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Abstract
Let G be a finite group. Denoting by cd(G) the set of the degrees of the irreducible complex
characters ofG, we consider the character degree graph ofG: this, is the (simple, undirected)
graphwhose vertices are the prime divisors of the numbers in cd(G), and two distinct vertices
p, q are adjacent if and only if pq divides some number in cd(G). This paper completes the
classification, started in Dolfi et al. (Non-solvable groups whose character degree graph has
a cut-vertex. II, 2022. https://doi.org/10.1007/s10231-022-01299-3) and Dolfi et al. (Non-
solvable groups whose character degree graph has a cut-vertex. I, 2022. https://doi.org/10.
48550/arXiv.2207.10119), of the finite non-solvable groups whose character degree graph
has a cut-vertex, i.e., a vertex whose removal increases the number of connected components
of the graph. More specifically, it was proved in Dolfi et al. (Non-solvable groups whose
character degree graph has a cut-vertex. I, 2022. https://doi.org/10.48550/arXiv.2207.10119
that these groups have a unique non-solvable composition factor S, and that S is isomorphic
to a group belonging to a restricted list of non-abelian simple groups. In Dolfi et al. (Non-
solvable groups whose character degree graph has a cut-vertex. II, 2022. https://doi.org/10.
1007/s10231-022-01299-3) and Dolfi et al. (Non-solvable groups whose character degree
graph has a cut-vertex. I, 2022. https://doi.org/10.48550/arXiv.2207.10119) all isomorphism
types for S were treated, except the case S ∼= PSL2(2a) for some integer a ≥ 2; the remaining
case is addressed in the present paper.
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1 Introduction

The character degree graph �(G) of a finite group G is a very useful tool for studying the
arithmetical structure of the set cd(G) = {χ(1) : χ ∈ Irr(G)}, i.e., the set of the irreducible
(complex) character degrees of G. As many results in the literature show, there is a profound
interaction between the group structure of G and certain graph-theoretical properties (in
particular, connectivity properties) of �(G).

In the papers [5, 6] we considered the problem of classifying the finite non-solvable groups
G such that �(G) has a cut-vertex, which is a vertex whose removal (together with all the
edges incident to it) produces a graph having more connected components than the original.
Among the various properties of such a group G, it is proved in [6] that G has a unique
non-solvable composition factor S, and that S is isomorphic to one of the simple groups in
the following list: the projective special linear group PSL2(ta) (where ta is a prime power
greater than 3), the Suzuki group Sz(2a) (where 2a − 1 is a prime number), PSL3(4), the
Mathieu group M11, and the first Janko group J1. The aforementioned papers carry out an
analysis (and provide a complete classification) of all the possibilities, except for the case
S ∼= PSL2(2a) when �(G) is connected; the present work addresses the remaining case,
thus completing the classification of these groups. We refer the reader to [5, 6] for a thorough
description of the problem and, in particular, for the full statements of the relevant theorems
(see the introductions of [5, 6], and Section 2 of [6]).

The situation that remains to be studied is treated in the following Theorems 1 and 2,
which deal with the cases 2a > 4 and 2a = 4, respectively (see [6, Theorem A, Case (f)],
and [6, Theorem B]), and which are the main results of this paper.

In order to clarify the statements we mention that, for H = SL2(ta) (where ta is a prime
power), an H -module V over the field Ft of order t is called the natural module for H if V
is isomorphic to the standard module for SL2(ta), or any of its Galois conjugates, seen as an
Ft [H ]-module. We will freely use this terminology also referred to the conjugation action of
a group on a suitable elementary abelian normal subgroup. For our purposes, it is important
to recall that the standard module for SL2(ta) is self-dual.

Also, given a finite groupG, we denote by R = R(G) the solvable radical (i.e., the largest
solvable normal subgroup), and by K = K (G) the solvable residual (i.e., the smallest normal
subgroupwith a solvable factor group) ofG. Equivalently, K (G) is the last term of the derived
series of G.

Theorem 1 Let R and K be, respectively, the solvable radical and the solvable residual of
the finite group G and assume that G has a composition factor S ∼= SL2(2a), with a ≥ 3.
Then, �(G) is a connected graph and has a cut-vertex p if and only if G/R is an almost
simple group with socle isomorphic to S, V (G) = π(G/R) ∪ {p} and one of the following
holds.

(a) K ∼= S is a minimal normal subgroup of G; also, either p = 2 and V (G/K ) ∪
π(G/K R) = {2}, or p �= 2, V (G/K ) = {p}, and G/K R has odd order.

(b) K contains a minimal normal subgroup L of G such that K/L ∼= S and L is the natural
module for K/L; also, p �= 2, V (G/K ) = {p}, G/K R has odd order and, for a Sylow
2-subgroup T of G, we have T ′ = (T ∩ K )′.
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Non-solvable groups whose character degree graph… 2519

In all cases, p is a complete vertex and the unique cut-vertex of �(G).

Theorem 2 Let R and K be, respectively, the solvable radical and the solvable residual of
the finite group G and assume that G has a composition factor S ∼= SL2(4). Then, �(G) is
a connected graph and has a cut-vertex p if and only if G/R is an almost simple group with
socle isomorphic to S, V (G) = {2, 3, 5} ∪ {p} and one of the following holds.

(a) K is isomorphic either to SL2(4) or to SL2(5), and V (G/K ) = {p}; if p = 5, then
K ∼= SL2(4) and G = K × R.

(b) K contains a minimal normal subgroup L of G with |L| = 24. Moreover, G = K R and

(i) either L is the natural module for K/L, p �= 2 and V (G/K ) = {p},
(ii) or L is isomorphic to the restriction to K/L, embedded as �−

4 (2) into SL4(2), of the
standard module of SL4(2). Moreover p = 5, G = K × R0 where R0 = CG(K ),
and V (R0) = V (G/K ) ⊆ {5}.

(c) K contains a minimal normal subgroup L of G such that K/L is isomorphic to SL2(5),
and

(i) either L is the natural module for K/L, p �= 5 and V (G/K ) = {p},
(ii) or L is isomorphic to the restriction to K/L, embedded in SL4(3), of the standard

module of SL4(3), p = 2 and V (G/K ) ⊆ {2}.
In all cases, p is a complete vertex and the unique cut-vertex of �(G).

To conclude this introduction, we display in Table 1 the graphs related to the groups as in
Theorems 1 and 2, so, all the possible connected graphs having a cut-vertex p, of the form
�(G) where G is a finite group with a composition factor isomorphic to SL2(2a), a ≥ 2.
The first row of the table shows the graphs arising from Theorem 1, whereas the second row
shows the graphs arising from Theorem 2 in the case when p is larger than 5. As regards the
remaining graphs coming from Theorem 2, they are displayed in the third row of the table,
and they are all the paths of length 2 with vertex set {2, 3, 5}. Each of them actually occurs
for groups as in Theorem 2(a) (it is enough to consider the direct product SL2(4) × R where
R is a non-abelian q-group, for q ∈ {2, 3, 5}). Also, case (b)(ii) is associated to the path
2 − 5 − 3, and case (c)(ii) to the path 3 − 2 − 5.

All the groups considered in the following discussion will be tacitly assumed to be finite
groups.

2 Preliminaries

Given a group G, we denote by �(G) the character degree graph (or degree graph for short)
ofG as defined in the Introduction. Our notation concerning character theory is standard, and
we will freely use basic facts and concepts such as Ito-Michler’s theorem, Clifford’s theory,
Gallagher’s theorem, character triples and results about extension of characters (see [8]).

For a positive integer n, the set of prime divisors of n will be denoted by π(n), and we
simply write π(G) for π(|G|). If q is a prime power, then the symbol Fq will denote the field
of order q .

We start by recalling some structural properties of the groups SL2(2a).

Remark 2.1 The group SL2(2a) = PSL2(2a) has order 2a(2a − 1)(2a + 1), and the proper
subgroups of this group are of the following types ([7, II.8.27]):
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2520 S. Dolfi et al.

Table 1 The graphs related to the groups of Theorem 1 and Theorem 2

(i+) dihedral groups of order 2(2a + 1) and their subgroups;
(i−) dihedral groups of order 2(2a − 1) and their subgroups;
(ii) Frobenius groups with elementary abelian kernel of order 2a and cyclic complements
of order 2a − 1, and their subgroups;
(iii) A4 when a is even or A5 when 5 divides |SL2(2a)|;
(iv) SL2(2b), where b is a proper divisor of a.

When dealing with subgroups of SL2(2a), we will refer to the above labels to identify the
type of these subgroups. By a subgroup of type (i) we will mean a subgroup that is either of
type (i−) or of type (i+).
Lemma 2.2 Let G ∼= SL2(2a), where a ≥ 2. Let u be a prime divisor of 2a − 1, and let U
be a subgroup of G with |U | = ub for a suitable b ∈ N − {0}. Then U lies in the normalizer
in G of precisely two Sylow 2-subgroups of G.

Proof See [5, Lemma 2.2]. 
�
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Next, some properties of the degree graph of simple and almost-simple groups.

Theorem 2.3 ([15, Theorem 5.2]) Let S ∼= PSL2(ta) or S ∼= SL2(ta), with t prime and
a ≥ 1. Let ρ+ = π(ta + 1) and ρ− = π(ta − 1). For a subset ρ of vertices of �(S), we
denote by �ρ the subgraph of � = �(S) induced by the subset ρ. Then

(a) if t = 2 and a ≥ 2, then �(S) has three connected components, {t}, �ρ+ and �ρ− , and
each of them is a complete graph.

(b) if t > 2 and ta > 5, then �(S) has two connected components, {t} and �ρ+∪ρ− ;
moreover, both �ρ+ and �ρ− are complete graphs, no vertex in ρ+ − {2} is adjacent to
any vertex in ρ− − {2} and 2 is a complete vertex of �ρ+∪ρ− .

Theorem 2.4 Let G be an almost-simple group with socle S, and let δ = π(G) − π(S). If
δ �= ∅, then S is a simple group of Lie type, and every vertex in δ is adjacent to every other
vertex of �(G) that is not the characteristic of S. Moreover, if S ∼= SL2(2a) and a ≥ 3, then
any prime in π(G/S) is adjacent to every other vertex of �(G), except possibly to 2.

Proof The first claim is Theorem 3.9 of [6]. As for the second claim, by Theorem A of [16]
we see that both (2a − 1)|G/S| and (2a + 1)|G/S| are irreducible character degrees of G. 
�
Lemma 2.5 Let G be a group and let R be its solvable radical. Assume that G/R is an almost-
simple group with socle isomorphic to PSL2(ta), for a prime t with ta > 4 and ta �= 9. Then,
denoting by K the solvable residual of G, one of the following conclusions holds.

(a) K is isomorphic to PSL2(ta) or to SL2(ta);
(b) K has a non-trivial normal subgroup L such that K/L is isomorphic to PSL2(ta) or to

SL2(ta), and every non-principal irreducible character of L/L ′ is not invariant in K .

Proof See [5, Lemma 2.5]. 
�
Lemma 2.6 Let G be a group, let R be its solvable radical and K its solvable residual.
Assume that L is a normal subgroup of G, contained in K , such that K/L ∼= SL2(2a) with
a ≥ 2, and L is isomorphic to the natural module for K/L. Let T be a Sylow 2-subgroup of
K R, let T0 = T ∩ R and T1 = T ∩ K. Then L ≤ Z(T0). Furthermore, every non-principal
T -invariant character λ ∈ Irr(L) extends to T1 and, assuming that T0/L is abelian, λ extends
to T if and only if T ′ = T ′

1.

