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Abstract

1 Introduction

Binary words excluding a given pattern p = p0...ph−1 ∈ {0, 1}h constitute a regular language
and can be enumerated in terms of the number of bits 1 and 0 by using classical results (see, e.g.,
[9, 10, 16]). Recently, in [2, 13], this subject has been studied in relation to the concept of proper
Riordan arrays. In particular, these papers prove necessary and sufficient conditions under
which the number of words counted with respect to the number of zeroes and ones are related to
proper Riordan arrays. This problem is interesting in the context of the Riordan arrays theory
because the matrices which here arise are naturally defined by recurrence relations following the
characterization given in [12] (see formula (1.3) below). In particular, if F

[p]
n,k denotes the number

of words excluding the pattern and having n bits 1 and k bits 0, then by using the results in [2]
we have

F [p](x, y) =
∑

n,k≥0

F
[p]
n,kx

nyk =
C [p](x, y)

(1− x− y)C [p](x, y) + xnp
1ynp

0

, (1.1)

where n
[p]
1 and n

[p]
0 correspond to the number of ones and zeroes in the pattern and C [p](x, y)

is the autocorrelation polynomial with coefficients given by the autocorrelation vector (see also
[9, 10, 16]). For a given p, this vector of bits c = (c0, . . . , ch−1) can be defined in terms of
Iverson’s bracket notation (for a predicate P , the expression [[P ]] has value 1 if P is true and
0 otherwise) as follows: ci = [[p0p1 · · · ph−1−i = pipi+1 · · · ph−1]]. In other words, the bit ci is
determined by shifting p right by i positions and setting ci = 1 iff the remaining letters match
the original. For example, when p = 101010 the autocorrelation vector is c = (1, 0, 1, 0, 1, 0), as
illustrated in Table 1.1, and C [p](x, y) = 1 + xy + x2y2, that is, we mark with xjyi the tails of
the pattern with j bits 1, i bits 0 and cj+i = 1. Therefore, in this case we have:

F [p](x, y) =
1 + xy + x2y2

(1− x− y)(1 + xy + x2y2) + x3y3
.

As another example, when p = 11100 then C [p](x, y) = 1 and F [p](x, y) = 1/(1− x− y + x3y2).
In order to study the binary words avoiding a pattern in terms of Riordan arrays, we consider

the array R[p] = (R[p]
n,k) given by the lower triangular part of the array F [p] = (F [p]

n,k), that is,

R
[p]
n,k = F

[p]
n,n−k with k ≤ n. More precisely, R

[p]
n,k counts the number of words avoiding p and
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1 0 1 0 1 0 Tails
1 0 1 0 1 0 1

1 0 1 0 1 0 0
1 0 1 0 1 0 1

1 0 1 0 1 0 0
1 0 1 0 1 0 1

1 0 1 0 1 0 0

Table 1.1: The autocorrelation vector for p = 101010.

n/k 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8
2 1 3 6 10 15 21 28 36
3 1 4 9 18 32 52 79 114
4 1 5 13 29 58 106 180 288
5 1 6 18 44 96 192 357 624
6 1 7 24 64 151 325 650 1222
7 1 8 31 90 228 524 1116 2232

Table 1.2: The matrix F [p] for p = 11100

having length 2n− k, n bits one and n− k bits zero. Given a pattern p = p0 . . . ph−1 ∈ {0, 1}h,
let p̄ = p̄0 . . . p̄h−1 be the pattern with p̄i = 1 − pi, ∀i = 0, · · · , h − 1. We obviously have
R

[p̄]
n,k = F

[p̄]
n,n−k = F

[p]
n−k,n, therefore, the matrices R[p] and R[p̄] represent the lower and upper

triangular part of the array F [p], respectively. Moreover, we have R
[p]
n,0 = R

[p̄]
n,0 = F

[p]
n,n, ∀n ∈ N,

that is, columns zero of R[p] and R[p̄] correspond to the main diagonal of F [p]. Tables 1.2, 1.3
and 1.4 illustrate some rows for the matrices F [p], R[p] and R[p̄] when p = 11100.

