
The Journal of Systems and Software 212 (2024) 112015

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Unveiling Faulty User Sequences: A Model-Based Approach to Test
Three-Tier Software Architectures✩

Leonardo Scommegna ∗, Roberto Verdecchia, Enrico Vicario
Department of Information Engineering, University of Florence, Florence, Italy

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.1
0727674

Keywords:
Software architecture
Dependency injection
Stateful components
Software dependability
Model-based testing
Data flow testing

A B S T R A C T

Context: When testing three-tiered architectures, strategies often rely on superficial information, e.g., black-
box input. However, the correct behavior of software-intensive systems based on such architectural pattern
also depends on the logic hidden behind the interface. Verifying the response process is thus often complex
and requires ad-hoc strategies.
Objective: We propose an approach to identify faults hidden behind the presentation layer. The model-based
approach uses an architectural abstraction called managed component Data Flow Graph (mcDFG). The mcDFG
is aware of the interactions between all layers of the architecture and guides the generation of tests based on
different mcDFG coverage criteria to identify faults in the business logic.
Method: To evaluate the approach viability, we consider a three-tiered web application and 32 faults. The
fault detection capability is assessed by comparing a set of test suites created by following our method and a
set of test suites developed by utilizing traditional testing strategies.
Results: The collected data show that the proposed model-based approach is a viable option to identify faults
hidden in the logic layer, as it can outperform standard strategies based solely on the presentation layer while
keeping the number of test cases and number of interactions per test case low.
1. Introduction

Software architectures, particularly web applications, are pervasive
and used to support even complex and intricate processes. Ensuring
the correctness of such applications represents a challenge. Such pro-
grams are event-centric and interact with complex and only partially
predictable environments (e.g., users or other applications) through
presentation interfaces that can range from simple command line inter-
faces to rich graphical user interfaces (GUIs). Moreover, software sys-
tems are often developed under the pressure of meeting tight deadlines,
resulting often in inadequate testing before the software is released.
Due to the multitude of features and limited time available, testers often
tend to verify the main functionalities or execute the primary usage
scenarios they deem important. However, this strategy prevents the
identification of faults that would be exposed by executing secondary
paths of the application.

To face this challenge, various strategies have been proposed throu-
ghout the years. For instance, fuzzy testing (Manès et al., 2019; Li
et al., 2018) exercises the system under test by subjecting it to a series
of external events. Other approaches produce test cases following the

✩ Editor: Professor Yan Cai.
∗ Corresponding author.
E-mail addresses: leonardo.scommegna@unifi.it (L. Scommegna), roberto.verdecchia@unifi.it (R. Verdecchia), enrico.vicario@unifi.it (E. Vicario).

principles of evolutionary algorithms (Arcuri, 2019; Mahmood et al.,
2014).

On the other hand, exploratory testing (Kaner et al., 1999; Itkonen
et al., 2007), unlike automated testing, requires testers to manually
select and execute tests by leveraging their knowledge of the internal
details of the system.

Among the plethora of strategies, model-based testing (Utting et al.,
2012) emerges as one of the most popular techniques. The tertiary
study by Garousi and Mäntylä (2016) serves as a testament to this
popularity. When compared to other methods, model-based testing
ranks first in terms of Google hits, with the second most popular
method garnering only half as many search results. In addition, from
a more academic point of view, model-based testing holds the second
position in terms of number of software engineering secondary studies
conducted on the topic (Garousi and Mäntylä, 2016).

Model-based testing utilizes models to guide the creation of test
cases and the execution of tests. Specifically, model-based testing tech-
niques aim to identify a model of the system that represents the
relevant specifications and mechanisms of the system under test while
disregarding unnecessary information.
vailable online 1 March 2024
164-1212/© 2024 The Author(s). Published by Elsevier Inc. This is an open access a

https://doi.org/10.1016/j.jss.2024.112015
Received 27 July 2023; Received in revised form 14 January 2024; Accepted 27 Fe
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

bruary 2024



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

t
S
t
t
p
s

o
a
t
a
a
a
D

b
(
i
(
m
t
a
n

f

By using the model of the system, test cases can be derived sys-
tematically, covering various scenarios and ensuring thorough test
coverage (Utting et al., 2012). Since the model is an abstraction of the
real system, the information it carries directly influences the type of test
cases that will be generated and the type of faults that can be detected.
A fine-grained model will indicate test cases that focus on low-level
mechanisms, ignoring the overall functioning of software-intensive sys-
tems. On the other hand, a coarser-grained model will indicate test
cases that focus on high-level features, abstracting away the internal
structure of the system. Software architectures are often divided into
three layers characterized by specific functionalities: the presentation
layer, the business logic layer, and the persistence layer (Fowler, 2012).
The presentation layer manages the external interface of the system.
The presentation layer is also responsible for forwarding a request to
the business logic layer each time an external event is experienced
on the interface. The business logic layer is responsible for (i) leading
the response process in reaction to specific requests, (i) implementing
navigation logic, and finally (iii) managing transient data related to
sessions (commonly known as session state (Fowler, 2012)). In the con-
text of this study, we focus our research endeavors on three-tier layered
architectures, i.e., sotware-intensive systems architected by adopting the
classic multitier architectural pattern, composed of a presentation tier, a
logic tier, and a data tier (Bass et al., 2003). During the response phase,
if it is necessary to persist data, the business logic interacts with the
persistence layer.

The functional and technological differences between the architec-
tural layers require specific testing techniques. For example, database
testing (Mishra et al., 2008) focuses on ensuring that data persistency
occurs as expected, while front-end testing (Lin et al., 2023; Leveau
et al., 2022) verifies the functionality of the interface. However, testing
the correctness of individual layers in isolation is not enough to verify
the overall correctness of the system and it is often necessary to verify
the effects of component collaboration. In particular, the response
process and the business logic layer interactions with the other layers
are crucial for the overall functioning of the system and have not
been appropriately investigated in the literature. In fact, the response
procedure involves multiple actors and aspects that usually remain
partially-hidden also to the developers. More in-depth, the response
procedure is managed through internal components of the business
logic, sometimes referred to as software components, which live in
memory for a number of consecutive requests that cannot be predicted
in advance. Software components are stateful since they maintain the
session state and during the response process they behave and interact
with each other depending on their state. The stateful nature of business
logic and the variable composition of software components outline an
evolution of the business logic among multiple requests. The evolution
of the business logic, in turn, implies that the response procedure to
a request may depend not only on the current request but also on the
history of previous requests. An interdependence is then outlined be-
tween the business logic and the sequence of external stimuli to which
the system is subjected. Given the tight coupling with external events,
predicting the evolution of the internal state is difficult and often un-
feasible. The problem is further amplified by the fact that the software
components are not managed manually but orchestrated by Inversion of
Control containers (IoC containers) (Fowler, 2006), which handle their
lifecycle and dependencies (dependency injection) (Martin, 2000).

In this work, we provide a model-based testing strategy aimed at
verifying the correct functioning of the business logic of a software
architecture. To achieve this, we formalize a model that exploits proper
coverage criteria sometimes termed model-flow criteria (Shafique and
Labiche, 2015). This model is capable of identifying sequences of
external events that induce specific evolutions and behaviors among
the software components. We then show how this abstraction can be
obtained automatically by exploiting a generation toolchain that we
have developed specifically for the purposes of this paper. Finally, we
2

conduct an experimental proof of concept of the proposed approach
on a web application, named Flight Manager. We generated a set of
est suites for Flight Manager following different coverage criteria.
ubsequently, we evaluated whether the generated test suites are able
o detect business logic-related faults through a process of mutation
esting where we manually injected 32 non-trivial faults into the ap-
lication and we assessed the fault detection capability of each test
uite.

To evaluate the viability of our approach, we apply it in the context
f a widespread application of three-layered architectures, namely web
pplications. In this context, to compare our approach, we consider
he baseline presentation layer-centric approach that either utilizes
s the coverage criterion visiting all pages (page testing) or visiting
ll navigation (hyperlink testing) of the navigation diagram (Ricca
nd Tonella, 2001), also referred to in this work as ‘‘Page Navigation
iagram’’ (PND) (Kung et al., 2000).

This navigational model is often used in literature to identify feasi-
le navigational paths in system testing. For example, Biagiola et al.
2019), use a navigational model to identify feasible sequences of
nteractions in the system that will then constitute the tests. Zheng et al.
2021) propose an end-to-end testing framework based on reinforce-
ent learning to identify high-quality interaction sequences, basing

he algorithm’s choices on a navigational model. Similarly, Mesbah
nd Van Deursen (2009), propose a crawler that works with a page
avigation diagram for user interface validation.

The main contributions of this research can be summarized as
ollows:

1. A catalog of faults (i.e., a fault model) that may be introduced
at coding time while configuring the IoC container, particularly
when specifying dependency injection and lifecycle management
of software components;

2. A system abstraction called managed component data flow graph
(mcDFG) that takes into account the dynamic evolution of soft-
ware architecture;

3. The identification of a toolchain that allows the abstraction of
the system to be obtained with minimal effort;

4. An implementation of the mcDFG Generation for Java-based
systems;

5. A complete replication package of the study,1 including, (i)
the implementation of the experimental proof of concept, (ii) a
reusable experimental subject for model-based testing containing
32 non-trivial faults, (iii) the complete material required to
replicate the study, and (iv) the results of the experimental proof
of concept reported in the study.

The remainder of the paper is structured as follows: Section 2
outlines the background information on which the study is based.
Section 3 discusses the related work. Section 4 presents the set of chain
of threats fault types and failure modes considered in this research.
Section 5 presents the model-based approach introduced with this
paper. An experimental proof of concept of the approach is documented
in Section 6, accompanied by the presentation of the collected results
and their discussion. Finally, conclusions, implications, and research
outlook are reported in Section 7.

2. Background

We describe how transient data are managed through software com-
ponents that live in memory (Section 2.1) while software architectures
run. We outline the responsibilities and the operations of IoC containers
(Section 2.2). We then propose a visual representation that makes
explicit components dependencies hidden by this practice (Section 2.3).
We finally outline pitfalls entailed by these mechanisms (Section 2.4).

1 https://doi.org/10.5281/zenodo.10727674 Accessed 29th February, 2024



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

r
i
t
e
b
s
f
b

a
i
c
d
s
t
d
d
e
d

2

v
m
c
c
d

F
C
i
s
c
m
w
c
s

p
m
r
A
l
c
t
i
m

t
q
b
f
H
T
e
s
a
r
a
t
t
i
b
l
w
d
t
i
i
a
w
o

i
e
a
c
t
t
b

2
p

c
m
t
c
i
i

h

2.1. Software components

Software architectures often deal with big amounts of data. Dif-
ferent natures of information require different management strategies.
Long-term and consolidated data are persisted in a database and identi-
fied as record state (Fowler, 2012; Buschmann et al., 2007). Conversely,
transient data are conveniently stored in memory improving access
performance and avoiding burdening the database with volatile in-
formation. While the record state is visible among multiple sessions,
in-memory information is often identified as session state since it is
usually related to a single business transaction, i.e., session, and it is
not shared among other parallel sessions.

