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Abstract: Availability of reliable and extended datasets of recorded power output from renewables is
nowadays seen as one of the key drivers to improve the design and control of smart energy systems.
In particular, these datasets are needed to train artificial intelligence methods. Very often, however,
datasets can be corrupted due to lack of records connected to failures of the acquisition system,
maintenance downtime periods, etc. Several recovery (imputation) methods have been used to guess
and replace missing data. In this paper, we exploit the matrix completion approach. The available
measures of several variables referring to a real onshore wind farm are organized into a matrix in a
daily range and the Singular Value Thresholding method is used to carry out the matrix completion
process. Numerical results show that matrix completion is a reliable and parameter-free tuning tool
to impute missing data in these applications.

Keywords: corrupted data recovery; matrix completion; data driven; wind farm; wind power

1. Introduction
1.1. Background and Motivation

Wind energy will play a central role in achieving the Paris Agreement target of limiting
global warming to 1.5 °C by 2100. In 2021, 94 GW of wind power was added all over the
world, approaching a global capacity of 850 GW [1]. The International Renewable Energy
Agency (IRENA) suggests reaching 8000 GW of wind energy capacity by 2050 to reach
decarbonization goals by that date [2]. Research and technical advancement are key to
increase the penetration of wind power in the world energy mix. In particular, planning
of energy fluxes in wind-fed grids and power management strategies usually requires
historical datasets of previous installations to build upon, especially in support of the de-
velopment of advanced techniques based on data-driven methods [3]. Reliable records for
wind speed and/or power production of a given turbine are also beneficial for many other
areas of wind energy, such as power curve estimation [4], fatigue assessment [5] and tests of
new individual turbine control methods [3]. They can also be used to estimate the suitabil-
ity of coupling wind energy with different types of energy demand [6]. Operational data
of wind turbines are harvested by the supervisory control and data acquisition (SCADA)
system. However, the measurement system may be interfered with by several events: sen-
sor failures, communication congestion [7], communications errors, delays, maintenance
operations, icing and curtailments [8]. Research may struggle in managing and evaluating
the problem in the presence of missing data [9], leading to incomplete analyses and biased
results. Moreover, historical datasets are crucial for the techno-economic optimization
of new installations and for the simulation of different layouts. Missing data can have
an impact when calculating the monthly or annual yield [10], key for the performance
estimation of new plants. For example, in [11] it is shown that missing data due to icing
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can bias wind resource estimates downwards by more than 3.8%. Data-driven algorithms
also play a crucial role in the management of the electrical network, affected by new issues
brought by the increasing penetration of wind energy. Wind resources are intermittent and
fluctuating, hence the power produced by wind turbines may have a significant impact on
the power system operation [12]. Wind speed and power predictions are now crucial for
correct management of power fluxes [13]. Forecast methods rely on historical data collected
by the SCADA system of the wind farm, and loss of data may severely impact model
estimation and operation. Missing values represent a huge problem for forecasting wind
power and thus the correct management of the system [14]. One option is simply to omit
the missing values in forecast model training. However, this may bias model estimates [8].
Effective methods to fill missing data could also be useful for studies that aim to investigate
the power production stability [15] or to correctly evaluate their performance in complex
terrain [16].

1.2. Related Studies

As discussed, there is a strong interest in developing reliable tools to impute missing
or corrupted data in wind farms datasets, and several strategies have been implemented to
this end lately. To properly contextualize the present study, here we briefly discuss the main
data imputation strategies for time series and their employment for missing data from wind
farm datasets. In [17], an extensive comparison among a number of different procedures for
recovering missing values in time series is carried out. More precisely, matrix completion
approaches and pattern-based methods are described and applied for the recovery of large
missing blocks in real-words time series. Results show that the performance of the methods
depend on the characteristics of the time series, and there is not a single algorithm able
to ensure high accuracy in all cases. The matrix completion approach has also been used
in nuclear forensic analysis [18], where authors compared five different missing value
algorithms and found that the matrix completion produced the best results. Time series
arising in traffic congestion analysis are considered in [19], where the data are organized in
a tensor, and the joint matrix factorization method is used to model the tensor and predict
missing data. The idea of filling missing data with the values of its neighbors that share
the same/similar information is exploited in [20]. In this paper, similarity rules are used
allowing a tolerance to small variations. A different approach is explored in [21], where
the proposed heuristic data imputation algorithm exploits attribute correlations expressed
in terms of relaxed functional dependencies. In [22], a data cleaning system that relies
on statistical learning and inference is proposed. Concerning the specific case of missing
data in wind farms’ datasets, several approaches have been tested. In [8], the multiple
imputation approach is used, while in [9,14] deep learning approaches are exploited. More
precisely, in [9] BP neural networks are used to predict missing power data. Interestingly,
an adaptive procedure is proposed that automatically selects the minimum number of
neurons from the training error. The study presented in [14] addresses the problem of
filling missing data of wind farms via the context encoder neural networks. Finally, in [23]
the issue of missing data in wind farm datasets is analyzed and faced with moving average
approaches, namely moving average based on autoregressive order and moving average
representation.