We briefly recall that a Riordan array is an infinite lower triangular array (dn,k)n,k∈N, defined
by a pair of formal power series (d(t), h(t)), such that d(0) 6= 0, h(0) = 0, h′(0) 6= 0 and the
generic element dn,k is the n-th coefficient in the series d(t)h(t)k, i.e.:

dn,k = [tn]d(t)h(t)k, n, k ≥ 0.

n/k 0 1 2 3 4 5 6 7
0 1
1 2 1
2 6 3 1
3 18 9 4 1
4 58 29 13 5 1
5 192 96 44 18 6 1
6 650 325 151 64 24 7 1
7 2232 1116 524 228 90 31 8 1

Table 1.3: The triangle R[p] for p = 11100
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n/k 0 1 2 3 4 5 6 7
0 1
1 2 1
2 6 3 1
3 18 10 4 1
4 58 32 15 5 1
5 192 106 52 21 6 1
6 650 357 180 79 28 7 1
7 2232 1222 624 288 114 36 8 1

Table 1.4: The triangle R[p̄] for p̄ = 00011

From this definition we have dn,k = 0 for k > n. An alternative definition is in terms of the
so-called A-sequence and Z-sequence, with generating functions A(t) and Z(t) satisfying the
relations:

h(t) = tA(h(t)), d(t) =
d0

1− tZ(h(t))
with d0 = d(0).

In other words, Riordan arrays correspond to matrices where each element dn,k is described by
a linear combination of the elements in the previous row, starting from the previous column,
with coefficients in A:

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · (1.2)

Another characterization (see [12]) states that a lower triangular array (dn,k)n,k∈N is Riordan
if and only if there exists another array (αi,j)i,j∈N, with α0,0 6= 0, and a sequence (ρj)j∈N such
that:

dn+1,k+1 =
∑

i≥0

∑

j≥0

αi,jdn−i,k+j +
∑

j≥0

ρjdn+1,k+j+2. (1.3)

Matrix (αi,j)i,j∈N is called the A-matrix of the Riordan array. If P [0](t), P [1](t), P [2](t), . . . denote
the generating functions of rows 0, 1, 2, . . . in the A-matrix, i.e.:

P [i](t) = αi,0 + αi,1t + αi,2t
2 + αi,3t

3 + . . .

and Q(t) is the generating function for the sequence (ρj)j∈N, then we have:

h(t)
t

=
∑

i≥0

tiP [i](h(t)) +
h(t)2

t
Q(h(t)), (1.4)

A(t) =
∑

i≥0

tiA(t)−iP [i](t) + tA(t)Q(t). (1.5)

The theory of Riordan arrays and the proofs of their properties can be found in [11, 12]. The
Riordan arrays which arise in the context of pattern avoidance (see [2, 13]) have the nice property
to be defined by a quite simple recurrence relation following the characterization (1.3), while the
relation induced by the A-sequence is, in general, more complex. From a combinatorial point of
view, this means that it is very challenging to find a construction allowing to obtain objects of
size n + 1 from objects of size n. Instead, the existence of a simple A-matrix corresponds to a
possible construction from objects of different sizes less than n+1. On the other hand, as we will
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see in Section 3, the recurrence following characterization (1.3) contains negative coefficients and
therefore gives rise to interesting non trivial combinatorial problems. In this paper we examine
in particular the family of patterns p = 1j+10j and show that the corresponding recurrence
relation can be combinatorially interpreted. To this purpose, we translate the recurrence into a
succession rule, as it is typically done from problems related to Riordan arrays (see, e.g., [3, 15]),
and give a construction for the class of binary words avoiding the pattern p.

2 Basic definitions and notations

A succession rule Ω is a system constituted by an axiom (a), with a ∈ N, and a set of
productions of the form:

(k) Ã (e1(k))(e2(k)) . . . (ek(k)), k ∈ N, ei : N→ N.

A production rule explains how to derive, for any given label (k), its successors
(e1(k)), (e2(k)), . . . , (ek(k)). In most of the cases, for a succession rule Ω, we use the more
compact notation: {

(a)
(k) Ã (e1(k))(e2(k)) . . . (ek(k))

(2.6)

The rule Ω can be represented by means of a generating tree, that is a rooted tree whose vertices
are the labels of Ω; (a) is the label of the root and each node labelled (k) produces k sons
labelled (e1(k)), (e2(k)), . . . , (ek(k)), respectively. It is evident from this definition that we have
a notion of level on generating tree, by saying that the root lies at level 0, and a node lies at
level n when its parent lies at level n− 1. In case the succession rule describes the growth of a
class of combinatorial object, then a given object can be coded by a sequence of labels met from
the root of the generating tree to the object itself. We refer to [4] for details and examples.
The concept of succession rules was first introduced in [6] by Chung et al. to study reduced
Baxter permutations, and was later applied to the enumeration of permutations with forbidden
subsequences [5, 18].
We remark that, from the above definition, a node labelled (k) has precisely k sons. In [1],
a succession rule having this property is said to be consistent. However, we can also consider
succession rules, introduced in [7], in which the value of a label does not necessarily represent
the number of its sons and this will be frequently done in the sequel.
A slight generalization of the notion of succession rule is provided by the concept of jumping
succession rules. Roughly speaking, the idea is to consider a set of succession rules acting on
the objects of a class and producing sons at different levels.
The usual notation to indicate a jumping succession rule is the following:





(a)
(k) 1Ã (e1(k))(e2(k)) . . . (ek(k)),

(k)
jÃ (d1(k))(d2(k)) . . . (dk(k)).

