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An Innovative Single Shot Power Quality
Disturbance Detector Algorithm

Carlos Iturrino-Garcia™, Gabriele Patrizi

Lorenzo Ciani

Abstract—Power quality disturbances (PQDs) have affected
many people due to the growing number of electronic nonlinear
loads and because of the significant increase of renewable sources
connected to the grid. Previous works have shown the devel-
opment of algorithms to detect and classify these disturbances.
A thorough review of PQD detector algorithms pointed out the
use of machine learning and deep learning algorithms as the
most used, accurate and up-to-date approaches to deal with
this problem. Up until now, these algorithms were used in a
sliding window manner that often fail to identify more than one
disturbance in a single window frame. In this work, an innovative
architecture called single shot PQD detection (SSPQDD) has
been developed to solve this problem. Several experiments were
conducted using a simulation dataset to validate the performances
of the proposed SSPQDD in comparison with other algorithms
available in literature in terms of computational resources,
accuracy of identification, and number of layers. Furthermore,
an experimental testbench has been carried out to test the
performances of SSPQDD using real measurement data in case
of multiple disturbances in a single window frame. The overall
accuracy obtained using the proposed SSPQDD was 96.55% in
PQD detection.

Index Terms— Artificial intelligence, neural networks (NNs),
power distribution, power quality (PQ), smart grids.

I. INTRODUCTION

DEALLY, grid voltages and currents should have a purely

sinusoidal waveform, but in reality they come in a distorted
manner. These distortions vary in form and can have multiple
sources that can affect multiple users in a community. These
can be caused by the use of nonlinear electronic loads or by
the generation of power by means of renewable sources.

Recently, renewable energy sources have engrossed great
tendency because of their potential to solve problems like
increasing the need for electrical power, decreasing air pol-
lution, and tackling the problem of global warming. Wind
energy and solar photovoltaic energy, among other sources,
are more and more employed forming the hybrid power system
network able to provide future energy demand. The intrinsic
properties of these renewable sources (i.e., wind variations
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and solar insolation changes) have a significant influence on
power quality (PQ), reliability, and safety. As a result, low
PQ levels could lead to motor failure, overheating of the
lines, inaccurate metering, premature aging of devices, and
disturbances in communication circuits [1], [2], [3]. Other than
renewable energy sources, PQ problems can arise from the use
of electronic devices and appliances that bring severe problems
to grid voltages and currents in the form of PQ disturbances
(PQDs).

In recent years, a large number of nonlinear loads and
distributed generations with random characteristics have been
connected to the power grid [4]. Although their extensive use
in industrial, household, commercial, and public sectors have
improved many aspects of everyday life, they have brought
negative effects on the power grid. The use of nonlinear
electronic loads has increased the eventuality of unbalanced
currents, unacceptable harmonic levels, and poor power factor
in three-phase distribution systems [5], [6]. In other words,
power electronics technologies and/or nonlinear loads have
made life easier and more comfortable but due to their
nonlinear behavior it disturbs the power grid through voltage
and current waveform distortions. As a consequence, to the
extensive use of nonlinear electronic devices, the purely sinu-
soidal waveform gets injected with distorting components in
an increasing rate which have degraded PQ levels. If distorting
components are injected, power losses and malfunctioning of
electric devices can occur. Common effects of a degradation
of PQ in the industrial sector include loss of production,
manufacturing interruption, loss of revenue, productivity cost,
decrease competitiveness, lost opportunity, wasted energy, and
the decrease of equipment life [7]. Similar effects can occur in
the residential sector as overheating of ac appliances, television
(TV) screens displaying flicker and data loss, malfunctioning
communication equipment, and computer failures [8], [9].
Nonlinear electronic loads can also cause disturbance to
other consumers and interference in nearby communication
networks [10].

PQ is defined by the IEEE as “The concept of powering
and grounding sensitive equipment in a matter that is suitable
to the operation of that equipment” [11]. Any deviation,
in voltage and current, from its nominal values in a certain
period of time is considered a PQD. PQDs are classified
as a deviation from its nominal magnitude and/or frequency
components for a certain duration in time. According to
IEEE Standard 1159-2009 (Recommended Practice for Moni-
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toring Electric Power Quality) [12], the most common PQDs
are as follows.