2. Materials and Methods
2.1. Theoretical Approach

In this paper, we want to develop an easy-to-use, yet effective method for missing
data imputation. In particular, we focus on the matrix estimation reformulation of wind
and power data reconstruction. Measurements collected by the SCADA system can be
rearranged into a matrix where each column corresponds to a particular measured quantity
(for example, wind speed, generated power, etc.), and each row corresponds to a particular
timestamp. In this scenario, the incomplete measurements correspond to the missing matrix
entries we aim at reconstructing, exploiting the observed ones, i.e., the collected data.
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When it comes to time series, both univariate and multivariate, it is common to look
for a reconstruction of all variables exploiting the information in the series itself (or its
lagged copies [23]). In the matrix completion approach it means we have to rearrange the
series (which can be seen as one or more 1× n vectors) into a matrix, usually wrapping
the vectors column (row)-wise (as in [14,24]). On the other hand, in the context of neural
networks it is common to use many attributes to predict a single output (e.g., [9]).

In the present work, we try to merge these two aspects in our data imputation pro-
cedure. Indeed, our focus is on reconstructing the mean generated power (even if we
reconstruct all attributes together) to carry on further analysis on the wind farm; to improve
the reconstruction, we exploit the measurements of several variables from the database in
a daily range. We arrange data into a matrix (stacking data of each turbine in the farm),
and finally we wrap column-wise to make the matrix dimension more manageable for the
numerical algorithm. A clear advantage of our method, based on the matrix completion
approach, compared, for example, to methods based on neural network [9] is its simplicity;
indeed, in matrix completion, there is no model to design as in neural networks, and the
optimization method needed to solve the problem does not need parameter tuning. This
results in a reliable and easy to use method.

2.2. The Matrix Completion Problem

As discussed, we organize our data in a matrix, and the imputation of missing data
is then reduced to a matrix completion problem, i.e., on the problem of reconstructing a
matrix given only a portion of observed entries. Since matrices are ubiquitous and versatile
in science and engineering, the matrix completion approach has been applied in many
fields, such as collaborative filtering [25], bioinformatics [26], image reconstruction [27] and
data imputation [24]. Researchers in numerical optimization and statistics have worked on
matrix completion problems under a variety of modeling assumptions [24,25].

A popular convex relaxation of the problem consists of finding the minimum of the
nuclear norm of the matrix that has to be reconstructed subject to linear constraints in
order to exactly recover the observed data [28,29]. This approach has the advantage of
exactly, rather than approximately, recovering the entries of the matrix when a suitable low
rank assumption is satisfied, together with another assumption called “incoherence”. A
number of papers in statistics follow a different approach and propose estimators of the
true matrix providing bounds on the expected value of the estimation error [24,30]. All
these approaches use, in a different form, the singular value decomposition (SVD) of the
observed matrix and a matrix shrinkage operator (see, for example, [30–32]). An alternative
strategy for the matrix completion problem relies on the semidefinite programming (SDP)
problem reformulation (see [28,33,34]).

Here, we adopt the nuclear norm minimization model and employ for its solution the
SVD-based algorithm proposed by Cai and Candès in [31]. In the next sections, we will
describe in detail the model and the algorithm, and then we will show its application to the
recovery of power data.

We now introduce the notation and the definitions we will use. Let M ∈ Rn1×n2 be the
matrix of data and Mij the entry of i-th row and j-th column. Suppose we observe only m
entries of M with indexes in Ω. So, we have |Ω| = m and formally

Ω = {(i, j) | Mij is observed}.

We denote with Ω̄ the complementary of Ω, i.e., the set of indexes of not observed
entries. We introduce the operator PΩ : Rn1×n2 → Rn1×n2 defined as follows:

PΩ(M)ij =

{
Mij if (i, j) ∈ Ω
0 otherwise.

(1)

Moreover, in what follows we will make use of the singular value decomposition of a
matrix.
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Definition 1. Given a matrix A ∈ Rn1×n2 , n = min{n1, n2}, it can be factorized as A = USVT

where U ∈ Rn1×n, V ∈ Rn2×n and S = diag(σ1, . . . , σn) is a diagonal matrix. The σi are
called singular values of A. They are non-negative, and we suppose them in decreasing order
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. The matrices U and V are orthornormal, i.e., UTU = I, VTV = I
where I is the n× n identity matrix, and the column vectors of U and V are called left and right
singular vectors of A, respectively. We note that the rank of A corresponds to the number of non-zero
singular values. The factorization USVT is the singular value decomposition (from now on SVD)
of the matrix A.

We finally introduce the Froebenius norm of a given matrix A ∈ Rn1×n2 that is defined
as ‖A‖F =

√
∑n1

i=1 ∑n2
j=1 A2

ij and the nuclear norm that is the sum of its singular values,

i.e., ‖A‖∗ = ∑
min{n1,n2}
i=1 σi.

Now, we have all the elements at hand to introduce the matrix completion problem.
Given a matrix M ∈ Rn1×n2 where we observe m entries with indexes in Ω, we want to
fully reconstruct M from the observed entries. Given a set of m observed entries, there are
infinitely many matrices with those entries. A common hypothesis is to assume that the
matrix M has low rank [29]. With this assumption, the matrix completion problem can be
stated as the constrained minimization problem:

min rank(X)

s.t. PΩ(X) = PΩ(M)
(2)

where the linear constraint imposes equality element-wise. Unfortunately, this problem is
NP-hard and exponential in time. A popular convex relaxation of the problem (see [29])
consists of finding the minimum nuclear norm of X that satisfies the linear constraints
in (2), that is, solving the following heuristic optimization:

min ‖X‖∗

s.t. PΩ(X) = PΩ(M).
(3)

Candès and Recht proved in [29] that if Ω, sampled uniformly at random among all
subsets of cardinality m and M, obeys a low coherence condition, then with large proba-
bility, the unique solution to (3) is exactly M, provided that the number of samples obeys
m ≥ Cn5/4r log n, for some positive numerical constant C. In other words, problem (3) is
“formally equivalent” to problem (2), and M can be exactly reconstructed.

