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Abstract. In 2018 Deza et al. proved the NP-completeness of deciding
wether there exists a 3-uniform hypergraph compatible with a given de-
gree sequence. A well known result of Erdös and Gallai (1960) shows that
the same problem related to graphs can be solved in polynomial time.
So, it becomes relevant to detect classes of uniform hypergraphs that
are reconstructible in polynomial time. In particular, our study concerns
3-uniform hypergraphs that are defined in the NP -completeness proof
of Deza et al. Those hypergraphs are constructed starting from a non-
increasing sequence s of integers and have very interesting properties. In
particular, they are unique, i.e., there do not exist two non isomorphic
3-uniform hypergraphs having the same degree sequence ds. This prop-
erty makes us conjecture that the reconstruction of these hypergraphs
from their degree sequences can be done in polynomial time. So, we first
generalize the computation of the ds degree sequences by Deza et al.,
and we show their uniqueness. We proceed by defining the equivalence
classes of the integer sequences determining the same ds and we define
a (minimal) representative. Then, we find the asymptotic growth rate
of the maximal element of the representatives in terms of the length of
the sequence, with the aim of generating and then reconstructing them.
Finally, we show an example of a unique 3-uniform hypergraph similar
to those defined by Deza et al. that does not admit a generating integer
sequence s. The existence of this hypergraph makes us conjecture an ex-
tended generating algorithm for the sequences of Deza et al. to include a
much wider class of unique 3-uniform hypergraphs. Further studies could
also include strategies for the identification and reconstruction of those
new sequences and hypergraphs.
AMS classification: 05C65, 05C60, 05C99
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1 Introduction

The notion of hypergraph naturally extends that of graphs, where each edge is
defined to be a subset of the vertices (see [2] for basic definitions and results on
hypergraphs).
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In this paper, we consider simple hypergraphs, i.e., hypergraphs that are
loopless and with distinct edges. Here a loop is considered to be an edge con-
sisting of just one vertex. A hypergraph is h-uniform if every edge is a subset of
cardinality h.

The degree sequence of a simple hypergraph is the sequence of the degrees of
its vertices arranged in non-increasing order. A degree sequence usually does not
characterize the hypergraph it is related to, but however it reveals interesting
properties. For this reason, degree sequences are widely studied in (hyper)graph
theory. We say that a reconstruction of a degree sequence d is a (hyper)graph
whose degree sequence is d. One of the most challenging problems related to
hypergraph degree sequences is the reconstruction of a compatible (hyper)graph,
if any [4]. For graphs, this problem has been solved in a milestone paper by Erdös
and Gallai [7], in 1960, providing an efficiently computable characterization of
them. And an algorithm to construct a graph with a given degree sequence
was given by Havel [10] and Hakimi [9]. On the other hand, the same problem
for hypergraphs remained unsolved till 2018, when Deza et al. in [6] proved its
NP-completeness, even for the simplest case of 3-uniform hypergraphs.

As a consequence, the study of wide classes of uniform hypergraphs whose
reconstruction from a degree sequences can be performed in polynomial time has
acquired more and more relevance, in order to spot the hard core of the generic
reconstruction problem.

Recently, but still before the result in [6], some necessary conditions had been
given for a sequence to be the degree sequence of an h-uniform hypergraph. Such
a sequence is called an h-sequence. Most of these generalized the Erdös and Gallai
theorem, or were based on two well known theorems by Havel [10] and Hakimi [9].
On the other hand, few necessary conditions were known. Among them, one of
prominent interest is provided in [1], which uses Dewdney’s theorem and sets a
lower bound on the length of a sequence related to an h-uniform hypergraph.
This result has been algorithmically rephrased in [3, 8].

The present study focuses on investigating the properties of the 3-sequences
that originate from a generalization of the gadget used by Deza et al. in [6]
for their NP-completeness proof. These are denoted by Dn, according to their
length n. The relevance of those sequences is mainly due to their uniqueness
property, i.e., there exists a unique 3-hypergraph compatible with them, up to
isomorphism. It is known that there exists an operator called a trade that allows
one to travel amongst all hypergraphs having the same degree sequence [11];
here we prove that the 3-hypergraphs related to the elements of each Dn act as
a sort of fixed point for this operator.

