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Abstract
A model is proposed to analyze longitudinal data where two response variables are
available, one ofwhich is a binary indicator of selection and the other is continuous and
observed only if the first is equal to 1. Themodel also accounts for individual covariates
and may be considered as a bivariate finite mixture growth model as it is based on
three submodels: (i) a probit model for the selection variable; (ii) a linear model for
the continuous variable; and (iii) a multinomial logit model for the class membership.
To suitably address endogeneity, the first two components rely on correlated errors
as in a standard selection model. The proposed approach is applied to the analysis of
the dynamics of household portfolio choices based on an unbalanced panel dataset of
Italian households over the 1998–2014 period. For this dataset, we identify three latent
classes of households with specific investment behaviors and we assess the effect of
individual characteristics on households’ portfolio choices.Our empirical findings also
confirm the need to jointly model risky asset market participation and the conditional
portfolio share to properly analyze investment behaviors over the life-cycle.
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1 Introduction

In many contexts, longitudinal data are available where the outcome of interest, along
with individual-specific covariates, is observed only conditional on a non-random
selection mechanism, thus giving rise to informative missing values. For instance,
two interesting situations in economics concern the time pattern of the amount of
remittances frommigrants to the home country (see Bacci et al. 2019) and the portfolio
choices of investors over the life-cycle (see Fagereng et al. 2017). In both cases, a
mechanism of selection acts generating non-random missing values: in the first case
the amount of remittances is observed only when the migrant decides to send money
home; in the second case, the amount of the investment is observed only when the
investor is active on the financial market. In these types of context, the interest is often
in clustering sample-units in homogenous groups that share a common behavior in
terms of both selection variable and outcome of main interest.

In order to analyze data of the type outlined above, we propose an approach based
on a bivariate latent class growth trajectorymodel (Muthén and Shedden 1999;Muthén
2004; Bollen and Curran 2006; Nylund et al. 2007; Bartolucci andMurphy 2015). This
approach relies on a selectionmodel component, in the sense of Heckman (1979), with
a binary response variable that describes the selection phase and a continuous response
variable corresponding to the outcome of main interest. Correlated error terms are also
included in the model to account for the endogeneity of the selection process. Fur-
thermore, the approach is based on the assumption that there exist latent classes (i.e.,
unobservable clusters defined by a discrete latent variable) of individuals with each
class having a specific time trajectory for both the continuous response variable and
the selection variable.Moreover, the probability of belonging to each latent class (class
weight) is assumed to be affected by individual time-constant (baseline) characteris-
tics, whereas time-varying covariates directly affect the two response variables. The
resulting model we propose is thus composed of three submodels: (i) a probit model
for the selection variable; (ii) a linear model for the response variable of main interest;
and (iii) a multinomial logit model for the latent class membership.

As usual with latent variable models, parameter estimation is achieved through the
maximum likelihood method, using an Expectation-Maximization (EM) algorithm
(Dempster et al. 1977). This algorithm is based on alternating two steps that compute
andmaximize the expected value of the complete data log-likelihood. In order to accel-
erate the estimation process, after a suitable number of EM steps, the maximization
of the incomplete data log-likelihood proceeds by quasi-Newton steps that directly
use the score function to update the model parameters. The score vector is also used
to compute, after a numerical differentiation, the observed information matrix that,
in turn, allows us to obtain standard errors for the parameter estimates. The overall
estimation algorithm has been implemented by means of a series of R functions which
are available on Github at the web page https://github.com/Silvia-Pand/BivLT.

It is important to recall that the presence of the latent variable produces a model-
based clustering (Fraley and Raftery 2002), with clusters corresponding to the
estimated latent classes. As known, the estimation algorithm requires that the number
of latent classes is specified in advance. In absence of substantial reasons that may sug-
gest this number, its choice may be driven by information criteria typically adopted in
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A bivariate finite mixture growth model with selection 761

the finite-mixture literature, such as the Akaike Information Criterion (AIC; Akaike
1973) and the Bayesian Information Criterion (BIC; Schwarz 1978). Furthermore,
once the model is estimated, the most commonly adopted approach for clustering the
sample units is based on the Maximum A Posteriori (MAP) rule (Goodman 1974,
2007). According to this approach, an individual is assigned to the latent class corre-
sponding to the highest posterior probability, that is, the conditional probability of the
latent variable given the observed data.

Finally, marginal effects are computed in order to facilitate the interpretation of
the regression coefficients. In particular, they are computed as the partial derivatives
of the expected value of both response variables with respect to the corresponding
time-varying covariates. In practice, these marginal effects allow us to evaluate how
the dependent variables (outcomes of interest) change when the independent variables
(covariates) change.

As an illustrative application of the proposed bivariate latent class growth trajectory
model, we analyze the dynamics of portfolio choices of Italian households over the
life-cycle and investigate the factors influencing the heterogeneity of both risky asset
market participation and investment intensity. The empirical analysis is carried out
based on an unbalanced panel dataset of Italian households from nine waves of the
Bank of Italy’s Survey of Household Income and Wealth (SHIW) over the 1998–2014
period.

Our application relies on the proposed bivariate latent class growth trajectorymodel
that is specified in a suitable way, according to a probit submodel for the probability
of participating to the financial market and a linear submodel for the share invested.
Both responses are affected by time-varying socio-economic and demographic char-
acteristics of the household. Among these time-varying covariates, an important role
is played by those measuring time (i.e., year of interview and household head’s age),
as they drive the shape of the time trend of the response variables in the latent classes.
Moreover, a multinomial logit submodel is specified for the latent class membership,
being class weights dependent on time-constant household characteristics. Thus, dif-
ferently from previous studies that are mainly population-average, our methodological
approach allows life-cycle patterns and time trajectories of household risky investment
decisions to be cluster (latent class) specific. The proposed methodological approach
significantly contributes to the existing literature by allowing to explicitly take into
account the existence of (unobservable) clusters of households characterized by a spe-
cific behavior in terms of both risky asset market participation and amount invested.
In such a way, we are able to properly account for heterogeneity in household port-
folio choices and reconcile the apparently contradictory results obtained in previous
empirical studies.

In summary, the contribution of the present paper is, first of all, that of guiding the
reader through using complex modeling for answering applied questions. Moreover,
we also provide some methodological advances in terms of estimation with particular
regard to the accelerated EM algorithm. Finally, we provide interesting results and
interpretations in the specific field of application related to household risky investment
decisions, also in connection with the prevailing economic theories in this field.

The remainder of the paper is organized as follows. Section 2 illustrates the proposed
statistical model and its assumptions. Section 3 investigates inferential issues related
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762 D. Aristei et al.

with the proposedmodel. In particular, we provide details on the EM algorithm used to
maximize the log-likelihood function (Sect. 3.1), on the computation of the standard
errors for the parameter estimates, and on some aspects related with model selection
(mainly, selection of number of latent classes) and marginal effects (Sect. 3.3). Data
and results of the application are described in Sect. 4, whereas in Sect. 5 we provide
some final conclusions.

2 The statistical model

In this section we describe the bivariate latent growth model: we first introduce the
basic notation and then we illustrate its main assumptions.

2.1 Basic notation

For a sample of n individuals, let Bit denote the selection variable which is equal to 1
if the continuous variable of interest, denoted by Yit , is observable and to 0 otherwise,
with i = 1, . . . , n and t = 1, . . . , Ti , where n is the sample size and Ti is the number of
time occasions for individual i . In oder to model the informative missing mechanism,
we also introduce the continuous variables B∗

i t underlying the selection process, so
that

Bit = 1 if B∗
i t > 0,

Bit = 0 if B∗
i t ≤ 0.

Note also that Bit may be unobserved for one or more occasions. This leads to a non-
monotone missing patterns of the unbalanced panel data, in which an individual may
not be in the sample for certain time occasions, typically because it is not interviewed
by design. For instance, in the application motivating the proposed paper, B∗

i t is the
propensity of household i to participate to the risky financial market at occasion t ,
while Yit is the percentage of investments in risky financial assets out of total financial
wealth, which is held at occasion t by household i .

Let Bi = (Bi1, . . . , BiTi )
′ and Yi = (Yi1, . . . ,YiTi )

′ be the random vectors of
binary and continuous variables previously defined for subject i . Missing observations
on Bit , due to the absence of the unit from the sample, and consequently on Yit and on
the corresponding covariates, are non-informative because we rely on the missing at
random assumption (MAR; Rubin 1976; Little and Rubin 2002) as motivated in the
following.