Several methods [31,33,35–38] have been proposed to compute an approximate solu-
tion X to the optimization problem (3). Once X has been computed, the entries of X that
do not belong to Ω are used to impute the missing data in M.

2.3. The Singular Value Thresholding Method

In [31], the authors proposed the singular value thresholding (SVT) method to solve
the problem (3). In the following, we describe its key elements, the algorithm and the
main theoretical results. We begin defining the singular value shrinkage operator of a given
matrix A.

Definition 2. Given a matrix A ∈ Rn1×n2 , n = min{n1, n2}, its SVD decomposition A = USVT

and a constant τ ≥ 0, we define the operator

Sτ(A) = USτ(S)VT , Sτ(S) = diag(max{σi − τ, 0}i=1,...,n). (4)

In words, the operator Sτ sets to 0 all singular values less than τ and reduces the
others of a quantity equal to τ. This procedure is also known as soft thresholding. We note
that if A has many singular values less than τ, then Sτ(A) has rank much smaller than A.
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The SVT is an iterative method. Given a starting point Y0 and a sequence of steps {δk}
at each iteration, it computes the matrices Xk, Yk as follows:{

Xk = Sτ(Yk−1)

Yk = Yk−1 + δkPΩ(M− Xk)
k = 1, 2, . . . (5)

The following theorems state that the sequence {Xk} converges to the solution of a
minimization problem which is strictly correlated to problem (3).

Theorem 1. Suppose the sequence of steps satisfies 0 < inf δk ≤ sup δk < 2. Then, the se-
quence {Xk} generated by (5) converges to Z?

τ , for k → ∞, where Z?
τ is a unique solution of the

minimization problem

min τ‖Z‖∗ +
1
2
‖Z‖2

F

s.t. PΩ(Z) = PΩ(X).
(6)

Theorem 2. Let Z?
τ be the solution of (6) and Z∞ the solution of (3) with minimum Froebenius

norm, that is

Z∞
de f
= arg min

Z
{‖Z‖2

F : Z solution of (3)}.

Then,
lim

τ→∞
‖Z?

τ − Z∞‖F = 0.

These results can be interpreted as follows: for big values of τ, the solution to prob-
lem (6) is “close” to the solution of (3). So, we expect that if we choose τ big enough, the
numerical solution provided by the iterative process (5) is a good approximation of the
original matrix M.

We highlight two crucial properties of the algorithm: low-rank property and sparsity.
About the former, an empirical fact is that the matrices in the sequence {Xk} have low rank.
The reason is that we are interested in large values of τ (as suggested by Theorem 2), and it
happens that many singular values are set to 0 during the thresholding step. About the
latter property, we have that at each iteration Yk is sparse. It can be proved by induction that
Yk vanishes outside Ω. These two properties enable reducing the overall computational
cost of the SVD decomposition and saving memory storage.

The SVT algorithm is sketched in Section 3.4, page 12. In Section 3, we specify
the stopping criteria implemented in our experimentation and our choice of the input
parameters Y0, τ, {δk}, kmax.

2.4. Data Reduction
2.4.1. Turbine Functioning

The matrix completion method was applied to the historical dataset coming from the
SCADA system of a real wind farm located in Kedros, Greece. The system includes six
Enercon E-82 (2.3 MW) wind turbines. The manufacturer provides a datasheet containing
the ideal turbine power curve, i.e., how the generated power depends on the wind speed.
The ideal power curve is plotted in black in Figure 1, overlapping the real measured data
(blue dots).
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Figure 1. Plot of measured power vs. measured wind speed of all data points (blue dots) and power
curve provided by constructor (black solid line). In the storm region (v > 25 m/s), the dashed curve
represents the trend presumed by the constructor but not guaranteed.

We highlight three key properties of the curve:

1. There is a cut–in speed vin below which the turbine is not activated, hence the gener-
ated power is 0 kW;

2. Above the cut–in speed, the curve has a cubic trend until reaches a rated speed vrated.
Above this value, the power generation is kept constant;

3. Finally, the turbine is braked and the power generation stopped when the wind speed
is above the cut–off speed vo f f .

In our case study, the three speed values are vin = 2 m/s, vo f f = 25 m/s and
vrated = 14 m/s. Most wind turbines interrupt the power generation when the wind speed
exceeds the cut–off value. This model is instead provided with the Enercon storm control
that slows the wind turbine down so that it can continue to operate even at high wind
velocities. The produced power is gradually reduced, starting from a defined value (25 m/s)
until the actual cut–off (38 m/s). Real measurement data validate the behaviour, following
the predicted curve even in this high wind speed area.

2.4.2. Data Collection

We have at our disposal data of one year of operation. The SCADA system harvests
data each 10 min, recording mean, maximum and minimum values of several quantities
during the time interval. The outside temperature is collected too. Our set of data could
have missing values, i.e., due to blackout or failure in the remote monitoring system, or
inconsistent data, that is, wind speed and generated power inconsistent with the ideal
power curve. This can happen due to sensors malfunctioning. Since we aim to carry out an
energy analysis of the wind farm, our goal is to achieve consistent data as much as possible.
Therefore, we will proceed to recover inconsistent data as well as missing data.

