
31 May 2024

A Penalty Branch-and-Bound Method for Mixed Binary Linear Complementarity Problems / De Santis, M; de
Vries, S; Schmidt, M; Winkel, L. - In: INFORMS JOURNAL ON COMPUTING. - ISSN 1091-9856. - 34:(2022),
pp. 3117-3133. [10.1287/ijoc.2022.1216]

Original Citation:

A Penalty Branch-and-Bound Method for Mixed Binary Linear
Complementarity Problems

Conformità alle politiche dell'editore / Compliance to publisher's policies

Published version:
10.1287/ijoc.2022.1216

Terms of use:

Publisher copyright claim:

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1350100 since:

Questa è la versione Preprint (Submitted version) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

A Penalty Branch-and-Bound Method for
Mixed-Binary Linear Complementarity Problems

Marianna De Santis, Sven de Vries, Martin Schmidt, Lukas Winkel

Abstract. Linear complementarity problems (LCPs) are an important model-
ing tool for many practically relevant situations but also have many important
applications in mathematics itself. Although the continuous version of the
problem is extremely well studied, much less is known about mixed-integer
LCPs (MILCPs) in which some variables have to be integer-valued in a solution.
In particular, almost no tailored algorithms are known besides reformulations
of the problem that allow to apply general-purpose mixed-integer linear pro-
gramming solvers. In this paper, we present, theoretically analyze, enhance,
and test a novel branch-and-bound method for MILCPs. The main property of
this method is that we do not “branch” on constraints as usual but by adding
suitably chosen penalty terms to the objective function. By doing so, we can
either provably compute an MILCP solution if one exists or compute an approx-
imate solution that minimizes an infeasibility measure combining integrality
and complementarity conditions. We enhance the method by MILCP-tailored
valid inequalities, node selection strategies, branching rules, and warmstart-
ing techniques. The resulting algorithm is shown to clearly outperform two
benchmark approaches from the literature.

1. Introduction

The linear complementarity problem (LCP) is the task to find a vector z ∈ Rn
that satisfies

z ≥ 0, (1a)
q +Mz ≥ 0, (1b)

z>(q +Mz) = 0 (1c)

or to show that no such vector exists. The problem is denoted by LCP(q,M) for
a given real matrix M ∈ Rn×n and a real vector q ∈ Rn. LCPs are an important
tool for the modeling and analysis of equilibrium problems in economics, mechanics,
and other applied fields, but also have many important applications in mathematics
itself. We refer to the seminal textbook by Cottle et al. (2009) for a general overview
and to the book by Gabriel, Conejo, Fuller, et al. (2012) for a large collection of
applications in energy markets. As defined above, the classic LCP is stated in terms
of a continuous variable vector z. In practice, however, one also faces situations in
which a subset of variables is restricted to take integer values, i.e., zi ∈ Z for a given
index set I ⊆ {1, . . . , n}. This is relevant in situations in which an LCP solution
needs to satisfy additional integrality constraints. A particular example for such
a situation are market equilibrium problems (that can be modeled as LCPs) for
which certain equilibrium quantities need to be integer. Other situations include
those in which further combinatorial constraints are imposed on the LCP’s solution
such as equity-enforcement conditions for network flows or integer production levels.

Date: May 30, 2022.
2020 Mathematics Subject Classification. 90-08, 90Bxx, 90C11, 90C33.
Key words and phrases. Mixed-Integer Programming, Linear Complementarity Problems,

Mixed-Integer Linear Complementarity Problems, Branch-and-Bound, Penalty Methods.
1

2 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

For applications related to mixed-integer LCPs (MILCPs) we refer to, e.g., Gabriel
(2017), Gabriel, Conejo, Ruiz, et al. (2013), Gabriel, Siddiqui, et al. (2013), and
Weinhold and Gabriel (2020).

1.1. Literature Review. Although integer solutions of LCPs have been mentioned
first in 1940 by Val (1940), the study of the connection between LCPs and integer
programming (IP) started in the late 1980s, when it was shown that LCPs and IP
are equivalent (Pardalos 1988; Pardalos and Rosen 1988); see also Pardalos (1994)
or Pardalos (1996) for survey articles that also discuss the relation of LCPs and IP
problems. Some applications of LCPs with mixed-integer variables are also discussed
by Pardalos and Nagurney (1990), where the authors mention, e.g., polymatrix
games in pure strategies, general economic equilibria with integer activity levels,
or spatial price equilibrium problems with discrete commodities. To the best of
our knowledge, Pardalos and Nagurney (1990) also present the first algorithm to
solve integer LCPs. However, the idea of this algorithm is simple: enumerate all
continuous LCP solutions and check if any of them are purely integer-valued.

For continuous LCPs two of the classic questions are those of existence and
uniqueness of solutions, which are closely related to the study of matrix classes; see,
e.g., Cottle et al. (2009) for an overview. For purely integer-valued LCP solutions,
the respective matrix class I has been introduced by Chandrasekaran et al. (1998)
and Cunningham and Geelen (1998) and necessary as well as sufficient conditions
are derived for that a given matrix is in I. The class I is particularly important for
mixed-integer LCPs since it contains those integer-valued matrices for which there
is an integral solution to the LCP(q,M), with q integral as well, whenever there is
a continuous solution at all. Chandrasekaran et al. (1998) also discuss the “peeling
algorithm”, which is an iterative method to find integer solutions of LCPs and show
that it is correct when applied to specific matrix classes. Further and more recent
studies of existence of integer solutions are given by Dubey and Neogy (2018) and
Sumita et al. (2018).

Compared to the larger number of theoretical papers mentioned so far, the
literature on algorithms for mixed-integer LCPs is rather sparse. In the context
of energy applications, Gabriel, Conejo, Ruiz, et al. (2013) reformulate the mixed-
integer LCP as a mixed-integer linear problem (MILP) using disjunctive constraints
and big-M constants. Unfortunately, this cannot be seen as a general-purpose
method since such big-Ms are not always available. Gabriel (2017) exploits the
relation of complementarity problems to the median function (Gabriel 1998; Gabriel
and Moré 1997), which again is used to state a proper MILP to solve the mixed-
integer LCP. This approach, however, again relies on the choice of big-M constants.
Furthermore, Fomeni et al. (2019a,b) exploit reformulation-linearization techniques
(RLT) to solve the mixed-integer LCP. Finally, Gabriel, Leal, et al. (2021) use purely
continuous reformulations of MILCPs to solve these problems to local optimality by
exploiting general-purpose nonlinear programming solvers. To sum up, almost all
known solution approaches are based on a reformulation of the mixed-integer LCP
so that state-of-the-art MILP solvers can be used.

1.2. Contribution. We present a novel branch-and-bound method that explicitly
exploits the structure of mixed-integer LCPs and that has the following main
properties. First, in classic branch-and-bound methods, relaxations are solved
and the feasible set is tightened again by branching on, e.g., integer variables or
constraints. Consequently, the objective function stays the same in the entire
branch-and-bound tree but the constraint set is extended as one goes down the
tree starting from the root node. Our branch-and-bound approach for mixed-
integer LCPs follows a different rationale. Here, the constraint set does not change

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 3

over the entire tree and “branching” is realized by adding suitably chosen penalty
terms to the objective, i.e., the number of terms in our objective function grows
if we go down the tree starting from the root node. In order to obtain efficiently
solvable problems in the nodes of our branch-and-bound tree, we restrict ourselves
here to positive semi-definite LCP matrices M . Second, for practically relevant
instances, the existence of mixed-integer feasible solutions of LCPs is often hard
to achieve. Thus, it is crucial for practice to algorithmically deal with the case of
non-existence of solutions as well. Since non-existence is often the case, one is also
interested in approximate feasible solutions, i.e., points that minimize a certain
infeasibility measure that combines both the violation of integrality conditions
as well as of complementarity constraints; see, e.g., Gabriel, Conejo, Ruiz, et al.
(2013), where similar relaxations are considered. Our penalty-based branch-and-
bound approach is explicitly tailored to deal with the case of non-existence: if
a mixed-integer feasible LCP solution exists, our algorithm provably finds one—
otherwise it computes an approximate feasible solution that minimizes a certain
infeasibility measure. Third, our branch-and-bound framework allows to incorporate
further algorithmic enhancements. Here, we present mixed-integer LCP specific
valid inequalities, discuss tailored node selection strategies, branching rules, and
warmstarting techniques. These all are general-purpose enhancements that can be
applied to any given MILCP. However, it is a dedicated feature of our approach that
it can be extended by problem-specific techniques (such as problem-specific cutting
planes or branching rules) if they are at hand for a concrete application problem.
Fourth and finally, we test the penalty branch-and-bound method numerically and
compare it with two benchmarks: an MILP reformulation of the mixed-integer LCP
using big-Ms as well as a straightforward MIQP reformulation—both solved with
the state-of-the-art mixed-integer programming solver Gurobi. It turns out that our
method (extended by the above mentioned enhancements) clearly outperforms both
benchmark approaches.

1.3. Organization of the Paper. The remainder of the paper is organized as
follows. In Section 2, we present the problem statement and discuss a reformulation
of the mixed-integer LCP that is later needed for the derivation of the penalty branch-
and-bound method. The method is described in Section 3, where we also prove the
correctness of the method by proving the correctness of the branching as well as of
the bounding step. Afterward, in Section 4, we discuss further enhancements of the
algorithm to improve its performance, which we evaluate in a numerical study in
Section 5. Finally, we conclude the paper in Section 6.

2. Problem Statement and Reformulations

One important tool in the analysis and the resolution of the LCP (1) is the
following reformulation as a quadratic problem (QP):

min
z∈Rn

z>(q +Mz) (2a)

s.t. z ≥ 0, q +Mz ≥ 0. (2b)

It is easy to see that the LCP (1) has a solution if and only if the QP (2) has an
optimal solution with objective function value of zero. The mixed-integer linear
complementarity problem (MILCP) that we consider in this paper is the task to

4 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

find a vector z ∈ Rn that satisfies

z ≥ 0, (3a)
q +Mz ≥ 0, (3b)

z>(q +Mz) = 0, (3c)
zi ∈ {0, 1} for i ∈ I, (3d)

or to show that no such vector exists. Here, I ⊆ {1, . . . , n} is the set of indices for
which we require the variable to be binary. We denote this problem by LCP(q,M, I).
For the ease of presentation, we restrict ourselves to mixed-binary LCPs, which is,
of course, equivalent to considering mixed-integer LCPs for bounded integers.

Besides these solution approaches from the literature that are all based on
reformulating the problem as an MILP, another straightforward possibility to
compute a solution is by solving the reformulation as the mixed-integer quadratic
problem (MIQP)

min
z∈Rn

z>(q +Mz) (4a)

s.t. z ≥ 0, q +Mz ≥ 0, (4b)
zi ∈ {0, 1} for i ∈ I. (4c)

Note that this MIQP is bounded from below by 0. Hence, the MILCP (3) has a
solution if and only if there is an optimal solution of the MIQP (4) with objective
function value of 0. In practice, however, different mathematical challenges arise.
The combination of integrality and complementarity conditions may make it unlikely
that there exists a solution of the MILCP. Since the existence of solutions cannot
be expected in general, approximate solutions are of interest in many cases. Here,
approximate solutions are points that violate the “challenging conditions”, i.e., the
integrality conditions as well as the complementarity constraints, as little as possible.
This means, we call points (ρ, σ)-approximate solutions if they are feasible for the
relaxed version

z ≥ 0, (5a)
q +Mz ≥ 0, (5b)

z>(q +Mz) ≤ ρ, (5c)
zi ∈ [0, σi] ∪ [1− σi, 1] for i ∈ I, (5d)

of (3). Here, ρ ≥ 0 measures the violation of the complementarity constraints,
while σi ≥ 0, i ∈ I, measure the violation of integrality. Of course, one wants to
choose these parameters as small as possible. We recover the original MILCP (3)
for ρ = 0 and σi = 0, i ∈ I. For what follows, we do not consider a relaxation of the
linear constraints (3a) and (3b) as they are usually less restrictive compared to the
combination of integrality and complementarity conditions of the problem.

In the next section, we propose a nonconvex reformulation of Problem (3) that
includes a relaxation of the integrality and complementarity conditions as shown
in (5). We use this reformulation to derive an algorithm to solve this reformulation to
global optimality. This especially means that if the MILCP is solvable, we compute
a solution for the MILCP in finite time. On the other hand, if the MILCP is not
solvable, we compute a solution that minimizes a certain measure of violation of
the integrality and complementarity conditions. We call the proposed algorithm
a “penalty branch-and-bound method” since we do branch without introducing
further inequality constraints to the problem in the parent node but via introducing
suitably chosen penalty terms. Thus, while branching, our feasible set stays the
same and the objective function is extended by adding the penalty terms, which is

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 5

exactly the other way around compared to classic branch-and-bound in mixed-integer
optimization. All details are presented in the next section. To obtain tractable
problems to be solved at every node of the branch-and-bound tree, we restrict
ourselves to matrices M that are positive semi-definite.

3. A Penalty Branch-and-Bound Method

We look for approximate solutions of (3), i.e., feasible solutions of (5) for which ρ
and σ are minimized. To this end, we consider an optimization problem in which
a combination of the violation of the complementarity conditions (3c) and the
violation of the binary conditions (3d) is minimized over the feasible set

Z := {z ∈ Rn : z ≥ 0, q +Mz ≥ 0, zi ≤ 1 for i ∈ I} .
Note that Z is defined by the linear constraints (3a) and (3b) together with the
continuous relaxation of the binary conditions. A suitable measure for the violation
of the complementarity conditions (3c) is simply given by z>(q + Mz), which is
non-negative on Z. On the other hand, the violation of the binary conditions (3d)
can be measured in different ways. Several penalty functions have been proposed
in the literature; see, e.g., De Santis et al. (2013), Giannessi and Tardella (1998),
Lucidi and Rinaldi (2010), Rinaldi (2009), and Zhu (2003). For our purposes, a
concave and piecewise linear penalty function is preferred, as it permits to consider
only linear objective terms along the nodes of our branch-and-bound tree. Thus, we
choose the classic penalty function∑

i∈I
min{zi, 1− zi}

and obtain the following nonlinear, nonconvex, and nonsmooth reformulation

min
z∈Z

f(z) := αz>(q +Mz) + (1− α)
∑
i∈I

min{zi, 1− zi}. (6)

Here, α ∈ (0, 1) is a parameter controlling the emphasis that is put on each of the two
penalty terms. Note that if (3) is solvable, Problem (6) is an equivalent reformulation,
i.e., its global solutions are solutions of (3)—and vice versa. Otherwise, if (3) is not
solvable, the global solutions of problem (6) are approximate solutions of (3) with
the smallest violation of the complementarity and the integrality conditions. Here,
the violation of both the complementarity as well as the integrality conditions are
measured in the `1 norm. There is no clear relationship between the parameter α
used in (6) and the parameters ρ and σ used in (5). However, we can expect that
choosing α close to 1 would lead to (ρ,σ)-approximate solutions with small ρ, or,
in other words, (ρ,σ)-approximate solutions closer to satisfy the complementarity
conditions. On the other hand, choosing α close to zero, would put more emphasis
to the penalization of the integrality constraints and then should lead to smaller
σi, i ∈ I.

It is our aim now to devise a penalty branch-and-bound method to solve Prob-
lem (6) that exploits the specific structure of the objective function f in (6).