Proof Observe that L = K∩R is an elementary abelian 2-group of order 22a , T0 is normalized
by K and T = T0T1. As Z(T0) ∩ L is non-trivial and normal in K , by the irreducibility of L
as a K -module it follows that L ≤ Z(T0).

It is well known that NK (T1)/L = NK/L(T1/L) is a subgroup of type (ii) of K/L whose
order is 2a · (2a − 1) (in fact, NK/L(T1/L) can be identified with the subgroup of lower-
triangular matrices of SL2(2a)); thus we write NK (T1) = T1D, where D is cyclic of order
2a − 1. By looking at the action of T1 on the natural module L , we see that Z = Z(T1) =
(T1)′ is a normal subgroup of order 2a of T1D. Since L is a self-dual K -module, we have
|C

̂L(T1)| = |CL(T1)| = 2a = |L̂/Z | and hence, as certainly the characters of L/Z are
T1-invariant, we conclude that the T1-invariant characters of L are precisely the elements of
L̂/Z . They are clearly T -invariant and they extend to T1, because T1/Z is abelian.

Let λ ∈ Irr(L) be a non-principal T -invariant character and assume that λ has an extension
τ ∈ Irr(T ). Since τ(1) = λ(1) = 1, we have T ′ ≤ ker τ . Assuming that T0/L is abelian,
then T /L = T0/L × T1/L is abelian and T ′ ≤ L . So, T ′ = T ′ ∩ L ≤ ker τL = ker λ and,
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as λ �= 1L , hence T ′ < L . Observing that T ′ is normalized by D and that D acts irreducibly
on L/Z , we conclude that T ′ ≤ Z and, since Z = T ′

0 ≤ T ′, that T ′ = T ′
0.

Conversely, if λ ∈ Irr(L) is T -invariant, then as observed above Z ≤ ker λ and, assuming
Z = T ′, clearly λ, seen as a character of L/Z , extends to the abelian group T /Z . 
�
Remark 2.7 Let K be a group having a normal subgroup L with K/L ∼= SL2(2a) (for
a ≥ 2), and such that L is isomorphic to the natural K/L-module. Then, as a consequence
of the previous lemma, we can see that the graph �(K ) is disconnected with two connected
components, whose vertex sets are {2} and π(K ) − {2} respectively, and which are both
complete subgraphs of �(K ).

In fact, by Theorem 2.3,�(K/L) has three connected components with vertex setsπ(2a−
1), π(2a + 1) and {2} respectively, which are all complete subgraphs of �(K/L). On the
other hand, if λ is any non-principal character in Irr(L), then IK (λ) is a Sylow 2-subgroup
of K , and Lemma 2.6 guarantees that λ extends to IK (λ); our claim then easily follows by
Clifford’s theory.

Theorem 2.8 Let G be a non-solvable group such that �(G) is connected and it has a cut-
vertex p. Then, denoting by R the solvable radical of G,we have that G/R is an almost-simple
group such that V (G) = π(G/R) ∪ {p}.
Proof See [6, Theorem 3.15]. 
�

To conclude this preliminary section, we recall the statements of three crucial results
proved in [5, 6], concerning certain module actions of SL2(ta)).

Let H and V be finite groups, and assume that H acts by automorphisms on V . Given
a prime number q , we say that the pair (H , V ) satisfies the condition Nq if q divides
|H : CH (V )| and, for every non-trivial v ∈ V , there exists a Sylow q-subgroup Q of
H such that Q � CH (v) (see [2]).

If (H , V ) satisfiesNq then V turns out to be an elementary abelian r -group for a suitable
prime r , and V is in fact an irreducible module for H over the field Fr (see Lemma 4 of
[17]).

Lemma 2.9 ([6, Lemma 3.10]) Let t , q, r be prime numbers, let H = SL2(ta) (with ta ≥ 4)
and let V be an Fr [H ]-module. Then (H , V ) satisfies Nq if and only if either ta = 5 and
V is the natural module for H/CH (V ) ∼= SL2(4) or V is faithful and one of the following
holds.

(1) t = q = r and V is the natural Fr [H ]-module (so |V | = t2a);
(2) q = r = 3 and (ta, |V |) ∈ {(5, 34), (13, 36)}.
Theorem 2.10 ([5, Theorem3.3]) Let V be a non-trivial irreduciblemodule for G = SL2(ta)
over the field Fq , where ta ≥ 4 and q is a prime number, q �= t . For odd primes r ∈ π(ta −1)
and s ∈ π(ta + 1) (possibly r = q or s = q) let R, S be respectively a Sylow r-subgroup
and a Sylow s-subgroup of G, and let T be a Sylow t-subgroup of G. Then, considering the
sets

VI− = {v ∈ V | there exists z ∈ G such that Rz � CG(v)},
VI+ = {v ∈ V | there exists z ∈ G such that Sz � CG(v)},
VI I = {v ∈ V | there exists z ∈ G such that T z � CG(v)},

we have that V − {0} strictly contains VI− ∪ VI I , VI+ ∪ VI I , and VI− ∪ VI+ , unless one of
the following holds.
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(a) G ∼= SL2(5), s = 3, |V | = 34 and V \{0} = VI+ ,
(b) G ∼= SL2(13), r = 3, |V | = 36 and V \{0} = VI− .

Theorem 2.11 ([5, Theorem 3.4]) Let T be a Sylow t-subgroup of G ∼= SL2(ta) (where
ta ≥ 4) and, for a given odd prime divisor r of t2a − 1, let R be a Sylow r-subgroup of G.
Assuming that V is a t-group such that G acts by automorphisms (not necessarily faithfully)
on V and CV (G) = 1, consider the sets

VI = {v ∈ V | there exists x ∈ G such that Rx � CG(v)}, and

VI I = {v ∈ V | there exists x ∈ G such that T x � CG(v)}.
Then, the following conditions are equivalent.

(a) VI and VI I are both non-empty and V − {1} = VI ∪ VI I .
(b) G ∼= SL2(4), and V is an irreducible G-module of dimension 4 over F2. More precisely,

V is the restriction to G, embedded as �−
4 (2) into SL4(2), of the standard module of

SL4(2).

3 The structure of the solvable residual

Let G be a group having a composition factor isomorphic to SL2(2a) (with a ≥ 2), such
that �(G) is connected and has a cut-vertex: as the first step in our analysis, our purpose
is to describe the structure of the solvable residual K of G. In particular we will see that,
except for two sporadic cases, either we have K ∼= SL2(2a), or K ∼= SL2(5), or K contains
a minimal normal subgroup L of G such that either K/L ∼= SL2(2a) or K/L ∼= SL2(5) and
L is the natural module for K/L .

We collect the main results of this section in the following single statement (which is the
counterpart in characteristic 2 of [5, Theorem 4.1]). This will be proved by treating separately
the case a > 2 and the case a = 2, in Theorems 3.2 and 3.4, respectively.

Theorem 3.1 Assume that the group G has a composition factor isomorphic to SL2(2a) with
a ≥ 2, and let p be a prime number. Assume also that �(G) is connected with cut-vertex p.
Then, denoting by K the solvable residual of G, one of the following conclusions holds.

(a) K is isomorphic to SL2(2a) or to SL2(5);
(b) K contains a minimal normal subgroup L of G such that K/L is isomorphic either to

SL2(2a) or to SL2(5) and L is the natural module for K/L.
(c) a = 2, and K contains a minimal normal subgroup L of G such that K/L is isomorphic

to SL2(4). Moreover, L is isomorphic to the restriction to K/L, embedded as�−
4 (2) into

SL4(2), of the standard module of SL4(2).
(d) a = 2, and K contains a minimal normal subgroup L of G such that K/L is isomorphic

to SL2(5). Moreover, L is isomorphic to the restriction to K/L, embedded in SL4(3), of
the standard module of SL4(3).

We will then start by treating the case a > 2. Before stating the next theorem we recall
that, for m and n integers larger than 1, a prime divisor q of mn − 1 is called a primitive
prime divisor if q does not divide mb − 1 for all 1 ≤ b < n. In this case, n is the order of
m modulo q , so n divides q − 1. In view of [10, Theorem 6.2], mn − 1 always has primitive
prime divisors except when n = 2 and m = 2c − 1 for some integer c (i.e., m is a Mersenne
number), or when n = 6 and m = 2.
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In the following, for a normal subgroup N of a group G, and a character θ ∈ Irr(N ), we
denote by Irr(G|θ) the set of all irreducible characters of G that lie over θ .

Theorem 3.2 Assume that the group G has a composition factor isomorphic to SL2(2a) with
a > 2, and let p be a prime number. Assume also that �(G) is connected with cut-vertex p.
Then, denoting by K the solvable residual of G, one of the following conclusions holds.

(a) K is isomorphic to SL2(2a);
(b) K contains a minimal normal subgroup L of G such that K/L is isomorphic to SL2(2a)

and L is the natural module for K/L.

Proof Let R be the solvable radical of G. By Theorem 2.8, we have that G/R is an almost-
simple group with socle isomorphic to SL2(2a), and V (G) = π(G/R)∪{p}. Note that, since
a > 2, Lemma 2.5 applies here; so either we get conclusion (a), or K has a non-trivial normal
subgroup L such that K/L is isomorphic to SL2(2a), and every non-principal irreducible
character of L/L ′ is not invariant in K . Therefore, we can assume that the latter condition
holds.

Consider then a non-principal ξ in Irr(L/L ′): as IK (ξ)/L is a proper subgroup of K/L ∼=
SL2(2a), its possible structures are described in Remark 2.1. In particular, if 2 is not a
divisor of |K : IK (ξ)|, then IK (ξ)/L contains a Sylow 2-subgroup of K/L as a normal
subgroup. Assuming for the moment that this happens for every non-principal ξ ∈ Irr(L/L ′),
Lemma 2.9 (together with the paragraph preceding it) yields that the dual group L̂/L ′ is the
natural module for K/L , and the same holds for L/L ′ by self-duality; so, in order to get the
desired conclusion, we only have to show that L ′ is trivial (note that, once this is proved,
L = O2(K ) is a minimal normal subgroup of G), and this is what we do next.

For a proof by contradiction assume L ′ �= 1, and consider a chief factor L ′/Z of K . As
observed in Remark 2.7, the graph �(K/L ′) has two connected components having vertex
sets {2} and π(K/L ′) − {2}, respectively; since the vertex set of �(G) is π(G/R) ∪ {p}
and, also in view of Theorem 2.4, π(G/R) − {2} is now a clique of �(G), we see that the
cut-vertex p of �(G) cannot be 2, and that p is the unique vertex adjacent to 2 in �(G).

Now, let λ be a non-principal irreducible character of L ′/Z , and let χ ∈ Irr(K/Z | λ). Ifψ
is an irreducible constituent of χL/Z lying over λ, then clearlyψ(1) �= 1, and since L ′/Z is an
abelian normal subgroup of L/Z whose index is a 2-power, we conclude that ψ(1) (whence
χ(1)) is a multiple of 2. As a consequence, we get π(|K : IK (λ)|) ⊆ {2, p}. Observe that
IK (ψ) is a proper subgroup of K , as otherwise (the Schur multiplier of K/L being trivial)
ψ would extend to K yielding a contradiction via Gallagher’s theorem; of course IK (λ) is a
proper subgroup of K as well, unless L ′/Z lies in Z(K/Z).

