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Abstract

Optical lattices represent a fundamental tool in the field of ultra-cold atoms that allow to
simulate a large variety of quantum phenomena like the conduction of electrons in solids, to
explore the physics of quantum particles in low dimensions and to implement spin models to
simulate quantum magnetism. In addition optical lattices allow manipulation of ultra-cold
atoms in atomic clocks and atom interferometry experiments for the precise measurement of
time, gravity, fundamental constants and for fundamental physics tests.
Optical lattices of wavelength λ, created by retro-reflecting a laser beam on a mirror, show
useful stability properties, since the lattice period is exactly λ/2, so the position of the minima
of the potential depends only on the frequency. With current technologies it is possible to
stabilize frequencies below the Hz level. Moreover, this configuration is strongly immune to
beam pointing instabilities, vibrations of the mirror can be reduced and, as for the residual
intensity noise, they can only induce common-mode fluctuations of the site potentials. There
is strong interest in many of the research fields mentioned above in creating periodic potentials
with larger separations between the different sites, which is limited to fraction of µm due to
the available narrow-linewidth laser sources.
During my PhD we have realized an innovative, large-spacing optical superlattice based on
the beating note between two retroreflected optical lattices with commensurate wavelengths,
nλ2 =(n+1)λ1. Choosing n≫1 we demonstrated that the resulting potential is periodic and,
for sufficiently low lattice depths, the energy spectrum of the superlattice is equal to the one
of an optical lattice with wavelength nλ2, so with lattice spacing n time larger than standard
retroreflecting lattice. We refer to it as Beat-note Super Lattice (BNSL).
In the framework of atom interferometry, we implemented the BNSL technique in different
ultra-cold trapped atom interferometry experiments showing its flexibility. In the first one,
we used a 10µm spacing BNSL to realize a spatial Bloch oscillation interferometer which
operate in presence of small external forces. When cancelling the interatomic interactions
by means of a magnetic Feshbach resonance, the dynamics exhibits a coherence up to 1 s,
demonstrating how BNSL provides very stable potentials with a large spatial periodicity.
The second interferometer relies on a multimode configuration in an harmonic trap, where
the coherent splitting and recombination of a BEC into multiple momentum components are
realized by means of Kapitza-Dirac (KD) diffraction from a pulsed 5 µm BNSL. Here the
harmonic trap closes the trajectories of the momentum components, and the BNSL pulses
allow to reduce their recoil velocity, hence the oscillation amplitude. This is important, since
we need to keep the dynamics in the harmonic region of our optical harmonic trap. A third
kind of interferometer, we are currently working on, is based on BEC optically trapped in
array of double well potentials. To realize such array we exploit two collinear BNSLs with
a periodicity of one twice the other (10µm and 5µm), and to do this I need only three
commensurate wavelengths. Each one of this double well represents a sensor I can exploit to
realize a Mach-Zehnder interferometer. A preliminary set of measurements, with no external
perturbation applied, show correlations between the outputs of each Mach-Zehnder. Having
more the one correlated interferometers is possible to perform differential analysis between
the outputs to subtract common noise and to realise a trapped atom gradiometer. Our studies
are focusing on that goal. A last series of measures performed with our array of double wells
potential concerns the possibility to introduce repulsive interaction during the input state
preparation to reduce the large noise we are actually observing in the measurements. This
goes in the direction of realizing non-classical states (number squeezed state) to enhance the
sensitivity of the sensor beyond the standard quantum limit.
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Chapter 0

Introduction

Atom Interferometry, thanks to the use of massive particles, allows to perform measurements
of inertial forces[1] and gravity[2] with the highest resolutions, to precisely determinate fun-
damental constants [3, 4] and to realize experiments to test the equivalence principle[5, 6, 7].
The state of the art of Atom Interferometry is represented by free falling atom interferometers
[2], where cold atomic samples, while evolving in the external gravitational field, are split in
two separate paths and recombined by multi-photon transitions.
Depending on the phase accumulated along the two paths, the interference pattern at the
output provides information about the external perturbation the atom experienced during
the interrogation time T. The resolution of those sensors scales as ∆kT2, i.e. linearly with
the size of the apparatus and with the transferred multi-photon momentum ∆k. So, much
effort is currently spent to enhance these two quantities.
One possibility is to realize large apparatus [8, 9], but this is technically demanding since we
need to shield the wave packets from external noise and to control its spread over large regions
of space. Moreover, the spatial resolution is limited by the size. New projects aim to bring
atom interferometry in space[10, 11], so that the size of the device is no longer determined
by the dropping height, as required on ground. Other solutions include exploiting high order
Raman transition[12] or multi-photon Bragg diffraction[13] to enhance ∆k.
One very interesting class of sensors is represented by trapped atom interferometers, in which
the interferometric steps (initial state preparation, splitting, interrogation time and recombi-
nation of the atomic wavefunction) are performed by means of the confining potential itself.
In this way atoms are sustained against gravity during the all the sequence, allowing to ex-
tend the interrogation time and realize compact devices with high spatial resolution[14]. A
small size of the system can allow precision measurements of forces on micrometric scales and
it can be exploited for fundamental studies, like the investigation of Casimir effects [15] near
surfaces.
Although they are very promising, the problem of inter-atomic interactions in high density
trapped samples (like Bose-Einstein condensate) and instabilities of the confining potential
reduce the interrogation time and limit the sensitivity of these sensors[14]. In our system,
where Bose-Einstein condensate of 39K are used, the possibility of tuning the interaction
strength to negligible values by means of Feshbach resonances can help to overcome the first
limitation[16, 17].
Among the possible geometries of the confinement potentials, the double-well scheme repre-
sents one of the most simple, which has already been exploited for the realization of Mach-
Zehnder interferometers with trapped BECs[14]. This latter, combined with the tunability
of inter-atomic interactions allows also the creation and the control of quantum entangled
states[18], which are of great interest in quantum interferometry community for the operation
of interferometric sensors with sub shot noise sensitivity[19, 20, 21].
In the framework of trapped atom interferometry, the goal of our experiments is to study a
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Chapter 0. Introduction

Bose-Einstein condensate optically confined and separated in spatial modes whose relative
distance can be precisely controlled. Such separation needs to be as large as possible, since in
the trapped atom devices the sensitivity scales proportionally to the separation of the trapped
modes[17]. However, the geometry of the trapping potential needs to be robust against exter-
nal source of noise. A configuration with a good intrinsic stability is represented by optical
lattices created by retro-reflecting a laser beam of wavelength λ on a single mirror, since it
is strongly immune to beam pointing instabilities [22] and the phase noise can be suppressed
by stabilizing the mirror motion [2] and the frequency of the laser. In addition, the residual
intensity noise of optical lattices is normally not an issue, since it induces common-mode
fluctuations of the site potentials. However, the spatial periodicity of optical lattices based
on counter propagating beams, λ/2, is limited to ∼ 1µm with only few exceptions[23], mainly
due to the available narrow-linewidth laser sources.
In this thesis I present an innovative, large spacing optical superlattice based on the beating
note between two retroreflected optical lattices with slightly different wavelengths λ1 and
λ2. I show that, when the two wavelengths fulfil the condition nλ2 = (n + 1)λ1 with n≫1
integer, the resulting potential is periodic and, for sufficiently low lattice depths, the energy
spectrum of the superlattice is equal to the one of an optical lattice with wavelength nλ2.
Working with λ1 ∼ λ2 and n=20 I get an effective lattice period around 10µm.
I refer to this as a Beat-Note Super Lattice (BNSL). Note, in quantum gases experiments
lattice with large spacing can be realized exploiting laser beams crossed at a small angle [24].
Unfortunately the smaller is the angle the larger is the sensitivity of the lattice spacing to its
fluctuations.
In this work, with BNSL in a horizontal confguration (no gravity component in lattice direc-
tion) we have realized different interferometric experiments.
The First one [25] is based on Bloch oscillations in a large spacing optical lattice, which can
be exploited to measure weak force in the same way it has been already exploited to measure
gravity [26, 27] with high precision. The observed dynamic exhibits a coherence up to 1 s,
demonstrating how this new technique provides very stable potentials with a long periodicity.
A second interferometric scheme [28] relies on a multimode configuration, where the coher-
ent splitting and recombination of a BEC into multiple momentum components are realized
by means of Kapitza-Dirac (KD) diffraction from a pulsed optical lattice. This scheme was
proposed theoretically for noninteracting systems in [29], where the presence of an harmonic
potential acts like a “mirror” to close the trajectories and to prevent the spatial spread of wave
packets, as it would occur in free space. We have realized a proof of principle demonstration
of this scheme showing the limitations of our system and analysing future improvements to
enhance its performance.
In a most recent experiment, I study a BEC optically trapped in array of double well poten-
tials. To realize such array I exploit two collinear BNSLs with a periodicity of one twice the
other (10µm and 5µm), using three commensurate wavelengths. With BECs loaded in three
double wells, I have realized three Mach-Zehnder interferometers operating in parallel. Ob-
serving correlations between the outputs of the three sensors we realize an operative trapped
atom gradiometer, where differential analysis allows to subtract the common noise acting on
the double wells.
Finally, within the same system, I have started to study the reduction of noise in the prepara-
tion of the input state of the interferometers, introducing in the system repulsive interactions.
This goes in the direction of realizing non-classical states (number squeezed state) to enhance
the sensitivity of the sensor beyond the standard quantum limit.

The thesis is structured as follows.

In Chapter 1 I briefly introduce the theory of atoms in optical lattices, describing the physics
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of single particles in periodic potentials. In particular I cover aspects like dynamics in pres-
ence of an external constant force, Kapitza-Dirac diffraction, and theory of a BEC in a double
well potential. Then, I explain the BNSL idea, investigating its properties both analytically
and with the help of numerical simulations.
In chapter 2 I describe our experimental platform for the realization of Bose-Einstein con-
densates with tunable interaction in the beat-note optical lattice, focus the attention on the
laser system and techniques to stabilize three frequencies on the same optical cavity.
In chapter 3 main results about long lasting Spatial Bloch oscillations of a BEC in a 10µm
BNSL are reported.
In chapter 4 I show the working principle of a Kapitza-Dirac multimode interferometer and
its realization in our system.
In chapter 5 I present preliminary results about the Mach-Zehnder trapped atom interferom-
eter with a BEC trapped in the array of double well potential made with BNSL. In chapter
6 I conclude with a discussion of the results that we have obtained so far and the future
perspectives offered by our system.

List of publications
• Nałȩcz, I., Masi, L., Ferioli, G.,text Petrucciani, T., Fattori, M. and Chwedeńczuk, J.,

2020. Sensitivity bounds of a spatial Bloch-oscillation atom interferometer. Physical
Review A, 102(3), p.033318.

• Masi, L.,text Petrucciani, T., Ferioli, G., Semeghini, G., Modugno, G., Inguscio, M.
and Fattori, M., 2021. Spatial Bloch Oscillations of a Quantum Gas in a “Beat-Note”
Superlattice. Physical Review Letters, 127(2), p.020601.

• Masi, L., Petrucciani, T., Burchianti, A., Fort, C., Inguscio, M., Marconi, L., Mod-
ugno, G., Preti, N., Trypogeorgos, D., Fattori, M. and Minardi, F., 2021. Multimode
trapped interferometer with noninteracting Bose-Einstein condensates. Physical Re-
view Research, 3(4), p.043188.

• Petrucciani, T. et al., Precision gradiometry with an array of trapped atom interferom-
eters, in preparation
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Chapter 1

Theory

This chapter has the purpose to introduce the Beat-Note superlattice (BNSL), a novel tech-
nique for trapping and manipulating ultracold atoms which I exploited to realize experiments
in the field of atom interferometry [25, 28] reported in Chap.3,4, and for some latest mea-
surements in Chap.5.
I explore the validity of such technique and its applicability with a theoretical analysis in-
cluding numerical simulations, before dealing with the experimental works.
First, I give a brief description of the theory of single particles in optical lattices and I de-
rive the analytic expression of the energy spectrum in presence of weak and deep potentials.
Then I give an intuitive description of the evolution of a system of non interacting particles
in a lattice when an external force F is present (i.e., the coherent dynamics named Bloch
oscillation).
Then, I give a brief description of the mean field theory of a weakly interacting Bose Einstein
Condensate (BEC) and I will introduce the two mode approximation that is the basic tool
to describe a BEC in a Double Well potential.
Finally, in the two last sections I illustrate how the BNSL works supporting analytical stud-
ies with numerical simulations. In particular, I focus on its spectrum in different regimes
to underling limitations and advantages of this technique, I show how to realize an array of
double wells potential with it and how atom diffraction works with this kind of potential.

1.1 1D Optical Lattices

Neutral atoms interact with light in both dissipative and conservative way. An incident
light field E⃗(⃗r, t) = êẼ(⃗r) exp(−iωt) + c.c. induces a dipole moment in the atom p⃗(⃗r, t) =
êp̃(⃗r) exp(−iωt) + c.c., where the amplitude of the dipole moment is proportional to the field
amplitude Ẽ through the complex polarizability α, p̃ = αẼ. If you consider the real part of
the polarizability ℜ(α), which describes the component of p⃗ oscillating in phase with E⃗, the
interaction potential is given by [30]

Udip(⃗r) = − 1
2ϵ0c
ℜ(α)I(⃗r) = 3πc2

2ω3
0

Γ
∆I(⃗r) (1.1)

where I(⃗r) = 2ϵ0c
∣∣∣Ẽ∣∣∣2 is the field intensity. In the last equality of 1.1 we can replace the

atomic polarizability α calculated in a semiclassical approach for a two-level quantum sys-
tem interacting with the classical radiation field with no saturation effect. Γ in this picture
is the damping rate (corresponding to the spontaneous decay rate of the excited level) and
∆ = ω − ω0 is the detuning from atomic resonance ω0.
The dissipative interaction comes due to the absorption of photons from an incident field,
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1.1. 1D Optical Lattices

followed by spontaneous emission. The scattering rate of this process, which is described by
the imaginary part of the polarizability, is

Γsc(⃗r) = 3πc2

2ℏω3
0

( Γ
∆
)2

I(⃗r) (1.2)

In case of “red” detuning, ∆ < 0, the dipole potential is negative and the atoms are attracted
by maximum light intensity regions. The dipole potential scales as I

∆ , whereas the scattering
rate scales as I

∆2 . So, optical dipole traps usually use large detunings ∆ and high intensities
to keep the scattering rate as low as possible at a certain potential depth.
Eq. 1.1 shows that a spatially dependent intensity induces a spatially dependent potential
energy. An interesting case is represented by optical lattices, standing wave potentials which
provide extremely tight confinement along the axial direction. The simplest possible lattice is
a one dimensional (1D) lattice realized by retro reflecting a laser beam or superimposing two
counter-propagating lasers with the same frequency ω and amplitude E0, such that a standing
wave interference pattern is created. Let’s consider the total field of such configuration,
E(x, t) = E0 exp(kx− ωt) + E0 exp(−kx− ωt + ϕ), where k= 2π/λ is the wave vector and λ
is the wavelength of the radiation. The total intensity, proportional to the square module of
total field, is

I(x) = 1
2ϵ0c

4E2
0 cos(kLx)2 (1.3)

where kL = π/d is the lattice wave vector, related to lattice periodicity by the lattice constant
d= λ/2. Exploiting 1.1 the energy potential felt by the atoms is

Vlatt(x) = V0 cos(kLx)2 (1.4)

where the amplitude V0 is called "lattice depth". Usually, lattice depth is measured in units
of the recoil energy ER = ℏ2k2

L/2ma, that represents the main energy scales for atoms of
mass ma in the optical lattice.
In a red detuned optical lattice atoms are strongly confined in the anti-nodes of the stand-
ing wave, which are the potential minima. Making a power expansion around a potential
minimum (e.g. at x= d/2) we find that the axial confinement of the optical lattice is

ωlatt = π

d

√
2V0
ma

(1.5)

which is the harmonic oscillation frequency of an atom trapped inside one of the lattice wells.
To be more precise, taking into account the Gaussian profile of the beam, this is the trap
frequency at the centre of the trap. The oscillation frequency decreases when moving along
the x-axis due to the decreasing light intensity (∝ E2

0).

1.1.1 Single particle in a lattice (Bloch Theorem)

Atoms interacting with a spatially modulated optical potential resemble in many aspects
electrons in the solid crystals ion-lattice potential, and one of the most important charac-
teristics of a periodic potential is the emergence of a band structure, as a results of Bloch’s
Theorem [31]. The Hamiltonian describing a single particle of mass ma in a 1D optical lat-
tice is H= p̂2

2ma
+ Vlatt(x), with Vlatt(x) =Vlatt(x + ld) a potential with periodicity set by the

lattice constant d, with l an integer indicating the l-th site. Bloch theorem assures that the
eigenstates can be chosen to have the form of a plane wave times a complex function u with
the same periodicity of the potential

ψk,n(x) = exp(ikx)un,k(x) (1.6)

11



Chapter 1. Theory

The wave vector k is an index introduced by the Bloch Theorem, called quasi momentum,
which can be seen as a quantum number characteristic of the translational symmetry of the
periodic potential. It describe how does the phase of the Bloch state change as a result of
a translation in the lattice. Because of the discrete invariance of H, k is confined in the so
called first Brillouin Zone (BZ), i.e −π/d < k < π/d.
The index n, or band index, appears in Bloch’s theorem because for a given k there are many
solutions to the Schrödinger equation, so each n refers to the n-th energy band.
Without going into too much detail in solving the eigenvalue problem (the reader can find it
in [31]), the idea is to write down both 1.6 and the potential Vlatt(x) in Fourier series

ψk,n(x) = eikx∑
m

ck−mGe
i(k−mG)x,

Vlatt(x) =
∑
m

UmGe
imGx (1.7)

with m integer and where G=2kL. If we consider a finite system consisting of a number M
of lattice sites, for the periodic boundary condition M represents also the number of discrete
values assumed by the quasi-momentum k. So, substituting 1.7 in the Schrödinger equation,
we can stop the Fourier series at |m|=M, obtaining a system of 2M+1 linear equations.

( ℏ2

2ma
(k−mG)2 − E

)
cn

k−mG +
∑

m′ ̸=m
Um′G−mGcn

k−m′G = 0 (1.8)

For each k, 2M+1 solutions with different energies En(k) exist, with n= 0...2M . To each
eigenvalue then it is associated an eigenstate which is given by the Fourier component cn

k−mG.
Finally, substituting the latter in 1.7, the Bloch function associated with this solution can be
obtained.
For the optical lattice in 1.4 we have Vlatt(x) =

(
V0
2 + V0

4 e
i2kLx + V0

4 e
−i2kLx

)
.

Apart from the constant term, the Fourier coefficients U±2kL = V0
4 couples states whose wave

vector differ by G=2kL. Physically, this process represents the absorption of a photon from
a lattice beam with a momentum ℏkL and the consequent stimulated emission of a photon
with a momentum −ℏkL in the other beam.

1.1.2 Perturbative approach (shallow lattice)

In the limit of weak potential, i.e. |V| = V0 ≪ ER we can solve analytically 1.8 using a per-
turbative approach [31]. As a perturbation theory, we need to consider two different cases,
depending on whether the two states that are coupled by the potential are degenerate or not.

Non degenerate states
States cn

k−mG with unperturbed energy E0
k−mG = ℏ2(k−mG)2

2ma
are non-degenerate with level

E0
k−m′G if

∣∣∣E0
k−m′G − E0

k−mG

∣∣∣≫ UmG, ∀m ̸= m′.
Then the general solution for the eigenvalues ϵ is

ϵ0(k−m′G) = E0
k−m′G +

∑
m ̸=m′

|UmG−m′G|2

E0
k−m′G − E0

k−mG
(1.9)

Since for an optical lattice G= ±2kL and U±2kL = V0/4, the energy spectrum of the lowest
energy band ϵ0(k) can be written as

ϵ0(k) = ℏ2k2

2ma
+ V2

0

64ER
[

k
kL
− 1

] − V2
0

64ER
[

k
kL

+ 1
] (1.10)
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1.1. 1D Optical Lattices

For a particle with k= 0 then ϵ(k = 0) = − V2
0

32ER

Degenerate states
If there is Nd states ck−miG, with i=1...Nd, such that their energy difference is of the order
of Fourier coefficient U, then you have to solve the following system of equation

(
ϵ(k)− ϵk−miG

)
ck−miG =

Nd∑
j=1,j ̸=i

UmjG−miGck−mjG+

+
Nd∑
j=1

 ∑
m ̸=m1...mNd

UmG−miGUmjG−mG

ϵ(k)− E0
k−mG

+ O(U3)
(1.11)

Now we have that there is linear term in U and one of the order of U2 (while in the non-
degenerate case there was only a second order contribution in U).
Since our optical lattice 1.4 is 1D, the maximum degeneracy Nd = 2 the system in 1.11 reduce
to a couple of linear equation. If then one takes only the first order contribution in U the
solution is

ϵ =

(
E0

k−m1G + E0
k−m2G

)
±
√(

E0
k−m1G − E0

k−m2G

)2
+ 4|Um1G−m2G|2

2 (1.12)

that in case of two exactly degenerate states reduce to ϵ1,2 = E0
k−mG ± |Um1G−m2G|.

The coupling with the external potential removes the degeneracy, showing an avoid crossing
behaviour. The condition of exact degeneracy is satisfied for k = ±kL, therefore the effect of
the potential is the creation of a gap

∆Egap = 2|Um1G−m2G| = V0/2 (1.13)

In figure 1.1 are plotted some of the results studied so far.

