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PERSISTENCE OF THE NORMALIZED EIGENVECTORS OF A

PERTURBED OPERATOR IN THE VARIATIONAL CASE

RAFFAELE CHIAPPINELLI, MASSIMO FURI AND MARIA PATRIZIA PERA

Abstract. Let H be a real Hilbert space and denote by S its unit sphere.

Consider the nonlinear eigenvalue problem Ax+εB(x) = δx, where A : H → H

is a bounded self-adjoint (linear) operator with nontrivial kernel KerA, and
B : H → H is a (possibly) nonlinear perturbation term. A unit eigenvector

x0 ∈ S ∩ KerA of A (thus corresponding to the eigenvalue δ = 0, that we

assume to be isolated) is said to be persistent, or a bifurcation point (from the
sphere S ∩ KerA), if it is close to solutions x ∈ S of the above equation for

small values of the parameters δ ∈ R and ε 6= 0. In this paper we prove that
if B is a C1 gradient mapping and the eigenvalue δ = 0 has finite multiplicity,

then the sphere S ∩KerA contains at least one bifurcation point, and at least

two provided that a supplementary condition on the potential of B is satisfied.
These results add to those already proved in the non-variational case, where

the multiplicity of the eigenvalue is required to be odd.

1. Introduction and statement of the results

Let S be the unit sphere in a real Hilbert space H and consider the equation

Tx+ εB(x) = λx (1.1)

in the unknown (λ, ε, x) ∈ R × R × S, where T is a bounded self-adjoint (linear)
operator in H and B is a (possibly nonlinear) continuous operator in H. We
consider the following bifurcation problem for (1.1): suppose that λ0 is an eigenvalue
of T , let Ker(T − λ0I) be the corresponding eigenspace, and put

S0 := S ∩Ker(T − λ0I).

Then (1.1) possesses the family

Z0 := {(λ0, 0, v)|v ∈ S0}
of trivial solutions. A trivial solution (λ0, 0, v0) ∈ Z0 – essentially, a normalized
λ0−eigenvector v0 of T – is said to be a bifurcation point from Z0 for the solutions
of (1.1), or briefly a bifurcation point from Z0 for (1.1), if any neighborhood of
(λ0, 0, v0) in R × R × S contains nontrivial solutions – that is, solutions not in
Z0 – of (1.1). If we assume that λ0 is an isolated eigenvalue, then any nontrivial
solution (λ, ε, x) of (1.1) with λ close to λ0 must have ε 6= 0. Therefore, v0 ∈ S0

is a bifurcation point in the above sense if and only if there exists a sequence
{(λn, εn, xn)} in R×R\{0}×S which converges to (λ0, 0, v0) and such that Txn+
εnB(xn) = λnxn, ∀n ∈ N. In this case, we say equivalently that v0 is a persistent
normalized λ0−eigenvector of T .
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2 R. CHIAPPINELLI, M. FURI AND M.P. PERA

In the papers [3, 4, 5], we have discussed both necessary conditions and sufficient
conditions for this particular kind of bifurcation to occur in case that λ0 is an
isolated eigenvalue of T of finite multiplicity (algebraic and geometric multiplicity
coincide for self-adjoint operators). In particular in [4], using as a main tool the
Lefschetz Fixed Point Theorem (see [9] for example) we have shown that bifurcation
from Z0 does indeed take place at some point of Z0 provided that B is of class C1

and the multiplicity of λ0 is odd. It is well known that a similar result holds for
bifurcation in the classical sense, that is for the one-parameter equation

Tx+B(x) = λx (1.2)

where B is C1 near x = 0 and satisfies the conditions B(0) = B′(0) = 0. Here
the trivial solutions are {(λ, 0)|λ ∈ R}, and so one is interested in bifurcation from
this line at a given point (λ0, 0). It is equally well known that if in addition B is a
gradient operator – so that (1.2) has a variational character – then the requirement
of oddness about the multiplicity of λ0 can be removed. For the precise statement
of these basic results about (1.2) we refer for instance to [2, 6, 7, 11, 12, 13].