Furthermore, since each element of Dn can be related to an infinite number
of integer sequences, we group them into equivalence classes and we choose a
representative for each class. We compute a lower bound to the asymptotic
growth of the representative’s elements gaining information about the cardinality
of Dn and obtaining clues for a strategy for reconstruction.
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From this preliminary study, a series of open problems results, with the long
term aim of characterizing and of reconstructing wider classes of unique degree
sequences. An example is given in Example 2.

So, in the next section, we will provide definitions and the results useful for
our study. Section 3 will be devoted to presenting the most relevant properties
of the degree sequences in Dn and the asymptotic growth of the elements of
their representatives. In Section 4, we consider the reconstruction problem of a
simple subclass of Dn and the isomorphism problem on unique sequences. We
conclude our work by pointing out some open questions in Section 5.

2 Basic Notions and Definitions

We recall the basic definition of hypergraphs and fix the notation used in the
rest of the paper. A hypergraph H is defined as a pair H = (V,E) such that
V is the set of vertices and E ⊂ P(V ) \ {∅} is the set of hyperedges, or briefly
edges when no ambiguities occur, where P(V ) is the power set of V .

A hypergraph is simple if it is loopless and has distinct edges. In other words,
it does not allow singleton edges or edges that are contained in or equal to other
edges. The degree of a vertex v ∈ V is the number of edges containing v. The
degree sequence d = (d1, d2, . . . , dn) of a hypergraph H is the list of its vertex
degrees usually arranged in non-increasing order. Let us denote by σ(d) the sum
of the elements of d. When H is k-uniform, the sequence d is called k-graphic.
Notice that the case k = 2 corresponds to graphs, and a 2-graphic sequence is
simply called graphic.

The seminal book by Berge [2] contains some essential results about hyper-
graphs and also information about their applications.

The problem of characterizing the graphic sequences of simple graphs was
solved by Erdös and Gallai [7], in 1960, and algorithmically by Havel [10] and
Hakimi [9], while only recently Deza et al. in [6] have shown theNP -completeness
of the characterization of k-graphic sequences, with k ≥ 3. The 3-Hypergraph
Degree Sequence Problem is the question of determining whether a given sequence
d is the degree sequence of a 3-hypergraph.

In their proof, the authors mapped the instances of the known NP -complete
problem 3-Partition into instances of the 3-Hypergraph Degree Sequence prob-
lem. The mapping has the property that there is a 1-to-1 correspondence between
the solutions of the instances I of 3-partition and the 3-hypergraphs having the
prescribed degree sequence d, computed from I.

To compute d, Deza et al. used an intermediate step in which they constructed
a “gadget”, and computed its degree sequence d′ from I. This sequence turns
out to have very interesting properties, as shown in the next sections, and it
constitutes the focus of our research.

Hereafter, we define the procedure Gen-pi(s) that generalizes the gadget
computation presented in [6], regardless the specific characteristics of the length
and element sum of the instance of 3-Partition. The input of this computation is
an integer sequence s = (s1, . . . , sn), and it returns a degree sequence, denoted
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ds, to emphasize its dependence on s, of a 3-hypergraph. Following the notation
in [6], let {0, 1}n3 be the set of all the binary sequences of length n having exactly
three elements equal to 1 and let sT be the transpose of the vector s.

Algorithm 1 Gen-pi(s)

set E ← ∅
for all e ∈ {0, 1}n3 do

if e · sT > 0 then
E ← E ∪ {e}

end if
end for
return ds = ΣE

The class of degree sequences of length n generated by the algorithm Gen-pi
from an input sequence s is indicated as Dn.

The action of Gen-pi on s will be clearer after introducing the notion of
incidence matrix of a hypergraph. Given a hypergraph H = (V,E) such that
|VH| = n and |EH| = m, its incidence matrix is a m × n binary matrix where
ai,j = 1 if and only if the edge ei contains the vertex vj , otherwise ai,j = 0. So
Σm

i=1ai,j = dj is the degree of the vertex vj , and when H is k−uniform we have
Σn

j=1ai,j = k for each edge ei.
We observe that, for k-hypergraphs, the property of being simple means that

all the rows of the incidence matrix are different.