We conclude this part of the proof by considering three situations that are exhaustive, and
that all lead to a contradiction.

(i) L ′/Z � Z(L/Z).

Consider the normal subgroup CL ′/Z (L/L ′) of K/Z ; since L ′/Z is a chief factor of K and
it is not centralized by L/L ′, we deduce that CL ′/Z (L/L ′) is trivial. Thus we can apply the
proposition appearing in the Introduction of [3], which ensures that the second cohomology
groupH2(K/L ′, L ′/Z) is trivial, and therefore K/Z is a split extension of L ′/Z ; in particular,
every irreducible character of L ′/Z extends to its inertia subgroup in K/Z . Now, let λ

be any non-principal character in Irr(L ′/Z): since π(|K : IK (λ)|) ⊆ {2, p}, Gallagher’s
theorem implies that IK (λ)/L ′ contains a unique Sylow q-subgroup of K/L ′ for every prime
q ∈ π(22a − 1) − {p}. But this yields a contradiction via, for example, Proposition 3.13
of [6]; in fact, according to that result, K/L ′ should have a cyclic solvable radical (whereas
L/L ′ = O2(K/L ′) is non-cyclic).
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(ii) L ′/Z ⊆ Z(L/Z), but L ′/Z � Z(K/Z).

First, we note that L ′/Z is a 2-group in this case, as otherwise L/Z would be isomorphic to
the direct product (L ′/Z)× (L/L ′) and it would then be abelian, a clear contradiction. Also,
for a non-principal λ in Irr(L ′/Z), we already observed that IK (λ) is a proper subgroup of
K such that π(|K : IK (λ)|) ⊆ {2, p}.

We claim that IK (λ)/L cannot be a subgroup of type (iv) of K/L unless it is also of type
(iii). In fact, assume IK (λ)/L ∼= SL2(2b) where b > 2 and a = bc for some c > 1. If c is
an odd number, then 2b + 1 is a divisor of 2a + 1 and it is easy to see that π(|K : IK (λ)|)
contains at least two odd primes, not our case. On the other hand, if c is even, then 22b − 1
divides 2a − 1 and again (recalling [10, Proposition 3.1]) we reach a contradiction unless
c = 2 and p = 2a + 1 (note that p is neither 3 nor 5). Now we look at IK (ψ), where
ψ lies in Irr(L/Z | λ) (recall that ψ(1) is a multiple of 2, and that IK (ψ) is contained in
IK (λ) because L ′/Z is central in L/Z ): we have π(|IK (λ) : IK (ψ)|) ⊆ {2}, and therefore
IK (ψ)/L is either the whole IK (λ)/L or it is necessarily isomorphic to A5. In any case we
get the adjacency of 2 with odd primes different from p, a contradiction.

So, assume that IK (λ)/L is of type (iii) isomorphic to A4: then there must be a prime in
π(|K : IK (λ)|) − {2, 3}, and this prime is necessarily p. This forces the 3-part of |K/L| to
be 3, yielding the contradiction that either 2a − 1 = 3 or 2a + 1 = 3. On the other hand, let
IK (λ)/L be of type (iii) isomorphic to A5. If π(|K : IK (λ)|)−{3, 5} ⊆ {2}, then either the 3-
part or the 5-part of |K/L| is forced to be 3 or 5 respectively, and we get a contradiction from
the fact that one among 3 and 5 is 2a −1 or 2a +1; if π(|K : IK (λ)|)−{3, 5} contains an odd
prime (which is p), then the 3-part and the 5-part of |K/L| are 3 and 5, respectively, and we
get the same contradiction as before unless 3 · 5 = 2a − 1, i.e., K/L ∼= SL2(24) and p = 17
is the only vertex adjacent to 2 in �(G). But in the latter case, taking ψ ∈ Irr(L/Z | λ), we
see that IK (ψ) cannot be a proper subgroup of IK (λ) (otherwise |IK (λ) : IK (ψ)| would be
divisible by 3 or 5 and we would get the adjacency between one of these primes and 2); thus,
recalling that IK (ψ) ⊆ IK (λ), we get IK (ψ)/L ∼= A5. Working with character triples we
now get the adjacency between 2 and 3, again a contradiction. Our conclusion so far is that,
for every non-principal λ ∈ Irr(L ′/Z), the subgroup IK (λ)/L of K/L is either of type (i) or
of type (ii).

Next, assume that IK (λ)/L is a subgroup of type (i+). Then we get p = 2a − 1 and,
since 2 cannot be adjacent in �(G) to any prime in π(2a + 1), for every non-principal
ν ∈ Irr(L ′/Z) the subgroup IK (ν)/L must be either of type (i+) containing a unique Hall
π(2a + 1)-subgroup of K/L , or of type (ii) containing a unique Sylow 2-subgroup of K/L .
Now, the former situation cannot occur for every ν, by Lemma 2.9; on the other hand, if the
latter situation occurs for some non-principal ν ∈ Irr(L ′/Z), then we reach a contradiction
via Theorem 2.11 (recall that L ′/Z is a 2-group).

If IK (λ)/L is a subgroup of type (i−) then, as above, for every non-principal ν ∈ Irr(L ′/Z),
the subgroup IK (ν)/Lmust be either of type (i−) containing a uniqueHallπ(2a−1)-subgroup
of K/L or of type (ii). Observe that if, in the latter case, |K : IK (ν)| is divisible by 2, then
IK (ν)/L must contain a Hall π(2a − 1)-subgroup of K/L; hence, by the structure of the
subgroups of type (ii), IK (ν)/L should contain a full Sylow 2-subgroup of K/L as well,
against the fact that |K : IK (λ)| is even. Therefore IK (ν)/L actually contains a (unique)
Sylow 2-subgroup of K/L whenever it is a subgroup of type (ii), and now we reach a
contradiction as in the previous paragraph.

We conclude that, for every non-principal λ ∈ Irr(L ′/Z), the subgroup IK (λ)/L of K/L is
of type (ii), and the same argument as in the paragraph above shows that it must contain a full
Sylow 2-subgroup of K/L . This yields (via Lemma 2.9) that L ′/Z is the natural module for
K/L , so that IK (λ)/L is a Sylow 2-subgroup of K/L for every non-principal λ ∈ Irr(L ′/Z).
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Consideringψ ∈ Irr(L/Z) lying over such a λ, and recalling once again thatψ(1) is even and
IK (ψ) ⊆ IK (λ), Clifford’s theory yields that the primes in π(K/L) are pairwise adjacent
in �(G) and, also in view of Theorem 2.4, every odd prime divisor of |K/L| is a complete
vertex of �(G). This is clearly not compatible with the existence of a cut-vertex of �(G).

(iii) L ′/Z ⊆ Z(K/Z).

As in case (ii), we have that L ′/Z is a 2-group. If λ is a non-principal irreducible character of
L ′/Z , then λ is fully ramified with respect to the K/Z -chief factor L/L ′ (see Exercise 6.12
of [8]); therefore, the unique ψ in Irr(L/Z | λ) is such that IK (ψ) = IK (λ) = K . The fact
that the Schur multiplier of K/L is trivial implies that ψ extends to K , yielding a clear
contradiction via Gallagher’s theorem.

To conclude the proof, we will show that IK (ξ)/L contains a unique Sylow 2-subgroup of
K/L for every non-principal ξ in Irr(L/L ′). To this end, we will proceed through a number
of steps.

(a) For every non-principal ξ ∈ Irr(L/L ′), the subgroup IK (ξ)/L of K/L cannot be of
type (iv), unless it is also of type (iii).
For a proof by contradiction, let ξ ∈ Irr(L/L ′) be such that IK (ξ)/L ∼= SL2(2b) for some
b > 2 properly dividing a. Thus, 2 is a divisor of |K : IK (ξ)|. Since the Schur multiplier
of IK (ξ)/L is trivial, ξ extends to IK (ξ) and this yields (via Clifford’s correspondence and
Gallagher’s theorem) that 2 is adjacent in �(G) to every prime in π(K/L) − {2}. Moreover,
taking into account Theorem 2.4 (which, together with Theorem 2.3, will be freely used from
now on and should be kept in mind), also each prime in π(G/R) − π(K/L) is adjacent to
every prime in π(K/L)−{2}. Finally, 22a −1 has a primitive prime divisor q because a �= 3;
this prime q , which clearly belongs to π(2a + 1), is a divisor of |K : IK (ξ)|, so every prime
in π(2b − 1) is adjacent to q in �(G). As easily seen, this setting is not compatible with the
existence of a cut-vertex of �(G).

(b) For every non-principal ξ ∈ Irr(L/L ′), the subgroup IK (ξ)/L of K/L cannot be
isomorphic to A5.
Assume the contrary, and take ξ ∈ Irr(L/L ′) such that IK (ξ)/L ∼= A5. Working with
character triples, we observe that Irr(K | ξ) contains characters whose degrees are divisible
by every prime in π(|K : IK (ξ)|) ∪ {3}, which contains π(K/L) − {5} (note that 2 divides
|K : IK (ξ)| because 2a > 4); thus the 5-part of |K/L| is 5, otherwise the primes in π(K/L)

would be pairwise adjacent in �(G), easily contradicting the existence of a cut-vertex of
�(G). Observe also that, since neither 2a − 1 nor 2a + 1 can be 5, there exists an odd prime
q in π(K/L) − {5} that is adjacent to 5 in �(K/L); as q is now a complete vertex in the
subgraph of �(G) induced by π(G/R), we get q = p, and it is readily seen that no other
prime divisor of |K/L| can be adjacent to 5 in�(G). This implies on one hand that ξ does not
have an extension to IK (ξ) (otherwise, by Gallagher’s theorem, we would get the adjacency
between 5 and 2 in �(G)), which in turn yields (via [8, 8.16, 11.22, 11.31]) that the order of
L/L ′ is divisible by 2; on the other hand, one among the sets π(2a − 1) and π(2a + 1) is in
fact {5, p}.

Now, since 22a − 1 is divisible by 5, we see that a must be even, so 22 − 1 = 3 divides
2a − 1. Assuming for the moment π(2a − 1) = {5, p}, we then get p = 3, and we also note
that 2a − 1 has a primitive prime divisor (otherwise a would be 6, but 26 − 1 = 63 is not
divisible by 5). Certainly 3 is not such a divisor, as 3 divides 22 − 1 and a > 2; hence 5 is a
primitive prime divisor for 2a − 1, so we get a = 4 and K/L ∼= SL2(16). But in this case,
since |L/L ′| is even, we can consider a chief factor L/X of K whose order is a 2-power: the
dual group of V of L/X is then an irreducible module for SL2(16) over F2. It is well known
(see [1], for instance) that such modules all have a dimension belonging to {8, 16, 32}; if V is
the naturalmodule (of dimension 8) for K/L ∼= SL2(16), then the centralizer in K/L of every
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non-trivial element of V is a Sylow 2-subgroup of K/L , yielding the contradiction that 5 is
adjacent to 17 in �(G). Also, a direct computation with GAP [14] shows that in the modules
of dimensions 16 and 32 there are elements lying in regular orbits for the action of K/L ,
thus the primes in �(K/L) would be pairwise adjacent in �(G). Only one module is left,
which has dimension 8 and is not the natural module: to handle this, we can see via GAP [14]
that in all possible isomorphism types of extensions of V by SL2(16) the set of irreducible
character degrees is {1, 15, 16, 17, 51, 68, 204, 255, 272, 340}, so π(K/L) would again be
a set of pairwise adjacent vertices of �(G).

