)
2 0

0 −b v
(h)
3

v
(h)
1 0 −b


is the Jacobian calculated on the vertices v(h) of the cube [−1, 1]3. The con-

straint q ≥ −10 has been imposed to ensure that the minimization problem

is bounded, while the constraint k ≤ kmax, where kmax = 500, is introduced

to prevent an excessively high gain. As it can be noted from (5.119), since

we have to solve the problem with respect to both the control gain k and the

matrix P , the problem turns out to be a Bilinear Matrix Inequality (BMI).

To solve it, the software YALMIP ( [31]) can be used. The optimiser provides

the control gain k = 499.313, while the matrix P has the following form

P =

 897018.86 0 0

0 88091.385 0

0 0 34.245

 . (5.120)
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Figure 5.16 reports some MATLAB simulations of the controlled system with

b = 0.1 and k = 499.313, showing convergence of the trajectories towards

the equilibrium points. Instead, in Fig. 5.17 is shown the simulation of the

open loop Thomas system for a value of b = 0.1.
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Figure 5.16: Trajectories of the controlled Thomas system for b = 0.1 and

k = 499.313. The initial conditions are marked with ×. Stable equilibrium

points are marked by ◦, while the unstable equilibrium point at x = 0 is

marked by ∗.

Comments and final remarks It is worth noting that in both Lorenz and

Thomas system the minimum gains that allow removing chaos preserving

equilibria depends on the value of the bifurcation parameter. In particular,

in the case of the Lorenz systems, it grows as ρ increases. While, in the

case of the Thomas system, it grows as b decreases. Furthermore, unlike the

Thomas case, since for the Lorenz system the invariant set can be written

as a function of the gain k, it is possible to impose the invariant manifold

inside the BMI problem.
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Figure 5.17: Trajectories of the uncontrolled Thomas system for b = 0.1.

The initial conditions are marked with ×. The unstable equilibrium point

at x = 0 is marked by ∗.



Conclusion

Lyapunov exponents are one of the most used tool to characterize the at-

tractors of finite dimensional time-invariant nonlinear systems. A Lyapunov

approach to the problem of ruling out the existence of attractors with positive

Lyapunov exponents has been proposed. Specifically, it has been shown that

sufficient conditions can be expressed in terms of Lyapunov equations involv-

ing the 2-additive compound of the system Jacobian matrix. Furthermore,

more insights on the proposed approach by considering both state-dependent

and constant quadratic Lyapunov functions for the resulting Lyapunov equa-

tions have been presented, showing that in some cases the problem reduces

to solve a finite number of LMIs involving matrices of size
(
n
2

)
×
(
n
2

)
. Then,

the well-known Lorenz and Thomas systems have been investigated, show-

ing that some regions of the parameters space where both the systems do

not display attractors with positive Lyapunov exponents, can be analytically

identified. These regions complement those derived by G.A. Leonov in his

pioneering work on the estimation of the dimension of the Lorenz system

attractors and those where it has been recently shown that the Thomas sys-

tem is 2-contracting.

Furthermore, the approach has been extended to finite dimensional time-

invariant nonlinear systems with a first integral of motion. Exploiting the

fact that in these systems the state is confined to lie on a leaf of manifolds

foliation, a Lyapunov equation involving 2-additive compound matrices of

reduced dimensions is derived to rule out the existence of attractors with

positive Lyapunov exponents. The solution of such a Lyapunov equation is

addressed for the memristor Chua’s circuit, which is known to possess in-

finitely many non-isolated equilibrium points. It is shown that simple LMI

sufficient conditions can be derived by employing a constant quadratic Lya-

punov function.

Exploiting a peculiar property of 2-additive compound matrices, it has been

107
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shown how the problem can be solved considering the system as the inter-

connection of two subsystems, and, as a consequence, it allows tackling the

problem via LMIs of lower dimension, which is quite useful when the di-

mension of the original system is large. The general criterion is based on

the notion of 2-contraction and provides a modular approach for the stabil-

ity analysis of 2-additive compound matrix variational equations, arising by

considering virtual displacements for linear or nonlinear dynamical systems.

The conditions are expressed as functionals that must be less than unity and

which are computed once the system has been divided into interconnected

subsystems. The proposed functionals account both for the individual gains

of each subsystem’s 2-additive variational equations, and for an “intercon-

nection” gain, which arises from considerations on the Kronecker’s sum of

the Jacobians of the individual subsystems.

Finally, a general notion of 2-contraction via static state feedback control

laws has been introduced. It has been shown how the 2-additive compound

approach can be also exploited to design a feedback control law for a nonlin-

ear system that allows removing chaotic behaviours while altering the system

dynamics as little as possible. In particular, it has been derived a derivative

feedback contro law based on 2-contraction concepts that allows removing

the dense set of Unstable Periodic Orbits (UPOs) while preserving equilib-

ria. Sufficient conditions to synthesize matrix gains in the form of matrix

inequality is provided. Finally, the case in which the matrix inequality re-

duces to Bilinear Matrix Inequality (BMI) is also discussed.