Example 1 Let us consider the integer sequence s = (3, 2, 0,−1,−2). The out-
put of Gen-pi(s) is the degree sequence ds = (5, 4, 4, 3, 2). Figure 2 shows a
3-hypergraph H(ds) having ds as degree sequence, together with its related inci-
dence matrix M(ds).

The matrix representation of the hypergraph H(ds) in Fig. 2 provides an
immediate idea of the action of Gen-pi on s. In the sequel, we will consider only
degree sequences obtained from sequences s such that s1 + s2 > sn, i.e., without
null columns or, equivalently, hypergraphs without isolated vertices.

3 Properties of the elements of Dn

A relevant property of a degree sequence ds directly follows from the action
of Gen-pi on a generic integer sequence s:

Theorem 1 There exists one only 3-hypergraph (up to isomorphism) having
degree sequence ds.

Proof. The result can be obtained by contradiction. Let ds = (d1, . . . , dn) and
s = (s1, . . . , sn) be as in the algorithm Gen-pi. We observe that the num-
ber Max= Σn

i=1sidi is the maximum that can be realized by a sequence of
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v1v2 v3

v4

v5 M(ds) =


1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
0 1 1 1 0



Fig. 1. The 3-hypergraph H(ds) and its related incidence matrix M(ds). The black
nodes represent the edges of the 3-hypergraph and the white circles represent its ver-
tices.

m = Σn
i=1ds/3 different triplets (si1 , sj1 , sk1

), . . . , (sim , sjm , skm
) of elements of s,

containing all the edges (i1, j1, k1), . . . , (im, jm, km) of the 3-hypergraph H(ds).
Any other 3-hypergraph H(ds)

′ having the same degree sequence would involve
at least an edge e = (i, j, k) not in H(ds), so that si + sj + sk = t ≤ 0. As a con-
sequence, the remaining m−1 different edges (i′1, j

′
1, k
′
1), . . . , (i′m−1, j

′
m−1, k

′
m−1)

of H(ds)
′ must satisfy Σm−1

z=1 si′z + sj′z + sk′
z

= Max + t, and we reach a contra-
diction. ut

We say that the sequence ds is unique, as well as the corresponding 3-
hypergraph.

Note that the number of elements of Dn is finite, since each ds has
(
n
3

)
3
n as

a maximum entry. So, by cardinality reasons, there exist an infinite number of
non-increasing integer sequences s that generate at least one degree sequence ds.
An easy check reveals that for each degree sequence ds there exists an infinite
number of generating integer sequences.

As an example, all the length n sequences of positive integers generate the

same constant degree sequence ds ∈ Dn whose elements are
(
n
3

)
3
n = (n−1)(n−2)

2 .
Obviously, this sequence is maximal in Dn w.r.t the lexicographical order.

An easy check reveals that if a sequence s has two equal elements si and
si+1, then also the elements di and di+1 of the related ds degree sequence are
equal. The reverse is also true.

Property 1 If there exists an index i < n of ds such that di = di+1, then there
exists a sequence s′ such that s′i = s′i+1 and ds = ds′ .
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Proof. Let us construct s′ from s: if si = si+1, then s′ = s. So, let us consider
the case si 6= si+1. Since si > si+1, then each triplet si+1 + sj + sk > 0 implies
the triplet si + sj + sk > 0, and each triplet si + sj′ + sk′ ≤ 0 implies the triplet
si+1 + sj′ + sk′ ≤ 0, with j, j′, k, k′ ≤ n. Since di = di+1, then the reverse of
both implications also holds, and furthermore, these inequalities also hold if si
is replaced by an integer si+1 ≤ s ≤ si. For the inequalities that involve both
si and si+1, i.e., those of the forms si + si+1 + sk > 0 or si + si+1 + sk′ ≤ 0,
they are preserved when si and si+1 are both replaced by the value s = si+si+1

2 .
Unfortunately, s is not always an integer, and a final observation is required: the
inequalities used in the Gen-pi procedure are preserved when all the elements of
s are doubled, i.e., by abuse of notation, it holds ds = d2∗s.