(2.7)

The generating tree associated with (2.7) has the property that each node labelled (k)
lying at level n produces two sets of sons, the first set at level n + 1 and having labels
(e1(k)), (e2(k)), . . . , (ek(k)) respectively and the second one at level n + j, with j > 1, and
having labels (d1(k)), (d2(k)), . . . , (dk(k)) respectively. For more details about these topics, see
[8].
Another generalization concerning succession rule is introduced in [14], where the authors deal
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with marked succession rules. In this case the labels appearing in succession rule can be marked
or not, therefore the concept of a marked label has to be considered together with usual labels.
In this way the concept of generating tree can be extended to deal with negative value if we
consider a node labelled (k) as opposed to a node labelled (k) lying on the same level.
A marked generating tree is a rooted labelled tree where appear marked or non-marked label
developped according to the corresponding succession rule. The main property is that, on the
same level, marked labels kill or annihilate the non-marked labels with the same label value, in
particular the enumeration of the combinatorial objects of a class at a given level is the difference
between the number of non-marked and marked labels.
For any label (k), we introduce the following notations for generating tree specifications:

(k) = (k);

(k)n = (k) . . . (k)︸ ︷︷ ︸
n

, n > 0.

Each succession rules (2.6) can be trivially rewritten as (2.8)




(a)
(k) Ã (e1(k))(e2(k)) . . . (ek(k))(k),
(k) Ã (k).

(2.8)

For example, the classical succession rule for Catalan numbers can be rewritten in the form (2.9)
and Figure 2.1 shows the associated generating tree.





(2)
(k) Ã (2)(3) . . . (k)(k + 1)(k),
(k) Ã (k).

(2.9)

(2)

(2)

(2)(2)(3)(2)

(2)(2)(3)(2)(2)(2)(3)(2)(3)(3)(4)(3)(2)(2)(2)(3)

Figure 2.1: Some levels of the generating tree associated with the succession rule (1.4)

The concept of marked labels has been implicity used for the first time in [15], the same
concept has been used in [7] in relation with the definition of the ECO-systemes signes. In Sec-
tion 3, we show how marked succession rules appears in the enumeration of a class of particular
binary words according to the number of ones. Let F ⊂ {0, 1}∗ be the class of binary words
w such that |w|0 ≤ |w|1 for any w ∈ F , |w|0 and |w|1 corresponding to the number of zeroes
and ones in the word w, respectively. In this paper we are interested in studying the subclass
F [p] of F of binary words excluding a given pattern p = p0 . . . ph−1 ∈ {0, 1}h, i.e. the word
w ∈ F [p] that does not admit a sequence of consecutive indices i, i + 1, . . . , i + h − 1 such that
wiwi+1 . . . wi+h−1 = p0p1 . . . ph−1.
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Each word w ∈ F can be naturally represented as a lattice path on the Cartesian plane by
associating a rise step, defined by (1, 1) and denoted by x, to each 1’s in F , and a fall step,
defined by (1,−1) and denoted by x, to each 0’s in F .
In the sequel, we will refer indistinctly to words or their graphical representations on the Carte-
sian plane, that is paths.

3 The Riordan array for the pattern p = 1j+10j

Let us consider the family of patterns p = 1j+10j and let F
[p]
n,k denote the number of words

excluding the pattern and having n bits 1 and k bits 0; from (1.1) we have

F [p](x, y) =
∑

n,k≥0

F
[p]
n,kx

nyk =
1

1− x− y + xj+1yj
. (3.10)

Now let R
[p]
n,k counts the number of words avoiding p and having n bits one and n− k bits zero.

Obviously we have R
[p]
n,k = F

[p]
n,n−k with k ≤ n. By extracting the coefficients from (3.10) we have:

[xn+1yk+1](1− x− y + xj+1yj)F [p](x, y) = F
[p]
n+1,k+1 − F

[p]
n,k+1 − F

[p]
n+1,k + F

[p]
n−j,k+1−j = 0

and therefore:
R

[p]
n+1,k+1 = R

[p]
n,k + R

[p]
n+1,k+2 −R

[p]
n−j,k. (3.11)

This is a recurrence relation of type (1.3) and therefore R[p] = (R[p]
n,k) is a Riordan array. In

particular, the coefficients of the relation correspond to P [j](t) = −1, P [0](t) = 1, and Q(t) = 1,
therefore we have

h[p](t)
t

=
∑

i≥0

tiP [i](h[p](t)) +
h[p](t)2

t
Q(h(t)) = 1− tj +

h[p](t)2

t

that is,

h[p](t)2 − h[p](t) + t− tj+1 = 0, h[p](t) =
1−√1− 4t + 4tj+1

2
.