In classic branch-and-bound approaches for mixed-integer problems, branching is
done by starting with the continuous relaxation and by creating different subproblems
in which variables, which are fractional in the relaxation’s solution, are fixed to
certain values or the feasible set is divided into disjoint sets using inequalities.
Global upper bounds are derived by feasible points and local lower bounds are
obtained from solving the optimization problems in the nodes of the branch-and-
bound tree. In our method, however, we start with an α-scaled objective function
of the continuous relaxation (2) and create subproblems by adding different penalty
terms (for fractional variables) to the objective function. Thus, in contrast to classic

6 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

branch-and-bound methods, the feasible set remains the same over the entire tree.
The bounding is done in analogy to a classic branch-and-bound method as the
objective values of the node problems yield local lower bounds and any feasible
solution yields a global upper bound.

3.1. Branching. At the root node of the branch-and-bound tree, we solve the
convex relaxation

min
z∈Z

αz>(q +Mz)

of Problem (6) that is obtained by neglecting the second term in the objective
function. Afterward, two child nodes are created as follows. Each node corresponds
to a new convex QP, in which we add either (1−α)zj or (1−α)(1−zj) to the objective
function. To this end, we choose an index j ∈ I that satisfies min{z∗j , 1− z∗j } > 0
in the solution z∗ of the root node relaxation. We will discuss more sophisticated
branching rules in Section 4.

In particular, the problem of the first child node reads

min
z∈Z

f1(z) := αz>(q +Mz) + (1− α)zj ,

which aims to drive zj to 0 in the respective subtree, while the problem of the second
child node is given by

min
z∈Z

f2(z) := αz>(q +Mz) + (1− α)(1− zj),

which aims to drive zj to 1 in the respective subtree. The idea is to split the term
min{zj , 1− zj} occurring in (6) into two new problems and taking the minimum of
both these problems, i.e.,

min
z∈Z

αz>(q +Mz) + (1− α) min{zj , 1− zj} = min

{
min
z∈Z

f1(z),min
z∈Z

f2(z)

}
.

Note that both zj and 1 − zj are non-negative on the feasible set Z. At an
arbitrary node of the branch-and-bound tree, we thus have a convex-quadratic
problem in which non-negative terms (1− α)zj and (1− α)(1− zk), j, k ∈ I, have
been added to the convex-quadratic function αz>(q + Mz). We define I0 to be
the set of indices j ∈ I for which (1 − α)zj has been added and I1 to be the set
of indices j ∈ I for which (1 − α)(1 − zj) has been added. This definition is in
close analogy to the sets of fixed variables in a classic branch-and-bound method
for mixed-binary problems. Consequently, every node N is uniquely determined
by N = (I0, I1). In the following, the objective function at a node N = (I0, I1) is
denoted by

fN (z) = αz>(q +Mz) + (1− α)

∑
j∈I0

zj +
∑
j∈I1

(1− zj)

and the optimal solution of that node is denoted by z∗N . Thus, the problem that
has to be addressed at a node N = (I0, I1) is of the form

min
z∈Z

fN (z). (7)

Without loss of generality, we assume that the problems in the first child nodes
are always obtained adding the terms (1− α)zj , j ∈ I0, which we call “downwards
branching”. The problems in the second child nodes are obtained adding the terms
(1− α)(1− zj), j ∈ I1, which we call “upwards branching”.

As a first result, we show that enumerating all possible partitions (I0, I1) of I,
i.e., I = I0 ∪ I1 with I0 ∩ I1 = ∅, yield the optimal value of Problem (6). In other
words, we show that the minimum among the optimal solutions of the problems of

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 7

all leaf nodes of the fully enumerated branch-and-bound tree is the optimal solution
of Problem (6).

Lemma 1. Let z∗ be an optimal solution of Problem (6). Then, it holds

f(z∗) = min {fN (z∗N) : N = (I0, I1) with I0 ∪ I1 = I and I0 ∩ I1 = ∅} .

Proof. Note that the feasible set does not change from one N to another. Hence,
all optimal points are feasible for all nodes. Let N∗ = (I∗0 , I

∗
1) be the leaf with

I∗0 := {i ∈ I : z∗i ≤ 1− z∗i } and I∗1 := {i ∈ I : z∗i > 1− z∗i }. We then have

f(z∗) = α(z∗)>(q +Mz∗) + (1− α)
∑
j∈I

min
{
z∗j , 1− z∗j

}
= α(z∗)>(q +Mz∗) + (1− α)

∑
j∈I∗0

z∗j + (1− α)
∑
j∈I∗1

(1− z∗j)

= fN∗(z
∗) ≥ fN∗(z∗N∗).

Hence,

f(z∗) ≥ min {fN (z∗N) : N = (I0, I1) with I0 ∪ I1 = I and I0 ∩ I1 = ∅}
holds. To show the other inequality, we assume that there exists a node N ′ = (I ′0, I

′
1)

with I ′0 ∪ I ′1 = I and I ′0 ∩ I ′1 = ∅ such that

fN ′(z
∗
N ′) < f(z∗)

holds. We thus obtain fN ′(z∗N ′) < f(z∗N ′) or, equivalently,

α(z∗N ′)
>(q +Mz∗N ′) + (1− α)

∑
j∈I′0

z∗N ′,j + (1− α)
∑
j∈I′1

(1− z∗N ′,j)

< α(z∗N ′)
>(q +Mz∗N ′) + (1− α)

∑
j∈I

min
{
z∗N ′,j , 1− z∗N ′,j

}
.

This implies∑
j∈I′0

(
z∗N ′,j −min

{
z∗N ′,j , 1− z∗N ′,j

})
+
∑
j∈I′1

(
1− z∗N ′,j −min

{
z∗N ′,j , 1− z∗N ′,j

})
< 0,

which is impossible as
z∗N ′,j ≥ min

{
z∗N ′,j , 1− z∗N ′,j

}
and

1− z∗N ′,j ≥ min
{
z∗N ′,j , 1− z∗N ′,j

}
.

Hence,

f(z∗) ≤ min {fN (z∗N) : N = (I0, I1) with I0 ∪ I1 = I and I0 ∩ I1 = ∅}
holds and the claim follows. �

As a consequence of this lemma, we know that by iterating over all possible
partitions of I, we get an optimal solution of Problem (6), which is key to prove the
correctness of the overall penalty branch-and-bound method.

3.2. Bounding. Similar to classic branch-and-bound methods, we can establish
local lower bounds on the optimal solution for the different nodes and global upper
bounds for the optimal solution of Problem (6). Obviously, the value of f at any
feasible point is a global upper bound. Hence, f(z∗) ≤ f(z∗N) holds with N being an
arbitrary node of the branch-and-bound tree. We denote by z∗inc the incumbent, i.e.,
the point so that f(z∗inc) constitutes the best known upper bound for Problem (6)
found so far.

Next we prove that the optimal value of the problem defined at a certain node is
a lower bound for the optimal value of the problem defined at any of its successor

8 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

nodes. While this is rather trivial for classic branch-and-bound methods, this result
is harder to establish for the penalty branch-and-bound method considered here.

Lemma 2. Let N ′ = (I ′0, I
′
1) be a successor of some node N = (I0, I1) in the

branch-and-bound tree, i.e., I0 ⊆ I ′0 and I1 ⊆ I ′1 holds. Then,

fN (z∗N) ≤ fN ′(z∗N ′)
holds.

Proof. Since the feasible set does not change during the branching process all feasible
points remain feasible for all nodes. Thus,

fN ′(z
∗
N ′) = α (z∗N ′)

>(q +Mz∗N ′) + (1− α)
∑
j∈I′0

z∗N ′,j + (1− α)
∑
j∈I′1

(1− z∗N ′,j)

= α (z∗N ′)
>(q +Mz∗N ′) + (1− α)

∑
j∈I0

z∗N ′,j + (1− α)
∑
j∈I1

(1− z∗N ′,j)

+ (1− α)
∑

j∈I′0\I0

z∗N ′,j + (1− α)
∑

j∈I′1\I1

(1− z∗N ′,j)

≥ α (z∗N ′)
>(q +Mz∗N ′) + (1− α)

∑
j∈I0

z∗N ′,j + (1− α)
∑
j∈I1

(1− z∗N ′,j)

= fN (z∗N ′) ≥ fN (z∗N).

Note that the first inequality is due to the fact that z∗N ′,j ≥ 0 and (1− z∗N ′,j) ≥ 0
for j ∈ I on the feasible set. The second inequality follows from optimality. �

Lemma 2 implies that in the case that Problem (7) at node N leads to a
solution z∗N such that

fN (z∗N) ≥ f(z∗inc)

holds, we have that every leaf of the subtree rooted in N cannot yield a better
solution than the best known solution z∗inc. Hence, we can prune the subtree rooted
in N . Note that in our branch-and-bound method, there is no direct analogy to
pruning due to feasibility as done in classic branch-and-bound methods: As soon
as we find a feasible solution for Problem (3) we stop the algorithm. Pruning
because of infeasibility is also not possible here, since the feasible set does not
change throughout the process, except for the cuts introduced later.

3.3. The Algorithm. We are now ready to formally state the basic scheme of our
penalty branch-and-bound method in Algorithm 1.

Theorem 1. Algorithm 1 terminates after finitely many steps with a global optimal
solution of Problem (6).

Proof. The algorithm terminates after finitely many steps since the set I is finite.
Thus, at some point, I = I0∪I1 holds and we can no longer find a branching variable
in the node and no child node can be generated. Assume now that fN (z∗N) < f(z∗inc)
always holds in the second if-clause. Then the correctness of the algorithm follows
from Lemma 1, as we iterate through the complete branch-and-bound tree. Finally,
in the cases, in which fN (z∗N) ≥ f(z∗inc) holds, the nodes that are not added can be
excluded due to Lemma 2. �

4. Further Algorithmic Enhancements

Similar to classic branch-and-bound methods, there are different possibilities to
improve the performance of the overall algorithm. Both the choice of the next node
to be solved and the choice of the next index to branch on are not yet specified
in Algorithm 1—although it is known that these aspects have a significant impact

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 9

Algorithm 1 A Penalty Branch-and-Bound Algorithm for MILCPs

Input: q ∈ Rn, M ∈ Rn×n, ∅ ⊆ I ⊆ [n], α ∈ (0, 1)
Output: A global optimum z∗ of Problem (6).
Set N ← {(∅, ∅)}.
Set finc ←∞.
Set z∗inc ← none.
while N 6= ∅ do

Choose N = (I0, I1) ∈ N .
Set N ← N \ {N}.
Compute z∗N ∈ arg min{fN (z) : z ∈ Z}.
if f(z∗N) < finc then

Set z∗inc ← z∗N .
Set finc ← f(z∗N).

if fN (z∗N) < finc and I \ (I0 ∪ I1) 6= ∅ then
Choose j ∈ I \ (I0 ∪ I1).
Set N ← N ∪ {(I0 ∪ {j}, I1), (I0, I1 ∪ {j})}.

return z∗inc

on the performance of the algorithm. We address these choices in Sections 4.1
and 4.2. In Section 4.3, we also discuss the possibility of warmstarting the problem
of each node with the optimal basis of the parent node. One of the most important
ingredients of classic branch-and-bound algorithms are additional valid inequalities
that can be incorporated in the problems of the nodes to improve the dual bound.
We investigate two different types of valid inequalities for MILCPs in Section 4.4.

4.1. Node Selection. In our implementation of the penalty branch-and-bound
algorithm, we consider three different node selection strategies. The first two are
depth- and breadth-first search. The third strategy is based on Lemma 2 and will
be referred to as the “lower-bound-push strategy”.

From Lemma 2, we know that the optimal value fN (z∗N) of the problem defined
at a node N is a local lower bound for the subtree rooted in N . Hence, the global
lower bound is the smallest value among the lower bounds obtained from nodes that
have unsolved children. As the node to be solved next, we thus select a child of the
node N that has the lowest objective value fN (z∗N). When both children of N are
not yet solved, we take the left child if z∗N,j ≤ 0.5 with j ∈ I being the index that
has been branched on last and the right child otherwise. Then, we choose the child
node with the smaller value as we would expect this to result in a smaller lower
bound. This lower bound may then be improved in the new node.

In our numerical experiments, we consider depth- and breadth-first search strate-
gies as a benchmark for the lower-bound-push strategy; see Section 5.

4.2. Branching Rules. It is known that the performance of branch-and-bound
methods for mixed-integer problems strongly depends on the branching strategy
(Achterberg et al. 2005), i.e., on how to select the next variable to branch on.

In every node of our penalty branch-and-bound method, we need to choose an
index j ∈ I to define the objective functions of the problems in the child nodes.
Clearly, we do not branch on a variable zj , j ∈ I, if this variable is integer-valued in
this node.

In the following, we propose two different branching strategies: “pseudocost
branching”, which is well-known from mixed-integer programming and “MIQP-based
branching”. In our numerical experiments, we compare these two strategies with

10 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

random branching (i.e., the naive approach of choosing the index j ∈ I at random)
and most-violated branching (i.e., choosing the index of the variable closest to 1/2).

4.2.1. Pseudocost Branching. As a first advanced approach, we consider a variant of
pseudocost branching—a technique commonly used in branch-and-bound algorithms
for mixed-integer programs that goes back to Benichou et al. (1971). The idea of
pseudocost branching is to measure the expected objective gain when branching
on a specific variable index. The strategy is to keep track of the change in the
objective function when an index j ∈ I has been chosen to be branched on. The rule
then chooses the index that is predicted to have the largest impact on the objective
function based on these past changes.

We transfer this idea to our context in the following. Let ϕ1
N,j be the objective

gain per unit change when branching upwards on variable j ∈ I at node N :

ϕ1
N,j :=

f(z∗N1
)− f(z∗N)

dz∗N1,j
e − z∗N1,j

.

Here, N1 is the child of N created by upwards branching. We denote by ψ1
j the

expected objective gain per unit change when branching upwards on variable j. To
this end, let N j be the set of nodes where j ∈ I is chosen as the variable to branch
on. Then, we define ψ1

j as

ψ1
j :=

1

|N j |
∑
N∈Nj

ϕ1
N,j .

Analogously, we define ϕ0
N,j and ψ0

j for branching downwards on variable j ∈ I.
The average gain is then calculated as

sj := µmin
{
ψ0
j · (z∗N0,j − bz

∗
N0,jc), ψ

1
j · (dz∗N1,je − z

∗
N1,j)

}
+ (1− µ) max

{
ψ0
j · (z∗N0,j − bz

∗
N0,jc), ψ

1
j · (dz∗N1,je − z

∗
N1,j)

}
with µ ∈ (0, 1). The pseudocost-based branching candidate then is the index j ∈ I
with the largest score sj . At the beginning of our branch-and-bound, we initialize
the average ψ0,1

j with 1. If at a certain node N , we have not yet branched on a
candidate j ∈ I, namely N j = ∅, we initialize that ψ0,1

j with the average of all
other ψ0,1

i for i ∈ I with i 6= j.

4.2.2. MIQP-Based Branching. As a further branching rule that we use in the
penalty branch-and-bound method, we propose a strategy based on solving a single-
binary-variable MIQP for each integer variable in the presolve phase of the algorithm.
Again, we aim at sorting the indices j ∈ I so that we branch on those indices first
that are expected to give good lower bounds on the optimal solution. For every
index j ∈ I, we solve the following MIQP with a single integer variable:

min
z∈Rn

z>(q +Mz) (8a)

s.t. q +Mz ≥ 0, z ≥ 0, (8b)
zj ∈ {0, 1}. (8c)

As discussed in the introduction, we know that it is likely that the overall MILCP
has no solution and that this is due to the combination of complementarity as well
as integrality conditions. By solving all |I| many MIQPs (8) we measure the impact
of the ith binary variable on the infeasibility of the problem (if it is infeasible at
all). The indices j ∈ I are then sorted with decreasing optimal objective function
values of Problem (8). Moreover, infeasible problems are formally assigned the
objective function value ∞. The resulting branching strategy then chooses the
branching candidate on top of the list while skipping all integer-feasible indices as

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 11

well as all indices that have been branched on already. Additionally, we can use the
optimal solutions of each of these MIQPs to constitute a first upper bound on our
branch-and-bound process, as each of the points is also feasible for our method.