In this paper we give more evidence of the similarity existing between (1.1)
and (1.2), as we show that when B is a gradient, there is bifurcation from Z0

irrespective of the (finite) multiplicity of λ0. The formal statement is given in
Theorem 1.1 below. Before doing this, we wish to remark that “nonclassical”
bifurcation problems of the kind considered here have been proposed by several
Authors: see in particular Ambrosetti and Prodi [1], who called them atypical
bifurcation problems and Furi and Pera [8], who introduced the related concept of
cobifurcation; see in addition the paper [10], where a unifying framework for both
classical and “atypical” bifurcation is proposed. Also, we believe that the analysis
of (1.1) is far from complete and in fact many open problems await for attention,
for instance the possible extension of the results in [4] to Banach space operators.

It is now time to state formally the main result of the present paper, and before
this we make precise our assumptions about the nonlinear term B. These are as
follows:

B1) B : U → H is a C1 operator defined on a neighborhood U of S;

BG) B is the gradient of a functional: that is, there exists a differentiable func-
tional b defined on U such that

〈B(x), y〉 = b′(x)y, ∀x ∈ U, ∀y ∈ H. (1.3)

In (1.3), 〈·, ·〉 denotes the scalar product in H and b′(x) denotes the (Fréchet)
derivative of b at the point x ∈ U . We then write for short B = ∇b.

Theorem 1.1. Let T be a bounded self-adjoint operator in a real Hilbert space H,
and let λ0 be an isolated eigenvalue of T of finite multiplicity. If B satisfies B1)
and BG), then there exists at least one bifurcation point from Z0 for (1.1).

For the proof of Theorem 1.1 we take advantage of a technical lemma proved in
[4] and of an idea of Stuart [13]. The former is needed for an appropriate global
reduction of (1.1) to a finite-dimensional equation in Ker(T −λ0I); while the latter
permits to identify the solutions of this equation – for ε fixed – as the critical points
of a C1 functional αε (related to the quadratic form of T ) on a compact C1 manifold
Mε which is essentially a deformation of S0. Then the minimum and the maximum
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points of αε on Mε give approximate solutions vε, and letting ε → 0 in a suitable
manner yields the desired bifurcation point in S0.

This passage to the limit can be better controlled, and permits a considerable
improvement of Theorem 1.1, when B is bounded in U (or in a smaller neighborhood
of S). Indeed in this case we show – supposing in addition that b is not constant
on S0 – that there are (at least) two distinct bifurcation points for (1.1), which
moreover have the property of minimizing (resp. maximizing) b over S0. This is
formally stated as Theorem 2.1 in the next Section. It is not clear to us whether
the condition that b is not constant on S0 is essential (so that this adds to the open
problems about (1.1)). For further remarks about (1.1) we refer to the review [5],
where the results of the present paper were announced.

2. Proof of the results

Set

A = T − λ0I, δ = λ− λ0
and write (1.1) as

Ax+ εB(x) = δx. (2.1)

Also put

N = KerA = {x ∈ H : Ax = 0}, W = ImA = {Ax : x ∈ H}.

Then by our assumptions on T and λ0, H is the orthogonal sum

H = N ⊕W. (2.2)

Let P and Q = I − P be the orthogonal projections onto N and W respectively;
then writing x = Px + Qx =: v + w according to (2.2) and applying in turn P,Q
to both members of (2.1), we see that this equation is equivalent to the system

εPB(v + w) = δv, (2.3)

Aw + εQB(v + w) = δw. (2.4)

In the first part of our analysis we proceed essentially as in [4]. Let V ′ and W ′

be neighborhoods of S0 in N and of 0 in W respectively such that V ′ + W ′ ⊂ U .
Identify H with N ×W and consider the map f of R×R×V ′×W ′ into W defined
putting

f(δ, ε, v, w) := Aw + εQB(v + w)− δw. (2.5)

