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Abstract— Power quality disturbances (PQDs) have affected1

many people due to the growing number of electronic nonlinear2

loads and because of the significant increase of renewable sources3

connected to the grid. Previous works have shown the devel-4

opment of algorithms to detect and classify these disturbances.5

A thorough review of PQD detector algorithms pointed out the6

use of machine learning and deep learning algorithms as the7

most used, accurate and up-to-date approaches to deal with8

this problem. Up until now, these algorithms were used in a9

sliding window manner that often fail to identify more than one10

disturbance in a single window frame. In this work, an innovative11

architecture called single shot PQD detection (SSPQDD) has12

been developed to solve this problem. Several experiments were13

conducted using a simulation dataset to validate the performances14

of the proposed SSPQDD in comparison with other algorithms15

available in literature in terms of computational resources,16

accuracy of identification, and number of layers. Furthermore,17

an experimental testbench has been carried out to test the18

performances of SSPQDD using real measurement data in case19

of multiple disturbances in a single window frame. The overall20

accuracy obtained using the proposed SSPQDD was 96.55% in21

PQD detection.22

Index Terms— Artificial intelligence, neural networks (NNs),23

power distribution, power quality (PQ), smart grids.24

I. INTRODUCTION25

IDEALLY, grid voltages and currents should have a purely26

sinusoidal waveform, but in reality they come in a distorted27

manner. These distortions vary in form and can have multiple28

sources that can affect multiple users in a community. These29

can be caused by the use of nonlinear electronic loads or by30

the generation of power by means of renewable sources.31

Recently, renewable energy sources have engrossed great32

tendency because of their potential to solve problems like33

increasing the need for electrical power, decreasing air pol-34

lution, and tackling the problem of global warming. Wind35

energy and solar photovoltaic energy, among other sources,36

are more and more employed forming the hybrid power system37

network able to provide future energy demand. The intrinsic38

properties of these renewable sources (i.e., wind variations39
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and solar insolation changes) have a significant influence on 40

power quality (PQ), reliability, and safety. As a result, low 41

PQ levels could lead to motor failure, overheating of the 42

lines, inaccurate metering, premature aging of devices, and 43

disturbances in communication circuits [1], [2], [3]. Other than 44

renewable energy sources, PQ problems can arise from the use 45

of electronic devices and appliances that bring severe problems 46

to grid voltages and currents in the form of PQ disturbances 47

(PQDs). 48

In recent years, a large number of nonlinear loads and 49

distributed generations with random characteristics have been 50

connected to the power grid [4]. Although their extensive use 51

in industrial, household, commercial, and public sectors have 52

improved many aspects of everyday life, they have brought 53

negative effects on the power grid. The use of nonlinear 54

electronic loads has increased the eventuality of unbalanced 55

currents, unacceptable harmonic levels, and poor power factor 56

in three-phase distribution systems [5], [6]. In other words, 57

power electronics technologies and/or nonlinear loads have 58

made life easier and more comfortable but due to their 59

nonlinear behavior it disturbs the power grid through voltage 60

and current waveform distortions. As a consequence, to the 61

extensive use of nonlinear electronic devices, the purely sinu- 62

soidal waveform gets injected with distorting components in 63

an increasing rate which have degraded PQ levels. If distorting 64

components are injected, power losses and malfunctioning of 65

electric devices can occur. Common effects of a degradation 66

of PQ in the industrial sector include loss of production, 67

manufacturing interruption, loss of revenue, productivity cost, 68

decrease competitiveness, lost opportunity, wasted energy, and 69

the decrease of equipment life [7]. Similar effects can occur in 70

the residential sector as overheating of ac appliances, television 71

(TV) screens displaying flicker and data loss, malfunctioning 72

communication equipment, and computer failures [8], [9]. 73

Nonlinear electronic loads can also cause disturbance to 74

other consumers and interference in nearby communication 75

networks [10]. 76

PQ is defined by the IEEE as “The concept of powering 77

and grounding sensitive equipment in a matter that is suitable 78

to the operation of that equipment” [11]. Any deviation, 79

in voltage and current, from its nominal values in a certain 80

period of time is considered a PQD. PQDs are classified 81

as a deviation from its nominal magnitude and/or frequency 82

components for a certain duration in time. According to 83

IEEE Standard 1159-2009 (Recommended Practice for Moni- 84
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toring Electric Power Quality) [12], the most common PQDs85