4.3. Warmstarting. Recall that all nodes of the search tree share the same feasible
set and that the objective functions change only slightly from a parent node to its
child nodes. This allows for warmstarting the QP solver for solving the child nodes.
To this end, we take the optimal primal basis of the parent node as the starting
basis for the child nodes.

4.4. Valid Inequalities. In this section, we propose two classes of inequalities that
are not valid for the overall problem (6) in the classic sense but that are valid locally.

4.4.1. Simple Cuts. The first class of inequalities are called simple cuts. Assume that
we just solved node N and that we decide to branch on the variable zj , j ∈ I. Then,
in the nodes corresponding to the downwards branching subtree, we add the bound
constraint zj ≤ 0.5, while in the nodes belonging to the upwards branching subtree,
we add the bound constraint zj ≥ 0.5. Although this sounds rather simple, the effect
of including these cuts is significant (see Section 5) and proving the correctness of
these inequalities is also not as easy as stating them.

We first show that the optimal solution of Problem (6) is not cut off when
introducing the simple cuts. To this end, we prove that the minimum among the
optimal solutions of the leaf problems that we obtain when including the simple
cuts still is the optimal solution of Problem (6).

Lemma 3. Let

z∗N ∈ arg min {fN (z) : z ∈ Z, zI0 ≤ 0.5, zI1 ≥ 0.5}
be an optimal solution at node N when simple cuts are included. Then,

f(z∗) = min {fN (z∗N) : N = (I0, I1) with I0 ∪ I1 = I}
holds.

Proof. Let N∗ = (I∗0 , I
∗
1) be the leaf defined by I∗0 := {j ∈ I : z∗j ≤ 1 − z∗j } and

I∗1 := {j ∈ I : z∗j > 1− z∗j }. We then have

f(z∗) = α(z∗)>(q +Mz∗) + (1− α)
∑
i∈I

min {z∗i , 1− z∗i }

= α(z∗)>(q +Mz∗) + (1− α)
∑
j∈I∗0

z∗j + (1− α)
∑
j∈I∗1

(1− z∗j)

= fN∗(z
∗) ≥ fN∗(z∗N∗).

The last inequality holds because, by definition, we have z∗j ≤ 0.5 for all j ∈ I∗0
and z∗j ≥ 0.5 for all j ∈ I∗1 . Thus, z∗ is feasible for N = (I∗0 , I

∗
1), which is a leaf by

definition. Hence,

f(z∗) ≥ min {fN (z∗N) : N = (I0, I1) with I0 ∪ I1 = I}
holds. To show the other inequality, we assume that there exists a node N ′ = (I ′0, I

′
1)

with I ′0 ∪ I ′1 = I such that
fN ′(z

∗
N ′) < f(z∗)

holds. With f(z∗) ≤ f(z∗N ′), we obtain

fN ′(z
∗
N ′) < f(z∗N ′)

12 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

or, equivalently,

α(z∗N ′)
>(q +Mz∗N ′) + (1− α)

∑
j∈I′0

z∗N ′,j + (1− α)
∑
j∈I′1

z∗N ′,j

< α(z∗N ′)
>(q +Mz∗N ′) + (1− α)

∑
j∈I

min
{
z∗N ′,j , 1− z∗N ′,j

}
.

This implies∑
j∈I′0

(
z∗N ′,j −min

{
z∗N ′,j , 1− z∗N ′,j

})
+
∑
j∈I′1

(
1− z∗N ′,j −min

{
z∗N ′,j , 1− z∗N ′,j

})
< 0,

which is a contradiction by definition. Hence,

f(z∗) ≤ min {fN (z∗N) : N = (I0, I1) with I0 ∪̇ I1 = I}
holds and the claim follows. �

As a second result, we show that Lemma 2 is also valid when simple cuts are
used in the branch-and-bound method.

Lemma 4. Let N ′ = (I ′0, I
′
1) be a successor of some node N = (I0, I1) in the

branching tree, i.e., I0 ⊆ I ′0 and I1 ⊆ I ′1 holds. Further, let z∗N , z
∗
N ′ be optimal

solutions of nodes N and N ′, respectively, when simple cuts are used. Then,

fN (z∗N) ≤ fN ′(z∗N ′)
holds.

Proof. By definition, we have

fN ′(z
∗
N ′) = α(z∗N ′)

>(q +Mz∗N ′) + (1− α)
∑
j∈I′0

z∗N ′,j + (1− α)
∑
j∈I′1

(1− z∗N ′,j)

= α(z∗N ′)
>(q +Mz∗N ′) + (1− α)

∑
j∈I0

z∗N ′,j + (1− α)
∑
j∈I1

(1− z∗N ′,j)

+ (1− α)
∑

j∈I′0\I0

z∗N ′,j + (1− α)
∑

j∈I′1\I1

(1− z∗N ′,j)

≥ α(z∗N ′)
>(q +Mz∗N ′) + (1− α)

∑
j∈I0

z∗N ′,j + (1− α)
∑
j∈I1

(1− z∗N ′,j)

= fN (z∗N ′) ≥ fN (z∗N).

Note that the first inequality holds since z∗N ′,j ≥ 0 and (1− z∗N ′,j) ≥ 0 are valid on
the feasible set. The last inequality holds because the feasible sets of the nodes are
nested in the sense, that the feasible set of node N ′ is a subset of the feasible set of
node N . Hence, every feasible point of N ′ is also feasible for N . �

Theorem 2. Algorithm 1 remains correct when simple cuts

zj ≤ 0.5 for all j ∈ I0, zj ≥ 0.5 for all j ∈ I1
are added at any node N = (I0, I1).

Proof. From Lemma 3, we know that the optimal solution of Problem (6) is the
optimal solution of a leaf node. From Lemma 4, we know that the objective value of
every ancestor node of a leaf yields a lower bound for the objective value of this leaf.
Hence, if we have a feasible point z∗inc of Problem (6) and some node N for which

f(z∗inc) ≤ fN (z∗N)

holds, we know that z∗inc is a solution that is as good as every solution that any
leaf being a successor of N can yield. Thus, we can prune the subtree rooted in N .
The same applies for the case in which a node problem becomes infeasible due to

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 13

the introduction of cuts. Hence, Algorithm 1 remains correct when simple cuts are
used. �

4.4.2. Optimality Cuts. The second class of inequalities that we introduce are so-
called optimality cuts. In order to define them, we use the necessary optimality
conditions for Problem (6); see, e.g., Corollary 3.68 in Beck (2017). Let z∗ ∈ Z be
an optimal solution of Problem (6), then g ∈ ∂f(z∗) exists such that

g>(z − z∗) ≥ 0 for all z ∈ Z.
Hence, if we find a point z∗ during our branch-and-bound search that does not fulfill
this inequality for any known feasible point z ∈ Z, we can cut off z∗. In particular,
we derive the valid inequality

g>z′ ≥ g>z,
with z′ ∈ Z being some fixed feasible solution. Furthermore, for any ḡ, g̃ ∈ ∂f(z)
such that ḡ>z′ ≥ g>z′ and g̃>z ≤ g>z holds, the following inequality is also valid:

ḡ>z′ ≥ g̃>z.
This will be necessary to convexify the valid inequality.

Lemma 5. Let z′ ∈ Z be a feasible solution and let N = (I0, I1). Then,

αz>(q + 2Mz) + (1− α)
∑
j∈I0

zj + (1− α)
∑
j∈I1

(1− zj)− (1− α)|I \ I0|

≤ α(z′)>(q + 2Mz) + (1− α)
∑
j∈I\I1

z′j

is a valid inequality for the subtree rooted at node N .

Proof. Let z′ ∈ Z, z ∈ Z, and g ∈ ∂f(z) be given. We need to underestimate g>z
and overestimate g>z′. The ith component of g ∈ ∂f(z) is given by

gi = αqi + α
∑
j∈[n]

2Mi,jzj

+(1− α), for zi < 0.5, i ∈ I,
−(1− α), for zi > 0.5, i ∈ I,
+(1− α)yi, for zi = 0.5, i ∈ I,
+0, for i /∈ I,

for some yi ∈ [−1, 1].
We can then underestimate g>z as follows:

g>z = αz>(q + 2Mz) + (1− α)

 ∑
i∈I:
zi<0.5

zi −
∑
i∈I:
zi>0.5

zi +
∑
i∈I:
zi=0.5

ygi zi

≥ αz>(q + 2Mz) + (1− α)

 ∑
i∈I:
zi<0.5

zi −
∑
i∈I:
zi>0.5

zi −
∑
i∈I:
zi=0.5

zi

= αz>(q + 2Mz) + (1− α)

 ∑
i∈I:
zi<0.5

zi +
∑
i∈I:
zi≥0.5

(1− zi)−
∑
i∈I:
zi≥0.5

1

≥ αz>(q + 2Mz) + (1− α)

∑
i∈I

min{zi, 1− zi} − (1− α)|I|

≥ αz>(q + 2Mz) + (1− α)
∑
i∈I0

zi + (1− α)
∑
i∈I1

(1− zi)− (1− α)|I|.

14 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Note that the term |I| can be replaced by |I \ I0| if simple cuts are included. On
the other hand, we can overestimate g>z′ as follows:

g>z′ = α(z′)>(q + 2Mz) + (1− α)

 ∑
i∈I:
zi<0.5

z′i −
∑
i∈I:
zi>0.5

z′i +
∑
i∈I:
zi=0.5

ygi z
′
i

≤ α(z′)>(q + 2Mz) + (1− α)

 ∑
i∈I:
zi<0.5

z′i −
∑
i∈I:
zi>0.5

z′i +
∑
i∈I:
zi=0.5

z′i

= α(z′)>(q + 2Mz) + (1− α)

 ∑
i∈I:
zi≤0.5

z′i −
∑
i∈I:
zi>0.5

z′i

≤ α(z′)>(q + 2Mz) + (1− α)

∑
i∈I\I1

z′i − (1− α)
∑
i∈I1:
zi 6=0.5

z′i

≤ α(z′)>(q + 2Mz) + (1− α)
∑
i∈I\I1

z′.

The combination of the two inequalities yields the lemma. �

5. Numerical Results

We start with describing the software and hardware setup of our numerical tests
and discuss the test set. We implemented the penalty branch-and-bound method
presented in Section 3 in Python 3.7. All node problems are solved with the QP
solver of Gurobi 9.1.2 and all the tests were run on an Intel Xeon CPU E5-2699 v4 @
2.20GHz (88 cores) with 756GB RAM. In this section, we refer to the implementation
of Algorithm 1 as MILCP-PBB. For our tests, we consider instances that we randomly
generated as follows. The matricesM ∈ Rn×n have been created using the sprandsym
function of MATLAB for sizes n ∈ {50, 100, 150, 200, 250, 300, 350, 400, 450, 500}.
Details on the spectra and the densities of the matrices can be found in Appendix A.
We then built vectors q ∈ Rn in four different ways, each reflecting a certain “degree
of feasibility” in the resulting instance. Let z∗ ∈ Rn be a solution of an instance of
Problem (3). Then, it satisfies

(i) Feasibility w.r.t. Z: z∗ ∈ Z,
(ii) Integrality: z∗i ∈ {0, 1} for all i ∈ I,
(iii) Complementarity: (z∗)>(q +Mz∗) = 0.

The vectors q have been created to satisfy at least one of the conditions above. More
precisely, we built instances for which z ∈ Rn exists so that

(a) only Condition (i) is guaranteed to be satisfied,
(b) only Conditions (i) and (ii) are guaranteed to be satisfied,
(c) only Conditions (i) and (iii) are guaranteed to be satisfied,
(d) all Conditions (i)–(iii) are guaranteed to be satisfied.

We created 10 instances for every size n and the types (a)–(c), yielding 300 dif-
ferent instances in total. Type (d) appeared to be very easy to solve, which
is why we exclude these instances from the test set. Again, more details on
how the test set has been built can be found in Appendix A. The instances
are available at the following link: https://github.com/m-schmidt-math-opt/
milcp-penalty-bnb-instance-data.

For the comparisons presented in this section we use logarithmic performance
profiles in the sense of Dolan and Moré (2002) as well as tables with the most

https://github.com/m-schmidt-math-opt/milcp-penalty-bnb-instance-data
https://github.com/m-schmidt-math-opt/milcp-penalty-bnb-instance-data

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
%

 o
f i

ns
ta

nc
es

 so
lv

ed

Random Choice
MIQP-Based Branching
Pseudocost Branching
Most-Fractional Variable

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

Random Choice
MIQP-Based Branching
Pseudocost Branching
Most-Fractional Variable

Figure 1. Performance profiles for the number of branch-and-
bound nodes (left) and the running time (right) of all branching
rules

important statistical measures. For the tables, we aggregated all instances that
have been solved by all parameter settings or solution approaches for the specific
test w.r.t. the instance size. The first column always states the dimension n of the
problem. The second column contains the arithmetic mean of node counts resp.
running times for all instances solved by every parameterization. The next columns
contain the median, the minimum, and the maximum value of the data set. The
sixth and seventh column contain the 0.25-quantile, i.e., the node count or running
time after which 25 % of instances were solved, as well as the 0.75-quantile. The next
two columns contain the geometric mean and the geometric shifted mean. The shift
is 100 for the node counts and 10 for the running times. The last column contains
the percentage of instances solved to global optimality for the parameterization
and instance size. The best value for every measure and instance size among all
tables for that test is printed bold. The table of the winning setting, i.e., the best
performing parameterization, is included in this section whereas the tables of the
other settings are included in Appendix B.

In Section 4, we discussed a number of ways to enhance Algorithm 1. To determine
the best setting for MILCP-PBB, we study (i) the impact of different branching rules,
(ii) different node selection strategies, (iii) the use of warmstarts, and (iv) the use
of valid inequalities. This is done in Sections 5.1–5.4, respectively, where we set a
time limit of 1 h. In Section 5.5, the best parameterization of MILCP-PBB is then
compared with two other approaches. The first one is proposed in Gabriel, Conejo,
Ruiz, et al. (2013), where the authors reformulate the MILCP as an MILP using
additional binary variables and big-M constraints to re-model the complementarity
constraints. The second approach is inspired by this model but uses an MIQP
instead of an MILP reformulation of the given MILCP.

5.1. Comparison of Different Branching Rules. We now compare the per-
formance of MILCP-PBB when equipped with the four different branching rules
described in Section 4.2. For these tests, the node selection strategy is set to
breadth-first search, warmstarts are disabled, and no valid inequalities are added.
For the pseudocost branching strategy, we set µ = 0.5. We exclude 32 instances from
the test set since no parameterization is able to solve them within the time limit.
Figure 1 displays the performance profiles w.r.t. the required number of branch-and-
bound nodes (left figure) and running times (right figure). One can see that the
running time and the number of nodes for the random branching rule, the pseudocost

16 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

branching strategy, and the branching strategy based on the most fractional variable
do not differ much. However, the MIQP-based branching rule yields a significant
improvement in terms of the required number of nodes, the running time, and also in
terms of the overall number of solved instances. This improvement is especially true
for the number of nodes as our MIQP-based approach visits significantly fewer nodes
for the vast majority of the instances, while also solving the overall largest number
of instances to global optimality. The improvement regarding the running times is a
little less significant. This is to be expected since the ordering of branching priorities
during the presolve phase is more expensive compared to the computational effort
required by the other branching strategies. However, the advantage regarding the
number of nodes overcompensates this disadvantage and the MIQP-based branching
rule also dominates all other strategies w.r.t. running times as well.