Putting things together, from s we can define the sequence s′ as follows: first

we initialize s′ = 2s, then we set s′i = s′i+1 =
s′i+s′i+1

2 = s′. Doubling the elements
of s, we find that s′ is integer, and since s′i ≤ s′ ≤ s′i+1, all the inequalities that
define ds are preserved, as required. ut

Property 2 Let si = si+1 be two elements of an integer sequence s. The ith

column and the (i + 1)st column of the incidence matrix Ms of the hypergraph
Hs generated by procedure Gen-pi(s) are equal.

The proof directly follows from the fact that the elements di and di+1 satisfy
the same inequalities, and so they are present in the edges involving the same
vertices.

Returning to the equivalence classes of the elements in Dn, we propose as
representative of the (non-void) class [d], the sequence sd that is minimal in
lexicographic order. We stress the fact that sd has the minimal first element
among all the elements of [d].

Unfortunately, equal elements of d do not always correspond to equal ele-
ments in the representative of sd. As an example, exhaustive computation reveals
that the representative of d = (6, 5, 5, 4, 4) is sd = (2, 1, 1, 0,−1).

In order to compute and characterize the representative sd of each equivalence
class [d], it is useful to understand the growth rate of the elements inside sd
according to length, with special attention to its first (and maximal) one.

So, for each length n and each d ∈ Dn, we denote

Mn = maxsd{s1 : sd = (s1, s2, . . . , sn)}.

We call the sequences sd where such a maximal first element is present maxi-
mal sequences. The first elements of the sequence {Mn}n>2 up to n = 8, obtained
by exhaustive computation are 1, 1, 2, 4, 6, 10. For each n, there are several de-
gree sequences whose representatives have the same maximal first element. The
following table shows some of them according to the length parameter n:

Let us investigate the asymptotic growth of the sequence {Mn}n>3 by con-
structing a class of degree sequences C that provides a lower bound to it.
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n = 5 n = 7

s ds s ds
[2, 1, 1, 0,−1] [6, 5, 5, 4, 4] [6, 3, 2, 0,−1,−2,−3] [15, 11, 10, 9, 8, 7, 6]

[2, 1, 1,−1,−2] [5, 4, 4, 3, 2] [6, 3, 2, 0,−2,−3,−4] [13, 10, 9, 7, 6, 5, 4]
[2, 1, 0, 0,−1] [6, 4, 4, 4, 3] [6, 3, 1, 1, 0,−2,−3] [15, 13, 10, 10, 9, 8, 7]

[2, 1, 0,−1,−2] [4, 3, 2, 2, 1] [6, 2, 1, 1,−1,−2,−3] [15, 10, 9, 9, 8, 7, 5]
[2, 0, 0,−1,−1] [5, 3, 3, 2, 2] [6, 2, 1, 0,−1,−2,−3] [15, 9, 8, 7, 7, 6, 5]

n = 6 n = 8

s ds s ds
[4, 2, 1, 0,−1,−2] [10, 8, 7, 6, 6, 5] [10, 4, 3, 2, 0,−1,−3,−6] [21, 16, 15, 14, 13, 12, 10, 7]

[4, 1, 1,−1,−1,−2] [10, 6, 6, 5, 5, 4] [10, 4, 2, 2, 1,−2,−4,−5] [21, 17, 14, 14, 13, 12, 9, 8]
Table 1. Table of the representatives s of the equivalence classes [ds] having maximal
first element for the sequence lengths n = 5, 6, 7 and 8.

First we define the operator Extend that allow us to compute from a sequence
s = (s1, . . . , sn) a sequence s′ = (s′1, . . . , s

′
n+2) = Extend(s) as follows:

s′i =

si−1, for 2 ≤ i ≤ n+ 1
s1 + s2 − sn + 1, for i = 1
−(s1 + s2), for i = n+ 2

The following property holds

Property 3 If s is the representative of the class [d] ∈ Dn, then s′ = Extend(s)
is the representative of the respective class in Dn+2.