In our case study, we will focus on and exploit only a subset of all the measurements
collected, in particular: mean, maximum and minimum values of the wind speed, rotor
speed and generated power data. For the classification of the data, we will make use of the
outside temperature too.



Energies 2023, 16, 1674 7 of 32

2.4.3. Classification Criteria

Now, we present the criteria used to classify inconsistent data. These consider the
outside temperature recorded and a comparison between generated power and the ideal
power curve.

Icing

When the outside temperature is extremely low, we can have the formation of ice on
the anemometer or on the blades of the turbines. Even small amounts of ice can cause
significant power loss due to the aerodynamic inefficiency of the modified blade shape.
This phenomenon is called icing. Icing is a phenomenon which is characteristic of a specific
site and of course needs to be accounted for in the estimation of the actual annual energy
production (AEP) of a wind farm; to this end, losses (annual average percentage reduction
of AEP) are usually introduced when siting analyses are carried out. In the present case,
however, the scope of the analysis was to recreate a complete time history of wind/power
data for external use, e.g., in energy management systems. For this reason, data subject to
icing (thus dependent of the specific year of measurement) are considered as inconsistent,
as common practice by the industrial partner EUNICE WIND that supported this activity.
However, they could be easily included again in the case of a specific year needing to
be analyzed. In our procedure, we classified as icing all timestamps corresponding with
measured temperature less than −5 °C.

Power Band

During the operation, due to the interaction of the turbine with unpredictable phenom-
ena, real production data may not match the exact ideal production that we may expect
utilizing the ideal power curve from the manufacturer’s datasheet. Little discrepancies are
within the norm. However, sensor failure may cause actually abnormal measurements with
that must be rejected. Usually, the most reliable measurements are the ones of wind speed
(except in the case of icing we discussed before), while other data, such as rotor speed or
generated power, are more uncertain. So, in our classification, we assume that wind data
are always reliable. Then, we define a band around the power curve and check if the pair
mean values of wind speed and generated power is inside the band. If the check is passed,
we maintain all the data; otherwise, we maintain only the wind data and go on recovering
the other data. The red lines in Figure 2 represent the power band width. The power band
is defined as follows:

• For wind speed values below the cut–in speed vin = 2 m/s, we consider consistent
only the data with generated power null, so the band is exactly the power curve;

• For wind speed values included between vin and vrated = 14 m/s, the band is limited
by ±20% of the theoretical generated power;

• For values included between vrated and vo f f = 25 m/s, the generated power is kept
constant, and the band is limited by +10%/−5% of the theoretical generated power;

• For speed above vo f f , the curve is symmetrically extended and the same for the band.

Figure 2 shows that the mean average error (MAE) is within the power band, repre-
sented by the red lines, except for data corresponding to wind speed of the order of 35 m/s.
The MAE is computed with respect to the ideal value in the power curve.
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Figure 2. Histograms of the mean absolute error (MAE) of measured power. On the X-axes, we have
a range of wind speed; each interval is 1 m/s wide. The red lines represents the band width.

2.5. Recovery Workflow

We now discuss the procedure for data recovery. More precisely, we describe how
we arrange the data into a matrix, the reconstruction procedure and how we evaluate the
obtained outcome.

2.5.1. Building the Data Matrix M

Our goal is to recover the mean generated power of the 6 turbines for an efficiency
analysis of the wind farm. For the reconstruction, we use the data of wind speed, rotor
speed and generated electrical power divided by day. For each of these three quantities,
we use the average value and the maximum and minimum values of the 10 min interval.
We also use the theoretical value of generated power given the wind speed. As a result, at
each timestamp, we have 10 values per turbine. In each day, we have 144 timestamps per
turbine, for a total of 864. We rearrange these data in a matrix M of dimension 144× 60.
At a generic row i of the matrix, we have the collected data at timestamp ti. The values
relative the k-th turbine are stored in columns of index j = 6`+ k with ` = 0, . . . , 9, i.e., the
first turbine values are stored in Mi,j, j = 1, 7, . . . , 55 and so on.

In this framework, the data of rotor speed and maximum/minimum values of the
three quantities are used as additional information to “help” the reconstruction. The same
is true for the theoretical generated power.

2.5.2. The Training, Validation and Testing Sets

Our classification procedure gives rise to the set Ω of the indices of observed entries,
where we include indices corresponding to all consistent data and discard all missing or
inconsistent data. More specifically, whereas we have consistent data in a timestamp , we
observe all 10 values of that interval, while when they are inconsistent, we only observe the
three values of wind speed (since we decided to consider them always reliable, except for
the case of icing) and the theoretical generated power, while the other six are unobserved.