1.1.3 Tight-binding regime

As the depth of the potential increases, each lattice site resembles an isolated potential well,
and the energy bands shown in the Fig. 1.1 will become more and more flat. Within this
limit it is expected that the Bloch solutions become increasingly localized near the lattice
minima. The wavefunction of the system can be more conveniently written as a superposition
of many wavefunctions located at each lattice site xl, where l is an integer indicating the l-th
lattice site. They are defined as:

wn(x− xl) = 1√
M
∑
BZ

e−ikxlψn,k(x) (1.14)

where the sum is over the first Brillouin zone
(
to pass from discrete to continuous case replace

the ∑ with
√

d
2π

∫
BZ dk

)
.

Those are the so called Wannier functions, which become strongly localized as the lattice
depth increases. In this approximation one can only take into account overlap between
Wannier functions in nearest neighbour sites. If initially the atoms are prepared in the lowest
band, then we can restrict to Wannier functions of only the lowest band, w0(x− xl) . Then,
we can expand the lowest band wavefunction on the basis of Wannier functions and study
the temporal evolution of the wave packet resolving the discrete Schrödinger equation. If
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Chapter 1. Theory

-1 0 1

Figure 1.1: Left: spectrum of a particle in a optical lattice showing the first three energy band
for three different depths, V0

ER
= 0.45 (red-dashed line), V0

ER
= 4.5 (Blue circle) and V0

ER
= 18

(light blue triangle). For low V0 in the dispersion relation energy gaps are so small that the
spectrum almost resume that of a free particle (quadratic dispersion), while for V0 > ER an
energy gap between the first two bands appears (k= kL). For even grater V0, energy gap
begins to open also at k= 2kL and the bands become flatter.
Right: real part of the lowest band wavefunction with k = 0 for three different depths of
the periodic potential, V0

ER
= 0.45 (red line), V0

ER
= 4.5 (Blue dashed line) and V0

ER
= 18 (light

blue dashed-dot line). Increasing the lattice depth, the wavefunction changes from a weakly
modulated plane wave to a function that is strongly localized on the lattice sites (for this
numerical calculation, λ =1.064nm).

we consider again the optical lattice potential in 1.4, it’s possible calculate analytically the
dispersion law ϵ(k) and the tunneling energy between nearest neighbouring lattice sites J

ϵ(k)/ER =
√

V0
ER
− 2J cos(kd)

J = 4√
π

(V0
ER

) 3
4
e

−2
√

V0
ER

(1.15)

From this point let’s introduce the dimensionless parameter s= V0
ER

to refer to lattice depth.
As we can see, J decays exponentially with the lattice depth s, and so the energy dispersion
of low-lying bands are only weakly dependent on the quasi-momentum k (see Fig. 1.1,left)
In this regime, around each minimum we can make the harmonic approximation V(x) =
V0 cos2(kLx) ≃ V0k

2
Lx

2 = 1/2maω
2
Lx

2, where ωL defines an effective trapping frequency
ωL =

√
2V0k2

ma

1.1.4 Dynamics of non interacting atoms in a lattice

Let’s now study linear matter-wave propagation in which only Bloch states in one band are
involved, in absence or in presence of an additional external potential

Pure periodic potential

The temporal evolution of a wave packet in an optical lattice can be described by decomposing
the initial wavefunction into Bloch states ψk,n(x) with the corresponding amplitude fn(k), and
the subsequent evolution is purely a consequence of the accumulated phase Φn,k(t) = ϵn(k)t/ℏ
[32]:
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1.1. 1D Optical Lattices

ψ(x, t) =
∑

n

∫
BZ

fn(k)ψk,n(x)eΦn,k(t) dk (1.16)

The description becomes very simple if the quasi-momentum distribution only involves a
small range of quasi-momenta centered around k0 (i.e., the spatial extent of this wavepacket
is much larger than the lattice spacing) and only one band (e.g., the lowest band) is involved.
We can refer to this as a semiclassical approximation, for which the energy dispersion relation
band structure can be approximated by a Taylor expansion:

ϵ(k) = ϵ(k0) + (k− k0)∂ϵ(k)
∂k

∣∣∣
k=k0

+ (k− k0)2

2
∂2ϵ(k)
∂k2

∣∣∣
k=k0

+ ... (1.17)

Substituting 1.17 into 1.16 it is easy to see that the wave-packet moves with the group velocity

vg(k0) = 1
ℏ
∂ϵ(k)
∂k

∣∣∣
k=k0

(1.18)

as well as a packet of electromagnetic waves having a dispersion relation ω(k) and a velocity
∂ω
∂k . In analogy to the spreading of a wave packet in free space due to the dispersion relation
ER = ℏ2k2/2ma, the matter wavepacket in the optical lattice also spreads, but with a modified
dispersion described by the effective mass meff.

meff(k0) = ℏ2
(
∂2ϵ(k)
∂k2

∣∣∣
k=k0

)−1

(1.19)

Dynamics with additional potential (Bloch oscillation)

Let’s introduce an external force F on the system always with the assumption that the
width of the wave packet in quasi-momentum space is small, thus the wave packet can be
characterized by a single mean quasi-momentum k0. The external force then leads to a time-
dependent k0(t) such that ℏk̇0(t) = F, and if F is constant then k evolves linearly in time
k0(t) = k0(t = 0) + Ft/ma [31]. Since k is define module π/d with d lattice constant, the
evolution is periodic with period τB = h/Fd [33, 34]. τ is the so called Bloch period, the time
k0 need to scan a full Brillouin zone.
The group velocity 1.18 depends on k, so the width of the wave packet in momentum space
continuously changes (which is the quantity measured in the laboratory experiments when
you release the atoms). This periodic evolution is known as Bloch oscillation in real space
[34, 35].
If the force F generate an energy gradient between the sites large respect to the depth of the
lattice, the so called Landau-Zener tunneling occurs [36]. In particular, when the k reaches
the boundary of the Brillouin zone, the tunneling probability across the gap is given by [32]

Γz = e−ac/a

ac = V2
0d

16ℏ2

(1.20)

depending on lattice spacing d and the potential V0, with a the acceleration induced by F.
Let us now relax one of the starting condition and take a width of the wave packet in quasi-
momentum space comparable with the width of Brillouin zone (i.e., few lattice sites are
occupied by the atoms.)
To simplify the analysis, we can consider a tight binding model and a single-band approxi-
mation (e.g. lowest band, n=0) and exploit the notion of Wannier states 1.14 to write the
tight binding hamiltonian as [37]

H =
∑

l

(E0 + Fdl) |l⟩ ⟨l|+ J
∑

l

(|l + 1⟩ ⟨l|+ |l − 1⟩ ⟨l|) (1.21)
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Chapter 1. Theory

where J is the tunneling energy between neighbouring sites and, given the energy spectrum
ϵ(k) in 1.15, E0 = ER

√
V0/ER. The Hamiltonian 1.21 leads to a discrete spectrum El =

E0 + Fdl knows as Wannier-Stark ladder [38], and the correspondent eigenfunctions |ϕl⟩ =∑
j Jj−l

(
J

2dF

)
|j⟩ are knows as Wannier-Stark states, with Jj−l(z) ordinary Bessel function.

The Wannier-Stark states are localized in space with a localization length lW S that depends
on the force applied on the lattice: if dF>J (strong force) then lW S = 1 (in unit of lattice
period d) while lW S ∼ J

Fd for dF<J (weak force).
Now, the general solution of the Schrödinger equation can be written as a sum over the
Wannier-Stark states

ψ(x, t) =
∑

l

cleiElt/ℏϕl(x) (1.22)

and the dynamics is represented by an oscillation of the center of mass of the wave packet,
where lW S defines the maximum distance where the wave-packet can move to.

In the end to resume, we can say that the choice of how many initial sites are occupied
is crucial, cause it set where the dynamics is easier to be experimentally observed. For atoms
(the reader imagines loading a degenerate gas as a Bose Einstein condensate in the lattice)
spread over many sites the width of momentum distribution is narrower then the FBZ, so
when k changes in time due to the presence of a constant force also the width of momentum
distribution changes. So, if we release the cloud from the trap and observe it in far field we
can detect a clear oscillation.
For atoms load in phew site instead the width of momentum distribution is larger then the
whole FBZ, try to detect its evolution in far field is not convenient. We can observe anyway
an in situ dynamics of the centre of mass of the cloud, assuming that your resolution allows
to resolve single site scale.
As a limit case, consider the initial state strongly localized in the site l=0. Then, as stated
above, the centre of mass dynamic is frozen. Anyway it still possible observe a periodic evolu-
tion of the system, but this time the observable is the width of wave packet in real space[35].
Indeed, the evolution of the wavepacket

|ψ(t)⟩ =
∑

l

cl(t) |l⟩

cl(t) = Jl

(
A sin

(
πt
τB

))
eil(π−ωBt)/2

(1.23)

In such a breathing mode, the wavepackets widen and shrink periodically populating an in-
terval |l| < A, where A= 4J/Fd.

1.1.5 Kapitza-Dirac scattering

When atoms diffract from a standing light wave, each two-photon (absorption-stimulated
emission) scattering event changes the atomic momentum along the standing wave by either
zero or 2ℏkL, which for multiple such events results in a series of evenly spaced atomic mo-
menta. The kind of scattering depends on the strength and duration of the interaction with
the light field [39, 40], and in particular when interaction is sufficiently short and strong we
talk about Kapitza-Dirac scattering [41, 42]. Kapitza–Dirac scattering is a kind of scattering
that can be properly described by neglecting particle motion over the duration of the inter-
action. Consider an atomic wavefunction Ψ(x) subject to a 1D standing wave potential for a
certain time, then the Schrödinger equation reads

iℏ∂tΨ(x, t) =
[
− ℏ2

2ma
∂2

x + sER sin2(kx + ϕ)
]

Ψ(x, t) (1.24)
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1.1. 1D Optical Lattices

where ER is the recoil energy, s=V/ER the a-dimensional lattice depth parameter and ϕ
lattice phase. At t=0, before the potential is turned on, we have a wavepacket Ψ0(x). If
the pulse duration τ is short enough, then we fall within Raman-Nath limit, which allows to
neglect the kinetic energy term in the Hamiltonian [42]. In that limit, the only effect of the
lattice is to imprint a phase on the wavefunction. Then we can write

Ψ(kx, τ) = Ψ0(x) exp
[
−iτER

ℏ
s
2
(
1− cos(2kx + 2ϕ)

)]
=

= Ψ0(x) exp (−iβ)
n=+ inf∑
n=− inf

inJn(β) exp [−in(2kx + 2ϕ)]
(1.25)

Where in the last equality I use of the identity for Bessel functions J of the first kind, with
β = τER

ℏ
s
2 . Considering only n=0,±1 we have then three component of momenta p=0,±2ℏk

with amplitudes

J+1(β) exp
[
i(π2 − 2ϕ)

]
J0(β)

J+1(β) exp
[
i(π2 + 2ϕ)

] (1.26)

As pointed out in the beginning, to restrict the atomic motion during the interaction time
to distances small compared to the characteristic dimensions of the interaction potential
requires short interaction times. For a standing wave interaction, this approximation is well
satisfied if the atomic motion during the interaction time is small compared to the wavelength
of the illuminating radiation. As a result, Kapitza–Dirac scattering is limited (relative to
Bragg scattering) to short interaction times,τ , generally much smaller than the inverse recoil
frequency (τ ≪ ωrec) [43]. To observe appreciable population transfer at such short times,
large intensities are needed.

1.1.6 Talbot Effect

Splitting condensate in several momentum components can be used to probe coherence prop-
erties of BEC in particular regime where interesting physics happens, or it can also be used
for realization of matterwave interferometry. Diffraction by optical lattice it is also a tool to
get knowledge about the lattice depth with high precision [32]. Indeed, to calibrate lattice
depth by mean of 1.1 one has to know the intensity, i.e. waist and power of the beam. Beam
waist in the position of the atomic clouds it’s really difficult to measure due to propagation
through optics and windows of vacuum system, while measurements of the absolute optical
power have systematic errors on the order of 20%. An alternative method makes use of
Raman-Nath diffraction [41].
If the lattice is switched on suddenly for a time ∆t < 1/ωrec, with ωrec recoil frequency, the
resulting diffraction pattern is in the Raman-Nath regime and the value of V0 can be calcu-
lated from the relative populations in the 0 and 2ℏk momentum components. This method
has the advantage of needing only a short interaction time with the lattice.
However, for lattice depth ≤1 ER, with ER the recoil energy, the diffracted population are
small. In order to increase the signal it’s possible to employ a multi-pulse diffraction that
coherently adds the effects of each pulse[44]. For shallow lattice only order with |q| ≤1 are
populated, and for initially stationary atoms |q| =1 orders (i.e.±2ℏk momenta components)
are equivalent and can be represented as a single state. So, to get a more intuitive picture,
we can describe the system as a two level system, hence exploit the Bloch sphere picture.
Component q=0 is the north pole of the sphere and |q| =1 are the south pole.
Free evolution corresponds to precession about the vertical axis with period ℏ/(4ER), called
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Chapter 1. Theory

the Talbot time [45]. So, we start with the atomic state vector aligned with the north pole.
During a weak lattice pulse, the precession axis is tilted from the vertical axis by an angle
proportional to the lattice depth, and state vector start to rotate around it for an half pre-
cession period ℏ/(8ER). After that, once the lattice pulse is ended, free evolution for another
ℏ/(8ER) makes the state vector rotate around the vertical axis. Alternating lattice and free
evolution with duration ℏ/(8ER) efficiently increases the diffracted population.
To calculate the populations P transferred in |q| =1 after N pulses we refers to the work [46].
In the weakly diffracting limit P0 and P1 oscillate sinusoidally with the number of pulses N,
with amplitude and frequency which depend solely on the dimensionless lattice depth V/ER.
For V≪ ER it results that P1 has a quadratic dependence by N.

P1 = 8(V/2ER)2N2 ∝ N2 (1.27)

In Fig.1.2 I show a numerical simulation for P1 as function of the number of pulses N for a
lattice with λ =1µm and different depths.
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Figure 1.2: Numerical simulation of population transferred in order |q| =1 (±2ℏk) as function
of the number of pulses N for a lattice with λ =1µm and different depths.

1.2 BEC in a Double well potential

In this section I will shortly discuss the theory of a BEC in a double well potential.

1.2.1 Weakly interacting BEC

A system made by N interacting bosons in external potential Vext(⃗r) can be approached
with the formalism of second quantization. In this framework, the many-body Hamiltonian
operator becomes

H =
∫

d3rΨ†(⃗r)
(
− ℏ2

2ma
∇+ Vext(⃗r)

)
Ψ(⃗r)+

+ 1
2

∫
d3rd3r′

(
Ψ†(r⃗)Ψ†(r⃗′)Vint(⃗r− r⃗′)Ψ(⃗r)Ψ(r⃗′)

) (1.28)
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1.2. BEC in a Double well potential

where Ψ(⃗r) and Ψ†(⃗r) are the field operators satisfying the bosonic commutation rules,
N=

∫
d3rΨ†(⃗r)Ψ(⃗r) is the atom number operator and Vint(⃗r− r⃗′) is the inter-particle interac-

tion potential.
For ultracold dilute bosonic sample the average distance between particles is larger then the
range of the interatomic forces, and the collisional energy is so low that one can make use of
the pseudo-potential approximation [47] to write Vint(⃗r− r⃗′) as a contact potential

Vint(⃗r− r⃗′) = gδ(⃗r− r⃗′) (1.29)

where g=4πℏ2as
ma

and as the s-wave scattering length, the only parameter in this picture that
describes the strength of the interaction between two identical ultracold atoms. Thanks to
Feshbach resonances [48], as can be tuned in experiments by applying a uniform magnetic
field, making it possible to change the sign of the interactions.
The field operator is defined as Ψ(⃗r) = ∑

i ψi(⃗r)â†
i , where â†

i is the single particle creation
operator of the i-th state described by the wave-function ψi(⃗r).
If we assume that the cloud is all condensed in the ground state of the system, i.e. it is a
dilute gas at very low temperature T≃0, then we have a macroscopic occupation of a single
quantum state, and we can make the so called Mean-Field (MF) approximation. This mean
that all the creation and annihilation operators of states different from the ground state can
be neglected.
Then we can ask that

â†
0 =

√
N0 −→ Ψ(⃗r, t) ≃

√
N0ψ0(⃗r, t) (1.30)

where N0 is the number of atoms in the ground state and ψ0 is the wavefuntion of the
condensate. Substituting Eq. 1.29 and Eq. 1.30 in the many-body Hamiltonian (1.28) we
obtain the so-called time-dependent Gross-Pitaevskii equation [49]

iℏ
dψ0(⃗r, t)

dt =
[
− ℏ2

2ma
∇+ Vext(⃗r) + gN0|ψ0|2

]
ψ0(⃗r, t) (1.31)

If we search for stationary solutions ψ0(⃗r, t) = ψ0(⃗r) exp(−iµt/ℏ), we get that µ is the chemical
potential of the atomic cloud. So we can rewrite Eq. 1.31 and obtain the equation[

− ℏ2

2ma
∇+ Vext(⃗r) + gN0|ψ0|2

]
ψ0(⃗r) = µψ0(⃗r) (1.32)

1.2.2 Two-mode Approximation

Quantum harmonic oscillator characterized by a trapping frequency ω has discrete eigenval-
ues equally separated by ℏω. The effect of rising up a barrier in the centre of this potential
is to reduce the energy difference between the ground state and the first excited one, as well
as the one between the second and third excited states (and so on).
In the linear case (no interactions among the particles in such potential) both ground and
first excited state are well defined, and correspond to that of a single particle. However, in
presence of interactions, the exact definition of ground and first excited state is not trivial,
due the fact that it’s a manybody problem.
To simplify the description we ask that the scales of energy involved (temperature and in-
teraction energy) are way lower then the separation from the excited states, which is of the
order of ℏω. This is the so called Two-Mode Approximation, which allow to rewrite the field
operator Ψ with the following expression

Ψ = ψgâg + ψeâe (1.33)
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where ψg,e are the wave functions of the symmetric and antisymmetric ground states of
stationary Gross-Pitaevskii equation Eq. 1.32 with chemical potential µg,e, while âg,e are
the correspondent destruction operator. In Fig. 1.3 is reported a picture of the double well
potential and of its symmetric and anti-symmetric GPE ground states . We refers to the
energy separation between the two lowest level as J=Ee-Eg.

J

Figure 1.3: Double well potential (black line) and its symmetric (blue dashed line) and
antisymmetric (red dashed-dot line) ground states. The energy difference between this two
levels is the tunneling J

A more suitable base to describe the system is obtained using the wave function localized in
the left or right well

ψR(L) = 1√
2

(ψg ± ψe)

âR(L) = 1√
2

(âg ± âe)
(1.34)

By plugging the ansatz in Eq. 1.34 in the many body Hamiltonian in Eq. 1.28, with some
algebra, we get [50]:

Ĥ2M = Ec

8
(
â†

LâL − â
†
RâR

)2
− EJ

N
(
â†

LâR + â†
RâL

)
+ δE

4
(
â†

LâR + â†
RâL

)2 (1.35)

where

Ec = 8Kg,e,

EJ = N (µe − µg)
2 − N(N + 1)

2 (Ke,e −Kg,g)

δE = Ke,e + Kg,g − 2Kg,e

4
Ki,g = g

2

∫
dr|ψi|2|ψj |2 with i, j = g, e

(1.36)

and N the total number of particles. The coupling term proportional to EJ describes the
tunneling of particles from one well to the other, the one proportional to Ec (on-site interaction
energy) corresponds to the local interaction within the two wells, and the term proportional
to δE describes two particle processes like two particle tunneling. Usually in experiments,
this last term is negligible respect to the other two, so it will be neglected in this work.
Introducing the population imbalance (i.e. atom number difference) operator
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1.2. BEC in a Double well potential

n̂ =
(
â†

LâL − â
†
RâR

)
/2 and the tunneling operator α̂+ =

(
â†

LâR + â†
RâL

)
/N, the two mode

hamiltonian in Eq. 1.35 reads
H2M = Ec

2 n̂2 − EJα̂+ (1.37)

which is know as the Bose-Hubbard Hamiltonian for the double well system.
Note, the atom number operator expectation value range is [−N

2 ,
N
2 ].

Spectrum of the Bose-Hubbard Hamiltonian

A good choice of basis to diagonalize the Hilbert space is the one made by the N+1 Fock
states |n⟩ =

∣∣∣N2 + n
〉

L

∣∣∣N2 − n〉R
, with n ∈[−N

2 ,
N
2 ].

The limited size of the Hilbert space allows exact numerical diagonalization of the two mode
Hamiltonian. Anyway, at low energy (E<2EJ) it is also possible find an analytical solution
to this problem.
A generic state of the system can be written as a superposition of the N+1 Fock states defined
above, then applying Eq. 1.37 to such superposition one can see that the eigenstate values
are organized in couple of equal values, separated like in a harmonic oscillator by a constant
amount ℏωp, where

ωp = 1
ℏ

√
EJ

(
Ec + 4EJ

N2

)
(1.38)

is the well known plasma frequency.