We also denote by Ui the discrete latent variable identifying classes of individuals
with the same behavior across time. The distribution of these latent variables is based
on k support points, labeled from 1 to k, which correspond to the number of latent
classes and have specific probabilities, as defined below. We finally denote bywi t and
xi t the observed vectors of time-varying covariatesWi t andXi t , affecting Bit and Yit ,
respectively, and by zi the observed vector of time-constant covariates Zi , affecting
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Zi

Ui

Bi1 Bit BiT Yi1 Yit YiT

Wi1 Wit WiT Xi1 Xit XiT

. . . . . . . . . . . .

. . . . . . . . . . . .

Fig. 1 Path diagram of the bivariate latent growth model, for a generic individual i

the distribution of the latent variableUi . Vectorswi t , xi t , and zi include a first element
equal to 1 to accommodate the constant term.

Note that, since usually the main interest is in assessing the time trajectories of
variables Bit and Yit , vectors wi t and xi t should have elements which are function
of time, apart from time-varying covariates, for i = 1, . . . , n and t = 1, . . . , Ti . A
possible approach relies on using polynomials of order r (r = 1, 2, . . .) of one or more
time variables (e.g., year of interview). A common alternative consists in modeling
the effect of the time through dummies for each time point (e.g., for each year of
interview), but this approach is actually feasible only when the number of time points
is limited. Alternatively, a semi-parametric formulation of the time effectmay be based
on splines (Green and Silverman 1994): this approach is more flexible with respect
to the parametric one based on polynomials but it is usually less parsimonious. In the
application motivating this paper, vectors wi t and xi t include suitable polynomials
both for the year of interview and the household head’s age.

2.2 Model assumptions

We formulate a bivariate latent growth model (Muthén and Shedden 1999; Muthén
2004;Bollen andCurran 2006;Nylund et al. 2007) that accounts for different behaviors
in the population, defined in terms of latent trajectories. A path diagramof the proposed
model is displayed in Fig. 1.

Subjects are grouped into a finite number of unobservable (i.e., latent) classes
characterized by homogenous behaviors. These latent classes are defined on the basis
of the discrete latent variable Ui , whose distribution is given by
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πu(zi ) = p(Ui = u|Zi = zi ), u = 1, . . . , k.

The above mass probabilities, in general, depend on individual time-constant charac-
teristics, Zi .

Coherently with the well-known selection model of Heckman (1979), we assume
that the two responses B∗

i t and Yit have a bivariate Normal distribution, conditionally
on the latent class and covariates:

(
B∗
i t |Ui = u,Wi t = wi t

Yit |Ui = u,Xi t = xi t

)
∼ N2[μu(wi t , xi t ),�], (1)

where

μu(wi t , xi t ) =
(
w′
i tβu

x′
i tγ u

)
and � =

(
1 ρσ

ρσ σ 2

)
.

In the previous expressions,βu is a vector of class-specific regression coefficientsmea-
suring the effect of covariates in wi t , collected in matrix β = {βu, u = 1, . . . , k}, γ u
is a vector of class-specific regression coefficients measuring the effect of covariates
in xi t , collected in matrix � = {γ u, u = 1, . . . , k}, and ρ (−1 ≤ ρ ≤ 1) is the cor-
relation coefficient that accounts for the potential endogeneity of the selection. In the
model, xi t is assumed to be strictly a subset ofwi t . Indeed, when xi t = wi t then severe
collinearity among the regressors in the two equations arises and parameters identifia-
bility relies only on the (non-linear) functional form of the distribution (Puhani 2000).
In order to alleviate these problems, as in empirical applications, exclusion restric-
tions are imposed according to which extra regressions are included in the selection
equation for Bit and do not appear in the outcome equation for Yit (Marchenko and
Genton 2012).

It is worth noting that the proposed model differs from the selection model of
Heckman (1979) for the presence of mixture components that properly account for
heterogeneity in the population. It also differs from the mixture latent growth model of
Bartolucci and Murphy (2015) for the introduction of the correlation term. Moreover,
latter has some other specific differences driven by the particular type of application
in sport dealt with. Indeed, the special case with k = 1 coincides with the model
of Heckman (1979) and the special case with ρ = 0 coincides with the model of
Bartolucci and Murphy (2015).

Assumption (1) implies two main correlated equations. The first equation accounts
for the unobservable nature of B∗

i t through a probit model for the probability of observ-
ing a response, that is,

p(Bit = 1|Ui = u,Wi t = wi t ) = �(w′
i tβu), (2)

with �(·) being the cumulative probability function of a normal distribution. The
second equation is based on the assumption of normality of the response variable Yit
with constant variance σ 2 and expected value given by

E(Yit |Ui = u,Xi t = xi t ) = x′
i tγ u . (3)
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We recall that Yit is observed only if Bit = 1.
A multinomial logit model is also introduced to account for the effect of the indi-

vidual time-constant covariates on the class membership:

log
πu(zi )
π1(zi )

= log
p(Ui = u|Zi = zi )
p(Ui = 1|Zi = zi )

= z′
iδu, (4)

where δu is the vector of regression coefficients measuring the effect of time-constant
covariates on the odds ratio of Class u against Class 1 with u = 2, . . . , k. These
parameters are collected in matrix � = {δu, u = 2, . . . , k}.

As mentioned above, in the presence of non-monotone non-informative missing
observations for variable Bit , due to the absence from the sample of unit i at occasion
t , we rely on the MAR assumption. Under this assumption, the probability of the
realized missing pattern, given the observed and the unobserved data, does not depend
on the unobserved data. Therefore, provided that the model for this type of missing
data mechanism is separated from the proposed model, these missing responses are
ignorable for likelihood based inference. The resulting model may be formulated by
introducing the missing data indicator Mit that is equal to 1 when subject i does not
answer at all at occasion t and to 0 otherwise. Thus, for a certain subject i , we collect
these variables in vectorMi = (Mi1, . . . , MiTi )

′. The corresponding response pattern
is given by (mi ,bi,obs, yi,obs), withmi being a realization ofMi and bi,obs and yi,obs
being subvectors containing the observed components of Bi and Yi , respectively. We
also introduce Wi,obs and Xi,obs to denote the matrices of all observed covariates for
subject i .

The MAR assumption implies that the parameters of interest can be estimated on
the basis of the log-likelihood of the vectors of the observed outcomes (bi,obs, yi,obs)
only, without the model specification for non-informative missingness. In particular,
based on the assumptions formulated above, the distribution of interest is as follows:

p(bi, obs, yi, obs | u,Wi,obs,Xi,obs)

= p(bi, obs, yi, obs |Ui = u,Wi t = wi t ,Xi t = xi t , t = 1, . . . , Ti : mit = 0)

=
Ti∏

t :mit=0

p(bit |u,wi t )
1−bit f (bit , yit |u,wi t , xi t )bit ,

where in the second expression the conditioning is on the observed covariates. More-
over, p(bit |u,wi t ) is defined according to (2) and f (bit , yit |u,wi t , xi t ) is the joint
density of bit and yit based on assumption (1); the previous product is defined only
for those occasions t for which the answer of subject i is observed. In particular, we
need this density for bit = 1 when it is equal to

∫ ∞

0
φ2[(b∗

i t , yit )
′,μu,�]db∗

i t ,

where φ2[·] is the density function of the bivariate Normal distribution in (1).
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766 D. Aristei et al.

The manifest distribution of the proposed bivariate mixture growth model is
expressed as follows:

p(bi, obs, yi, obs | Wi,obs,Xi,obs, zi )

=
k∑

u=1

πu(zi ) p(bi, obs, yi, obs | u,Wi,obs,Xi,obs). (5)

This expression is crucial for inference as we explain in the following section. Another
quantity of interest is the posterior probability that a subject with observed response
configuration (bi, obs, yi, obs) belongs to latent class u. Using standard rules, the pos-
terior probabilities are equal to

p(Ui = u | bi,obs, yi,obs,Wi,obs,Xi,obs, zi )

= πu(zi ) p(bi,obs, yi,obs | u,Wi,obs,Xi,obs)

p(bi, obs, yi, obs | Wi,obs,Xi,obs)
, u = 1, . . . , k. (6)

These probabilities are used to allocate subjects to the different latent classes, as will
be clarified in the sequel.

3 Model inference

In the following we first illustrate the model estimation process, based on the maxi-
mization of the log-likelihood function. Then, we describe how to compute standard
errors, selecting the number of latent classes, and assigning sample units to the latent
classes. Finally, we outline how to compute marginal effects.