are as follows.86

1) Transients (also known as surge) which could be clas-87

sified as impulsive (whit different time durations, from88

few ns up to over 1 ms) or oscillatory (i.e., low, medium89

and high frequency transients).90

2) Short-duration root mean square (RMS) variations,91

such as sag, swell, interruption, and voltage imbalance92

which could be classified as instantaneous (from 10 to93

600 ms), momentary (up to 3 s), and temporary (up to94

1 min).95

3) Long-duration RMS variations which include sustained96

interruption, undervoltage or overvoltage phenomenon,97

and current overload with typical duration longer than98

1 min.99

4) Wave distortions such as notch and harmonics.100

Due to the problems that involve PQDs and the negative101

effects these may lead, it is important to detect and classify102

these disturbances. However, due to the very different nature of103

each PQD (in terms of duration, spectral content, magnitude,104

etc.), it is really challenging to develop an effective and105

efficient tool able to classify different categories of distur-106

bances. For instance, Fare clic o toccare qui per immettere il107

testo.Urbina-Salas et al. [13] use the Wavelet and Hilbert trans-108

forms to instantaneously estimate several PQ indices, while109

in [14] the latter are evaluated using a set of new scaling filter110

and wavelet filter with narrow transition bands. Despite a good111

accuracy of the estimation, the approach presented in [14]112

is limited only to interharmonics and transient disturbances.113

Other approaches are able to solve this issue and classify114

properly different types of PQD using for instance time-115

dependent spectral features [15], sparse signal decomposi-116

tion [16], and double resolution S-transform [17]. An extensive117

attempt has been made in previous works to detect and classify118

PQDs which many involve the use of machine learning (ML)119

and deep learning (DL) algorithms (see for instance but not120

only [18], [19], and [20]). Among the extensive inventory of121

ML and DL algorithms used to solve this problem, one of the122

most common and valid alternatives involves the use of123

convolutional neural networks (CNN) [21]. A CNN is a124

well-known DL architecture inspired by the natural visual125

perception mechanism of the living creatures [22], [23]. The126

extensive implementation of CNN arises from its feature127

extraction capabilities using convolutional operations within128

convolutional layers, and from the dimensionality reduction129

achieved using pooling layers. For instance, Shen et al. [24]130

integrates improved principal component analysis (IPCA) and131

a 1-D CNN to classify 12 types of synthetic and simulated132

PQDs. Instead, Wang and Chen [25] present a 1-D CNN to133

capture multiscale features and reduce overfitting extracting134

features from massive disturbance samples automatically. The135

problem with the majority of the approaches currently avail-136

able in literature is that they move in a sliding window manner137

and use a conventional multiclass classification method. Thus,138

the current state-of-the-art is able to identify and classify only139

one PQD in a single window. This consideration led to the use140

of very small sliding windows, with a consequent increase of 141

computational complexity. 142

Recent advancement has been made for images using 143

object detection algorithms. Among these algorithms the most 144

famous are the you only look once (YOLO) [26] and the single 145

shot detector (SSD) [27]. These algorithms were designed 146

to identify and classify multiple objects in a single image. 147

As images, voltage signals can contain multiple disturbances 148