1) Transients (also known as surge) which could be clas-
sified as impulsive (whit different time durations, from
few ns up to over 1 ms) or oscillatory (i.e., low, medium
and high frequency transients).

2) Short-duration root mean square (RMS) variations,
such as sag, swell, interruption, and voltage imbalance
which could be classified as instantaneous (from 10 to
600 ms), momentary (up to 3 s), and temporary (up to
1 min).

3) Long-duration RMS variations which include sustained
interruption, undervoltage or overvoltage phenomenon,
and current overload with typical duration longer than
1 min.

4) Wave distortions such as notch and harmonics.

Due to the problems that involve PQDs and the negative
effects these may lead, it is important to detect and classify
these disturbances. However, due to the very different nature of
each PQD (in terms of duration, spectral content, magnitude,
etc.), it is really challenging to develop an effective and
efficient tool able to classify different categories of distur-
bances. For instance, Fare clic o toccare qui per immettere il
testo.Urbina-Salas er al. [13] use the Wavelet and Hilbert trans-
forms to instantaneously estimate several PQ indices, while
in [14] the latter are evaluated using a set of new scaling filter
and wavelet filter with narrow transition bands. Despite a good
accuracy of the estimation, the approach presented in [14]
is limited only to interharmonics and transient disturbances.
Other approaches are able to solve this issue and classify
properly different types of PQD using for instance time-
dependent spectral features [15], sparse signal decomposi-
tion [16], and double resolution S-transform [17]. An extensive
attempt has been made in previous works to detect and classify
PQDs which many involve the use of machine learning (ML)
and deep learning (DL) algorithms (see for instance but not
only [18], [19], and [20]). Among the extensive inventory of
ML and DL algorithms used to solve this problem, one of the
most common and valid alternatives involves the use of
convolutional neural networks (CNN) [21]. A CNN is a
well-known DL architecture inspired by the natural visual
perception mechanism of the living creatures [22], [23]. The
extensive implementation of CNN arises from its feature
extraction capabilities using convolutional operations within
convolutional layers, and from the dimensionality reduction
achieved using pooling layers. For instance, Shen et al. [24]
integrates improved principal component analysis (IPCA) and
a 1-D CNN to classify 12 types of synthetic and simulated
PQDs. Instead, Wang and Chen [25] present a 1-D CNN to
capture multiscale features and reduce overfitting extracting
features from massive disturbance samples automatically. The
problem with the majority of the approaches currently avail-
able in literature is that they move in a sliding window manner
and use a conventional multiclass classification method. Thus,
the current state-of-the-art is able to identify and classify only
one PQD in a single window. This consideration led to the use
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of very small sliding windows, with a consequent increase of
computational complexity.

Recent advancement has been made for images using
object detection algorithms. Among these algorithms the most
famous are the you only look once (YOLO) [26] and the single
shot detector (SSD) [27]. These algorithms were designed
to identify and classify multiple objects in a single image.
As images, voltage signals can contain multiple disturbances
in a single window frame. If this type of signal is classified
by a conventional method, it can lead to a misclassification.
As a matter of fact, almost none of the approaches currently
available in literature is able to correctly identify more than
one disturbance in a single window. Trying to fill this gap,
a new architecture for detection and classification of PQDs
has been developed in this work integrating features from
YOLO and SSD. The proposed deep learning architecture
called single shot PQD detector (SSPQDD) is able to precisely
identify the presence of a PQD and to accurately classify the
disturbance type.

The major contributions of the proposed SSPQDD are
described in the following.

1) Most of the approaches for PQ disturbance detection
available in literature deals with threshold classification
method based on the root mean square value of the
acquired signal. Instead, the approach proposed in this
research works with the entire voltage signal acquired
by a dedicated instrument.

