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Abstract. A numerical method based on the equivalence
principle and the dyadic Green’s function is presented. It can
be used to compute the spherical-multipole amplitudes with
respect to an origin in a subdomain 2 due to sources in a
distinct subdomain 1. As an example, consider that subdo-
main 1 contains a horn antenna that is solved numerically
using a commercial full-wave simulator. The radiated field
serves as the incident field for subdomain 2 which contains
the scatterer, in our example a lossless dielectric sphere. The
proposed method is based on the equivalence currents on a
Huygens surface enclosing the antenna and uses the free-
space dyadic Green’s function to compute the electric and
magnetic fields on a sphere enclosing the scatterer. From this
electromagnetic field on the spherical surface, the spherical-
multipole amplitudes of the incident field with respect to the
center of the sphere enclosing the scatterer are obtained nu-
merically and can be further processed. The results obtained
with this method are compared to the results solely computed
by the numerical full-wave simulator.

1 Introduction

Computational Electromagnetics plays a crucial role in elec-
trical engineering, with many applications in microwave
techniques, antennas, and propagation, among others (David-
son, 2010; Sumithra and Thiripurasundari, 2017). Several
methods have been developed to solve electrically large prob-
lems, where the typical size of the structure exceeds tens or

even hundreds of wavelengths. In this context, the case of ob-
jects separated by a homogeneous background medium is of
particular interest and will be addressed in the following.

A typical approach to solving such problems is based on
a physical domain decomposition, that is, to first solve the
electromagnetic problem in each of the subdomains sepa-
rately and to subsequently find the solution of the entire prob-
lem by letting the subdomain solutions interact through a
suitable coupling procedure. The electromagnetic problem in
each of the subdomains and the coupling can be solved by a
specialized numerical method.

An example for a related method can be found in a re-
cent work by Losenicky et al. (2021), where the Method of
Moments (MoM) and the T-matrix approach are combined.
In particular, there the MoM is used to solve the radiator,
an electric dipole, and the fields are projected on a sphere
enclosing the radiator to obtain a multipole representation.
This is then used to translate the multipoles and solve the
scattering problem in another subdomain. However, this ap-
proach requires that the subdomains are enclosed by two
non-intersecting spheres; therefore, this method does not al-
low having the antenna and the scatterer in close proximity.
This aspect is more limiting when the aspect ratio of the an-
tenna or the scatterer is large, e.g., an electric dipole which
is large in one dimension and small in the other two. Other
instances of related approaches are found in Alian and Oraizi
(2018, 2019), where the addition theorem is combined with
the equivalence principle algorithm (EPA) (Li et al., 2006;
Li and Chew, 2007) to solve scattering problems with multi-
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ple PEC objects. Again, spheres enclosing the objects which
must not intersect are needed to apply the method. Addition-
ally, in Alian and Oraizi (2018, 2019) far fields are analyzed;
hence no radiator is included in the analysis.

In the present work, we extend the 2D multipole approach
we introduced in Giannetti and Klinkenbusch (2023) to the
3D case. The method is based on the equivalence principle
and the free-space dyadic Green’s function. Two subdomains
are considered: one contains an antenna, and the other a scat-
terer. The classical approach is based on the addition theo-
rem for vector spherical-multipole functions (VSMFs) and
requires the Huygens surface enclosing the radiator to be a
sphere. The method described here allows one to enclose the
radiator with a Huygens surface of arbitrary shape. Hence, it
is more flexible and the distances between the different sub-
domains can be reduced. The field radiated by the scatterer
can then be computed using a spherical-multipole expansion
centered at subdomain 2 and a suitable solver. The scatterer
can have an arbitrary geometry – though the analysis natu-
rally simplifies for a spherical scatterer, e.g. the model of the
human head as used in Losenicky et al. (2021).

The paper is organized as follows. The problem is outlined
in Sect. 2 while the proposed method is described in Sect. 3.
First numerical results and some conclusions are shown in
Sects. 4 and 5, respectively.

2 Formulation of the Problem

Figure 1 shows the problem and the used notations. The scat-
terer is enclosed by a spherical surface of radius Rs. In the
phasor domain and at a time factor e+jωt , the total field for
r ′ ≥ Rs is split into an incident and a scattered part. The mul-
tipole expansions of the corresponding electrical fields are
given by (Klinkenbusch, 2008)
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∑
n,m
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n,m(r
′)+
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√
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lowing) and

∑
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sent the multipole coefficients of the incident and scattered
electromagnetic fields, respectively. The vector spherical-
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fined by (Klinkenbusch, 2008)
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Figure 1. Definition of the problem: subdomain 1 (antenna), sub-
domain 2 (scatterer), and corresponding notations.