Concretely, the session state is managed by typed software objects
that live in memory. In the rest of the paper, we will identify all the
objects that live in memory with the term components. Components live
in memory for a bounded timespan and individually maintain a portion
of the session state. Part of living components is also responsible for
reacting to external events and possibly providing the proper response.
Components that are involved in the response process are usually
identified as components belonging to the business logic layer (Fowler,
2012; Brown et al., 2003). Usually, events consist of external stimuli,
e.g., interactions, executed on the interface of an application. The
stimulus is forwarded by the presentation layer, the module responsible
for interface management, to the business logic layer in the form of a
request. Once arrived at the business logic layer, a specific component
called controller, will intercept the request and conduct the response
process. The number of controllers and the criterion of request inter-
ception may vary. For instance, in web applications (Buschmann et al.,
2007; Schmidt et al., 2013), the page controller pattern (Fowler, 2012)
is frequently used. For each page of the web application, the page
controller pattern requires the definition of a controller often referred
to as page controller. A page controller of a specific page is responsible
to intercept all the requests arriving from the related page.

Controllers are rarely independent: during the response process,
they need to be supported by other components. In case of the necessity
of specific business logic functionalities or to simply maintain informa-
tion in memory, the controller will interact with other business logic
components, here identified as helper components. Conversely, when
ead/write operations to the database are required, components belong-
ng to the underlying data layer will be used. Data layer components,
herefore, are responsible to implement the functions and provide the
ntry points to interact with the persistence medium usually identified
y databases. Regardless of the types of components, an interaction
tipulates a relationship between the involved components that can in-
luence and tie their states. An interaction then establishes a dependency
etween the embroiled components.

Maintaining the session state requires components themselves to
cquire a transient nature. Since it is plausible that some transient
nformation should remain longer than others, the life cycles of the
omponents should not be synchronized, identifying components with
ifferent life spans. Thus, to properly satisfy the nature of the session
tate, the business logic is constituted by a set of stateful components
hat live concurrently for a bounded sequence of requests, and establish
ependencies with each other. Since requests arrive at runtime and
epend on external factors (e.g., the interactions on the interface) the
volution, intended as the composition of the living components and the
ependencies established at runtime, are hard to predict at static time.

.2. Component management through the IoC container

The complex and intricate nature of business logic makes its de-
elopment cumbersome and error-prone. To ease the task, develop-
ent heavily relies on widespread frameworks that provide high-level
ontainers able to manage components at runtime. More specifically,
ontainers run alongside the application and perform component depen-
3

encies injection (DI), and automated life cycle management activities. t
or this reason, they are usually identified as Inversion of Control
ontainers (IoC Containers) (Fowler, 2006). Component dependencies

njection consists of obtaining on the fly the instance of the type
pecified at coding time and injecting its reference in the dependent
omponent. This also implies dealing with race conditions and deter-
ining dynamically if a specific instance should or should not be shared
ith other instances. Automated life cycle management takes care of

omponent creation and destruction according to the life cycle models
pecified by the SW developer at development time.

Container behavior is configured through annotations extending the
lain code definition of classes with meta-information. To properly
anage components and their evolution, the container maintains a

untime representation based on the concepts of scope and context.
scope defines a type of policy that the container can enforce in the

ifetime and visibility management of required components. Besides, a
ontext maintains a collection of references to running objects, often
ermed contextual instances, managed under a common scope. Dur-
ng the runtime, the container maintains a set of contexts and each
anaged object is associated with a scope specified by the object type.

Though with various terminologies, scopes are traditionally of four
ypes: request, session, application, and enclosed. Components with re-
uest scope are allocated and maintained in memory only for the time
etween an interaction request and the response. In Web Applications,
or instance, scopes are naturally shaped by concepts of the underlying
TTP protocol and its State Management Mechanism (Barth, 2011).
hus, in web applications, request scoped components live for the
quivalent of a single HTTP request. Besides, components with session
cope maintain their state along a single session of usage. For Web
pplications, session scoped components will live among multiple HTTP
equests, spanning from the initial contact (or login) to when the
pplication is left (possibly with a logout). In the opposite direction,
he application scope encompasses multiple sessions, along any long-
erm run from an application startup to shutdown. However, in many
nteraction scenarios, like use case scenario executions, data need to
e maintained along a time span shorter than an entire session but
onger than a single request. This is commonly supported by a scope,
hich we term here enclosed, whose boundaries are programmatically
emarcated in the code by explicit begin/end operations. In addition to
he four traditional scopes, we also consider another scope not always
mplemented in frameworks of DI and lifecycle management and that
s often identified as a pseudo-scope. This pseudo-scope guarantees that
required component assumes the scope of the dependent component
here it is injected. We call it conforming scope, in contrast with all the
ther mentioned scopes which will be termed absolute.

The system of scopes is organized hierarchically: a request context
s always contained in a session and possibly in an enclosed context. An
nclosed context is always wrapped in a single session context and the
pplication context wraps all the session contexts. Finally, since managed
omponents have a lifecycle, frameworks usually provide the possibility
o define post-construct and pre-destroy actions for each component
riggered, respectively, immediately after the creation and immediately
efore the destruction of the contextual instance.

.3. A visual representation of concurrency and coupling among SW com-
onents

IoC Containers orchestrate the execution of multiple concurrent
ontexts and contextual instances. The container orchestration is deter-
ined by the static scope assigned to required components at coding

ime and by the sequence of requests received at runtime. In this
oncurrent execution, managed objects belonging to different contexts
nteract with each other through method invocations that result in
mplicit data flow coupling.

Fig. 1 provides a visual aid to gain concrete insight into how the
igh-level concepts of presentation, logic, and data tiers considered in

his research translate to the more concrete implementation notions



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

a
𝑅

s

Fig. 1. Visual representation of components during a software architecture execution.
In the first shown epoch 𝑅1, the application context A continues from the previous
activity, the session context 𝑆𝛽 and an enclosed context 𝐸𝐶𝛽 are started, and the
instance within 𝐸𝐶𝛽 is written, first by of 𝑆𝛽 and then by of A. In the subsequent
epoch R2, the session context 𝑆𝛼 and a request context 𝐿𝑂𝐺𝐼𝑁𝛼 are started, and the
instance of 𝑆𝛼 is written by the instance of 𝐿𝑂𝐺𝐼𝑁𝛼 . Component instances
from both 𝐸𝐶𝛼 and 𝐸𝐶𝛽 , perform read/write operations on shared data from/to the
application context A.

used by the approach. As starting point, data needs to be transferred
from the presentation tier to the logic tier. This is depicted in Fig. 1
as the instantiation of managed components at each epoch 𝑅1-𝑅5,
corresponding respectively to the shapes and (𝑅1), (𝑅2), and

(𝑅3), (𝑅4), and (𝑅5). The response routine is then executed in
the logic tier through the instantiation of contexts and their interaction,
depicted in Fig. 1 as colored rectangles. During each epoch, managed
components belonging to different context interact between them (see
directed arrows in Fig. 1). Managed components can belong to two
different tiers, either the logic tier (e.g., function calls) or the data tier
(e.g., raw data passed from one context to another).

In Fig. 1, time is partitioned in a discrete sequence of epochs. Each
epoch starts when a request arrives and terms when the request is
served and the service of the subsequent request can be started. In
Fig. 1, epochs {𝑅𝑛}𝑁𝑛=1 are represented on the horizontal axis.

Within each epoch, the run is characterized by: (i) the set of living
contexts, either active or inactive, (ii) the set of contextual instances
associated with each context, and (iii) the sequence of method invocations
among contextual instances. In Fig. 1, living contexts are stacked along
the vertical axis. A is the application-scoped context, 𝑆𝛽 and 𝐸𝐶𝛽 are

session-scoped and an enclosed-scoped contexts, respectively. During
1, the contextual instance is associated with context A, with 𝑆𝛽 ,
with 𝐸𝐶𝛽 . Finally, methods of are invoked first by and then by
;
At the beginning of each new epoch, each living context is either

tarted (e.g. 𝐸𝐶𝛼 in 𝑅3), continued (e.g. 𝑆𝛼 in 𝑅3 or 𝐸𝐶𝛽 in 𝑅3),
inactivated (e.g. 𝐸𝐶𝛽 in 𝑅2) re-activated (e.g. 𝐸𝐶𝛽 in 𝑅4), or released
(e.g. 𝐸𝐶𝛽 in 𝑅4). At release, all instances in the context are destroyed
and their state is lost. At inactivation, instances maintain their state but
they are not visible until the context is activated again. At creation,
the context starts as new so that each instance will be created from
scratch when required. At continuation, instances maintain their state
and visibility.

Within each epoch, multiple contexts of the same type may be alive
but only one context for each scope can be active. According to this,
any active contextual instance will be able to directly interact only with
instances belonging to its context and its embedding contexts, both of
higher and lower level, respecting the hierarchical organization fixed
by definition (i.e., it can only interact with other active instances). Since
the request scope belongs to the lowest level of the hierarchy, for each
epoch, the abstraction identifies the set of visible contextual instances
and makes explicit the lifetime along which they have maintained their
4

state.
The visual representation makes explicit two interacting mecha-
nisms of cross-context coupling among managed components. On the
one hand, concurrent instances active in the same epoch may invoke
each other, yielding direct coupling between components, both in the
same session (e.g. intra-session usage of during 𝑅1) and between
a session component and the Application context (e.g. inter-session
usage during 𝑅1). On the other hand, components that maintain their
state across multiple epochs may carry indirect dependencies between
components even when these are not concurrently alive (e.g. and
transitive coupling intermediated by ).

2.4. Problem formulation

The reaction to an external input of a three-layered architecture is
influenced not only by the current request, but also on the past interac-
tion history with the system. In other words, three-layered architectures
showcase a stateful behavior, where outputs are provided based on
the current interaction with the system, and the internal state reached
by the system during its runtime evolution based on the past inputs
received. The dynamic nature of this internal state is in fact conditioned
also by business logic mechanisms and middleware functionalities, such
as Dependency Injection (DI) and automated lifecycle management
frameworks (refer to Section 2.2). Within this context, in this research,
we aim to identify and evaluate failure-inducing interaction sequences
by considering not only the current state of the presentation layer, but
also the internal state embedded in the logic and data layers. As further
detailed in Section 4, this point of view allows to identify a set of
failures that cannot be otherwise identified by considering exclusively
the presentation layer state.