in a single window frame. If this type of signal is classified 149

by a conventional method, it can lead to a misclassification. 150

As a matter of fact, almost none of the approaches currently 151

available in literature is able to correctly identify more than 152

one disturbance in a single window. Trying to fill this gap, 153

a new architecture for detection and classification of PQDs 154

has been developed in this work integrating features from 155

YOLO and SSD. The proposed deep learning architecture 156

called single shot PQD detector (SSPQDD) is able to precisely 157

identify the presence of a PQD and to accurately classify the 158

disturbance type. 159

The major contributions of the proposed SSPQDD are 160

described in the following. 161

1) Most of the approaches for PQ disturbance detection 162

available in literature deals with threshold classification 163

method based on the root mean square value of the 164

acquired signal. Instead, the approach proposed in this 165

research works with the entire voltage signal acquired 166

by a dedicated instrument. 167

2) The proposed approach is not only able to identify the 168

presence or not of a PQD, but it could also provide the 169

duration of the disturbance. 170

3) The most important feature of the proposed method 171

is the ability to precisely and accurately identify the 172

presence of more than one disturbance in a single sliding 173

window with a number of parameters, a number of 174

layers, and a computational complexity lower than the 175

other approaches for image classification available in 176

literature. 177

The rest of the article is organized as follows: Section II 178

introduce the proposed SSPQDD algorithm, Section III illus- 179

trates the results obtained using a simulated dataset and 180

a comparison with other approaches available in literature, 181

while Section IV shows the results obtained analyzing the PQ 182

measurement obtained using a smart PQ meter provided by 183

PowerEmp Srl. 184

II. PROPOSED APPROACH 185

A. Architecture 186

The proposed SSPQDD is based on a pretrained VGG-16 187

architecture. The VGG-16 is a deep CNN proposed by 188

Simonyan and Zisserman from the University of Oxford in 189

2014. In the last years, VGG16 has been used for image 190

recognition or classification and for image detection and 191

localization, while it is not used for PQD classification. In this 192

work, the base architecture of the proposed SSPQDD is a 193

VGG-16 network because of its outstanding accuracy in clas- 194

sifying PQDs compared to other architectures presented in this 195

work. The results of this comparison are shown in Section III. 196



ITURRINO-GARCÍA et al.: INNOVATIVE SINGLE SHOT PQD DETECTOR ALGORITHM 2517210

Algorithm 1 Proposed SSPQDD Method. α = 0.00005, β1 = 0.5, β2 = 0.999, N = 6, and G = 188
Require: Input x , target class yclass , target confidence ycon f , number of classes N , number of grids G , training mask MSt , batch size m, and Adam
hyperparameters α, β1, and β2.
1: while θ has not converged do:
2: Sample data batch

�
x(1), . . . , x(m)

�
from dataset x ∼ Pdata

3: Sample target batch
�

y(1)
class , . . . , y(m)

class

�
and

�
y(1)

con f , . . . , y(m)
con f

�
from yclass ∼ Pclass and ycon f ∼ Pcon f

4: for i = 1 . . . m do:
5: Stclass

�
x(i)

�← so f tmax
�
class

�
x(i)

�� ◦ MSt

6: Stcon f
�
x(i)

�← sof tmax
�
con f

�
x(i)

��
7: L(i) = −

G�
g=1

	
N�

t=1



y(i)

class(t,g)
log



Stclass

�
x(i)

�
(t,g)

��
+y(i)

con fg
log

�
Stcon fg

�
x(i)

�
+ �
1− y(i)

con fg

�
log

�
1− Stcon fg

�
x(i)

�
�

8: end for
9: θ ← Adam

�∇θ
1
m

�m
i=1 L(i), θ, α, β1, β2

�
10: end while

Fig. 1. Architecture of the base VGG-16 network used in this work.