We explicitly observe that from formula (1.5) the generating function A(t) of the A-sequence
is the solution of a j + 1 degree equation (1 − t)A(t)j+1 − A(t)j + tj = 0. For example, when
p = 11100 by developing into series we find:

A(t) = 1 + t + 2t3 − t4 + 7t5 − 12t6 + 38t7 − 99t8 + 281t9 + O(t10)

and this result excludes that there might exist a simple dependence of the elements in row n+1
from the elements in row n. For what concerns d[p](t), we simply use the Cauchy formula for
finding the main diagonal of matrix F [p] (see, e.g., [17, Cap. 6, p. 182]):

d[p](t) = [x0]F [p](x,
t

x
) =

1
2πi

∮
F [p](x,

t

x
)
dx

x
.

We have:
1
x

F [p](x,
t

x
) =

−1
x2(1− tj)− x + t
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and in order to compute the integral, it is necessary to find the singularities x(t) such that
x(t) → 0 with t → 0 and apply the Residue theorem. In this case the right singularity is:

x(t) =
1−

√
1− 4t(1− tj)
2(1− tj)

and finally we have:

d[p](t) = lim
x→x(t)

−1
x2(1− tj)− x + t

(x− x(t)) =
1√

1− 4t + 4tj+1
.

Observe also that:
d[p](t)− 1

d[p](t)h[p](t)
= 2

and therefore R
[p]
n+1,0 = 2R

[p]
n+1,1. Recurrence (3.11) is quite simple, however, the presence of

negative coefficients leads to a possible non trivial combinatorial interpretation. In order to
study this problem we proceed as follows. The dependence of R

[p]
n+1,k+1 from the same row n+1

can be simply eliminated and we have:

R
[p]
n+1,k+1 = R

[p]
n,k −R

[p]
n−j,k + R

[p]
n+1,k+2 =

= R
[p]
n,k −R

[p]
n−j,k + R

[p]
n,k+1 −R

[p]
n−j,k+1 + R

[p]
n+1,k+3 = · · · =

= (R[p]
n,k + R

[p]
n,k+1 + R

[p]
n,k+2 + · · · )− (R[p]

n−j,k + R
[p]
n−j,k+1 + R

[p]
n−j,k+2 + · · · ) (3.12)

Similarly we have:

R
[p]
n+1,0 = 2(R[p]

n,0 + R
[p]
n,1 + R

[p]
n,2 + · · · )− 2(R[p]

n−j,0 + R
[p]
n−j,1 + R

[p]
n−j,2 + · · · ) (3.13)

Finally, by using the results in [2, 3], recurrences (3.12) and (3.13) translate into the following
succession rule: 




(0)
(k) 1Ã (0)2(1) · · · (k + 1)

(k)
j+1Ã (0)2(1) · · · (k + 1)

(3.14)

This rule can be represented as a tree having its root labeled 0 and where each node with label
k at a given level n has k+3 sons at level n+1 labeled (0), (0), (1), · · · , (k+1) and k+3 sons at
level n + j + 1 with labels (0), (0), (1), · · · , (k + 1) (this kind of trees are called level generating
trees in [3]). If we denote by dn,k the number of nodes having label k at level n in the tree
and count as negative the marked nodes then we obtain matrix R[p] = (R[p]

n,k)n,k∈N, that is, R[p]

corresponds to the matrix associated to the rule (3.14). The relations between Riordan arrays
and succession rules has been widely studied and we refer the reader to [3, 14, 15] for more
details. We just conclude this section by observing that by using the results in [2, 13] it can be
proved that the matrix R[p̄] corresponding to the pattern p̄ = 0j+11j is also a Riordan array.

4 A construction for the class F [p]

In this section we define an algorithm associates a lattice path in F [p], where p = xj+1xj =
1j+10j , to a sequence of labels obtained by means of the succession rule (3.14). This give a
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construction for the set F [p] according to the number of rise steps or equivalently the number of
ones.