Similar conclusions can be drawn from the statistical measures as displayed in the
Table 1 (and Tables 8–10 in the appendix). In comparison of all tables one sees that,
except for the minimum running time, the MIQP-based branching rule outperforms
the other approaches w.r.t. almost every other measure and every instance size.

Table 1. Aggregated node counts and running times for the branch-
ing rule test with MIQP-based branching

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 9.0 3.0 37.0 5.0 21.0 13.4 100
100 17.5 13.0 3.0 73.0 7.0 21.0 16.7 100
150 38.5 33.0 7.0 139.0 14.0 44.5 35.4 100
200 60.1 44.0 15.0 235.0 31.0 82.5 55.3 100
250 116.5 96.0 5.0 353.0 68.5 132.5 100.7 100
300 273.9 155.0 15.0 1199.0 95.5 292.0 203.3 100
350 549.8 331.0 7.0 2705.0 80.0 729.0 333.0 100
400 426.7 248.0 47.0 1245.0 76.5 750.5 289.7 80
450 408.3 349.0 51.0 1713.0 139.0 511.0 305.2 67
500 544.1 543.0 71.0 1043.0 342.0 734.0 444.9 40

50 0.3 0.3 0.1 0.5 0.2 0.3 0.3 100
100 2.4 1.7 0.6 9.4 1.1 2.9 2.2 100
150 15.1 12.6 3.3 54.0 5.2 18.2 12.7 100
200 45.5 31.5 13.2 147.6 24.0 58.1 38.8 100
250 149.8 112.8 16.3 504.9 75.4 180.4 110.1 100
300 448.8 291.2 48.5 1918.0 162.0 550.5 306.8 100
350 889.3 574.3 54.2 2853.7 211.5 1575.2 559.2 100
400 821.3 726.8 191.3 2429.7 302.9 1260.8 620.7 80
450 909.3 941.1 260.4 2325.1 469.1 1176.4 766.6 67
500 1106.9 1197.4 355.0 1666.5 870.6 1394.2 1000.5 40

5.2. Comparison of Different Node Selection Strategies. We now compare
the three node selection strategies described in Section 4.1. To this end, we use the
MIQP-based branching strategy, while warmstarts and valid inequalities are disabled.
We exclude 54 instances from the set since no parameterization of our method is
able to solve them within the time limit. Based on Figure 2, one can notice that the
node selection strategies only have a minor impact on the performance of the overall
method both in terms of the number of nodes and the running time. Especially
regarding the required number of branch-and-bound nodes, no parameterization
seems to have an advantage. Regarding the running time, the lower-bound-push

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 17

0.0 0.1 0.2 0.3 0.4 0.5
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
%

 o
f i

ns
ta

nc
es

 so
lv

ed

Breadth-First Search
Depth-First Search
Lower Bound Push

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

Breadth-First Search
Depth-First Search
Lower Bound Push

Figure 2. Performance profiles on the number of branch-and-
bound nodes (left) and the running time (right) of all node selection
strategies.

strategy seems to be slightly worse, while breadth-first and depth-first search are very
close in comparison with a slight advantage for the depth-first search. Again, this is
due to the higher computational cost for the ordering of the nodes. As the depth-
first search also solves slightly more instances, we choose it for our “best-setting”
implementation of MILCP-PBB.

The statistical measures we present in Tables 2, 11, and 12 support these conclu-
sions. For most measures the depth-first search strategy performs best, followed by
the breadth-first search strategy. But nevertheless, for all measures and instance
sizes, the differences are rather small.

5.3. The Benefits of Warmstarts. We now compare the performance of MILCP-
PBB with and without warmstarts. To this end, we use the MIQP-based approach
branching rule, the breadth-first search node selection strategy, and avoid the use
of any valid inequalities. We tried two different techniques within Gurobi to warm
start the node problems. First, we used the Gurobi attributes VBasis and CBasis, i.e.,
we started every node problem with the optimal basis of its parent node. Second,
we used the attributes PStart and DStart, where the optimal basis vector of the
parent node is computed from the optimal solution. In case that warmstarts are
used, we need to solve the node problems using the primal simplex method within
Gurobi. However, this leads to some numerical instabilities that we detected during
our preliminary testing. Thus, we implemented a backup strategy that disables
warmstarts in the case of numerical troubles and then allows that Gurobi chooses
any other method for solving the node problems. We exclude 46 instances from
the set as no parameterization is able to solve them within the time limit. As
expected, warmstarts significantly help to reduce the running time; see Figure 3
(right). Especially the use of parameters VBasis and CBasis have a big impact, which
is expected as it is not needed to compute the basis vector first. Let us finally
comment on the surprising result that using warmstarts or not leads to a different
number of branch-and-bound nodes required to solve the problems; see Figure 3
(left). This is due to the occurrence of node problems with non-unique optimal
solutions. In such a case, using warmstarts or not might lead to different solutions
of the node problems, which, in turn, effects the overall search tree. The same can
be seen in Tables 3, 13, and 14. For the node counts, differences are not remarkably
large with a slight advantage for the warmstarted methods on most instances. With

18 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Table 2. Aggregated node counts and running times for the node
selection test with depth-first search

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 112.3 96.0 5.0 353.0 67.5 131.0 97.6 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.7 100
350 277.0 144.0 7.0 735.0 79.0 479.0 203.1 77
400 351.2 271.0 47.0 813.0 78.0 613.0 259.3 70
450 314.7 345.0 51.0 647.0 126.5 473.5 263.7 47
500 461.3 519.0 71.0 923.0 265.50 546.0 381.8 23

50 0.3 0.2 0.1 0.4 0.2 0.3 0.3 100
100 4.5 2.6 1.4 24.1 2.0 5.4 4.0 100
150 27.1 18.1 6.4 97.0 10.6 32.6 22.1 100
200 91.9 65.1 30.4 299.9 49.8 111.6 78.5 100
250 249.5 221.9 37.5 788.4 156.2 286.80 198.9 100
300 566.8 427.2 132.4 1889.0 266.2 769.5 454.1 100
350 1064.1 543.2 102.3 2983.5 401.0 1623.7 716.8 77
400 1457.7 1146.4 309.1 3215.6 419.6 2474.4 1060.7 70
450 1540.1 1468.0 369.0 2823.5 654.3 2489.2 1243.7 47
500 2098.4 2272.3 553.1 3178.9 1553.9 2817.7 1821.9 23

0.0 0.2 0.4 0.6 0.8
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

Warmstart Off
VBasis/CBasis
PStart/DStart

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

Warmstart Off
VBasis/CBasis
PStart/DStart

Figure 3. Performance profiles for the number of branch-and-
bound nodes (left) and the running time (right) of the warmstart
test.

respect to running times, the warmstarting strategy using VBasis and CBasis gives a
significant advantage for all measures and instance sizes.

5.4. Computational Analysis of the Valid Inequalities. We tested different
types of valid inequalities as described in Section 4.4. Unfortunately, incorporating
the optimality cuts (see Section 4.4.2) results in severe numerical troubles for Gurobi.
Possible reasons for that might be that these cuts are both quadratic second-order-
cone constraints and very dense. We also tried different relaxations of these cuts
to obtain sparser cuts but this did not resolve the numerical troubles. We also

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 19

Table 3. Aggregated node counts and running times for the warm-
start test using VBasis/CBasis

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.3 24.0 7.0 139.0 12.0 42.5 32.3 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.8 100
250 112.2 96.0 5.0 353.0 67.5 131.0 97.6 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.6 100
350 355.4 215.0 7.0 1107.0 79.0 679.0 249.9 87
400 417.6 279.0 47.0 1245.0 81.0 719.0 300.3 77
450 312.4 345.0 41.0 649.0 126.5 473.5 258.6 50
500 476.6 543.0 61.0 1043.0 189.0 547.0 366.6 33

50 0.3 0.3 0.1 0.8 0.2 0.3 0.3 100
100 3.3 2.2 0.6 11.8 1.6 3.9 3.1 100
150 22.4 14.0 4.0 76.0 9.4 28.3 18.2 100
200 82.2 56.7 24.3 284.7 43.7 104.3 69.1 100
250 213.9 191.8 30.8 624.4 136.7 260.3 169.0 100
300 439.1 381.3 91.9 1387.5 224.9 521.4 360.3 100
350 1079.0 720.5 94.8 3339.2 324.2 1721.9 718.9 87
400 1421.9 1497.6 284.9 3090.9 403.4 2060.3 1040.5 77
450 1291.5 1534.2 301.1 2426.3 629.0 1838.2 1064.9 50
500 2119.2 2200.6 503.5 3396.8 1265.3 3229.8 1730.6 33

tested a linearized version of this quadratic cut. This resolved almost all numerical
issues but, on the other hand, lead to the fact that we do not cut off any points
anymore. Thus, making these optimality cuts work in a practical implementation
is still subject to future work. Consequently, we only consider simple cuts. Note
that these cuts can be set up at no computational cost and that it is to be expected
that they only have a minimal impact on the computational time required to solve
the node problems since they are merely variable bounds. We compare a version
of MILCP-PBB in which all possible simple cuts are added in every node with
a version of MILCP-PBB in which no simple cuts are added. For this test, the
branching rule is set to the MIQP-based branching rule, the node selection strategy
is set to depth-first search, and warmstarts are disabled. Let us quickly comment on
why warmstarts are disabled for this test even though they have a positive impact
on the performance. For technical reasons, Gurobi needs both parameters VBasis and
CBasis to warmstart a node problem, which contain the variable basis vector and
the constraint basis vector. When cuts are added, the constraint basis vector needed
to warmstart the problem is of higher dimension than the constraint basis vector
of the parent node, which is why the use of VBasis/CBasis is mutually exclusive
with the use of cuts. It would be possible, to use the parameters PStart/DStart,
as Gurobi only needs a primal start pointing, which is available even with added
cuts. However, as the difference between a warmstart with PStart/DStart and no
warmstart is not significant, we choose to disable the warmstart here for simplicity.
No instances are excluded for this test. As can be seen in Figure 4, incorporating
the simple cuts has a great impact both on the number of branch-and-bound nodes
as well as on the running time. This is also obvious from the results in Tables 4
and 15. For almost all measures and instance sizes, the approach with the simple
cuts significantly outperforms the method without the cuts both w.r.t. the node

20 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

0 1 2 3 4 5 6
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
%

 o
f i

ns
ta

nc
es

 so
lv

ed

No Cuts
All Simple Cuts

0 1 2 3 4 5
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

No Cuts
All Simple Cuts

Figure 4. Performance profiles for the number of branch-and-
bounds nodes (left) and the running time (right) for variants with
all possible simple cuts and without any.

counts and the running times. Moreover, we see in Table 4 that we can solve almost
all instances of the entire test.

Table 4. Aggregated node counts and running times for the valid
inequalities test with all simple cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 7.7 7.0 3.0 15.0 5.0 11.0 7.7 100
100 8.6 9.0 3.0 15.0 5.5 11.0 8.6 100
150 12.4 13.0 7.0 23.0 9.5 13.0 12.3 100
200 15.8 16.0 9.0 27.0 13.0 17.0 15.7 100
250 18.5 19.0 5.0 29.0 17.0 21.0 18.4 97
300 23.0 23.0 11.0 37.0 19.5 27.0 22.9 100
350 30.0 31.0 7.0 47.0 21.0 37.0 29.7 97
400 37.3 33.0 17.0 81.0 22.0 50.0 36.4 100
450 32.4 28.0 23.0 63.0 27.0 31.0 32.1 93
500 35.4 35.0 23.0 51.0 32.0 37.0 35.2 100

50 0.2 0.3 0.1 0.3 0.2 0.3 0.2 100
100 1.2 1.2 0.7 2.2 1.1 1.3 1.2 100
150 4.5 4.4 2.8 6.7 3.9 4.9 4.4 100
200 10.8 10.7 7.9 14.5 9.5 11.9 10.7 100
250 20.5 20.6 13.5 26.9 17.2 23.4 20.2 97
300 34.5 32.9 27.0 45.6 29.8 39.2 34.1 100
350 57.2 56.1 33.1 80.4 48.8 64.4 56.2 97
400 85.0 78.8 61.9 150.2 69.6 92.6 82.9 100
450 104.6 101.6 84.9 167.8 91.4 112.8 103.2 93
500 124.9 128.3 74.5 155.0 116.5 134.3 123.0 100

5.5. Comparing MILCP-PBB with Other Approaches. Our preliminary nu-
merical tests reveal that the best parameterization of MILCP-PBB uses the MIQP-
based branching rule and adds all possible simple cuts at every node and warmstarts
are disabled. As mentioned before, we choose depth-first search as our node selection
strategy.

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 21

In order to compare MILCP-PBB with other approaches from the literature, we
consider what is proposed in Gabriel, Conejo, Ruiz, et al. (2013). There, the authors
reformulate the MILCP problem as an MILP with additional binary variables and
big-M constraints to re-model complementarity constraints. Note that we use the
notation B for the large constants to avoid confusion with the LCP’s matrix M .
The respective MILP then reads as follows:

min
z,z′,z′′,ρ,σ

α

n∑
i=1

ρi + (1− α)
∑
i∈I

σi (9a)

s.t. z ≥ 0, q +Mz ≥ 0, (9b)

z ≤ Bz′ + ρ, (9c)

q +Mz ≤ B(1− z′) + ρ, (9d)

0 ≤ zI ≤ z′′ + σ, (9e)

z′′ − σ ≤ zI ≤ 1, (9f)

z ∈ Rn, z′ ∈ {0, 1}n, z′′ ∈ {0, 1}I , (9g)

σ ∈ RI≥0, ρ ∈ Rn≥0. (9h)

Similar to Formulation (5), ρi is used to bound the violation of each complementarity
constraints, while σi bounds the violation of the binary constraints. The variables z′i
are indicator variables that decide if for index i the corresponding variable zi or
(q +Mz)i is as close as possible to 0. Analogously, the indicator variables z′′i , i ∈ I,
decide if the corresponding variable zi is as close as possible to 0 or to 1. Note that
this formulation will result in different optimal objective function values compared
to our approach as the violation of the complementarity constraint is penalized in a
different way. Furthermore note that Model (9) requires a significantly larger set of
3n+ 2|I| variables.

Besides the significantly larger number of variables, one additional drawback
of Model (9) is that it requires to determine sufficiently large big-B constraints.
However, we can actually modify Problem (9) to get rid of these big-Bs and to
measure the violation of the complementarity constraints using the same term as in
our approach. This comes at the price of considering a quadratic instead of a linear
problem. This resulting MIQP is given by

min
z,z′,σ

αz>(q +Mz) + (1− α)
∑
i∈I

σi (10a)

s.t. z ≥ 0, q +Mz ≥ 0, (10b)

0 ≤ zI ≤ z′ + σ, (10c)

z′ − σ ≤ zI ≤ 1, (10d)

z ∈ Rn, z′ ∈ {0, 1}I , (10e)

σ ∈ RI≥0. (10f)

Instead of using variables ρi for bounding the violation of the complementarity, we
use the direct penalization via the corresponding quadratic term. The violation of
the binary constraints is still measured in the same way as in the MILP (9), with z′i
being the corresponding indicator variables as before.