2) The proposed approach is not only able to identify the
presence or not of a PQD, but it could also provide the
duration of the disturbance.

3) The most important feature of the proposed method
is the ability to precisely and accurately identify the
presence of more than one disturbance in a single sliding
window with a number of parameters, a number of
layers, and a computational complexity lower than the
other approaches for image classification available in
literature.

The rest of the article is organized as follows: Section II
introduce the proposed SSPQDD algorithm, Section III illus-
trates the results obtained using a simulated dataset and
a comparison with other approaches available in literature,
while Section IV shows the results obtained analyzing the PQ
measurement obtained using a smart PQ meter provided by
PowerEmp Srl.

II. PROPOSED APPROACH
A. Architecture

The proposed SSPQDD is based on a pretrained VGG-16
architecture. The VGG-16 is a deep CNN proposed by
Simonyan and Zisserman from the University of Oxford in
2014. In the last years, VGG16 has been used for image
recognition or classification and for image detection and
localization, while it is not used for PQD classification. In this
work, the base architecture of the proposed SSPQDD is a
VGG-16 network because of its outstanding accuracy in clas-
sifying PQDs compared to other architectures presented in this
work. The results of this comparison are shown in Section III.
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Algorithm 1 Proposed SSPQDD Method. o = 0.00005, f; = 0.5, f =0.999, N = 6, and G = 188

Require: Input x, target class ycqss, target confidence yco,r, number of classes N, number of grids G, training mask Mg, batch size m, and Adam

hyperparameters «, 1, and f>.
while 0 has not converged do:

Sample data batch {x(') ... x(’")} from dataset x ~ Pggq

I 1
Sample target batch {yflzu, . yf}’;)“} and {yfu?lf, . yL(Z’n)f} from Yeiass ~ Petass and Yeons ~ Peons

1
2
3
4: fori =1...m do:

5: Stelass (x(’)) <« softmax(class( (f))) o Mg,
6: Steons (x ([)) <~ sr)ftmux(c()nf(x(‘)))
7

8

9

1

(l) = - Z |: I:yb(;()lu(, o log[sﬂ Iass
end for

0 < Adam (Vo2 3" LD, 0,0, 1, p)
0: end while

D o] [ F3ns 102[Steons, (4] + (1= 55, ) Tog [1 = Steony, (x “’)]]

[1 3] Convolution 512 filters

Eﬂ Input I
| [1 3] Convolution 64 filters
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Fig. 1. Architecture of the base VGG-16 network used in this work.

After the training of the base network, the fully connected
layers are substituted by feature extraction layers. This is done
to take advantage of the maxpooling layers typical of the
VGG-16 architecture and to classify voltage signals in a grid
like structure. The proposed approach classifies 16 samples
of the voltage signal per grid. Fig. 1 shows the VGG-16
base architecture, which is divided into six consecutive blocks
(each one is identified using a different background color in
the figure). The first block is the input and the following
blocks are the convolutional blocks where the kernel size are
1 x 3 arrays. In block 1, the filter size is 64 and increments
by a factor of 2 for each size being 512 in the last block.
Finally, the last block is the classification layer which contains
4096 layers for each fully connected layer. For generalization
purposes, a dropout layer is added with 50% dropout.

Fig. 2 shows the block diagram of the proposed method
in which the base network is the VGG16 architecture, and
the feedforward layers are substituted by feature extraction
layers for the grid-like classification. The added stage uses
a maxpooling layer for dimensionality reduction or, in other

Fig. 2. Schematic representation of the proposed SSPQDD architecture.

words, for classification of a larger number of samples. The
final layer has two outputs. The first output, the confidence
output, is a binary classification that classifies the signal as
disturbance or no disturbance. The confidence output is used
to mask the second output which is a multiclass classification.
St has 188 grids which are 16 samples per grid. This is
fundamental to ensure that the algorithm will be able to find
and classify transient disturbances of few nanoseconds as well
as temporary disturbances lasting over 1 min.