3.1 Maximum likelihood estimation

Given a sample of n independent units, the log-likelihood of the proposed model is

�(θ) =
n∑

i=1

log p(bi, obs, yi, obs | Wi,obs,Xi,obs, zi ),

where θ is the vector of the free model parameters, that is, θ = (β ′
u, γ

′
u, δ

′
u, σ

2, ρ)′
and p(bi, obs, yi, obs | Wi,obs,Xi,obs, zi ) is the manifest distribution defined in (5).
Note that the number k of mixture components is not included in the vector of model
parameters because it has to be a priori fixed, as clarified in Sect. 3.2. In order to
maximize �(θ), we rely on the EM algorithm Dempster et al. (1977).

The maximization algorithm is based on the complete-data log-likelihood that we
could compute if we knew the value of the latent variable Ui for every unit i in the
sample. It is defined as follows:
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A bivariate finite mixture growth model with selection 767

�∗(θ) =
n∑

i=1

k∑
u=1

aiu log
[
πu(zi ) p(bi,obs, yi,obs | u,Wi,obs,Xi,obs)

]
,

where aiu is an indicator variable equal to 1 if subject i belongs to cluster u and to 0
otherwise.

As usual, the EM algorithm alternates the following two steps until convergence:

• E-step: it consists in computing the conditional expected value of the complete
data log-likelihood given the observed data and the current value of the model
parameters.

• M-step: it consists in maximizing the expected value of the complete data
log-likelihood resulting from the E-step with respect to θ , so as to update the
parameters.

In practice, at the E-step we need to compute the posterior expected value of every
indicator variable aiu , that is,

âiu = p(Ui = u | bi,obs, yi,obs,Wi,obs,Xi,obs, zi ), u = 1, . . . , k, (7)

for i = 1, ..., n according to (6). This value is directly used to update the parameters
in θ at the M-step, by maximizing

n∑
i=1

k∑
u=1

âiu log p(bi,obs, yi,obs | u,Wi,obs,Xi,obs),

with respect to parameter vector βu , γ u , σ
2, and ρ, and by maximizing

n∑
i=1

k∑
u=1

âiu logπu(zi )

with respect to the parameter vectors δu . These optimizations are performed on the
basis of suitable numerical algorithms.

The convergence of the EM algorithm is checked on the basis of the relative log-
likelihood difference, that is,

[
�(θ (s)) − �(θ (s−1))

]
/ | �(θ (s−1)) |< ε (8)

where θ (s) is the parameter estimate obtained at the end of the s-th M-step and ε is a
suitable tolerance level (e.g., 10−8).

In order to speed up the estimation process, after a suitable number of EM steps we
run a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method (see Givens
and Hoeting 2013, and reference therein) to directly maximize the incomplete data
log-likelihood, which relies on the score vector to update model parameters. The
score vector is computed as the first derivative of the conditional expected value of
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the complete data log-likelihood given the observe data, which has been proved to
correspond to the score vector for the observed data (or incomplete data) log-likelihood
(Oakes 1999). The number of EM steps performed before starting to run these steps
is again driven by the relative log-likelihood difference in (8) based on a different
tolerance level ε∗ thatmust be defined in advance. To explore the performance, in terms
of computational efficiency, of the proposed approach with respect to the classical EM
algorithm we set up a small simulation study, where we run, under different scenarios,
the algorithmbasedondifferent tolerance levels ε∗ formoving to the acceleration steps.
Details are provided in “Appendix A”. We also evaluate the competing algorithms in
our application, obtaining that the classical EM algorithm is between 2.5 and 6.5 times
slower than the proposed accelerated version.

It is important to recall that the EM algorithm requires to be initialized by choosing
suitable starting values for the parameters in θ . In fact, a typical problem in estimating
discrete latent variable models is the multimodality of the log-likelihood function.
In order to prevent this problem, we rely on a multi-start strategy, based on both
a deterministic and a random rule, the latter repeated a given number of times, so
as to properly explore the parameter space. Then, for a given k, we take as final
parameter estimate the one corresponding to the largest log-likelihood value found at
convergence.

The deterministic initialization of the algorithm consists in computing the starting
values of the parameters affecting both the probability of observing a response and
the response variable itself on the basis of descriptive statistics (mean and quantiles)
of the observed outcomes. The starting values for the mass probabilities πu(zi ) are
chosen as 1/k, for i = 1, . . . , n and u = 1, . . . , k.

The random starting rule is instead based on random values generated from a stan-
dard normal distribution for the parameters βu and γ u and from a uniform distribution
for parameters σ 2 and ρ. Moreover, we draw the initial values of the mass probabili-
ties from a uniform distribution between 0 and 1 and then we normalize these random
draws so that they sum to 1.

3.2 Standard errors, model selection, and clustering

After the model is estimated with a given number of classes, we obtain standard
errors for the parameter estimates on the basis of the observed information matrix
J(θ̂). In particular, the standard error for each parameter is obtained as the square
root of the corresponding diagonal element of the inverse of this matrix, J(θ̂)−1. In
our application, the computation of the observed information matrix is based on a
numerical method (Bartolucci and Farcomeni 2009), where J(θ̂) is obtained as minus
the numerical derivative of the score vector at convergence. As discussed above about
the EM acceleration, the score vector is obtained analytically as the first derivative of
the conditional expected value of the complete data log-likelihood, which is based on
the expected frequencies âiu corresponding to the final parameter estimate θ̂ (Oakes
1999).

It is already clear that the number k of latent classes does not belong to the vector of
free parameters θ . In fact, k has to be chosen before performing the estimation process:
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its value may be suggested by substantial reasons or, alternatively, its choice may be
driven by information criteria common to the finite-mixture literature (McLachlan and
Peel 2000), which rely on penalized measures of model fit. In particular, to select the
number of latent classes the AIC (Akaike 1973) and the BIC (Schwarz 1978) are based
on the indices

AIC = −2�̂ + 2 #par,

BIC = −2�̂ + log(n) #par,

where �̂ denotes the maximum of the log-likelihood of the model of interest and #par
denotes the number of free parameters.

In practice, a series of models is estimated for increasing values of k until the
value of the index corresponding to the preferred information criterion does not start
to increase; then, the previous value of k is adopted as the optimal one. Following
the main stream of the literature (for a review see Bacci et al. 2014, and references
therein), if the two criteria lead to selecting a different number of classes, we suggest
to rely on the BIC, which tends to have good performance in several contexts and is
more parsimonious with respect to the AIC.

A debated issue in the LC literature concerns the selection of k when covariates
affect the class membership probabilities. According to a commonly accepted recom-
mendation (Nylund-Gibson andMasyn 2016), k should be selected relying on amodel
without covariates, thus avoiding to overextract classes due to the noise present in a
more complex model; once the value of k is selected, covariates are then included.
Unfortunately, this procedure cannot be directly applied to the bivariate latent growth
model here proposed, because its equations (2) and (3), for Bit and Yit , in addition to
the equation for the class weights (4), are affected by covariates and, most of all, must
differentiate for at least one regressor. This is requested by the exclusion restriction
condition characterizing Heckman-type models, as clarified in Sect. 2.2. For this rea-
son, in what follows we adopt a different strategy accounting for the relevance of the
covariates (mainly, those related to the time) for our analysis. We first explore the time
trajectories under basic alternative model specifications enclosing time-varying and
time-constant covariates, that is, the standard Heckman model and the latent growth
model with k = 1 and with polynomials of different orders for age and year (see
Sect. 4.2). Once the order of the polynomials for both age and year has been chosen,
we select k.

It is worth remarking that the choices of r (order of polynomials for age and year)
and k (number of latent classes) are not unrelated and, therefore, they should be
simultaneously selected by a one-step strategy. In principle, the optimal number of r
and k chosen on the basis of the proposed hierarchical strategy (based on selecting
first r and then k given r ) might differ from the one obtained with the simultaneous
selection. However, the latter one is considerably slower and, at least in the specific
application here discussed, does not provide noteworthy differences (see Sect. 4.3).

An additional relevant issue when dealing with the proposed model concerns the
assignment of the units to the latent classes. As usual, the estimation algorithm directly
provides the estimated posterior probabilities of Ui , as defined in (7), which may be
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used for this assignment. In particular, a subject is assigned to one of the k latent
classes according to the standard MAP rule (or modal assignment), see Goodman
(2007), which consists in allocating subject i to latent class u when âiu = â∗

i , where
â∗
i is the maximum of âi1, . . . , âik . Note that this phase is error prone; however the
classification error resulting from theMAP assignment may be estimated using simple
probability calculus (for details see Vermunt 2010). Moreover, several studies proved
the MAP allocation to be superior in terms of classification error with respect to
alternative methods, among which the method of the expected proportions (Goodman
2007), themethod of bagging based on bootstrap (Dias andVermunt 2008), and the one
proposed by Bandeen-Roche et al. (1997) based on multiple pseudo-class draws that
randomly assign individuals to latent classes for a repeated number of times according
to the posterior probabilities (Bray et al. 2015).