The axiom (0) is associated to the empty path ε.
A lattice path ω ∈ F , with n rise steps and such that its endpoint has ordinate k, provides k +3
lattice paths, with n + 1 rise steps, according to the first rule of (3.14) having 0, 0, 1, . . . , k + 1
as endpoint ordinate, respectively. The last k + 2 labels are obtained by adding to ω a sequence
of steps made up of one rise step followed by k + 1 − h, 0 ≤ h ≤ k + 1, fall steps (see Figure
4.2). Each lattice path so obtained has the property that its rightmost suffix beginning from the
x-axis, either remains strictly above the x-axis itself or ends on the x-axis by a fall step. Note
that in this way the paths ending on the x-axis and having a rise step as last step are never
obtained. These paths are lied to the first label (0) of the first rule in (3.14) and the way to
obtain them will be described later in the paper.

1
k+1kk

)(k)(k )( +1k (1)

1

(0)

Figure 4.2: The mapping associated to (k) 1Ã (0)(1) . . . (k + 1) of (3.14)

We define a marked forbidden pattern p as a pattern p = xj+1xj whose steps are not
separable, that is they can not be divided so they must lay always in that defined sequence.
We denote a marked forbidden pattern by marking its peak. We say that a point is strictly
contained in a marked forbidden pattern if it is between two steps of the pattern itself.
A lattice path ω ∈ F , with n rise steps and such that its endpoint has ordinate k, provides
k + 3 lattice paths, with n + j + 1 rise steps, according to the second rule of (3.14) having
0, 0, 1, . . . , k + 1 as endpoint ordinate, respectively. The last k + 2 labels are obtained by adding
to ω a sequence of steps made up of the marked forbidden pattern p = xj+1xj followed by
k + 1 − h, 0 ≤ h ≤ k + 1, fall steps (see Figure 4.3). Each lattice path so obtained has the
property that its rightmost suffix beginning from the x-axis, either remains strictly above the
x-axis itself or ends on the x-axis by a fall step. At this point the first label (0) due to the
first and the second rule of (3.14) must give lattice paths which either do not contain marked
forbidden pattern in its rightmost suffix and end on the x-axis by a rise step or having the
rightmost marked point with ordinate less than or equal to j.

p

1j+

(0)(1)

k k k

k k k( ) ( +1) ( )

+1
1

p p p

Figure 4.3: The mapping associated to (k)
j+1Ã (0)(1) . . . (k + 1) of (3.14)

In order to obtain the first label (0) according to the first succession rule of (3.14), we
consider the lattice path ω′ obtained from ω having the ordinate of its endpoint equal to k,
by adding a sequence of steps made up of one rise step followed by k fall steps, while in order
to obtain the first label (0) according to the second succession rule of (3.14), we consider the
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lattice path ω′ obtained from ω by adding a sequence of steps made up of the marked forbidden
pattern p = xj+1xj followed by k fall steps. A path ω′ by applying the previous actions can be
written as ω′ = vϕ, where ϕ is the rightmost suffix in ω′ beginning from the x-axis and strictly
remaining above the x-axis (see Figure 4.4).

1

ϕ
ϕ

1

Figure 4.4: Graphical representation of the suffix ϕ in ω′

We distinguish two cases: in the first one ϕ contains no marked points and in the second
one ϕ contains at least a marked point.

If the suffix ϕ does not contain any marked point, the desired label (0) is associated to the
path vϕcx, being ϕc the path obtained from ϕ by switching rise and fall steps (see Figure 4.5).

1

ϕ
(0)

c

x

ϕ

Figure 4.5: A graphical representation of the actions giving the first label (0) in case of no marked points
in ϕ

If the suffix ϕ contains marked points, let r be the rightmost marked point in ϕ having
highest ordinate and t be the nearest point on the right of the marked forbidden pattern con-
taining r with highest ordinate and which is not strictly within a marked forbidden pattern.
We consider the straight line s through the point t and the leftmost point z in ϕ with highest
ordinate, which lies above or on the line s and which is not strictly within a marked forbidden
pattern (see the left side of Figure 4.6.a)). Obviously if the straight line s does not intersect any
points on the left of t (see the left side of Figure 4.6.b)) or intersects only points lying strictly
within a marked forbidden patterns (see the left side of Figure 4.6.c)), then z ≡ t.