Note that the MIQP (10) only has |I| additional binary variables z′ and |I|
additional continuous variables σi when compared to the original MILCP. Thus, the
number of additionally required auxiliary variables is significantly reduced compared
to the MILP reformulation (9). This makes a huge difference in practice: Gurobi is
able to solve the MIQP (10) in significantly less time compared to what is required

22 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

0 2 4 6 8 10 12 14
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
%

 o
f i

ns
ta

nc
es

 so
lv

ed

MILCP-PBB
MIQP Reformulation
MILP Reformulation

0 2 4 6 8 10
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

MILCP-PBB
MIQP Reformulation
MILP Reformulation

Figure 5. Performance profiles for the number of branch-and-
bound nodes (left) and the running time (right) for the MIQP
reformulation, the MILP reformulation and MILCP-PBB.

for solving the MILP (9); see Figure 5. When (9) and (10) are solved using Gurobi,
all presolve techniques and heuristics have been disabled. For obtaining a fair
comparison, we further restrict both the MIQP solver of Gurobi and the QP solver
of Gurobi used for solving the nodes within MILCP-PBB to only use a single thread.

For a first comparison we use the same instances as before and no instances are
excluded. Figure 5 shows the performance profiles of MILCP-PBB and Gurobi for
both the MILP and the MIQP formulation w.r.t. the number of nodes and running
times. It can be seen that MILCP-PBB needs significantly fewer nodes, while still
needing more running time. The increased running time can probably be attributed
to inefficiencies from our Python implementation.

More details can be found in Tables 5, 6, and 16. It is evident that our approach
clearly outperforms the two benchmark approaches w.r.t. the node count for all
measures and sizes. For the running time it is evident that the MIQP approach
outperforms both our approach and the MILP formulation.

Table 5. Aggregated node counts and running times for the first
benchmark test for MILCP-PBB

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 7.7 7.0 3.0 15.0 5.0 11.0 7.7 100
100 8.6 9.0 3.0 15.0 5.5 11.0 8.6 100
150 12.4 13.0 7.0 23.0 9.5 13.0 12.3 100
200 15.8 16.0 9.0 27.0 13.0 17.0 15.7 100
250 19.3 19.0 11.0 29.0 17.0 21.5 19.2 97
300 26.5 26.0 13.0 37.0 23.5 33.0 26.3 100

50 0.2 0.3 0.1 0.3 0.2 0.3 0.2 100
100 1.2 1.2 0.7 2.2 1.1 1.3 1.2 100
150 4.5 4.4 2.8 6.7 3.9 4.9 4.4 100
200 10.8 10.7 7.9 14.5 9.5 11.9 10.7 100
250 20.8 20.7 14.1 26.9 17.6 23.5 20.6 97
300 38.5 38.8 29.6 45.6 35.5 42.2 38.2 100

As the MIQP reformulation has no failures and MILCP-PBB only has four, we
increased the difficulty of the test set to have a further comparison on a harder test

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 23

Table 6. Aggregated node counts and running times for the first
benchmark test for the MIQP reformulation

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 9.9 6.0 3.0 27.0 4.0 15.0 9.6 100
100 11.3 9.5 3.0 39.0 5.2 13.8 11.0 100
150 21.4 16.5 5.0 61.0 10.0 26.2 20.5 100
200 35.4 28.0 12.0 75.0 21.0 50.5 34.2 100
250 65.4 66.0 7.0 175.0 35.8 71.5 60.4 100
300 128.0 77.0 8.0 447.0 61.5 142.8 102.6 100

50 0.1 0.1 0.1 0.2 0.1 0.2 0.1 100
100 0.3 0.3 0.1 0.4 0.2 0.3 0.3 100
150 0.7 0.7 0.5 1.0 0.6 0.8 0.7 100
200 1.4 1.4 1.2 1.7 1.4 1.5 1.4 100
250 2.2 2.2 1.7 2.9 2.0 2.4 2.2 100
300 3.5 3.0 2.5 6.0 3.0 3.6 3.4 100

set for the MIQP reformulation and MILCP-PBB. As the other two methods clearly
outperform the MILP formulation, we do not compare the MILP formulation on
the more difficult set. We built a second test set of 300 random instances as before
but double both the instance sizes as well as the fraction of the integer variables.
For this test, we also tripled the time limit and now consider as failures only those
instances that are not solved within 3 h.

The comparison of the methods applied to these instances is shown in Figure 6
and Tables 7 and 17, where we excluded 86 instances since no method is able to
solve them. We can notice that, again, the number of nodes needed by MILCP-PBB
is significantly smaller than the one needed by Gurobi. MILCP-PBB is also faster and
has significantly less unsolved instances. Thus, it turns out to be more robust as
well. MILCP-PBB and Gurobi have 19 as well as 49, respectively, failures on instances
of Type (a), 34 and 53 failures on instances of Type (b), as well as 40 and 61 failures
on instances of Type (c). A possible explanation for these results is the difference
in the size of the respective branching trees. As the size of a branch-and-bound tree
roughly grows exponentially with the number of binary variables, the larger number
of nodes in the tree of the MIQP reformulation becomes even larger for the more
difficult instances. While Gurobi needs less time per node and probably also finds
the optimal solution, the sheer size of the tree prevents it from proving optimality
within the time limit. Extensive tables including node counts, running times, and
optimality gaps for all instances including the instances not solved by both solvers
can be found in Appendix H.

6. Conclusion

We presented, analyzed, enhanced, and tested a novel penalty branch-and-bound
method for solving MILCPs. Here, “solving” means that we indeed compute a
solution if one exists or that we compute an approximate solution that minimizes an
infeasibility measure based on the violation of the integrality and complementarity
conditions of the problem. Together with further MILCP-tailored enhancements such
as valid inequalities, node selection strategies, branching rules, and warmstarting
techniques, this leads to a method that significantly outperforms two benchmark
approaches that we compared our method with.

Despite these contributions, many interesting research questions remain open
from which we finally want to sketch four:

24 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

0 2 4 6 8 10
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
%

 o
f i

ns
ta

nc
es

 so
lv

ed

MILCP-PBB
MIQP Reformulation

0 1 2 3 4
Not more than 2x-times worse than the best solver

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

%
 o

f i
ns

ta
nc

es
 so

lv
ed

MILCP-PBB
MIQP Reformulation

Figure 6. Performance profiles for the number of branch-and-
bound nodes (left) and the running time (right) for the MIQP
reformulation and our algorithm (for the second test set).

Table 7. Aggregated node counts and running times for the second
benchmark test for MILCP-PBB

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

100 17.1 17.0 9.0 31.0 13.5 21.0 17.0 100
200 43.1 39.0 21.0 107.0 30.5 49.5 42.1 93
300 96.6 76.0 35.0 259.0 67.5 123.5 91.0 93
400 246.8 183.0 37.0 779.0 139.0 309.0 205.6 87
500 296.5 297.0 113.0 685.0 131.0 385.0 262.0 93
600 183.0 185.0 163.0 201.0 174.0 193.0 182.6 80

100 2.4 2.4 1.7 3.1 2.2 2.6 2.4 100
200 21.7 19.5 13.4 52.9 17.3 24.6 21.0 93
300 99.6 92.9 49.0 215.8 70.9 123.2 93.5 93
400 370.0 336.0 134.3 955.4 235.2 379.4 319.4 87
500 483.9 421.7 154.6 881.9 385.2 479.0 441.9 93
600 662.2 698.5 512.0 775.9 605.3 737.2 652.4 80

(1) Is it possible to extend our penalty branch-and-bound method to MILCPs
with indefinite matrices M? In this case, the QPs to be solved in the nodes
of our branch-and-bound tree become nonconvex so that one either needs
to exploit global optimization techniques in these nodes or to modify the
bounding step applied during the search in the tree.

(2) Are there further techniques as used in classic branch-and-bound for MILPs
such as presolve or heuristics as well as additional valid inequalities, etc.
that are explicitly tailored to the setting of MILCPs? In particular, the
question remains open on how the optimality cuts can be modified and
implemented so that they are useful for practical computations.

(3) It would be interesting to see specific applications of MILCPs solved with our
method. Moreover, a further interesting aspect would be the problem-specific
development of techniques such as valid inequalities etc. to additionally
speed up the solution process.

(4) Finally, further algorithmic developments for MILCPs would clearly benefit
from test sets of real-world instances for testing and comparing algorithms.

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 25

As we wrote in the introduction, there are many potential real-world ap-
plications of MILCPs. However, up to now, these problems have not been
widely studied due to a lack of existing solution methods. This is exactly the
gap in the literature that we want to (start to) fill with this paper and we
thus had to resort to a randomly generated test set. Whether the instances
are representative for the hardness of potential real-world applications is,
consequently, hard to say and a collection of real-world instances would
clearly propel the development and testing of further methods for solving
MILCPs.

Acknowledgments

The first author acknowledges support within the project RM120172A2970290,
which has received funding from Sapienza, University of Rome. The third author
thanks the DFG for their support within project A05 and B08 in the “SFB TRR 154
Mathematical Modelling, Simulation and Optimization using the Example of Gas
Networks”. The last author has been supported by the German Research Foundation
(DFG) within the Research Training Group 2126: “Algorithmic Optimization”.

Appendix A. Detailed Description of the Test Set

In order to build a proper test set of MILCP instances, we created ma-
trices M ∈ Rn×n using the sprandsym function of MATLAB for sizes n ∈
{50, 100, 150, 200, 250, 300, 350, 400, 450, 500}. The corresponding matrix densities have
been chosen so that they roughly follow the sigmoid-like function

d(n) :=
1

1 + e
1
50

n−5
.

Moreover, we obtain a random non-negative spectrum with an upper bound of 100 for the
eigenvalues.

The set of integral variables I has been chosen as a random sample of size

r(n) :=
1

5
(
1 + e

1
80

n−3
) .

Finally, we built vectors q ∈ Rn for the four different “degrees of feasibility”; see Section 5.
In order to build instances of Type (a), for which only feasibility with respect to Z is
guaranteed (i.e., Condition (i) is satisfied), we set q = x−Mz starting from two random
vectors x, z ∈ Rn such that x ≥ 0, z ≥ 0, and zI ∈ [0, 1]I . Note that it is possible that
this process yields instances for which the integrality or complementarity constraints are
satisfied as well—although this is rather unlikely. Instances of Type (b), for which feasibility
with respect to Z (Condition (i)) and integrality (Condition (ii)) are guaranteed, have been
built by setting q = x −Mz with x, z ∈ Rn being randomly generated so that, besides
x ≥ 0 and z ≥ 0, also zI ∈ {0, 1}I holds. In order to build instances of Type (c), for which
feasibility w.r.t. Z (Condition (i)) and the complementarity constraint (Condition (iii))
are fulfilled, we set q = −Mz with z ∈ Rn being a randomly created point with z ≥ 0 and
zI ∈ [0, 1]I . Note that this is the same procedure as for the first test set. Instances of
Type (d), for which all three conditions are fulfilled, have been built by setting q = −Mz
with z ∈ Rn being a randomly created point with z ≥ 0 and zI ∈ {0, 1}I (as we did
for the instances of Type (b)). The “degree of feasibility” of the instance clearly has a
significant impact on its difficulty; see Figure 7, where a comparison of the performances
of MILCP-PBB with different branching rules on the instances is reported.

Instances of Type (d) that have been created to be feasible both for the complementarity
as well as the integrality conditions, turned out to be very easy. Most of them have been
solved in the root node of the corresponding branch-and-bound tree. Thus, we decided to
exclude them from our computational analysis. Instances of Type (a) and (b) that not
have been forced to be feasible w.r.t. the complementarity conditions and which are either
forced to be integer-feasible or not are also solved rather quickly. The most complicated

26 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Int. Feasibility

not guaranteed

guaranteed

Com
p.

 F
ea

sib
ilit

y

gu
ar

an
te

ed
no

t g
ua

ra
nt

ee
d

N
um

be
r

of
 N

od
es

10

100

1000

Random Choice
MIQPBased
Pseudocost
MostFractional

Int. Feasibility

not guaranteed

guaranteed

Com
p.

 F
ea

sib
ilit

y

gu
ar

an
te

ed
no

t g
ua

ra
nt

ee
d

R
un

ni
ng

 T
im

e

5

50

500

Random Choice
MIQPBased
Pseudocost
MostFractional

Int. Feasibility

not guaranteed

guaranteed

Com
p.

 F
ea

sib
ilit

y

gu
ar

an
te

ed
no

t g
ua

ra
nt

ee
d

P
er

ce
nt

ag
e

of
 S

ol
ve

d
In

st
an

ce
s

0.0

0.2

0.4

0.6

0.8

1.0

Random Choice
MIQPBased
Pseudocost
MostFractional

Figure 7. Test of different branching rules in dependence of the
“degree of feasibility” of the instance

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 27

instances are those of Type (c) which are forced to be feasible w.r.t. the complementarity
conditions but which are not forced to be integer feasible. This is possibly related to the
difference in which the violation of the complementarity constraint and the violation of
the integrality constraints are penalized along the nodes of MILCP-PBB. While the term
penalizing the violation of the complementarity constraint is added to every node problem,
we are penalizing the violation of all integrality constraints only at the leaf nodes. Hence,
the lower bound for instances that are complementarity feasible but that are not forced to
be integer feasible will stay closer to zero for longer.

Due to these preliminary tests and experiments, we decided to construct matrices with
5% density and we further adjusted the fraction of integer variables to make the instances
of Type (a)–(c) comparably difficult. Instances of Type (a) have 8% integer variables,
instances of Type (b) have 4% integer variables, and instances of Type (c) have 10%
integer variables.

Appendix B. Branching Rule Test

Here and in what follows, we include all tables for the aggregated running times and
node counts of the settings not reported in Section 5.