3.3 Marginal effects

In order to favor the interpretation of the regression coefficients, we suggest to obtain
the marginal effects of each covariate on the two response variables. In the case of the
time-varying covariates collected in wi t and xi t , the marginal effects for individual i
and occasion t are computed as follows:

∂E (Bit | Ui = u,Wi t = wi t ,Zi = zi )
∂wi t j

=
k∑

u=1

π̂u(zi )
∂E (Bit | Ui = u,Wi t = wi t )

∂wi t j

=
k∑

u=1

π̂u(zi )φ(w′
i t β̂u)β̂u j ,

∂E (Yit | Ui = u,Xi t = xi t ,Zi = zi )
∂xit j

=
k∑

u=1

π̂u(zi )
∂E (Yit | Ui = u,Xi t = xi t )

∂xit j

=
k∑

u=1

π̂u(zi ) γ̂u j , (9)

where wi t j and xit j denote specific elements of wi t and xi t . With reference to the
time-constant covariates zi , the marginal effects are obtained as:

∂E (Bit | Ui = u,Wi t = wi t ,Zi = zi )
∂zi j

=
k∑

u=1

∂πu(zi )
∂zi j

E (Bit | Ui = u,Wi t = wi t )

=
k∑

u=1

{
π̂u(zi )

[
δ̂u j −

k∑
v=1

π̂v(zi )δ̂v j

]
�(w′

i t β̂u)

}
,

∂E (Yit | Ui = u,Xi t = xi t ,Zi = zi )
∂zi j

=
k∑

u=1

∂πu(zi )
∂zi j

E (Yit | Ui = u,Xi t = xi t )

=
k∑

u=1

{
π̂u(zi )

[
δ̂u j −

k∑
v=1

π̂v(zi )δ̂v j

]
x′
i t γ̂ u

}
. (10)
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Accordingly, the averaged marginal effect may be computed as the overall mean of
the individual marginal effects. Finally, we obtain standard errors for these marginal
effects through a (non-parametric) bootstrap approach, resampling from original data
a certain number of times (Efron and Tibshirani 1993).

4 Application

In this section we first illustrate the empirical background of the proposed application
and describe the data. Then, we illustrate the specification of the bivariate latent growth
model of household portfolio choices and we discuss the results of the data analysis.
We pay specific attention to the interpretation of the estimated class-specific age and
time trajectories ofmarket participation and risky asset share, and also to the discussion
of the effects of time-varying and time-constant covariates.

In “Appendix B”, we provide an example of the R code to specify the bivariate
latent growth model and display the model parameter estimates.

4.1 Data description

The standard reference for the economic theory related to households’ participation in
the risky assetmarket is theMertonportfolio selectionmodel (Merton1969).Oneof the
main implications of this model is that all investors, independently of their wealth and
attitudes toward risk, should participate in all risky asset markets and should hold the
same fully diversified portfolio of risky securities (Guiso and Sodini 2013). However,
empirical evidence on household portfolios seems to depart from these predictions. On
one side, a substantial fraction of households do not participate in risky asset markets,
mainly due to fixed entry or participation costs (Haliassos 2008), limited cognitive
skills (Christelis et al. 2010), low level of financial literacy and education (van Rooij
et al. 2011), poor health status (Edwards 2008; Atella et al. 2012), and risk aversion
(Guiso and Paiella 2008). On the other side, evidence about the life-cycle pattern of the
conditional risky asset share is quite controversial, having age profiles of the invested
amounts been found both relatively or extremely flat (Guiso et al. 2002; Ameriks and
Zeldes 2004), monotonically increasing (Alessie et al. 2004), and also monotonically
decreasing (Fagereng et al. 2017).

The empirical analysis is based on micro-data from nine waves of the Bank of
Italy’s Survey of Household Income and Wealth (SHIW) over the period 1998–2014.
This survey, which started in the 1960s and is carried out on a biennial basis since
1998, provides detailed information on income, wealth, consumption expenditures,
and portfolio choices, as well as on household composition, demographic character-
istics, and labor force participation, for a representative sample of about 8000 Italian
households in each wave. In 1989 the Bank of Italy introduced a longitudinal compo-
nent into the survey and, since then, an increasingly fraction of the respondents have
been interviewed for two or more consecutive surveys; currently, about one half of the
sample is included in the panel (see Brandolini 1999; Bank of Italy 2015, for more
details on the panel structure of the SHIW).
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Table 1 Percentage of households owning risky financial assets and conditional shares invested, by year

1998 2000 2002 2004 2006 2008 2010 2012 2014

Risky asset market
participation

30.32 35.49 31.80 30.93 28.76 24.77 32.81 32.64 29.78

Conditional
investment share

45.20 43.32 41.71 43.74 41.35 37.26 48.16 46.99 43.77

For the aims of our analysis, we exploit the longitudinal dimension of the SHIW
and define our data sample on those households that were interviewed for at least four
consecutive waves. Coherently with previous empirical studies (Alessie et al. 2004;
Ameriks and Zeldes 2004), this choice allows us to track household portfolio choices
over a period of at least eight years, which is adequate to properly model investment
dynamics while keeping the number of households sufficiently large. Moreover, we
focus on households whose head is aged between 25 and 85 and, as in Guiso and
Jappelli (2002), we drop observations with inconsistent responses for age, gender, and
education. After this data cleaning procedure, we dispose of an unbalanced sample
of 18,106 observations on 3157 households, 373 of which were interviewed in all the
nine waves between 1998 and 2014.

Exploiting the detailed breakdown of household financial portfolios provided by the
SHIW, we distinguish between risky and safe financial assets. In particular, following
Guiso and Jappelli (2002), we define risky financial assets as the sum of directly held
stocks, long-term government bonds, other bonds, mutual funds, managed investment
accounts, foreign assets, and defined-contribution pension plans. The remaining assets
(transaction accounts and certificates of deposit, treasury bills, and the cash value of
life insurance) are classified as risk-free.

Table 1 reports the percentage of households owning risky financial assets and the
shares invested in risky assets out of total financial wealth (conditionally on owning
risky assets), for each year. The data in Table 1 suggest that the total participation is
fairly constant over time and about 30% of the households invest in risky financial
assets each year, decreasing to 28.8% and 24.8% in 2006 and 2008, respectively. We
also notice that the risky asset share is constant over time and amounts to about 45%
of household total financial wealth in each year (with the exception of 2008, when it
reduces to 37%).

Figure 2 shows the life-cycle profiles of risky financial market participation (left
panel) and share invested (right panel) for selected cohorts defined on the basis of
the household head year of birth. Cohorts are defined on 5-year intervals, with the
first cohort including households with head born between 1968 and 1972 (and was
aged between 26 and 30 in 1998, the first survey year), and are followed (with the
exception of the last two cohorts) over a 16-year period. The graphical analysis of the
left panel of Fig. 2 suggests that cohort effects are likely to play an important role,
as participation rates differ across cohorts observed at the same age, with successive
cohorts having higher participation rates in the first part of the life-cycle and lower
rates in later stages. Moreover, looking at the right panel of Fig. 2, we notice again
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Fig. 2 Risky asset market participation (left panel) and conditional shares invested (right panel), by age

cohort-specific patterns with an overall pattern that tend to increasewith age (i.e., older
households invest a relatively larger share of their financial wealth in risky assets).

The evidence based on the descriptive statistics commented above suggests the
existence of significant life-cycle patterns for both risky asset market participation
and conditional investment shares. However, as discussed in Ameriks and Zeldes
(2004), it does not allow to properly disentangle time, age, and cohort effects. In the
next sections, we illustrate the results obtained with the bivariate latent class growth
trajectory model illustrated in Sects. 2 and 3.

4.2 Model specification

The model is specified according to the description provided in Sect. 2.1, being B∗
i t

the propensity of household i to participate to the risky financial market at occasion
t and Yit the percentage of investments in risky financial assets out of total financial
wealth.

In order to assess the life-cycle and time patterns of the response variables in each
latent class, a polynomial for the household head’s age and another polynomial for
the year of interview are introduced in both vectors wi t and xi t .

Furthermore, both participation and outcome equations control for the follow-
ing time-varying covariates: household disposable income (net of financial income)
(disposable income, in thousands of euros), whether household has any debt
(dummy debts), number of household members (household size), presence
of children under 14 years (dummy children), marital status (dummy married),
and employment status of the household head (dummies employee and retired).
As common practice in estimating selection models, in order to improve model identi-
fiability we impose an exclusion restriction and assume that asset market participation
probability is also affected by the stock of real assets (real assets, in thousands of
euros) owned by the household, by the regional unemployment rate (unemployment
rate), and by the average number of bank branches (per 100,000 inhabitants) at
regional level (bank branch density).