1.2.3 Mean Field description of the Two-mode model

We can start again from the ansatz for the localized wavefunction 1.34 and within the mean-
field approximation we make the sequent substitution:

âL =
√

NLe
iϕL and âR =

√
NRe

iϕR (1.39)

where NL,R are the populations of the localized modes and ϕL,R the phases. With Eq. 1.39
is possible to get a simpler version of the two mode Hamiltonian.
Following [50, 51], starting from the Gross-Pitaevskii equation Eq. 1.31 we can introduce a
the quantity

n = (NL −NR)
2 and ϕ = ϕL − ϕR (1.40)

where n is the population imbalance and ϕ is the relative phase. In the end, the effective two
mode Gross-Pitaevskii Hamilton function assumes the form:

HGP 2M = Ec−GP

2 n2 − EJ−GP

√
1− 4n2

N2 cosϕ+ δEGP
2

(
1− 4n2

N2

)
cos(2ϕ) (1.41)

where

Ec−GP = 2
N

10γg,e − γg,g − γe,e

4 ,

EJ−GP = N (µe − µg)
2 − N

2 (γe,e − γg,g)

δEGP = N
2
γe,e + γg,g − 2Kg,e

4
γi,g = g

2

∫
dr|ψi|2|ψj |2 with i, j = g, e

(1.42)
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For large N and small δE the Bose-Hubbard and the Gross-Pitaevskii constants are approxi-
mately equal, and considering that for high value of the barrier the overlap of ψL and ψR in
the place of the barrier is negligible, we can go further with simplification in analogy to Eq.
1.37. In this limit, introducing the normalized atom number difference z= 2n

N = NL−NR
N , the

effective Hamiltonian can be written as

H2Meff = Ec

2 N2 z2

4 − EJ
√

1− z2 cosϕ (1.43)

which is the well known equation that describes the Bosonic Josephson Junction in the mean
field model[17].
Note, the interaction term depends on atom number difference between the two wells. When
all the atoms are in one of the two wells, the interaction term is maximum (minimum) for
Ec>0 (<0). z=0 means NL=NR (equally populated wells), and the minimum of energy hap-
pens for ϕ = 0, i.e. for the symmetric state of the double well potential, while we have the
maximum energy for ϕ = π, the anti-symmetric one.
From all this picture turns out that the variables n (i.e. z) and ϕ are conjugate, and their equa-
tions of motion can be written in the canonical form ∂

∂tϕ = ∂
∂nH2Meff and ∂

∂tn = − ∂
∂ϕH2Meff.

The classical hamiltonian in Eq. 1.43 can be quantized replacing the conjugated variables
with operators satisfying the commutation relation [ϕ̂,n̂]=i [52], which introduces quantum
fluctuations in the equilibrium state of the system. These fluctuations are directly related to
measurable observables. For example, if one calculates the in situ imbalance of two separated
condensates with a fixed relative phase ϕ, the variance of n will be given by

(∆n)2 = ⟨n̂2⟩ − ⟨n̂⟩2 = 1
2

√
EJ

Ec + 4EJ/N2 (1.44)

The product of the fluctuations leads to an uncertainty relation of the form

(∆n)2 × (∆ϕ)2 ≥ 1
4 (1.45)

where the equality is valid for the ground state.
Note, for Ec =0 (null interaction) (∆n) =

√
N

2 , which is the so called "shot noise limit",
corresponding to the fundamental minimum value of uncertainty reachable with uncorrelated
particles. On the other hand, the presence of the interaction between the atoms of the gas
leads to have fluctuations in the number of particles lower than those that occur in the
previous case. About that, we can define the squeezing factor ξN as [14]

ξN = ∆n√
N/2

=
(

EJ

EJ + N2EC/4

)1/4

(1.46)

Summarizing, as the interaction increases, the fluctuations of the number of atoms decrease,
and states with a well-defined number of atoms are therefore energetically favoured.
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1.3. Beat-Note Superlattice

1.3 Beat-Note Superlattice
Consider a system formed by a particle of mass ma in presence of a potential energy

V1,2
B (x) = V1 sin2(k1x + ϕ1) + V2 sin2(k2x + ϕ2) (1.47)

associated with two optical lattices with amplitudes V1and V2, wavevectors k1,2 = 2π/λ1,2
and wavelength λ1,2, which fulfil the commensurability condition (n+1)λ1 =nλ2, with n an
integer. For n≫1, the particle feels an effective periodic potential characterized by a large
spacing periodicity d− = π/(k1 − k2) =nλ1/2 and a short spacing amplitude modulation
d+ = π/k+, with k1,2

+ = (k1 + k2)/2. This potential, with n=20, λ1 =1013.7 nm and
λ2 =1064.5 nm, was implemented experimentally in [25] where it was called Beat-note Su-
perlattice (BNSL), Fig 1.4.

Figure 1.4: BNSL with n=20, λ1 =1013.7 nm and λ2 =1064.5 nm as reported in [25].
a) Plot of the beat-note optical lattice (thin line) and the correspondent effective potential
Veff (thick line). b) Profile of the ground-state atomic wavefunction in presence of a BNSL
with a depth V1 =V2 =0.5ER+ (thin line) and in presence of a standard large spacing
optical lattice with a depth equal to the effective depth of the BNSL (thick line). c) Density
distribution of a non interacting condensate in the ground state of the BNSL that shows the
spatial modulation with a period of 10 µm.

In order to give the right interpretation about how the BNSL works as large spacing periodic
trap for cold atoms, let’s rewrite 1.47 in a more convenient way. Both term on the right part
of 1.47 can be rewrite as Vi/2(1− cos(2kix + 2ϕi)) with i=1,2, then, if we add and subtract
to each one of them

(
V1−V2

4

)
cos(2kix + 2ϕi)) we can rewrite the potential as(

V1+V2
4

)[
2−cos(2k1x + 2ϕ1)−cos(2k2x + 2ϕ2)

]
−
(

V1−V2
4

)[
cos(2k1x + 2ϕ1)−cos(2k2x + 2ϕ2)

]
.

Now, if we apply prostapheresis formula to both terms in the square brackets we get(
V1+V2

2

)
+
(

V1+V2
2

)
cos
(
2k1,2

+ x + ϕ1 + ϕ2
)

+
(

V1−V2
2

)
sin
(
k1,2

− x + ϕ1 − ϕ2
)

where k1,2
− = k1 − k2. Now, in order to apply the sum identities, we can introduce
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cos(θ1,2) = −

(
V1+V2

2

)
cos(k1,2

− x+ϕ1−ϕ2)
A1,2(x) and sin(θ1,2) =

(
V1−V2

2

)
sin(k1,2

− x+ϕ1−ϕ2)
A1,2(x) .

Imposing the identity cos2(θ1,2) + sin2(θ1,2) = 1 we can easily find

A1,2(x) =
√

V2
1+V2

2
4 + V1V2

2 cos
(
2k1,2

− x + ϕ1 − ϕ2
)

So, the potential 1.47 can be rewrite as

V1,2
B (x) =

(V1 + V2
2

)
+ A1,2(x) cos

(
2k1,2

+ x + ϕ1 + ϕ2 − θ1,2
)

(1.48)

Expression 1.48 highlights the presence of a single lattice with a fast spatial frequency k1,2
+

and a slow varying amplitude A1,2(x). To make it easier to visualize, let’s consider the case
V1 = V2 = V0. Then expression 1.48 can be rewrite as

VB(x) = V0 −V0 cos
(
k1,2

− x + ϕ1 − ϕ2
)

cos
(
2k1,2

+ x + ϕ1 + ϕ2
)

(1.49)

So, for n≫1, expression 1.49 says that the sum of two initial lattices, except for constant term,
can be seen as a single (primary) lattice which has a fast spatial oscillation on a distance
provided by d+ = π/k1,2

+ modulated over a large length scale by cos
(
k1,2

− + ϕ1 − ϕ2
)
. To

see how from the slow modulation of potential 1.49 it is possible to confine and separate
atoms over distances set by d− = π/k1,2

− =nλ2/2 (see Fig. 1.4b) we need to proceed with a
perturbative approach.

1.3.1 Perturbative regime

As pointed out in [53] a quantum particle evolving in a potential with a periodic spatial
modulation experiences an attractive effect in comparison to a constant one with the same
average value. The reason is that, although the modulation naturally increases the kinetic
energy due to a coupling to high momentum states, the resultant modulation of the wave-
function, with maxima localized at the minima of the trap, causes a stronger reduction of the
potential energy. In the perturbative regime, i.e V0 < ER+ , where ER+ = ℏ2(k1,2

+ )2/2ma is
the recoil energy of the primary lattice, this "attractive" effect can be quantify by estimating
the second order energy shift of a general momentum state k due to its coupling to states
whose wavevector differs by ±2k1,2

+ .
Indeed, consider 1.49 as a potential with an amplitude VB = V0 cos

(
k1,2

− x + ϕ1 − ϕ2
)

roughly
constant. So, if the Fourier components of 1.49 are made explicit

VB(x) = V0 −V0
(ei(2k1,2

+ x+ϕ1+ϕ2)

2 + e−i(2k1,2
+ x+ϕ1+ϕ2)

2
)

(1.50)

then the Bloch theory, as showed in sec 1.1.1 , asserts that through 1.50 a particle in the
general momentum state k interacts only with states whose wavevector differs from k by a
"reciprocal lattice vector", i.e. by ±2k1,2

+ .
In the perturbative limit V0 ≪ ER+ , such theory says that energy correction ∆ϵ of a particle
in the momentum state k (∀k ∈ first Brillouin zone, except for the edge of the zone itself) is

∆ϵ = − |VB/2|2
ℏ2(2k1,2

+ )2

2ma
− ℏ2(k)2

2ma

− |VB/2|2
ℏ2(−2k1,2

+ )2

2ma
− ℏ2(k)2

2ma

(1.51)
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which means

∆ϵ(x) = Veff(x) = −V2
0 cos2(k1,2

− x + ϕ1 − ϕ2)
8ER+

( 1
1− ( k

k1,2
+

)2

)
(1.52)

In the limit of k≪k1,2
+ such correction is independent by k and it correspond to an effective

potential Veff(x) = V0 −
V2

0 cos2(k1,2
− x+ϕ1−ϕ2)

8ER+
. So, the potential energy of an atom in such

trap is lower in regions where the modulation amplitude is larger, which is where the atom
localizes.
The validity of this approximation for V0 ≪ ER+ is confirmed in Fig 1.5a, where the energy
spectrum and the wavefunction of a particle in a BNSL with V0 ≃0.3ER+ and in the potential
Veff(x) are compared. In addition, Fig. 1.5b,c the wavefunctions of two different quasi-
momentum states of the lowest band are reported.

[a] [b]

[c]

Figure 1.5: a) Comparison between the energy dispersion relation of a BNSL (blue dots) and
that of Veff(x) (red dashed line) for V0/ER+ ≃ 0.3. Comparison between the wavefunction
of the states with quasi-momentum k= 0 (b) and k= k1,2

− (c) for a BNSL (blue line) and the
effective sinusoidal potential Veff(x) (red dashed line).

In order to test the validity of this approximation, in Fig. 1.6 we propose the same comparison
for different values of V0. Note that for V0 ≈ ER+ , even if the analogy does not hold, it
is possible to match approximately the first three energy bands of the BNSL with that of
Veff(x) by multiplying their value with a proper coefficient (see red line in Fig. 1.6a,b,c).
For V0 > ER+ the analogy is lost (see Fig. 1.6d,e,f).
As shown in Fig. 1.7 this occurs when the tunneling energy between the lattice sites separated
by π/k1,2

+ becomes of the order of the energy gaps, inducing a strong modulation of the atomic
wavefunctions (see Fig. 1.6e,f).
It is important to stress that for V0 ≈ ER+ , the BNSL depth parameter s = Veff(x)/ER−
= ER+/(8ER−) ∝ n2 can be very large for n≫1, i.e. for large spacings between the sites
of the BNSL. This means that for the BNSL the tunneling between sites separated by d−,
Jeff ≈ ER−s3/4e

√
s, becomes negligible (see Fig. 1.6a,d, the first energy band becomes flat

for V0/ER+ ≥1) and the BNSL can create arrays of independent clouds in each site separated
by d−. One can see the peculiarity of the spectrum for larger values of V0, where the analogy
with a large spacing standard lattice is no longer valid, looking at the first two energy gaps
of the BNSL plotted in Fig. 1.7. The first energy gap of the BNSL deviates from the linear
behaviour, while the second one reaches a maximum and then decreases to zero. The reason
for this is to be found in the role that the phase difference ϕ1 − ϕ2 assumes in the regime of
high depth, as it will be pointed out in the next paragraphs.
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[a]

[d]

[b]

[c]

[e]

[f]

Figure 1.6: a) Comparison of the energy dispersion relation of a BNSL (blue dots) and that
of of Veff(x) (red dashed line) for V0/ER+ ≃ 1. For this depth the analogy starts to fail but
we can recover it with a simple rescaling of the depth of the effective lattice (red line). b)
The ground state density probability between a BNSL (blue line) and Veff(x) (red dashed
line) and Veff(x) rescaled. c) Same comparison for the lowest momentum state of the first
excited band of the spectrum.
d,e,f) V0/ER+ ≃ 4.5. For this depth the structure of the spectrum of a BNSL becomes
completely different from the one of a single wavelength lattice with the same periodicity and
the rescaling cannot be applied anymore.

1.3.2 Band structure

To better understand the origin of gaps at k = mk1,2
− , with m= 1, 2, ...etc in the band structure

showed in Fig 1.6,1.7 let’s go back to what stressed in the paragraph 1.1.2 for states at the
edge of Brillouin zone in the perturbative regime. The state at k=k1,2

− is degenerate with
k= −k1,2

− and the linear term in 1.11 can only couple states whose momenta differ by 2k1,2,
so it cannot justify the presence of gaps with multiply of k1,2

− . The second order term instead
contains two different Fourier components, that can belong to the two different lattices.
Such term represents a two-photon process (absorption and stimulated emission) in a lattice,
with momentum transfer ±ℏk1, and another two-photon process in the other lattice, with
momentum transfer ∓ℏk2, in total ±ℏ(2k2−2k1) = ± 2ℏk1,2

− . It is responsible for the creation
of corresponding energy gaps.
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1.3. Beat-Note Superlattice

Figure 1.7: a) Theoretical calculations of the first (blue solid line) and the second (red dashed
line) energy gaps of the BNSL with d− = 10µm and ϕ1 − ϕ2 = 0 as a function of V0. In
addition we plot the energy gap of a single lattice with periodicity d− (dashed-dotted line)
and the tunneling energy J (dotted line) in a lattice with periodicity d+. Note that the
bifurcation of the two energy gaps and their deviation from the ones of a single lattice with
depth V2

0/ER+ occurs when J becomes comparable to the energy gaps.

About the amplitude of such gaps, we have to estimate the term in brackets in 1.11. The
magnitude of the two Fourier components, by equation 1.49, is |V0/4|.
As for the detuning in the denominator, we can consider an atom in the momentum state
k= k1,2

− (first Brillouin zone) acquiring an extra 2k2 by a lattice. The energy difference
between the initial and intermediate state is
ℏ2(2k2−(k2−k1))2

2ma
− ℏ2(k2−k1)2

2ma
= 4ER

n+1
n .

Considering also the other lattice, for an extra −2k1, and that everything above applies if
the initial state is k= −k1,2

− , then energy gap at the edge of the first Brillouin zone of the
BNSL is

∆Egap = V2
0

16ER1

(
n+1

n

) (1.53)

with ER1 = ℏ2(k1)2/2ma. This result is in agreement with the relation 1.52, since the value
of the first energy gap for it is 1

2
V2

0
8ER+

(see theory in par.1.1.2).

1.3.3 Array of Double Wells potential

Double well potentials have been used to realize atom interferometers using Bose Einstein
condensates trapped in two spatial modes [14]. In previous experiments [17, 54, 16]we cre-
ated an array of double well potentials, i.e. an optical superlattice, exploiting two couples
of laser beams crossed at a small angle and forming optical lattices with a large spacing. A
large lattice constant is required to load a macroscopic number of atoms in a single well.
The operation of such devices are strongly affected by trapping instabilities, that leads to a
fast loss of coherence; indeed, smaller is the angle and larger is the sensitivity of the lattice
spacing to its fluctuations.
A new configuration immune to noise sources might lead to superior performances, and a
reliable configuration is the one that exploits retro-reflected beams by a single mirror [22],
where the position of the minima of the potential depends only on the relative frequency
of the lasers and the vibrational noise of the retro-reflecting mirror. With the current tech-
nologies, it is possible, for example, to stabilize the frequency below the Hz level with an
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ultra-stable cavity or a frequency comb and the vibration of the mirror can be reduced with
anti-vibrational platforms [2].
So, one interesting solution is offered by a superlattice composed by two lattices with one spa-
tial periodicity equal to half the other. This configuration realizes an array of double wells
where the two modes are spatially separated by half the value of the shorter wavelength,
when the optical lattices are realized with beams retroreflected on a mirror. Unfortunately,
the spatial periodicity of optical lattices based on counter-propagating beams is limited to
the range from 0.2 to 0.7 µm, with only few exceptions [23], mainly due to the available
narrow-linewidth laser sources. High densities and consequent strong three body losses limit
the maximum atom number that can be manipulated in such potentials.
The solution proposed in this thesis is the use of a couple of large spacing BNSLs, exploiting
only three laser beams whose wavelengths fulfil the conditions

(n + 1)λ1 = nλ2

(n− 1)λ3 = (n + 1)λ1
(1.54)

with n integer ≫ 1 (see Fig. 1.8).
The beating between λ1 and λ2 creates an effective lattice with lattice spacing nλ2/2, while
the beating of λ3 and λ1 generates an effective lattice with spacing nλ2/4, i.e. exactly equal
to half the first one. The latter has the function of creating potential barriers in place
of the potential minima of the first one, which in the end realizes the splitting of atomic
wavefunctions in the two spatial modes.
However the introduction of the third lattice gives rise to an interference effect between lasers
with wavelengths λ2 and λ3 that creates a second effective lattice with spacing nλ2/2 that
will unavoidably interfere with the other BNSL with the same periodicity. We show in the
following that such interference is destructive when the choice of the lattice phases fulfil the
balanced double well condition.
To derive the effective potential provided by the sum of three optical lattice Vi sin(kix + ϕi)2

let’s start from result 1.48 for the lattice λ1 and λ3

V1,3
B (x) =

(V1 + V3
2

)
+ A1,3(x) cos

(
2k1,3

+ x + ϕ1 + ϕ3 − θ1,3(x)
)

(1.55)

Considering the choice of the wavelengths in 1.54 we have k1,3
+ = k2. As a consequence the

total potential
V1,2,3

B (x) = V1,3
B (x) + V2 sin(k2x + ϕ2)2 (1.56)

is the sum of two potentials with the same fast spatial periodicity λ2/2. Applying the half
angle trigonometric identity on the second term of Eq. 1.56 and then the sum formula of the
derived expression one gets

V1,2,3
B (x) = V1 + V2 + V3

2 + B(x) cos(2k2x) + C(x) sin(2k2x) (1.57)

where B(x) = A1,3(x) cos(ϕ1 + ϕ3 − θ1,3(x))− V2
2 cos(2ϕ2)

and C(x) = −A1,3(x) sin(ϕ1 + ϕ3 − θ1,3(x)) + V2
2 sin(2ϕ2).

Since B(x) and C(x) are slowly varying function, the overall potential can be written, except
constant terms, as a single lattice with spatial periodicity λ2/2 and amplitude

√
B2(x) + C2(x)

(this is easy to see if one writes the last two term of 1.57 in complex form).
According to 1.52 the effective potential is V1,2,3

eff = −(B(x)2 + C(x)2)/(8ER2), then with few
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Figure 1.8: a) Plot of the BNSL (thin black line) with n= 20, λ1 = 1013.7nm, λ2 = 1064.5nm
and ϕ1 = ϕ2 = 0 and the correspondent effective potential V1,2

eff (thick red dashed line). b)
Profile of ground-state atomic wavefunction in presence of BNSL (blue thin line) and V1,2

eff
(thick red dot-dashed line) with V1 =V2 ≃ 1.5ER+ .
c) Plot of the BNSL (thin black line) with n= 20, λ1 = 1013.7nm, λ3 = 1120.4nm and
ϕ3 = ϕ1 + π/2 and the correspondent effective potential V2,3

eff (thick red dashed line). As
one can notice, in this case the spacing is d1,3 =d1,2/2 = 1

2(nλ2/2), i.e. half that of V1,2
eff ,

and the two of them are in counterphase. d) Profile of ground-state atomic wavefunction in
presence of BNSL (blue thin line) and V2,3

eff (thick red dot-dashed line) with V1 ≃ 1.5ER+

and V3 ≃ 0.75ER+ .
The combination of this two lattice give rise to the pattern in e), an array of double wells
separated (thin black line) by d1,2 whose spatial modes are separated by d1,3 (V1,2,3

eff is repre-
sented by thick red dashed line). f) Profile of ground-state atomic wavefunction in presence
of the combination of the two BNSL (blue thin line) and V1,2,3

eff (thick red dot-dashed line).