After the training of the base network, the fully connected197

layers are substituted by feature extraction layers. This is done198

to take advantage of the maxpooling layers typical of the199

VGG-16 architecture and to classify voltage signals in a grid200

like structure. The proposed approach classifies 16 samples201

of the voltage signal per grid. Fig. 1 shows the VGG-16202

base architecture, which is divided into six consecutive blocks203

(each one is identified using a different background color in204

the figure). The first block is the input and the following205

blocks are the convolutional blocks where the kernel size are206

1 × 3 arrays. In block 1, the filter size is 64 and increments207

by a factor of 2 for each size being 512 in the last block.208

Finally, the last block is the classification layer which contains209

4096 layers for each fully connected layer. For generalization210

purposes, a dropout layer is added with 50% dropout.211

Fig. 2 shows the block diagram of the proposed method212

in which the base network is the VGG16 architecture, and213

the feedforward layers are substituted by feature extraction214

layers for the grid-like classification. The added stage uses215

a maxpooling layer for dimensionality reduction or, in other216

Fig. 2. Schematic representation of the proposed SSPQDD architecture.

words, for classification of a larger number of samples. The 217

final layer has two outputs. The first output, the confidence 218

output, is a binary classification that classifies the signal as 219

disturbance or no disturbance. The confidence output is used 220

to mask the second output which is a multiclass classification. 221

St has 188 grids which are 16 samples per grid. This is 222

fundamental to ensure that the algorithm will be able to find 223

and classify transient disturbances of few nanoseconds as well 224

as temporary disturbances lasting over 1 min. 225

The confidence output is characterized by two outputs per 226

grid, while the classification one has six output per grid due to 227

the six types of disturbances taken into consideration. These 228

include sag, swell, harmonic, transient, notch, and interruption. 229

A confidence of class 0 means normal. 230

B. Dataset 231

The dataset used to train and validate the proposed network 232

involves voltage signals containing sag, swell, harmonics, 233

transient, notch, and interruption. All the PQDs have been 234

generated randomly within the signal to ensure different time 235

durations of the disturbances and to cover different locations in 236

a window frame. The dataset was generated using MATLAB 237

Simulink considering a sampling frequency of 8 kHz for a 238

total duration of 3.75 s. A 3.75 s sliding window have been 239

selected since it represents the greatest window that could be 240

implemented on the available hardware considering a 8 kHz 241

sampling frequency. The limit on the window dimension is due 242

only to the computational complexity required by the hardware 243

device and it does not affect the classification accuracy. 244

The dimension of the training dataset was 290 MB and the 245

time required to train the proposed network was approximately 246

one day. However, this could not be considered a limitation 247

since training is required only once, before the first use of the 248

SSPQDD algorithm. 249

The target includes the confidence matrices and the clas- 250

sification matrices. The classification matrices are multiplied 251
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Fig. 3. Illustration of the training phase for the proposed algorithm.
(a) Voltage signal containing a swell and a sag. (b). Classification and
Confidence matrices in the St layer.

Fig. 4. Results obtained in case of a transient disturbance in the simulated
dataset.

by a mask matrix for training stability purposes. The matrices252

are 2 × 188 for the confidence matrices and 6 × 188 for the253

classification matrices. The output is then confronted with the254

confidence and classification matrices.255

Fig. 3(a) shows an extract of the voltage signal used to train256

the algorithm including a swell disturbance instantaneously257

followed by a sag disturbance. Below the voltage signal there258

are the training matrices shown in Fig. 3(b) representing the259

classification matrices and the confidence matrices.260

Pretraining of the VGG16 is done classifying the distur-261

bance as a multiclass classification problem using the softmax262

function. The fully connected layers are then removed, and the263

Fig. 5. Comparative analysis results: accuracy, number of layers, and
computational complexity (in terms of required memory) of the proposed
SSPQDD method against other CNN-based approaches.

Fig. 6. Comparative analysis results: accuracy, number of parameters, and
computational complexity (in terms of required memory) of the proposed
SSPQDD method against other CNN-based approaches.