Here, w(q)n (kr)=− 1
kr

d
dr

(
rz
(q)
n (kr)

)
, r̂ is the unit vector in

the radial direction, and k = ω
√
εµ is the wavenumber of the

homogeneous medium. The superscripts used here, (q)= (1)
and (q)= (2), indicate that the radial dependence is given by
spherical Bessel functions of the first kind (z(1)n = jn) or by
spherical Hankel functions of the second kind (z(2)n = h

(2)
n ),

respectively. Note that spherical Bessel functions of the first
kind are regular everywhere and must be used to represent
regular fields at the origin (r = 0), while at the given time
factor only Hankel functions of the second kind comply with
the radiation condition for r→∞.

The transverse spherical multipole functions (TSMFs)
mn,m(θ,φ) and nn,m(θ,φ) are defined as

mn,m(θ,φ)=−
1

sin(θ)
∂Yn,m(θ,φ)

∂φ
θ̂ +

∂Yn,m(θ,φ)

∂θ
φ̂ (5)
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∂θ
θ̂ +

1
sin(θ)

∂Yn,m(θ,φ)

∂φ
φ̂, (6)

where θ̂ and φ̂ are the unit vectors along θ and φ, respec-
tively, and where the surface spherical harmonics Yn,m(θ,φ)
are defined by

Yn,m(θ,φ)=

√
(n−m)!

(n+m)!

2n+ 1
4π

Pmn (cos(θ))ejmφ . (7)

Here, Pmn (cos(θ)) denotes an associated Legendre function
of the first kind. Note that Yn,−m(θ,φ)= (−1)mY ∗n,m(θ,φ)
holds, with the asterisk indicating the complex conjugate.

In the absence of a scatterer, the scattered field vanishes
and the total field is identical to the incident field, which is in
this case also valid for r < Rs.

In case a scatterer is present, the multipole coefficients of
the incident and scattered fields are related by the scattering
matrix, which fully characterizes the scatterer. For the sim-
ple case of a homogeneous isotropic dielectric sphere with
wavenumber ks and intrinsic wave impedance Zs, the scatter-
ing matrix is diagonal, and the relations between the multi-
pole coefficients of the scattered and incident fields are found
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Moreover, the field inside the dielectric sphere can be ex-
panded using the spherical-multipole expansion
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with the multipole amplitudes
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3 Proposed method

First, we apply the equivalence principle with a Huygens sur-
face that completely encloses the antenna (Fig. 1). There,
the equivalent currents, that completely represent the antenna
outside its subdomain, are given by (Balanis, 2012)

J eq = n̂×H a(0), Meq =−n̂×Ea(0), (11)

where 0 is the Huygens surface, and n̂ the unit vector di-
rected outwards (Fig. 1). The equivalent currents Eq. (11) are
calculated from the fields delivered by a full-wave simulator.

The electromagnetic field outside of the Huygens surface
can be expressed with respect to the coordinate system of
subdomain 2 according to (Li et al., 2006; Alvarez et al.,
2007; Quijano et al., 2011; Balanis, 2012)
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where the integral operators K and L are defined by
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Here, I eq is either Meq or J eq, and r ′ and r ′′ are the obser-
vation and source points, respectively, described in the co-
ordinate system of the scatterer (Fig. 1). In Eq. (14), the ∇ ′

operates on r ′, and the scalar free space Green’s function is
given by

g
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′
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. (16)

The free-space dyadic Green’s functionG(r ′,r ′′) in Eq. (15)
is
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where I represents the unit dyadic, R = r ′−r ′′,R = |R|, and
R̂ =R/R is the unit vector pointing from the source point to
the observation point. Additionally, we have

∇
′g
(
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)
=

(
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1
R

)
g(R)R̂. (18)

Evaluating Eq. (12) on the spherical surface enclosing the
scatterer, we get Ei(r ′)

∣∣∣
r ′=Rs

, and the multipole coefficients

of the incident field ai
n,m and bi

n,m are calculated from their
transversal (i.e., non-radial) components through exploiting
the orthogonality of the VSMFs and TSMFs (Klinkenbusch,
2008)
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Alternatively, the coefficients ai
n,m and bi

n,m can be found
from the radial components of the electric and magnetic
fields (Klinkenbusch, 2008):
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For comparison, the incident electric field in Eqs. (19) and
(20) or the incident electric and magnetic fields in Eqs. (21)
and (22) can be obtained directly by a full-wave simulator.
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4 Numerical results

4.1 Settings

In the following, a single frequency f0 = 2 GHz is fixed,
which corresponds to a wavelength in vacuum of λ≈
150 mm. However, the proposed method can be extended to
a frequency range, by repeatedly applying the method to a
set of frequency points, and subsequently to the time-domain
by applying an inverse Fourier transform.