As concerns time-constant covariates affecting latent class membership, we include
in vectors zi the household head’s gender (dummy female) and the values observed
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at the first available time occasion for the area of residence (dummies north
and centre), town size (dummy small town), and household head’s educa-
tional level (dummies lower secondary education, upper secondary
education, and tertiary education).

It is worth noting that, as age, year of interview, and year of birth are linearly
related (i.e., year of interview = age + year of birth), some restrictions are necessary to
properly model life-cycle patterns for both risky asset market participation and share
invested (for a discussion see Ameriks and Zeldes 2004). To avoid this type of multi-
collinearity and to identify age, year of interview, and cohort effects, several strategies
were proposed. Here, following Giuliano and Spilimbergo (2013) and Fagereng et al.
(2017), we control for unrestricted time effects and proxy cohort effects by means
of an exogenous variable capturing stock market returns during the household head’s
youth, assuming that early experiences have enduring effects on risk preferences and
affect stock market participation decisions. Specifically, we use a composite indicator
of stock market returns (youth stock return in the following), defined as a
weighted average of the Italian Stock Exchange (80%) and the MSCI World Index
(20%), experienced when the head was aged between 18 and 25. As this composite
indicator is time-constant, we include it in vector zi . However, it is worth noting that
its inclusion in vectors wi t and xi t does not modify in a sensible way the results of the
estimation process (results not shown here).

4.3 Model selection and latent class characterization

As preliminary and explorative analysis, we consider estimates from an Heckman
(1979) model as well as a bivariate latent growth model with k = 1, both of them for
increasing values of the order r of polynomials for age and year. For the sake of com-
pleteness, a less parametric version of the bivariate latent growth model is estimated
where the polynomial for the survey year is replaced by time dummies. Table 2 shows
a summary of the main results for each estimated model: maximum log-likelihood,
value of BIC, estimated value of correlation coefficient between probability of invest-
ing and share invested, and the variance parameter, together with the corresponding
standard errors.

As expected, the results based on the Heckman (1979) model are the same as those
of our proposed model with k = 1. Moreover, we first observe that all models agree on
the presence of a statistically significant negative correlation between the probability
of investing in risky assets and the share invested. Second, the BIC values lead to the
selection of order r = 4 for the polynomial of age and, at the same time, they outline
that the better fit of models with dummies for survey year is not sufficient to offset
the loss of parsimony. Anyway, we verified that the choice between polynomial and
dummies for variable year does not significantly affect the parameter estimates.

In light of these results, we base our analysis on a latent growth model with cor-
related components, specified as in Eqs. (2)–(4), and with two polynomials of order
r = 4 both for the household head’s age and the year of interview.

As far as the choice of the number k ofmixture components, the selection procedure
is based on the BIC, as illustrated in Sect. 3.2. In particular, the sequence of latent
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Table 3 Selection of the number of mixture components

k �̂ BIC ρ̂ s.e. (ρ̂) BIC (ρ = 0)

1 −9984.47 20,267.06 −0.246 0.047 20,295.50

2 −8648.46 17,965.68 −0.220 0.063 17,987.27

3 −8290.64 17,620.68 −0.115 0.090 17,636.96

4 −8129.68 17,669.40 −0.070 0.104 17,683.36

The table reports log-likelihood (�̂), BIC index, estimated correlation coefficient (ρ̂) and related standard
error, BIC index for the special case of uncorrelated components (ρ = 0), for k = 1, 2, 3, 4. The minimum
BIC value is reported in bold

growth models including the set of covariates mentioned in Sect. 4.2 and polynomials
of order four for age and year, provides the values of the BIC index shown in Table 3.
The BIC values for the special case of ρ = 0 are also displayed in the last column of
the table.

Accordingly, we adopt a model with k = 3, corresponding to the minimum value
of BIC. It is also worth noting that the estimated correlation coefficient ρ̂ is negative
and decreasing in absolute value while its standard error increases, for k ranging from
1 to 4. In particular, for k = 3 (and k = 4) the correlation coefficient is not statistically
significant. To provide evidence of the robustness of results discussed in the following,
the bivariate latent growth model with k = 3 mixture components and with ρ = 0
was also estimated, and no relevant difference resulted in the main conclusions.

Moreover, as an additional robustness check, we also selected r and k by adopting
a one-step strategy, which led to choose k = 4 and r = 3. Despite the differences in
the values of k and r , this model (results here omitted for the sake of space) presents
several similarities with the one presented in the paper (having k = 3 and r = 4): in
particular, estimates of ρ and σ 2 are very close to each other, and two latent classes
have similar profiles in both models.

From the results obtained under the selected model, the class collecting the main
part of households is Class 2 with an average mass probability ˆ̄π2 equal to 0.498,
followed by Class 3 with average weight ˆ̄π3 equal to 0.333, whereas the smallest class
is the first with average weight ˆ̄π1 equal to 0.169, where we define ˆ̄πu = ∑

i πu(zi )/n,
u = 1, . . . , k.

To characterize the three latent classes, we allocate each household to these classes
on the basis of the posterior probabilities, estimated as in (7), which account for both
the observed pattern of response variables (bi,obs, yi,obs) and the prior probabilities
πu(zi ). As reported in Table 4, the 16.4% of households is allocated in Class 1, the
54.1% in Class 2, and the remaining 29.5% in Class 3.

Table 4 also shows the average values of time-varying and time-constant covariates
for each latent class. Moving from Class 2 to Class 1 through Class 3, we observe
increasing average values of household disposable income as well as of real assets:
Class 1 clearly emerges as the wealthiest group, both in terms of annual income flows
and of real assets possessed. From Class 2 to Class 1, we also note an increasing
proportion of households living in the North, and with head being married and having
attained a secondary or a tertiary education; conversely, the proportions of female heads
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Table 4 Average characteristics of households in each latent class

Class 1 Class 2 Class 3

Class size 517 1709 931

Proportion 0.164 0.541 0.295

Time-varying covariates

disposable income (×1000) 46.061 24.957 37.069

children 0.171 0.161 0.218

married 0.741 0.613 0.710

household size (number) 2.569 2.515 2.680

employee 0.534 0.356 0.560

retired 0.432 0.540 0.391

debts 0.215 0.164 0.224

real assets (×1000) 391.660 163.360 264.309

unemployment rate (%) 6.383 10.553 7.462

bank branch density 6.540 5.055 6.134

Time-constant covariates

north 0.710 0.335 0.604

centre 0.180 0.177 0.215

small town 0.251 0.300 0.328

female 0.201 0.401 0.282

lower secondary education 0.271 0.348 0.354

upper secondary education 0.410 0.153 0.371

tertiary education 0.259 0.054 0.125

youth stock return (%) 8.804 10.577 11.169

and of those with a lower secondary education show a strong decreasing tendency.
Furthermore, households allocated to Class 1 mainly live in regions characterized by
a lower average unemployment rate and a higher value of bank branch density, as
opposite to Class 2 that presents the highest value of the average unemployment rate
and the smallest value of the bank branch density. Class 3 shows characteristics that
are intermediate with respect to the first two classes.

4.4 Life-cycle and time patterns of households’ investment behavior

Table 5 shows the estimates of coefficients βu and γ u (and the corresponding stan-
dard errors) of the fourth-order age and time polynomials for the participation and
outcome equations, respectively. The corresponding class-specific age and time pro-
files (together with 95% confidence bands) are plotted in Fig. 3. These trajectories are
estimated considering an individual with mean or modal characteristics (in the case
of quantitative and qualitative covariates, respectively).