Proof. Let ds′ be the degree sequence generated by s′. We proceed by contra-
diction assuming there exists a representative t = (t1, . . . , tn+2) of [ds′ ] different
from s′ and having t1 < s′1. We notice that the sequence t̃ = (t2, . . . , tn+1) gen-
erates d, since the elements s′2+s′3 ≤ s′n+2, and such inequality must hold also in
t, so also the elements t2, . . . , tn+1 are not involved in any edge including tn+2.
On the other hand, by construction, s′2 + s′3 = −s′n+2, so it holds tn+2 ≤ s′n+2.

Finally, we notice that the inequality s′1 + s′n+1 + s′n+2 > 0 also holds since
s′1+s′n+1+s′n+2 = 1. In order to preserve the same inequality in t, i.e., t1+tn+1+
tn+2 > 0, having tn+2 ≤ s′n+2, we need t1 ≥ s′1, and we reach a contradiction. ut

We underline that by iterating the application of the procedure Extend to
a sequence s of length n, it produces longer sequences having the same length
parity as s.

To illustrate the action of Extend, we depict its behaviour on the incidence
matrices Hs and Hs′ , with s′ = Extend(s). The basic idea is to extend Hs by
adding an initial and a final column, as well as a set of starting rows, maximizing
their number while leaving those in Hs unchanged:
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Hs′ =



1 1 1 0 . . . . . . 0
1 1 0 1 . . . . . . 0
...
1 . . . . . . . . . . . . 1 1

0
...
0

[
Hs

] 0
...
0


Let s0 = (s0,1, . . . , s0,n) be an integer sequence, and sk = (sk,1, . . . , sk,n+2k) =

Extendk(s0) be the sequence obtained by recursively applying the procedure Ex-
tend k-times to s0. The following result holds

Theorem 2 The integer sequence {sk,1}k satisfies the recurrence relation:

sk,1 = sk−1,1 + 2sk−2,1 + sk−3,1 + 1 k ≥ 3 (1)

with s1,1 and s2,1 being the first elements of s1 = Extend(s0), and s2 = Extend2(s0),
respectively.

Proof. The result immediately follows from the definition of the Extend operator:

sk,1 = sk−1,1 + sk−1,2 − sk−1,n+2(k−1) + 1
sk−1,2 = sk−2,1
sk−1,n+2(k−1) = −sk−2,1 − sk−2,2

Replacing sk−1,2 and sk−1,n+2(k−1) in the first equation we obtain the recurrence
relation. ut

We observe that, starting from two representative sequences se = (1, 1,−1,−1)
and so = (2, 1, 0,−1,−2), having even and odd length, respectively, that are
maximal w.r.t. the first element, the procedure Extend produces the two se-
quences Extend(se) = (4, 1, 1,−1,−1,−2) and Extend(so) = (6, 2, 1, 0,−1,−2,−3)
that turn out to be two representatives with maximal first element of length 6 and
7, respectively. This property is not maintained when considering Extend2(se) =
(8, 4, 1, 1,−1,−1,−2,−5), since M8 = 10.

From this simple observation, we realize that the action of Extend on rep-
resentatives with maximal first (and second) element deserves a deeper investi-
gation in order to find an operator that allows us to pass from maximal repre-
sentatives to maximal representatives. However, the Extend operator provides a
lower bound to the growth rate of the Mn sequence.

Theorem 3 The growth constant λ of the sequence {sk,1}k is 2.147 < λ <
2.148.
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Proof. The result follows from constructing the generating function for the re-
currence relation (1) whose denominator is q(x) = (1 − x − 2x2 − x3)(1 − x).
The denominator has a unique minimal real root which can be computed nu-
merically, ρ = 0.466. Therefore the asymptotic behaviour is controlled by λ that
is the inverse of ρ, namely f3,k ∼ (λ)k ut

Corollary 1 The growth constant λ′ of {Mn}n>3 is λ′ ≥ λ.