The scatterer is a lossless isotropic dielectric sphere with
radius Rs = 30 mm and a relative dielectric permittivity εr =
2.2. A horn antenna, optimized for working at f0, is consid-
ered and analyzed by the commercial CST © time-domain
solver. In Fig. 2, the antenna and its technical drawings are
shown. The return loss at f0 in the free space is 20.7 dB. For
a graphical representation, a possible position of the scatterer
is also depicted as a green circle in Fig. 2a. Additionally, the
Huygens surface for the proposed method is also drawn: it is
a parallelepiped and is called enclosing box in Fig. 2.

The parallelepiped has its sides orthogonal to either ix′ , iy′ ,
or iz′ , its center in the antenna reference system is located at
(xa = 0,ya = 0,za =−31)mm and the lengths of the x-,y-,
and z-sides of the parallelepiped are 325.1 mm= 2.17λ,
270.5 mm= 1.80λ, and 692.0 mm= 4.62λ, respectively.

The matrix representations of the integral operators
Eqs. (12), (13), (19), and (20) are evaluated numerically by
applying the point matching method (Chew, 1995). The dis-
tance between the matching points is λ/20≈ 7.5 mm and
hence the total number of points over which the fields are
exported is 18 322. For the value of the truncation limit N
in Eq. (1), the following rule of thumb is applied (Hansen,
1988)

N = dksRs+ 10e = 12. (23)

For comparison with the classical approach based on the
addition theorem (Stein, 1961) for VSMFs (Alian and Oraizi,
2018, 2019; Losenicky et al., 2021), the enclosing sphere
with radius Ra = 385 mm is also drawn in Fig. 2. Note that
the enclosing sphere is more extensive than the enclosing
box, thus limiting the minimum distance between the an-
tenna’s and scatterer’s subdomains.

Two positions of the scatterer with respect to the reference
system of the antenna are considered:

– P1: O ′ = (15,30,700)mm, r0 = 700.8 mm;

– P2: O ′ = (0,0,375)mm, r0 = 375.0 mm;

where r0 is the distance between the origins of the two ref-
erence systems (Fig. 1). The electrical distances kr0 are 29.4
and 15.7 for P1 and P2, respectively. Note that for P1, both
the proposed method and the classical one based on the addi-
tion theorem for VSMFs can be applied. However, P2 can be
analyzed only with the method proposed here, since in this

Figure 2. Horn antenna: (a) model in CST; (b) yz-cross section (not
in scale); (c) xz-cross section (not in scale). The dimensions of the
feeding rectangular waveguide are those of the WR430 standard. In
(b) and (c), the taper angles are in degrees, while the other dimen-
sions are in millimeters.

Figure 3. Equivalence principle in CST with scatterer in P2: max-
imum magnitude of the electric field on xa = 0 mm (Fig. 2b); HS
stands for Huygens’ surface while SC for scatterer.

case the sphere enclosing the antenna and the one enclosing
the scatterer intersect.

A coupling between the scatterer and the antenna is ex-
pected, but this is not yet modeled by the proposed method.
Therefore, to obtain CST results that are comparable with
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Figure 4. Coefficients of the multipole expansions: P1 or P2 indicates the position of the scatterer; a is for the magnitude, b the phase, and c
the error Eq. (24); S, if present, indicates that the scatterer is considered. The legend of (P1a) is the same for all the graphs in the first two
columns [without (with) scatterer Z̃ = Z (Z̃ = Zs)]; the legend of (P1c) is the same for all the graphs in the third column.

those of the proposed method, the CST reference solution is
computed using the equivalence principle as follows:

– step 1: the subdomain of the antenna is solved and the
equivalent currents on the bounding box are exported;

– step 2: the equivalent currents are loaded in CST as
near-field sources and the antenna is replaced by the
Huygens surface (Fig. 3).

Note that the field inside the Huygens surface in Fig. 3 does
not vanish, which means that, as expected, there is an inter-
action between the antenna and the scatterer.