The desired label (0) is associated to the path obtained by concatenating a fall step x with
the path in ϕ running from z to the endpoint of the path, say α, and the path running from the
initial point in ϕ to z, say β (see Figure 4.6 and 4.7).
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r

c)

b)

a)

x

x

x

t z

t z

t sz

ϕ

ϕ

ϕ

r

r

r

r

r

Figure 4.6: Some examples of the actions giving the first label (0) in the case of marked points in ϕ,
p = x2x

x

1

αβ

βα

(0)

Figure 4.7: A graphical representation of the cut and paste actions giving the first label (0) in case of
marked points in ϕ

This last mapping can be inverted as follows. Let d be the rightmost fall step in a path ω′

labeled (0) such that it begins from the x-axis and each marked point, on its right, has ordinate
less than or equal to j. Let ω′ = ωdϕ′ and l the rightmost point in ϕ′ with lowest ordinate.
The inverted lattice path of ω′ is given by ωβα, where β is the path in ϕ′ running from l to the
endpoint of the path and α is the path running from the initial point in ϕ′ to l (see Figure 4.8).

d

1

αβ

βα

Figure 4.8: A graphical representation of the lattice path obtained by means of the inverted mapping
related to the first label (0) in case of marked points in ϕ

Figure 4.9 shows the cut and paste actions related to the just described inverted mapping on an
example, being p = x2x.
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ϕ

ϕ
 l 

x

d

x

Figure 4.9: The inverted mapping related to the first label (0) in case of marked points in ϕ sketched
on an example

At this point, we can describe the complete mapping defined by the succession rule (3.14),
in particular Figure 4.10 shows this complete mapping on an example being p = x2x and Figure
4.11 sketches some levels of the generating tree for the paths in F [p], p = x2x, enumerated
according to the number of the rise steps.

(2)

(3)

(3)

(2)

(0)

(0)

(1)

(2)

(0)

(0)

(1)

Figure 4.10: The set of lattice paths obtained from a given (k), by means of the succession rule (3.14)
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(0)

(1)

(0)

(0)

 (1)

(0)

(0)

(1)

(0)
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(0)

(0)

(1)

(2) (3) (2) (1) (0)

(0)

(2) (1) (0)

(0)

(1) (0)
(0)

(1) (0) (0)

(2) (1) (0)
(0)

(2) (1) (0)

(0)

(1) (0)
(0)

(1) (0) (0)

(1) (0)
(0)

(2) (1) (0)

(0)

(1) (0) (0)

(1) (0) (0)

(1)

(2) (1) (0)
(0)

(1) (0) (0)

(1) (0) (0)

ε

(0)

Figure 4.11: Some levels of the generating tree associated with the succession rule (3.14) for the path
in F [p], being p = x2x
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The just described construction generates 2C copies of each path having C forbidden patterns
such that 2C−1 are coded by a sequence of labels ending by a marked label, say (k), and contain
an odd number of marked forbidden pattern, and 2C−1 are coded by a sequence of labels ending
by a no marked label, say (k), and contain an even number of marked forbidden pattern. For
example, Figure 4.12 shows the 4 copies of a given path having 2 forbidden patterns, being
p = x2x.

(0)(1)(1)(1) (2)(1) (0)(0) (0) (0) (0) (0)

Figure 4.12: The 4 copies of a given path having 2 forbidden patterns

This observation is due to the fact that when a path is obtained according to the first rule of
(3.14) then no marked forbidden pattern is added, moreover when a path is obtained according
to the second rule of (3.14) exactly one marked forbidden pattern is added. In any case, the
actions performed to obtain the first label (0) do not change the number of marked forbidden
patterns in the path.

Theorem 4.1 The generating tree of the lattice paths in F [p], where p = xj+1xj, according to
the number of rise steps, is isomorphic to the tree having its root labelled (0) and recursively
defined by the following succession rule (3.14):

{
(k) 1Ã (0)2(1) . . . (k + 1),

(k)
j+1Ã (0)2(1) . . . (k + 1).

Proof. In order to prove the theorem we have to show that the algorithm described in the
previous pages is a construction for the set F [p] according to the number of rise steps. This
means that all the paths in F with n rise steps are obtained. Moreover, for each obtained path
ω in F\F [p], having C forbidden patterns, with n rise steps and (k) as last label of the associated
code, a path ω′ in F\F [p] with n rise steps, C forbidden patterns and (k) as last label of the
associated code is also generated having the same form of ω but such that the last forbidden
pattern is marked if it is not in ω and vice-versa.
The first assertion is an immediate consequence of the described construction according to the
first rule of (3.14).
In order to prove the second assertion we have to distinguish two cases: in the first one we
consider marked the last forbidden pattern, in the second one the last forbidden pattern is not
marked. We denote by h be the ordinate of the peak of the last forbidden pattern.