We have
∂f

∂w
(0, 0, v0, 0) = A|W

for any v0 ∈ V ′, andA|W : W →W is an isomorphism. any given v0 ∈ S0, Then B1)
and a straightforward application of the Implicit Function Theorem guarantee that,
given any v0 ∈ S0 ⊂ V ′, equation (2.4) – the so-called complementary equation –
can be solved uniquely w.r.t. w for each given (δ, ε, v) in a neighborhood Y0 ⊂
R×R×N of (0, 0, v0). Moreover if w(δ, ε, v) denotes the solution corresponding to
(δ, ε, v) ∈ Y0, then w(0, 0, v) = 0 for any v and the mapping (δ, ε, v)→ w(δ, ε, v) of
Y0 into W is of class C1. Therefore by definition

Aw(δ, ε, v) + εQB(v + w(δ, ε, v)) = δw(δ, ε, v) (2.6)
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for any (δ, ε, v) ∈ Y0; and – replacing w(δ, ε, v) in (2.3) – we see that in order to solve
(2.1) it is enough to find (δ, ε, v) ∈ Y0 satisfying the finite-dimensional equation (the
bifurcation equation)

εPB(v + w(δ, ε, v)) = δv (2.7)

and the additional normalization constraint

v + w(δ, ε, v) ∈ S. (2.8)

However, a strengthened version of the Implicit Function Theorem is needed here
in order to solve the complementary equation globally with respect to S0. Thus for
η > 0, consider the compact neighborhood of S0

M =
{
v ∈ N :

∣∣‖v‖ − 1
∣∣ ≤ η} (2.9)

and take η > 0 so small that M ⊂ V ′. Then applying Lemma 2.2 of [4] with f
as in (2.5), Ω = R × R × V ′ ×W ′ and G = {0} × {0} ×M × {0}, it follows that
the function w = w(δ, ε, v) can be taken to be defined and of class C1 on an open
neighborhood Y1 = I1 × J1 × V1 ⊂ R× R×N of {0} × {0} ×M .

A further reduction can be made on “eliminating δ” from our equations. Indeed,
take the scalar product in (2.7) to get

〈εPB(v + w(δ, ε, v)), v〉 = δ‖v‖2. (2.10)

Dividing both members of (2.10) by ‖v‖2 and applying again Lemma 2.2 of [4] to
the resulting equation, we see that δ can be written as a C1 function δ(ε, v) of (ε, v),
defined on the closure of an open subset Z = J × V of R×N containing {0} ×M
and such that δ(0, v) = 0 for any v ∈ V , and (δ(ε, v), ε, v) ∈ Y1 for (ε, v) ∈ Z.
We shall also assume that the closure V of V is compact and does not contain the
origin of N . For convenience put

φ(ε, v) := w(δ(ε, v), ε, v), (ε, v) ∈ Z. (2.11)

Then by definition,

〈εPB(v + φ(ε, v)), v〉 = δ(ε, v)‖v‖2 (2.12)

for (ε, v) ∈ Z, and we also have in particular from (2.6)

Aφ(ε, v) + εQB(v + φ(ε, v)) = δ(ε, v)φ(ε, v). (2.13)

Moreover φ(0, v) = 0 for v ∈ V and we see – from (2.7) and (2.8) – that in order to
have a nontrivial solution we need find (ε, v) ∈ Z, ε 6= 0, such that

εPB(v + φ(ε, v)) = δ(ε, v)v (2.14)

and

‖v + φ(ε, v)‖2 = ‖v‖2 + ‖φ(ε, v)‖2 = 1. (2.15)

A normalized solution (δ, ε, x) of the original equation (2.1) will then be given by
(δ(ε, v), ε, v + φ(ε, v)).

To proceed for the main step of the proof, we also put for convenience

Fε(x) := Ax+ εB(x), δε(v) := δ(ε, v), φε(v) := φ(ε, v)

for ε ∈ J and v ∈ V . Then the system (2.14)-(2.15) in the unknowns ε and v can
be written

PFε(v + φε(v)) = δε(v)v, ‖v + φε(v)‖2 = 1 (2.16)
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while the identities (2.12) and (2.13) become

〈PFε(v + φε(v)), v〉 = δε(v)‖v‖2 (2.17)

QFε(v + φε(v)) = δε(v)φε(v). (2.18)

We now show, using BG), that for any ε there exist (at least) two distinct
solutions v = vε, z = zε of (2.16). To this purpose, let B = ∇b. Then Fε = ∇fε
with

fε(x) =
1

2
〈Ax, x〉+ εb(x).