Once the proposed method is validated and no reference
solution is further needed, it is sufficient to solve in CST only
the subdomain of the antenna and to export the equivalent
currents on the bounding box (step 1 of the aforementioned
bullet list). The equivalent currents are then used as the input
for the proposed method, which solves the scattering prob-
lem in the subdomain of the scatterer.

4.2 Comparisons

The multipole coefficients delivered by the proposed method
and CST are now compared. Similarly to Hansen (2012), the

relative error for this method (TM) and for the CST results is
defined as

εcn,m = 20 · log10


∣∣∣c(s) TM
n,m − c

(s) CST
n,m

∣∣∣ ·Fn
maxn,m

(∣∣∣c(s) CST
n,m

∣∣∣ ·Fn)
 (24)

Fn =
1
√
n

(
1
n

)n
(25)

where c is either a or b, and (s) is either (i) for the incident
field or (in) for the field inside the scatterer. In Eq. (24), n
and m range from 1 to N and from −n to n, respectively,
as for the double summations in Eq. (1). The weighting fac-
tor Fn in Eq. (25) is necessary to account for the fact that
the evaluation of the series Eq. (1) is convergent with n, but
it is not for the series formed by the multipole amplitudes
cn,m. The reason for this can be found in the behaviour of the
spherical Bessel function jn(kr)which converge very fast for
increasing n. Hence, we observe for the limit for n→∞ of
the spherical Bessel function jn(x):

jn(x)≈
1

2
√
xn

(ex
2n

)n
for n→∞ (26)

which thus makes Eq. (25) a suitable normalization factor in
Eq. (24). On the other hand, Fn is closer to one for small
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Figure 5. Projection of the incident electric field on the surface r ′ =
Rs, 0≤ ϕ′ ≤ π/2, 0≤ θ ′ ≤ π for the scatterer in P1: (a) proposed
method; (b) CST.

values of n and it is exactly one for n= 1. This means that
the normalization factor Fn accordingly reduces the impact
of the normalized multipole amplitudes for increasing values
of n.

As an example, we first consider the multipole expansion
in P1, with and without the scatterer, and second the multi-
pole expansion in P2 without the scatterer.

For P1, the multipole coefficients of the incident electro-
magnetic field ai

n,m and (Z/j)bi
n,m are shown in Fig. 4 (first

row) while those of the field inside the scatterer ain
n,m and

(Zs/j)b
in
n,m are shown in Fig. 4 (second row). The results

agree well, except for slight discrepancies between the two
methods that occur when the magnitude of the coefficients
is less than 100 V m−1, i.e., become less relevant. The max-
imum value of the relative error Eq. (24) for ai

n,m (bi
n,m) is

−30.5 dB (−28.1 dB) and it is−25.2 dB (−31.3 dB) for ain
n,m

(bin
n,m).
For P1, electric fields are also qualitatively compared. The

electric field of the impinging wave on a sphere with radius
Rs is depicted in Fig. 5. We observe in both cases a similarity
of the results from CST and the proposed method.

For P2, the multipole coefficients of the incident field are
shown in Fig. 4 (third row). For this case too, the results
from the two methods agree well, apart for multipole ampli-
tudes with a magnitude less than 2× 10−1 V m−1. The max-
imum value of the error Eq. (24) for ai

n,m (bi
n,m) is −47.8 dB

(−36.0 dB).
In Fig. 4 (third column), the error decreases fast for in-

creasing multipole order for the term nn in the denominator
of the factor Fn. Due to this, the maximum value of the de-

nominator in Eq. (25) is obtained for n= 1 and m=±1 in
the examples analyzed. In addition, the relatively large val-
ues of the errors may derive from the limited accuracy of the
CST reference solution. To support this, the maximum values
of the errors are lower for the scatterer in P2, that is, for the
scatterer closer to the antenna and hence a smaller solution
domain in CST. The errors may decrease when solving the
radiator with a dedicated solver.

5 Conclusions

We have introduced a method based on the dyadic Green’s
function and the equivalence principle to represent an elec-
tromagnetic field in a coordinate system different from the
original one. The method works even when the classical ap-
proach based on VSMF translation formulas fails. This fea-
ture also allows one to reduce the distance between the an-
tenna and the scatterer, particularly for elongated antennas.
The proposed method has been compared to the numerical
results purely obtained from the full-wave simulator CST,
showing good agreement.

As the next step, the authors intend to solve the full scat-
tering problem by including the electromagnetic interaction
between different subdomains.
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