Focusing on the life-cycle pattern of the probability of participating in risky finan-
cial markets (Fig. 3, left graph of panel (a)), we notice a significant heterogeneity
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Table 5 Estimated coefficients of age and year polynomials (βu and γ u , u = 1, 2, 3)

(1) Participation probability (2) Share invested

β̂1 β̂2 β̂3 γ̂ 1 γ̂ 2 γ̂ 3

age 0.062 −0.059 −0.132(.) 0.036* −0.065 0.016

(0.093) (0.072) (0.070) (0.015) (0.041) (0.019)

age2 0.050 −0.243*** −0.039 0.002 0.094** 0.008

(0.058) (0.060) (0.039) (0.010) (0.033) (0.012)

age3 −0.006 0.023 0.004 −0.001 0.005 0.002

(0.017) (0.015) (0.015) (0.003) (0.008) (0.005)

age4 −0.009 0.030*** −0.007 −0.002 −0.012* 0.000

(0.009) (0.008) (0.007) (0.002) (0.005) (0.002)

year −0.044 −0.006 −0.148*** −0.011(.) 0.097*** −0.039***

(0.038) (0.035) (0.025) (0.006) (0.022) (0.006)

year2 0.341*** 0.720*** 1.029*** 0.069(.) 0.119 −0.039

(0.232) (0.221) (0.144) (0.037) (0.112) (0.044)

year3 0.223 0.098*** 0.704 0.065 −0.503** 0.116*

(0.274) (0.271) (0.176) (0.048) (0.168) (0.051)

year4 −1.373 −2.374* −5.101*** −0.540* −0.711 0.271

(1.333) (1.251) (0.842) (0.226) (0.680) (0.258)

Standard errors in round brackets
***p value ≤ 0.001; **p value ≤ 0.01; *p value ≤ 0.05; (.) p value ≤ 0.10

across latent classes. Households in Class 1 are characterized by the highest asset
market participation rates (around 70%), whereas households in Class 2 have a very
low propensity to invest in risky assets (lower than 3%); in both cases the estimated
coefficients of the trajectories are substantially constant over the life-cycle. This is
a somewhat expected result and is consistent with the existence of fixed entry costs.
These two latent classes are, in fact, characterized by the highest and lowest economic
conditions, in terms of average disposable income and real asset wealth, respectively
(see Table 4 and related comments). As discussed in Guiso et al. (2003a), in the pres-
ence of fixed participation costs only relatively wealthier investors enter risky financial
markets, while poor households do not hold risky assets, because the utility loss from
abstaining from participation is too small to offset entry costs. The figure also doc-
uments a distinct hump-shaped age pattern of participation probability for Class 3:
asset market participation increases over the first part of the life-cycle, peaking at the
age of approximately 42, then it gradually decreases until the age of 65, whereas the
drop is much steeper after retirement. At its peak, the participation rate of Class 3 is
around 37%, while at early and later stages of the life-cycle only a small fraction of
households invest in risky assets (around 22% and 7%, respectively). This estimated
age profile is in line with the findings of Guiso and Jappelli (2002) for Italy and is
consistent with the hump-shaped life-cycle patterns estimated in several countries, as
found by Guiso et al. (2002) and Guiso et al. (2003b).
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(a) Estimated life-cycle patterns of risky investment

1) Participation probability 2) Share invested
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(b) Estimated time patterns of risky investment
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Fig. 3 Estimated age (a) and year (b) latent trajectories

The average age profile for the entire sample is similar to that ofClass 3 and coherent
with the theoretical predictions of the life-cycle model and with the empirical findings
of the prevailing literature, confirming the still limited asset market participation in
Italy.

Regarding the age patterns of the conditional risky assets shares (Fig. 3, right
graph of panel (a)), Class 1 and Class 3 are characterized by relatively flat profiles.
In particular, households in Class 1 show the highest conditional portfolio shares over
most of the life-cycle, reaching the 70% of total financial wealth in later stages. This
latent class, composed of households with the highest levels of economic resources
and educational attainments, is not only characterized by the highest participation
rates, but also by investing more in risky financial assets. This evidence is consistent
with the results of previous empirical studies that pointed out the tendency of richer
households to specialize in risky financial assets; see Guiso et al. (2002) and Guiso
et al. (2003b). Class 2 is instead characterized by a sinusoidal trend along the life-
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cycle, with the conditional risky share increasing up to the age of 35, decreasing up
to the age of 55, and then slightly increasing again in the last part of the life-cycle.
Households in this latent class invest a rather high share in risky asset, especially in
the first part of the life-cycle, coherently with theoretical models implying that young
households with limited resources should be willing to invest a larger proportion of
their wealth in risky financial assets to exploit the higher expected returns of these
investments (Haliassos 2003).

The average life-cycle pattern for the entire sample is relatively flat: households
maintain the share invested in risky assets fairly constant at around the 55% of their
financial wealth and do not engage in substantial rebalancing of their portfolios as
they age. This result is in line with the cross-country evidence obtained by Guiso et al.
(2003a) and with the findings of the main empirical literature (Ameriks and Zeldes
2004; Alessie et al. 2004).

The estimated time profiles (Fig. 3, panel (b)) confirm the heterogeneity of portfolio
choices across latent classes. Participation probability for households in Classes 1
and 2 remains stable over the 1998–2014 period; conversely, a sinusoidal trend is
observed forClass 3,with assetmarket participation decreasing from2000 to 2008, and
increasing in 2010 and 2012. Again, the average profile for thewhole sample is similar,
but flatter than that of Class 3. Focusing on the time patterns of the conditional share,
we find a significant decreasing trend for Class 3, whereas Class 1 is characterized
by the highest investment shares, which remain substantially constant over the whole
period. A significant sinusoidal trend is estimated for Class 2, with conditional shares
decreasing from 1998 to 2002, increasing up to 2012, and then decreasing again
in 2014. The average profile is completely flat, with a conditional share constant
over the whole period at around 53%. Household portfolio choices in Italy are thus
rather stable over time. Business cycle and changing market conditions mainly affect
participation probability, which slightly reduces over time. Furthermore, the global
financial crisis seems to have had a limited impact on household decision to enter/exit
the risky financial market and on portfolio rebalancing. Our results are consistent with
the findings of Brunnermeier and Nagel (2008), Calvet et al. (2009), and Bilias et al.
(2010), who show that households do not frequently adjust their portfolios and that
portfolio rebalancing is not strongly affected by market fluctuations.

4.5 Effect of time-varying and time-constant covariates

The estimated regression coefficients (and the corresponding standard errors) of the
remaining time-varying covariates are reported in Table 6. Since the effects of the
covariates are allowed to be class-specific, inmost cases the statistical significance and
the direction of the effect (positive or negative) may change from one class to another.
The first column of the table shows the estimated coefficients for the participation
equation. Disposable income and real asset wealth exert positive and statistically sig-
nificant effects on market participation in all the three classes, confirming the crucial
role of household economic conditions on the decision of whether to enter risky asset
markets. Household size exerts heterogenous effects on market participation: it signif-
icantly increases the probability of investing in risky assets for households in Class 3,
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in line with the findings of Guiso and Jappelli (2002) andAlessie et al. (2004), whereas
it reduces participation probability for Class 2. It is also worth remarking that all the
three considered identification variables exert significant effects on the participation
probability of all classes, supporting the validity of our identification strategy.

Turning to the conditional investment share (second column of Table 6), we again
point out significant heterogeneity in the effects of time-varying covariates. In partic-
ular, estimated coefficients are statistically significant mainly for households in Class
2: the conditional risky share for this class is significantly lower for larger house-
holds with children and for those with lower disposable income and whose head is an
employee or is retired.

Average marginal effects, computed as in (9) and reported in Table 7, may help
to assess the overall impact of time-varying covariates. As expected, positive and
statistically significant marginal effects on market participation probability are found
for disposable income and real asset wealth. Similarly, households living in regions
with a high bank branch density and those with married head are more likely to invest
in risky assets. Themarginal effects for all the remaining covariates are not statistically
different from zero, as the opposing effects across latent classes tend to balance each
other out.

Analyzing the marginal effects on the conditional investment share, we notice that
only the presence of children under 14 year and the occupational status of the house-
hold head significantly affect the conditional share invested. Conversely, household
disposable income, despite having a substantial influence onmarket participation, does
not exert any significant impact on portfolio allocation.

The estimates of coefficients δu (u = 2, 3) of time-constant covariates in the multi-
nomial logit submodel of latent class membership are reported in Table 8, together
with the related standard errors. Households living in the Centre and in the North of
Italy and the head of which is a male, with a lower or upper secondary and, to a greater
extent, a tertiary education, have a lower probability of belonging to Classes 2 and 3
than to Class 1.

Average marginal effects, computed as in (10) and reported in Table 9, allow us
to assess the indirect impact of time-constant covariates on both asset market partici-
pation and conditional share invested. Female-headed households have a 5.6% lower
participation probability, while households living in theCentre and in theNorth of Italy
are 10.7% and 16.7% more likely to invest in risky assets, respectively. Furthermore,
the probability of participating to risky asset markets for households whose head has
a lower secondary, an upper secondary and a tertiary education is 10.2%, 20.2%, and
25.0% higher than those with no or primary education, respectively. This evidence
supports the hypothesis of information-related barriers to asset market participation.
Coherently with the findings of most empirical studies (see Guiso et al. 2003b), better-
educated households are more likely to invest in risky assets because they are better
informed about the existence and properties of different assets, and they are thus more
able to take advantage of investment opportunities (Guiso et al. 2003a).