The confidence output is characterized by two outputs per
grid, while the classification one has six output per grid due to
the six types of disturbances taken into consideration. These
include sag, swell, harmonic, transient, notch, and interruption.
A confidence of class 0 means normal.

B. Dataset

The dataset used to train and validate the proposed network
involves voltage signals containing sag, swell, harmonics,
transient, notch, and interruption. All the PQDs have been
generated randomly within the signal to ensure different time
durations of the disturbances and to cover different locations in
a window frame. The dataset was generated using MATLAB
Simulink considering a sampling frequency of 8 kHz for a
total duration of 3.75 s. A 3.75 s sliding window have been
selected since it represents the greatest window that could be
implemented on the available hardware considering a 8§ kHz
sampling frequency. The limit on the window dimension is due
only to the computational complexity required by the hardware
device and it does not affect the classification accuracy.

The dimension of the training dataset was 290 MB and the
time required to train the proposed network was approximately
one day. However, this could not be considered a limitation
since training is required only once, before the first use of the
SSPQDD algorithm.

The target includes the confidence matrices and the clas-
sification matrices. The classification matrices are multiplied



2517210

1000

[$)}
o
o
T
L

Voltage [V]

-500 b
1000 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 0.5 1 1.5 2 2.5 3 3.5
Time [s]
(a)
St
class
Sudl
)
gH?rmor,vﬁgs
= Transient
O N(%tch
Interruption
20 40 60 80 100 120 140 160 180
Grid
o Stconf
o
c
[0
i)
S No Dist - -
© 20 40 60 80 100 120 140 160 180
Grid
(b)
Fig. 3. Tllustration of the training phase for the proposed algorithm.

(a) Voltage signal containing a swell and a sag. (b). Classification and
Confidence matrices in the St layer.

Trans

200 |
=
[0}
2o
S
-200 ) ‘ . \
0 0.5 1 15 2 25 3 3.5
Time [s]
‘ ‘
- Traps
S 200 1
)
g o ]
<200 q
3.25 33 3.35 34 3.45 35
Time [s]
Fig. 4. Results obtained in case of a transient disturbance in the simulated

dataset.

by a mask matrix for training stability purposes. The matrices
are 2 x 188 for the confidence matrices and 6 x 188 for the
classification matrices. The output is then confronted with the
confidence and classification matrices.

Fig. 3(a) shows an extract of the voltage signal used to train
the algorithm including a swell disturbance instantaneously
followed by a sag disturbance. Below the voltage signal there
are the training matrices shown in Fig. 3(b) representing the
classification matrices and the confidence matrices.

Pretraining of the VGGI16 is done classifying the distur-
bance as a multiclass classification problem using the softmax
function. The fully connected layers are then removed, and the
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feature extraction layers and the output layers are then added
to the base network. Training of the SSPQDD network is done
with voltage signals and comparing the outputs with the target
matrices shown in Fig. 3(b). The softmax function is used in
a binary manner on each grid to determine if a PQD exists in
that given grid. Thus, the probability to classify the jth class
given a sample vector x and a weighting vector w is given by

T
ex Zl)j

> el me

The multiclass softmax function is used in the classification
output. The classification output, after the sofmax, is then
multiplied by a mask matrix for training stability purposes and
class imbalances. The loss function is then calculated using
the crossentropy loss. The crossentropy loss and the binary
crossentropy loss are shown in (2) and (3), respectively.

The ycont, and ygass, are the target matrices for the confi-
dence output and the class output, respectively. The St (x),
and the St, . (x), are the outputs of the confidence and the
class of the proposed SSPQDD architecture.