Due to components, software architectures cannot be considered
memoryless systems. It is not guaranteed that a response depends only
on the type of request issued and its parametric values. The response
process may depend on the transient information encapsulated in one
or more components living at the moment of the request. The software
architecture can be indeed considered as a stateful system where the
state of the system is the set of components currently living in memory.
To evaluate a stateful system properly, it is fundamental to test it under
various state configurations. However, the evolution that the system
state experiences at runtime makes it insufficient to test just the state
configurations.

More in detail, in software architectures, the system evolves its
state in reaction to the events that occur over time. During the usage,
it is expected that the transient data required to support the session
(i.e., the session state) will change. In software architectures, it is
fundamental then to guarantee also that the state of the system will
evolve coherently with the sequence of requests that will receive. Even
if the system is proven to behave correctly under all the possible state
configurations, a wrong evolution during a sequence of requests will
still cause a malfunction.

The evolution of the system state represents a fragile part of the
architecture. It is guided by configurations defined during the im-
plementation of the architecture but the actual implications can be
observed only when the whole application runs. The fragility is further
emphasized when DI and automated life cycle management frameworks
are used. The actual process of dependency injection of components
and the management of their life cycle is managed by the container
with logic that remains hidden to the developer that simply exploits
the framework. The opacity with which the container works tends to
complicate the ability to predict the evolution of the system and to
increment unexpected evolution patterns.

Additionally, containers rely on high-level events e.g., in web ap-
plications events are HTTP requests while in desktop applications are
interactions on the user interface. The high level of the events prevents
the standard techniques of unit and integration testing from being
used to evaluate how the state evolution affects the runtime behavior.



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

o
c
i
f
t
i

a
t
s
m
a
r
t
r
r

3

s
c
t
L
o
a
t
w
m
b
c
i
e
t

3

s
a
w
m
f
R
t
c
c
s

h
i
m

s
o
v
s
s
m

However, neither standard system testing is usually enough. Hence, sys-
tem testing techniques, usually identify the sequence of events relying
on external information provided by the presentation layer. Similarly,
also the test case evaluation phase is based on the visible side effects
observed considering the system as a black box. In system testing
then, the evolution of the system state is only evaluated indirectly and
partially, ignoring completely living components, their interactions,
and the effects of the container.

Neglecting internal information makes the testing process inefficient
for two main reasons. Relying only on external information may lead
to selecting poor test cases that neglect the internal processes of both
the business logic and the middleware technologies. Moreover, a black
box perspective allows assertions only on the external interface of
the system under test. This prevents the immediate identification of
internal errors and allows the detection of malfunctions only when
propagated up to the presentation layer. Even in the case of a test
detecting a failure, the subsequent fault detection procedure may be
particularly complex due to the complex chain of faults, errors, and fail-
ures involved, like for Mandel- and Heisen-bugs (Grottke and Trivedi,
2007; Cotroneo et al., 2016; Carrozza et al., 2013).

3. Related work

In this section, we discuss the scientific work related to this study.
Specifically, we focus on the closest related work to the approach
presented in this study by considering black-box testing strategies (Sec-
tion 3.1), white- and grey-box testing strategies (Section 3.2), mobile
testing strategies (Section 3.3), and Diversity-Based Test Case Selection
Strategies (Section 3.4).

3.1. Black-box testing strategies

Numerous research studies have been conducted over the years to
identify sequences of interactions to exercise the presentation layer
of software architectures. Many of these, including ours, rely on an
abstraction of the system under test to extract a sequence of relevant
interactions. For instance, the work of Biagiola et al. (2019) proposes
a method to generate system-level test cases in web applications. The
testing strategy is based on a navigational model of the application
where a path represents a list of pages visited by the user during a
specific sequence of interactions. Biagiola et al. propose a strategy to se-
lect the test case on the navigational model guided by a diversity-based
metric in order to generate a test suite as heterogeneous as possible.
However, the metric proposed by the authors takes into account only
the diversity of the interactions involved in the test neglecting the state
of the system and its evolution during the execution.

Yousaf et al. (2019) instead propose an automated model-based test
case generation strategy. The process is based on identifying sequences
of interactions to be performed on the interface of the application under
test. The selection of paths on the interface relies on a model expressed
using the Interaction Flow Modeling Language (IFML) formalism (Fra-
jták et al., 2015), a language adopted as a standard by the Object
Management Group (OMG), which allows defining the design of web
application interfaces. The work presents an interesting application of
model-based user interface test case (MBUITC) generation. However,
although IFML allows defining some behaviors of the business logic
and thus representing dependencies between software components, the
lifecycle and role of the container cannot be represented. Therefore, the
test cases suggested by the method cannot take into account the faults
identified in this work.

3.2. White- and grey-box testing strategies

Previous work of Arcuri (Arcuri, 2019) has addressed the automatic
5

test case generation for RESTful APIs. The strategy to generate test cases c
exploits an automated white-box testing approach. Tests are generated
through an evolutionary algorithm guided by code coverage and fault-
finding metrics. The approach also deals with the well-known hurdle of
setting the initial state for test cases. Thus, a test case may require an
exact state configuration to observe a specific behavior during the test
execution. Setting the initial state of the system is sometimes hard and
Arcuri solves the problem through smart sampling, a strategy that relies
n a predefined set of test case templates. However, smart sampling
onsiders only long-term and consolidated data (the record state) and
gnores the transient state of the system. Our approach instead, aims to
ind a sequence of requests that bring the initial state of the system to
he proper one also taking into account the transient data maintained
n software components.

The work of van Rooij et al. (2021) proposes a grey-box fuzzer
imed to discover vulnerabilities in web applications. As in our work,
he goal of van Rooji et al. is to generate test cases that evaluate the
ystem beyond what is observable in the application response while
aintaining a tradeoff in the scalability of the approach. As in our

pproach, the method is guided by coverage criteria on a high-level
epresentation of the system, however as also outlined by the authors,
he faults studied are surface-level bugs. Considered faults in fact do not
ely on ‘‘complex internal application state’’ or on a series of dependent
equests to be triggered.

.3. Mobile testing strategies

Mobile testing, and in particular Android testing, addressed exten-
ively the problem of selecting sequences of interactions to test the
orrect behavior of the system (Linares-Vásquez et al., 2017; Amalfi-
ano et al., 2014; Su et al., 2017; Nie et al., 2023; Gu et al., 2019;
iu et al., 2022). Among all the above mentioned papers, the work
f Gu et al. (2019), is very close to our method. The authors propose
fully automated Model-Based automated GUI testing technique. The

est case selection is guided by an abstraction that is gradually refined
ith dynamic information about the system. The dynamic nature of the
odel allows the method to take into account behaviors that cannot

e extracted statically from the application. However, the abstraction
an extract and dynamically adapt to behaviors visible from the user
nterface, this prevents the abstraction from taking into account the
volution of the internal state and suggests paths targeted to trigger
he fault that we address in this work.

.4. Diversity-based test case selection strategies

Many other works have addressed the problem of reliability in
ystems subject to sequences of external events, even without system
bstractions. One of the researches that is most closely related to this
ork is constituted by the Route tool (Lin et al., 2023). Route imple-
ents a novel strategy of augmentation for system test cases. Starting

rom a test case consisting of various interactions on the interface,
oute suggests alternative cases that verify the same functionality as

he original but follow a different path. Taking a different path has the
apability to stimulate different dependencies among the underlying
omponents, thus inducing a distinct evolution of the system’s internal
tate.

Although the work remains intriguing and presents innovative
euristics for test case augmentation, the strategy remains blind to
nternal logic and relies solely on external information, unlike our
ethod, which tackles the problem by employing a grey-box approach.

The work of Leveau et al. (2022) presents a new approach to
uggest rare and diverse sequences of interactions during a phase
f exploratory testing of web applications. Although the approach is
ery interesting and in principle also effective in identifying faulty
equences, the approach measures the diversity and the rarity of a
equence ignoring the internal logic of the application itself. In our
ethod instead, the sequence selection is heavily based on software
omponents information and behavior.



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.
4. Chain of threats fault types and failure modes

We characterize the chain of threats affecting the development of
the business logic of software architectures by classifying types of
coding faults (Section 4.1) and failure modes that they can produce
(Section 4.2).

4.1. Fault model

We consider a catalog of fault types that can be introduced in
annotation or programmatic lifecycle specification, which makes the
scope of a managed component unfit for the needs of the point where
it is injected.

The catalog was populated by conducting a manual analysis on
how the dependency injection and automatic lifecycle management
are implemented in the IoC containers. The catalog, therefore, reflects
the structural characteristics of annotation-based and programmatic
specifications of the lifecycle of software components using IoC con-
tainers. To validate the catalog, developers of a complex three-layered
architecture implementing an electronic health record in use for several
years in a major Tuscan hospital (Patara and Vicario, 2014; Fioravanti
et al., 2016) were contacted for feedback. The developers confirmed the
list as covering the fault types they experienced in their daily practice.

The resulting catalog of faults considered in this study is reported
below.

• ShorterScope: a component is assigned an absolute scope lower
than what would be required.

• LongerScope: viceversa, a component is assigned an absolute
scope higher than what would be required.

• WrongConformance: a component is assigned a conforming scope
while it should have been absolute, or viceversa.

• EarlyOrUndueClosure: the end demarcation of an enclosed con-
text is erroneously added or placed too early in the code.

• LateOrMissingClosure: the end demarcation of an enclosed con-
text is missing or it is placed too late in the code.

• LateOrMissingBegin: the begin demarcation of an enclosed con-
text is missing or late in the code.

• MissingStateClearance: the code misses a required clear-out or
re-initialization of a component, which should be triggered at cre-
ation or destruction of some other component as a post-construct
or pre-destroy action.

• ErroneousDynamicInjection: the type of an injected component
is erroneously determined, which may occur when injection types
are determined dynamically during the run-time.

The identified faults are insidious and can be inserted by developers
with different levels of skill, as can be observed in technical social
forums such as StackOverflow, Github, and DZone. An overview of exam-
ples of such discussions is reported for completeness in the replication
package.

4.2. Failure modes

Faults in annotation and programmatic specification of managed
components lifecycle may result in various kinds of errors in the type of
injected components or in the logic of the intervals (Allen, 1983) during
which they exist, maintain their state, and are shared by multiple
dependents. In turn, this may cause various types of deviations in the
functional behavior delivered by the presentation layer.