It remains to consider the case when 5 divides 2a + 1, hence π(2a + 1) = {5, p}, and
again we choose a chief factor L/X of K that is a 2-group. Now, the dual group of L/X
can be viewed as a (non-trivial) irreducible K/L-module over F2, and if T /L is a Sylow
2-subgroup of K/L , then clearly there exists a non-principalμ in Irr(L/X)which is fixed by
T /L (so, such that IK (μ)/L contains T /L); as IK (μ)/L is a proper subgroup of K/L , the
only possibility for IK (μ)/L is to be of type (ii). Moreover, since 5 is only adjacent to p in
�(G), no prime divisor of 2a−1 lies inπ(|K : IK (μ)|), thus in fact IK (μ)/L = NK/L(T /L)

has irreducible characters of degree 2a − 1. Now, μ does not extend to IK (μ), as otherwise
(by Gallagher’s theorem and Clifford correspondence) we would get adjacencies in �(G)

between 5 and all the primes inπ(2a−1); but then, forψ ∈ Irr(IK (μ) | μ) and θ an irreducible
constituent of ψT /X lying over μ, we have that θ(1) is a 2-power larger than 1 (otherwise
ψ would be an extension of μ to T , and μ would then extend to the whole IK (μ)). As a
consequence, 2 divides ψ(1) and we get the adjacency in �(G) between 5 and 2. This is the
final contradiction that rules out the case IK (ξ)/L ∼= A5.

(c) For every non-principal ξ ∈ Irr(L/L ′), the subgroup IK (ξ)/L of K/L cannot be
isomorphic to A4.
Assume IK (ξ)/L ∼= A4 for some ξ ∈ Irr(L/L ′). Then we see at once that the primes in
π(K/L) − {3} are pairwise adjacent in �(G), thus the 3-part of |K/L| is 3 and we get the
same conclusions as in the first paragraph of (b) with 3 in place of 5: the cut-vertex p is an
odd prime and it is the unique neighbor of 3 in �(G) among the primes in π(K/L), and one
among the sets π(2a − 1) and π(2a + 1) is {3, p}.

Assuming first π(2a − 1) = {3, p}, we see that a �= 6 because the 3-part of 26 − 1 is 32.
Hence 2a − 1 has a primitive prime divisor, which is necessarily p. Note that a cannot be a
prime number, as otherwise it would be odd and K/L would not have subgroups isomorphic
to A4; moreover, if k is a divisor of a such that 1 < k < a, then 2k − 1 divides 2a − 1 and is
coprime to p, so 2k − 1 must be 3 and k is 2. We conclude that a is 4, so K/L ∼= SL2(16),
and we reach a contradiction as in the second paragraph of (b).

As regards the case π(2a + 1) = {3, p}, the same argument as in the last paragraph of (b)
(replacing 5 with 3) completes the proof.

(d) The subgroups IK (ξ)/L of K/L , for ξ non-principal in Irr(L/L ′), cannot be all of
type (ii) and of ever order, unless each of them contains a (unique) Sylow 2-subgroup of
K/L .
Let us assume that all the subgroups IK (ξ)/L of K/L (for ξ non-principal in Irr(L/L ′)) are
of type (ii) and of even order, but there exists ξ0 ∈ Irr(L/L ′) such that 2 divides |K : IK (ξ0)|.
In this setting we observe that 2a − 1 does not divide |IK (ξ0)/L|, because IK (ξ0)/L is a
Frobenius group whose kernel is its unique Sylow 2-subgroup T0/L , and we are assuming
|T0/L| = 2 f < 2a . Therefore there exists r ∈ π(2a − 1) ∩ π(|K : IK (ξ0)|), and Clifford’s
correspondence yields that {2, r} ∪ π(2a + 1) is a set of pairwise adjacent vertices of �(G).
It follows that r is adjacent in �(G) to every prime in π(G/R)−{r}, thus r is the cut-vertex
p, and no other prime in π(2a − 1) can have any neighbor in {2} ∪ π(2a + 1); in particular,
no prime in π(2a − 1) − {p} shows up as a divisor of |K : IK (ξ)| for any ξ ∈ Irr(L/L ′).
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Note also that a primitive prime divisor of 2a − 1 cannot lie in π(IK (ξ0)/L), as otherwise it
would divide 2 f − 1 (and f < a); so, if a �= 6, p is forced to be the unique primitive prime
divisor of 2a − 1. Observe finally that the p′-part of 2a − 1 is not 1, otherwise p would not
be a cut-vertex of �(G). Thus there exists a prime q ∈ π(2a − 1) − {p} such that, for every
ξ ∈ Irr(L/L ′), the subgroup IK (ξ)/L contains a Sylow q-subgroup of K/L .

Furthermore, the character ξ0 does not extend to IK (ξ0), as otherwise we would get
characters in Irr(K | ξ0) whose degree is divisible by q and every prime in {2} ∪ π(2a + 1),
not our case; so |L/L ′| is even, and there exists a chief factor L/X of K whose order is
a 2-power. Note that, by the conclusion in the paragraph above, the subgroups of the kind
IK (ξ)/L for ξ non-principal in Irr(L/X) are not Sylow 2-subgroups of K/L , thus L/X is not
the natural module for K/L; this in turn implies (via Lemma 2.9) that, for some non-principal
ξ ∈ Irr(L/X), IK (ξ)/L does not contain a full Sylow 2-subgroup of K/L . In other words,
we can assume that ξ0 is in fact an irreducible character of L/L ′ whose kernel has index 2
in L .

Assume for the moment that a is an even number different from 6 (say, a = 2b): as
2b − 1 is coprime to p, we get that 2b − 1 divides the order of (a Frobenius complement
of) IK (ξ0)/L , and so |T0/L| − 1 = 2 f − 1 is a multiple of 2b − 1. This forces f to be
a multiple of b and, since f < a = 2b, the only possibility is f = b; note that T0/L is
then a minimal normal subgroup of IK (ξ0)/L . The fact that ξ0 does not extend to its inertia
subgroup in K also implies that T0/ ker ξ0 is a non-abelian 2-group; thus L/ ker ξ0, which
has order 2, is in fact the derived subgroup of T0/ ker ξ0. Moreover, the normal subgroup
Z/ ker ξ0 = Z(T0/ ker ξ0) of IK (ξ0)/ ker ξ0 cannot be larger than L/ ker ξ0, because T0/L is
a minimal normal subgroup of IK (ξ0)/L and clearly Z/L is not the whole T0/L . We deduce
that T0/ ker ξ0 is an extraspecial 2-group, so (b is even and) an application of [7, II, Satz 9.23]
yields the contradiction that 2b − 1 divides 2b/2 + 1.

If a = 6, then p can be either 3 or 7. In the former case, 7 divides |IK (ξ0)/L| and so T0/L
has order 23; the same argument as above shows that T0/ ker ξ0 is an extraspecial 2-group,
a clear contradiction. On the other hand, if p = 7, then |IK (ξ0)/L| should be a multiple of
9, but 9 is not a divisor of 2 f − 1 for any f < 6, contradicting the fact that IK (ξ0)/L is a
Frobenius group with kernel T0/L .

It remains to treat the casewhena is odd. In this case,we start byfixing aSylowq-subgroup
Q of K/L: if a non-principal ξ ∈ Irr(L/X) is stabilized both by Q and by another Q1 ∈
Sylq(K/L), then Q and Q1 are contained in the same subgroup of type (ii) of K/L , whence
in the normalizer of a suitable Sylow 2-subgroup of K/L . By Lemma 2.2, Q normalizes
precisely two Sylow 2-subgroups of K/L , and since these normalizers contain a total number
of 2a Sylow q-subgroups each, there are at most 2(2a − 1) choices for Q1. On the other
hand, the total number of Sylow q-subgroups of K/L is 2a−1(2a + 1), so there certainly
exists an element h ∈ K/L such that no non-trivial element in the dual group L̂/X of
L/X is centralized by both Q and Qh . As a consequence, setting |L/X | = 2d , we get
|C

̂L/X (Q)| ≤ 2d/2, and then

2d − 1 ≤ (2d/2 − 1) · 2a−1 · (2a + 1).

It is easily checked that the above inequality yields d < 4a and, since a is odd, Lemma 3.12
in [12] (whose hypotheses require d ≤ 3a, but whose proof works assuming d < 4a as
well) leaves only one possibility for the isomorphism type of the K/L-module L̂/X over
F2. First of all, a is a multiple of 3 (say a = 3c) and d = 8c; then, denoting by R(1) the
natural module for K/L over F2a and by ω an automorphism of order 3 of F2a , we have that
L̂/X is a “triality module", which can be described as follows. Start from the K/L-module
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V = R(1)⊗ R(1)ω ⊗ R(1)ω
2
over F2a (or one of its Galois twists), and observe that the field

of values of (the character of) V isF2c ; now, restricting the scalars toF2c , V is a homogeneous
K/L-module andwe take an irreducible constituent of it. This irreducible constituent remains
irreducible if the scalars are restricted further to F2, and this is the F2[K/L]-module we are
considering. In order to finish the proof for this case, it will be enough to show that there
exist non-trivial elements of V whose centralizer in K/L is not a subgroup of type (ii).

Recall that the elements of SL2(2a) whose order is a divisor of 2a + 1 are conjugate to

elements of the form x =
(

0 1
1 λ

)

, where λ = μ + μ2a for μ ∈ F22a − {1} such that

μ2a+1 = 1. The action of such an x on V is of course given by the Kronecker product

(

0 1
1 λ

)

⊗
(

0 1
1 λω

)

⊗
(

0 1

1 λω2

)

.

Now, settingK = F22a andV
K = V⊗K,wehave dim

K
CVK(x) = dim

F2a CV (x);moreover,

VK = R(1)K ⊗ (R(1)K)ω ⊗ (R(1)K)ω
2
, so the action of x on VK is expressed by the same

Kronecker product as above. But x is conjugate to

(

μ 0
0 μ−1

)

in SL2(22a), so our aim is

in fact to find μ such that the matrix

(

μ 0
0 μ−1

)

⊗
(

μ2c 0
0 μ−2c

)

⊗
(

μ22c 0

0 μ−22c

)

has a nonzero eigenspace for the eigenvalue 1. A direct calculation shows that it is enough
to choose μ of order 22c − 2c + 1.

(e) The subgroups IK (ξ)/L of K/L , for ξ non-principal in Irr(L/L ′), cannot be all of
type (ii) of even order or of type (i−) (both types occurring).
If, assuming the contrary, there exists a non-principal ξ0 ∈ Irr(L/L ′) such that IK (ξ0)/L is
of type (ii) and of even order, but not containing a full Sylow 2-subgroup of K/L then, as
in (d), we get the following conditions: there exists a prime q ∈ π(2a − 1) such that, for
every non-principal ξ ∈ Irr(L/L ′), the subgroup IK (ξ)/L contains a Sylow q-subgroup of
K/L , and ξ0 does not extend to IK (ξ0). Similarly, no power of ξ0 can extend to its inertia
subgroup I in K , if I/L does not contain a full Sylow 2-subgroup of K/L . Since all Sylow
q-subgroups of K/L are cyclic for q �= 2, by [8, Theorem 6.26] we can actually assume that
the order o(ξ0) in the dual group of L/L ′ is a power of 2. Hence ξ0 is in Irr(L/X), for a chief
factor L/X of K that is a 2-group, and the rest of the argument in (d) goes through.