From the available dataset the input x can be extracted (i.e.,
the signal to be classified). The target class y.,ss and the target
confidence y.on¢ are the matrices that are compared with the
output. The N and G are the number of classes and the number
of grids, respectively. Mg, is the training mask that is the first

P =jlx)= ey



ITURRINO-GARCIA ez al.: INNOVATIVE SINGLE SHOT PQD DETECTOR ALGORITHM

2517210

TABLE I
COMPARISON OF DEEP LEARNING ARCHITECTURES FOR PQD CLASSIFICATION
G;EIT)EIIZSS NORMAL SAG SWELL HARMONICS | TRANSIENT NoTCH INTERRUPTION
DarkNet Architecture
Precision 83.0% 99.4% 99.5% 97.5% 93.1% 93.9% 96.2%
Recall 100% 100% 96.5% 88.2% 75.5% 99.6% 100%
F1-Score 90.7% 99.7% 98.0% 92.6% 83.4% 96.7% 98.1%
AUC 0.985 1 0.982 0.941 0.941 0.998 0.998
AlexNet architecture
Precision 0% 99.9% 100% 100% 49.8% 100% 100%
Recall 0% 100% 100% 100% 100% 100% 99.9%
F1-Score 0% 99.95% 100% 100% 66.48% 100% 100%
AUC 0.5 0.999 1 1 0.913 1 1
ResNet Architecture
Precision 0% 100% 100% 100% 42.7% 100% 100%
Recall 0% 100% 99.0% 79.5% 100% 100% 87.8%
F1-Score 0% 100% 99.49% 88.57% 59.85% 100% 93.5%
AUC 0.5 1 0.995 0.898 0.887 1 0.939
Basic VGG-16 architecture
Precision 94.5% 99.5% 97.8% 99.7% 96.7% 93.6% 97.9%
Recall 99.8% 97.6% 98.9% 99.1% 85.8% 98.1% 100%
F1-Score 97.08% 98.54% 98.35% 99.4% 90.92% 95.8% 98.94%
AUC 0.994 0.9847 0.992 99.6 0.927 0.981 0.999
Proposed SSPQDD architecture
Precision 83.2% 100% 100% 100% 100% 100% 100%
Recall 100% 100% 100% 100% 79.7% 100% 100%
F1-Score 90.82% 100% 100% 100% 88.7% 100% 100%
AUC 0.984 1 1 1 0.899 1 1
row of yeone. The training parameters are the batch size m and by the first row of the confidence
the Adaptive Moment Optimizer (Adam) hyperparameters a, Hin, g]
p1, and p»
= softmax(class(x)[g]) 4)
St

N
- Z Velass, log [Stmm,, (x)r] 2)
t=1

N
> [veons, 10g[ Sty ()] + (1 = Yeons,) log [1 = Sty (), ]]-
t=1

3)

The loss of the confidence and of the classifications are
then added and the weights of the proposed network are
updated using the Adam algorithm. The complete algorithm
of the proposed SSPQDD is shown in Algorithm 1. After
the algorithm is tested, the confidence matrices are then
multiplied to the classification matrices to find the disturbance
in the signal frame as show in (4) and (5). The St is a
N x G matrix with each class represented by N and each grid
represented by G. St is the softmax of each grid multiplied

Hclass

Tclass

HI[1,1] St [1,1] H[1, G] * St .[1, G]

H[N, 1] * St [1,1] - H[N, G] * St .[1, G]

(&)

An example of PQD classification performed using the
proposed SSPQDD architecture is illustrated in Fig. 4, where
the output of the network in case of a transient disturbance
is illustrated. The top subplot shows how, using the proposed
architecture, even a small sliding window is able to identify
the transient.

III. COMPARATIVE ANALYSIS WITH OTHER DEEP
LEARNING APPROACHES AVAILABLE IN LITERATURE

In this section, the proposed SSPQDD was compared to
well-known deep learning architectures that show good results
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Fig. 7. Extract of the results obtained in PQD classification using the proposed SSPQDD network (bottom subplot) in the presence of two different disturbances
(a first interruption followed by a transient). The top subplots refer to the other CNN-based approaches used as comparative analysis.

in image classification tasks. Currently, there are no methods
available in literature that uses neural network (NN) specifi-
cally developed for PQD detection. Quite the contrary, there
are few approaches that uses NN developed for image classifi-
cation to tackle the problem exactly as an image classification
problem (in each frame of the acquired signal the network
looks for a PQD).