The marginal effects on the share invested are rather small and statistically not
significant. However, the conditional risky share is significantly higher for households
whose head has a tertiary education, confirming the key role played by educational
attainments on household risky financial investment decisions.
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Table 7 Marginal effects of time-varying covariates on the probability of participating and on the share
invested

(1) Participation probability (2) Share invested

disposable income 0.003*** −0.006

(0.000) (0.006)

children 0.005 −0.060***

(0.014) (0.006)

married 0.023(.) −0.028

(0.015) (0.033)

household size −0.006 −0.023

(0.006) (0.015)

employee 0.016 −0.129*

(0.021) (0.060)

retired 0.004 −0.114(.)

(0.022) (0.065)

debts −0.005 0.033

(0.010) (0.031)

real assets 0.001**

(0.000)

unemployment rate −0.001

(0.003)

bank branch density 0.028***

(0.006)

Bootstrap (199 replications) standard errors in round brackets
***p value ≤ 0.001; **p value ≤ 0.01; *p value ≤ 0.05; (.) p value ≤ 0.10

Finally, as in Fagereng et al. (2017), cohort effects captured by stock market returns
experienced in youth have a positive effect on participation probability and a negative
effect on the share invested, even if both effects are rather small.

5 Conclusions

In this paper, we propose a bivariate latent growth model to explain longitudinal data
when the observation of a response variable of interest is conditioned on a selec-
tion mechanism. In particular, we introduce a selection model component with two
variables: a binary one that drives the selection phase, and a continuous one, which
represents the outcome of main interest. We also rely on a discrete latent variable,
which defines unobservable clusters so as to account for different behaviors in the
population, defined in terms of latent trajectories.

For estimating the proposed model, we develop an EM algorithm that also relies
on an acceleration step based on a suitable numerical algorithm. The computation
of standard errors for model parameters, the choice of the number of latent classes
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Table 8 Estimated coefficients of time-constant covariates (δu , u = 2, 3)

(1) Class 2 membership (2) Class 3 membership
δ̂2 δ̂3

north −2.420*** −0.905***

(0.239) (0.246)

centre −1.609*** −0.514(.)

(0.256) (0.272)

small town 0.085 0.203

(0.154) (0.155)

female 0.924*** 0.556***

(0.170) (0.171)

lower secondary education −1.596*** −0.652*

(0.253) (0.293)

upper secondary education −2.971*** −1.198***

(0.269) (0.296)

tertiary education −3.534*** −1.810***

(0.297) (0.322)

youth stock return −0.003 0.013*

(0.007) (0.007)

constant 4.345*** 2.018***

(0.333) (0.382)

Class 1 is used as the reference group. Standard errors in round brackets
***p value ≤ 0.001; **p value ≤ 0.01; *p value ≤ 0.05; (.) p value ≤ 0.10

(unobservable clusters), and the clustering of the sample units based on the posterior
probabilities of the latent variable are also dealt with.

The proposed approach is motivated by an application on household portfolio
choices in Italy over the 1998–2014 period, in terms of both asset market partici-
pation and the conditional share invested in risky assets.

Differently from the prevalent literature, which ignores the heterogeneity in house-
hold investment choices, we are able to provide an explanation to the empirical
inconsistencies observed in previous studies, by clustering households in a finite num-
ber of latent classes characterized by heterogeneous investment behaviors over the
life-cycle and over time. Specifically, we identify a latent class of households (which
represents about 30% of the sample) whose behavior in terms of risky asset market
participation follows a hump-shaped trend along the life-cycle. This is consistent with
the hump shape in the labor income process and with the existence of significant fixed
participation costs in earlier and later stages of the life-cycle. At the same time, we
also find that more than one half of the households in the sample do not participate
to the risky asset market, confirming a well-established stylized fact in the household
portfolio literature. Conversely, the remaining 16% of the households are character-
ized by a high propensity to invest along all their life-cycle. As far as the share invested
in risky financial assets is concerned, we find that the conditional portfolio share for
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the entire sample remains fairly constant over the life-cycle. In particular, households
with an hump-shaped age profile of market participation show a substantially flat trend
in the share invested, while those with a high propensity to invest in risky assets are
characterized by a slightly increasing trend over the life-cycle.

Our empirical findings suggest that household portfolio choices over the life-cycle
mainly concern the decision to enter and exit the market for risky assets, whereas the
rebalancing portfolio composition has limited relevance. Moreover, heterogeneity in
asset market participation patterns is deeply related to the differences in economic
conditions, exposure to background risk, and attitudes towards risk that characterize
households belonging to the different latent classes and observed at different stages
of their life-cycle.
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Appendix A: simulation study

Weillustrate the results of aMonteCarlo simulation study aimed at comparing, in terms
of computing time, the performance of the proposed EM algorithm with acceleration
with respect to the conventional EM algorithm.

Design

We randomly drew 100 samples from the proposed model with a sample size equal
to n = 1000 and Ti = 5 time occasions for all i . The simulation design assumes
the existence of time-varying covariates affecting the distribution of the two response
variables, which are randomly generated from a standard Gaussian distribution. More-
over, in both vectors wi t and xi t , a polynomial of order r = 1 is included for the year
of interview. Two time-constant covariates are assumed to affect the distribution of
the latent variable.

We considered a number of latent classes (k) equal to 3 and 4 and two different
specifications of the model parameters as follows:
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• Scenario 1: k = 3, ρ = −0.5, σ 2 = 1,

β =

⎡
⎢⎢⎣

2 0 −2
−1 −1 −1
1 1 1
0 −0.2 0

⎤
⎥⎥⎦ , � =

⎡
⎢⎢⎣

−1 0 1
−1 −1 −1
1 1 1

0.1 −0.1 0

⎤
⎥⎥⎦ , � =

⎡
⎣ 0 0

0.5 1
−0.5 −1

⎤
⎦ ,

where, for all matrices the first line is referred to the intercept term.
• Scenario 2: k = 3, ρ = −0.5, σ 2 = 1,

β =

⎡
⎢⎢⎣

0 0.2 0.4
1 0.6 0.9

−1 −1 −1
0 −0.2 0

⎤
⎥⎥⎦ , � =

⎡
⎢⎢⎣

0 0.5 0.3
−1 −0.6 −0.9
1 1 1

0.1 −0.1 0

⎤
⎥⎥⎦ , � =

⎡
⎣ 0 0

0.5 1
−0.5 −1

⎤
⎦ .

• Scenario 3: k = 4, ρ = −0.5, σ 2 = 1,

β =

⎡
⎢⎢⎣

2 0 −2 1
−1 −1 −1 −1
1 1 1 1
0 −0.2 0 0.1

⎤
⎥⎥⎦ , � =

⎡
⎢⎢⎣

−1 0 1 0.5
−1 −1 −1 −1
1 1 1 1

0.1 −0.1 0 0.5

⎤
⎥⎥⎦ , � =

⎡
⎣ 0 0 0

0.25 0.5 1
−0.25 −0.5 −1

⎤
⎦ .

For all scenarios, in order to estimate model parameters, we run the conventional
EM algorithm and the proposed EM with acceleration step on the basis of different
tolerance levels (ε∗ = 0.1, 0.01, 0.001, 0.0001) for switching from the EM steps to
the quasi-Newton steps.

Results

In this simulation study we are interested in the computational costs of the algo-
rithms under comparison. However, it is important to underline that all algorithms
have reached the convergence at the same maximum of the model log-likelihood.
Moreover, to perform a fair comparison, these algorithms have been implemented in
R and run on the same personal computer. Table 10 shows the ratio between the aver-
age computing time, over the simulated samples, of the conventional EM algorithm
and the proposed approach based on the different tolerance levels, under the three
scenarios. Table 11 also reports the average number of EM iterations required by the
algorithms under comparison to reach the convergence.