First case: the last forbidden pattern in ω is a marked forbidden pattern.
We consider the following subcases: h > j, h = j, 0 < h < j, h = 0 and h < 0.

h > j: Each path ω in F\F [p] can be written as ω = µxj+1xfν , being µ ∈ F , ν ∈ F [p] and
j ≤ f ≤ d + j + 1 where d ≥ 0 is the ordinate of the endpoint of µ (see Figure 4.13).

The path ω′ which kills ω is obtained by applying to the path µ the following consecutive
actions: add the path xj by applying j times the mapping associated to (k) 1Ã (k + 1) of
the first rule of (3.14), add the path xxf by applying the mapping associated to (k) 1Ã
(d + j + 1− f) of the first rule of (3.14). The path ν in ω′ is obtained as in ω.
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µ
ν

Figure 4.13: A graphical representation of the path ω in the case h > j

h = j: Each path ω in F\F [p] can be written as ω = µxγxj+1xjν , being µ, γ ∈ F and ν ∈ F [p]

(see Figure 4.19). We observe that the path γ can contain marked points, with ordinate
b < j, or not. If the path γ contains no marked points then remains strictly under the
x-axis, otherwise the marked forbidden patterns intersect the x-axis when 0 ≤ b < j. In
the following cases we consider a path γ having the same property.

µ γ
ν

Figure 4.14: A graphical representation of the path ω in the case h = j

The path ω′ which kills ω is obtained by applying to the path µxγx the following con-
secutive actions: add the path xj−1 by applying j − 1 times the mapping associated to
(k) 1Ã (k + 1) of the first rule of (3.14), add the path xxj by applying the mapping asso-
ciated to (k) 1Ã (0) of the first rule of (3.14) for the second label (0). The path ν in ω′ is
obtained as in ω.

0 < h < j: Each path ω in F\F [p] can be written as ω = µxγxj+1xjηxν , being µ, γ ∈ F and η, ν ∈ F [p]

(see Figure 4.15). We observe that the path η remains strictly under the x-axis. In the
following cases we consider a path η having the same property.

ηµ
ν

γ

Figure 4.15: A graphical representation of the path ω in the case 0 < h < j

The path ω′ which kills ω is obtained by applying to the path µxγxj+1−h the following
consecutive actions: add the path xh−1 by applying h − 1 times the mapping associated
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to (k) 1Ã (k + 1) of the first rule of (3.14), add the path xxh by applying the mapping
associated to (k) 1Ã (0) of the first rule of (3.14) for the second label (0), add the path
xj−hηx by applying consecutive and appropriate mappings of the first rule of (3.14) and
this mappings must be completed applying the actions giving the first label (0) in case of
no marked points. The path ν in ω′ is obtained as in ω.

h = 0: Each path ω in F\F [p] can be written as ω = µxγxj+1xjηxν , being µ, γ ∈ F and η, ν ∈ F [p]

(see Figure 4.16).

η
µ

ν

γ

Figure 4.16: A graphical representation of the path ω in the case h = 0

The path ω′ which kills ω is obtained by applying to the path µxγxj+1 the following action:
add the path xjηx by applying consecutive and appropriate mappings of the first rule of
(3.14), apply the actions giving the first label (0) in case of no marked points. The path
ν in ω′ is obtained as in ω.

h < 0: Each path ω in F\F [p] can be written as ω = µxγxj+1xjηxν, being µ, γ ∈ F and η, ν ∈ F [p]

(see Figure 4.17).

η

µ
ν

γ

Figure 4.17: A graphical representation of the path ω in the case h < 0

We distinguish two subcases: in the first one the path γ contains no marked points and
remains strictly under the x-axis and in the second one the path γ contains at least a
marked point.
In the first subcase, the path ω′ which kills ω is obtained by applying to the path µ
the following action: add the path xγxj+1xjηx by applying consecutive and appropriate
mappings of the first rule of (3.14), apply the actions giving the first label (0) in case of
no marked points. The path ν in ω′ is obtained as in ω.
In the second subcase, we consider the rightmost point l of the path xγxj+1xjηx with
lowest ordinate. The path ω′ which kills ω is obtained by applying to the path µ the
following consecutive actions: add the path in γxj+1xjηx running from l to the endpoint
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of the path, apply consecutive and appropriate mappings of the first and of the second rule
of (3.14), add the path in γxj+1xjηx running from its initial point to l, apply consecutive
and appropriate mappings of the first and of the second rule of (3.14), apply the cut
and paste actions giving the first label (0) in case of marked points. Obviously the last
forbidden pattern in the path must be generated by applying consecutive and appropriate
mappings of the first rule of (3.14). The path ν in ω′ is obtained as in ω.