We identify and characterize four types of failures occurring when
an injected component: does not maintain memory as long as required
(vanishing component); or, vice-versa, it is not renewed when needed
(zombie component); or it becomes visible at the same time to multiple
dependents that should not share it (unexpected shared component); or
it is created in a wrong type variant (unexpected injected component).
6

Fig. 2. Vanishing component failure. (left) the expected correct behavior in some
scenario with two coupled instances and living in distinct contexts C1 and C2:
uses twice expecting that this maintains its state across subsequent requests. (right)
a faulty behavior: at the beginning of R3, context C2 is restarted (instead of continuing)
and the IoC container constructs a new instance of the same component type; the
fault is activated at the point marked by , entering an erroneous state that produces
a data loss failure when is used by .

Fig. 3. Zombie component fault.(left) in a correct implementation, should access two
distinct instances of . (right) however, since the context C1 is not closed and restarted,
the instance retains memory also during R2 and the second access of will find
an obsoleted and not refreshed state.

Fig. 4. Unexpected shared component fault. (left) The and contextual instances
expect each one to inject a different instance of the required component (i.e., and ,
respectively). (right) yet, the IoC container resolves both dependencies with the same
contextual instance, thus producing interference and unpredictable race conditions.

Fig. 5. Unexpected injected component fault. The IoC container, in R1 resolves the
dependency of with a wrong contextual instance (i.e., instead of ), thus
producing unpredictable behaviors.

Vanishing component. An injected component may not live and
maintain its state with continuity along the time interval needed by its
dependents, thus resulting in a null pointer exception or a data loss (if
the component type is restarted by a new injection), as illustrated in
Fig. 2.

Zombie component. In the opposite situation, an injected compo-
nent may remain alive with continuity while a dependent component
expects that it is destroyed and restarted. This may lead to components
that maintain an obsoleted state, as illustrated in Fig. 3, or it may also
potentially produce an aging failure due to memory leakage (Grottke
et al., 2008).

Unexpected shared component. A context may remain continu-
ously active so as to be accessible by two or more concurrent dependent
contexts. This may lead multiple dependents to erroneously share the
same instance of some required component, causing failures due to
interference on the component state, as illustrated in Fig. 4.



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.
Fig. 6. Workflow of the proposed approach.
Unexpected injected component. The type of a required com-
ponent may be wrongly specified at its injection point, for trivial
coding error or for subtle defects in the static selection of alternative
implementations of a type or in the logic of a dynamic programmatic
lookup. this may cause a variety of deviations from the expected use
case flow, unpredictably leading to fast failure or to complex aging
effects (Grottke et al., 2008). Fig. 5 illustrates the concept.

Identified fault and failure types have some typical causal relation,
which may direct analysis of root causes: vanishing components naturally
result from ShorterScope, EarlyOrUndueClosure, and LateOrMissing-
Begin faults; conversely, a zombie component can be easily caused by
LongerScope, LateOrMissingClosure, and MissingStateClearance faults;
an unexpected shared component can be produced by the same faults that
cause a zombie component, but with a different process; all failures due
to longer or shorter scope can also be due to a WrongConformance, with
effects depending on the specific mismatch between conforming and
absolute expected components; finally, unexpected type typically results
from an ErroneousDynamicInjection.

5. Identification of software component faults through model-
based testing

We propose a model-based testing approach (Utting et al., 2012)
that jointly involves: (i) the constraints of presentation interface, (ii)
the lifecycle specification of software components, (iii) their data-flow
dependencies, and (iv) the actual concurrency produced by the effects
of container orchestration.

The approach relies on an abstraction, that we call Managed Compo-
nents Data Flow Graph (mcDFG described in Section 5.1). The approach
presented in this study is based of a two-phase process, which first
involves the mcDFG generation, and subsequently generates test cases
based on the mcDFG model created in the first phase. An overview of
the complete process is depicted in Fig. 6.

At the highest level the approach, starting from a use case, generates
a set of test cases allowing to verify the correct execution of the use
case. The presented approach consists of a total of 6 intermediate steps,
each one characterized by their own inputs and outputs.
7

The first phase of the approach, comprising Step 1 and Step 2 (see
Fig. 6), regards the generation of the mcDFG abstraction (see Sec-
tion 5.2 for more details). In the second phase, starting from Step 3, the
procedure exploits the mcDFG abstraction to identify and subsequently
generate test cases. We describe this latter part in Section 5.3.

Since the mcDFG is a technology-agnostic abstraction, the proposed
procedure remains valid for generic three-layered architectures with
IoC containers. However, for the sake of concreteness and to be able
to demonstrate its validity through a proof of concept (Section 6), we
implemented the mcDFG generation tool for three-layered architectures
developed for the Java Enterprise Edition. In the workflow, we have
marked both the steps that we have automated and those that we have
executed manually. Note, however, that the goal of our proof of concept
was to demonstrate the validity of the approach and not to provide
a comprehensive tool for practitioners. Thus, we also indicate in the
figure the steps that were manually performed during our proof of
concept but could easily be automated.

5.1. The managed components data flow graph abstraction

Coverage of couplings across contexts occurring among software
components requires a testing approach able to cover the execution
paths interconnecting the points where the state of each software
component is defined and used. The paths of interest are, therefore,
sequences of interactions that occur from the moment a software
component is instantiated by the IoC container to the moment a method
of the software component is invoked, thus capturing the runtime data
flow produced by contextual instances. In principle, execution paths
might be abstracted into an Object-Oriented Data Flow Graph (Souter
et al., 1999). However, this would require explicit unfolding and rep-
resentation of the complex actions performed by the IoC container
in the management of contextual instances (e.g., components proxies,
aspect-oriented programming techniques), with an explosion of graph
elements leading to infeasible dimensions of test suites.

To this end, we propose the Managed Components Data Flow Graph
(mcDFG) abstraction, inspired by the classical DFG and DFT the-
ory (Rapps and Weyuker, 1985), which combines elements of structural



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

b
i

o

and functional perspectives by capturing salient characteristics of in-
volved components with their dependency hierarchies and lifecycles to-
gether with admissible interactions along designed use cases. Formally,
the mcDFG is a directed graph, labeled on vertices and edges:

𝑚𝑐𝐷𝐹𝐺 ∶= ⟨ ,𝑖𝑛 ∶  , 𝑖𝑛, 𝑑𝑒𝑓 , 𝑢𝑠𝑒, , 𝑁𝑎𝑣, 𝐶𝐵⟩

Where  is the set of vertices, with each 𝑣 ∈  representing a
asic block, i.e. a sequence of method invocations and IoC container
nstantiations that are always executed as a whole. 𝑖𝑛 ⊆  is the

subset of vertices associated with basic blocks that terminate in any
state where the interface waits for interactions.  ⊆  ×  is a set
of edges, with ⟨𝑣𝑖, 𝑣𝑗⟩ ∈  iff there exists an execution where the last
peration of 𝑣𝑖 can be followed by the first operation of 𝑣𝑗 . 𝑖𝑛 ⊆ 𝑖𝑛×

is the subset  made of the edges that leave a basic block that terminate
with the interface waiting for an interaction.

Relations 𝑑𝑒𝑓 ∶  → 2𝑀𝐶 and 𝑢𝑠𝑒 ∶  → 2𝑀𝐶 associate each vertex
with the subset of used and defined managed components, where 𝑀𝐶
denotes the set of all managed components, and, for any 𝑐 ∈ 𝑀𝐶,
𝑐 ∈ 𝑑𝑒𝑓 (𝑣) means that an instance of component 𝑐 is created during the
execution of the basic block associated with vertex 𝑣, and 𝑐 ∈ 𝑢𝑠𝑒(𝑣)
means that an already existing instance of 𝑐 is used by invocation
of any of its methods. As opposed to the classical theory of dataflow
testing, the relation of 𝑢𝑠𝑒 does not distinguish whether the invocation
will produce a side effect on the used component. Besides, the relation
 ∶ 𝑖𝑛 → 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑦𝑒𝑟 𝑠𝑡𝑎𝑡𝑒𝑠 associates each vertex 𝑣 ∈ 𝑖𝑛 with
the specific interface provided by the presentation layer on completion
of its associated basic block. The presentation layer state identifies the
set of interactions currently allowed on the presentation layer.

The relation 𝑁𝑎𝑣 ∶ 𝑖𝑛 → {𝑛𝑎𝑣 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ∶∶ 𝑠𝑖𝑔𝑛()} associates each
edge 𝜖 ∈ 𝑖𝑛 that exits from a vertex 𝑣 ∈ 𝑖𝑛 with the controller
method triggered by the interaction 𝑠𝑖𝑔𝑛(). The relation 𝐶𝐵 ∶  →
𝐸𝑛𝑐𝑙𝑜𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠 associates edges with any programmatic action of
control of an enclosed context performed when the edge is traversed,
with 𝐸𝑛𝑐𝑙𝑜𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = {𝑏𝑒𝑔𝑖𝑛, 𝑒𝑛𝑑, 𝑒𝑛𝑑∕𝑏𝑒𝑔𝑖𝑛}.

To exemplify the concept, Fig. 7(b) reports the mcDFG derived
from a use case implemented in the online flight booking system
Flight Manager (more details in Section 6.2). Vertices, associated with
basic blocks, are represented as green circles and they are labeled
with 𝑑𝑒𝑓 and 𝑢𝑠𝑒 operations performed in the corresponding basic
block, on violet and green background, respectively (e.g. see, vertex 1);
vertices in 𝑖𝑛 (e.g. vertex 5) are also associated with a pale blue label
with the identifier of the presentation layer state in which the three-
layered architecture waits for an interaction; output edges from 𝑖𝑛
vertices are labeled with the name of controller methods triggered by
an interaction (e.g. from vertex 5, AirportController::viewAirport() and
AirportController::redirectToHome()) actions for programmatic control
of enclosed contexts are labeled on edges where they occur (e.g. on
edges ⟨1, 2⟩ and ⟨3, 0⟩).

Note that the mcDFG is a kind of grey-box abstraction that seams
the structure of the navigational model, also known as page navigation
diagram, of Fig. 7(a) (the pale blue parts) together with lower-level
information related to the application code (green parts) and the IoC
container behavior (violet parts).

5.2. mcDFG generation (phase 1)

The mcDFG provides a powerful abstraction, well tailored to unravel
the actual dependencies that result from the intertwined effects of (i)
interactions on the presentation layer, (ii) DI specification and method
invocations in back-end components, and (iii) orchestration process
implemented by the container. However, this effectiveness comes with
a corresponding price in the mcDFG construction, which involves a
significant and error-prone effort for the inherent complexity of integra-
tion of different perspectives and for possible misconceptions of the IoC
container behavior. Nevertheless, a manual generation process would
result time-consuming.