To compare these architectures, an experiment was made
training all architectures and comparing their performances.
Due to the nature of classification of the grid-like structured
in early stages, the SSPQDD can detect disturbances in voltage
signals that have duration from few nanoseconds up to over
1 min. The dataset used for training the different deep learning
architecture was the same used for the SSPQDD, as described
in the previous section. The architectures used to compare the
performances of the proposed SSPQDD are the following.

1) DarkNet [28], which is a fast and simple deep
learning-based object detection framework.

2) AlexNet [29], which is a milestone in deep CNN and it
is based on eight layers (five convolutional layers and
three fully connected layers).

3) ResNet [30] which is a significantly deep network imple-
mented using layer skips.

4) The basic VGG16 network [31].

The results of the comparison are shown in Figs. 5 and
6. More in detail, the first comparison has been carried out
measuring the accuracy, the number of layers, and the com-
putational resources required for each architecture, as shown
in Fig. 5. Similarly, Fig. 6 compares the accuracy of each
architecture, taking into account also the number of network’s
parameters. The highest accuracy was obtained using the
basic VGG16. However, the latter network requires a lot of
computational effort due the considerably great number of

parameters, as it is possible to see analyzing the figures.
Quite the contrary, the proposed SSPQDD architecture does
not require that much of memory space, and it is capable
of achieving remarkably high accuracy despite a substantially
lower number of parameters.

Investigating more in detail the results obtained for every
PQD under analysis, the different architectures show good
results for each disturbance except for the transient and the
normal condition. The VGG16 represents the exception since
it is capable to found most of the transients even better than the
proposed network. This is the reason why it has been chosen
for the base network of the SSPQDD. The problem with the
VGGI16 is that it fails to identify where the disturbances are
in the window frame.

Table I shows the precision, recall, Fl-score and the area
under the receiver operating characteristic (ROC) curve [also
known as area under the ROC curve (AUC)] of the different
architectures for each class of disturbance under consideration.

For the normal class or no disturbance DarkNet and ResNet
gave a 0% result due to their limited capabilities differentiating
the normal from the transient. Similarly, also the AlexNet
resulted in 0% precision and 100% recall for the normal class.

On the other hand, the VGG16 and the SSPQDD resulted
in high precision, recall, Fl-score (i.e., the harmonic mean
between precision and recall) and AUC for the normal class.
Other than the normal class, each architecture gave good
results, even if the VGG16 and the proposed SSPQDD network
provide the highest accuracy and the better results for each
analyzed class.

Overall, the VGG16 provide a total accuracy of 97.04%
while the proposed network reaches the 96.55%.

Results using training data also highlight how the pro-
posed SSPQDD represent the only available approach able
to detect multiple disturbances with different durations and
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Fig. 8. Extract of the results obtained in PQD classification using the proposed SSPQDD network (bottom subplot) in presence of three different disturbances
(an harmonic disturbance followed by an interruption and a swell). The top subplots refer to the other CNN-based approaches used as comparative analysis.

different locations in a single window frame. More in detail,
Fig. 7 illustrates the results obtained using the simulated
dataset in case of two disturbances of different kinds and
different durations in the same window. The random signal
illustrated in Fig. 7 includes an interruption of over 200 ms
followed by a short transient less than a second later. The
proposed architecture is the only one able to detect both
PQDs, while DarkNet, resNet, and VGG-16 can detect only
the first long Interruption. Quite the opposite, the AlexNet
is able to detect only the interruption, completely missing
the identification of the major long interruption. This is even
more clear analyzing Fig. 8, where the random voltage signal
includes three different disturbances: an harmonic followed
by a long interruption and a swell. Also in this case, the
proposed SSPQDD algorithm is the only one able to detect
all the disturbance in a single window. The DarkNet identifies
only the harmonics, while AlexNet, ResNet, and VGG-16
identify only the swell. This means that all the state-of-the-art
networks used for comparison completely miss to identify a
long interruption of over 200 ms, which is not acceptable in
almost every application.