29



Chapter 1. Theory

calculations we get

V1,2,3
eff (x) = V1 + V2 + V3

2 − 1
8ER2

×
[V2

1 + V2
2 + V2

3
4 +

+V1V3
2 cos

(
2k1,3

− x + 2(ϕ1 − ϕ3)
)
+

+V1V2
2 cos

(
k1,3

− x + 2(ϕ1 − ϕ2)
)
+

+V2V3
2 cos

(
k1,3

− x + 2(ϕ2 − ϕ3)
)]

(1.58)

where ER2 = ℏ2k2
2

2ma
. In order to achieve an array of balanced double wells we choose ϕ1 = ϕ2

and ϕ3 = ϕ2 + π/2. In the end, constant term aside,

V1,2,3
eff (x) = − V1V3

16ER2

cos
(
2k1,3

−

)
− V2(V1 −V3)

16ER2

cos
(
k1,3

− x
)

(1.59)

So, the idea is to first load the atoms in the minima of the effective potential provided by
lattice 1 and 2, with amplitude V1V2

16ER2
. Then, increasing the depth of lattice3, we rise a barrier

in the centre of every well with amplitude V1V3
16ER2

. At the same time the interference between
lattice 2 and 3 reduces the amplitude of second effective potential in Eq.1.59, which become
null when V3 = V1.
For different values of ϕ3 all the double wells acquire an energy mismatch between the right
and the left modes.
It is worth to notice in the end that, once the conditions between the three phases are ful-
fil, ϕ1 is a free parameter which doesn’t change the profile of effective potential ( its value
changes only the position of minima of fast spatial modulation with respect to the slowly
varying envelope that sets the effective potential felt by the atoms.)
To complete this analysis, I also studied the behaviour of the eigenvalues of the direct sum
of three optical lattice V1,2,3

B = ∑
i Vi sin(kix + ϕi)2 and that of the effective potential in

Eq. 1.59 as a function of V3 in three different regimes. For sake of simplicity, I restrict my
simulation to a single DW. Note, According to 1.59, once the depth of the BNSL made by k1
and k2 has chosen, V3 needs to be smaller than V1,2 not to loose the DW configuration.

In Fig. 1.9 the eigenvalues in Hz of the first three excited eigenstates are reported, from which
the eigenvalues of the ground state has been subtracted as common offset. In this way, the
blue-dots (BNSL Double well) and blue-continues lines (effective Double well) in the images
show the trend of the Tunneling Energy.
With reference to Fig.1.6, the depths V1 =V2 =V0 are chosen in the region where the BNSL
made by k1 and k2 can be described by an effective potential, in particular V0 =0.2 ER+ ,1
ER+ ,2 ER+ . We can see that, up to V0 =ER+ , Eq. 1.59 is a good approximation of V1,2,3

B ,
while for V0 =2ER+ starts to fail (even if, looking at Fig. 1.9, it seems that it’s only a matter
of rescaling). As for the BNSL made by k1 and k2, when the depth is to large the structure
of the spectrum shows a peculiar behaviour, so I will dedicate to it the next paragraph.

1.3.4 Large depth regime

Consider again the BNSL in equation 1.49. As shown in Fig. 1.7(d,e,f) when lattice depth
V0 > ER+ the modulation of the atomic wave-function due to fast periodicity set by k1,2

+ is
more and more relevant, and BNSL develops its own energy spectrum.
The validity of effective potential picture begins to fail when the atomic wavefunction starts
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Figure 1.9: Eigenvalues in Hz of the first three excited eigenstates as function of barrier depth
Vbarr =V3 in three different regimes. The eigenvalue of the ground state has been subtracted
from the other as common offset. Blue-dot represent then the tunneling energy of the double
well system made by V1,2,3

B = ∑
i Vi sin(kix + ϕi)2, while blue continuos line is the effective

potential in Eq. 1.59.
Red square and green triangles are the eigenvalues of the second and third excited state,
while red dashed line and green dashed-dot line are the eigenvalues for the correspondent
states of the effective potential.

to localize in the minima of the primary lattice cos
(
2k1,2

+ x + ϕ1 + ϕ2
)
. To understand when

this occurs, it useful look at two energy terms, the tunneling J between the sites separated
by π/k1,2

+ and their potential energy difference δ provided by the slowly varying envelope of
the BNSL, Fig1.10.

By 1.15 the tunneling J in tight-binding regime is ∝ s3/4e2
√

s, where s= V0/ER+ .
To estimate δ one can proceed as follow:
Eq. 1.49 with ϕ1 = ϕ2 = 0 has a minimum in x= 0, and the next one is at xM = π/(2k1,2

+ ).
Evaluating 1.49 at xM and considering that k1,2

− ≫ k1,2
+ with a little bit of algebra we get

δ ≃ V0
2π2

(2n + 1)2 (1.60)

As long as δ < J, the possibility to tunnel between the sites separated by π/k1,2
+ is so large

that you can consider the energy levels in such wells degenerate, as it happens for any optical
lattice. In this regime the effective potential picture is still valid.
When δ ≧ J, δ is what mostly determines the energy spacing. The reason why in Fig. 1.7 the

31



Chapter 1. Theory

-1 0 1

[a] [b]

1°Gap 1°Gapδ δ

Figure 1.10: This picture show the same spectrum reported in Fig.1.7.
Inset a) shows the BNSL potential around the minimum, comparing the wavefunctions of
the first (blue dashed line) and second (red dashed-dot line) on-site energy eigenstates for
V0/ER+ ≃ 6. The first gap becomes asymptotically equal to the potential shift of the two
sites adjacent to the one with the lowest energy.
The reduction of the second gap is instead due to the negligible energy difference between
the antisymmetric and symmetric states of the second (red dashed-dot line) and third band
(green dot line) respectively, as shown in the inset b)

second energy gap reaches a maximum when it is of the same order of J, and then goes to
zero with increasing values of the lattice depth is due to negligible energy difference between
the antisymmetric and symmetric states of the second and third band respectively (see inset
b in 1.10).
The fact that, for the BNSL in this regime, the energy gap goes like δ without the need for an
additional external potential is what makes it truly appealing for experiments aiming to have
highly confined atomic samples in one direction. Indeed, if the effective potential picture of
the BNSL still hold even for large depth V0, then the longitudinal confinement of the atoms,
as it happens for a standard lattice, would scale as

√
V0, while now δ ∝ V0, Fig1.11.

This demonstrates that, at high depths, BNSLs are preferable in comparison to equal spacing
single lattices, in particular in applications where arrays of atoms at high temperature are
used (for example for quantum computation [55, 56]) or where strong spatial confinement is
required [24, 57].
This linear scaling of the energy gap as a function of the lattice depth occurs until δ becomes
equal to ℏω, with ω the single site trapping frequency.
For deeper lattices δ = ℏω =

√
V0/ER1,2

+
and the wave-function completely localizes in the

site with minimum energy, the one at the bottom of the BNSL envelop.
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1.3. Beat-Note Superlattice

Figure 1.11: Amplitude of the first energy gap of a single wavelength lattice with periodicity
d− and of a BNSL with the same effective periodicity. The first one shows the usual square
root scaling in the tight binding regime and the second one exhibits the peculiar linear
behaviour as a function of V0. For V0 >80ER+ the BNSL surpasses the single lattice providing
a larger gap for the same depth.

So far we have deliberately omitted the role of the phases ϕ1 and ϕ2 of the two lattices
which make the BNSL. As one can deduce from 1.49 for different values of ϕ = ϕ1 + ϕ2, the
fast spatial modulation of the BNSL potential is spatially shifted with respect to the slowly
varying envelope by an amount proportional to ϕ itself.
It’s worth to report the case of ϕ = π/2 characterized by two equal absolute potential minima
equally displaced with respect to the minimum of the BNSL envelope, Fig. 1.12.
In this case the first energy gap of the BNSL is the one that, after reached a maximum, goes
to zero with increasing values of the lattice depth. Like in a balanced double well potential,
the first two eigenstates becomes the two degenerate symmetric and antisymmetric wavefunc-
tions for large potential barrier separating the two spatial modes.
It is interesting to note that in the low depth regime the spectrum of the BNSL doesn’t
depend on ϕ, while it is crucial to define its behaviour in the large intensity limit. The per-
turbative approximation loses all the info about the phase of the fast spatial modulation, i.e.
ϕ1 + ϕ2, while turns out to be again relevant in the large depth regime, as explained above.
To conclude in Fig.1.13 are showed the eigenvalues of the first three excited states of a BNSL
double well potential as in Fig. 1.9, in the large depth limit V0 =5ER+ .

33



Chapter 1. Theory

-1 0 1 -1 0 1

[b] [d]

0 5 10 15 20

0

100

200

300

400

500

600

700

800

900

1000 [a]

0 5 10 15 20

0

200

400

600

800

1000

1200

1400

[c]

Figure 1.12: Theoretical calculations of the first (blue solid line) and the second (red dashed
line) energy gaps of the BNSL with d− = 10µm and a) ϕ1 = ϕ2 = 0, c) ϕ1 + ϕ2 = π/2
as a function of V0. In b) the wavefunctions of the first (blue dashed line) on-site energy
eigenstates for ϕ1 = ϕ2 = 0 and d) for ϕ1 + ϕ2 = π/2.
As one can notice, the spectrum of the BNSL doesn’t depend on ϕ up to V0 ≥ 3ER+

1.4 Kapitza Dirac diffraction with a Beat-Note Superlattice

BNSL in Eq.1.47 can be exploit to perform Kapitza Dirac scattering pulses to split the orig-
inal condensate in momentum components finely spaced, p=±j2ℏk−, with j∈ N. This has
already been used to perform multi-mode interferometry on a trapped condensate with time-
pulsed lattices, the so-called Kapitza-Dirac interferometry, as it will be shown in chap.4.
In such work small momentum component generated by KD diffraction are essential to limit
the region of the trapping potential explored by the atoms. This is possible since in the per-
turbation regime, V1(2) < ER1(2) , BNSL can be described by an effective periodic potential
with momentum k−, as explained in chap.1.3. Beyond the effective potential approximation,
the KD pulses diffract atoms also at momentum components associated with the two funda-
mental optical lattices, i.e., at integer multiples of 2ℏk1(2), and the atoms of these components
are effectively lost for the purpose of the interferometer due to their large momenta.
To understand why, in the perturbative regime during KD diffraction, the population in the
large momenta components is not so relevant, we can describe the short atom-light interac-
tion with quasi-stationary perturbation theory (a constant potential which is turned on for
a time t) as it is described in many introductory quantum mechanics books [58].
In par.1.3.2 we mentioned that BNSL effective potential is a consequence of a a four photon
process. On the other hand, the large momenta components in KD scattering are generated
by a two photon transition, where a photon of momentum k1 (or k2) is absorbed and one of
momentum k1 (k2) is emitted.
So we have to compare the strength of this two process. At time t=0 we suppose the sys-
tem is in the state of zero momentum |p = 0⟩, which is the lowest eigenstate of the initial
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Figure 1.13: Eigenvalues in Hz of the first three excited eigenstates as function of barrier
depth Vbarr =V3 for V0 =5 ER+ . The eigenvalue of the ground state has been subtracted
from the other as common offset. Blue-dot represent then the tunneling energy of the double
well system made by V1,2,3

B = ∑
i Vi sin(kix + ϕi)2, while blue continuos line is the effective

potential in Eq. 1.59.
Red square and green triangles are the eigenvalues of the second and third excited state,
while red dashed line and green dashed-dot line are the eigenvalues for the correspondent
states of the effective potential..

unperturbed Hamiltonian H0 (zero energy reference). When a small perturbation is turned
on for a time t, the wavefunction |Ψ(t)⟩ of the perturbed system can be still decomposed on
the basis of eigenstate |p⟩ of H0, |Ψ(t)⟩ = ∑

p cp(t)eiEpt/ℏ|p⟩. It turns out that, applying the
Method of variation of constants, stopping at the second perturbative order, and neglecting
all terms proportional to time t since we are in a short pulse regime, we get

|Ψ(t)⟩ = |0⟩+
∑
p ̸=0

⟨p|V1,2
B |0⟩

Ep

(
e− iEpt

ℏ − 1
)
|p⟩+

+
∑
p ̸=0

∑
m ̸=0

⟨p|V1,2
B |m⟩⟨m|V

1,2
B |0⟩

EmEp

(
1− e− iEpt

ℏ

)
|p⟩+

+
∑
p ̸=0

∑
m ̸=0

⟨p|V1,2
B |m⟩⟨m|V

1,2
B |0⟩

Em(Ep − Em)

(
e− iEpt

ℏ − e− iEmt
ℏ

)
|p⟩+

+
∑
p ̸=0

⟨p|V1,2
B |0⟩⟨0|V

1,2
B |0⟩

E2
p

(
1− e− iEpt

ℏ

)
|p⟩

(1.61)

where Ep is the recoil energy of a particle in momentum state |p⟩. Making explicit the Fourier
components of our BNSL we get
V1,2

B = V0
4

(
2 + ei2ℏk1 + e−i2ℏk1

)
+ V0

4

(
2 + ei2ℏk2 + e−i2ℏk2

)
,

so this potential can only couple momentum states ±2ℏk1,2. The state we are looking at is
|p = ±2ℏk−⟩, so as expected it can not be described by the second term in Eq. 1.61, which
represents two photon transition to momentum state ±2ℏk1,2. For the same reasons also the
last term in Eq. 1.61 is not useful. Third and fourth terms in Eq. 1.61 can describe the
transition to state |p = ±2ℏk−⟩, but we notice that in such terms the states |m⟩ ≡ |±2ℏk1,2⟩
, so Em ≫Ep. Thus, we can safely say that the probability amplitude which describes the
four photon process |0⟩ → |p = ±2ℏk−⟩ is that of the third term of Eq. 1.61
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⟨p|V1,2
B |m⟩⟨m|V

1,2
B |0⟩

EmEp
∝ V2

0
ER1,2ER−

= V2
0n2

E2
R1,2

(1.62)

comparing this to that of second term in Eq. 1.61, which is ∝ V0/ER1,2 , we understand that
between the probability amplitude of the four photon process and that of the two photon
process there is a factor (V0n2/ER1,2). Even in perturbative regime of the BNSL description
where V0 < ER1,2 , if n≫1 (for us n=20) the four photon process will be favourable.
To investigate the validity of BNSL description in scattering regime, I’ll proceed with numer-
ical simulations of KD diffraction by a BNSL.
First of all I compare the momentum distributions obtained after a KD pulse with the BNSL
in 1.47 and with the effective potential in 1.52, see Fig. 1.14.
Note, in this simulation the wavelengths of the BNSL fulfil (n+1)λ1 = (n− 1)λ2 with n=20
and λ1 = 1.013µm, which gives an effective 5 µm spacing lattice.

Figure 1.14: In the upper panel we compare the momentum distribution after a single KD
pulse of the BNSL and of the effective potential for two different values of V1 = V2 =:
(a) 80ER− , (b) 120 ER− . In (c) we report the numerically calculated “optimal” depths
(blue points) compared with the perturbative depth of equation 1.52 (blue line), with the
corresponding fidelity (red line, right axis)

As expected the approximation of the BNSL with the perturbative effective potential gets
worse as we increase the BNSL amplitude. To quantify this aspect, in Fig. 1.14c I show the
"optimal depth" Vopt of the effective potential Veff as function of BNSL depth V1=V2. Vopt

is calculated such that the fidelity | ⟨Ψeff|ΨBNSL⟩ |2 is maximum, where Ψeff and ΨBNSL are
respectively the wavefunction in momentum space at the end of the first KD pulse τ=80µs
for the effective and BNSL potential. We can see that the depth of the effective potential de-
scribed by perturbative approximation and the one with depth equal to Vopt start to deviate
at V1=50 ER− , and that the fidelity drops below 0.9 for V1 ∼40ER− .
In the measurements shown in chap. 4 the BNSL depth was set to V1 = V2 =90 ER− , i.e.
in a region where the perturbative expression is no longer valid. In order to confirm that the
long wavelength approximation is still valid, we investigate numerically the population of the
diffracted orders as a function of the length of the pulse ∆tKD.
In Fig. 1.15 I report the population of the first three diffracted orders and we compare them
with the square modulus of the Bessel function |Jn(∆tKDVopt

2ℏ )|2 with n=0,±1, as described
in par. 1.1.5. We observe a very good agreement, except for residual little deviations that
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1.4. Kapitza Dirac diffraction with a Beat-Note Superlattice

Figure 1.15: Numerical atomic fractional populations in the first three momentum compo-
nents as a function of the length of the pulse for the BNSL with V1 = V2 = 90ER− used in
the experiment. The solid lines represent the theoretical prediction represented by the square
module of Bessel function |Jn(∆tKDVopt

2ℏ )|2, with n=0,±1.

are mainly due to the diffracted atoms also at the large momentum components associated
with the two fundamental optical lattices. In Fig. 1.16 we show examples of the momentum

Figure 1.16: (a) Momentum distribution after a single KD pulse of the BNSL for different
values of V1 = V2, i.e. 90 ER− (used in the experiment, see chap.1.4), 150 ER− , and 200
ER− . Both small and large momentum components are displayed, in order to show how
the diffraction pattern changes as function of V1. (b) Fraction of atoms Nlost diffracted at
momenta larger than the fourth-order component, as a function of V1.

distribution after a single KD pulse of the BNSL for increasing values of V1 = V2 , together
with an estimation of the fraction of atoms diffracted at large momentum components Nlost
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Chapter 1. Theory

as function of V1. To evaluate the latter, we consider as “lost” the atoms with momentum
|p|>4ℏk−, although as I will explain in chap.4 we have to restrict to |p|<2 in the experiment.
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Chapter 2

Experimental Apparatus

In this chapter I describe our experimental platform for the realization of a Bose Einstein
condensate trapped in a BNSL. Everything about the apparatus to produce and detect BECs
of 39K with tunable interactions, is part of the former group members’ work in the past years,
and more details can be found in their theses and publications [59, 60, 61].
In the first section I describe briefly the main parts of the experimental setup. Then I focus
the attention on the new laser system used to produce the optical lattices I need for the
BNSL. After a brief introduction to the theory of the Pound-Drevel-Hall method, I describe
in more details the characteristic of the optical cavity and the electronic system that I have
assembled in order to lock more than one frequency to the same reference. Finally, I give an
estimation of the frequency noise affecting the locked lasers by mean of a second reference
cavity.

2.1 Experimental platform

In this paragraph I will focus on the experimental apparatus for the realization of the Beat
Note Superlattice (see 1.3.3), for its implementation in two works [25, 28], and for the cre-
ation of the array of Double well potentials (see 1.3.3), exploited to realize a trapped atom
gradiometer.
Briefly, in a first vacuum chamber a 2D magneto-optic trap (2D-MOT) captures part of the
gas of atoms released by a potassium solid sample, slowing the atoms along two orthogonal
directions. This step produces an atomic beam that is collected from a 3D MOT in a second
cell, where the atoms are cooled down to sub-doppler temperatures.
Then the atomic cloud is confined in a magnetic trap mounted on a mechanical translational
stage and brought to the last vacuum chamber characterized by the lowest pressure and a
wide optical access, where Bose Einstein condensation is accomplished by means of evapo-
rative cooling into an optical dipole trap potential. In particular, once the atoms reach the
science chamber ( Fig 2.1 ), they are loaded in a crossed dipole trap provided by two tightly
focused red detuned infra-red beams with a wavelength around 1060 nm. The first one, the
’radial beam’, is provided by a Mephisto MOPA laser ( Coherent) while the second one by an
IPG photonics ytterbium fiber laser (YLR-100-LP-AC), which propagates in the horizontal
plane with an angle of π/4 with respect to the radial beam.
Two pairs of coils are then used to generate the magnetic fields necessary for the experiment,
i.e a uniform magnetic field to change the two body interaction via a broad magnetic Fesh-
bach resonance at 400 G [61, 62, 63], and a magnetic field gradient to compensate for gravity.
The evaporative cooling consists in a selective loss of the most energetic atoms and a sub-
sequent re-thermalization of the system at lower temperatures through collisions. However,
since the 39K background scattering length is negative, it exists for low energies a minimum
value of the cross section ( Ramsauer Townsend minimum). Once you reached such limit, the
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system can no longer thermalize, so at a given temperature the evaporative cooling becomes
inefficient. To solve this problem we change the scattering length exploiting Fashback reso-
nances. We manage to produce with this system ensembles of up to 104 − 105 atoms almost
purely condensed.

ipg
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Figure 2.1: Sketch of the laser beams in the science chamber (from above). The radial beam
and the lattice beams have different polarizations and they are mixed on a BS cube. After
the fiber a part of the lattice beam is sent to a diffraction grating in order to separate the
two wavelengths and measure the intensity of each beam on three photodiodes.

The three lasers exploited to produce the BNSLs ( let’s refer to them as ’lattice lasers’)
propagate along the same axis of the radial beam (the ’longitudinal direction’, x-axis). Af-
ter the evaporative cooling the IPG can be switched off adiabatically and a third infra-red
beam which propagates perpendicularly to the IPG-radial plane is then turn on to give the
longitudinal confinement. This beam, the ’vertical’ beam (Mephisto MOPA laser), is mainly
used to decide how many BNSL sites must be loaded with the condensate. After the loading,
the vertical beam is switched off too, since the longitudinal confinement is now given by the
BNSL, while the radial beam remains on during all the experiment in order to provide the
confinement in the radial direction (ωy,z ≈ 2π × 200Hz).
All the lattice lasers come out from the same fiber, sharing the same spatial profile and the
same optical path. The polarization is well defined by a Glan Taylor polarizer cube (model
CGTP,broadband 350-2300nm,LAMBDA) placed at the output of the fiber. After they have
passed through the cell, they are reflected by a beam splitter-cube where they are super-
imposed with the radial beam, that has an opposite polarization. Finally, they are simply
retro-reflected with an HRR mirror and sent back into the fiber. At the output of the fiber, a
fraction of the light is sent to a diffraction grating in order to separate the three wavelengths
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2.2. Optical lattices laser setup

and measure the intensity of each beam separately on two photodiodes. The three signals are
sent to different PID (Proportional-Integrator-Derivative controller) controllers to monitor
and stabilize the intensity.

2.2 Optical lattices laser setup

Fig 2.2 shows the laser setup for the production and the control of the frequency and intensity
of the three lasers at 1064 nm, 1013 nm and 1120 nm. The light at 1064 nm is provided by
a high power Mephisto MOPA (MM) infrared laser (1064,439 nm, vacuum) and the lights at
1013 nm (1013,751 nm, vacuum) and 1120 nm (1120,5xx nm, vacuum) are provided by two
Toptica TA PRO diode laser with a maximum power of 2W.
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Figure 2.2: Scheme of the laser setup to produce and control the two lights at 1064 nm, 1013
nm and 1120 nm. In the inset above I show the retardance as a function of the wavelength of
the multi-order waveplate used to obtain the same polarization at the entrance of the fiber.