To overcome the hurdle, we resort to a two-phase automatic ap-
proach that, starting from a use case will generate the corresponding
mcDFG.
8

Fig. 7. A snippet of PND and the corresponding mcDFG for the administrator use case
‘‘View Airports’’ (UC:A4.2). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

5.2.1. Business and navigation logic acquisition (step 1)
The initial input of the presented approach, and hence Step 1, is a

user-goal level description of a use case (Cockburn, 2000).
The first step consists in collecting information related to both

navigability and business logic of a use case. To this end, a monitor
tool for JEE architectures was implemented to gather effortlessly the
required information. More in-depth, the tool operates at runtime and
for each interaction issued on the presentation layer, is able to detect (i)
the initial presentation layer state where the interaction is performed,
(ii) the name and the scope of the components involved in the response
process, (iii) and the state that the presentation layer finally reaches.

Concretely, the acquisition process requires that the monitoring tool
is executed during the whole execution of the application under test,
in order to allow the acquisition of the business logic and data layer
runtime information. Once the monitoring setup is in place, the use
case needs to be executed via the presentation layer of the application
under test, and the monitoring tool will observe and collect information



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

a
w

5

r
t
a
p
t
c
i
i
o
t
I
n
a

a
p
b

r
n
n

5

t
s

5

n
t
c
i
c
o
o
i
i
c
W
w
c
d

O
t
t
S
m
p

F
f
d
m
g
e
t

t
w
n
o

s

5

m
t
t
t

b
u
t
c
p
t
b

on the internal operations. To acquire an exhaustive overview of the
underlying logic, this phase requires exercising both the main success
scenario and their variations (Cockburn, 2000).

The output of this step is a report on the observed response mech-
nisms of the presentation and business logic layer. This information
ill be used as input in the next step.

.2.2. Model creation (step 2)
Step 2 merges the information obtained in the previous step – the

eachability relationship of the interfaces (i.e., navigability informa-
ion) and component dependencies – with the details related to the
ctivities of the IoC container in use. This phase represents a crucial
art of the mcDFG construction: it requires in-depth insights that tend
o remain transparent to software architecture developers and that
onstitute one of the main causes of identified software faults. The
dentification of def and use annotations on the vertices of the mcDFG
ndeed requires not only an understanding of the internal workings
f the business logic, but also of how the IoC container orchestrates
he components (e.g., creation and destruction of contextual instances).
n this case, therefore, relying on an automation procedure becomes
ecessary not only to speed up the mcDFG generation but also to ensure
correct result.

As notable features, the tool optimizes the number of final vertexes
nd implements heuristics that keep the number of cycles as low as
ossible, with a positive impact on the number of paths that shall then
e covered by different test cases.

The output of this step is the mcDFG representation of the observed
esponse mechanisms. In addition to the mcDFG representation, the
ext step (Step 3) requires also to specify a coverage criterion (e.g., all
odes), which needs to be manually provided as input (see Section 5.3).

.3. Test case generation based on the mcDFG (phase 2)

Once the mcDFG is obtained through Phase 1, it is used in Phase 2
o identify a set of interaction sequences and construct the tests. The
teps composing Phase 2 are described below.

.3.1. Paths selection (step 3)
The mcDFG abstraction captures couplings among software compo-

ent instances under the orchestration of the IoC container according
o interactions issued on the interface. Coverage of these coupling
omprises a focused and effective means for the identification of faults
n annotation-based and programmatic DI specification of back-end
omponents. In so doing, a feasible mcDFG path subtends a sequence
f interactions on the presentation layer that triggers a specific chain
f interactions among software components. We embed a single path
n a test case and the set of paths satisfying a chosen coverage criterion
n a dedicated test suite. In the following, we provide a suite of
riteria inspired to the classical theory of Data Flow Testing (Rapps and
eyuker, 1985), while various other coverage criteria could be used as
ell, e.g., for presentation layers exposing Graphical User Interfaces,

overage metrics such as page or hyperlink coverage could be used, as
escribed in Ricca and Tonella (2001).

• All Nodes coverage verifies that every reachable basic block
is tested at least once, which includes that each def (i.e., a
component instantiation) and each use (i.e., a component method
invocation) of any managed component is exercised;

• All Edges verifies that every edge is traversed at least once,
which implies that each nav use from each presentation layer state
(i.e., each interaction) is tested;

• All Defs verifies that every def is tested at least one time, thus
exercising each managed component instantiation, reaching one
of its uses (i.e., one of component method invocations), without
traversing intermediate defs of the same component;
9

a

Fig. 8. Inclusion relationships among coverage criteria for the mcDFG abstraction.

Table 1
Complexities of mcDFG coverage
criteria.
Criterion Complexity

All Edges (𝑁 ⋅ 𝐹 )
All Nodes (𝑁)
All DU-Paths (2𝑁 )
All Uses (𝑁2)
All Defs (𝑁 ⋅ 𝐶)

• All Uses verifies that for each def all the possible subsequent uses
are covered, i.e. that:
for each component 𝑐, and each vertex 𝑣𝑑 where 𝑐 is def ined, and
each vertex 𝑣𝑢 where 𝑐 is used, at least one path that goes from 𝑣𝑑
to 𝑣𝑢 without visiting any intermediate def is exercised;

• All DU-Paths verifies that all the possible acyclic paths between
each def and all its subsequent uses are covered, i.e. that:
for each component 𝑐, and each vertex 𝑣𝑑 where 𝑐 is def ined, and
each vertex 𝑣𝑢 where 𝑐 is used, all the acyclic paths that go from
𝑣𝑑 to 𝑣𝑢 without visiting any intermediate def are exercised.

nce a coverage criterion is selected, the approach requires to analyze
he mcDFG in order to generate a set of mcDFG paths that satisfy
he coverage criterion. In the proof of concept experimentation (see
ection 6) the mcDFG coverage of the generated paths is assessed
anually. However, in a future implementation of the approach, this
rocess could be automatable by utilizing a graph coverage algorithm.

Inclusion relationships among different criteria are summarized
ig. 8. Note that they differ from those of the classical theory of data
low testing in Rapps and Weyuker (1985) in that All Uses coverage
oes not include All Nodes (and not either All Edges): in fact, in the
cDFG, branching edges from a basic block represent choices in navi-
ation control, not alternative complementary exits of a common guard
xpression as leveraged in the proof of coverage inclusion referred to
he Data Flow Graph in Rapps and Weyuker (1985).

Theoretical complexity, expressed in terms of the limit number of
ests sufficient to implement each criterion, are reported in Table 1,
here 𝑁 is the number vertices in the mcDFG abstraction, 𝐶 the
umber of distinct managed components, and 𝐹 the maximum number
f choices in the navigation out of any interface within a use case.

The output of this step is a set of mcDFG paths that satisfy the
elected coverage criterion.

.3.2. Tests generation (steps 4)
To generate the test cases, each path identified in the modeled

cDFG (see Step 2), will be translated in a test case, as each path on
he mcDFG represents a sequence of interactions. The generation of the
est is therefore systematically guided by the ordered list of nav edges
hat the path encounters.

Specifically, given the mcDFG path, i.e., a sequence of vertexes
elonging to the graph, the test instruction of each test case are man-
ally generated by ensuring that all conditions necessary to traverse
he vertexes of the graph are met. Given that the test case generation
onsists of a manual process, the specific technology utilized to im-
lement the test cases is left open by the approach, and depends on
he specific development context considered in practice. We note that,
uilding on the presented approach, this step can be automated (see

lso Fig. 6). A test is composed of a set of simulated interactions on the



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

a
s
t
a

5

t
o
r
c
t
t
u

t

5

t
g
i
a
T
t
o
d
S

c

t

6

m
a
t

e
a
e

a
o
a
t
i

6

w

a
a
s
A
o
n
n

s
i
e
c
a
a
e
f
c
b
r
D
V
t
a
t

6

c
T
h
a
t
e
o
(
i
r
M
a
a
t
v
T
p
F
J
a
c

a
s
A
i
o
t
e
i
b
R

interface of the system under test, which are sequentially evaluated.
The evaluation consists of validating the behaviors observable from
outside the system (as in the classic cases of black box testing) and
the state of the components (i.e., business logic and data persistence
layer).

Note that, a test case identified by the mcDFG abstraction implies
navigation constraint to verify on the actual implementation and so,

tep 4 also defines a base oracle, open to be extended by the tester
hrough specific inspections on the state of both the presentation layer
nd the business logic.

The output of this step is a set of tests covering each mcDFG path.

.3.3. Tests fine tuning (step 5)
Step 5 requires the developer to add, if deemed necessary, addi-

ional checks to the tests generated in the previous step. This step is
ptional, but when combined with the knowledge of the functional
equirements of the use case under consideration, it allows for an in-
rease of fault detection capabilities. The mcDFG also provides support
o the tester in this step. In fact, the def and use annotations present on
he vertexes of the corresponding test path suggest which components
ndergo side effects and consequently should be checked.

The output of this optional step is the final set of manually tuned
ests covering the use case.

.3.4. Tests execution (step 6)
Once the tests are obtained, they can be executed to get the final

est outcomes. Given the manual intervention required for the test
eneration (see Step 4 for more information), the test case execution
s not strictly bounded to any specific technology. However, to achieve
good degree of repeatability, tests should be executed automatically.
herefore, it is recommended to implement the tests with technologies
hat allow automatic execution and subsequent automatic evaluation
f the test outcome. For example, in the experimental proof of concept
ocumented in Section 6, test cases were implemented by utilizing
elenium 4.16.12 and JUnit 4.13.3

In the final test execution report provided as output, failing test
orrespond to triggered failures identified by the approach.

The output of this step is the final test execution report, in terms of
ests passed and failed.

. Experimental proof of concept

To confirm the viability of our approach, we conducted an experi-
ental proof of concept to estimate the fault detection capability and

ssess whether the use of our method provides an advantage over a
raditional system testing approach.

During the experimental proof of concept, we are interested in
valuating (i) the fault detection capability of the identified test suites
nd (ii) the cost in terms of development time that the generation of
ach test suite implies.

We report results showing how the mcDFG provides an effective
bstraction for the selection of test cases that are able to: activate faults
ccurring in the usage of dependency injection and automated man-
gement of components lifecycle; and propagate them up to failures in
he functional behavior of the presentation layer or in some observable
nconsistency of the state of business logic components.