On the other hand, if all the inertia subgroups of type (ii) and of even order contain a
full Sylow 2-subgroup of K/L , and there is an inertia subgroup of type (i−) whose index in
K/L is divisible by a prime in π(2a − 1) (that is necessarily p), then again we are in the
same situation as in (d): for every ξ ∈ Irr(L/L ′), the subgroup IK (ξ)/L contains a Sylow
q-subgroup of K/L for a suitable prime q ∈ π(2a − 1) − {p}, and L/L ′ has even order.
Taking a chief factor L/X of K that is a 2-group, we are in a position to apply Theorem 2.11
together with Lemma 2.9, and we get a contradiction. Finally, if all the inertia subgroups of
type (ii) and even order contain a Sylow 2-subgroup of K/L , and all those of type (i−) have
order divisible by 2a − 1, then Theorem 2.10 (applied to the action of K/L on any chief
factor V = L/X of K of odd order) yields that L/L ′ is a 2-group, and now Theorem 2.11
yields a contradiction.

(f) The subgroups IK (ξ)/L of K/L , for ξ non-principal in Irr(L/L ′), cannot be all of
type (ii) of even order or of type (i+) (both types occurring).
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If, assuming the contrary, there exists a non-principal ξ0 ∈ Irr(L/L ′) such that IK (ξ0)/L is
of type (ii) but not containing a full Sylow 2-subgroup of K/L , then 2 is adjacent in �(G)

to every prime in π(K/L) − {2}; however, there also exists a prime r ∈ π(2a − 1) such
that r divides |K : IK (ξ0)|, and this r is adjacent in �(G) to every other prime in π(G/R);
this is incompatible with the existence of a cut-vertex of �(G). The case when all the inertia
subgroups of type (ii) contain a full Sylow 2-subgroup of K/L , and there is an inertia
subgroup of type (i+) whose index in K/L is divisible by a prime in π(2a + 1) (which must
be p), yields the following situation: every inertia subgroup of type (i+) contains a Sylow
q-subgroup of K/L for a suitable prime q ∈ π(2a + 1) − {p}, and every inertia subgroup of
type (ii) is a full normalizer of a Sylow 2-subgroup of K/L . Moreover, |L/L ′| is even, and
again we reach a contradiction via Theorem 2.11. Finally, if all the inertia subgroups of type
(ii) contain a Sylow 2-subgroup of K/L , and all those of type (i+) have order divisible by
2a + 1, then Theorem 2.10 (applied to the action of K/L on any chief factor V = L/X of K
of odd order) yields that L/L ′ is a 2-group, and again Theorem 2.11 yields a contradiction.

(g) The subgroups IK (ξ)/L of K/L , for ξ non-principal in Irr(L/L ′), cannot be all of
type (ii) with even order, of type (i+), or of type (i−) (all types occurring).
Let us assume the contrary. Then 2 is adjacent in �(G) to all the primes in π(K/L) − {2},
and any inertia subgroup IK (ξ0)/L of type (ii) is the full normalizer of a Sylow 2-subgroup
T0/L of K/L , i.e., a Frobenius group of order 2a · (2a − 1).

Note that T0/L is then a minimal normal subgroup of IK (ξ0)/L . Moreover, ξ0 does not
extend to IK (ξ0), as otherwise we would get adjacencies between primes in π(2a − 1) and
primes in π(2a + 1); hence L/L ′ has even order and (as already observed) for a chief factor
L/X of K having 2-power order, there exists a character in Irr(L/X) whose stabilizer in
K/L contains a Sylow 2-subgroup of K/L . In other words, we can assume that ξ0 lies in
Irr(L/X), so |L/ ker ξ0| = 2. Now, T0/ ker ξ0 is a non-abelian 2-group, thus L/ ker ξ0 is the
derived subgroup of T0/ ker ξ0. Moreover, the normal subgroup Z/ ker ξ0 = Z(T0/ ker ξ0)
of IK (ξ0)/ ker ξ0 cannot be larger than L/ ker ξ0, because Z/L is not the whole T0/L . We
deduce that T0/ ker ξ0 is an extraspecial 2-group, so (a is even and) an application of [7, II,
Satz 9.23] yields the contradiction that 2a − 1 divides 2a/2 + 1.

(h) The subgroups IK (ξ)/L of K/L , for ξ non-principal in Irr(L/L ′), cannot be all of
type (i+) or of type (i−) (both types occurring).
Assuming the contrary, as in the previous case we see that 2 is adjacent in �(G) to all the
primes in π(K/L) − {2}; moreover, all the inertia subgroups are forced to contain either a
subgroup of order 2a−1 or a subgroup of order 2a+1. Now, let L/X be a chief factor of K ; by
Lemma 2.9, both types (i+) and (i−) occur for the inertia subgroups even if we only consider
the characters in Irr(L/X), but then Theorem 2.10 yields that L/X is a 2-group, which is
impossible because no non-trivial element of L̂/X is centralized by a Sylow 2-subgroup of
K/L .

(i) The subgroups IK (ξ)/L of K/L , for ξ non-principal in Irr(L/L ′), cannot be all of
type (i+).
Let us assume the contrary, and let L/X be a chief factor of K . If there exists ξ0 ∈ Irr(L/X)

such that IK (ξ0)/L does not contain a subgroup of order 2a+1, whichmeans that there exists
r ∈ π(2a + 1) dividing |K : IK (ξ0)|, then r is a complete vertex of �(G) and it is in fact p.
Now π(2a + 1) − {p} is forced to contain at least one prime q , and this q cannot show up
in the index of any inertia subgroup IK (ξ) in K . In other words, for every non-principal ξ in
Irr(L/X), the inertia subgroup IK (ξ)/L contains a Sylow q-subgroup of K/L (as a normal
subgroup).
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Of course the conclusion of the previous paragraph holds if IK (ξ)/L does contain a
subgroup of order 2a + 1 for every ξ ∈ Irr(L/X). Thus, in any case, Lemma 2.9 applies and
we get a contradiction.

(j) The subgroups IK (ξ)/L of K/L , for ξ non-principal in Irr(L/L ′), cannot be all of
type (i−).
This is totally analogous to (i).

As we saw, the only possibility that is left is the desired one: IK (ξ)/L contains a unique
Sylow 2-subgroup of K/L for every non-principal ξ in Irr(L/L ′). The proof is complete. 
�

Next, we conclude the proof of Theorem 3.1 addressing the remaining case, i.e., when
a = 2. We start by introducing some notation and a few facts concerning a relevant set of
modules.

• We denote by V0 the natural module for S = SL2(4). We have |V0| = 24, |CS(v)| = 22

for all non-trivial v ∈ V0, and the cohomology group H2(S, V0) is trivial (whereas
H1(S, V0) �= 0).

• We denote by V1 the restriction to S = SL2(4), embedded as �−
4 (2) into SL4(2), of the

standard module of SL4(2). We have |V1| = 24; moreover, S has two orbits O1 and O2

on V1 − {0}, and CS(v) ∼= S3 for v ∈ O1, while CS(v) ∼= A4 for v ∈ O2. As for the
relevant cohomology groups, we have H1(S, V1) = 0 = H2(S, V1).

• We denote by W the restriction to S1 = SL2(5), seen as a subgroup of SL4(3), of the
standard module of SL4(3). We have |W | = 34 and |CS1(v)| = 3 for all non-trivial
v ∈ W ; moreover, H2(S1,W ) = 0.

• Wedenote byU the naturalmodule for S1 = SL2(5).We have |U | = 52 and |CS1(v)| = 5
for all non-trivial v ∈ U ; moreover, H2(S1,U ) = 0.

Note that all the above modules are self-dual: this follows from [12, Lemma 3.10] for V0,
V1 and U , and for W by observing that GL4(3) has a unique conjugacy class of subgroups
isomorphic to SL2(5).

Finally, let B be an abelian group and A a group acting on B via automorphisms: we
will denote by �orb(B) the graph whose vertex set is the set of the prime divisors of the set
of orbit sizes {|A : CA(b)| : b ∈ B} of the action of A on B, and such that two (distinct)
vertices p and q are adjacent if and only if there exists b ∈ B such that the product pq divides
|A : CA(b)|.
Lemma 3.3 Let q be a prime number and V an elementary abelian q-group.

(a) If V is a non-trivial irreducible SL2(4)-module and the graph �orb(V ) is not a clique
with vertex set {2, 3, 5}, then q = 2 and V is isomorphic either to V0 or to V1;

(b) If V is a faithful irreducible SL2(5)-module and the graph �orb(V ) is not a clique with
vertex set {2, 3, 5}, then either q = 3 and V is isomorphic to W or q = 5 and V is
isomorphic to U.

Proof ByTheorem 2.3 of [9], both SL2(4) and SL2(5) always have regular orbits on a faithful
module of characteristic p ≥ 7. The remaining cases, of characteristic p ∈ {2, 3, 5}, can be
settled by direct computation using GAP [14]. 
�
Theorem 3.4 Assume that the group G has a composition factor isomorphic to SL2(4) ∼=
PSL2(5), and let p be a prime number. Assume also that �(G) is connected and that it
has a cut-vertex p. Then, denoting by K the solvable residual of G, one of the following
conclusions holds.
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(a) K is isomorphic to SL2(4) or to SL2(5).
(b) K contains a minimal normal subgroup L of G such that K/L is isomorphic either to

SL2(4) or to SL2(5) and L is the natural module for K/L.
(c) K contains a minimal normal subgroup L of G such that K/L is isomorphic to SL2(4).

Moreover, L is isomorphic to the restriction to K/L, embedded as �−
4 (2) into SL4(2),

of the standard module of SL4(2).
(d) K contains a minimal normal subgroup L of G such that K/L is isomorphic to SL2(5).

Moreover, L is isomorphic to the restriction to K/L, embedded in SL4(3), of the standard
module of SL4(3).

Proof By Lemma 2.5 (applied with ta = 5) either (a) holds, or K has a non-trivial normal
subgroup L such that K/L is isomorphic to SL2(4) or to SL2(5) and every non-principal
irreducible character of L/L ′ is not invariant in K . In the latter case, consider a chief factor
L/X of K and set V to be its dual group; then, taking into account that V (G) = V (K )∪{p},
the hypothesis of p being a cut-vertex for�(G) implies that the subgraph of�(G) induced by
the set of vertices {2, 3, 5} is not a clique. Moreover, V is a non-trivial irreducible module for
K/L , and Clifford’s theory yields that�orb(V ) is not a clique as well. Therefore Lemma 3.3
applies, and the K/L-module V is isomorphic to V0 or to V1 if K/L ∼= SL2(4) whereas it is
isomorphic to W or to U if K/L ∼= SL2(5). Note that L/X = F(K/X) is a chief factor of
G as well, and our proof is complete if X = 1.