feature extraction layers and the output layers are then added 264

to the base network. Training of the SSPQDD network is done 265

with voltage signals and comparing the outputs with the target 266

matrices shown in Fig. 3(b). The softmax function is used in 267

a binary manner on each grid to determine if a PQD exists in 268

that given grid. Thus, the probability to classify the j th class 269

given a sample vector x and a weighting vector w is given by 270

P( ŷ = j | x) = exT w j�K
1 exT wk

. (1) 271

The multiclass softmax function is used in the classification 272

output. The classification output, after the sofmax, is then 273

multiplied by a mask matrix for training stability purposes and 274

class imbalances. The loss function is then calculated using 275

the crossentropy loss. The crossentropy loss and the binary 276

crossentropy loss are shown in (2) and (3), respectively. 277

The yconf t and yclasst are the target matrices for the confi- 278

dence output and the class output, respectively. The Stηconf (x)t 279

and the Stηclass(x)t are the outputs of the confidence and the 280

class of the proposed SSPQDD architecture. 281

From the available dataset the input x can be extracted (i.e., 282

the signal to be classified). The target class yclass and the target 283

confidence yconf are the matrices that are compared with the 284

output. The N and G are the number of classes and the number 285

of grids, respectively. MSt is the training mask that is the first 286
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TABLE I

COMPARISON OF DEEP LEARNING ARCHITECTURES FOR PQD CLASSIFICATION

row of yconf . The training parameters are the batch size m and287

the Adaptive Moment Optimizer (Adam) hyperparameters α,288

β1, and β2289

−
N�

t=1

yclasst log
�
Stηclass(x)t



(2)290

N�
t=1

�
yconft log

�
Stηconf (x)t


+ �
1− yconft

�
log

�
1− Stηconf (x)t




.291

(3)292

The loss of the confidence and of the classifications are293

then added and the weights of the proposed network are294

updated using the Adam algorithm. The complete algorithm295

of the proposed SSPQDD is shown in Algorithm 1. After296

the algorithm is tested, the confidence matrices are then297

multiplied to the classification matrices to find the disturbance298

in the signal frame as show in (4) and (5). The Stηclass is a299

N × G matrix with each class represented by N and each grid300

represented by G. Stηclass is the softmax of each grid multiplied301

by the first row of the confidence 302

H [n, g] 303

= softmax(class(x)[g]) (4) 304

Stηclass 305

=
⎡
⎢⎣

H [1, 1] ∗ Stηconf [1, 1] · · · H [1, G] ∗ Stηconf [1, G]
...

. . .
...

H [N, 1] ∗ Stηconf [1, 1] · · · H [N, G] ∗ Stηconf [1, G]

⎤
⎥⎦. 306

(5) 307

An example of PQD classification performed using the 308

proposed SSPQDD architecture is illustrated in Fig. 4, where 309

the output of the network in case of a transient disturbance 310

is illustrated. The top subplot shows how, using the proposed 311

architecture, even a small sliding window is able to identify 312

the transient. 313

III. COMPARATIVE ANALYSIS WITH OTHER DEEP 314

LEARNING APPROACHES AVAILABLE IN LITERATURE 315

In this section, the proposed SSPQDD was compared to 316

well-known deep learning architectures that show good results 317
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Fig. 7. Extract of the results obtained in PQD classification using the proposed SSPQDD network (bottom subplot) in the presence of two different disturbances
(a first interruption followed by a transient). The top subplots refer to the other CNN-based approaches used as comparative analysis.