.1. Research questions

In order to assess the effectiveness and applicability of the approach,
e address the following research questions (RQs):

2 https://www.selenium.dev/ Accessed January 4, 2024.
3 https://junit.org/junit5/ Accessed January 4, 2024.
10
• 𝑅𝑄1: To what extent is our method capable of detecting business logic
faults?

• 𝑅𝑄2: How effective is our method in comparison with techniques
based on Page Navigation Diagram abstraction?

With 𝑅𝑄1 we aim at investigating to which extent the method is
ble to identify faults of the identified fault model. In particular, we
re interested in estimating the fault detection capability of the test
uites obtained by applying the different coverage criteria identified.
dditionally, we are particularly interested in observing the behavior
f the test suites in the presence of non-trivially identifiable faults. By
on-trivially identifiable faults, we refer to faults that, once activated, do
ot immediately manifest a failure on the interface.

With 𝑅𝑄2 we aim to provide a method of comparison with existing
trategies. To the best of our knowledge, to date, no literature explic-
tly targets the correctness of business logic taking into account the
volution inferred over time by sequences of external events and IoC
ontainers. System testing treats the entire architecture as a black box
nd is unaware of the underneath details of the business logic (Nidhra
nd Dondeti, 2012). However, it subjects the system to sequences of
xternal events and evaluates its functional behavior on the inter-
ace. The system test cases thus induce an evolution of the software
omponents and are potentially capable of uncovering failures caused
y business logic faults. As a comparison then, we have chosen to
ely on a model-based testing strategy based on the Page Navigation
iagram (PND) (Biagiola et al., 2019; Kung et al., 2000; Mesbah and
an Deursen, 2009). The Page Navigation Diagram is an abstraction of

he system that is aware of external information (e.g., navigational logic
nd admissible interactions for each page) but ignores the behavior of
he business logic.

.2. Experimental object

We conducted our experimental proof of concept on a web appli-
ation called Flight Manager, developed in-house by our laboratory.
he research choice of adopting the Flight Manager allowed us to
ave access to the source code of an enterprise-level application with
n adequate number of classes and functionalities. More specifically,
o assess the correctness of the proposed approach, we require the
xperimental subject to (i) leverage dependency injection, (ii) be based
n a three-tier architectural pattern, (iii) explicitly document use cases,
iv) provide a test suite, and (v) be compilable. As the goal of this
nvestigation is to study the theoretical viability of the approach,
ather than its generalizability, we focus the proof of concept on Flight
anager, as it results to be an accessible experimental subject satisfying

ll documented prerequisites while making all source code and related
rtifacts readily available for scrutiny. Real-world enterprise applica-
ions are rarely available as open source, as they often hold economic
alue for companies, which tend to keep them as proprietary software.
he application is made available online for scrutiny and replication
urposes as part o the replication package of this study. Specifically,
light Manager is a stateful web application written in Java and the
ava/Jakarta Enterprise Edition Platform. The application focuses on
n online flight booking system and, as such, implements use cases
ommon to this type of system (see Fig. 9).

As represented in Fig. 10, the application follows a 3-tier stateful
rchitecture, consisting of the Domain Model, Data Source, and Pre-
entation Layer. The Domain Model is composed of 10 entity classes.

representation of the domain model in the form of a class diagram
s represented in the domain model package of Fig. 10. For the sake
f conciseness, the class diagram reports only the crucial element of
he domain (e.g., no enum and abstact classes are represented). An
xhaustive representation ao the domain model of Flight Manager
s available in the replication package. The Data Source is formed
y 6 Data Access Object (DAO) which exploits services of an Object
elational Mapping (ORM) framework. The Presentation Layer is made



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

N
m
i

6

n
c
o
u
T
i
S

w
a
e
w
e
t
w
u

Fig. 9. Use case diagrams of Flight Manager.
p
t
A
a

of XHTML pages (roughly, 30 pages), organized as shown in the Page
avigation Diagram (PND) of Fig. 11. Finally, a Business Logic Layer
aintains roughly 30 classes of software components. Flight Manager

s composed of 4.6k source lines of code.

.3. Experimental proof of concept process

To assess the feasibility of our approach, we leveraged the opportu-
ity to access the source code of the experimental subject. Firstly, we
onstructed the test suites. Each suite is composed of all tests, which are
btained by applying our approach to every use case of the application,
sing a specific coverage criterion from those indicated in Section 5.3.1.
he mcDFGs were obtained utilizing an automation tool that was specif-

cally implemented for this proof of concept experimentation (refer to
ection 6.6 for more details).

As already discussed in Section 6.1, we aim to compare our method
ith standard system testing strategies. To do this, we relied on an
bstraction frequently used in literature (Biagiola et al., 2019; Kung
t al., 2000; Mesbah and Van Deursen, 2009), which we identify here
ith the name of Page Navigation Diagram (PND), see Fig. 11 as an

xample. Specifically, this abstraction is concerned with representing
he information obtainable through an external analysis of the system,
ith a particular focus on the acceptable interactions on each individ-
al page and the reachability relationship that exists among different
11
ages. On top of the PND abstraction, we generated two additional
est suites exploiting two coverage criteria. Specifically, we considered
ll Pages coverage, which requires that each reachable page is visited
t least once, and All Navigation coverage, which verifies that each

navigation (i.e., each edge of the page navigation diagram) is traversed
at least once.

After obtaining the test suites, we estimated their fault detection
capability through a procedure similar to mutation testing strategies
and we compare the results. More specifically:

1. We create a faulty version of the application, commonly referred
to as a mutant, using a fault injection procedure.

2. We execute the test suites on the faulty version of the applica-
tion.

3. For each test suite, we evaluate the final test execution reports.
As each faulty version in the proof of concept experimentation
corresponded to exactly one mutant, a single test of the test suite
fails for that version indicated that the mutant was killed.

4. We define the fault detection capability of a test suite as the
percentage of mutants that the suite successfully kills over the
total number of mutants considered, namely 32.

The complex nature of faults, their propagation mechanisms, and
the laws governing the manifestations of associated failures prevent us
from exploiting automated tools for the fault injection phase. Therefore,



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.
Table 2
Complexity and fault detection of coverage criteria on the 32 faulty versions of Flight Manager.
Abstraction Coverage Avg. # Tests per Avg. # Interactions Fault detection

criterion use case per test capability (%)

mcDFG

All Nodes 1.18 6.09 100
All Edges 1.27 9.25 100
All Defs 1.18 3.09 84.37
All Uses 2.27 5.04 100
All DU Paths 3.09 7.76 100

PND All Pages 2 18 28.12
All Navigation 3 26.33 50
6

o
m
d

o
o
t
t

s
d
d

Fig. 10. Architecture of Flight Manager.

for this work, faults were injected manually (hand-seeded fault (An-
drews et al., 2005)), leading to the generation of 32 faulty versions of
the Flight Manager characterized by non-trivial faults.

6.4. Fault detection capability results

Results obtained through the experimental proof of concept are
summarized in Table 2. For each coverage criterion, the metrics asso-
ciated with the corresponding test suite are reported. The ‘‘Avg. # tests
per Use Case’’ column identifies the average number of tests required to
validate a use case provided as input to the approach (see also Fig. 6).
The ‘‘Interactions per Test Case’’ column indicates the average number of
user interactions required to complete a test. Lastly, the Fault Detection
Capability describes the percentage of mutants killed by an abstraction
considering a certain coverage criterion over the total number of faults
considered, namely 32 faults (see Section 6.3). With these metrics,
we are able to assess the quality of our method not only in terms of
fault detection capability but also in terms of applicability. In fact,
the dimension of the test suite and the number of interactions per test
case are two measures that, when considered together, can provide a
directly proportional measurement of both the implementation effort
and the execution times that the test suite requires.

6.4.1. 𝑅𝑄1 Answer (approach fault detection capability)
The collected results indicate that our approach is able to suc-

cessfully identify hidden faults in the business logic. As indicated in
12

particular by the fault detection capability of the test suites obtained d
with the mcDFG abstraction. To explicitly answer the RQ1, based on
the results of the experimental proof of concept, we can state that the
proposed method is capable of identifying faults hidden in the business
logic layer. However, we highlight the worst performance of the test
suite obtained with the All Defs coverage criterion. We explain this as a
consequence of the fact that All Defs coverage can be implemented by
extremely compact paths, where some component methods may not be
exercised at all, as illustrated in Fig. 12.

Furthermore, both test suite and number of interactions per test case
sizes maintain low values even for expensive criteria, notably for All DU
Paths. This indicates that the effort required to develop and execute test
cases remains low as well. The causes of these low values depend on the
high-level perspective of the mcDFG, resulting in a sparse graph with a
limited number of vertices and edges. Thus the dimension of the mcDFG
is related by construction to just the number of pages and interactions
involved in each use case which is by far lower than what may occur
in a conventional DFG expressed in terms of code-level basic blocks.

𝐑𝐐𝟏 Takeaways (Fault Detection Capabilities)
� Takeaway 1.1: Model-based approaches can successfully identify
various faulty interaction sequences in three-tiered layered architec-
tures.
� Takeaway 1.2: The high-level perspective of the presented ap-
proach allows for the identification of a reduced number of test
cases per use case.
� Takeaway 1.3: Generated test cases require a low number of
interactions with the interface layer.

.5. Approach effectiveness results

Always based on the Table 2, we now want to compare the results
btained with the test suites based on the abstraction proposed by our
ethod (mcDFG-based) with the results obtained with the test suites
erived from the page navigation diagram (PND-based).

All coverage criteria based on the mcDFG show a high fault de-
tection capability, full in most cases, and definitely over-perform test
suites based on the PND abstraction.

In the comparison of dimensions of mcDFG and PND-based test
suites, the value related to the mcDFG represents the average number of
test cases needed to satisfy the coverage criterion in a use case, while
the PND-related is the exact number of test cases needed to test the
entire application. In fact, we used each method in its natural way:
mcDFG-based testing is use-case-wise, as it identifies a different suite
for each use case, while PND-based testing targets the interface pages
f the overall application, which can be covered with a limited number
f ‘‘long’’ test cases. However, even if the dimension required to test
he entire application with the proposed method is still low (the larger
est suite is the one related to the All DU Paths criterion and consists

of 20 test cases), it is possible to include multiple use cases in the
ame mcDFG and then exploit the connectivity between pages to further
ecrease the test suite dimension. This kind of ‘‘trick’’, however, has a
rawback: while the number of test cases decreases, due to the redun-
ant navigation actions used, the length of test cases (i.e., the number



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

o
i
t
t
g
f
f
w
(

6

a

Fig. 11. Page Navigation Diagram of Flight Manager.
o
c
i
t
t
h
a
s
n
c
2

Fig. 12. Different coverages on a specific mcDFG example.

f user interactions required to carry out the selected navigational path)
ncreases, suggesting that the test suite execution time will not change
oo much with the use case wise or the application wide approach (see
he number of interactions per test case in the Table). As a showcase, we
enerated an mcDFG comprising both the ‘‘search flights’’ and the ‘‘book
light ’’ use cases (UC:U6 + UC:U7.1) obtaining test suites with the same
ault detection capability obtained with the two separate diagrams,
ith overall smaller size longer sequences characterizing each test case

see the details in the repository).