Our claim – suggested by [13] – is that for any fixed ε ∈ J sufficiently small the
solutions v ∈ V of (2.16) are precisely the critical points of the C1 functional αε
defined by

αε(v) := fε(v + φε(v)) =
1

2
〈Aφε(v), φε(v)〉+ εb(v + φε(v)), v ∈ V, (2.19)

over

Mε = {v ∈ V : ‖v + φε(v)‖2 = 1}, (2.20)

which, for ε small, is a C1 manifold. To see this, for any ε ∈ J put

βε(v) = ‖v + φε(v)‖2, v ∈ V ,
and observe that the gradient of the functional v 7→ β0(v) = ‖v‖2 does not vanish on
V , since this set does not contain the origin. Therefore, because of the compactness
of V , the gradient of βε remains different from zero on V for ε sufficiently small.
This shows that for these values of ε the set Mε is actually a C1 manifold. We shall
assume that J is such that any ε ∈ J has this property.

At a critical point v0 of αε on Mε, we have

α′ε(v0)h =
µ

2
β′ε(v0)h (2.21)

for all h ∈ N and for some Lagrange multiplier µ. Now compute the first and
second member of (2.21) by the chain rule; we have

α′ε(v0)h = f ′ε(v0 + φε(v0)[h+ φ′ε(v0)h]

= 〈Fε(v0 + φε(v0)), h+ φ′ε(v0)h〉
= 〈PFε(v0 + φε(v0)) +QFε(v0 + φε(v0)), h+ φ′ε(v0)h〉
= 〈PFε(v0 + φε(v0)), h〉+ 〈QFε(v0 + φε(v0), φ′ε(v0)h〉.

Using (2.18) it follows that

α′ε(v0)h = 〈PFε(v0 + φε(v0)), h〉+ δε(v0)〈φε(v0), φ′ε(v0)h〉.
On the other hand,

β′ε(v0)h = 2〈v0 + φε(v0), h+ φ′ε(v0)h〉

= 2[〈v0, h〉+ 〈φε(v0), φ′ε(v0)h〉].
Replacing in (2.21) we then have

〈PFε(v0 + φε(v0)), h〉+ δε(v0)〈φε(v0), φ′ε(v0)h〉 (2.22)

= µ
(
〈v0, h〉+ 〈φε(v0), φ′ε(v0)h〉

)
, h ∈ N.

Putting h = v0 and using (2.17), it follows in particular that

δε(v0)‖v0‖2 + δε(v0)〈φε(v0), φ′ε(v0)v0〉 = µ
(
‖v0‖2 + 〈φε(v0), φ′ε(v0)v0〉

)
.
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This shows that µ = δε(v0), and replacing this in (2.22) yields

〈PFε(v0 + φε(v0)), h〉 = δε(v0)〈v0, h〉
for all h ∈ N , showing that v0 satisfies (2.16), as claimed.

Now observe that for v ∈ V , φε(v) = φ(ε, v) → φ(0, v) = 0 as ε → 0. The
definitions (2.9) and (2.20) then show that Mε ⊂ M for ε sufficiently small. It
follows in particular that Mε is compact; and thus for each ε there exist vε, zε ∈Mε

such that
αε(vε) = min

v∈Mε

αε(v), αε(zε) = max
v∈Mε

αε(v). (2.23)

Therefore for each ε, vε and zε solve (2.16).

It is now quite easy to conclude that S0 has at least one bifurcation point: we can
use for this an argument already employed in [4]. Take a sequence {εn} with εn 6= 0
for each n and εn → 0 as n → ∞. Let e.g. vn := vεn , δn := δεn(vn) = δ(εn, vn)
and φn := φεn(vn) = w(δn, εn, vn); then putting xn := vn + φn we have a sequence
{(δn, εn, xn)} with xn ∈ S for each n ∈ N and

Axn + εnB(xn) = δnxn ∀n ∈ N. (2.24)

By the compactness of M , we can assume – passing if necessary to a subsequence –
that vn → v0 ∈M ⊂ V . Consequently,

δn → δ(0, v0) = 0, φn → w(0, 0, v0) = 0.