in image classification tasks. Currently, there are no methods318

available in literature that uses neural network (NN) specifi-319

cally developed for PQD detection. Quite the contrary, there320

are few approaches that uses NN developed for image classifi-321

cation to tackle the problem exactly as an image classification322

problem (in each frame of the acquired signal the network323

looks for a PQD).324

To compare these architectures, an experiment was made325

training all architectures and comparing their performances.326

Due to the nature of classification of the grid-like structured327

in early stages, the SSPQDD can detect disturbances in voltage328

signals that have duration from few nanoseconds up to over329

1 min. The dataset used for training the different deep learning330

architecture was the same used for the SSPQDD, as described331

in the previous section. The architectures used to compare the332

performances of the proposed SSPQDD are the following.333

1) DarkNet [28], which is a fast and simple deep334

learning-based object detection framework.335

2) AlexNet [29], which is a milestone in deep CNN and it336

is based on eight layers (five convolutional layers and337

three fully connected layers).338

3) ResNet [30] which is a significantly deep network imple-339

mented using layer skips.340

4) The basic VGG16 network [31].341

The results of the comparison are shown in Figs. 5 and342

6. More in detail, the first comparison has been carried out343

measuring the accuracy, the number of layers, and the com-344

putational resources required for each architecture, as shown345

in Fig. 5. Similarly, Fig. 6 compares the accuracy of each346

architecture, taking into account also the number of network’s347

parameters. The highest accuracy was obtained using the348

basic VGG16. However, the latter network requires a lot of349

computational effort due the considerably great number of350

parameters, as it is possible to see analyzing the figures. 351

Quite the contrary, the proposed SSPQDD architecture does 352

not require that much of memory space, and it is capable 353

of achieving remarkably high accuracy despite a substantially 354

lower number of parameters. 355

Investigating more in detail the results obtained for every 356

PQD under analysis, the different architectures show good 357

results for each disturbance except for the transient and the 358

normal condition. The VGG16 represents the exception since 359

it is capable to found most of the transients even better than the 360

proposed network. This is the reason why it has been chosen 361

for the base network of the SSPQDD. The problem with the 362

VGG16 is that it fails to identify where the disturbances are 363

in the window frame. 364

Table I shows the precision, recall, F1-score and the area 365

under the receiver operating characteristic (ROC) curve [also 366

known as area under the ROC curve (AUC)] of the different 367

architectures for each class of disturbance under consideration. 368

For the normal class or no disturbance DarkNet and ResNet 369

gave a 0% result due to their limited capabilities differentiating 370

the normal from the transient. Similarly, also the AlexNet 371

resulted in 0% precision and 100% recall for the normal class. 372

On the other hand, the VGG16 and the SSPQDD resulted 373

in high precision, recall, F1-score (i.e., the harmonic mean 374

between precision and recall) and AUC for the normal class. 375

Other than the normal class, each architecture gave good 376

results, even if the VGG16 and the proposed SSPQDD network 377

provide the highest accuracy and the better results for each 378

analyzed class. 379

Overall, the VGG16 provide a total accuracy of 97.04% 380

while the proposed network reaches the 96.55%. 381

Results using training data also highlight how the pro- 382

posed SSPQDD represent the only available approach able 383

to detect multiple disturbances with different durations and 384
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Fig. 8. Extract of the results obtained in PQD classification using the proposed SSPQDD network (bottom subplot) in presence of three different disturbances
(an harmonic disturbance followed by an interruption and a swell). The top subplots refer to the other CNN-based approaches used as comparative analysis.

different locations in a single window frame. More in detail,385

Fig. 7 illustrates the results obtained using the simulated386

dataset in case of two disturbances of different kinds and387

different durations in the same window. The random signal388

illustrated in Fig. 7 includes an interruption of over 200 ms389

followed by a short transient less than a second later. The390

proposed architecture is the only one able to detect both391

PQDs, while DarkNet, resNet, and VGG-16 can detect only392

the first long Interruption. Quite the opposite, the AlexNet393

is able to detect only the interruption, completely missing394

the identification of the major long interruption. This is even395

more clear analyzing Fig. 8, where the random voltage signal396

includes three different disturbances: an harmonic followed397

by a long interruption and a swell. Also in this case, the398

proposed SSPQDD algorithm is the only one able to detect399

all the disturbance in a single window. The DarkNet identifies400

only the harmonics, while AlexNet, ResNet, and VGG-16401

identify only the swell. This means that all the state-of-the-art402

networks used for comparison completely miss to identify a403

long interruption of over 200 ms, which is not acceptable in404

almost every application.405

The analysis in Figs. 7 and 8 summarizes entirely the406

major contributions brought by the proposed algorithm and407

the research gap filled by the SSPQDD. Both figures highlight408

perfectly the most critical, powerful, and important feature of409

the approach, ensuring also levels of accuracy on the single410

disturbance comparable with the most outstanding works avail-411

able in literature (as summarized in Table I).412

IV. EXPERIMENTAL ANALYSIS413

The final validation of the proposed SSPQDD algorithm414

has been carried out using an experimental measurement415

Fig. 9. Experimental setup used to test the performances of the proposed
SSPQDD algorithm.