Table 8. Aggregated node counts and running times for the branch-
ing rule test with random choice

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.8 8.0 3.0 39.0 5.0 21.0 13.3 100
100 18.1 14.0 3.0 83.0 7.0 26.0 17.2 100
150 40.5 37.0 7.0 155.0 17.0 44.5 37.1 100
200 69.3 60.0 15.0 269.0 34.0 95.5 63.7 100
250 142.3 118.0 9.0 399.0 79.5 196.5 122.0 100
300 335.5 224.0 17.0 1281.0 159.0 357.5 261.5 100
350 704.7 435.0 7.0 3499.0 128.0 927.0 427.0 93
400 620.4 418.0 65.0 2221.0 115.5 1061.0 407.0 70
450 630.5 473.0 73.0 2399.0 203.0 946.0 464.2 53
500 791.9 715.0 105.0 1479.0 471.0 1151.0 644.6 27

50 0.4 0.2 0.1 1.2 0.1 0.4 0.4 100
100 2.7 1.6 0.6 19.4 0.9 3.1 2.4 100
150 24.0 19.6 2.4 100.0 6.6 25.5 18.0 100
200 72.6 56.6 13.1 248.0 37.4 105.3 60.1 100
250 213.6 184.3 12.6 561.1 126.1 279.8 160.7 100
300 552.3 442.0 45.0 1494.0 300.4 653.0 424.0 100
350 1097.6 685.5 38.0 3240.6 326.9 1690.4 717.6 93
400 1105.3 1052.3 224.6 2848.0 386.3 1768.1 823.7 70
450 1327.8 1160.7 261.9 3215.6 636.7 1878.1 1074.1 53
500 1502.6 1609.6 394.5 2167.7 1201.0 1972.1 1339.9 27

28 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Table 9. Aggregated node counts and running times for the branch-
ing rule test with pseudocost branching

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 15.1 9.0 3.0 43.0 5.0 26.5 14.5 100
100 18.5 16.0 3.0 63.0 7.0 25.0 17.7 100
150 41.3 38.0 7.0 147.0 15.5 44.0 37.8 100
200 73.4 51.0 17.0 287.0 34.0 97.0 66.0 100
250 142.9 104.0 11.0 421.0 75.5 194.0 120.0 100
300 345.7 235.0 19.0 1171.0 147.5 390.0 264.0 100
350 704.0 389.0 9.0 3041.0 115.0 958.0 422.5 97
400 658.7 395.0 67.0 2513.0 86.5 1090.5 394.9 67
450 620.5 377.0 53.0 2329.0 244.0 916.0 453.6 53
500 750.4 591.0 107.0 1395.0 526.0 1054.0 625.3 23

50 0.3 0.2 0.1 0.9 0.2 0.4 0.3 100
100 2.5 1.5 0.4 15.0 0.9 3.1 2.2 100
150 24.0 19.8 2.3 98.4 6.5 25.7 18.1 100
200 72.9 55.3 14.5 250.1 33.3 95.6 58.6 100
250 211.8 180.3 18.0 519.1 113.6 273.7 155.3 100
300 594.2 462.7 60.2 1607.5 310.0 767.7 450.4 100
350 1178.3 997.9 40.9 3177.6 312.5 1862.6 741.4 97
400 1185.6 914.0 251.3 3495.7 311.3 1879.6 817.2 67
450 1258.5 901.8 223.1 3084.2 598.5 1902.2 1009.1 53
500 1473.1 1581.2 352.4 2133.3 1257.9 1864.7 1302.6 23

Table 10. Aggregated node counts and running times for the
branching rule test with most-fractional variable branching

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 22.5 13.4 100
100 18.6 16.0 3.0 81.0 7.0 23.0 17.8 100
150 41.3 33.0 7.0 151.0 14.0 46.0 37.8 100
200 67.9 58.0 23.0 233.0 35.0 90.5 62.9 100
250 144.5 126.0 7.0 403.0 77.5 163.0 124.3 100
300 354.7 228.0 19.0 1385.0 139.0 391.0 263.2 100
350 742.2 439.0 7.0 3641.0 124.0 1001.0 445.6 90
400 631.0 434.0 51.0 2343.0 119.0 1038.5 412.1 63
450 648.9 539.0 93.0 2265.0 224.0 908.0 483.8 57
500 711.9 683.0 119.0 1375.0 429.0 974.0 585.0 27

50 0.2 0.1 0.1 0.8 0.1 0.2 0.2 100
100 2.6 1.5 0.4 16.5 0.9 3.1 2.3 100
150 23.4 18.3 2.8 82.8 6.2 25.7 17.8 100
200 68.1 51.8 22.4 214.4 31.5 80.8 57.1 100
250 221.7 214.7 12.4 584.8 128.8 258.4 167.0 100
300 592.6 456.9 53.9 1763.6 270.0 728.6 437.6 100
350 1224.6 956.6 32.2 3573.5 352.4 2046.3 786.4 90
400 1202.0 1106.9 197.3 3345.7 401.1 1506.8 882.5 63
450 1343.3 1298.9 329.6 3057.6 551.8 2039.7 1085.8 57
500 1390.6 1469.6 443.9 2127.8 1097.6 1749.0 1243.3 27

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 29

Appendix C. Node Selection Test

Table 11. Aggregated node counts and running times for the node
selection test with breadth-first search

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 112.3 96.0 5.0 353.0 67.5 131.0 97.6 100
300 200.3 142.0 15.0 743.0 95.0 254.5 164.4 100
350 277.1 144.0 7.0 735.0 79.0 479.5 203.2 77
400 351.3 271.0 47.0 813.0 78.0 613.0 259.4 67
450 315.1 345.0 51.0 651.0 127.0 473.5 264.1 47
500 461.0 519.0 71.0 923.0 265.5 544.5 381.6 20

50 0.3 0.2 0.2 0.7 0.2 0.3 0.3 100
100 4.7 3.0 0.8 23.8 2.0 4.7 4.1 100
150 25.9 19.0 6.0 90.3 10.3 30.6 21.1 100
200 91.2 73.2 30.4 272.7 54.4 115.7 79.3 100
250 249.2 228.0 37.1 807.3 148.4 295.5 198.8 100
300 595.8 475.8 101.4 1993.4 281.5 826.4 467.3 100
350 1103.9 576.6 110.1 3052.6 364.4 1647.0 742.1 77
400 1452.9 1173.7 304.9 3312.1 515.5 2336.5 1077.2 67
450 1599.1 1707.9 418.3 2893.0 763.8 2440.0 1328.6 47
500 2000.0 2069.0 535.6 3257.8 1530.5 2555.6 1742.3 20

Table 12. Aggregated node counts and running times for the node
selection test with lower-bound-push

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 112.3 96.0 5.0 353.0 67.5 131.0 97.6 100
300 195.5 142.0 15.0 741.0 95.0 254.5 162.6 100
350 277.0 144.0 7.0 735.0 79.0 479.0 203.1 73
400 351.3 271.0 47.0 813.0 78.0 613.0 259.4 63
450 314.6 343.0 51.0 647.0 127.0 473.5 263.7 47
500 459.3 516.0 71.0 923.0 265.5 540.0 380.3 20

50 0.3 0.2 0.2 0.6 0.2 0.3 0.3 100
100 4.6 2.7 1.2 20.6 1.9 5.0 4.1 100
150 29.0 20.5 5.7 97.2 10.2 34.3 23.1 100
200 99.3 75.6 25.7 329.1 54.0 131.7 83.9 100
250 267.2 217.4 34.8 872.2 158.8 307.6 208.1 100
300 630.8 495.9 116.9 2252.5 350.4 761.6 501.2 100
350 1233.5 606.3 105.0 3389.2 410.1 1977.7 816.9 73
400 1594.7 1605.4 337.1 3521.9 556.6 2717.4 1179.8 63
450 1573.3 1729.7 399.1 2829.8 783.4 2206.1 1322.0 47
500 2161.2 2345.8 649.4 3359.0 1346.4 3027.0 1862.0 20

30 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Appendix D. Warmstart Test

Table 13. Aggregated node counts and running times for the
warmstart test without any warmstart

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 112.3 96.0 5.0 353.0 67.5 131.0 97.6 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.7 100
350 356.3 215.0 7.0 1119.0 79.0 679.0 251.1 87
400 418.3 279.0 47.0 1245.0 81.0 719.0 301.1 70
450 314.7 345.0 51.0 647.0 126.5 473.5 263.7 47
500 478.6 543.0 71.0 1043.0 189.0 547.0 372.3 23

50 0.3 0.3 0.2 1.2 0.2 0.3 0.3 100
100 4.5 2.4 1.1 20.6 1.9 5.4 4.0 100
150 26.8 19.3 6.5 111.9 10.0 31.4 21.5 100
200 90.4 62.8 28.7 295.1 50.6 116.2 77.5 100
250 241.2 209.7 32.3 762.3 161.0 309.2 190.7 100
300 533.8 451.4 112.5 1764.6 260.8 655.1 429.0 100
350 1256.3 787.4 105.2 3360.6 369.7 2311.8 826.9 87
400 1550.7 1401.0 300.9 3522.8 396.9 2497.7 1125.9 70
450 1460.0 1505.9 345.3 2608.6 751.1 2112.5 1223.4 47
500 1995.4 2206.2 584.4 3375.5 1055.1 2755.9 1663.8 23

Table 14. Aggregated node counts and running times for the
warmstart test using PStart/DStart

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.3 24.0 7.0 139.0 12.0 42.5 32.3 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.8 100
250 112.2 96.0 5.0 353.0 67.5 131.0 97.6 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.6 100
350 355.4 215.0 7.0 1107.0 79.0 679.0 249.9 83
400 417.6 279.0 47.0 1245.0 81.0 719.0 300.3 70
450 312.4 345.0 41.0 649.0 126.5 473.5 258.6 47
500 476.6 543.0 61.0 1043.0 189.0 547.0 366.6 17

50 0.3 0.3 0.1 1.2 0.2 0.3 0.3 100
100 4.0 2.4 1.3 15.7 1.8 4.5 3.6 100
150 25.1 17.9 4.5 84.9 9.3 27.7 20.1 100
200 86.2 63.2 25.9 296.0 48.5 116.0 73.5 100
250 245.0 207.1 26.5 754.8 145.4 309.0 189.6 100
300 549.8 450.0 103.4 1586.1 299.5 745.0 442.9 100
350 1324.4 708.9 113.3 3361.2 383.7 2404.4 857.4 83
400 1544.5 1039.5 292.4 3201.7 460.1 2421.4 1136.5 70
450 1500.2 1591.4 406.3 2919.3 719.5 2102.1 1262.7 47
500 2119.3 2194.8 838.8 3386.6 1015.6 3160.8 1822.6 17

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 31

Appendix E. Valid Inequalities Test

Table 15. Aggregated node counts and running times for the valid
inequalities test with no cuts

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 13.9 8.0 3.0 37.0 5.0 21.0 13.3 100
100 16.1 10.0 3.0 73.0 7.0 21.0 15.3 100
150 35.6 24.0 7.0 139.0 13.5 42.5 32.6 100
200 59.5 43.0 15.0 235.0 31.0 82.5 54.9 100
250 113.1 99.0 5.0 353.0 67.0 131.0 98.0 100
300 193.3 141.0 15.0 741.0 95.0 254.5 161.7 100
350 532.9 309.0 7.0 2701.0 81.0 735.0 334.5 100
400 860.0 579.0 47.0 3929.0 109.0 1056.0 493.6 90
450 593.0 402.0 51.0 1713.0 163.5 834.5 416.3 67
500 816.1 923.0 71.0 1523.0 519.0 1107.0 663.9 37

50 0.2 0.2 0.1 0.5 0.2 0.3 0.2 100
100 2.3 1.6 0.8 10.2 1.2 2.1 2.2 100
150 13.8 10.0 3.3 50.6 5.8 16.0 11.7 100
200 43.4 31.3 13.0 150.8 24.2 58.1 37.4 100
250 136.4 111.7 14.2 444.8 74.5 179.0 102.4 100
300 293.8 244.4 45.6 851.7 150.1 391.9 235.9 100
350 788.0 530.1 64.5 1962.8 212.7 1342.9 527.6 100
400 1250.2 1140.1 192.5 3514.5 364.3 1476.5 867.6 90
450 1215.6 1032.2 252.7 2872.7 445.4 1917.3 934.0 67
500 1545.5 1397.8 363.5 2646.2 1043.1 2135.5 1345.9 37

Appendix F. A First Benchmark Test

Table 16. Aggregated node counts and running times for the first
benchmark test for the MILP reformulation

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

50 36.9 24.0 5.0 142.0 15.0 46.8 33.7 100
100 330.6 193.0 13.0 1416.0 69.5 462.5 227.6 100
150 866.5 921.0 26.0 2928.0 167.8 1179.8 582.3 100
200 6122.2 2985.0 122.0 78700.0 1454.8 4958.8 2755.0 100
250 30406.6 11944.0 287.0 185996.0 5482.0 29671.0 12745.4 83
300 36647.2 45035.0 2065.0 71988.0 21157.5 46958.8 24581.9 27

50 0.1 0.1 0.1 0.2 0.1 0.2 0.1 100
100 0.7 0.4 0.2 1.7 0.3 0.9 0.7 100
150 2.9 3.2 0.3 7.3 0.9 4.2 2.8 100
200 64.1 28.3 1.3 941.0 10.7 46.1 28.8 100
250 599.2 239.2 2.6 3169.1 106.1 572.8 252.7 83
300 1434.6 1305.0 56.4 3529.4 809.4 1797.3 926.1 27

32 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Appendix G. A Second Benchmark Test

Table 17. Aggregated node counts and running times for the
second benchmark test for the MIQP reformulation

n Avg. Med. Min. Max. Q(0.25) Q(0.75) GSM Perc.

100 45.1 33.5 11.0 209.0 18.5 63.0 41.0 100
200 639.1 408.5 34.0 2856.0 207.5 615.8 416.9 100
300 2978.9 2270.0 283.0 16147.0 1948.2 2760.5 2269.2 100
400 40317.4 16547.0 897.0 160445.0 8167.0 57017.0 17853.9 97
500 45637.3 30480.0 5734.0 165419.0 13164.0 52819.0 28969.2 47
600 88273.7 85589.0 38908.0 140324.0 62248.5 112956.5 77615.3 13

100 0.4 0.4 0.2 0.7 0.3 0.4 0.4 100
200 5.8 3.5 2.1 24.0 3.0 4.9 5.1 100
300 69.2 51.7 5.0 242.0 40.2 60.3 54.3 100
400 1597.7 471.8 39.3 6670.1 349.0 2664.9 721.6 97
500 2556.7 1768.2 409.5 6946.8 1039.5 4008.1 1845.4 47
600 8217.1 9612.1 4431.1 10608.0 7021.6 10110.0 7674.2 13

Appendix H. Full Results for Benchmark Test on the Harder Set

Here, we present running times, node counts, and optimality gaps for the second test in
Section 5.5. The tables are split among the different types of feasibility. Note that the
instances in Table 18 have a matrix density of 5% and 16% integer variables, instances in
Table 19 have a matrix density of 5% and 20% integer variables, and instances in Table 20
have a matrix density of 5% and 8% integer variables.

Table 18: Full table of results for the benchmark test with feasibility
type (a)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

0 100 27 3.1159 0.0000 68 0.5751 0.0000
1 100 15 2.3551 0.0000 33 0.1886 0.0000
2 100 21 2.6895 0.0000 103 0.7351 0.0000
3 100 17 2.2424 0.0000 15 0.3592 0.0001
4 100 15 2.3921 0.0000 44 0.1839 0.0000
5 100 19 2.2394 0.0000 34 0.6797 0.0000
6 100 11 2.3276 0.0000 18 0.3701 0.0000
7 100 15 2.1230 0.0000 23 0.4201 0.0000
8 100 11 2.1795 0.0000 20 0.3384 0.0000
9 100 13 1.8813 0.0000 14 0.3545 0.0000
10 200 35 17.5621 0.0000 532 4.0627 0.0001
11 200 27 14.9239 0.0000 279 3.0247 0.0000
12 200 39 18.7982 0.0000 399 3.4994 0.0000
13 200 43 19.6466 0.0000 191 2.5610 0.0000
14 200 27 16.4442 0.0000 127 2.6382 0.0000
15 200 35 17.0882 0.0000 213 3.1579 0.0000
16 200 35 19.3562 0.0000 345 3.5871 0.0001
17 200 29 18.7861 0.0000 110 2.5195 0.0001
18 200 37 18.8028 0.0000 565 3.8783 0.0000
19 200 14 11.0052 0.0027 42 2.3146 0.0000

Continued on next page

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 33

Table 18: Full table of results for the benchmark test with feasibility
type (a)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