It follows that xn → v0, which in turn implies that v0 ∈ S and – by (2.24) – that
Av0 = 0, showing that v0 ∈ S0 and is a bifurcation point of (1.1). This completes
the proof of Theorem 1.1.

We continue our discussion of (1.1) assuming, in addition to the previous hy-
potheses, that

BB) B is bounded in a neighborhood of S.

Then we claim that as ε → 0, the family (vε) of minimizers of αε on Mε – (see
(2.23)) – converges (through a sequence) to a minimizer v0 of b on S0, and similarly
for (zε). Before stating this formally, we need list some facts about the functional

hε :=
αε
ε
, ε 6= 0.

i) Since vε minimizes αε on Mε, then it also minimizes he for ε > 0: that is,

hε(vε) ≤ hε(v), ∀ε > 0, ∀v ∈Mε.

ii) The assumption BB) implies that φε(v) = O(|ε|) – that is, ‖φε(v)‖ ≤ K|ε| for
some K > 0 – as ε → 0, uniformly w.r.t. v in a bounded neighborhood of S0. To
see this, recall the definition of φε(v) = φ(ε, v) via (2.11) and recall that w(δ, ε, v)
solves (2.4), that is Aw − δw = −εQB(v + w) or, putting Hδ = −((A− δI)|W )−1,

w = εHδQB(v + w).

As Hδ and Q are bounded linear operators and B is bounded in a neighborhood of
S, it follows that w(δ, ε, v) = O(|ε|) uniformly with respect to (δ, v) in a bounded
neighborhhood of {0} × S0 ⊂ R×N . This implies in particular the desired bound
for ‖φε(v)‖.

iii) For each ε > 0 small and each y ∈ S0, there exists a number t = t(ε, y), with
0 < t ≤ 1, such that t(ε, y)y ∈Mε; moreover, t(ε, y)→ 1 as ε→ 0 for each y ∈ S0.
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Indeed pick an y ∈ S0 and consider the point ty running on the ray from 0 through
y; by (2.20) we see that it meets Mε if and only if

t2 + ‖φε(ty)‖2 = 1.

The remark made above about φε implies that this equation has (for each ε small)
a solution in the interval (0, 1].

As a consequence of i) and iii), we obtain in particular the inequality

hε(vε) ≤ hε(t(ε, y)y), ε > 0, y ∈ S0. (2.25)

iv) Our next claim is that as ε→ 0, hε → b uniformly in a neighborhood of S0.
To see this, consider the expression (2.19) of αε, which gives

hε(v) =
1

2ε
〈Aφε(v), φε(v)〉+ b(v + φε(v)). (2.26)

We know from ii) that φε(v) = O(|ε|) as ε → 0, uniformly w.r.t. v in a bounded
neighborhood of S0. Since A is a bounded linear operator, we have |〈Ax, x〉| ≤
C‖x‖2 for some C > 0 and all x ∈ H, and therefore 〈Aφε(v), φε(v)〉 = O(ε2) as
ε→ 0, uniformly w.r.t. v in a bounded neighborhood of S0. Looking at (2.26), this
proves our claim.

We can now establish formally the desired property of (vε).

Proposition 2.1. Let vε ∈Mε be such that αε(vε) = minv∈Mε
αε(v). Then, there

exists a sequence {vn} := {vεn} such that vn → v0 as n → ∞, where v0 ∈ S0 and
satisfies

b(v0) = min
y∈S0

b(y).