setup able to acquire voltage signals and process real-time 416

classification algorithms to rapidly and precisely identify PQ 417

disturbances. 418

A picture of the experimental setup is reported in Fig. 9, 419

showing the ac programmable power source which could be 420

controlled by a laptop to generate a three-phase power source 421

affected by different disturbances. 422

A smart PQ meter provided by PowerEmp Srl has been used 423

to analyze the electrical parameters of the power source and 424

evaluate its health status. Furthermore, the PQ meter serves 425

as data acquisition unit able to transmit the voltage signals 426

acquired on each phase to a Raspberry PI 3b through a Wi-Fi 427

protocol. The Raspberry PI 3b has been used to run the 428

SSPQDD algorithm and classify the disturbances generated 429

on the grid by the programmable power source. 430

The first thing to note is the possibility to run the SSPQDD 431

algorithm on embedded electronics with limited computational 432

resources like a Raspberry PI 3b. This is a fundamental aspect 433
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Fig. 10. Classification results obtained using the proposed SSPQDD analyzing the measurement acquisition in presence of multiple disturbances.

for the applicability ranges of the proposed method, which has434

proven to be one of the few alternatives allowing this option.435

A solution such as VGG-16 ensures slightly higher accuracy436

than the proposed method, but it could not be implemented437

on embedded electronics.438

The disturbances that were generated using the experimen-439

tal measurement setup included sag, swell, interruption, and440

harmonics. The measurement device sends real-time data to441

the Raspberry PI 3b, which automatically run the algorithm442

on the acquired data and classify the disturbance. At the same443

time, data were also sent to a computer to run post-processing444

algorithms such as DarkNet, AlexNet, ResNet, and VGG-16.445

Once again, the SSPQDD has been able to detect and446

classify all the disturbances correctly, regardless the time447

duration, the location within the window frame and the number448

of disturbances within the same window. The results obtained449

in this scenario are illustrated in Fig. 10, identifying with450

different colors each disturbance classified by the proposed451

architecture. The top subplot in Fig. 10 shows a significant452

portion of the measured signal including 15 different distur-453

bances, while the bottom subplots emphasize three different454

kinds of PQDs classified using smaller windows.455

All the other approaches tested in the work missed to clas-456

sify multiple disturbances, proving once again the potentiality457

of the proposed approach.458

V. CONCLUSION459

This work deals with the classification of PQDs using a460

CNN-based approach. A simulated dataset of voltage signals461

containing different voltage disturbances has been generated462

using MATLAB Simulink to train the proposed SSPQDD463

deep learning architecture. The training of the SSPQDD 464

has been carried out following the guidelines presented in 465

the proposed Algorithm 1. To test the effectiveness and the 466

contributions of the proposed approach, the results obtained 467

using the SSPQDD have been compared with classical deep 468

learning architectures. The proposed SSPQDD has proven to 469

be superior to the other approaches in almost all aspects 470

(including accuracy, number of layers, computational com- 471

plexity, and number of parameters). In fact, other than being 472

superior in performances, the SSPQDD has proven to be 473

efficient in terms of use of computational resources. This 474

is due to the lack of feed forward network that usually 475

requires most of the computational effort. With that been 476

said, the SSPQDD can be an outstanding candidate for use 477

in embedded electronics, where the amount of computational 478

resources plays a significant role in the selection process of the 479

DL architecture. 480

Experimental results prove that the SSPQDD can effectively 481

and efficiently detect and classify multiple voltage distur- 482

bances in a single window frame. These disturbances varied 483

in duration and intensity, and the SSPQDD detected and 484

classified each one of theme effectively. Quite the contrary, 485

the other methods available in literature fail to classy more 486

than one disturbance in a single window, missing to consider 487

even long and major disturbances. 488
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