4 Further Results on Unique Sequences

The property that each element d of Dn is unique, has a great relevance in the
reconstruction of the related 3-hypergraph Hd. In particular, it is remarkable
that, once one detects some edges of Hd, then those edges will not be modified
till the end of the reconstruction or, equivalently, they will not be involved in
possible backtracking steps, so limiting the complexity of the process.

As an example, this is the case of one or more elements of d = (d1, . . . , dn)
that are maximal or minimal. Focusing on the first element d1, if its value is(
n−1
2

)
this means that all edges involving the vertex v1 are present, so they can

be added and the process can proceed recursively on the next elements of d.
Equivalently if d1 = n − 2, then, by the definition of d, the edges involving v1
are (v1, v2, v3), (v1, v2, v4), . . . , (v1, v2, vn), that can be added to Hd.

Apart from those simple cases, some more are possible that may involve
all the elements of d in a complex pattern of entanglements. In the intent of
discovering a polynomial time way of managing these fixed patterns, a first and
natural reconstruction algorithm is provided to deal with those simple cases that
we address as maximal instances. This name is due to the fact that the sequence
is maximal w.r.t. the lexicographical order among those having the same sum of
elements.

The algorithm Rec-max, here not fully detailed for brevity sake, accepts a
degree sequence d as input and produces the incidence matrix of a 3-hypergraph
compatible with d, if d is a maximal sequence, otherwise it fails. We use the
notation M ⊕h to append the row h to the matrix M and deg(M) to denote the
vector of column sums of the matrix M , i.e., the degree sequence of the related
hypergraph.

The proof of the correctness of the algorithm is straightforward.

4.1 On the isomorphism properties of Dn

The remarkable properties of the elements of Dn have an interesting conse-
quence on the isomorphism problem restricted to the class. We recall that two
(hyper)graphs H1 and H2 are isomorphic if and only if one can pass from the
incidence matrix of H1 to that of H2 by a first round of column shifts, that
corresponds to a mapping ϕ of the vertices of H1 into those of H2, followed by a
second round of row shifts that allows to check the exact correspondence of the
(hyper)edges.
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Algorithm 2 Rec-max(d)

set d′ = d, Md = ∅ and i = 1;
Step 1: create the maximal d′i (w.r.t. the lexicographical order) length n binary
sequences h1, . . . , hd′i

having exactly three elements 1, and such that the first of
them lies in position i;
Step 2: set Md = Md ⊕ h1 ⊕ · · · ⊕ hd′i

;

Step 3: set d′ = d− deg(Md);
Step 4: if d′ is the null vector then

RETURN Md;
else if d′ has an element less than 0 or i = n− 2 then

RETURN failure
else GoTo Step 1 updating i = i+ 1.

Obviously, to check the isomorphism, ϕ has to preserve the vertices’ degrees
in H1 and H2, so in case of degree sequences with no equal elements ϕ equals
Id, the identity mapping.

Actually, in case of equal elements in the degree sequence of H1 and H2, ϕ
has, in general, to inspect the isomorphism for each possible permutations of the
related columns (at present, no better strategy is available).

On the other hand, Property 2 states that, by construction, in each element
H ∈ Dn, the columns related to vertices having the same degree are equal, so
again ϕ = Id is a suitable mapping. This equality does not hold, in general,
for each unique degree sequence (e.g., the degree sequence d = (1, 1, 1, 1, 1, 1)
is unique w.r.t. 3-hypergraphs, but the check of the isomorphism of two related
3-hypergraphs H1 and H2 needs, in general, ϕ to be different from Id).

The following example reveals a new potential research line concerning the
characterization and reconstruction of unique sequences that include, but are
not restricted to, those generated by Gen-pi:

Example 2 Consider the degree sequence d̂ = (25, 19, 19, 16, 16, 12, 10, 10, 5).
Its uniqueness is witnessed by the related matrix Md̂ in Fig. 2, and whose con-
struction seems to be not so far from that performed by Gen-pi. It remains an
open problem to find a suitable meaning to the words “not so far” that could
lead to a generalization of Gen-pi.