20 300 109 99.8787 0.0000 7509 189.4373 0.0001
21 300 41 52.1754 0.0000 2507 51.3995 0.0001
22 300 63 71.4824 0.0000 2413 51.9769 0.0001
23 300 73 71.2369 0.0000 2807 54.0534 0.0001
24 300 43 64.3237 0.0000 1856 31.6593 0.0001
25 300 72 78.4768 0.0014 1253 22.1835 0.0001
26 300 63 69.7968 0.0000 1979 40.4144 0.0001
27 300 73 78.0971 0.0000 2036 39.3973 0.0001
28 300 49 61.9105 0.0000 2352 47.4422 0.0001
29 300 143 123.7982 0.0000 2258 56.8950 0.0001
30 400 69 155.2925 0.0000 3991 164.9751 0.0001
31 400 98 186.8513 0.0177 16683 638.9243 0.0001
32 400 215 354.8989 0.0000 8855 348.2817 0.0001
33 400 43 134.2780 0.0000 1387 62.4837 0.0001
34 400 139 240.8656 0.0000 12310 426.6363 0.0001
35 400 161 244.0987 0.0000 12252 442.3353 0.0000
36 400 65 166.9921 0.0000 2175 87.9427 0.0001
37 400 183 235.1562 0.0000 16547 431.5883 0.0001
38 400 485 462.7339 0.0000 10324 414.0996 0.0001
39 400 65 152.6845 0.0000 1518 63.0660 0.0001
40 500 335 608.6910 0.0000 265002 10814.2415 0.0014
41 500 167 388.2661 0.0000 16672 1232.6245 0.0001
42 500 117 466.1749 0.0000 10873 681.7911 0.0001
43 500 131 472.0715 0.0000 11418 1039.4614 0.0001
44 500 207 279.1084 0.0000 5734 409.5402 0.0001
45 500 123 154.5519 0.0000 14787 1087.2545 0.0001
46 500 321 479.0112 0.0000 40024 1768.1539 0.0001
47 500 134 287.6528 0.0090 203450 10816.5233 0.0023
48 500 313 390.9182 0.0000 165419 6946.8199 0.0001
49 500 297 380.2324 0.0000 101750 4942.9432 0.0001
50 600 293 899.3240 0.0000 120917 10824.2120 0.0003
51 600 327 696.3595 0.0000 110087 10829.7680 0.0002
52 600 185 512.0450 0.0000 38908 4431.0990 0.0001
53 600 543 1262.1285 0.0000 140118 10829.3220 0.0004
54 600 129 794.9032 0.0000 156342 10823.6857 0.0012
55 600 163 698.5480 0.0000 85589 9612.0795 0.0001
56 600 201 775.8917 0.0000 140324 10608.0138 0.0001
57 600 223 736.2904 0.0000 138024 10827.5670 0.0003
58 600 607 1019.5381 0.0000 121674 10827.8138 0.0013
59 600 677 1418.2227 0.0000 134749 10823.6026 0.0016
60 700 249 975.6561 0.0000 70611 10836.4064 0.0002
61 700 163 1091.6707 0.0000 80347 10830.6276 0.0004
62 700 303 1174.9706 0.0000 54001 10835.4704 0.0004
63 700 241 1058.5091 0.0000 79913 10838.8376 0.0012
64 700 837 1907.9259 0.0000 88157 10833.0279 0.0247
65 700 1015 2113.7192 0.0000 71434 10831.3456 0.0056
66 700 301 1187.2362 0.0000 73266 10839.0607 0.0011
67 700 369 1465.1541 0.0000 75375 10841.1106 0.0037
68 700 1181 2456.5842 0.0000 67206 10829.3712 0.0013
69 700 213 1729.2047 0.0000 64898 10836.1695 0.0002

Continued on next page

34 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Table 18: Full table of results for the benchmark test with feasibility
type (a)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

70 800 209 2894.0162 0.0000 50340 10851.0105 0.0009
71 800 805 3542.0355 0.0049 49637 10853.6512 0.0039
72 800 359 1987.7595 0.0000 45985 10849.3627 0.0005
73 800 1099 4571.4084 0.0000 45138 10847.8649 0.0005
74 800 126 1556.4838 0.0025 48760 10847.7848 0.0014
75 800 905 2953.2680 0.0000 43308 10846.2972 0.0032
76 800 129 1381.9814 0.0000 52954 10846.8718 0.0004
77 800 246 1621.6197 0.0042 64855 10844.3243 0.0029
78 800 3069 6670.6305 0.0000 47909 10848.3922 0.0019
79 800 2215 6693.6248 0.0000 51677 10843.3809 0.0012
80 900 256 3563.1181 0.0008 24062 10865.4706 0.0007
81 900 2718 10801.2767 0.0017 39963 10861.3130 0.0015
82 900 1947 6118.9939 0.0000 40548 10857.4068 0.0010
83 900 2067 10179.3084 0.0000 28530 10862.6133 0.0011
84 900 1463 7062.3731 0.0000 33852 10861.5166 0.0006
85 900 1434 10800.9542 0.0010 31292 10871.1387 0.0007
86 900 401 4306.1255 0.0000 26750 10863.4494 0.0016
87 900 1399 10801.3957 0.0011 29690 10858.3488 0.0007
88 900 641 4740.7997 0.0000 32362 10857.8563 0.0009
89 900 2391 10458.6046 0.0000 30177 10844.8206 0.0009
90 1000 1163 10802.2212 0.0032 21296 10868.1840 0.0022
91 1000 2982 10801.7772 0.0050 21011 10866.1448 0.0040
92 1000 1508 10801.4001 0.0012 19055 10859.4321 0.0009
93 1000 1335 9664.4435 0.0000 20940 10861.2169 0.0016
94 1000 830 10802.3529 0.0013 19697 10870.9180 0.0009
95 1000 2758 10800.8066 0.0153 25807 10863.2771 0.0128
96 1000 2781 10530.2989 0.0000 23170 10864.4643 0.0008
97 1000 1283 10801.6599 0.0024 25515 10858.4379 0.0019
98 1000 1250 10801.9894 0.0046 17429 10864.9515 0.0034
99 1000 2745 10801.4159 0.0037 21093 10854.0908 0.0033

Table 19: Full table of results for the benchmark test with feasibility
type (b)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

0 100 11 1.8736 0.0000 11 0.2401 0.0000
1 100 17 2.5071 0.0000 35 0.4127 0.0000
2 100 11 1.8778 0.0000 14 0.3880 0.0000
3 100 31 3.0990 0.0000 209 0.6444 0.0000
4 100 15 2.5030 0.0000 51 0.3522 0.0000
5 100 15 2.5308 0.0000 27 0.3500 0.0000
6 100 11 1.7119 0.0000 12 0.3445 0.0000
7 100 21 2.8848 0.0000 72 0.5284 0.0000
8 100 9 1.7975 0.0000 11 0.2022 0.0000
9 100 11 1.9970 0.0000 16 0.2678 0.0000
10 200 39 20.1349 0.0000 478 3.4626 0.0001
11 200 75 27.5083 0.0000 363 3.3318 0.0000

Continued on next page

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 35

Table 19: Full table of results for the benchmark test with feasibility
type (b)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

12 200 51 23.1963 0.0000 2451 17.3827 0.0001
13 200 31 17.3348 0.0000 320 2.7709 0.0001
14 200 53 24.3716 0.0000 435 3.5231 0.0000
15 200 21 13.3523 0.0000 48 2.0762 0.0001
16 200 47 20.3192 0.0000 418 3.3012 0.0001
17 200 21 14.0000 0.0000 34 2.1945 0.0001
18 200 57 25.2956 0.0000 2856 19.3368 0.0001
19 200 29 17.1288 0.0000 86 2.2520 0.0000
20 300 75 85.2808 0.0000 2745 57.3262 0.0001
21 300 39 50.5451 0.0000 341 7.5386 0.0001
22 300 149 131.9792 0.0000 2090 46.8724 0.0000
23 300 35 49.0304 0.0000 283 5.0292 0.0001
24 300 25 45.2144 0.0025 2597 39.8905 0.0001
25 300 71 74.3649 0.0000 1588 27.9635 0.0001
26 300 259 215.7792 0.0000 1756 42.2825 0.0000
27 300 95 89.7939 0.0000 3977 55.6581 0.0001
28 300 105 110.0118 0.0000 16147 241.9878 0.0001
29 300 125 108.0865 0.0000 1106 21.9187 0.0001
30 400 42 158.0413 0.0046 3202 178.1554 0.0001
31 400 255 335.9703 0.0000 32060 1002.8782 0.0001
32 400 309 361.5803 0.0000 34792 1298.5175 0.0001
33 400 75 206.8250 0.0000 10523 471.8054 0.0001
34 400 227 364.7588 0.0000 8167 433.7521 0.0001
35 400 92 210.3800 0.0012 62434 2256.8009 0.0001
36 400 37 138.3447 0.0000 897 39.3350 0.0001
37 400 243 310.8748 0.0000 57017 2005.0877 0.0001
38 400 165 287.8678 0.0000 7969 349.0208 0.0001
39 400 357 395.5973 0.0020 267946 7095.4798 0.0001
40 500 113 385.2338 0.0000 13164 806.6624 0.0001
41 500 511 845.0595 0.0000 30480 2447.1081 0.0001
42 500 769 1563.5448 0.0000 204209 10813.9150 0.0004
43 500 1009 1436.5816 0.0000 171660 10815.6210 0.0003
44 500 685 881.8793 0.0000 48103 4008.1435 0.0001
45 500 2393 3237.3454 0.0000 157972 10816.5673 0.0021
46 500 385 421.6556 0.0000 52819 3227.4129 0.0001
47 500 485 746.2523 0.0000 82042 4638.5376 0.0001
48 500 543 532.2371 0.0000 187584 10814.5764 0.0007
49 500 155 227.8922 0.0007 34045 2399.3100 0.0001
50 600 1221 2966.6930 0.0020 115289 10824.2649 0.0012
51 600 539 1488.9798 0.0000 80734 10823.4649 0.0005
52 600 377 781.4358 0.0000 120840 10824.6150 0.0002
53 600 473 1174.9950 0.0000 120541 10824.3100 0.0010
54 600 411 1146.9656 0.0000 123993 10823.1460 0.0003
55 600 531 1376.3102 0.0000 135998 10823.9850 0.0003
56 600 443 862.3373 0.0000 108494 10822.6135 0.0017
57 600 347 708.2811 0.0000 134048 10824.2348 0.0010
58 600 143 722.6545 0.0007 15769 1731.9034 0.0001
59 600 355 1161.8243 0.0000 125770 10824.3285 0.0003
60 700 883 2755.3962 0.0000 86915 10832.8358 0.0030
61 700 981 3975.7980 0.0000 60690 10834.3674 0.0003

Continued on next page

36 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Table 19: Full table of results for the benchmark test with feasibility
type (b)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

62 700 165 1288.9324 0.0000 59965 10834.6514 0.0002
63 700 383 1461.5977 0.0000 66430 10835.0290 0.0002
64 700 1031 2620.0381 0.0000 71492 10837.0440 0.0007
65 700 3183 5449.0948 0.0000 77091 10834.8594 0.0012
66 700 1219 4465.0251 0.0030 64723 10832.1042 0.0019
67 700 308 1820.4327 0.0031 68971 10830.7743 0.0014
68 700 801 2834.0616 0.0000 57584 10831.4539 0.0020
69 700 494 2710.5223 0.0016 64278 10833.1984 0.0009
70 800 1367 4188.1333 0.0000 48056 10844.6034 0.0006
71 800 1394 6301.3453 0.0011 35039 10843.7623 0.0007
72 800 2682 10800.9745 0.0030 38116 10846.3990 0.0023
73 800 319 2445.0687 0.0027 54200 10847.9241 0.0015
74 800 3698 10801.9776 0.0020 41462 10850.7178 0.0015
75 800 1635 4952.7012 0.0000 37047 10850.4457 0.0006
76 800 206 2589.2310 0.0019 42891 10847.8842 0.0013
77 800 1565 7296.9954 0.0000 32957 10845.7794 0.0015
78 800 5283 10801.1113 0.0016 42228 10841.0241 0.0011
79 800 1399 5201.9637 0.0000 56617 10843.3123 0.0019
80 900 1068 10803.4404 0.0018 26577 10856.2667 0.0012
81 900 1539 10800.0682 0.0019 23554 10853.1402 0.0016
82 900 3585 10801.5707 0.0014 30402 10866.2853 0.0010
83 900 2131 10801.4520 0.0011 31559 10857.8554 0.0008
84 900 996 10801.3616 0.0036 26331 10860.5435 0.0026
85 900 1157 10803.2434 0.0033 1 192.6932 inf
86 900 2086 10801.6023 0.0013 22924 10859.6405 0.0010
87 900 3121 10800.1144 0.0010 27014 10855.2115 0.0008
88 900 2281 10755.1982 0.0000 32147 10855.9983 0.0015
89 900 1440 8768.8400 0.0012 29748 10841.0772 0.0007
90 1000 1267 10686.1705 0.0000 18266 10865.9510 0.0006
91 1000 505 7181.2388 0.0025 20744 10864.9113 0.0018
92 1000 387 5606.9840 0.0018 18491 10863.1418 0.0014
93 1000 1073 10800.9104 0.0027 18227 10859.5245 0.0021
94 1000 1420 10802.2677 0.0019 18885 10852.9994 0.0015
95 1000 1877 10800.4012 0.0019 16198 10853.8927 0.0014
96 1000 244 6376.3823 0.0015 18063 10858.1245 0.0011
97 1000 50 5808.5997 0.0011 20066 10862.6262 0.0008
98 1000 1419 10800.7780 0.0018 23980 10858.5239 0.0013
99 1000 1506 10800.1857 0.0014 20533 10859.9718 0.0011

Table 20: Full table of results for the benchmark test with feasibility
type (c)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

0 100 17 2.2032 0.0000 69 0.3876 0.0000
1 100 17 2.2020 0.0000 35 0.3816 0.0000
2 100 23 2.7185 0.0000 46 0.3951 0.0000
3 100 17 2.4266 0.0000 25 0.3482 0.0000

Continued on next page

A PENALTY BRANCH-AND-BOUND FOR MIXED-BINARY LCPS 37

Table 20: Full table of results for the benchmark test with feasibility
type (c)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

4 100 21 2.5839 0.0000 73 0.1972 0.0000
5 100 17 2.3956 0.0000 60 0.1806 0.0000
6 100 17 2.3847 0.0000 31 0.2105 0.0000
7 100 25 2.7450 0.0000 93 0.3988 0.0000
8 100 21 2.5308 0.0000 26 0.3163 0.0000
9 100 23 2.6372 0.0000 64 0.3479 0.0000
10 200 29 14.2188 0.0000 142 3.0308 0.0000
11 200 33 18.1685 0.0000 768 6.0798 0.0000
12 200 47 25.6820 0.0000 873 7.5518 0.0000
13 200 49 26.3865 0.0000 451 4.4537 0.0000
14 200 53 28.1232 0.0000 1041 13.0250 0.0000
15 200 71 33.9903 0.0000 1057 8.7275 0.0000
16 200 47 22.6940 0.0000 220 3.0421 0.0000
17 200 33 18.3735 0.4603 183 2.9801 0.0000
18 200 41 21.0298 0.0000 444 4.0270 0.0000
19 200 107 52.9182 0.0000 2650 23.9550 0.0000
20 300 123 135.1874 0.0000 2729 87.4795 0.0000
21 300 75 109.0742 0.0000 2432 53.4491 0.0000
22 300 171 160.6897 0.0000 4016 148.4997 0.0000
23 300 103 122.9437 0.0000 2876 119.3457 0.0000
24 300 125 137.8550 0.0000 1090 30.7861 0.0000
25 300 77 97.9103 0.0000 1993 56.0017 0.0000
26 300 79 86.1865 0.0000 2139 50.6660 0.0000
27 300 203 168.5056 0.0000 5906 203.0584 0.0000
28 300 69 66.8797 0.0000 2282 69.0258 0.0000
29 300 71 95.9877 0.0000 2197 50.7216 0.0000
30 400 779 847.8113 0.0001 121573 4819.6968 0.0000
31 400 339 519.3352 0.0000 51856 3256.8336 0.0001
32 400 519 779.5839 0.0000 107926 3578.9797 0.0001
33 400 171 341.3093 0.0000 62027 3165.3430 0.0001
34 400 267 444.8971 0.0066 245500 10808.8307 0.1056
35 400 615 955.3639 0.0000 70852 2664.9435 0.0000
36 400 261 379.4113 0.0001 160445 6670.0696 0.0000
37 400 165 278.4771 0.0000 29917 1243.3834 0.0001
38 400 163 343.1481 0.0000 47667 1712.7171 0.0001
39 400 423 651.1013 0.0000 134887 4788.1721 0.0001
40 500 1059 2464.7738 0.0000 163745 10815.2826 0.2403
41 500 2059 4223.0813 0.0000 165779 10818.6912 0.1847
42 500 763 1678.4753 0.0000 140830 10817.5013 0.2403
43 500 285 765.3047 0.0000 198463 10817.2753 0.1256
44 500 923 885.9161 0.0043 136841 10815.9276 0.1945
45 500 407 647.9789 0.0000 126879 10816.3697 0.0875
46 500 265 284.3640 0.0000 128834 10816.3495 0.3436
47 500 665 1058.7074 0.0000 140357 10815.7690 0.0676
48 500 485 571.5811 0.0000 174696 10816.4255 0.2317
49 500 629 706.5074 0.0000 189088 10815.0503 0.2593
50 600 10808 10800.2888 0.9262 79144 10826.8733 0.4985
51 600 3943 3818.3468 0.0000 100441 10828.4613 0.5088
52 600 683 1024.9046 0.0000 107480 10828.8295 0.4322
53 600 631 2597.7218 0.0067 97200 10826.0636 0.3061