We also consider a validation set that we will use to evaluate the reconstruction. We
consider a portion (in our case 15% sampled randomly) of all “consistent timestamps” and
discard them too as described before. The remaining data are referred to as the training set.
Using this approach, we can compare the reconstruction of the data in the validation set
with the actual values and obtain a further evaluation criterion of the procedure. We will
denote as Ωtr and Ωval the sets of indices associated to the training set and the validation
set, respectively. The testing set is given by the complementary set to Ω, i.e., the set of
indices that do not belong to Ω. We will also compare the value of the rebuilt power data
that clearly belong to the testing set, with the theoretical value of the generated power given
the corresponding wind speed. Then, we will make use of the sets Ωpow,val and Ωpow,test
that denote the set of indices corresponding to the power measures in the validation and
testing set, respectively.
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2.5.3. Reconstruction Procedure

As mentioned before, we recover the data one day at a time. We skip the day and do
not even try the reconstruction if one of the following situations occurs:

1. There is at least one interval at which icing occurs. In this case, we have no reliable
information for the particular turbine in that timestamp. So, the reconstruction is
too hard;

2. All the data of one turbine are missing. This can happen due to a blackout or a failure
during the whole day.

3. After the classification procedure, it happens that the day has less than 50% of consis-
tent timestamps.

In the other cases, we use the SVT algorithm, described in Section 2.3, to reconstruct
the matrix M. Before that, we have to normalize the data. Indeed, wind speed, rotor
speed and generated power have three different ranges which differ up to two orders of
magnitude (indeed, the wind speed maximum value is approximately 40 m/s, while the
maximum generated power is over 2500 kW). We opted for a constant normalization, i.e.,
we choose three values greater than the maximum values of wind speed, rotor speed and
generated power of the whole year, respectively. Then, each day the data are normalized,
we divide by the appropriate value. In our case, the study values are 41.2 m/s for the
wind speed, 25.78 min−1 for the rotor speed and 2715 kW for the power. The entries of the
normalized matrix M′ are in the range [0, 1]. Then, the reconstruction is carried out, and
finally the data are denormalized multiplying by the same constants.

3. Results
3.1. Implemented Workflow

Here, we briefly summarize the steps of our recovery strategy described in Section 2.5.
For every chosen day, we perform the following steps in order to obtain the rebuilt matrix
Mrec.

1. IF there is icing or all data from a turbine are missing: discard the day and skip to
Step 3.
ELSE
Classify the data and build the set Ω.

2. IF the data are all consistent, or less than the 50% of data are consistent: discard the
day and skip to Step 3.
ELSE
proceed with recovery:

(a) Rearrange data in matrix M and normalize them to obtain M′.
(b) Divide consistent data in the training and the validation set. Let PΩtr (M′) be

the matrix with 0 entries out of Ωtr.
(c) Apply the SVT Algorithm 1 with PΩtr (M′) as input matrix. Let M̂ be the

outcome of the SVT Algorithm.
(d) Denormalize M̂ and obtain Mrec.

3. RETURN

3.2. Summary of Days in 2015

As already mentioned, we applied our reconstruction procedure only to data of days
in which the corresponding matrix completion problem was a well-posed problem. More
precisely, we discarded days with icing, days with all missing data of a turbine or less than
50% of consistent timestamps. (We calculate the ratio of consistent timestamps over the
total, i.e., 864.) In our case study, we have:

• One day with icing;
• One day with all data missing from a turbine;
• Four days with less than 50% of consistent data;
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• Seven days with 100% of consistent data.

Overall, the available database accounts for 352 out of 365 days.
Then, we divide the remaining days according to the following two different criteria.

Percentage of consistent data. We consider three groups: Sample_75, days with a percent-
age of consistent data greater or equal to 50% and less than 75%; Sample_90, days
with a percentage greater or equal to 75% and less than 90%; Sample_100, days with
a percentage greater or equal to 90%.

Wind speed zone. We divide the range of wind speed in three zones: Zone_1 up to vin;
Zone_2 from vin to vrated and Zone_3 from vrated on. Then, the days are divided based
on in which wind zone the majority of the mean wind speed of inconsistent/missing
measurements are.

In Figure 3, we show the heatmap of the days with respect to the two criteria. Zone_1
is empty and Zone_3 contains a small amount of days. So, we can ignore those days and
consider only Zone_2 days.

< 75% < 90% < 100%
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Figure 3. Heatmap of number of days divided by percentage of consistent data (column) and zone
with most of the data in (row).

3.3. Reconstruction Evaluation

To evaluate the reconstruction, we count how many consistent data we obtain after
the matrix completion process. More precisely, we consider the power data which were
previously classified as unobserved (i.e., inconsistent or missing in the training set) and are
then reconstructed inside the band. Then, denoting as nrec the number of such data, we
compute the following values:

• Total Reconstruction Rate

ptot =
nrec

864
× 100, (7)
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i.e., the percentage of reconstructed values of the generated power with respect to
all data.

• Relative Reconstruction Rate

prel =
nrec

RT
× 100, (8)

where RT is the cardinality of the set of rejected timestamps. In other words, prel is
the percentage of reconstructed values of the generated power with respect to the
discarded timestamps.

• In order to give more insights on the accuracy of the computed reconstruction, in
addition to the total and relative reconstruction rate we provide the value of the
following RMSEs:

– RMSE on the training set:

RMSE(Ωtr) =
‖PΩtr (M−Mrec)‖F

‖PΩtr (M)‖F
.

– RMSE on the validation set:

RMSE(Ωval) =
‖PΩval (M−Mrec)‖F

‖PΩval (M)‖F
.

– RMSE of the power data on the testing set:

RMSE(Ωpow,val) =
‖PΩpow,val (M−Mrec)‖F

‖PΩpow,val (M)‖F
.