It is worth noting that 2-contraction techniques presented in the thesis for

addressing multistable nonlinear systems suffer of some limitations. In par-

ticular, as highlighted in Remark 1 and Remark 6, the technique fails when

the Jacobian evaluated at any equilibrium point contained into the system

invariant set has more than one eigenvalue with positive real part, since the

2-additive compound can not be a Hurwitz matrix. A similar limitation ex-

ists also for the synthesis of a feedback control law ensuring that the closed

loop system is 2-contractive. In addition, all the conditions presented in

this thesis are sufficient conditions and hence the presented techniques can

be used to exclude the presence of chaotic or complex behaviours in some

invariant set but they can not be employed to show the existence of chaos.

Some future research issues can be foreseen. The results reported in Chap-

ter 3 could be extended to the case of large-scale nonlinear systems and also

to neural networks. In particular, it is expected that some results ensuring
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convergence towards the equilibrium points can be derived for neural net-

works whose interconnection matrix is not symmetric. Furthermore, it could

be investigated if it is possible to derive conditions ensuring convergence to-

wards the equilibrium points in the case of systems with first integral of

motion, such as memristors and memelements. This appears to be a chal-

lenging problem since these systems possess infinitely many and non-isolated

equilibrium points. Finally, it is worth noting that Propositions 20 and 21

provide conditions in terms of Matrix Inequality (MI) and Bilinear Matrix

Inequality (BMI). It could be interesting to find a method to transform these

conditions into some Linear Matrix Inequality (LMI), since the existing tech-

niques to perform such a transformation do not work in this case, due to the

particular structure of the matrix LK .
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[13] S. Dashkovskiy, B. S. Rüffer, and F. R. Wirth, “An ISS small gain

theorem for general networks,” Mathematics of Control, Signals, and

Systems, vol. 19, pp. 93–122, 2007.

[14] M. Di Marco, M. Forti, G. Innocenti, and A. Tesi, “Harmonic balance

method to analyze bifurcations in memristor oscillatory circuits,” In-

ternational Journal of Circuit Theory and Applications, vol. 46, no. 1,

pp. 66–83, 2018.

[15] L. Dieci and C. Elia, “SVD algorithms to approximate spectra of dy-

namical systems,” Mathematics and Computers in Simulation, vol. 79,

no. 4, pp. 1235–1254, 2008.

[16] L. Dieci, M. S. Jolly, and E. S. Van Vleck, “Numerical techniques for

approximating Lyapunov exponents and their implementation,” Journal

of Computational and Nonlinear Dynamics, vol. 6, no. 1, 2011.

[17] J. Eckmann and D. Ruelle, “Ergodic Theory of Chaos and Strange

Attractors,” Rev. Mod. Phys., vol. 57, p. 617, 1985.

[18] A. V. Holden (Ed.), Chaos. Manchester University Press, Manchester,

1986.

https://fbullo.github.io/ctds
https://fbullo.github.io/ctds


BIBLIOGRAPHY 113

[19] G. Innocenti, M. Di Marco, A. Tesi, and M. Forti, “Input–Output Char-

acterization of the Dynamical Properties of Circuits with a Memele-

ment,” Int. J. Bifurcat. Chaos, vol. 30, no. 07, p. 2050110, 2020.

[20] M. Itoh and L. O. Chua, “Memristor oscillators,” Int. J. Bifurcat.

Chaos, vol. 18, no. 11, pp. 3183–3206, 2008.

[21] Z.-P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for iss systems

and applications,” Mathematics of Control, Signal and Systems, vol. 7,

pp. 95–120, 1994.

[22] O. Krestinskaya, A. P. James, and L. O. Chua, “Neuromemristive Cir-

cuits for Edge Computing: A Review,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 31, no. 1, pp. 4–23, 2020.

[23] N. Kuznetsov and V. Reitmann, Attractor dimension estimates for dy-

namical systems: theory and computation. Springer, 2020.

[24] N. V. Kuznetsov, T. N. Mokaev, O. A. Kuznetsova, and E. V.

Kudryashova, “The Lorenz system: hidden boundary of practical sta-

bility and the Lyapunov dimension,” Nonlinear Dynamics, vol. 102, pp.

713–732, 2020.

[25] G. A. Leonov, N. V. Kuznetsov, N. Korzhemanova, and D. Kusakin,

“Lyapunov dimension formula for the global attractor of the Lorenz

system,” Communications in Nonlinear Science and Numerical Simu-

lation, vol. 41, pp. 84–103, 2016.

[26] C. Li and X. Xia, “On the bound of the Lyapunov exponents for con-

tinuous systems,” Chaos: An Interdisciplinary Journal of Nonlinear

Science, vol. 14, no. 3, pp. 557–561, 2004.

[27] D. Li, J.-a. Lu, X. Wu, and G. Chen, “Estimating the ultimate bound

and positively invariant set for the Lorenz system and a unified chaotic

system,” Journal of Mathematical Analysis and Applications, vol. 323,

no. 2, pp. 844–853, 2006.

[28] M. Y. Li and J. S. Muldowney, “On ra smith’s autonomous convergence

theorem,” The Rocky Mountain Journal of Mathematics, pp. 365–379,

1995.



114 BIBLIOGRAPHY

[29] T.-Y. Li and J. A. Yorke, “Period three implies chaos,” The American

Mathematical Monthly, vol. 82, no. 10, pp. 985–992, 1975. [Online].

Available: http://www.jstor.org/stable/2318254

[30] J. Liesen and V. Mehrmann, Linear algebra. Springer, 2015.
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