.5.1. 𝑅𝑄2 Answer (approach effectiveness)
Comparing the results obtained with the mcDFG-based test suites

nd those PND-based allows us to answer the RQ2. Our method demon-
13

strates to be more accurate in identify hidden faults in business logic in
comparison with a Model-Based Testing method aware of only external
information. More in detail, the improvement can be explained as due
to the ability of the mcDFG to extend the purely functional perspective
f the PND with architectural information, which supports both test
ase selection and oracle interpretation. On the one hand, test cases
dentify navigational paths that stress the application not only under
he end user functional perspective of page navigation but also under
he business logic and IoC container structural perspective. On the other
and, test cases and interpretation of their effects are built so as to be
ware both of the user interface and of the business logic components
tates, enabling detection of a fault even when its propagation does
ot manifest a failure at the user interface and remains hidden with
onsequences that are hard to observe and predict (Grottke and Trivedi,
007).

𝐑𝐐𝟐 Takeaways (Effectiveness)
� Takeaway 2.1: When testing three-tier architectures, considering
only the presentation layer does not allow to unveil faulty interac-
tion sequences hidden in the business logic.
� Takeaway 2.2: Despite enhanced fault detection capabilities, test
suites based on the approach maintain dimensions comparable to
those generated via plain navigational models.
� Takeaway 2.3: Considering interactions between the presenta-
tion and logic layers allows for faults to be intercepted even without
the manifestation of a failure visible outside the system.

6.6. Applying the approach in practice

The presented approach is specifically designed to work with soft-
ware-intensive systems that are structured using the three-tier archi-
tectural design pattern. The amount of work required to adapt this



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

B
t
o
p
c
a
F

6

f

i

d
i
f
i

‘
i
E
a

o
e
a
a
t
u
i

c
m
t
T
o
t
a
s

approach for different architectural patterns is uncertain and is not
considered within the scope of this study. When applied to other
architecture conforming to the three-tier pattern, the approach does
not necessitate any prior manual configuration. However, it would re-
quire a custom implementation that depends on the specific framework
of dependency injection. For Java-based applications using the Con-
text and Dependency Injection (CDI) framework, the proof of concept
implementation of the approach, which accompanies this study, can
be used immediately without any need for prior implementation or
configuration.

Concretely, the tool is a CDI extension. CDI is a popular framework
for Inversion of Control and it is the standard for Java/Jakarta EE.4

eing developed as a CDI extension, the association of the tool with
he application is straightforward, as the basic configuration requires
nly specifying the tool as an extension for the target application. The
rocedure can be deemed as rather efficient, as it consists only in
opying a single plain file inside the metadata directory of the target
pplication. The tool automates the entire Phase 1 of the approach (see
ig. 6), generating an mcDFG output from the input use case.

.7. Threats to validity

In this section, we discuss the threats to validity of our study, by
ollowing the classification provided by Runeson and Höst (2009).
(1) Construct validity : if the experimental proof of concept we set

s appropriate to answer the RQs. To answer to RQs, we assessed the
fault detection capabilities of various test suites through a mutation
strategy. Due to the complexity of the faults, we were unable to rely
on automatic tools, and thus the fault injection phase was carried
out manually. In principle, defining and injecting manually the faults
could potentially influence the estimated fault detection capability: the
fault may be not representative or too easy to find for our method.
To minimize bias in this phase as much as possible, some faults were
proposed by members of our laboratory who were not involved in
writing this work. The remaining faults, however, were reproduced
by drawing inspiration from real issues about software components
reported in technical social forums (e.g., StackOverflow and GitHub) by
evelopers with different levels of experience and different expertise
n language and frameworks. A collection of posts on technical social
orums that testify to the difficulty of using IoC containers is reported
n the replication package.
(2) Internal validity : if the observed results are actually due to the

‘treatment’’ and not to other factors. Our experimental proof of concept
s conducted on a web application developed in-house for this purpose.
xploiting an application that is not actually used in practice could be
n unrealistic assumption.

To mitigate this threat, however, Flight Manager has been devel-
ped by software professionals with strong and consolidated experi-
nce, following disciplined software development practices. Addition-
lly, Flight Manager implements a widespread combination of reference
rchitectural patterns, largely documented in the professional litera-
ure (Richardson, 2006; Martin, 2017; Fowler, 2012), and developed
sing a language and technology stack (Java and JEE) with primary
mpact and spread in the practice of complex web applications.
(3) External validity : whether and to what extent the observations

an be generalized. The results we obtained are derived from an experi-
ental proof of concept that considers a specific architectural style and

echnology. The results obtained may not be the same on other systems.
o mitigate this threat, this work did not rely on a specific technol-
gy, instead, it required an analysis of the most popular frameworks
hat provide IoC containers in Java, C#, and Python languages. The
nalysis led to the identification of 5 generic scopes: request, enclosed,
ession, application, and conforming (Section 2.2) and the definition of
14
a fault model on which our method is based (Section 4.1). As a refer-
ence, Table 3 enlists types of scopes supported by major frameworks
analyzed.

Moreover, we have attempted to maintain also our method techno-
logy-agnostic by encapsulating technology-dependent steps. In fact,
the abstraction of mcDFG contains concepts that are pervasive across
all the three-layered architectures. By changing the technology or
architectural style of the system, it will suffice to modify the mcDFG
generation procedure (see Section 5.2). In particular, the first step
required to generate the abstraction is particularly dependent on the
system’s architectural style, as it needs to know where the business
logic is implemented. Instead, the second step depends primarily on the
DI and automatic lifecycle management framework used by the system.

(4) Reliability : whether and to what extent the observations can be
reproduced by other researchers. To ensure independent reproducibil-
ity and verifiability of the results, we made available online: the Flight
Manager source code, its 32 faulty versions, and all the test suites
derived from both the mcDFG and the PND abstractions (please refer
to the replication package).

7. Conclusions

In the development of software architecture, Dependency Injec-
tion and automated lifecycle management play an essential role for
productive implementation of the Inversion of Control principle. This
supports abstraction and loose coupling, enabling developers to specify
components lifecycle models in a choreographic perspective and to
delegate to a Container the consequent orchestration. Yet, this also
introduces error-prone steps and largely reduces designers control over
the actual resulting behavior.

In this work, we characterize the chain of threats affecting the
development of software architectures that rely on Dependency Injec-
tion and automated lifecycle management, identifying faults that can
be introduced in the specification of managed components lifecycles
and in their composition, and characterizing mechanisms of fault to
failure propagation that result from the interaction of structural char-
acteristics of software components and navigation paths exposed by the
presentation layer.

We then propose an abstraction, named managed component Data
Flow Graph (mcDFG), which unravels concurrency among objects living
in the execution of a Use Case and which is derived through an
automated procedure.

The mcDFG abstraction is here finalized to the implementation of
a Model-Based Testing approach, supporting both test case selection
and oracle verdict on state errors that would be hard to observe as
functional deviations at the application interface. Experimental proof of
concept on a mid-sized application with a suite of 32 faulty mutations
suggests the viability and capability of detecting faults of the proposed
approach.

In terms of implications of the study, from a research perspective,
the work presented argues on the limitations of testing three-layered
architectures via black-box strategies, and lays the groundwork for
more sound and comprehensive testing approaches. As documented
in this research, novel viable approaches can be conceptualized and
used to integrate information from both the presentation layer and
the business logic layer by adapting existing black-box model-based
testing approaches. From a practitioner perspective, the research serves
as a cautionary tale on the impossibility of comprehensively testing a
software-intensive system based solely on the state of the presentation
layer. During all testing stages, developers must be aware that consid-
ering only the presentation layer (e.g., by using solely monkey testing)
does not allow to unveil faulty interaction sequences hidden in the
business logic of the system under test. In addition, with this research

4 https://jakarta.ee/specifications/cdi/ Accessed January 4, 2024.



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.

w
f
w
A
(
i

t
m
l
a
w

Table 3
Comparison among built-in scopes for main IoC frameworks in high-level programming languages C#, Java, and Python.

Language Framework Built-in Scopes

request enclosed session application conforming

C# Autofac ✓ ✓ ✓ ✓ ✓

Spring.NET DI ✓ ✓ ✓ ✓

Java
CDI ✓ ✓ ✓ ✓ ✓

Spring DI ✓ ✓ ✓ ✓

Guice ✓ ✓ ✓ ✓

Python
Dependency Injector ✓

Pinject ✓ ✓

Injector ✓ ✓ ✓ ✓ ✓
we make available a thorough fault model and a set of failure modes
of three-tier architectures with which they can improve their daily
testing practice and build upon it. Finally, we make readily available
for practitioners a proof of concept implementation outlining how to
concretely build a test suite addressing the presented fault model in
the companion replication package of this study.

The obtained results are promising, but we consider this investiga-
tion as a preliminary step toward the consolidation of the model-based
testing through the mcDFG abstraction. As future research activities,

e plan to mitigate potential threats to validity associated with our
indings by conducting empirical experimentation encompassing real-
orld systems with different architectural styles and technologies.
s additional future work, we plan to fully automate the approach

with exception of the optional Step 5, as its nature requires human
ntervention).

In a wider perspective, this work also aims at providing a contribu-
ion connecting patterns in the practice of software architecture with
odels of concurrency open to analysis and automated verification (Ca-

inescu et al., 2016). The application and its faulty mutations, and their
ssociated models, are part of this aim. In particular, this opens the
ay to enrich mcDFG models with a measure of probability, induced by

discrete time characterization of interaction sequences in the execution
of use cases.

CRediT authorship contribution statement

Leonardo Scommegna: Conceptualization, Data curation, Inves-
tigation, Methodology, Software, Validation, Visualization, Writing
– original draft. Roberto Verdecchia: Investigation, Methodology,
Project administration, Supervision, Writing – review & editing. En-
rico Vicario: Conceptualization, Formal analysis, Funding acquisition,
Investigation, Methodology, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The code and results of the paper are available in the package at
the link: https://doi.org/10.5281/zenodo.10727674.

Acknowledgments

We would like to express our gratitude to Jacopo Parri, Samuele
Sampietro, Boris Brizzi, and Nicolò Pollini for their invaluable advice,
technical insights, and contributions to this project.