Working by contradiction, we assume X �= 1 and we consider a chief factor X/Y of K :
in this situation, we first show that X/Y is the unique minimal normal subgroup of K/Y . In
fact, let M/Y be another minimal normal subgroup of K/Y . Setting N/L = Z(K/L) (and
observing that N is contained in the solvable radical R ofG), we have that K/N is the unique
non-solvable chief factor of K ; so, if M/Y is non-solvable, then we get M/Y ∼= K/N and
hence K/Y = M/Y × N/Y , contradicting the fact that K is perfect. Therefore, M/Y is
abelian, so the normal subgroup MX/X of K/X lies in F(K/X) = L/X , and we conclude
that M/Y is contained in L/Y . As a consequence, the K/L-module M/Y is isomorphic to
L/X , i.e., to one of the K/L-modules V0, V1, W and U . Now L/Y ∼= M/Y × X/Y can
be regarded as a K/L-module which is the direct sum of two modules in {V0, V1} or two
modules in {W ,U } (depending on whether K/L ∼= SL2(4) or K/L ∼= SL2(5), respectively);
but it is easy to see that K/L has regular orbits on (the duals of) such modules, and this leads
via Clifford’s theory to the contradiction that {2, 3, 5} is a clique of �(G).

Next, suppose that L/Y is nilpotent. Since K/Y has a unique minimal normal subgroup,
clearly L/Y must be a group of prime-power order and, since |L/X | is a q-power for q ∈
{2, 3, 5}, the same holds for |L/Y |. Furthermore, we have X/Y ≤ Z(L/Y ) and, in particular,
IK (λ) ⊆ IK (μ) for every μ ∈ Irr(X/Y ) and λ ∈ Irr(L/Y | μ).

If q �= 2, then |N/L| = 2 and we claim that X/Y is a non-trivial K/L-module. In fact,
assuming the contrary, we get X/Y ⊆ Z(K/Y ) and |X/Y | = q . Observe that CL/Y (N/L)

is a normal subgroup of K/Y which contains X/Y but is not the whole L/Y , so, as L/X is a
chief factor of K , we have CL/Y (N/L) = X/Y . Now if L is abelian, then by coprime action
we get L = X/Y × [L/Y , N/L], contradicting the uniqueness of X/Y as a minimal normal
subgroup of K/Y . On the other hand, if L is non-abelian, then X/Y = (L/Y )′ = Z(L/Y )

and L/Y is an extraspecial q-group.
So, every nonlinear irreducible character of L/Y is K -invariant and, since K/L has cyclic

Sylow q-subgroups, it extends to K . It easily follows that {2, 3, 5} is a clique of �(G), a
contradiction. Thus the claim is proved, and Lemma 3.3 applies: our assumption that q is
not 2 yields then X/Y ∼= L/X ∼= U , or X/Y ∼= L/X ∼= W , as K/L-modules. By the fact
that {2, 3, 5} cannot be a clique and by the observation in the last sentence of the previous
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paragraph, it follows that IK/L (λ) is a Sylow q-subgroup of K/L for every λ ∈ Irr(L/Y ), a
contradiction by the paragraph preceding Lemma 2.9.

So we can assume q = 2 and L = N . One can check with GAP [14] that the perfect
groups of order 25 · |SL2(4)| always have irreducible characters whose degrees are multiple,
respectively, of 6, 10 and 15: it follows that X/Y is not the trivial K/L-module. Hence by
Clifford’s theory, together with the fact that IK (λ) ⊆ IK (μ) for every μ ∈ Irr(X/Y ) and
λ ∈ Irr(L/Y | μ), the assumptions of Lemma 3.3 are satisfied for the action of K/L on X/Y .
As a result, X/Y is isomorphic either to V0 or to V1 as a K/L-module and, in particular,
we get |X/Y | = 24 = |L/X |. But again, a direct check via GAP [14]shows that the perfect
groups of order 28 · |SL2(4)| all have irreducible characters whose degrees are multiples of
6, 10, 15, yielding the same contradiction as above.

Finally, we assume that L/Y is non-nilpotent. Thus we have X/Y = F(L/Y ) = F(K/Y ),
and |X/Y | is coprime to |L/X |. Observe that �(K/Y ) ≤ F(K/Y ) = X/Y and that
�(K/Y ) �= X/Y , because otherwise K/Y modulo its Frattini subgroup would be iso-
morphic to K/X and would have a trivial Fitting subgroup, not our case. Since X/Y is
a minimal normal subgroup of K/Y , we deduce that �(K/Y ) is trivial and hence X/Y has
a complement K0/Y in K/Y ; in particular, every μ ∈ Irr(X/Y ) extends to its inertia sub-
group IK (μ). Let Z/Y be an irreducible L/Y -submodule of X/Y (i.e., a minimal normal
subgroup of L/Y contained in X/Y ). Set C/Y = CL/Y (Z/Y ): as L/X is an elementary
abelian q-group (where q is a suitable prime in {2, 3, 5}), the factor group L/C is a cyclic
group of order q acting fixed-point freely on Z/Y . Writing the completely reducible L/Y -
module X/Y as (Z/Y )×(Z1/Y ) for a suitable L/Y -module Z1/Y , we consider the character
μ = μ0 × 1Z1/Y ∈ Irr(X/Y ), where μ0 is a non-principal irreducible character of Z/Y . We
observe that IL/Y (μ) = C/Y and that every χ ∈ Irr(K/Y |μ) has a degree divisible by q .
We also remark that, setting L0/Y = (L/Y ) ∩ (K0/Y ), if L0/Y ∼= L/X is isomorphic (as a
K/L-module) either to V0, V1 or W , then |IL0/Y (μ)| = |C/X | = |L0/Y |/q > |L0/Y |1/2.
We claim that, as a consequence, for every prime divisor r �= q of |K/L|, either r divides
|K : IK (μ)| or r divides the degree of some irreducible character of IK/X (μ) that lies over
μ. In fact, fixing R0/Y ∈ Sylr (K0/Y ), it is not difficult to see that there exists another Sylow
r -subgroup R1/Y of K0/Y with 〈R0L0/L0, R1L0/L0〉 = K0/L0 and, since no non-trivial
element of L0/Y is centralized by the whole K0/L0, the dimension over Fq of the vector
space CL0/Y (R0L0/L0) cannot be larger than a half of dim

Fq (L0/Y ). Now, if IK0/Y (μ)

(which is isomorphic to IK/X (μ)) contains a Sylow r -subgroup R0/Y of K0/Y as a normal
subgroup, then R0/Y centralizes IL0/Y (μ) because IL0/Y (μ) and R0/Y are normal sub-
groups of coprime order of IK0/Y (μ), and this is not possible as |IL0/Y (μ)| > |L0/Y |1/2. By
Gallagher’s theorem, it hence follows that {2, 3, 5} is a clique of �(G), a contradiction.

It only remains the case L0/Y ∼= U (as K0/L0-module); but in this case q = 5 divides
χ(1) for every χ ∈ Irr(K | μ), and the Sylow 2-subgroups and 3-subgroups of K0/L0

act fixed point freely on L0/Y . Recalling that IL0/Y (μ) is normal in IK0/Y (μ) and that
|IL0/Y (μ)| = 5, we hence see that 6 divides [K0 : IK0(μ)], and again {2, 3, 5} is a clique of
�(G), a contradiction. 
�

4 Proof of Theorem 1

We are ready to prove Theorem 1, that was stated in the Introduction and that is stated again
here, for the convenience of the reader, as Theorem 4.2.
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Lemma 4.1 Let K be a normal subgroup of the group G with K ∼= SL2(2a), a ≥ 2. Let R
be the solvable radical of G and assume that V (G) = π(G/R) ∪ {p} for a suitable prime
p. Then

(a) The primes in V (R) (if any) are complete vertices of �(G).
(b) If a ≥ 3 and 2 ∈ π(G/K R), then 2 is a complete vertex of �(G).
(c) If 2 /∈ π(G/K R) ∪ V (R), then 2 is adjacent in �(G) to a vertex q if and only if

q ∈ V (G/K ).

Proof We start by proving claim (a). Let q ∈ V (R); as K R = K × R, q is adjacent in
�(G) to all vertices �= q in V (K ) = π(K ) = π(K R/R). For t ∈ π(G/R) − π(K R/R),
by part (a) of Proposition 2.10 of [4] there exists a character θ ∈ Irr(K ) such that t divides
|G : IG(θ)|. Take ϕ ∈ Irr(R) such that q divides ϕ(1) and let ψ = θ × ϕ ∈ Irr(K R). Since
IG(ψ) ≤ IG(θ), tq divides χ(1) for every χ ∈ Irr(G) that lies over θ . Finally, if p ∈ V (G)

but p /∈ π(G/R), then p ∈ V (R); so if q �= p, then q ∈ π(G/R) by the assumption on
V (G), and hence by what we have just proved q is adjacent to p as well. So, q is a complete
vertex of �(G).

We now move to claim (b). Assuming 2 ∈ π(G/K R) and a ≥ 3, by Theorem 2.4 we
get that 2 is adjacent in �(G) to all primes �= 2 of π(G/R); so to p as well if p �= 2 and
p ∈ π(G/R). On the other hand, if p ∈ V (G) − π(G/R), so p �= 2, then p ∈ V (R) and p
is adjacent to 2 in �(G) by part (a). Hence, 2 is a complete vertex of �(G).

Finally, we prove claim (c). Assume that 2 /∈ π(G/K R) ∪ V (R). Then every character
χ ∈ Irr(G) such that χ(1) is even lies over a characterψ ∈ Irr(K R)withψ(1) even.Writing
ψ = α × β with α ∈ Irr(K ) and β ∈ Irr(R), since 2 /∈ V (R) we deduce that α has even
degree, and hence α is the Steinberg character of K . Thus α extends to G (see for instance
[13]) and hence χ(1) = α(1)γ (1) = 2aγ (1) for a suitable γ ∈ Irr(G/K ), concluding the
proof. 
�
Theorem 4.2 Let R and K be, respectively, the solvable radical and the solvable residual of
the group G and assume that G has a composition factor S ∼= SL2(2a), with a ≥ 3. Then,
�(G) is a connected graph and it has a cut-vertex p if and only if G/R is an almost simple
group with socle isomorphic to S, V (G) = π(G/R) ∪ {p} and one of the following holds.

(a) K is a minimal normal subgroup of G, K ∼= S and either p = 2 and V (G/K ) ∪
π(G/K R) = {2}, or p �= 2, V (G/K ) = {p} and G/K R has odd order.

(b) K contains a minimal normal subgroup L of G such that K/L ∼= S, L is the natural
module for K/L, p �= 2, V (G/K ) = {p}, G/K R has odd order and, for a Sylow
2-subgroup T of G, T ′ = (T ∩ K )′.

In all cases, p is is a complete vertex and the only cut-vertex of �(G).

Proof Westart by proving the “only if” part of the statement, assuming that�(G) is connected
and that has a cut-vertex p. Then, by Theorem 2.8 G/R is an almost-simple group and
V (G) = π(G/R)∪{p}. As a consequence, we have that the socleM/R ofG/R is isomorphic
to S. Let L = K ∩ R; since K R = M , we see that K/L ∼= S.

We observe that by Theorem 2.4 every prime in π(G/K R) is adjacent in �(G) to every
other vertex in �(G), except possibly 2 and p. Moreover, part (a) of Lemma 4.1 yields that
V (R) ⊆ {p}.

We consider first the situation arising when L = 1. Assuming p = 2, then V (G) =
π(G/R) and by the above observation we deduce that G/K R is a 2-group and that V (R) ⊆
{2}. If G = K R = K × R, then, as �(G) is connected and 2 is a cut-vertex of �(G),
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it immediately follows that V (R) = {2}. So, in any case, V (G/K ) ∪ π(G/K R) = {2}.
Assuming instead p �= 2, then (since no vertex in V (G)−{p} can be complete in�(G)) part
(b) of Lemma 4.1 implies that |G/K R| is odd and it only remains to show that V (G/K ) =
{p}. As V (R) ⊆ {p} and p �= 2, part (c) of Lemma 4.1 yields that 2 is adjacent in �(G) to
all primes in V (G/K ), and to them only. As �(G) is connected, it follows that V (G/K ) is
non-empty.