– RMSE of the power data on the testing set:

RMSE(Ωpow,test) =

√
∑(i,j)∈Ωpow,test

(Mi,j∗ − (Mrec)i,j)2√
∑(i,j)∈Ωpow,test

(Mi,j∗)2
,

where j∗ is the column index of the theoretical generated power values corre-
sponding to values in the j-th column. (With our arrangement of the data, the
theoretical values of generated power are 18 columns ahead of the mean gener-
ated power values, i.e., j∗ = j + 18).

3.4. Numerical Experimentation

Now, we report the results of our numerical simulations. All the reported numerical
results were obtained by implementing the SVT Algorithm 1 in MATLAB R2020b and
performing the numerical experiments on an Intel Core i7-9700T CPU 2.00–1.99 GHz with
an 16 GB RAM.
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Algorithm 1 SVT Algorithm

Input: PΩ(M), Ω, Y0, τ, {δk}k=1,...,kmax, kmax
Output: M̂

1: for k = 1 to kmax do
2: Compute the SVD of Yk−1
3: Set Xk = Sτ(Yk−1)
4: if the stopping criterion is satisfied then
5: return
6: end if
7: Set Yk = Yk−1 + δkPΩ(M− Xk)
8: end for
9: return M̂ = Xk

In all our experimentation, we used the following values for parameters and initial
point: the sequence of steps {δk} is chosen equal to a constant value δ = 1.99, the threshold

τ and the initial guess Y0 are chosen as follows: τ =
5‖PΩtr (M)‖F
|Ωtr | and Y0 = k0δPΩtr (M),

where k0 = d τ
δ‖PΩtr (M)‖F

e. For motivation and discussion on the choice of parameters see

Section 5.1 in [31].
As stopping criterion, we set the maximum number of iterations kmax = 500. We also

implemented a criterion on the relative error evaluated on training data

‖PΩtr (M′ − Xk)‖F

‖PΩtr (M′)‖F
≤ tol1

and a criterion on the relative error between two consecutive iterations

‖Xk − Xk−1‖F
‖Xk‖F

≤ tol2,

with tol1 = 10−2, tol2 = 10−5. We note that in our experiments the above criteria on
relative errors never activated, and the algorithm always reached the maximum number of
iterations.

Since the computation of the SVD is the most CPU -intense part of the SVT algorithm,
we employed the cheaper truncated SVD as described in [31]. For its computation in our
Matlab implementation, we used the Matlab built-in function svds.

We chose five random days for each of the three groups: Sample_75, Sample_90 and
Sample_100, and we tried 50 reconstructions with different training and validation sets.

Tables 1–3 report the results for Sample_75, Sample_90 and Sample_100, respectively.
The reported data are the following: the first column shows the day considered; columns
from 2 to 4 report the number of rejected timestamps RT and the cardinality of the train-
ing and validation sets; in the subsequent two columns we report the total and relative
reconstruction rate ptot and prel averaged over 50 runs; in the next columns we report
RMSE(Ωtr), RMSE(Ωval), RMSE(Ωpow,val) and RMSE(Ωpow,test) averaged over 50 runs.
Finally, we report the average CPU time.

The three Tables show that the relative reconstruction rate prel is around 50% or
higher in Sample_90 and Sample_100, while it is lower (around the 20%) in Sample_75,
highlighting that problems with percentage of discarded data between 25% and 50% are
difficult to solve. In addition, we note that in all the cases, the RMSE on the validation test
is of the order of 10−1, and we observe that is always greater than the RMSE evaluated only
on the power data of the validation. This means that power reconstruction (which is our
final goal) is slightly better than general reconstruction. We also note that an increase in the
number of consistent data produces an increase in the RMSE values.
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Table 1. Reconstruction results on days from the Sample_75 group. The reported statistics are
averaged over 50 runs.

Reconst. Rate RMSE
Day RT Ωtr Ωval ptot prel (Ωtr) (Ωval) (Ωpow,val) (Ωpow,test) CPU

26 February 233 536 95 9.97% 37.0% 2.92× 10−2 1.64× 10−1 1.04× 10−1 2.29× 10−1 1.5
7 May 247 524 93 6.90% 24.1% 2.45× 10−2 1.43× 10−1 9.01× 10−2 1.83× 10−1 1.5
26 July 258 515 91 6.54% 21.9% 9.98× 10−2 2.31× 10−1 1.41× 10−1 3.75× 10−1 1.5

19 August 264 510 90 7.82% 25.6% 7.77× 10−2 2.27× 10−1 1.74× 10−1 3.11× 10−1 1.4
2 September 317 465 82 10.71% 29.2% 8.96× 10−2 2.04× 10−1 1.75× 10−1 2.62× 10−1 1.5

Table 2. Reconstruction results on days from the Sample_90 group. The reported statistics are
averaged over 50 runs.

Reconst. Rate RMSE
Day RT Ωtr Ωval ptot prel (Ωtr) (Ωval) (Ωpow,val) (Ωpow,test) CPU

16 May 115 637 112 7.59% 57.1% 4.47× 10−2 1.07× 10−1 8.78× 10−2 2.05× 10−1 1.4
18 June 165 594 105 7.91% 41.4% 2.16× 10−2 1.03× 10−1 5.68× 10−2 2.24× 10−1 1.6

18 August 199 565 100 6.34% 27.5% 6.81× 10−2 1.81× 10−1 1.30× 10−1 2.22× 10−1 1.5
26 August 114 638 112 5.93% 45.0% 2.24× 10−2 1.39× 10−1 8.03× 10−2 2.08× 10−1 1.6

24 September 119 633 112 8.21% 59.6% 3.92× 10−2 1.53× 10−1 1.07× 10−1 3.22× 10−1 1.6

Table 3. Reconstruction results on days from the Sample_100 group. The reported statistics are
averaged over 50 runs.