The analysis in Figs. 7 and 8 summarizes entirely the
major contributions brought by the proposed algorithm and
the research gap filled by the SSPQDD. Both figures highlight
perfectly the most critical, powerful, and important feature of
the approach, ensuring also levels of accuracy on the single
disturbance comparable with the most outstanding works avail-
able in literature (as summarized in Table I).

IV. EXPERIMENTAL ANALYSIS

The final validation of the proposed SSPQDD algorithm
has been carried out using an experimental measurement

"] Residual-current
_cir

Fig. 9. Experimental setup used to test the performances of the proposed
SSPQDD algorithm.

setup able to acquire voltage signals and process real-time
classification algorithms to rapidly and precisely identify PQ
disturbances.

A picture of the experimental setup is reported in Fig. 9,
showing the ac programmable power source which could be
controlled by a laptop to generate a three-phase power source
affected by different disturbances.

A smart PQ meter provided by PowerEmp Srl has been used
to analyze the electrical parameters of the power source and
evaluate its health status. Furthermore, the PQ meter serves
as data acquisition unit able to transmit the voltage signals
acquired on each phase to a Raspberry PI 3b through a Wi-Fi
protocol. The Raspberry PI 3b has been used to run the
SSPQDD algorithm and classify the disturbances generated
on the grid by the programmable power source.

The first thing to note is the possibility to run the SSPQDD
algorithm on embedded electronics with limited computational
resources like a Raspberry PI 3b. This is a fundamental aspect
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Fig. 10. Classification results obtained using the proposed SSPQDD analyzing the measurement acquisition in presence of multiple disturbances.

for the applicability ranges of the proposed method, which has
proven to be one of the few alternatives allowing this option.
A solution such as VGG-16 ensures slightly higher accuracy
than the proposed method, but it could not be implemented
on embedded electronics.

The disturbances that were generated using the experimen-
tal measurement setup included sag, swell, interruption, and
harmonics. The measurement device sends real-time data to
the Raspberry PI 3b, which automatically run the algorithm
on the acquired data and classify the disturbance. At the same
time, data were also sent to a computer to run post-processing
algorithms such as DarkNet, AlexNet, ResNet, and VGG-16.

Once again, the SSPQDD has been able to detect and
classify all the disturbances correctly, regardless the time
duration, the location within the window frame and the number
of disturbances within the same window. The results obtained
in this scenario are illustrated in Fig. 10, identifying with
different colors each disturbance classified by the proposed
architecture. The top subplot in Fig. 10 shows a significant
portion of the measured signal including 15 different distur-
bances, while the bottom subplots emphasize three different
kinds of PQDs classified using smaller windows.

All the other approaches tested in the work missed to clas-
sify multiple disturbances, proving once again the potentiality
of the proposed approach.

V. CONCLUSION

This work deals with the classification of PQDs using a
CNN-based approach. A simulated dataset of voltage signals
containing different voltage disturbances has been generated
using MATLAB Simulink to train the proposed SSPQDD

deep learning architecture. The training of the SSPQDD
has been carried out following the guidelines presented in
the proposed Algorithm 1. To test the effectiveness and the
contributions of the proposed approach, the results obtained
using the SSPQDD have been compared with classical deep
learning architectures. The proposed SSPQDD has proven to
be superior to the other approaches in almost all aspects
(including accuracy, number of layers, computational com-
plexity, and number of parameters). In fact, other than being
superior in performances, the SSPQDD has proven to be
efficient in terms of use of computational resources. This
is due to the lack of feed forward network that usually
requires most of the computational effort. With that been
said, the SSPQDD can be an outstanding candidate for use
in embedded electronics, where the amount of computational
resources plays a significant role in the selection process of the
DL architecture.

Experimental results prove that the SSPQDD can effectively
and efficiently detect and classify multiple voltage distur-
bances in a single window frame. These disturbances varied
in duration and intensity, and the SSPQDD detected and
classified each one of theme effectively. Quite the contrary,
the other methods available in literature fail to classy more
than one disturbance in a single window, missing to consider
even long and major disturbances.
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