If q ∈ V (G/K ) and q �= p, then q divides |G/K R| (because V (K R/K ) = V (R) ⊆ {p})
and hence, by Theorem 2.4, q (being adjacent also to 2) would be a complete vertex of�(G),
a contradiction. Hence, V (G/K ) = {p}.

We assume now L �= 1. Then, by Theorem 3.2, L is a minimal normal subgroup of
G and L is the natural module for K/L ∼= S. By Remark 2.7, the subgraph of �(G)

induced by the vertex set V (G) − {2, p} is a complete graph. Hence, the assumptions on
�(G) imply that p �= 2 and that 2 is adjacent only to p in �(G). Moreover, recalling
that �(G/L) is a subgraph of �(G), by part (a) and part (b) of Lemma 4.1 we deduce that
2 /∈ V (R/L)∪π(G/K R) and hence, by part (c) of the same lemma, that V (G/K ) = {p}. Let
now T be a Sylow 2-subgroup of G; as |G/K R| is odd, then T ≤ K R. Setting T0 = T ∩ R,
we observe that T0/L is an abelian normal Sylow 2-subgroup of R/L because 2 /∈ V (R/L).
Let T1 = T ∩ K and assume, working by contradiction, that T ′ �= T ′

1. Let λ ∈ Irr(L) be
a non-principal character; by Lemma 2.6 L ≤ Z(T0), so λ is T0-invariant and, since L is a
self-dual K/L-module, IK (λ)/L is a Sylow 2-subgroup of K/L . Hence, since T = T0T1, we
can assume (up to conjugation) that λ is T -invariant. So, by Lemma 2.6 λ has no extension
to T . As IK (λ)/L = T1/L and K R/L = K/L × R/L , T /L is a normal subgroup of
IK R(λ) and hence 2 divides the degree of every irreducible character ψ of IK R(λ) that lies
over λ. By Clifford correspondence, it follows that 2 is adjacent in �(G) to all primes in
π(22a − 1) = π(|K : IK (λ)|), a contradiction. Hence, T ′ = (T ∩ K )′.

We proceed now to prove the “if” part of the statement and we assume that G/R is an
almost simple group and that V (G) = π(G/R) ∪ {p} for some prime p.

Suppose first that (a) holds, so K is a minimal normal subgroup of G and K ∼= S. Hence,
K R = K × R. Assume that p = 2, so V (G) = π(G/R), and that V (G/K ) ∪ π(G/K R) =
{2}. If K R < G, then 2 is a complete vertex of �(G) by part (b) of Lemma 4.1, and if
G = K R, then the same is true because in this case V (R) = V (G/K ) = {2}. For χ ∈ Irr(G)

and an irreducible constituent ψ of χK R , the odd parts of χ(1) and of ψ(1) coincide by [8,
Corollary 11.29], so by part (a) of Theorem 2.3 the graph �(G) − 2, obtained by deleting
the vertex 2 and all incident edges, has two complete connected components, with vertex
sets π(2a − 1) and π(2a + 1). So, 2 is a cut-vertex of �(G) and, being a complete vertex of
�(G), it is the unique cut-vertex of �(G). If p �= 2, V (G/K ) = {p} and G/K R has odd
order, then (as R ∼= K R/K � G/K ) 2 /∈ V (R) and by part (c) of Lemma 4.1 the vertex 2
is adjacent only to p in �(G). Hence, p is a cut-vertex of �(G). We also observe that p is a
complete vertex of �(G): this is a consequence of Theorem 2.4 if p ∈ π(G/K R), while if
p /∈ π(G/K R) the assumption V (G/K ) = {p} implies that p ∈ V (R) and hence the claim
follows by part (a) of Lemma 4.1. Thus, p is the unique cut-vertex of �(G).

We assume now that (b) holds, so K contains a minimal normal subgroup L ofG such that
K/L ∼= S and L is the natural module for K/L . Moreover, p �= 2, V (G/K ) = {p}, G/K R
has odd order and, for any Sylow 2-subgroup T of G, T ′ = (T ∩ K )′. For a non-principal
λ ∈ Irr(L), the argument used in the fourth paragraph of this proof shows that I = IG(λ)

contains a Sylow 2-subgroup T of G, and T /L is abelian and normal in I/L . By Lemma 2.6
λ extends to T and hence λ extends to IG(λ) by [8, Theorem 6.26]. So, Gallagher’s theorem
implies that every irreducible character ofG that lies over λ has odd degree.We hence deduce
that if χ ∈ Irr(G) has even degree, then χ ∈ Irr(G/L). Then, by part (c) of Lemma 4.1, 2 is
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adjacent only to p in �(G). So, by Remark 2.7, the graph obtained by removing the vertex p
from �(G) has two connected components: the single vertex 2 and the complete graph with
vertex set V (G) − {2, p}. By the discussion of case (a), we know that p is a complete vertex
of �(G/L), hence of �(G); thus, p is the only cut-vertex of �(G). 
�

5 Proof of Theorem 2

The last section of this paper is devoted to the proof of Theorem 2, that we state again (in a
slightly different form, for technical reasons) as Theorem 5.3.

Lemma 5.1 Let K be a normal subgroup of the group G with K ∼= SL2(4) or K ∼= SL2(5).
Let R be the solvable radical of G, N = K ∩ R and assume that V (G) = {2, 3, 5, p} for a
suitable prime p. Then

(a) The primes in V (G/K ) (if any) are complete vertices of �(G).
(b) If N �= 1 or K R �= G, then 2 is adjacent to 3 in �(G).
(c) If 5 /∈ V (G/K ), then 5 is adjacent in �(G) exactly to the primes in V (G/K ).

Proof (a): By part (a) of Lemma 4.1 the primes in V (K R/K ) = V (R/N ) are complete
vertices of �(G). Let q ∈ V (G/K ) − V (K R/K ); then for χ ∈ Irr(G/K ) such that q
divides χ(1) and an irreducible constituent θ of χK R/K , q divides χ(1)/θ(1) by Clifford’s
theorem and χ(1)/θ(1) divides |G/K R| by [8, Corollary 11.29]. As |G/K R| ≤ 2, we have
q = |G/K R| = 2 and χ = θG/K . Seeing by inflation θ ∈ Irr(K R/N ) with K/N ≤ ker θ ,
we write θ = 1K/N × ψ , with ψ ∈ Irr(R/N ) and IG/N (ψ) = IG/N (θ) = K R/N . So, for
every ϕ ∈ Irr(K/N ), ϕ × ψ ∈ Irr(K R/N ) and IG/N (ϕ × ψ) = K R/N , hence 2 is adjacent
to both 3 and 5 in�(G). If p /∈ {2, 3, 5}, then (since |N | ≤ 2 and p ∈ V (G)) R/N ∼= K R/K
cannot have a normal abelian Sylow p-subgroup, so p ∈ V (K R/K ) is adjacent to 2 in�(G)

and q = 2 is a complete vertex of �(G).
Part (b) is clear, as both SL2(5) and Aut(SL2(4)) ∼= S5 have an irreducible character of

degree 6.
(c): Since |G/K R| ≤ 2, K R contains every Sylow 5-subgroup of G and, as 5 /∈ V (R) ⊆

V (G/K ), if χ ∈ Irr(G) has degree divisible by 5, then χ lies (both if K ∼= SL2(4), as well
as if K ∼= SL2(5)) over the unique character α ∈ Irr(K ) such that 5 divides α(1). It is easily
seen that α extends to G. By Gallagher’s theorem, we conclude that 5 is adjacent only to the
vertices of V (G/K ) in �(G). 
�
Lemma 5.2 Let R and K be, respectively, the solvable radical and the solvable residual of
the group G, and let N = R ∩ K.

(a) If 2 /∈ V (G/K ), G = K R and N is the natural module for K/N ∼= SL2(4), then
N ≤ ker χ for every χ ∈ Irr(G) such that χ(1) is even.

(b) Let L � G, L ≤ N, be such that K/L ∼= SL2(5) and L is the natural module for K/L.
If 5 /∈ V (G/K ), then 5 is adjacent in �(G) exactly to the primes in V (G/K ).

Proof (a): Assume that 2 /∈ V (G/K ), G = K R and that N is the natural module for
K/N ∼= SL2(4). Let λ ∈ Irr(N ) be a non-principal character and let I = IG(λ), T a Sylow
2-subgroup of I , T0 = T ∩ R and T1 = T ∩ K . Since, by Lemma 2.6, I contains a Sylow
2-subgroup of R, we see that T0 ∈ Syl2(R); moreover, as 2 /∈ V (G/K ) = V (R/N ), T0/N
is abelian and T0 � R. For B/N ∈ Syl3(K/N ), as N ≤ Z(T0) and [B/N , T0/N ] = 1 by
coprimality we get T0 = NCT0(B) = N ×CT0(B), because CN (B) = 1; in particular, T0 is
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abelian.WriteC = CT0(B) and D = CT0(K ); so D � C . Since I ∩K is a Sylow 2-subgroup
of K , we have T ∈ Syl2(G). As T = T1T0, we have T ′ = T ′

1[T1, T0]T ′
0 = T ′

1[T1, T0]. We
claim that [T1, T0] ≤ T ′

1. Observing that [T1, T0] = [T1, N ][T1,C], it is enough to prove that
[T1,C/D] ≤ T ′

1. Identifying C/D with a normal subgroup of Out(K ), one can check (for
instance by GAP [14], as K = SmallGroup(960,11357)) that

[T1,C/D] ≤ [T1,O2(Out(K ))] ≤ T ′
1,

so the claim follows. Hence, T ′ = T ′
1 and by Lemma 2.6 λ extends to T . Thus, by [8,

Theorem 6.26] λ extends to I . As I/N has odd index in G/N and has a normal abelian
Sylow 2-subgroup, it follows that every irreducible character of G lying over λ, where λ is
any non-principal character of N , has odd degree.

(b):We observe that G splits over L . In fact, if X is a Sylow 2-subgroup of N (so, |X | =
|N/L| = 2), then by the Frattini argument G = LCG(X) and, as X acts fixed-point-freely
on L , L ∩ CG(X) = 1.

Let Q0 ∈ Syl5(R); since R/N ∼= K R/K � G/K , V (R/N ) ⊆ V (G/K ) and 5 /∈
V (R/N ), so Q0N/N is abelian and normal in R/N . As N/L � R/L and |N/L| = 2,
N/L is central in R/L and it follows that Q0/L � G/L , so Q0 � G. For a non-principal
λ ∈ Irr(L), IK (λ) = Q1 ∈ Syl5(K ). So, as |G/K R| ≤ 2, Q = Q0Q1 ∈ Syl5( )G and
Q ≤ I = IG(λ). Since G splits over L , λ extends to I and, as Q/L = Q1/L × Q0/L is
abelian and normal in I/L , by Gallagher’s theorem and Clifford correspondence it follows
that 5 does not divide χ(1) for every χ ∈ Irr(G) that lies over λ. Thus, L is contained
in the kernel of every irreducible character of G with degree divisible by 5, and part (c)
of Lemma 5.1 applied to G/L yields that 5 is adjacent in �(G) exactly to the primes in
V (G/K ). 
�
Theorem 5.3 Let R and K be, respectively, the solvable radical and the solvable residual
of the group G and assume that G has a composition factor S ∼= SL2(4). Let N = K ∩ R.
Then, �(G) is a connected graph and has a cut-vertex p if and only if G/R is an almost
simple group with socle isomorphic to S, V (G) = {2, 3, 5} ∪ {p} and one of the following
holds.