After optical isolators a fraction of light of all beams is sent to electro-optical modulators
(EOMs) and then they are combined with a beam splitter in a fiber that brings the light
to an optical cavity exploited for lasers frequency locking. The rest of the light is sent to
acusto-optical modulators (AOMs) that, together with the photodiodes in Fig. 2.1 and PID
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controllers, allow to stabilize the intensity. For one of the two beams we use a double passage
AOM (model 3200-1113, Crystal Technology) in order to have the possibility to tune dynami-
cally the frequency of the laser in a wider range of about 160 MHz, while the other two are set
in a single passage configuration (model 3110-197, Crystal Technology, driven at 110 MHz).
After the AOMs, the three laser beams are mixed on a polarizing beam splitter cube (PBS)
and sent together in the same fiber that brings the light to the atoms. Before this fiber, since
the three beams have different polarizations, on the Glan Taylor polarizer at the exit (Fig.
2.1) it is not possible to have all the power transmitted for all of the beams at the same time.
In order to avoid power losses, we have decided to use a multi-order half-lambda waveplate
by Thorlabs (model WPMHOS-1064, THORLABS), whose retardance as a function of the
wavelength is shown in the inset of Fig. 2.1. It allows to rotate the polarization of the 1064
light, while it left the polarizations of the others unchanged. In this way we can send the
three beams inside the fiber with the same polarization and have all the power available for
all of them.

2.3 Tunable interactions

An important tool in our experiment is the possibility to control the interatomic scattering
length via a magnetic Feshbach resonance. The two-body scattering length depends on the
magnitude of the magnetic field by the relation as = abg

(
1− ∆B

B−B0

)
.

The s-wave scattering length as, that defines the low energy limit (limit for momentum k→0)
for the elastic scattering cross-section σ = 8πas, allows to describe interaction in a simple
picture, where the particular features of the interatomic potential can be neglected in favour
of an effective pseudo-potential Vint(⃗r, r⃗′) ≃ 4πℏ2as

ma
δ(⃗r− r⃗′). The sign of as determines if the

effective potential is attractive (as < 0) or repulsive (as > 0). This approximation relies on
physical assumptions usually valid in case of cold bosons, namely low collisional energy and
the symmetry of the atomic wavefunction for identical particle exchange.
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Figure 2.3: Value of the two-body scattering length as in Bohr radia versus the magnitude
of magnetic field B in Gauss for the state |F = 1,MF = +1⟩ near the resonance at 400G

In particular, in the case of 39K, there is a broad resonance for the state |F = 1,MF = +1⟩
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(the atomic state we condense), near a value of B0=400 G, Fig. 2.3. The width of this
resonance is ∆B=50 G and the zero crossing point is at 350 G. Around this point the slope is
0.6a0/G so, if the magnetic field is stable enough, it is possible to change or cancel the value
of the scattering length very precisely.

2.4 Imaging System

In our experiment we detect the distribution of the atoms and count them via absorption
imaging, exploiting the wide optical access of the science chamber. This technique consists
into shining the atoms with a low intensity Iin (i.e. less then saturation intensity Is) probe
resonant light beam of wavelength λ. Atoms absorb part of the incoming signal propor-
tionally to the local column density nx,y of the atomic cloud according to the Lambert-Beer
Law Iout/Iin=e−σnx,y , where σ = 3λ2

2π
1

1+ I
Isat

+4 δ2
Γ2

is the scattering cross-section for the imaging

light, Γ is the natural width of the atomic transition and δ = ω−ω0 is the detuning between
the frequency of the laser and the frequency of the transition. The presence of atoms is
then recorded as a negative image in the probe beam intensity profile, which is sent to the
measuring device.

Figure 2.4: Optical transitions of the D1 and D2 lines of 39K.

To measure the ratio I/I0 for each point it would be sufficient to acquire two images, one of
the imaging light without the atoms and one of the light with the atoms, and calculate the
ratio for each pixel. To increase the signal-to-noise ratio we acquire a third image without
imaging light and without atoms, and subtract it from both images before performing the
ratio.
Imaging direction is in the horizontal plane xy (see Fig. 2.1) and, to collect images, we exploit
a microscope with short focal lens (objective, N.A 0.6) and a long focal imaging lens, to get
a magnification of M ∼ 30. An Andor Ikon-M digital camera acquires magnified images,
whose micrometers to pixel conversion factor is α = 2.4± 0.2px/µm.
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For the 39K in the state |F = 1,MF = +1⟩ we exploit the D2 line (see Fig. 2.4), with
Γ/2π ≃ 6MHz. The imaging procedure is performed with negligible magnetic field and
using a light resonant with the transition F=2→F’=3 (named cooling light in Fig. 2.4) with
a polarization σ+. Since the atoms are in the state |F = 1,MF = +1⟩, we need an initial pulse
of light resonant with the transition F=1→F’=2 (named repumper light), in order to allow
a decay in the state F=2. However, since the states F’=3 and F’=2 are close (about 3.6 Γ)
there is a non zero probability that the imaging light induces the transition F=2→F’= 2 with
consequent losses of atoms due to decay F’=2→F’=1. To avoid this, we need this repumping
laser on during the whole imaging procedure

2.5 Laser frequency stabilization
Let’s consider the beat-note superlattice made by two optical lattices ( see chap. 1.3). The
relative phase of the two lattices determines the position of the maxima and the minima
of the resulting BNSL, so controlling such parameter allow to translate the whole BNSL in
space.
To quantify this, think about the system in Fig. 2.1 with the BNSL on. The atoms are
loaded in a single site of the BNSL, about D∼25 cm from the retro-reflecting mirror. This
means that, on a single standing wave, a frequency fluctuation ∆ν will result in a additional
phase

∆ϕ = 2D2π
c

∆ν (2.1)

meaning that, for ∆ν ∼300MHz, we’ll have a complete sweep of the minima of the BNSL,
and the atoms will experience the passage through maximum of the trapping potential.
Breaking down noise fluctuations on this critical parameter is then a fundamental task that
must be carried out in order to exploit BNSLs as a tool to coherently manipulate atoms over
large distances.
So, in order to increase the stability in relative frequency fluctuations I have realized an
experimental setup to lock all the frequencies to an external high finesse Fabry Perot cavity,
exploiting a Pound-Drever-Hall technique.
Before going further on the PDH technique, I want to stress that the phase difference in
the BNSL I’m referring to, the ϕ1,2 = ϕ1 − ϕ2 term in expression 1.52, is the relative phase
between the two standing waves in 1.47, and not between the two lasers, strongly relaxing the
experimental requirements to minimize its fluctuations. In our setup the two possible sources
of instabilities of ϕ1,2 are laser frequency fluctuations and instabilities of the retroreflecting
mirror.

2.5.1 Optical cavity

The optical cavity we are currently using for the frequency locking (Fig2.5a) is made of
INVAR (a material with a small thermal expansion coefficient) and the mirrors are in a
hemispherical configuration (the input mirror is nearly flat, R1 ≈ ∞, and other one, R2 ≃30
cm, is concave). Light can propagate through an optical cavity if half the wavelength λ is
related to the cavity length L through the relation niλ/2 = 2L, where ni is an integer. The
optical cavity is then a filter whose transmission line (fundamental modes ni) are separated
in frequency by a fixed distance called Free Spectral Range (FSR), νfsr = c

2L [64].
A piezoelectric transducer is placed behind the first mirror. Driving it with a triangle wave-
form of suitable frequency and amplitude it is possible change the cavity length L to scan over
different resonance frequencies (otherwise, one can do the same thing scanning the frequency
of the laser itself). The resultant spectra, measured by a photodiode that is placed behind
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the cavity, is shown in Fig. 2.5b
Since we didn’t build the cavity but we borrowed it from another experiment, I had to charac-
terized it. The measured FSR is νfsr ≃ 1.09 GHz, which correspond to L≃13.7 cm. Zooming
on a single fundamental mode (Fig. 2.5d) we can measure the FWHM of the transmission
peak, ∆F W HM = 230kHz, a quantity which is relate to the FSR by the finesse f = F SR

∆F W HM
,

which is f ≈4800.
To get info about the last quantity which define this cavity, the radius of curvature of the
backside mirror R2 we misalign slightly the cavity to measure the separation δν between
the transverse modes, which in figure Fig. 2.5c appear next to the fundamental ones. Such
separation is related to R2 by δν = νfsr

π arccos
(
1− L

R2

)
, and for our mirror is R2 ≃ 31.4cm.
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Figure 2.5: a) Picture of the cavity. Red thick line represents the beam incoming in the cavity,
red dashed line is the reflected beam. b) A well aligned cavity shows very sharp fundamental
modes. b) Higher order (transversal) modes appear when it is slightly misaligned. c) Zoom
of the fundamental transmission peak

2.5.2 Pound-Drever-Hall locking

Single frequency locking
The frequency stabilization technique exploited in our experiment is based on the Pound-
Drever-Hall (PDH) locking scheme [65, 66], which is shown schematically in the figure Fig.
2.6 for a single frequency (the one exploited for the lock of the 1064nm laser).
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Figure 2.6: Schematic representation of PDH locking loop. Solid red line represents the
optical paths and the black dashed line represents the path of the electronic signals.

The light incident on the cavity is first phase-modulated, usually by an EOM, so that the
electric field is of the form

Einc = E0e
i(ωct+β sin(Ωt)) (2.2)

where E0 is the amplitude of the incident field on the modulator, ω is the angular frequency
of the incoming light, β is the modulation depth, and Ω is the angular frequency of the
modulation. The effect of this modulation in the phase, at the first order in the amplitude
β, is to generate three distinct frequency components, a carrier at ω = ωc and two sidebands
ω = ωc ±Ω. For the light at 1064 nm we use a free-space EOM by Thorlabs that has an RF
bandwidth of 50 MHz, driven by Ω = 10.8 MHz with 1V of amplitude. In Fig. 2.7 in blue it
is shown signal recorder by the photodiode after the cavity.
For sufficiently large Ω, the sidebands are completely reflected when the carrier is near reso-
nance. If also the carrier is not perfectly in resonance, a portion of it will reflect and generate
an intensity modulation by interfering with the reflected sidebands at a frequency ±Ω. The
amplitude of such modulation is proportional to the frequency difference between the carrier
and the cavity resonance. To measure it, we collect the reflecting intensity on a fast photo-
diode (for the 1064 nm laser we use a PD G7096-03) and then we demodulate the output
signal by a mixer driven with the same local oscillator at Ω.
The DC signal coming out from the mixer is the PDH error signal, which now can be sent
to a servo amplifier (PID) to make the feedback signal. In the end, the feedback tells the
driver laser how to change the output frequency ωc in order to reduce the PDH error, and
eventually locking the laser to the cavity. In Fig 2.7 an example of PDH error signal for the
1064nm laser.
The shape of the PDH error signal can be adjusted introducing a phase shift between the
local oscillator and the signal from the photodetector. The error signal in Fig. 2.7 is anti-
symmetric with respect to the resonance (zero level of the error signal), which means that it
takes a positive value if it is above, or negative if it is below the such level. Therefore we can
know which side resonance we are in, and correct accordingly. The slope of the error signal is
a measure of the sensitivity of the error signal to fluctuations in the laser frequency or cavity
length and it depends on the sidebands power, and it depends by the modulation depth β.
For the purpose of a good lock is to keep in mind that if the polarization of the light that
enter in the EOM is not well parallel to the axis of the EOM crystal, a residual amplitude
modulation (RAM) may occur [67], which can cause an uncontrolled spread of the laser
linewidth due to intensity fluctuations. When this happen, not only the phase but also the
polarization is modulated, and this modulation is translated to an intensity modulation by
the cube just before the cavity. Since the frequency is the same as the phase modulation,
the effect is the appearance of a floor in the signal after the mixer that does not depend on
the frequency of the laser but that is proportional to the intensity of the laser. In order to
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Ω

Figure 2.7: Blue thin line represents the signal on the photodiode after the cavity, green thick
line is the correspondent Pound Drever Hall error signal for the 1064 nm laser.

minimize this effect we place a Glan Taylor polarizer before the EOM in order to clean very
well the polarization.

Offset sideband locking
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Figure 2.8: a) Schematic representation of PDH locking loop in dual-sideband configuration.
b) Signal on he photodiode after the cavity which shows the sidebands and the sub-sidebands
and c) Error signal after the mixer in the dual sidebands configuration for the 1013nm laser
source.

The 1064 laser source, locked to the cavity, can be tuned by means of the double passage
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AOM in Fig. 2.2, but the tunability range is lower then 200 MHz. For the other two laser
source used in this work (the two Toptica TA-PRO laser at 1013nm and 1120nm) we used a
slightly different technique, which instead allows to tune the laser frequency with respect to
the cavity resonance inside the whole FSR. The technique is called offset sideband locking
[68, 69], and in particular we use a dual-sideband configuration (DSB) modulating the beam
at two distinct frequencies, one of which is adjustable (see Fig. 2.8a) . In this case, the
electric field is

Einc = E0e
i(ωct+β1 sin(Ω1t)+β2 sin(Ω2t)) (2.3)

where Ω1,2 and β1,2 are respectively frequencies and amplitudes of the modulations. The
effect of this phase modulation is a carrier with angular frequency ωc, sidebands with angu-
lar frequencies ωc ± Ω1, sidebands with angular frequencies ωc ± Ω2, and sub-sidebands at
ωc + Ω1 ± Ω2 and ωc − Ω1 ± Ω2, Fig. 2.8b. The error signal is shown in Fig. 2.8 assuming
Ω1 > Ω2 and β1 > β2 and it is relative to the part of the spectrum centred at ωc + ω1 with
sidebands offset ±Ω2. This scheme allows to place one of the ωc±Ω1 sidebands on resonance
with the cavity and demodulate the reflected power with Ω2. In this way it is possible to
tune the frequency of the laser changing Ω1.
The EOMs used to modulate the light at 1013nm and 1120nm are a fiber-integrated EOM
by IXblue (NIR-MPX-LN-02), that has a RF bandwidth of the order of 2 GHz, it requires
a low RF power to obtain a good modulation depth, and it is possible to drive it with more
than one RF frequency. As shown in Fig. 2.8a for the 1013nm source the two frequencies
Ω1,Ω2 are generated by two independent RF generators, the first tunable up to 2GHz and
the second one fixed at 30 MH. The two signal are sent to a mixer whose output is then am-
plified and sent to the EOM. Part of Ω2 is taken to demodulate the PDH signal from the fast
photodetector. For the 1120 laser source we have Ω1 tunable within the range 320-480MHz
and Ω2 fixed at 50 MHz.

2.5.3 Frequency noise estimation

By mean of an optical cavity similar to the one described above for the PDH frequency lock
loop (lets call them respectively second and first cavity) it is possible to give an estimation
of the residual frequency noise in the PDH error signal (this is true as long as there is no
correlation in the noise affecting the two cavity). We manage to build the second cavity
almost identical to the firs one, but unfortunately the mirror are different an it turns out it
can not be used for the light at 1013 nm.
So, we start with a laser locked to the first reference cavity as described in the previous
section. A portion of the light used in the first lock scheme is taken and sent to the second
cavity. Changing the length of the second cavity by mean of a piezoelectric transducer I can
find the resonance with the incoming light. I can observe the resonance sending the light
transmitted by the cavity on a photodiode, and its output signal on a oscilloscope (a signal
similar to that in Fig. 2.5).
Now, changing the piezo voltage to get close to the maximum of such signal means to be
almost perfectly resonant with the incoming light. Anyway, to retrieve informations about
the frequency noise level a better choice is drive the piezo such that the resonance is shifted
by half of the cavity mode width. Basically, we are now at the centre of the slope of that
signal instead of the maximum. At this "half point" a small fluctuation of the frequency of
incoming light correspond a larger change in the intensity of transmitted signal (so, we are
more sensitive). Moreover, at the centre of the slope intensity is, in a first approximation,
linearly dependent on frequency, so I can convert from one to the other.
Thus, disconnecting the voltage signal which drives the piezo, but leaving the piezo charged,
we can observe intensity (i.e. frequency) fluctuations as function of time, Fig. 2.9.
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Figure 2.9: Frequency noise of the PDH error signal of a) light at 1064nm and b) at 1120 nm
with a temporal window of 200 ms.

From the Fourier transform of signals in Fig. 2.9 we see that are present large low-frequency
noise components between 20 and 100 Hz, probably due to electric noise (maybe some ground
loop) Future optimizations of the locking system are clearly needed.
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Figure 2.10: Spectrum of the frequency noise signal for a) light at 1064nm and b) at 1120
nm

2.6 Lattices calibration via Talbot pulses
Referring to par. 1.1.6, here I show same examples of calibrations of the three lattices by
mean of Talbot pulses diffraction on the BEC. This is a technique I am currently studying
to calibrate the depth of the three lattices individually, in a different (maybe more rigorous)
way respect to what I have done so far (see par.3.1). It has not yet become standard practice.
1013 nm lattice → half Talbot time Ttalbot/2 =25 µs
1064 nm lattice → half Talbot time Ttalbot/2 =27 µs
1120 nm lattice → half Talbot time Ttalbot/2 =30 µs
To realize the train of pulses I modulate the amplitude of each lattice switching on (for
a time Ttalbot/2) and off (for a time Ttalbot/2) the AOMs placed on the respective optical
path. In Fig. 2.11 are shown the relative population (N−1+N+1)/Ntot transferred in order
components ±1 (i.e. momenta ±2ℏki) as function of number of pulses N for three depths.
The red curves on the plots are numerical simulation as the one shown in Fig. 1.2 for the
three different lattices, which give us a range of s=V/ER on the estimation of depth by data
point. Fitting data with quadratic approximation in Eq. 1.27 it is also possible, but we have
to stay in the regime V<<ER, which is not the case in these measurements.
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1013 nm

1064 nm

1120 nm

Figure 2.11: Diffracted population at fixed laser power and wavelength as function of number
of pulses.The red curves on the plots are numerical simulation as the one shown in Fig. 1.2
for the three different lattices, which give us a range of s=V/ER on the estimation of depth
by data point. In this case we have:
1013nm light, s=V/ER=0.9±0.05 → 216±12 nK.
1064nm light, s=V/ER=0.75±0.05 → 195±11 nK.
1120nm light, s=V/ER=0.65±0.05 → 130±10 nK.
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Chapter 3

Spatial Bloch oscillations of a
quantum gas in a “beat-note”
superlattice

All the results showed in this chapter are reported in [25] and they refer to the Beat-Note
superlattice as it was presented theoretically in chapter 1.3.
To investigate the properties of the BNSL, we prepare a Bose-Einstein condensate of 39K,
|1, 1⟩, in its ground state, we employ it to measure the energy gaps between the first three
bands and we study Bloch oscillations in the presence of an external force.
These measurements demonstrate that the BNSL is equivalent to a standard lattice up to
depths of the order of the recoil energy of the two combined lattices. Moreover, when can-
celling the interatomic interactions by means of a magnetic Feshbach resonance, the dynamics
exhibits a coherence up to 1 s, demonstrating how this new technique provides very stable
potentials with an arbitrarily long periodicity.
For this reason, this novel lattice is the ideal candidate for the coherent manipulation of
atomic samples at large spatial separations. It might find direct application in atom-based
technologies, like trapped atom interferometers [17], where the device sensitivity scales pro-
portionally to the separation of the trapped modes, and quantum simulation of Hubbard-like
models [70, 71, 72, 73].
I start describing the calibration of the lattice depth, that we perform measuring the on-site
trapping frequencies. From the knowledge of the lattice depth we can estimate the tunneling
rate between neighbouring sites by the help of numerical simulations. Then I show some
measurements of the residual forces on the atom observing the clouds in free expansion. The
calibration of this force is mandatory to finally study Bloch oscillation between the sites of
BNSL. Finally, I compare the experimental data with the theoretical expectation predicted
for Bloch oscillations.