Continued on next page

38 M. DE SANTIS, S. DE VRIES, M. SCHMIDT, L. WINKEL

Table 20: Full table of results for the benchmark test with feasibility
type (c)

MILCP-PBB MIQP Reformulation
Inst. n Nodecount Time Gap Nodecount Time Gap

54 600 413 1049.1375 0.0002 94083 10825.6469 0.4607
55 600 653 2568.5341 0.0000 104809 10828.5226 0.4150
56 600 54 609.9500 1.0000 97417 10826.1439 0.4225
57 600 1453 2971.0164 0.0000 102075 10829.7080 0.4732
58 600 9 232.5856 0.9680 74238 10828.7163 0.4997
59 600 678 1588.2402 0.8213 91260 10830.4672 0.4883
60 700 249 1128.5292 0.9734 41533 10849.1465 0.6142
61 700 273 1297.1256 0.9276 57176 10837.0305 0.5865
62 700 4066 10801.5454 0.6834 60318 10835.0205 0.5784
63 700 13 444.0867 1.0000 50058 10841.8503 0.4474
64 700 805 1967.7534 0.9671 45885 10844.9726 0.6096
65 700 3 423.5964 1.0000 58474 10842.7989 0.5818
66 700 8193 10800.4775 0.9730 46798 10842.8968 0.6575
67 700 449 1834.5219 0.9831 56457 10840.2731 0.6207
68 700 2154 10801.2486 0.9716 59715 10843.3221 0.5869
69 700 815 4528.8139 0.0000 58624 10847.4065 0.5740
70 800 8 1325.5795 0.9868 37286 10858.9890 0.5818
71 800 1412 10802.3115 1.0000 32379 10865.9849 0.6106
72 800 1263 9918.1721 0.0002 33698 10861.6950 0.6170
73 800 283 2182.9504 1.0000 26555 10859.3335 0.7463
74 800 2787 10800.9629 0.9007 32880 10860.2008 0.6965
75 800 5184 10801.2334 1.0000 33831 10860.9934 0.6802
76 800 2973 10800.1716 0.9940 33833 10853.8966 0.6885
77 800 711 4456.3225 0.9571 24822 10862.4918 0.7351
78 800 29 1585.9883 0.9929 29949 10863.7911 0.6905
79 800 5 1418.6417 1.0000 1 234.0652 inf
80 900 346 4289.8207 0.9899 22578 10869.1079 0.7215
81 900 1004 10802.9810 0.9772 21926 10859.6112 0.7038
82 900 1527 10800.4423 1.0000 17300 10863.7038 0.7632
83 900 539 3108.7699 0.9583 20772 10861.9778 0.7353
84 900 921 10803.1083 0.9328 19133 10856.5056 0.7033
85 900 1443 10801.9199 1.0000 19178 10859.8103 0.7166
86 900 135 3343.6416 1.0000 17451 10858.2922 0.7607
87 900 1154 10802.4067 1.0000 26547 10849.0477 0.7456
88 900 80 2913.2712 0.9839 20462 10845.4186 0.7423
89 900 1 1271.1297 1.0000 19289 10844.5248 0.7457
90 1000 163 5233.4671 1.0000 14795 10859.0219 0.7851
91 1000 2678 10800.5171 1.0000 17441 10856.4719 0.8033
92 1000 73 4245.0406 1.0000 15919 10858.5450 0.7977
93 1000 862 10802.7972 0.9878 16530 10871.7120 0.7967
94 1000 1326 10801.8961 0.9750 18380 10868.6293 0.7768
95 1000 76 4242.0261 0.9999 17985 10866.4091 0.8162
96 1000 1 2617.2543 1.0000 22577 10864.8447 0.7729
97 1000 1045 10801.3138 1.0000 19917 10861.5392 0.7658
98 1000 68 3136.0200 1.0000 24022 10850.9295 0.7608
99 1000 30 3088.7299 1.0000 19310 10854.8429 0.7707

REFERENCES 39

References

Achterberg, T., T. Koch, and A. Martin (2005). “Branching rules revisited.” In:
Operations Research Letters 33.1, pp. 42–54. doi: 10.1016/j.orl.2004.04.002.

Beck, A. (2017). First-order methods in optimization. Vol. 25. SIAM. doi: 10.1137/
1.9781611974997.

Benichou, M., J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and O. Vincent
(1971). “Experiments in mixed-integer linear programming.” In: Mathematical
Programming 1.1, pp. 76–94. doi: 10.1007/BF01584074.

Chandrasekaran, R., S. N. Kabadi, and R. Sridhar (1998). “Integer Solution for
Linear Complementarity Problem.” In: Mathematics of Operations Research 23.2,
pp. 390–402. doi: 10.1287/moor.23.2.390.

Cottle, R. W., J.-S. Pang, and R. E. Stone (2009). The Linear Complementarity
Problem. Society for Industrial and Applied Mathematics. doi: 10.1137/1.
9780898719000.

Cunningham, W. H. and J. F. Geelen (1998). “Integral Solutions of Linear Comple-
mentarity Problems.” In: Mathematics of Operations Research 23.1, pp. 61–68.
doi: 10.1287/moor.23.1.61.

De Santis, M., S. Lucidi, and F. Rinaldi (2013). “A new class of functions for
measuring solution integrality in the Feasibility Pump approach.” In: SIAM
Journal on Optimization 23.3, pp. 1575–1606. doi: 10.1137/110855351.

Dolan, E. D. and J. J. Moré (2002). “Benchmarking optimization software with
performance profiles.” In: Mathematical programming 91.2, pp. 201–213. doi:
10.1007/s101070100263.

Dubey, D. and S. K. Neogy (2018). “Total dual integrality and integral solutions
of the linear complementarity problem.” In: Linear Algebra and its Applications
557, pp. 359–374. doi: 10.1016/j.laa.2018.08.004.

Fomeni, F. D., S. A. Gabriel, and M. F. Anjos (2019a). “An RLT approach for solving
the binary-constrained mixed linear complementarity problem.” In: Computers &
Operations Research 110, pp. 48–59. doi: 10.1016/j.cor.2019.05.008.

– (2019b). “Applications of logic constrained equilibria to traffic networks and to
power systems with storage.” In: Journal of the Operational Research Society
70.2, pp. 310–325. doi: 10.1080/01605682.2018.1438761.

Gabriel, S. A. (1998). “A hybrid smoothing method for mixed nonlinear complemen-
tarity problems.” In: Computational Optimization and Applications 9.2, pp. 153–
173. doi: 10.1023/A:1018311004565.

– (2017). “Solving discretely constrained mixed complementarity problems using
a median function.” In: Optimization and Engineering 18.3, pp. 631–658. doi:
10.1007/s11067-012-9182-2.

Gabriel, S. A., A. J. Conejo, J. D. Fuller, B. F. Hobbs, and C. Ruiz (2012). Comple-
mentarity Modeling in Energy Markets. Vol. 180. 1. Springer Science & Business
Media. doi: 10.1007/978-1-4419-6123-5.

Gabriel, S. A., A. J. Conejo, C. Ruiz, and S. Siddiqui (2013). “Solving discretely
constrained, mixed linear complementarity problems with applications in energy.”
In: Computers & Operations Research 40.5, pp. 1339–1350. doi: 10.1016/j.cor.
2012.10.017.

Gabriel, S. A., M. Leal, and M. Schmidt (2021). “Solving Binary-Constrained Mixed
Complementarity Problems Using Continuous Reformulations.” In: Computers &
Operations Research 131. Online first. doi: 10.1016/j.cor.2020.105208.

Gabriel, S. A. and J. J. Moré (1997). “Smoothing of mixed complementarity prob-
lems.” In: Complementarity and Variational Problems: State of the Art, pp. 105–
116.

https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1137/1.9781611974997
https://doi.org/10.1137/1.9781611974997
https://doi.org/10.1007/BF01584074
https://doi.org/10.1287/moor.23.2.390
https://doi.org/10.1137/1.9780898719000
https://doi.org/10.1137/1.9780898719000
https://doi.org/10.1287/moor.23.1.61
https://doi.org/10.1137/110855351
https://doi.org/10.1007/s101070100263
https://doi.org/10.1016/j.laa.2018.08.004
https://doi.org/10.1016/j.cor.2019.05.008
https://doi.org/10.1080/01605682.2018.1438761
https://doi.org/10.1023/A:1018311004565
https://doi.org/10.1007/s11067-012-9182-2
https://doi.org/10.1007/978-1-4419-6123-5
https://doi.org/10.1016/j.cor.2012.10.017
https://doi.org/10.1016/j.cor.2012.10.017
https://doi.org/10.1016/j.cor.2020.105208

40 REFERENCES

Gabriel, S. A., S. A. Siddiqui, A. J. Conejo, and C. Ruiz (2013). “Solving discretely-
constrained Nash–Cournot games with an application to power markets.” In:
Networks and Spatial Economics 13.3, pp. 307–326. doi: 10.1007/s11067-012-
9182-2.

Giannessi, F. and F. Tardella (1998). “Connections between nonlinear programming
and discrete optimization.” In: Handbook of combinatorial optimization. Springer,
pp. 149–188. doi: 10.1007/978-1-4613-0303-9_3.

Lucidi, S. and F. Rinaldi (2010). “Exact penalty functions for nonlinear integer
programming problems.” In: Journal of optimization theory and applications
145.3, pp. 479–488. doi: 10.1007/s10957-010-9700-7.

Pardalos, P. M. (1988). “Linear complementarity problems solvable by inte-
ger programming.” In: Optimization 19.4, pp. 467–474. doi: 10 . 1080 /
02331938808843365.

– (1994). “The Linear Complementarity Problem.” In: Advances in Optimization
and Numerical Analysis. Ed. by S. Gomez and J.-P. Hennart. Vol. 275. Dordrecht:
Springer Netherlands, pp. 39–49. doi: 10.1007/978-94-015-8330-5_3.

– (1996). “Continuous Approaches to Discrete Optimization Problems.” In: Nonlin-
ear Optimization and Applications. Ed. by G. Di Pillo and F. Giannessi. Boston,
MA: Springer US, pp. 313–325. doi: 10.1007/978-1-4899-0289-4_22.

Pardalos, P. M. and A. Nagurney (1990). “The integer linear complementarity
problem.” In: International Journal of Computer Mathematics 31.3-4, pp. 205–
214. doi: 10.1080/00207169008803803.

Pardalos, P. M. and J. Rosen (1988). “Global Optimization Approach to the Lin-
ear Complementarity Problem.” In: SIAM Journal on Scientific and Statistical
Computing 9.2, pp. 341–353. doi: 10.1137/0909022.

Rinaldi, F. (2009). “New results on the equivalence between zero-one programming
and continuous concave programming.” In: Optimization Letters 3.3, pp. 377–386.
doi: 10.1007/s11590-009-0117-x.

Sumita, H., N. Kakimura, and K. Makino (2018). “Total dual integrality of the
linear complementarity problem.” In: Annals of Operations Research 274.1–2.
doi: 10.1007/s10479-018-2926-8.

Val, P. D. (1940). “The Unloading Problem for Plane Curves.” In: American Journal
of Mathematics 62.1, pp. 307–311. doi: 10.2307/2371454.

Weinhold, R. and S. A. Gabriel (2020). “Discretely constrained mixed complementary
problems: Application and analysis of a stylised electricity market.” In: Journal
of the Operational Research Society 71.2, pp. 237–249. doi: 10.1080/01605682.
2018.1561163.

Zhu, W. X. (2003). “Penalty parameter for linearly constrained 0–1 quadratic pro-
gramming.” In: Journal of Optimization Theory and Applications 116.1, pp. 229–
239. doi: 10.1023/A:1022174505886.

(M. de Santis) Sapienza Università di Roma, Department of Computer, Control, and
Management Engineering, Via Ariosto 25, 00185 Roma, Italy

Email address: marianna.desantis@uniroma1.it

(S. de Vries, M. Schmidt, L. Winkel) Trier University, Department of Mathematics,
Universitätsring 15, 54296 Trier, Germany

Email address: devries@uni-trier.de
Email address: martin.schmidt@uni-trier.de
Email address: winkell@uni-trier.de

https://doi.org/10.1007/s11067-012-9182-2
https://doi.org/10.1007/s11067-012-9182-2
https://doi.org/10.1007/978-1-4613-0303-9_3
https://doi.org/10.1007/s10957-010-9700-7
https://doi.org/10.1080/02331938808843365
https://doi.org/10.1080/02331938808843365
https://doi.org/10.1007/978-94-015-8330-5_3
https://doi.org/10.1007/978-1-4899-0289-4_22
https://doi.org/10.1080/00207169008803803
https://doi.org/10.1137/0909022
https://doi.org/10.1007/s11590-009-0117-x
https://doi.org/10.1007/s10479-018-2926-8
https://doi.org/10.2307/2371454
https://doi.org/10.1080/01605682.2018.1561163
https://doi.org/10.1080/01605682.2018.1561163
https://doi.org/10.1023/A:1022174505886

	1. Introduction
	1.1. Literature Review
	1.2. Contribution
	1.3. Organization of the Paper

	2. Problem Statement and Reformulations
	3. A Penalty Branch-and-Bound Method
	3.1. Branching
	3.2. Bounding
	3.3. The Algorithm

	4. Further Algorithmic Enhancements
	4.1. Node Selection
	4.2. Branching Rules
	4.3. Warmstarting
	4.4. Valid Inequalities

	5. Numerical Results
	5.1. Comparison of Different Branching Rules
	5.2. Comparison of Different Node Selection Strategies
	5.3. The Benefits of Warmstarts
	5.4. Computational Analysis of the Valid Inequalities
	5.5. Comparing MILCP-PBB with Other Approaches

	6. Conclusion
	Acknowledgments
	Appendix A. Detailed Description of the Test Set
	Appendix B. Branching Rule Test
	Appendix C. Node Selection Test
	Appendix D. Warmstart Test
	Appendix E. Valid Inequalities Test
	Appendix F. A First Benchmark Test
	Appendix G. A Second Benchmark Test
	Appendix H. Full Results for Benchmark Test on the Harder Set
	References