The following computations show that there does not exist an integer sequence
s such that d̂ = d̂s. Recall that, by Property 1, among all the sequences in [d̂], if
any, there exists one s such that s2 = s3, s4 = s5 and s7 = s8:
By the inequalities of Table 2 we obtain the result, in particular: by (1) and (3)
we obtain −2s8+s6+s9 > 0, by this last and (2) we obtain 2s2+2s5+s6+s9 > 0
and finally using (5) we reach 2s2 + s9 > 0, against (4).
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v1 v2 v3 v4 v5 v6 v7 v8 v9

1 1 1 0 0 0 0 0 0

. . .
1 1 0 0 0 0 0 0 1

1 0 1 1 0 0 0 0 0

. . .
1 0 1 0 0 0 0 0 1

1 0 0 1 1 0 0 0 0

. . .
1 0 0 1 0 0 0 0 1

1 0 0 0 1 1 0 0 0

. . .
1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 1 0 0

. . .
1 0 0 0 0 0 1 0 1

v1 v2 v3 v4 v5 v6 v7 v8 v9

0 1 1 1 0 0 0 0 0

. . .
0 1 1 0 0 0 0 1 0

0 1 0 1 1 0 0 0 0

. . .
0 1 0 1 0 0 0 1 0

0 1 0 0 1 1 0 0 0

. . .
0 1 0 0 1 0 0 1 0

0 0 1 1 1 0 0 0 0

. . .
0 0 1 1 0 0 0 1 0

0 0 1 0 1 1 0 0 0

. . .
0 0 1 0 1 0 0 1 0

Fig. 2. The incidence matrix M(d̂) of a 3-hypergraph having degree sequence d̂. On
the left the part of the matrix related to the edges involving v1, while on the right the
remaining ones. The 3-hypergraph is unique as can be seen by the construction of the
matrix.

(1, 6, 9) ∈ Hd̂ → s1 + s6 + s9 > 0 (1)
(2, 5, 8) ∈ Hd̂ → s2 + s5 + s8 > 0 (2)
(1, 7, 8) /∈ Hd̂ → s1 + 2s8 ≤ 0 (3)
(2, 3, 9) /∈ Hd̂ → 2s2 + s9 ≤ 0 (4)
(4, 5, 6) /∈ Hd̂ → 2s5 + s6 ≤ 0 (5)
Table 2. Inequalities related to some rows of the matrix Hd̂. Edges are represented by
triplets of vertex indices.

5 Conclusions and Open Problems

In this article, we consider the class Dn of degree sequences of 3-hypergraphs on
n vertices that extend those defined in [6] and that are computed starting from
a given integer sequence. First, we prove that each degree sequence d ∈ Dn is
unique, i.e., the related 3-hypergraph Hd is unique up to isomorphism, then we
define the representative integer sequence sd which leads to the reconstruction of
Hd. Some properties of sd are shown, in particular we determine a lower bound
to the growth rate of their maximal elements according to the length n, related
to the number of edges of the 3-hypergraph Hd. This result is useful to generate
and enumerate the elements of Dn, establishing the size of the class. In this
context, we point out two open problems:

i) define a variant of the Extend operator that allows to maintain the maxi-
mality property of the representatives;

ii) find the growth rate of the sequence {Mn}n>2 and characterize the maximal
representatives of each Dn.
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Furthermore, a simple algorithm is defined to reconstruct the maximal (in lex-
icographic order) sequences of Dn having prescribed sum of elements. From its
definition, we realize that a generalization to include all the elements of Dn

would involve some backtracking when elements less than zero appear in d′. We
propose the following research line:

iii) find some properties related to the computation of ds from s that prevent or,
at least, restrict the backtracking in Rec-max. This will lead to the solution
of the reconstruction problem related to Dn. As an alternative, prove that
it cannot be done in polynomial time.

Finally, the degree sequence d̂ in Example 2 deserves attention: it admits a
unique 3-hypergraph whose structure is close to that of the hypergraphs related
to the elements of Dn, but without being generated by an integer sequence. A
final open problem is proposed:

iv) define a notion of structure of the elements of Dn and expand the class
including unique degree sequences with similar structure. Investigate the
properties of the new class.
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