Reconst. Rate RMSE
Day RT Ωtr Ωval ptot prel (Ωtr) (Ωval) (Ωpow,val) (Ωpow,test) CPU

10 April 43 698 123 1.34% 26.9% 1.31× 10−2 6.91× 10−2 2.57× 10−2 6.59× 10−2 1.5
2 June 12 724 128 0.93% 67.0% 1.38× 10−2 7.36× 10−2 3.69× 10−2 1.34× 10−1 1.7

15 September 81 666 117 5.97% 63.7% 1.70× 10−2 1.34× 10−1 7.59× 10−2 1.93× 10−1 1.5
16 October 11 725 128 0.89% 69.6% 1.60× 10−2 8.78× 10−2 4.67× 10−2 1.23× 10−1 1.7

11 December 29 710 125 1.70% 50.6% 1.39× 10−2 1.05× 10−1 5.59× 10−2 2.37× 10−1 1.6

The statistics reported in the tables are not enough to give a complete picture of the
obtained results. Then, in order to give more insight into the quality of the reconstruction,
we also illustrate the results through a number of graphics for each examined day. In the
following, we show these for a specific day of each group, and further graphics are given in
the Appendix A. We plot the power rejected data (red dots), power validation data (green
triangles) and power reconstructed data (blue squares) both versus wind speed and versus
ideal power. The gray area represents the acceptance band.

We underscore that in the plots in the first and second lines of the figures of each day,
the more points we have inside the band of the right plot, the better the procedure is. In the
bottom line pictures, if the points lie near the diagonal, it means that the reconstruction
method provides data close to the ideal value.

In Figure 4, we plot the results corresponding to 26 February. Many rejected points are
reconstructed inside the band, and in general, all the data points are closer to the band than
the original ones.

Analogous plots are reported in Figure 5 for 16 May in Sample_90. Similar to the Sam-
ple_75 case, the quality of the reconstructed data seems good. Moreover, the method shows
extremely good performance on the validation set. We note that only a few reconstructed
data are not correctly rebuilt as they are far away from the band.
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Figure 4. Plot of reconstructions for data points of 26 February (Sample_75). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs. wind speed
of rejected and validation data (up and middle, respectively) and plot of power vs. ideal power of
rejected data (bottom).
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Figure 5. Plot of reconstructions for data points of 16 May (Sample_90). We compare original data
(on the left) and reconstructed values (on the right). We show plots of power vs. wind speed of
rejected and validation data (up and middle, respectively) and plot of power vs. ideal power of
rejected data (bottom).

In Figure 6, we report the results for 15 September in Sample_100. In this last case,
the number of rejected data is smaller. We can observe that we have extremely good
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performance for the validation set, and again the reconstructed data are closer to the power
curve than the discarded data except for data with wind speed near 4 m/s.
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Figure 6. Plot of reconstructions for data points of 15 September 15 (Sample_100). We compare
original data (on the left) and reconstructed values (on the right). We show plots of power vs. wind
speed of rejected and validation data (up and middle, respectively) and plot of power vs. ideal power
of rejected data (bottom).
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Looking at the validation data, some of the measures corresponding to v < vin have
been imputed with power value greater than 0 kW, while for data in that range, we expect a
null generated power (see Section 2.4.3, Power band paragraph). This is clear, for example,
in Figures A2–A4 and A6. We note this is not a big issue as it is always possible to implement
a post–reconstruction procedure to set the power values to 0 kW for the data with v < vin.

Let us comment on another aspect of the proposed procedure. In Tables 2 and 3, the
most difficult days are 10 April and 18 August. Indeed, we have prel < 30% which is much
less than other days in the groups. Looking at Figures A5 and A9, we can see that the
majority of the data corresponds to low wind speed values. Indeed, for low speed data, the
generated power is small, and the band is narrow, making the reconstruction task difficult.
For these data, the absolute error is relatively small, but looking at the Figures, we can
see how the reconstructed data form a cloud around the band and do not reproduce the
trend well.

4. Discussion
4.1. Comments on Numerical Results

Upon examination of the numerical results presented in Section 3 and in the Appendix A,
it can be noticed that our procedure is able to reconstruct the data trend in most of the
cases. The reported statistics confirm that the procedure imputes power data with sufficient
accuracy.

A weak point is that with our acceptance criteria, many points with high wind speed
are really close to the band, but theoretically out of it (e.g., see Figures A1, A5, A7 and A11),
and thus they are rejected. This yields values of the relative reconstruction rate that are not
as high as desirable. Nonetheless, we can consider those points as an improvement com-
pared to the original rejected data. In addition, we highlight that in our experimentation,
the acceptance criteria are suggested by the particular real case scenario, but they can be
modified (e.g., enlarging the band) according to the application case.