From the results, we observe that the proposed acceleration step allows us to achieve
the convergence with a lower computational cost with respect to the EM without
acceleration. The gain in terms of computing time is more evident when the tolerance
level ε∗ is higher and under the most complex scenarios with regard to parameter
estimation and number of latent classes. In any case, even under the worst scenario,
the highest computing time is, in average, of the order of some minutes. Moreover,
since the proposed EM algorithm relies on an acceleration step based on quasi-Newton
methods, it is able to reach the convergence with a lower number of EM steps. The
average number of EM iterations increases when k = 4 and under Scenario 2, which
assumes a more complex structure of model parameters.
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Table 10 Ratio between the
average computing time of the
classical EM algorithm and the
proposed EM with acceleration,
based on different levels of ε∗

ε∗

0.1 0.01 0.001 0.0001

Scenario 1 3.245 2.073 1.622 1.167

Scenario 2 7.559 7.557 6.326 2.770

Scenario 3 3.851 2.145 1.629 1.199

Table 11 Average number of
EM iterations required by the
proposed EM algorithm with
acceleration, based on different
levels of ε∗, and by the classical
EM algorithm to reach the
convergence

ε∗

0.1 0.01 0.001 0.0001 Classical EM

Scenario 1 3.00 5.89 8.02 12.57 33.01

Scenario 2 7.34 7.34 6.77 18.28 308.53

Scenario 3 3.03 7.57 11.21 16.75 40.95

Appendix B: R codes and functions

In the following we provide an example of R script to estimate a bivariate latent growth
model as the one proposed in the paper. The dataset we use is available, together with
all the estimation functions, at the web page https://github.com/Silvia-Pand/BivLT;
it mimics, in a simplified way, the general structure of the data used in the paper. In
more detail, the example dataset consists of 1,000 individuals followed up to 9 time
occasions. We include 2 (continuous) time-varying covariates and 3 (two binary and
one continuous) time-constant covariates. A polynomial of order 2 for a continuous
time-varying variable is added to account for the non-linear time effect.We also assume
k = 3 latent classes.

The script below starts with the preparation of data (arrays of response variables
and covariates) and the estimation of the model. Then, the main output corresponding
to estimated class weights and regression coefficients of covariates is displayed.

> rm(list=ls())
> source("est_biv_LT.R") # estimation function
> source("lk_sel_comp.R")
> source("sc_sel_comp.R")
> source("lk_sel.R")
> source("sc_sel.R")
>
> load("ExampleData.RData") # load data
>
> ####
>
> ## Prepare data
>
> # Response variables
> Y <- Ys # matrix of continuous data (dimension n x TT)
> dim(Y)
[1] 1000 9
> head(Y)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0 1.124023 0 0.0000000 NA NA NA NA NA
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[2,] 0 0.000000 0 0.0000000 0 0 0.4242629 0 0
[3,] 0 0.000000 0 0.0000000 0 0 0.0000000 NA NA
[4,] 0 0.000000 0 0.3959001 0 0 0.0000000 0 NA
[5,] 0 0.000000 0 0.0000000 0 0 0.0000000 0 NA
[6,] 0 0.000000 0 0.0000000 0 0 0.0000000 0 0

> B <- Bs # matrix of binary data (dimension n x TT)
> dim(B)
[1] 1000 9
> head(B)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0 1 0 0 NA NA NA NA NA
[2,] 0 0 0 0 0 0 1 0 0
[3,] 0 0 0 0 0 0 0 NA NA
[4,] 0 0 0 1 0 0 0 0 NA
[5,] 0 0 0 0 0 0 0 0 NA
[6,] 0 0 0 0 0 0 0 0 0

> n <- dim(Y)[1] # sample size
> TT <- dim(Y)[2] # number of time occasions

> # Covariates

> XX <- XX1 # matrix of time-varying covariates (plus intercept) affecting Y
> dim(XX1) # dimension (n x TT x (ncovX+1))
[1] 1000 9 2

> WW <- WW1 # matrix of time-varying covariates (plus intercept) affecting B
> dim(WW1) # dimension (n x TT x (ncovW+1))
[1] 1000 9 3

> ZZ <- ZZ1 # matrix of time-constant covariates affecting class membership
> dim(ZZ) # dimension (n x ncovZ)
[1] 1000 3

> ncovX <- dim(XX)[3]-1
> ncovX
[1] 1

> ncovW <- dim(WW)[3]-1
> ncovW
[1] 2

> ncovZ <- dim(ZZ)[2]
> ncovZ
[1] 3

> # include a second-order polynomial for year (year and yearˆ2)
> XXn <- array(0,c(n,TT,ncovX+3))
> XXn[,,1:(ncovX+1)] <- XX
> XXn[,,ncovX+2] <- rep(1,n)%o%((1:TT)-mean(1:TT))
> XXn[,,ncovX+3] <- XXn[,,ncovX+2]ˆ2/10
> dim(XXn)
[1] 1000 9 4
> head(XXn[,1,])
[,1] [,2] [,3] [,4]
[1,] 1 8.005082 -4 1.6
[2,] 1 2.076157 -4 1.6
[3,] 1 1.962536 -4 1.6
[4,] 1 4.364061 -4 1.6
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[5,] 1 4.229782 -4 1.6
[6,] 1 1.358798 -4 1.6

> WWn <- array(0,c(n,TT,ncovW+3))
> WWn[,,1:(ncovW+1)] <- WW
> WWn[,,ncovW+2] <- rep(1,n)%o%((1:TT)-mean(1:TT))
> WWn[,,ncovW+3] <- WWn[,,ncovW+2]ˆ2/10
> dim(WWn)
[1] 1000 9 5
> head(WWn[,1,])
[,1] [,2] [,3] [,4] [,5]
[1,] 1 8.005082 41.523135 -4 1.6
[2,] 1 2.076157 11.103823 -4 1.6
[3,] 1 1.962536 1.394434 -4 1.6
[4,] 1 4.364061 15.596999 -4 1.6
[5,] 1 4.229782 31.297287 -4 1.6
[6,] 1 1.358798 56.965192 -4 1.6

> ####

> ## Model estimation

> k <- 3 # number of latent classes

> # Model estimation with deterministic initialization
> # Warning: it takes a lot of time! Results are stored in ResultsSimData.RData
> out = est_biv_LT(Y, B, XXn, WWn, Z = ZZ,
+ k = k, start = 0,st.err=TRUE)

> # Model estimation with random initialization
> # Warning: it takes a lot of time! Results are stored in ResultsSimData.RData
> set.seed(321)
> outr = list()
> for(i in 1:5) {
+ outr[[i]] = try(est_biv_LT(Y, B, XXn, WWn, Z = ZZ,
+ k = k, start = 1,st.err = TRUE))
}

> save.image("ResultsSimData.RData")

> ####

> ## Display output
> load("ResultsSimData.RData")

> LK = rep(0,6)
> LK[1] = out$lk
> for(i in 1:5) LK[i+1] = outr[[i]]$lk
> LK
[1] -1029.927 -1029.926 -1052.069 -1029.926 -1029.926 -1029.926

> BIC = rep(0,6)
> BIC[1] = out$bic
> for(i in 1:5) BIC[i+1] = outr[[i]]$bic
> BIC
[1] 2280.901 2280.900 2325.187 2280.900 2280.900 2280.900

> # Remark: there are not particular problems of local maxima
> # We retain model with deterministic initialization (out)
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> # Averaged weights
> colMeans(out$Piv)
[1] 0.09435604 0.01243584 0.89320812

> out$rho # correlation between Y and B
[1] -0.5109823
> out$si2
[1] 0.07739475

> ## Effects of covariates

> # effects on B (binary outcome)
> coefGa <- round(out$Ga, 4)
> seGa <- round(out$seGa, 4)
> coefGa # dimension (ncovW x k)
[,1] [,2] [,3]
[1,] -2.3671 -0.7252 -2.5248
[2,] 0.1653 0.4212 0.1370
[3,] 0.0064 -0.0446 0.0015
[4,] 0.1054 -0.0553 0.0114
[5,] 0.4386 0.0788 0.0384
> seGa
[,1] [,2] [,3]
[1,] 0.2792 0.4081 0.0853
[2,] 0.0473 0.1874 0.0155
[3,] 0.0029 0.0164 0.0007
[4,] 0.0416 0.0732 0.0171
[5,] 0.1709 0.2862 0.0696

> # effects on Y (continuous outcome)
> coefBe = round(out$Be, 4)
> seBe = round(out$seBe, 4)
> coefBe # dimension (ncovX x k)
[,1] [,2] [,3]
[1,] 0.5698 1.0118 1.2211
[2,] -0.0070 -0.0467 -0.0230
[3,] 0.0075 0.0284 0.0006
[4,] -0.0107 -0.0396 0.0360
> seBe
[,1] [,2] [,3]
[1,] 0.1636 0.1276 0.1667
[2,] 0.0101 0.0291 0.0063
[3,] 0.0153 0.0204 0.0095
[4,] 0.0648 0.0828 0.0422

> # effects on latent classes
> coefDe = round(out$De, 3)
> seDe = round(out$seDe, 3)
> coefDe # dimension (ncovZ x (k-1)); reference: Class 1
[,1] [,2]
[1,] -2.263 2.355
[2,] 0.336 0.006
[3,] -9.681 0.940
[4,] 0.019 -0.025
> seDe
[,1] [,2]
[1,] 0.730 0.416
[2,] 0.861 0.474
[3,] 0.000 0.832
[4,] 0.034 0.018
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