Proof. Take any sequence {εn} with εn > 0 for each n and εn → 0 as n→∞. Let
vn := vεn and hn := hεn ; then we have from (2.25)

hn(vn) ≤ hn(t(εn, y)y), ∀n ∈ N, ∀y ∈ S0. (2.27)

As before we can assume – passing if necessary to a subsequence – that vn → v0 ∈
S0. Moreover if D is a neighborhood of S0,

|hn(vn)−b(v0)| ≤ |hn(vn)−b(vn)|+|b(vn)−b(v0)| ≤ sup
v∈D
|hn(v)−b(v)|+|b(vn)−b(v0)|

and since – by iv) above – hn → b uniformly in a neighborhood of S0, it follows
that hn(vn)→ b(v0) as n→∞.
The same argument shows that the right-hand side of (2.27) converges to b(y) as
n → ∞, for each fixed y ∈ S0, because t(εn, y) → 1 for each y ∈ S0 as proven in
iii). Therefore, letting n→∞ in (2.27), we obtain in the limit

b(v0) ≤ b(y), ∀y ∈ S0,

which is the assertion. �

Proposition 2.1 leads (as announced in the Introduction) to the following im-
provement of Theorem 1.1.
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Theorem 2.1. Let T , B and λ0 be as in Theorem 1.1, and assume, in addition,
that B satisfies the assumption BB). Then, (1.1) admits two bifurcation points from
Z0, v0 and v1, such that

b(v0) = min
y∈S0

b(y), b(v1) = max
y∈S0

b(y).

Consequently, if b is not constant on S0, there exist at least two distinct bifurcation
points from Z0 for (1.1).

Now a natural question is: can we drop the assumption “b is not constant on S0”
in the statement of Theorem 2.1? Unable till now to give an answer, we present
a simple example in which b is constant on S0, and still there are infinitely many
bifurcation points.

Example 2.2. Consider (2.1) with A,B : R3 → R3 defined as follows. Write
x = (x1, x2, z) for x ∈ R3 and put

A(x1, x2, z) = (0, 0, z).

In the notations used before, we thus have v = (x1, x2, 0) – identified with (x1, x2) ∈
R2 – and w = (0, 0, z) – identified with z ∈ R. As for B, put

B(x1, x2, z) = (2x1z, 2x2z, x
2
1 + x22)

and observe that B = ∇b with b(x1, x2, z) = (x21 + x22)z. Equations (2.3) and (2.4)
are here respectively

2εz(x1, x2) = δ(x1, x2) (2.28)

and
z + ε(x21 + x22) = δz.

Solve the latter uniquely with respect to z:

z =
ε

δ − 1
(x21 + x22)

so that - putting x21 + x22 = R2 - we have

z = w(δ, ε, v) = w(δ, ε, ‖v‖) =
ε

δ − 1
R2 := w(δ, ε, R). (2.29)

Using this and (2.28) yield the equation in δ

δ = 2εz =
2ε2

δ − 1
R2

that can be written
δ2 − δ − 2ε2R2 = 0

and can thus be explicitely solved to give

δ = δ(ε,R) =
1

2
(1−

√
1 + 8ε2R2). (2.30)

Replacing this in (2.29) permits to compute the function φ appearing in the formulae
(2.16) – (2.18). Here we have φ(ε, v) = φ(ε, ‖v‖) = w(δ(ε,R), ε, R) := φ(ε,R) with

φ(ε,R) =
εR2

1
2 (1−

√
1 + 8ε2R2)− 1

= − 2εR2

1 +
√

1 + 8ε2R2
. (2.31)

In turn, this allows to determine Mε by (2.20), which becomes here

R2 +
4ε2R4

(1 +
√

1 + 8ε2R2)2
= 1.
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This equation has for each ε 6= 0 one solution R(ε) with 0 < R(ε) < 1, and moreover
1 − R(ε)2 = O(ε2) as ε → 0. We see in particular that Mε is a circle in the plane
(x1, x2) approaching S0 (the circle of radius 1) as ε→ 0. Replacing this value R(ε)
in the above expressions (2.30) and (2.31) produces the functions

δ(ε) := δ(ε,R(ε)), φ(ε) := φ(ε,R(ε))

which finally allow us to to express the solutions (δ, ε, x) in terms of the sole pa-
rameter ε. Indeed, these are (for any ε)

(δ(ε), ε, x(ε)) with x(ε) = (v, z), ‖v‖ = R(ε), z = φ(ε).

It follows in particular that each v0 ∈ S0 is a bifurcation point: just take

x(ε) = (R(ε)v0, φ(ε))

to have a family of nontrivial solutions that converges to (v0, 0) as ε→ 0.
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