This work was partially supported by the European Union under
the Italian National Recovery and Resilience Plan (NRRP) of NextGen-
erationEU, partnership on ‘‘Telecommunications of the Future’’ (PE000
15

0001 - program ‘‘RESTART’’).
References

Allen, J.F., 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26
(11), 832–843.

Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.M., 2014. Mo-
biGUITAR: Automated model-based testing of mobile apps. IEEE Softw. 32 (5),
53–59.

Andrews, J.H., Briand, L.C., Labiche, Y., 2005. Is mutation an appropriate tool for
testing experiments? In: Proceedings of the 27th International Conference on
Software Engineering. pp. 402–411.

Arcuri, A., 2019. RESTful API automated test case generation with EvoMaster. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 28 (1), 1–37.

Barth, A., 2011. Rfc 6265-http state management mechanism. Internet Eng. Task Force
(IETF).

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice.
Addison-Wesley Professional.

Biagiola, M., Stocco, A., Ricca, F., Tonella, P., 2019. Diversity-based web test gen-
eration. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. pp. 142–153.

Brown, K., Craig, G., Amsden, J., Hester, G., Berg, D., Pitt, D., Jakab, P.M., Stine-
hour, R., Weitzel, M., 2003. Enterprise Java Programming with IBM WebSphere.
Addison-Wesley Professional.

Buschmann, F., Henney, K., Schmidt, D.C., 2007. Pattern-Oriented Software
Architecture, on Patterns and Pattern Languages, vol. 5, John wiley & sons.

Calinescu, R., Ghezzi, C., Johnson, K., Pezzé, M., Rafiq, Y., Tamburrelli, G., 2016. For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Trans. Reliab. 65 (1), 107–125. http://dx.doi.org/10.
1109/TR.2015.2452931.

Carrozza, G., Cotroneo, D., Natella, R., Pietrantuono, R., Russo, S., 2013. Analysis and
prediction of mandelbugs in an industrial software system. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation. IEEE,
pp. 262–271.

Cockburn, A., 2000. Writing Effective Use Cases. Addison-Wesley Professional, pp.
46–57.

Cotroneo, D., Pietrantuono, R., Russo, S., Trivedi, K., 2016. How do bugs surface? A
comprehensive study on the characteristics of software bugs manifestation. J. Syst.
Softw. 113, 27–43.

Fioravanti, S., Mattolini, S., Patara, F., Vicario, E., 2016. Experimental performance
evaluation of different data models for a reflection software architecture over
NoSQL persistence layers. In: Proceedings of the 7th ACM/SPEC on International
Conference on Performance Engineering. pp. 297–308.

Fowler, M., 2006. Inversion of control containers and dependency injection pattern.
http://www.martinfowler.com/articles/injection.html.

Fowler, M., 2012. Patterns of Enterprise Application Architecture: Pattern Enterpr
Applica Arch. Addison-Wesley.

Frajták, K., Bureš, M., Jelínek, I., 2015. Transformation of IFML schemas to automated
tests. In: Proceedings of the 2015 Conference on Research in Adaptive and
Convergent Systems. pp. 509–511.

Garousi, V., Mäntylä, M.V., 2016. A systematic literature review of literature re-
views in software testing. Inf. Softw. Technol. 80, 195–216. http://dx.doi.org/
10.1016/j.infsof.2016.09.002, URL https://www.sciencedirect.com/science/article/
pii/S0950584916301446.

Grottke, M., Matias, R., Trivedi, K.S., 2008. The fundamentals of software aging. In:
2008 IEEE International Conference on Software Reliability Engineering Workshops.
ISSRE Wksp, Ieee, pp. 1–6.

Grottke, M., Trivedi, K.S., 2007. Fighting bugs: Remove, retry, replicate, and rejuvenate.
Computer 40 (2).

Gu, T., Sun, C., Ma, X., Cao, C., Xu, C., Yao, Y., Zhang, Q., Lu, J., Su, Z., 2019. Practical
GUI testing of Android applications via model abstraction and refinement. In: 2019
IEEE/ACM 41st International Conference on Software Engineering. ICSE, IEEE, pp.
269–280.

Itkonen, J., Mantyla, M.V., Lassenius, C., 2007. Defect detection efficiency: Test case
based vs. exploratory testing. In: First International Symposium on Empirical
Software Engineering and Measurement. ESEM 2007, IEEE, pp. 61–70.



The Journal of Systems & Software 212 (2024) 112015L. Scommegna et al.
Kaner, C., Falk, J., Nguyen, H.Q., 1999. Testing Computer Software. John Wiley &
Sons.

Kung, D.C., Liu, C.-H., Hsia, P., 2000. An object-oriented web test model for testing
web applications. In: Proceedings First Asia-Pacific Conference on Quality Software.
IEEE, pp. 111–120.

Leveau, J., Blanc, X., Réveillère, L., Falleri, J.-R., Rouvoy, R., 2022. Fostering the
diversity of exploratory testing in web applications. Softw. Test. Verif. Reliab. 32
(5), e1827.

Li, J., Zhao, B., Zhang, C., 2018. Fuzzing: A survey. Cybersecurity 1 (1), 1–13.
Lin, J.-W., Salehnamadi, N., Malek, S., 2023. Route: Roads not taken in ui testing. ACM

Trans. Softw. Eng. Methodol. 32 (3), 1–25.
Linares-Vásquez, M., Moran, K., Poshyvanyk, D., 2017. Continuous, evolutionary and

large-scale: A new perspective for automated mobile app testing. In: 2017 IEEE
International Conference on Software Maintenance and Evolution. ICSME, IEEE,
pp. 399–410.

Liu, Z., Chen, C., Wang, J., Huang, Y., Hu, J., Wang, Q., 2022. Guided bug crush:
Assist manual gui testing of Android apps via hint moves. In: Proceedings of the
2022 CHI Conference on Human Factors in Computing Systems. pp. 1–14.

Mahmood, R., Mirzaei, N., Malek, S., 2014. Evodroid: Segmented evolutionary testing of
android apps. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. pp. 599–609.

Manès, V.J., Han, H., Han, C., Cha, S.K., Egele, M., Schwartz, E.J., Woo, M., 2019.
The art, science, and engineering of fuzzing: A survey. IEEE Trans. Softw. Eng. 47
(11), 2312–2331.

Martin, R.C., 2000. Design principles and design patterns. Object Mentor 1 (34).
Martin, R.C., 2017. Clean architecture: A craftsman’s guide to software structure and

design. In: Robert C. Martin Series, Prentice Hall, Boston, MA.
Mesbah, A., Van Deursen, A., 2009. Invariant-based automatic testing of AJAX user

interfaces. In: 2009 IEEE 31st International Conference on Software Engineering.
IEEE, pp. 210–220.

Mishra, C., Koudas, N., Zuzarte, C., 2008. Generating targeted queries for database
testing. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data. pp. 499–510.

Nidhra, S., Dondeti, J., 2012. Black box and white box testing techniques-a literature
review. Int. J. Embed. Syst. Appl. (IJESA) 2 (2), 29–50.

Nie, L., Said, K.S., Ma, L., Zheng, Y., Zhao, Y., 2023. A systematic mapping study for
graphical user interface testing on mobile apps. IET Softw..

Patara, F., Vicario, E., 2014. An adaptable patient-centric electronic health record
system for personalized home care. In: 2014 8th International Symposium on
Medical Information and Communication Technology. ISMICT, IEEE, pp. 1–5.

Rapps, S., Weyuker, E.J., 1985. Selecting software test data using data flow information.
IEEE Trans. Softw. Eng. (4), 367–375.

Ricca, F., Tonella, P., 2001. Analysis and testing of web applications. In: Proceedings
of the 23rd International Conference on Software Engineering. ICSE 2001, IEEE,
pp. 25–34.

Richardson, C., 2006. POJOs in Action, Developing Enterprise Applications with
Lightweight Frameworks. Manning.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Eng. 14, 131–164.
16
Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F., 2013. Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, vol. 2, John Wiley
& Sons.

Shafique, M., Labiche, Y., 2015. A systematic review of state-based test tools. Int. J.
Softw. Tools Technol. Transf. 17, 59–76.

Souter, A.L., Pollock, L.L., Hisley, D., 1999. Inter-class def-use analysis with partial class
representations. In: Proceedings of the 1999 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering. pp. 47–56.

Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G., Liu, Y., Su, Z., 2017.
Guided, stochastic model-based GUI testing of Android apps. In: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering. pp. 245–256.

Utting, M., Pretschner, A., Legeard, B., 2012. A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliabil. 22 (5), 297–312.

van Rooij, O., Charalambous, M.A., Kaizer, D., Papaevripides, M., Athanasopoulos, E.,
2021. Webfuzz: Grey-box fuzzing for web applications. In: Computer Security–
ESORICS 2021: 26th European Symposium on Research in Computer Security,
Darmstadt, Germany, October 4–8, 2021, Proceedings, Part I 26. Springer, pp.
152–172.

Yousaf, N., Azam, F., Butt, W.H., Anwar, M.W., Rashid, M., 2019. Automated model-
based test case generation for web user interfaces (WUI) from interaction flow
modeling language (IFML) models. IEEE Access 7, 67331–67354.

Zheng, Y., Liu, Y., Xie, X., Liu, Y., Ma, L., Hao, J., Liu, Y., 2021. Automatic web
testing using curiosity-driven reinforcement learning. In: 2021 IEEE/ACM 43rd
International Conference on Software Engineering. ICSE, IEEE, pp. 423–435.

Leonardo Scommegna is currently an Assistant Professor at the Software Technology
Laboratory (STLab) of the School of Engineering, University of Florence, Italy. He
received a Ph.D. in Smart Computing at the University of Florence. His research is
focused on software architectures and reliability with a specific interest in development
methodologies, correctness verification and performance evaluation.

Roberto Verdecchia received a double Ph.D. in Computer Science appointed by the
Gran Sasso Science Institute, L’Aquila, Italy, and the Vrije Universiteit, The Netherlands.
He is currently an Assistant Professor at the Software Technology Laboratory (STLab)
of the School of Engineering, University of Florence, Italy. His research interest focuses
on the adoption of empirical methods to improve software development and system
evolution, with particular interest in the fields of software architecture, software
testing, technical debt, and software sustainability. More information is available at
robertoverdecchia.github.io.

Enrico Vicario is currently a Professor of computer science and engineering and the
Head of the Department of Information Engineering, University of Florence, Florence,
Italy. His research interests include the area of software engineering, with a focus on
quantitative evaluation of stochastic models, software architectures and methodologies,
and on their connection through model-driven engineering practices.