3.1 Calibration of BNSL depth
Once we have evaporatively cooled the gas to condensation, we adiabatically ramp up two
optical lattices along the x axis (see Fig. 2.1) with λ1 = 1064.5nm and λ2 = 1013.7nm. The
radial beam, which propagates along the same axis, provides radial harmonic potential of
ωx,y ≈ 2π × 200Hz. The two lattices realize a BNSL with d+ ≈0.5µm and d− ≈10.6µm with
n=20. Turning off the IPG beam, that gives a tight longitudinal confinement, and letting
the condensate expand we can decide how many BNSL sites to load (see Fig. 1.4).
As explained in chap 2.5, since the position of the effective minima depends on the relative
phase between the starting lattices, both the lasers are locked to the same cavity reference.
We ramp up the two lattices to a final depth V0 ∼ 200nK, which means we are in the part
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of the spectrum which doesn’t depends on the phase ϕ = ϕ1 + ϕ2.
We detect the in-situ atomic density from the z direction and we observe spatial separation
of about 10µm between independent condensates localized in the effective sites of the BNSL.
In our system, since we have access to the atomic population within the single BNSL site,
we can measure lattice depth by measuring the oscillation frequency of the condensate in
regimes where the tunnelling energy Jeff to the neighbouring sites is negligible. Indeed in
this regime the energy bands of the BNSL (see Fig. 1.7) are flat, and the oscillation frequency
correspond to the first energy gap.
The dynamics is triggered by a suddenly shift of the minima of the BNSL, which put the
condensate out of equilibrium. In order to do this, we change the frequency of the RF sent
to the double passage AOM placed on the optical path of 1064 laser (see Fig. 2.2). Thanks
to the absorption imaging, we calculate that the displacement of the minima respect to a
variation of the frequency is of the order of ∆x0 ≈0.02 µm/MHz and the range, and with the
double passage AOM we can change the frequency of the laser of about 160 MHz..
Some examples of oscillations of the center of the condensate in a single site, recorded for
different values of the lattice depth, are reported in Fig. 3.1

[a]

[b]

[c]

Figure 3.1: On-site oscillations of the condensate in the BL for different values of the lattice
depth: a) 400 nK b) 200 nK c) 140 nK. We observe the beating of two frequencies that
correspond to the first two energy gaps

where we intentionally shift the minima by an amount sufficiently large to project the initial
condensate wavefunction on the first three bands.
Indeed, if ψ0 is the initial wavefunction of the condensate loaded in a single site of the BNSL,
after the shift ∆x we can decompose it as a linear combination of the energy eigenfunctions
ϕ(x) of the shifted BNSL, ψ0(x) = ∑

i ciϕi(x). The larger is ∆x the larger is the number of
bands, with energy Ei, involved.
The evolution is ψ0(x, t) = ∑

i ciϕi(x)eiEit/ℏ and the expectation value of the center of mass
position ⟨x(t)⟩ at time t contains the oscillating terms with frequencies ωi,j = (Ei − Ej)/ℏ
and amplitude 2c∗

i cj⟨|x|⟩. As said before, we can easily shift the position of the minima up
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to ∆x ≈2 µm, a quantity sufficient to involve three levels in the dynamics.
The center of mass oscillation of the gas is then characterized by the beating of two frequencies
that correspond to the first two energy gaps, therefore we fit all the oscillations with the
product of two sinusoidal functions and we derive the frequencies ω1 and ω2. The fit in Fig.
3.1 reproduces very well the observed behaviour. The amplitude of the beating oscillation
provides info on the amplitudes |c0|2 ≈ 0.6, |c1|2 ≈ 0.3, |c2|2 ≈ 0.1, that are in agreement
with the predictions of a numerical analysis.
In Fig. 3.2 we compare the measured values of ω1 and ω2 with the theoretical expectations
and their good agreement confirms the prediction and provide a good calibration of the energy
gap and the tunnelling of the BL.

Figure 3.2: Measured values of ω1 and ω2 as a function of V0 compared with the theoretical
values, blue line and red dashed line respectively. Error bars on the lattice depth take into
account the uncertainties of the beam size on the atoms and of the optical power.

As pointed out in chap.1.3.1 if V0 ≤ ER+ , according to Eq. 1.52, the effective potential is
sinusoidal and its anharmonicity leads to two slightly distinct frequencies that scale with the
square root of Veff , i.e. linearly with V0. For larger values of V0, where the analogy with a
large spacing standard lattice is no longer valid, the first energy gap of the BNSL deviates
from the linear behaviour, while the second one reaches a maximum and then decreases to
zero.

3.2 Residual forces on the system
During the measurements of the trapping frequencies, for small values of the lattice depth,
we have observed a residual force on the atoms that tends to drag them away from the initial
position. We have find out that there is a spurious external magnetic field gradient that
causes an acceleration a≈ 10−2 g, where g = 9.81 m/s2. To compensate it, we exploit the
optical force provided by the dipole trap propagating along the x axis whose focus position
is shifted with respect to the condensate by a distance equal to the Rayleigh range of the
beam. In this way the dipole potential imprints a force on the sample that can be controlled
tuning the intensity of the beam.
In order to measure this residual force on the condensate at high magnetic field (all the
experiment in the lattice are performed in the state |F = 1,MF = 1⟩ around 350 G), we can
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observe the motion of the atomic cloud during a free expansion inside the beam for different
values of the intensity and magnetic field. All the trajectories are shown in figure in Fig.
(3.3) where I also report the correspondent measured accelerations as a function of the power
PRAD of the radial beam.
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Figure 3.3: Trajectories of the free expanding condensate in the radial beam (upper) a) corre-
spondent measured acceleration as a function of its optical power (lower). The measurements
are performed with only the Feshbach field on at 350 G (a), with the gravity compensation
switched on (b) and with a non magnetic cloud at B=83 G (c).

The first measurement (Fig. 3.3a) was taken at B≃350 G. We fit the data with a parabolic
function and extract the acceleration which, as expected, goes linearly as a function of PRAD.
The intercept at PRAD=0, which provides a measurement of the residual gradient in this
configuration, is a250G ≃ 0.29±0.01 µm/ms2 ∼3·10−2g, where g is the gravity acceleration.
this value is surprisingly high, and explain why the atoms can’t survive during the loading
of the BNSL.
A second set of measurements (Fig. 3.3b) was taken in the working condition, B≃350 G
+ the gravity compensation coils on, and we find a gradient a factor of two smaller. This
is due to the fact that the levitating system creates a force in the opposite direction that
naturally helps to compensate the residual gradient. The extrapolated acceleration is a250G ≃
0.160±0.015.
Finally, in order to check if the strong acceleration that we measured comes only from spurious
magnetic fields, we observe the motion of a condensate in the state |F = 1,MF = −1⟩ at B=83
G (Fig. 3.3,c). At this field the sample has a negligible magnetic dipole moment, of the order
of 3·10−3µB where µB is the Bohr magneton. The measured acceleration is a250G ≃ 0.06±0.02,
much smaller than the previous cases. It indicates that the main contributions to the residual
gradients are provided by some magnetic effects acting on the apparatus. In particular, the
resulting spurious magnetic gradient is a250G ←0.22±0.01G/cm.
A possible explanation can be that, due to the high field and the high currents that flow in the
Feshbach coils, some thermal and mechanical effects can occur, leading to some deformations
of the structure and the position of the coils. Moreover, the high field can magnetize some
objects around the chamber, leading to a deformation of the magnetic field lines.
Finally, the little measured acceleration at B=83 G could be due to the non perfect horizontal
alignment of the radial beam. If the direction of the beam has an angle α with the horizontal
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direction, a fraction of gravity equal to gsin(α) is applied on the sample along x.

3.3 Calibration of the local force

As a consequence of what has been said in the previous section, it is necessary to compensate
for this residual force on the atoms. The solution adopted in this work is tuning the intensity
of the dipole trap (radial beam), such that we can finely adjust the total external force F
along the beam direction around zero. Moreover, this give us a way to introduce a known
and controllable force in the place of the atoms, which can be used to trigger the oscillations
presented in the next chapter.
The force felt by the atoms is the dipole force F=-∂U/∂x, where U is the dipole potential in
1.1. Since it depends by the peak intensity I0(x) of a Gaussian beam, it means it scale as ∝
1/ω2(x), where ω(x) is the 1/e2 waist. The last evolves in space as ω(x)=ω0

√
1 + (x− x0)/xR,

with ω0 the waist in the focus placed at x0 and xR the Rayleigh range. As a consequence, F
shows a strong dependence on the position. In order to minimize such dependence we place
the atoms around where the derivative of the force is negligible, which for us it means that
the atoms are placed about 450±50 µm from the focus of the radial beam.
To calibrate this force applied to the atoms we observe again the ballistic expansion of the
sample inside the radial beam. We set the scattering length of the condensate to a slightly
negative value, in order to reduce the spread of the wave function, and we record the posi-
tion of the centre of mass after a fixed time δt=50ms as a function of the intensity of the
radial beam. During this evolution the displacement of the condensate from the starting
point is always smaller than 50 µm. The results shown in Fig. 3.4, where we report the
strength and the sign of the total force as a function of the optical power, can provide a first
calibration of the local force as a function of the power of the beam. From a linear regres-
sion fit we obtain a calibration of the local force that can be tuned both in strength and sign.

Figure 3.4: Local force on the atoms as a function of the optical power of the radial beam,
obtained measuring the position of the cloud after 50 ms of ballistic expansion. The dots
are data points, the solid line represents the linear fit with the best fit parameters and the
dashed lines correspond to the confidence interval.
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3.4 Spatial Bloch oscillation in a ∼10µm BNSL

In order to prove the analogy between a BNSL and a single wavelength large spacing optical
lattice in the low V0 limit we decide to observe the coherent dynamics between the different
sites of the BNSL and measuring the correspondent effective tunneling Jeff. We then perform
spatial Bloch oscillations, starting with a condensate loaded in a single site of the BNSL and
detecting the subsequent oscillation of the density distribution, which spans few sites of the
BNSL, driven by an external force [34, 35, 74].
As said in chap 1.1.4, the amplitude A of such breathing mode is proportional to the ratio
between the tunneling rate, that depends on the lattice depth and the lattice spacing, and the
potential energy difference among the sites. To have A larger than 1, since the dynamics that
we want to observe has a time scale of few Hz, we need to work with very shallow lattices.
The first energy gap of the BNSL in this condition is very low, of order of tens of Hz, so we
need to pay attention to avoid unwanted excitations in the upper bands.

 

a) b)

Figure 3.5: a)size of the cloud load in a single site of a BNSL with V0=85 nK (first energy
gap≈ 50 Hz) in free expansion and compared the evolution with the theoretical predictions
for a final trapping frequency of 50 Hz.
b) Measure of the size of the condensate after turning off all the trap with a time of flight of
12 ms, as function of holding time.

In the following we describe the experimental procedure.
After the evaporative cooling in the dipole trap we ramp up the BNSL adiabatically in 300
ms to a lattice depth ∼1.5ER+ (energy gap of ∼120 Hz). We populate only one site with a
condensate of about 5·103 atoms, ensuring a negligible tunneling between neighbouring ones
and keeping small repulsive interactions that help to evaporate the excitations. Once set
the working value of the force, we switch off the dipole trap (IPG) that provides confinement
along x and we decrease the BNSL depth to V0 ≃70(±2) nK∼0.3 ER+ in ∼50 ms (final energy
gap of ∼40 Hz). The procedure is performed adiabatically with respect to the trapping fre-
quencies of a single site but on a time-scale much shorter then the Bloch period. At the same
time, we decrease also the intensity of the radial beam, changing the scattering length to the
level of 0.05 a0, where a0 is the Bohr radius. This procedure helps to evaporate excitations
that can be still present after the first step, and the negligible scattering length will minimize
the decoherence induced by interactions during the subsequent oscillation. After this second
evaporation, we change the power of the radial beam to the working value, setting the total
final force. We set t = 0 at the end of this ramp. Obviously, mainly when the force is large,
the dynamics can already start during the ramp, but this delay corresponds only to a phase
shift with respect to the starting point.
To check if this reduction of the potential depth, used to trigger Bloch oscillations, is adi-
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abatic, we performed an intensity ramp to values (85 nK) comparable to the ones used in
the experiment (70 nK) but slightly larger to freeze the dynamics. We measured the size
of the cloud in free expansion and compared the evolution with the theoretical predictions
for a final trapping frequency of 50 Hz. We report the result in Fig. 3.5a as a function of
the expansion time. The very good agreement confirms the ground state preparation of the
sample. We also studied in Fig. 3.5b the energy of the sample as a function of the time spent
in the BNSL by monitoring its size after a time of flight of 12 ms. As shown in the second
Figure, no discernable increase is observed over a time scale of several seconds of evolution,
confirming the occupation of only the first band of the lattice.

In Fig. 3.6 we report examples of absorption images of the condensate during one Bloch
oscillation, together with the spatial density profile integrated in one direction. Since at t
= 0 all the atoms are localized in a single site, the center of mass motion is frozen and we
observe only a symmetric breathing evolution of the size. From 1.23, the on-site fractional
populations evolve in time as [35]

nl(t) =
∣∣∣∣Jl

(4Jeff
δ

sin
(
δt
ℏ

))∣∣∣∣2 =
∣∣∣∣Jl

(4Jeff
δ

sin
(
πt
τB

))∣∣∣∣2 (3.1)

where Jl are Bessel functions of the first kind and δ = Fd− is the energy difference between
neighbouring sites and τB is the Bloch time. Experimentally we count the atoms that remain
in the starting well N0 and the ones that tunnel to the other sites Ntr=∑i ̸=0(N+i + N−i).
In Fig. 3.7a we report a typical time evolution of Ntr in unit of the total number Ntot at each
time. We observe a clear oscillation with the average amplitude reducing on a timescale of
≈1 second. Starting from Eq. 3.1 we fit the experimental data with the phenomenological
model

f(t) = exp(−t/τ)
(∣∣∣∣Jl

(4Jeff
δ

sin
(
πt
τB

))∣∣∣∣2 −Nf

)
+ Nf (3.2)

such that f(0)=0 and f(t→ inf)=Nf , where Nf is a steady value of the transferred population
reached through an exponential decay with a time constant τ .
The observed decay of the oscillation contrast might be due to different sources of deco-
herence, like the presence of a spurious harmonic potential along the x axis or a residual
interaction energy [75]. In Fig. 3.7b we compare the data with the result of exact numerical
simulations of the Bloch dynamics in presence of a residual scattering length of 0.05 a0 and
of a longitudinal harmonic potential of 1.3 Hz (the one due to the presence of radial beam).
In both the cases we observe a similar reduction of the amplitude on a time scale that is
comparable with the best fit value τ of the order of 500-600 ms. From the fit we can estimate
the Bloch period τB = h/δ, that is related to the external force F=δ/d, and the amplitude
of oscillation A=4Jeff/δ, that is linked to the tunneling energy Jeff.
We repeat the same procedure for different values of the applied force, tuning the power of
the radial beam.
In Fig. 3.8a we investigate the linear dependence of δ on the external force F applied, where
the dotted line indicates the theoretical predictions, while the shaded area takes into account
the uncertainty in the calibration of the external force. Note that only a limited range of
forces has been explored because outside it, the small depth Veff ≈ 3 nK implemented, would
cause Landau-Zener interband transitions and atom losses. This could be prevented increas-
ing V0 but the consequent reduction of the tunneling energy Jeff would reduce also A and
the visibility of the spatial oscillations.
In Fig. 3.8b we plot the amplitude A as a function of δ and compare the results with the
values we expect from the estimation Jeff=(0.7±0.05) Hz, derived from the experimental cali-
bration of V0. We note that a good agreement is achieved in both plots, although a deviation
of the measurements from the expected values is observed for Bloch frequencies ≈ 2 Hz.
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For small values of the force, precise measurements are currently limited by the decoherence
sources described above.
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3.5 Sensitivity Bounds
In [76] it was calculated the best-achievable sensitivity for matter-wave interferometer consist-
ing of a BEC undergoing spatial Bloch oscillations in an optical lattice oriented horizontally.
We have talked, across this work, of BEC localized in a single site as initial state, but in
[76] several conditions was studied. In particular it was shown the influence of the choice
of the localization of initial state and also the choice of the observables to use, i.e. atomic
population in the sites of the lattice or the width of the distribution. In par.1.1.4 we said
that the hamiltonian H in Eq. 1.21 sets the dynamics of the Bloch oscillations of the gas in
the lattice. Again, let’s refer to energy difference between neighboring sites as δ = mada,
where a is the acceleration and ma is the mass. The highest precision an interferometer can
achieve is given by the inverse of the Quantum fisher information Fq [77]

Fq = 4(⟨ĥ2⟩ − ⟨ĥ⟩2) = 4∆ĥ2 (3.3)

where ĥ is the generator of the transformation set by the evolution operator Û(t) = eiHt/ℏ

ℏ̂ = i
∂Û(t)
∂a

Û†(t) (3.4)

For a pure state like ours, the calculation of ℏ together with the Cramer-Rao lower bound
[78], gives the ultimate sensitivity as

∆aopt
a = 1√

Fq

1
a (3.5)

This sensitivity monotonously improves with time as a consequence of the action of the
derivative in Eq. 3.4 of the evolution operator. This reflects the growth of information about
a deposited in the system the larger is the number of Bloch times τB that are explored.
Now that the bound is set, the choice of different observables can lead you more or less close
to it. In particular, assuming that one has single sites resolution, the sensitivity one gets
from counting the number of atoms in each sites is periodic and reaches the optimal bound
at the multiples of the Bloch period. Instead, the sensitivity from measuring the width of
the cloud in the lattice is in general worse than the previous method, however it also reaches
the ultimate bound at the multiples of the Bloch period.
It is interesting to understand the role of initial state size. As well-known properties of a
standard Bloch-oscillation interferometer, the ultimate sensitivity increases with the initial
coherence length, since larger is the initial number of occupied sites, narrower is the momen-
tum distribution. Also for a spatial Bloch Oscillation interferometer (SBOI) the Quantum
Fisher information predicts that the ultimate bound can improve with initial size. Neverthe-
less, the sensitivities of the two estimation protocols described above deteriorate. This means
that from the point of view of these two strategies the optimal operation of an SBOI requires
to start with atoms loaded in a single site of the lattice.

3.5.1 Dependence on the lattice parameters

The sensitivity one gets, in the limit of a BEC initially localized in only one site, from counting
the atoms in each sites during evolution is [76]

∆a = a
2
√

2N
1
J
ℏ
t = a

2
√

2N
1

F(dJ/δ)
ℏ
t (3.6)

with t multiple integer of Bloch periods τB, where N is the number of atoms. The second
equality in Eq. 3.6 is just to point out some characteristic of this sensitivity. The quantity
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(dJ/δ) is the size of the Wannier Stark states (d, lattice sites separations, times localization
length J/δ).
A spatial Mach-Zehnder atom interferometer (SMZI), where two modes are separated by a
distance d̃ in presence of an external force F, accumulates a phase difference ϕ = Ftd/ℏ,
detected with a shot noise limit 1/

√
N. As a consequence, the sensitivity will be

∆aSMZI = δϕ

ϕ
a = a√

N
1

Fd̃
ℏ
t (3.7)

As one can see, the sensitivity of a spatial Bloch oscillation interferometer in Eq. 3.6 is equal
to the one of a SMZI where the separation between the two modes is of the order of the
maximum spatial spread of the atomic wave function over the lattice during the dynamics.
As matter of fact, large separation between the spatial modes is crucial to have a sensitive
trapped atom interferometer. This can be easily fulfilled in an SBOI by simply increasing
the tunnelling energy or reducing the strength of the external force.

3.5.2 Practical constraints

Next question can be how to choose the d and F in an experiments (realistic environment)
to reach the best sensitivity.
Eq. 3.6 doesn’t seems to depend on d, however a too small d (fraction of micron) is an evident
limitation, since it makes impossible to load many atoms in a single lattice site due to high
three body losses when atomic densities are large. This, in the end, limits the improvement
from the shot-noise scaling, i.e., with the inverse of

√
N. In addition, if the lattice spacing is

too small, it is challenging to precisely count the atoms in each site. As a consequence larger
lattice spacing naturally improves the sensitivity of a SBOI.
This choice highlights other aspects: larger d means reduce the tunnelling term J between
the sites. But the amplitude of Bloch oscillations is ∝ J/δ, so to observe them we need
J≥ δ = maad. A solution is reduce the external force F, but we have to consider that in
real experiments the interrogation time t is finite, due to decoherence induced by residual
interactions or experimental noise, we cannot work with arbitrarily small forces but keep
τB = h/(maad) < t. So, using the maximal value of J as a function of d, i.e. when the width
of the first band is of the order of the recoil energy J≈ ER/4 = ℏ2π2/8mad2, we obtain an
upper bound for d by the condition J≥ δ = maad

dmax =
(
ℏ2π2

8maa

)1/3

(3.8)

which, exploiting τB = h/(maad) < t, lead a minimum value for a

amin =
√

ℏπ
ma

8
t2/3 (3.9)

Note, Eq. 3.8 can be also rewrite as a function of the coherence time t dmax = 1
4

√
ℏπt
ma

.
To consider a realistic example of a SBOI like the one we perform in our experiment, let’s
take a coherence time t∼1 s and N∼104 atoms. From Eq. 3.8 we get the smallest measurable
acceleration ≈5×10−5g and an optimum lattice spacing dmin ≈17µm. From Eq. 3.6 if we
neglect fluctuations of the tunnelling energy, the relative uncertainty is 4×10−4 and a single
shot sensitivity is of the order of 10−8g. This results proves the importance of implementing
large spacing lattices, using for example BNSL.
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3.6 Conclusions
In conclusion, we reported the realization of an innovative superlattice based on the beat-note
between two retroreflected laser beams with commensurate wavelengths. Our studies prove
that the resulting potential is equivalent to a large-spacing single-wavelength optical lattice
in the limit of small depths, i.e V0 < ER+ . For larger values of V0, in chap1.3 we saw that
BNSLs can be used to create arrays of atomic ensembles with negligible tunnelling between
the sites.
The high stability of a BNSL is demonstrated observing a coherent tunnelling between neigh-
bouring sites of the BNSL in presence of a small force of the order of 10−4 g with a spatial
resolution of 10 µm.
To our knowledge, we managed to observe the longest (∼ 1 sec) coherent evolution ever re-
ported for a BEC trapped in spatial modes separated by tens of microns. That coherence
time corresponds to a sensitivity of the order 5·10−5. The main limitations to the coherence
time and the precision of the measurements are related to the limited control we have in the
way we tune the external force, i.e, optically.
Bloch oscillations using more homogeneous forces and experiments performed with variable
atom numbers will allow to identify what is currently limiting the performance of our Bloch
oscillations interferometer. We expect that BNSLs will strongly contribute to the improve-
ment of the sensitivity of trapped atom interferometers, as studied in [76] , where using
the metrological tool known as the quantum Fisher information, it was calculated the best-
achievable sensitivity for matter-wave interferometer consisting of a BEC undergoing Bloch
oscillations in an optical lattice oriented horizontally.
In addition, the demonstrated intrinsic stability of BNSLs makes them a valuable tool for
the precise manipulation of atoms at large distances in several future quantum technologies
[79, 80, 81].
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Figure 3.6: In-situ images and correspondent density profile during a Bloch oscillations to-
gether with the fit performed with a triple Gaussian function.
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a) b)