Second case: the last forbidden pattern in ω is not a marked forbidden pattern.
We consider the following subcases: h > j, h = j, h < j.

h > j: Each path ω in F\F [p] can be written as ω = µxj+1xfν, being µ ∈ F , ν ∈ F [p] and
j ≤ f ≤ d + j + 1 where d ≥ 0 is the ordinate of the endpoint of µ (Figure 4.18).

ν
µ

Figure 4.18: A graphical representation of the path ω in the case h > j

The path ω′ which kills ω is obtained by applying to the path µ the following consecutive
actions: add the path xj+1xf by applying the mapping associated to (k)

j+1Ã (d+j +1−f)
of the second rule of (3.14). The path ν in ω′ is obtained as in ω.

h = j : Each path ω in F\F [p] can be written as ω = µxγxj+1xjν, being µ, γ ∈ F and ν ∈ F [p]

(see Figure 4.19). We observe that the path γ can contains marked points, with ordinate
b < j, or not. If the path γ contains no marked points then remains strictly under the
x-axis, otherwise the marked forbidden patterns intersect the x-axis when 0 ≤ b < j. In
the following case we consider a path γ having the same property.

γµ
ν

Figure 4.19: A graphical representation of the path ω in the case h = j

Let l be the rightmost point m of the path xγxj+1xj with lowest ordinate. The path ω′

which kills ω is obtained by applying to the path µ the following consecutive actions: add
the path in γxj+1xj running from l to the endpoint of the path, apply consecutive and
appropriate mappings of the first and of the second rule of (3.14), add the path in γxj+1xj

running from its initial point to l, apply consecutive and appropriate mappings of the first
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and of the second rule of (3.14), apply the cut and paste actions giving the first label (0) in
case of marked points. Obviously the last forbidden pattern in the path must be generated
by applying the mapping of the second rule of (3.14). The path ν in ω′ is obtained as in
ω.

h < j: Each path ω in F\F [p] can be written as ω = µxγxj+1xjηxν, being µ, γ ∈ F and η, ν ∈ F [p]

(see Figure 4.20). We observe that the path η remains strictly under the x-axis.

η

µ
ν

γ

Figure 4.20: A graphical representation of the path ω in the case h < j

Let l be the rightmost point of the path xγxj+1xjηx with lowest ordinate. The path
ω′ which kills ω is obtained by applying to the path µ the following consecutive actions:
add the path in γxj+1xjηx running from l to the endpoint of the path, apply consecutive
and appropriate mappings of the first and of the second rule of (3.14), add the path in
γxj+1xjηx running from its initial point to l, apply consecutive and appropriate mappings
of the first and of the second rule of (3.14), apply the cut and paste actions giving the first
label (0) in case of marked points. Obviously the last forbidden pattern in the path must
be generated by applying the mapping of the second rule of (3.14). The path ν in ω′ is
obtained as in ω.

We observe that for each path ω in F\F [p], having C forbidden patterns, with n rise steps
and last label (k), exists a unique path ω′ in F\F [p] with n rise steps, C forbidden patterns and
last label (k) having the same form of ω but such that the last forbidden pattern is marked if it
is not in ω and vice-versa. This assertion is an immediate consequence of the constructions in
the proof, since the described actions are uniquely determined. Therefore, it is not possible to
obtain a path ω′ which kills a given path ω applying two distinct procedures. ¥

5 Conclusions and further developments

In this paper we have studied the enumeration, according to the number of ones, of particular
binary words excluding a fixed pattern p = 1j+10j , j ≥ 1. Initially, we have solved the problem
algebraically by means of Riordan arrays. This approach allows us to obtain a jumping and
marked succession rule describing the growth of such words. By the way, it is not possible to
associate to a word a walk in the generating tree obtained by the succession rule. This problem
is solved by means of an algorithm constructing all the binary words having a fixed number of
ones and eliminating the words which contain the forbidden pattern p = 1j+10j , j ≥ 1.

Another presumably fertile line of research concerns the generalization of the forbidden
pattern p = 1j+10j , j ≥ 1.
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In particular, is it possible to modify the previous algorithm to study the class F of binary words
avoiding the pattern p = 1j0i, j > i > 0 ?
Using the same approach in the paper, is it possible to find other forbidden patterns p, which
are not only formed by rise steps followed by fall steps, to study the enumeration of a new class
of binary words avoiding the pattern p?
Moreover, is it possible to find a procedure which allows us to say that two classes of binary
words avoiding distinct patterns have the same enumeration?

Finally, another line of research concerns the development of theory through the expansion
of the alphabet {0, 1}. By the way, it is possible to introduce other classes of combinatorial
structures and consider different parameter for the enumeration.
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