Another downside of the procedure concerns the reconstruction of data in the area of
low wind speed (<5 m/s). Data with wind speed less than vin have already been labeled
as non-critical, since they can be dealt with in a post-processing procedure, which sets the
generated power to 0 kW, according to our discussion in Section 2.4.3. On the other hand,
data with wind speed slightly higher than vin are often reconstructed as a cloud around
the band. This can be due to the small generated power of these data compared to the
whole operative range. Indeed, despite data normalization, the wide power range makes it
harder to reconstruct the power corresponding to low speeds. Future developments could
enhance the reconstruction with an ad hoc procedure for these particular data.

As a final remark, results demonstrate that, different from many machine learning
procedures, the matrix completion approach does not require parameter tuning. Indeed,
our experimentation shows that SVT is reliable with the standard choice of the three
parameters suggested in [31], and it does not require tuning them problem by problem.
This could make our procedure an easy and ready-to-use tool to be used in many contexts,
even only for preliminary processing of the data.

4.2. Conclusions and Perspectives

We focused on the imputation of missing power measures in data provided by the
SCADA system of a real wind farm. For the estimation of the missing data we employed
measures of several quantities: wind speed, rotor speed and generated power (mean,
maximum and minimum) and adopted the matrix completion reformulation. For the
numerical solution of the arising optimization problem, we employed the SVT method.

The practical performance of this approach was investigated on real data, i.e., those
provided by a wind farm located in Kedros, Greece. The obtained results show that this
approach is able to impute power data with sufficient accuracy. In order to increase the
reconstruction quality, it could be useful to employ specifically designed second order
methods for the numerical solution of the optimization problem (3) and the computation of
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the reconstructed matrix [33]. It is worth remarking that, as outlined in [17], performance
of data imputation strategies depends on the specific characteristics of the data involved.
A neural networks model, if properly tuned, provides high accuracy (potentially the
highest) [9]. However, the model’s fine-tuning is highly time-consuming as it involves
the choice of the net architecture (layer, nodes, activation functions), the loss function and
the optimizer used for the training, which by itself requires parameter tuning (learning
rate and batch size) [14]. Conversely, the approach proposed in the present study does not
require any tuning of either the model or the parameters.

Further aspects that are worth being investigated in the near future are the adopted
strategy for scaling the matrix and the choice of the measures that are used to build it and
to drive the imputation of the missing power data. In addition, it is interesting to consider
a modification to the acceptance criteria (according to different applied scenarios) and
improvements of our method with ad hoc procedures to deal with the reconstruction of
low speed data.
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Appendix A. Additional Images

For the sake of clarity, we showed images of only a day for each group in the main body
of the paper. We report here the results of the other days considered in the discussion above.
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Appendix A.1. Sample_75
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Figure A1. Plot of reconstructions for data points of 7 May (Sample_75). We compare original data
(on the left) and reconstructed values (on the right). We show plots of power vs. wind speed of
rejected and validation data (up and middle respectively) and plot of power vs. ideal power of
rejected data (bottom).
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Figure A2. Plot of reconstructions for data points of 26 July (Sample_75). We compare original data
(on the left) and reconstructed values (on the right). We show plots of power vs. wind speed of
rejected and validation data (up and middle respectively) and plot of power vs. ideal power of
rejected data (bottom).
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Figure A3. Plot of reconstructions for data points of 19 August (Sample_75). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs. wind speed
of rejected and validation data (up and middle respectively) and plot of power vs. ideal power of
rejected data (bottom).
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Figure A4. Plot of reconstructions for data points of 2 September (Sample_75). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs.wind speed
of rejected and validation data (up and middle respectively) and plot of power vs.ideal power of
rejected data (bottom).
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Appendix A.2. Sample_90
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Figure A5. Plot of reconstructions for data points of 18 June (Sample_90). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs.wind speed
of rejected and validation data (up and middle respectively) and plot of power vs.ideal power of
rejected data (bottom).
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Figure A6. Plot of reconstructions for data points of 18 August (Sample_90). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs.wind speed
of rejected and validation data (up and middle respectively) and plot of power vs.ideal power of
rejected data (bottom).
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Figure A7. Plot of reconstructions for data points of 23 August (Sample_90). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs.wind speed
of rejected and validation data (up and middle respectively) and plot of power vs.ideal power of
rejected data (bottom).
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Figure A8. Plot of reconstructions for data points of 24 September (Sample_90). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs.wind speed
of rejected and validation data (up and middle respectively) and plot of power vs.ideal power of
rejected data (bottom).
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Appendix A.3. Sample_100
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Figure A9. Plot of reconstructions for data points of 10 April (Sample_100). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs.wind speed
of rejected and validation data (up and middle respectively) and plot of power vs.ideal power of
rejected data (bottom).
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Figure A10. Plot of reconstructions for data points of 2 June (Sample_100). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs.wind speed
of rejected and validation data (up and middle respectively) and plot of power vs.ideal power of
rejected data (bottom).
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Figure A11. Plot of reconstructions for data points of 16 October (Sample_100). We compare original
data (on the left) and reconstructed values (on the right). We show plots of power vs.wind speed
of rejected and validation data (up and middle respectively) and plot of power vs.ideal power of
rejected data (bottom).
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Figure A12. Plot of reconstructions for data points of 11 December (Sample_100). We compare
original data (on the left) and reconstructed values (on the right). We show plots of power vs.wind
speed of rejected and validation data (up and middle respectively) and plot of power vs.ideal power
of rejected data (bottom).
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