Figure 3.7: a) time evolution of fractional atom number in the starting site N0 and the sum
of the populations in the neighbouring sites Ntr. The solid line is a fit performed using Eq.
(3) times an additional exponential decay of the amplitude. The error bars represent the
statistical uncertainty and correspond to the standard deviation of the mean.
b) The black dash-dotted line and red dashed line correspond respectively to numerical re-
sults in presence of a residual interaction of 0.05 a0 and an harmonic axial potential with a
frequency of 1.3 Hz.
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Figure 3.8:
a) Energy difference between lattice sites (dots) derived from the Bloch frequency measure-
ments as a function of the optical power of the beam used to tune the external force. The
horizontal error bars corresponds to the uncertainty on the optical power. The dotted line
is the theoretical prediction for the best fit parameter provided by the calibration and the
shaded area takes into account its indetermination.
b) Amplitude of the oscillation A as a function of the energy difference between lattice sites.
The error bars correspond to the uncertainty of the amplitude and the frequency provided
by the fit of the oscillations. At lower values of δ the effect of force inhomogeneities are more
significant and both frequency and amplitude deviate from theory. The dashed line is the
result of numerical simulations where a longitudinal harmonic potential of 1.5 Hz is included.
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Chapter 4

Multimode trapped interferometer
with noninteracting Bose-Einstein
condensates

In this chapter I experimentally demonstrate a new interferometric method for trapped quan-
tum gases based on a multimode configuration, with more than two interferometric paths
closed by a harmonic potential. The coherent splitting and recombination of a BEC into mul-
tiple momentum components are realized by means of Kapitza-Dirac (KD) diffraction from
a pulsed optical lattice. With this configuration, proposed theoretically for non-interacting
systems by Li et al. [29], the harmonic potential has the same function of “mirror” light
pulses to close the trajectories and prevents the spatial spread of wavepackets, instead oc-
curring in free space. KD interferometers have been implemented experimentally either in
the Mach-Zehnder two mode configuration in a waveguide [82], or in trap [83], still with only
two interfering modes and with 87Rb atoms for which the interpretation of the interference
fringes is complicated by the interatomic interactions [84]. In our work we’ll exploit a 39K
Bose-Einstein condensate (BEC) where the interatomic interaction can be cancelled exploit-
ing Feshbach resonances.
More specifically, we realize a horizontal multi-mode trapped interferometer, where a BEC is
KD diffracted by an optical lattice into components with momenta equal to multiples of the
lattice wavevector k, i.e. with p = mℏk, with m integer.
A KD pulse initiates the oscillation of the different momentum orders which, after half an
oscillation in the harmonic trap, return to the initial position with opposite momenta and are
recombined using another KD pulse. If an external gradient is applied between the time of
the two KD pulses, then it is possible to observe a clear dependence of the atomic populations
in the different output momentum components on such force.
Importantly, all the momentum components spatially recombine at the trap minimum only
if the potential is harmonic over their oscillation amplitude. This is easily the case for mag-
netic traps generated by macroscopic coils [83], but it represents a tight constraint for optical
dipole traps, that are a mandatory choice for us since we have to control interactions through
Feshbach resonances.
Here we use an optical trap and take advantage of a large-spacing (∼5 µm) optical lattice,
that reduces the recoil velocity, hence the oscillation amplitude, by a factor of 10, with re-
spect to the common lattice spacing of 0.5 µm. In this way we are sure to remain in the
harmonic region of our optical trap. We realize such periodic potential exploiting the Beat
Note Superlattice idea (see chapters 1.3 and 3).
In the first part I explain the theory of Kapitza-Dirac interferometer, highlighting the differ-
ence between the half period (i.e. with only half oscillation in the harmonic trap) and full
period interferometer. Then I describe the experimental setup and the characterization of
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the harmonic potential, focusing on the effects of the anharmonicity of confinement potential
on the interferometer output. Thanks to the full period sequence I show how I can optimize
the timing between the two pulses looking at the output density distribution. Full period
sequence is also a way to investigate relative frequency stability of the two KD pulses.
Finally in the last paragraph I show the measurements of the output atomic momentum
distribution for a half period interferometer as function of applied magnetic gradient in the
lattice direction.

4.1 Trapped Kapitza-Dirac interferometer
The effect of atoms diffracted by Beat-Note superlattice has been partly addressed in par.1.4.
Now I’ll resume the operation of the trapped Kapitza-Dirac interferometer with standard
lattice pulses as in [29].
For simplicity, and to have direct connection with the experimental results, let’s take into
account only three momentum component undergoing the whole sequence, and try to give
an intuitive picture.
We start with a wavepacket Ψ0(x) in the ground state of the harmonic oscillator with aver-
age position ⟨x⟩′=x0. So, the first KD pulse (a lattice V0 cos2(kx) turned on for a time ∆t)
generates three momentum components m=0,±1; after this pulse, the half oscillation in the
trap reverses the momentum of all these components, they overlap at the bottom of the trap,
and finally the second KD pulse further splits each of them. Each momentum component in
the output atomic distribution is the result of the interference of different starting momen-
tum component. For instance, consider the output momentum component with m=+1. It
emerges after the second KD pulse through two distinct paths, as illustrated in Fig. 4.1a

a) b)

Figure 4.1: a) Sketch of the working of our trapped Kapitza-Dirac interferometer. Starting
from a single BEC (red), two KD pulses at t = 0 and T/2 create and recombine the momentum
components that oscillate in the trap (purple) and are finally detected after a free expansion
(yellow). Colored arrows, indicating the momentum vectors, are not shown at t = T/2 for
clarity. We highlight the two different paths A and B as identified in the text, from which
the m = +1 component emerges at the output of the interferometer.
b)Sketch of the optical and magnetic potentials applied on the atoms

Path A: the m=-1 component is generated by the first KD pulse, its momentum is reversed
into m=+1 by the half-period evolution, and then it is left unperturbed by the second KD
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pulse;
Path B: the m = 0 component emerging from the first KD pulse is scattered into m = +1 by
the second pulse.
As it happens in any light-pulse interferometer[85], the interferometric phase accumulated on
each path is obtained as the sum of the terms originated during the light-atom interaction
and terms due to the evolution between the light pulses. The latter are given by the Action
along the classical trajectory [86], which vanishes whenever the time separation between the
two light pulses equals an integer multiple of the harmonic half period, independently of the
initial momentum.
So, on path A the only phase factor e−i2kx0 is imprinted by the first KD pulse, while on path
B the second KD pulse imprint a phase factor e+i2kx0 , and their sum produces interference
on the population of the m=+1 momentum at the interferometer output ∝ cos(2kx0).
Now, consider an external acceleration a applied on the atoms during the time between the
two pulses. The effect of a on the system is to induce a displacement of the trap minimum,
d=a/ω2, measured with respect to the wave front of the applied optical lattice, where ω is
the trap frequency of the harmonic potential. The displacement d is then encoded in the
phase factor e+i(2kx0+2kd) imprinted by the second KD pulse on path B. This time by the
interference we have that the m=+1 population at the output of the interferometer is pro-
portional to cos((2kx0 + kd)), so it depends on d (i.e. from acceleration a). So, looking at
total momentum distribution at the output of the interferometer and counting the fraction
of atoms in each momentum component I can get information about a.
A more rigorous discussion can be found in [29], where the wave function at the interferom-
eter output is exactly calculated. The wavefunction at the interferometer output after half
oscillation in the harmonic potential is [28]

Ψhalf = Ψ0

m=+inf∑
m=−inf

imJm (2β sin(ϕ))× × e(+imkx)e(−imδ) (4.1)

where β = V0∆t/ℏ, Jm are Bessel functions, ϕ is the interferometric phase which include kd,
and δ is a phase which has only information about to the relative displacement of the two
KD pulses (example, due to frequency fluctuations of laser source). The amplitudes Jm hold
the information about the external acceleration, so we need an observable constructed by the
population of the m-th momentum component, which is

Nm =
∣∣∣Jm(2β sin(ϕ)

∣∣∣2 (4.2)

From the population we can easily find average and variance of the momentum

⟨m⟩ =
∑
m

mNm = 0

⟨m2⟩ =
∑
m

m2Nm =
∑
m

m2
∣∣∣Jm(2β sin(ϕ))

∣∣∣2 = 2β2 sin2(ϕ)
(4.3)

We expect then a symmetric distribution with a rms momentum of prms =
√

2β| sin(ϕ)|.
From those results a good observable (the one I’ll focus on from now on) can be the frac-
tion of atoms remaining in the initial m = 0 component, N0/N: varying d this observable is
expected to display a peak according to 4.2 that narrows as the number of interfering compo-
nents increases. Indeed, the half-width at half-maximum (HWHM) phase, corresponding to
J0(2β sin(ϕHW HM )) = 1/2, is ϕHW HM = 0.56/β, so the resolution of the KD interferometer
increases with β at the expense of its dynamic range [29].
More specifically, the maximum resolution of the measured acceleration a is

δa =
∣∣∣∣d(N0/N)

da

∣∣∣∣−1
∆(N0/N) (4.4)
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where ∆(N0/N) is the experimental uncertainty associated with the observable. The resolu-
tion is maximum, i.e., δa is minimum, when the lattice position is such that the phase in 4.2
is close to an integer multiple of π. In this case for β >1 we have

δa ≈ ω2

kβ∆(N0/N) (4.5)

Therefore, the resolution increases with β, that is proportional to the number of momentum
components significantly populated, showing the benefit of multimode interference. This is
consistent with the analysis based on the Fisher information and the Cramér-Rao bound
[29, 87].
Everything said so far refer to an KD interferometric scheme with only half oscillation period
of momenta components in the harmonic oscillator. It is worth to also look at the output
wavefunction in the case of a full-oscillation KD interferometer, since it will be useful in the
following:

Ψ(x)full = Ψ0(x)
m=+inf∑
m=−inf

imJm (2β sin(δ))××e(−imkx)e(−imϕ) (4.6)

Eq. 4.6 shows that the populations of the momentum components in this full-period inter-
ferometer are sensitive only to the relative displacement of the two KD pulses δ. This means
it is insensitive to the relative displacement between the trap and the lattice (and thus to
external forces). I will exploit this property to calibrate the displacement of the lattice and
investigate its stability.

4.2 Experimental setup
In order to realize the interferometer, we use a Bose-Einstein condensate of 104 39K atoms
in the |F = 1,MF = 1⟩ state. Setting the magnetic field to B= 350.5(0.5) G I can effectively
cancels the interatomic interactions via a broad Feshbach resonance, since the corresponding
s-wave scattering length is |a|< 0.05a0, a0 being the Bohr radius.
The setup is slightly different from the one used in chap.3. The BEC is prepared in a crossed
dipole trap created by two red-detuned laser beams, as sketched in Fig. 4.1(b): with a waist
of 17 µm, the radial beam provides a tight radial confinement, along y and z, of ωR ∼2π ×
200 Hz, while the vertical beam provides the longitudinal harmonic potential, along x, with
ω = 2π× (31.7 ± 0.8) Hz. The large waist of the vertical beam (∼100µm) ensures that the
deviation from the harmonicity of the potential is below 1% at a distance of ∼10 µm from
the center.
The beat-note superlattice potential along x is generated by overlapping two standing waves
V1 cos2(k1x+ϕ1)+V2 cos2(k2x+ϕ2) with k1 = 2π/1.013 µm−1 and k2 = 2π/1.120 µm−1, and
V1,2 lattice depths. For V1 =V2 =V0 ≤ER1,2 , with ER1,2 energy recoil of the two lattices, the
BEC experience the effective potential Veff =- V2

0
8ER+

cos2(k−x + ϕ1,2) as in Eq. 1.52, where
now the spatial period is π/(k1 − k2) ≈5.32 µm, and the phase ϕ1,2 = ϕ1 − ϕ2 depends on
the relative phase between the two combined lattices.
Both lasers are frequency locked to the same optical reference cavity via sideband-locking
technique (see par.2.5.2) that allows us to tune ϕ1,2 dynamically by adjusting the radio fre-
quency of one sideband.
Additionally, to investigate the effect of an external force along the x direction we apply a
magnetic field gradient. Since 39K atoms feature a magnetic moment approximately equal
to 0.95 µB (µB being the Bohr magneton) around 350 G, we can impart a force along the
direction of the lattice by applying an external magnetic field gradient. Note, this gradient
has been implemented to overcame the problem about the large residual gradient that add
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an uncontrollable potential along lattices direction, which has been analysed in chap.2 and
that for the experiment described in chap.3 was compensated optically. Indeed, it is very
difficult to stabilize the optical intensity of a laser beam very well. In our case we estimated
a relative uncertainty of 5×10−3, that is equal to our current optimal sensitivity. For this
reason, to achieve a better stability, I exploit the combination of the magnetic field produced
by coils in anti-Helmholtz configuration, that provides a field along the axis (see Fig. 4.1)
that scales linearly as a function of the distance from the centre of coil [88].
The resulting uniform force induces a displacement of the harmonic trap proportional to
the coil current, which affects the momentum populations at the interferometer output, as
explained in par.4.1. The displacement-versus-current conversion has been separately cali-
brated to be η = (1.08± 0.13) µm/A via the in situ position of atoms trapped in the vertical
beam (see Fig. 4.2)

Figure 4.2: displacement of the minimum of optical dipole trap felt by the atoms as function
of the current exploited to generate the magnetic gradient

In order to measure the longitudinal frequency given by the vertical beam and confirm that
the potential is harmonic, at t = 0 we shine a pulse of the optical lattice with an effective
depth of V0eff ≃30 ER− for ∆t =120µs, where ER− = kB × 8.7nK. The pulse is long enough
to completely deplete the m = 0 component. The images of the two components m =±1 are
taken via absorption imaging (line of sight along the y direction in Fig. 4.1) and their posi-
tion are reported as a function of time in Fig. 4.3. Both components display clear sinusoidal
oscillations with an amplitude of 8.6(0.6) µm, in reasonable agreement with the expected
value ℏk−/maω = 9.2(0.2) µm.

4.3 Anharmonicity of confinement potential
The next step is understand how many momenta components I can generate diffracting my
atoms with the BNSL. This is important since, from the theory of multimode interferometry
[89], the sensitivity scales linearly with the number of modes which have been significantly
populated after the first Kapitza-Dirac. β = V0∆t/ℏ is what parametrize the strength of the
Kapitza-Dirac pulse, and increasing β means increase the number of momenta components
generated by the diffraction pulse.
However, as I pointed out in par.1.4, beyond the effective potential approximation, the KD
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Figure 4.3: (left) In situ absorption images of the diffracted orders m =±1 during a complete
oscillation; (right) corresponding positions as a function of time. Plot data are the outcome
of individual measurements; we observe two sinusoidal oscillations with average frequency of
ω = 2π×31.7(0.8)Hz and amplitude 8.6(0.6) µm obtained from the fit in the picture

pulses made with BNSL diffract atoms also at momentum components associated with the
two fundamental optical lattices, i.e. at integer multiples of 2ℏk1,2. The atoms of these com-
ponents are effectively lost for the purpose of the interferometer: due to their large momenta,
they are driven in the anharmonic region of the optical dipole trap (if not outside). So for
BNSL increasing β means also reduces the total number of atoms contributing to the inter-
ferometer signal. In par.1.4 I considered as lost components with p≥ 4ℏk−. Anyway, now
we have to consider also how far in the harmonic potential each component can travel before
reaching anharmonic region.
Besides for the atoms in the "lost" large momentum components, the anharmonicity is a prob-
lems also for the "small" ones. The most obvious effect of the anharmonic trapping potential
is that the oscillation period gets to depend on the energy, thus the spatial recombination
after the half (or full) oscillation is imperfect, causing a decrease of the interference signal.
In addition, the anharmonicity changes substantially the momentum distribution obtained at
the interferometer output, as observed in numerical simulations where the trapping harmonic
potential is deformed by a quartic anharmonic term [90]. Indeed, as mentioned in par.4.1,
for a perfectly harmonic potential the phase gained by a wavepacket during multiple of half
oscillation is zero. This is no longer the case for an anharmonic potential, where the phase
acquired by each wavepacket during half oscillation is not zero and is not the same for all
wavepackets.
In particular the confinement of the vertical beam (a focused Gaussian beam) can be con-
sidered harmonic around its minimum only for displacements much smaller than the beam
size. To quantify this, as in [90], we have run numerical simulations to compare the outcome
of the interferometer in a harmonic potential and in a Gaussian potential, approximately
corresponding to the intensity profile of the laser beam VGauss(x) = −Vg exp

(
−2x2/w

)
where

w=100µm is the waist and the potential depth Vg is adjusted to match the measured fre-
quency of the small-amplitude oscillations. We calculate the overlap between the 0th and
the nth diffraction orders after half oscillation, i.e. after half-period of the small amplitude
oscillations.
Fig. 4.4 shows that, for the above Gaussian potential, the overlap drops for components with
p>3ℏk−. Conversely, the overlap is nearly perfect when the atoms populate only p<2ℏk−
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Figure 4.4: Overlap | ⟨Ψ0(T/2)|Ψn(T/2)⟩ | of the wavepackets with initial momentum 0 and
nℏk−, at time t = T /2, i.e. after half period of small-amplitude oscillations: we compare
the case of the harmonic oscillator with the Gaussian potential.

Figure 4.5: Absorption image (top) of the momentum distribution and corresponding inte-
grated density profile together with the multi Gaussian fit (bottom) after the first KD pulse
(left) and after the second KD pulse (right) for a time interval between the two pulses equal
to half period, i.e., approximately 16 ms. In both cases a quarter period of in-trap evolution
occurs between the last KD pulse and imaging

diffraction orders, like in our experiment, and it is unity at all orders for the harmonic po-
tential, as expected. For this reason, and for the fact that we have to perform two KD pulses
to close the interferometer, which means to double the losses, we work with components with
<2ℏk. Then, we set the KD pulse duration to 80µs in order to transfer almost 50% of the
atoms in the m = ±1 orders and we shine the second KD pulse after a half (or full) period
to complete the interferometric sequence.
We then image the different momentum orders after allowing an additional quarter oscil-
lation in the trap to maximize their spatial separation. We get the atom number in each
components, Nq, fitting the profiles with a multi-Gaussian function

f(k) =
m=+2∑
m=−2

p0J 2
m(p1) exp

(
−(k− −m)2/2p2

)
(4.7)

with pi, with i=0,1,2 being free parameters of the fit. The result is shown in Fig. 4.5
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Figure 4.6: Average momentum at the output of the full-period interferometer as a function
of the time separation between the two KD pulses, ∆t. The fit parameter is the harmonic
period, identified as the zero-crossing time: T = (31.38 ± 0.03) ms. The error bars indicate
the standard error on the mean of repeated measurements (N∼5).

4.4 Calibration of the Interferometer

Fig. 4.5 is in agreement with Eq. 4.3, the final momentum distribution is an even function
of q, independently of the phases for both the half- and the full-period interferometer, so the
average of momentum ⟨p⟩ =0. This symmetry breaks if the time separation of the two KD
pulses is not exactly half period, i.e., ∆t = (1/2 + ϵ)T. In this case, the m-th momentum
component acquires an extra phase, exp

(
i2πm2ER−/ℏω

)
, given by the classical action in the

time interval between the KD pulses. It is possible to exploit this sensitivity to precisely de-
termine the oscillation period, using the full-period interferometer that, as shown in par.4.1,
it is insensitive to the relative displacement between the trap and the lattice (and thus to
external forces). Then, the proper time separation ∆t is that which yields a symmetric mo-
mentum distribution.
Fig. 4.6 shows that measuring the average momentum ⟨p⟩ as a function of ∆t allows us to
find the oscillation period with a precision of 10−4. Then this value is used to set the time
separation equal to T/2, in the half-period interferometer which is sensitive to external forces.
Another aspect that can be investigated thanks to full-period interferometer is the relative
frequency stability of the two kD pulses. Indeed, Eq. 4.6 shows that, at the output of the full-
period interferometer, the fraction of population at zero momentum equals |Jm(2β sin(δ))|2.
I can verify this relation by frequency shifting one of the two lattice before the second pulse,
of a quantity δf2=cδk2/2π, which then modifies its phase ϕ2 of δϕ2 = 2Dδk2, where D is the
distance of the atoms from the retroreflecting mirror. This in the end displaces the beat-note
superlattice by δx = δϕ2/(k1 − k2). By mean of in situ imaging I can calibrate the position
of atoms trapped in the lattice minima as function of δf2, Fig. 4.7, and from the fit it results
that δx/δf2 = (10± 1)nm/MHz.
So, I change the frequency of the second pulse and then counting the relative population of
the p=0 moment component N0/N, where N is the total number of atoms, at the output of
the full-period interferometer.
As shown in Fig. 4.8 data are well in agreement with the predicted behavior.
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Figure 4.7: Calibration of the displacement δx of the BNSL minima as function of frequency
shift δf2

Figure 4.8: Fraction of atoms in m = 0 momentum component, N0/N, at the output of the
full-period interferometer as a function of the frequency shift of k2 standing wave during the
second KD pulse. The shaded band is the uncertainty due to the calibration of the beat-note
superlattice displacement versus the frequency shift, i.e., (10±1) nm/MHz; the error bars
indicate the standard error on the mean.
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4.5. Measurement of applied force

Figure 4.9: Fraction of atoms in p = 0 momentum component at the interferometer output
as a function of the magnetic-gradient current, with a trap frequency ω= 2π×31.7 Hz for the
half-period (red, solid points) and full-period (black, open) interferometer. The red line shows
the theoretical prediction from Eq. 4.1, with β = 1.12 and an offset phase as fit parameters;
the shaded band is the uncertainty of the displacement-versus-current calibration; the error
bars represent the standard error on the mean.