(a) K is isomorphic either to SL2(4) or to SL2(5) and V (G/K ) = {p}; if p = 5, then
K ∼= SL2(4) and G = K × R.

(b) K/N ∼= SL2(4), |N | = 24, G = K R and one of the following:

(i) N is the natural module for K/N, p �= 2, V (G/K ) = {p}.
(ii) N isomorphic to the restriction to K/L, embedded as �−

4 (2) into SL4(2), of the
standard module of SL4(2). Moreover, p = 5, G = K × R0, where R0 = CG(K ),
and V (R0) = V (G/K ) ⊆ {5};

(c) There exists 1 �= L ≤ N, L normal in G, with K/L ∼= SL2(5) and one of the following:

(i) |L| = 52, L is the natural module for SL2(5), p �= 5 and V (G/K ) = {p}.
(ii) |L| = 34, L is the natural module for SL2(5) seen as a subgroup of GL4(3), p = 2

and V (G/K ) ⊆ {2}.
In all cases, p is is a complete vertex and the only cut-vertex of �(G).

Proof Westart by proving the “only if” part of the statement, assuming that�(G) is connected
and that it has a cut-vertex p. Then, by Theorem 2.8 G/R is an almost-simple group and
V (G) = π(G/R) ∪ {p}. So, the socle M/R of G/R is isomorphic to SL2(4), and V (G) =
{2, 3, 5, p}. Hence, the subgraph of �(G) induced by the set of vertices {2, 3, 5} cannot be
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a clique. As N = K ∩ R and K R = M , then K/N ∼= M/R ∼= SL2(4) and |G/K R| ≤ 2.
Since no vertex of �(G) different from p can be complete, part (a) of Lemma 5.1 implies
that V (G/K ) ⊆ {p}.

We now apply Theorem 3.4, considering the possible structure types for the solvable
residual K of G.

If K is isomorphic either to SL2(4) or to SL2(5) (i.e., |N | ≤ 2), then part (c) of Lemma 5.1
implies (as 5 cannot be an isolated vertex of�(G)) thatV (G/K ) is non-empty, soV (G/K ) =
{p}. By part (b) of Lemma 5.1 p �= 5 when K ∼= SL2(5) or K R �= G; so we have case (a).

Assume now that |N | > 2, and that N is a minimal normal subgroup of G. Then, by
Theorem 3.4 K/N ∼= SL2(4), |N | = 24 and we have two cases:

(x): N is the natural module for K/N : then 3 and 5 are adjacent in�(G) (see Remark 2.7),
and hence p �= 2, as othewise �(G) would be a complete graph. We show that G = K R:
in fact, if this is not the case, then G/R ∼= S5 and the Sylow 2-subgroups of G/N are
non-abelian. For a non-principal λ ∈ Irr(L) and I = IG(λ), 15 divides |G : I |. Hence,
recalling Theorem A of [11], independently on the parity of |G : I | there exists χ ∈ Irr(G),
lying above λ, that has degree 30, a contradiction. Finally, we observe that if G/K ∼= R/N
is abelian, then 2 is an isolated vertex of �(G), because by part (a) of Lemma 5.2 every
χ ∈ Irr(G) of even degree is a character of G/N = K/N × R/N . So, V (G/K ) = {p} and
we have case (b)(i).

(xx): N is the restriction to K/L , embedded as�−
4 (2) into SL4(2), of the standard module

of SL4(2). Then �(K ) is the graph 2 − 5 − 3 and hence necessarily p = 5.
Let R0 = CG(K ) and C = CG(N ). So, N ≤ C � G and R0 ≤ C ≤ R, since

K/N is the only non-solvable composition factor of G, and it acts non-trivially on N . As
H2(K/N , N ) = 0, K splits over N ; let K0 be a complement of N in K . Note that R0 =
CC (K ) = CC (K0). We prove that C = N × R0. It is enough to show that C = N R0,
since Z(K ) = 1. As [K , R] ≤ N , in particular [K0,C] ≤ N and hence Kc

0 ≤ K0N = K
for every c ∈ C . Since H1(K0, N ) = 0, all complements of N in K are conjugate in K . It
follows that there exists an element b ∈ N such that Kc

0 = Kb
0 , so d = bc−1 ∈ NC (K0)

and hence [K0, d] ≤ K0 ∩ C = 1, as K0 ∼= K/N acts faithfully on N . Thus, d ∈ R0. So,
C = N R0 = N × R0.

The action ofG on N gives an embedding φ ofG = G/C in ̂G = GL4(2). One can check
(for instance byGAP [14]) thatN

̂G(φ(K )) ∼= S5, and that ifφ(G) ∼= S5 then�(G/R0),which
is a subgraph of�(G), has a complete subgraph with vertex set {2, 3, 5}, a contradiction. So,
φ(G) = φ(K ), and hence G = K × R0, giving case (b)(ii).

As the final case, we assume that G has a minimal normal subgroup L , such that L ≤ N
and K/L ∼= SL2(5). We have two possible cases:

(y): L is the natural module for K/L . Then �(K ) is the graph with vertex set {2,3,5}
where 5 is an isolated vertex and 2, 3 are adjacent, so we deduce that p �= 5. Moreover, part
(b) of Lemma 5.2 yields that 5 is adjacent in �(G) only to the primes in V (G/K ). Thus, as
�(G) is connected, V (G/K ) �= ∅, so V (G/K ) = {p} and we have case (c)(i).

(yy): L is the natural module for K/L seen as a subgroup of GL4(3). So, �(K ) is the
graph 3 − 2 − 5 and consequently p = 2 and we have case (c)(ii).

We now prove the “if” part of the statement, going through the various cases.
(a): If G ∼= SL2(4) × R with V (R) = V (G/K ) = {5}, then clearly �(G) is the graph

2 − 5 − 3. If p �= 5, then 5 is adjacent only to p in �(G) by part (c) of Lemma 5.1. By part
(a) of Lemma 5.1, p is a complete vertex, and hence the only cut-vertex, of �(G).

(b): We assume that G = K R and that N = K ∩ R is a normal in G of order 24.
In case (b)(i), since G/N = K/N × R/N and V (R/N ) = V (G/K ) = {p} for some

prime p �= 2, part (a) of Lemma 5.2 and part (a) of Theorem 2.3 yield that the vertex 2 is
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adjacent only to p in �(G), so p is a cut-vertex of �(G). By part (a) of Lemma 5.1, p is a
complete vertex, and hence the only cut-vertex, of �(G).

In case (b)(ii), it is clear that �(G) = �(K ) is the graph 2 − 5 − 3.
(c): We assume that there exists L � G, L ≤ K , such that K/L ∼= SL2(5).
In case (c)(i), by part (b) of Lemma 5.2 the vertex 5 is adjacent only to p (p �= 5) in�(G)

and, by part (a) of the same lemma, p is a complete vertex of �(G).
In case (c)(ii), we prove that �(G) = �(K ), so �(G) is the graph 3− 2− 5. To this end,

it is enough to show that 3 and 5 are non-adjacent in�(G). Since |G/K R| ≤ 2, K R contains
a Sylow 3-subgroup Q of G; moreover, as V (R/N ) ⊆ V (G/K ) ⊆ {2} and |N/L| = 2, it
easily follows that, setting Q0 = Q ∩ R, Q0/L is abelian and normal in R/L , and hence in
G/L . Let λ ∈ Irr(L) be a non-principal character and let I = IG(λ). An application of the
Frattini argument, as in the proof of part (b) of Lemma 5.2, proves that G splits over L , so λ

extends to I . By [5, Lemma 2.6], L ≤ Z(Q0) and hence, since I ∩ K is a Sylow 3-subgroup
of K , we can assume Q ≤ I . So, Q/L is an abelian Sylow 3-subgroup of G/L and it is
normal in I/L . Thus, by Gallagher’s theorem we deduce that every χ ∈ Irr(G) that lies over
λ has degree not divisible by 3. Hence, if χ ∈ Irr(G) and 3 divides χ(1), then L ≤ ker χ
and χ ∈ Irr(G/L). Now, an application of part (c) of Lemma 5.1 yields that 5 not adjacent
to 3 in �(G/L), and hence 3 and 5 are not adjacent in �(G).

So, in every case, p is a cut-vertex of �(G) and, as p is also a complete vertex of �(G),
there are no other cut-vertices in �(G). The proof is complete. 
�

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agree-
ment.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Brauer, R., Nesbitt, C.: On the modular characters of groups. Ann. Math. 42, 556–590 (1941)
2. Casolo, C.: Some linear actions of finite groups with q ′-orbits. J. Group Theory 13, 503–534 (2010)
3. Curran, P.M.: Fixed-point-free actions on a class of abelian groups. Proc. Am. Math. Soc. 57, 189–193

(1976)
4. Dolfi, S., Khedri, K., Pacifici, E.: Groups whose degree graph has three independent vertices. J. Algebra

512, 66–80 (2018)
5. Dolfi, S., Pacifici, E., Sanus, L.: Non-solvable groups whose character degree graph has a cut-vertex. II,

Ann. Math. Pura Appl. https://doi.org/10.1007/s10231-022-01299-3 (to appear)
6. Dolfi, S., Pacifici, E., Sanus, L., Sotomayor, V.: Non-solvable groups whose character degree graph has

a cut-vertex. I, Vietnam J. Math. https://doi.org/10.48550/arXiv.2207.10119 (to appear)
7. Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)
8. Isaacs, I.M.: Character Theory of Finite Groups. Academic Press, New York (1976)
9. Köhler, C., Pahlings, H.: Regular orbits and the k(GV )-problem. In: Groups and Computation III: Pro-

ceedings of the International Conference at the Ohio State University, June 15–19, (1999, 2001), pp.
209–228

10. Manz, O., Wolf, T.R.: Representations of Solvable Groups. Cambridge University Press, Cambridge
(1993)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10231-022-01299-3
https://doi.org/10.48550/arXiv.2207.10119


2540 S. Dolfi et al.

11. Navarro, G., Tiep, P.H.: Characters of relative p′-degree over normal subgroups. Ann. Math. 178, 1135–
1171 (2013)

12. Parker, C., Rowley, P.: Symplectic Amalgams. Springer, London (2002)
13. Schmid, P.: Extending the Steinberg representation. J. Algebra 150, 254–256 (1992)
14. The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.11.1; (2021). https://www.

gap-system.org
15. White, D.L.: Degree graphs of simple groups. Rocky Mountain J. Math. 39, 1713–1739 (2009)
16. White, D.L.: Character degrees of extensions of PSL2(q) and SL2(q). J. Group Theory 16, 1–33 (2013)
17. Zhang, J.: A note on character degrees of finite solvable groups. Commun. Algebra 28, 4249–4258 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.gap-system.org
https://www.gap-system.org

	Non-solvable groups whose character degree graph has a cut-vertex. III
	Abstract
	1 Introduction
	2 Preliminaries
	3 The structure of the solvable residual
	4 Proof of Theorem 1
	5 Proof of Theorem 2
	References