4.5 Measurement of applied force

In Fig. 4.9 is reported the measure about of the relative population of the p=0 moment
component N0/N, where N is the total number of atoms, as a function of the coil current (full
red points), with error bars corresponding to the statistical standard deviation for typically
5 repetitions of each data point. The peak identifying the configuration of zero force is not
located at I = 0 due to the presence in our setup of a spurious magnetic field gradient that
is cancelled by the gradient applied with a current I = 2.8 A.
Note, in Fig. 4.9 are also reported measurements with the full-period interferometer (black
open points), showing that the N0/N is constant within 0.017 (standard deviation).
The error bar at the maximum slope of the fit curve, yields a resolution for the half-
period interferometer of ∆I=0.05 A. Being a/ω2 = d = ηI, then it means a resolution of
δa =(2.19±0.26) 10−4g, where g is the gravity acceleration and the uncertainty is dominated
by the error on the calibration factor η.
It is also possible to derive information about the interferometric phase (argument "arg" of
cosine in J0(2β cos(arg)) in Eq. 4.1) from a fit of the populations of all momentum compo-
nents, for each value of the applied force. According to Eq. 4.1 this phase is expected to
depend linearly on the force, hence on the current (see Fig. 4.10).
The average error bar of these data is ∆ϕm =0.06π, which mean an acceleration sensitivity
of δa = (ω2/k−)∆ϕm =2.2 × 10−4g, consistent with the one above. Comparing ∆a with the
sensitivity derived in [29] as the Cramer-Rao bound ∆aCR = (ω2/βk)/

√
8rN, with r number

of repeated measurements and N total number of atoms, we can see how our resolution is
close to the standard quantum limit. In our experiments N≃5·103 and r is typically 4, which
corresponds to ∆aCR =4·10−6, a factor∼40 smaller than our experimental δa.
A possible reason for this discrepancy is the pointing instability of the optical dipole trap
beam which provides the harmonic confinement (th vertical beam). Indeed, any technical
displacement of the trap minimum is indistinguishable from those induced by external ac-
celerations; the interferometric sequence lasts only 16 ms but the sample preparation (dead
time) takes approximately half a minute, and slow drifts of the ODT beams occur over this
timescale.
The above discussion shows that lowering the harmonic frequency improves the resolution.
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Figure 4.10: Interferometric phase ϕ derived from fitting the momentum fractional popula-
tions of momentum components with J 2

q (2β cos(ϕ)), for harmonic frequencies equal to 31.7
Hz (red, solid points) and 40.5 Hz (orange, open); lines are linear fits with slopes (1.18 ±
0.09) rad/A (red, solid, excluding extreme points) and (0.68 ± 0.08) rad/A (orange, dashed).
The error bars represent the standard error on the mean.

However, in our setup we can only marginally increase—and not decrease—the trapping fre-
quency, to keep under control the anharmonicity of the potential. Thus, we repeated the
measurement with ω = 2π×(40.5 ± 0.5) Hz and, as expected, the measured interferometric
phase is less sensitive to the applied force (see Fig. 4.10).
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4.6 Conclusions
We have performed a proof-of-principle demonstration of a multimode interferometer in a
harmonic trap based on KD diffraction pulses. We have shown that external accelerations are
detected from the displacement induced on the harmonic trap with respect to the KD lattice.
With a relatively low number of atoms N=5·103 and a harmonic frequency of approximately
32 Hz, we showed a sensitivity δa ∼2 × 10−4g, a factor 40 away from the Cramér-Rao bound.
Anyway, this work potentially represents an easy method to enhance the sensitivity of a
trapped atom interferometer by enlarging the spatial separation between the modes involved.
In particular this is done by reducing the harmonic trapping frequency, and increasing the
number of momentum components with KD pulses of enhanced intensity and/or duration.
But this can not be the case for an harmonic potential made by an optical trap like ours.
In there, the oscillations of the largest momentum components are harmonic only if their
amplitude A is much smaller than the beam’s waist w, i.e. A= qmaxℏk−/(maω) < w, with
qmax ∝ β. This condition then constraints the achievable sensitivity.
The performance of this sensor could be enhanced using a harmonic magnetic confinement
along the direction of the lattice, that is more stable in position than the ODT and features
a harmonic region much larger. For example, using 105 atoms in a magnetic trap with
frequency ≈1 Hz and with oscillation amplitudes of ≈1 mm, we expect an improvement of
the sensitivity by several orders of magnitude, up to ∼10−8g. To avoid the problem of changes
in interatomic interaction due to the presence of inhomogeneous magnetic field, a suitable
option could be use spin-polarized fermionic atoms that, at low temperature, are naturally
non-interacting, provided that the KD lattice spacing is chosen smaller than the coherence
length of the atomic sample [91].
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Chapter 5

Trapped Atom Mach-Zehnder
Interferometer

In this chapter I will describe the realization of a linear Mach-Zehnder interferometer (MZI)
with Bose Einstein condensates optically trapped in an array of double well potentials. I re-
alize such array with the Beat Note Super Lattice (BNSL) technique described in par. 1.3.3.
In Fig. 5.1 I show a complete MZI interferometric sequence for a single double well potential
with modes spatially separated by a distance d.

N
N1

N2
1° Beam Splitter

ΔE=Fd

𝜑=ΔE 𝑇/ℏ 2° Beam Splitter

Figure 5.1: Mach-Zehnder interferometric sequence with a BEC in a double-well.

A state is prepared in a single mode, that for our double well potential correspond to one of
the two localized spatial modes. A 50:50 beam-splitter is provided by lowering the barrier
and letting the state evolve under the non interacting term in the Bose-Hubbard Hamiltonian
Eq. 1.43 for a given amount of time, to have a coherent population of both modes with the
same probability. In a similar way, one can also start with all the atoms at the bottom of the
trap, and raising up the barrier to split the cloud in two.
Then, after the tunnelling between the two modes is cancelled, a phase difference ϕ is ac-
cumulated during the interrogation time T applying an energy imbalance ∆E between the
two modes. A second beam splitter remaps the information about the relative phase into the
atom number difference z = N1−N2

N , that is an observable of our system.
Note, another way to give an accurate determination of the phase is to release the trapped
separated clouds, letting them overlap and studying the interference fringes [92]. However,
the goal of this work is to realize two or more identical double wells and make them working
simultaneously as independent and correlated MZI. Having more than one correlated atomic
sensor is useful, since it allows to perform a differential analysis to subtract the common noise
acting on the system, which otherwise would increase the uncertainty of the measurement.
This is basically how an atom gradiometer works, like the gravity-gradiometer employed for
the determination of the Newtonian gravitational constant G [93] or for Quantum tests of
the equivalence principle [94].
For all these reasons we can’t turn off the trapping potential, because it would require us to
retrieve the phase difference from the interference pattern of four or more condensates, which
is actually too difficult, if even possible.
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For each double well, we rather count the atom number difference at the end of the second
beam splitter, which is an observable we can measure thanks to our high resolution imaging
system.
In the first part of this chapter I analyse aspects of the BNSL double well array such its
dependence on the frequencies of the three lattices that compose it. I explain how experi-
mentally can find the right phase relation between the three lattices to get the BNSL double
well array, and how the system responds when the commensurability condition which char-
acterize the BNSL is not perfectly fulfilled.
To get knowledge about the energy scale that characterizes the system and to verify that the
dynamic in the three double wells is the same, I show examples of Rabi oscillations between
the modes of each double well.
Once convinced that the three double wells are identical, I perform a complete MZI. Prelimi-
nary results show some degree of correlation between the outputs of the three sensors, which
tell us we are on track for the realization of an operative trapped atom gradiometer.
On such data I also show an example of differential analysis. Finally in the last paragraph I
present some data about noise reduction in the state preparation exploiting repulsive inter-
actions.
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5.1 Double Wells Array characterization

In par.1.3.3 I show that the direct sum of three optical lattices V1,2,3
B = ∑

i Vi sin(kix + ϕi)2,
with commensurate wavelengths (n + 1)λ1 = nλ2 and (n − 1)λ3 = (n + 1)λ1, with n ≫ 1 is
equivalent, for low depths, to an effective double well array potential V 1,2,3

eff (x). To get this
latter, the choice of the lattices phases ϕi is important, in particular we need ϕ1 = ϕ2 and
ϕ3 = ϕ2 + π/2.
The three wavelengths are λ1 = 1013, 751nm, λ2 = 1064, 439nm and λ3 = 1120, 462nm, with
n=20.
From the experimental point of view to check the condition on the phase, what I did is to
load the BEC in two different 10µm spacing BNSLs, V1,2

B and V2,3
B (see Eq. 1.48), and reg-

ister on the camera the different in-situ positions of the atomic clouds (i.e. the minima of
the potential). The proper phase relation is obtained when the relative distance between the
minima of V1,2

B and V2,3
B is 5µm, i.e. when they are in counter-phase. To find such condition

I change the frequency of the λ1 laser in a range of about 300 MHz to shift the position of
the minima as much as I need, in agreement to what I said in par.2.5.

5.1.1 Frequency dependence of a balanced double well array

Once we get the double well configuration, the first issue is how well we have to satisfy the
commensurability conditions. Knowing the effect of a deviation of the wavelengths from the
commensurate condition is mandatory to understand the requirements on the laser frequency
accuracy and stability.
In our working condition d− ∼ 10.64 µm, and for the numerical calculation shown in Fig.
5.2, I take V1 =V2 = 1.6ER2 , V3 = 0.9ER2 and a deviation of k3 by the commensurability
condition of ϵ ∼ 10−5k3 (i.e. a discrepancy on the wavelength λ3 of 0.01 nm).
In Fig. 5.2a,b and Fig. 5.2c,d I show how the system responds in a different way to the sign of
ϵ: while the central double well is centred, the neighbouring ones feel an anti-confining (a,b)
or confining (c,d) potential when ϵ is positive or negative respectively. A energy mismatch
δ between the minima of the neighboring double-well occurs, whose sign also depend on the
sign of ϵ.
In Fig. 5.2e an in-situ image of the BEC loaded in a non perfectly commensurate BNSL
array of double well is reported. An anti-confining behaviour far from the balanced central
well is observed.
Fig. 5.2f show exact numerical calculation of δ as function of double well position x=ld−,
with l integer. The fact that δ is linear with l tells us that such imbalance can be described
by an harmonic potential of frequency ω =

√
2hδ

mad2
−

, where ma is the atomic mass.
Since all those effects can be described thanks to the shift a single parameter, it means
that we can compensate them by accordingly changing it. Thus, what I do experimentally
is measure the population imbalance (relative atom number difference) in the three double
wells zi = NLi−NRi

Ntot
i

(i=1,2,3) as function of k3, where Ntot
i =NLi + NRi is the total number of

atoms of i-th double well and NLi,NRi are the number of atoms in its left and right mode
respectively.
I start loading the BEC in the 10µm spacing BNSl made by the k1 and k2 lasers with no
interaction. V1 ∼ 400nK and V2 ∼ 350nK, so the trapping frequency inside a BNSL site
is around 200 Hz. Then, I turn on the third laser k3 with a slow linear ramp (∼200 ms)
to be more adiabatic as possible, up to a value V3 ∼ 200nK. In this way, ending closer
to a ground state with little tunnelling energy J, I am more sensitive to the presence of an
energy imbalance δ between the left/right modes, cause for the ground state it will be more
favourably populated the mode with lower energy.
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Figure 5.2: 1D numerical simulation for three BNSL double wells with V1 =V2 = 1.6ER2

and V3 = 0.9ER2 , with a) ϵ ∼ 10−5k3 and b) relative probability density distribution. The
red-dashed line in a) represents the effective double well potential V1,2,3

eff (x), while the solid
blue line depicts the presence of an anti-confining harmonic potential on the system.
In c) and d) I calculate the case with ϵ ∼ −10−5k3, which on the contrary shows the presence
of a confining harmonic potential.
In e) is reported an in-situ image of the BEC loaded in a non perfectly commensurate BNSL
array of double well, which shows, in analogy with b), an anti-confining behaviour far from
the central well. The atoms are let expand without radial confinement for about 8 ms, which
is why the spatial modes assume a cigar shape.
In f) I plot some numerical calculation of δ as function of the double well site l.

The two TA-pro Toptica lasers (the ones we use to generate k1 and k3 lattices), are tunable
over a range of few nm, so we can exploit them to change the wavelength of order of 0.01
nm. Needless to say that, after every shift in the wavelength we need to re-lock our laser to
the reference cavity (par.2.5.2)and find again the condition where the central double well is
balanced. Only after this we can check if the shift we made was sufficient or not.
In Fig. 5.3a) some traces of imbalances zi at different values of the shift in λ3 are reported,
in particular from above to below the total reduction in λ3 is about 0.06 nm. As one can
see, at the beginning only the mean value of the imbalance of the central well is around z2=0
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(balanced double well), while for the two neighbouring ones the mean values of the imbalances
z1,3 are far from the zero and opposite in sign, as expected looking at Fig. 5.2e). As the
λ3 decreases, the three mean values get closer and closer, until the three of them oscillate
around z=0. In Fig. 5.3c) it is shown an in-situ image of the BEC loaded in the BNSL array
of double wells when the effect of the non commensurability is almost cancelled.
Note that in the last picture of Fig. 5.3a) the three traces of the imbalances are almost
completely coincident, meaning that not only we managed to compensate the effect of the
fictional harmonic potential, but also that shot to shot the three double wells feel the same
noise on zi. This clear correlation in the imbalance fluctuation of the three double wells is
the feature we need to start to build our Mach Zehnder gradiometer.
However the population noise in Fig. 5.3a) is remarkably large, something we should work on
in the nearly feature (beyond the work of this thesis). In particular, main sources of noise in
our system are the fluctuations of the frequency (so the phase) of the lattices and the vibration
of the retroreflecting mirror. Both of them are sources of common noise and, fortunately,
something we can work on with techniques already known in the field of interferometry. Other
sources more difficult to identify and study can be spurious magnetic gradient, instability in
the magnetic field and defects of the intensity profile of the laser beams.
About the fluctuation of the phase, it depends on the performance of the frequency-lock
system. Regarding the latter, it is worth spending a few words about how a drift of the
optical cavity implemented in the lock (see par.2.5.2) affects the balancing of the three double
wells.
Suppose we respect the commensurability condition completely, i.e the three wavelength are
λ1 = n

n+1λ2, λ2 and λ3 = n
n−1λ2. If the three λi are locked to the same reference cavity then

λiqi = 2L, with i=1,2,3 and where qi represents a distinct fundamental cavity mode.
As discussed in chap.2.5, if the cavity changes its length L then the wavelength λi of the laser
will change accordingly, i.e. ∆λi/λi = ∆L/L. Then it’s easy to show that

λ̃2 = λ2

(
1 + ∆L

L

)
λ̃1 = n + 1

1 λ2

(
1 + ∆L

L

)
λ̃3 = n

n− 1λ2

(
1 + ∆L

L

) (5.1)

So, the new frequency λ̃i still fulfil the commensurability condition we need to get our array
of double well. Now we need to be sure that also the conditions on the phases ϕi of the three
lattice are still satisfied.
In par.1.3.3 I showed, that I need ϕ1 = ϕ2 and ϕ3 = ϕ2 + π/2 to get a balanced double well
array. This is a particular case which help to handle the analytic description of the BNSL.
More in general, always referring to Eq. 1.58, we could say that we need

ϕ1 − ϕ2 =α
ϕ2 − ϕ3 =α− π/2
ϕ1 − ϕ3 =2α− π/2

(5.2)

If D is the distance of the atoms from the mirror, then ∆λi lead to ∆ϕi = 2D∆ki = 2D∆L
L ki.

So from Eq. 5.2 we get

∆(ϕ1 − ϕ2) =2D∆L
L (k1 − k2) = 2D∆L

L
k2
n = β

∆(ϕ2 − ϕ3) =2D∆L
L (k2 − k3) = 2D∆L

L
k2
n = β

∆(ϕ1 − ϕ3) =2D∆L
L (k1 − k3) = 2D∆L

L 2k2
n = 2β

(5.3)
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𝜆3

NLi NRi
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Figure 5.3: a) traces of the three imbalances zi as function of experimental repetitions (shots)
of the splitting procedure in figure b). From above to below a) shows how the mean values of
the three imbalances get closer as λ3 decrease, up to the point that we can observe correlation
in the imbalance fluctuation zi.
In c) is shown an in-situ imaging ( the atoms are only released in radial direction for about
8 ms) of the BEC loaded in the BNSL array of double wells when the effect of the non
commensurability is almost cancelled.
Here "shot" stands for the a single output after a whole experimental procedure, which start
with realization of the BEC and end with the absorption imaging.

So, it seems that a drift of the locking cavity only changes the value of α in Eq. 5.2. So if
the phases initially provide balanced double wells, they still do it after a change in L.
For all those reasons we can conclude that our configuration seems to be insensitive to any
cavity drift.

5.1.2 Rabi Frequency

Consider the Bose-Hubbard Hamiltonian in Eq. 1.43, H = Ec
2 N2 z2

4 − EJ
√

1− z2 cos(ϕ),
where the coefficients refers to the Eqs. 1.36. For small interactions, we can simplify the
tunnelling term EJ = JN/2, where J is energy difference between the two lowest symmetric
and antisymmetric states. Then Bose-Hubbard hamiltonian reads

H = Ec

2 Nz2

2 − J
√

1− z2 cos(ϕ) (5.4)
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where we have rescaled by a factor N/2 the whole Hamiltonian. From the equations of motion
dz
dt = dH

dϕ and dϕ
dt = −dH

dz for non interacting atoms (Ec = 0) we get a couple of equations in
z(t) and ϕ(t) which describe sinusoidal oscillations of the parameters with a Rabi frequency
ΩRabi = J/ℏ, and average value of the imbalance ⟨z(t)⟩ = 0. So, exploiting these oscillations
we can get directly knowledge about the tunnelling energy of the system, which is fundamen-
tal to realize the linear beam splitter steps in the Mach-Zehnder interferometer.
In Fig. 5.4 two examples of Rabi oscillation of a non interacting BEC loaded in the three
double wells are reported .

0 50 100 150 200 250

time (ms)

-1.5

-1

-0.5

0

0.5

1

1.5

im
ba

la
nc

e

z1

z2

z3

im
ba

la
nc

e

time (ms)

a)

b) c)

Figure 5.4: a)In-situ imaging ( atoms are only released in radial direction for about 8 ms)
of BECs loaded in three double well undergoing Rabi oscillation. From left, in each double
well atoms start from the left mode (z=1) and tunnel through the barrier ending in the right
mode. Below are reported two oscillation at a) ∼13 Hz and b) ∼4.3 Hz.

The method used to drive oscillations of the population between the two modes of the three
double wells is the following.
After the evaporation we set the scattering length to zero ensuring a non-interacting BEC;
then we load the atoms in three sites of the 10µm spacing BNSL made by lasers k1 and k2
(to do this we have optimized the shutdown of the IPG laser, which gives the confinement
in the BNSL direction). After that, we increase the depth V3 of laser k3 with a phase shift
in order to create an energy mismatch between the two modes and a population difference
of about z = 1 in each double well; finally to drive the oscillations of zi we set V3 to a value
with finite tunnelling and suddenly balance the three double-wells.
Population imbalance z in each double well is derived by fitting the density distribution of
images in Fig. 5.4a with two Gaussian functions having the same width and different ampli-
tudes PL and PR. Then z=(PL−PR)/(PL +PR). In this way it is possible to reconstruct the
oscillation of the imbalance and extract the tunnelling frequency fitting it with a sinusoidal
function, Fig. 5.4b,c. We manage to observe synchronous oscillations of three imbalances
for two different frequencies, meaning that the coherent dynamic in the three double well is
pretty much the same.
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5.2. Complete Mach-Zehnder sequence

Note that, for interacting particles the energy scale of the system is settled by the plasma
frequency in Eq. 1.38, which defines also the oscillation frequency of z and ϕ. The frequency
increases for a positive value of the scattering length and has a critical decreasing for attrac-
tive interactions, due to the presence of a quantum phase transition characterized by parity
symmetry breaking [95, 54]. Also, in contrast to the non-interacting case, the oscillation fre-
quency depends on the initial value of the population imbalance z0. When |z0| is larger than
a critical imbalance [17], then the initial interaction energy Ec

2 N z2

2 in the Hamiltonian Eq.
5.4 becomes larger then the tunnelling energy J, and the system cannot reach the balanced
z=0 configuration due to energy conservation, showing the occurrence of the so called Macro-
scopic quantum self-trapping. So, the fact in that we are able to see a complete inversion of
population even for small tunnelling energy in Fig. 5.4c, with roughly ∼ 4 ∗ 103 atoms in
each double well, is proving that interactions in our system are almost cancelled.

5.2 Complete Mach-Zehnder sequence

We start loading the non interacting BEC in three sites of the 10µm spacing BNSL made
by lasers k1 and k2, as explained in the previous paragraph, with depths V1 = 350 ± 10nK
and V2 = 400 ± 10nK respectively, i.e. a trapping frequency within the single site of about
212± 3Hz. Those values follow from the calibration of the BNSL depth via in sito center of
mass oscillations, as explained in chap.3.

First beam splitter

We perform the first beam splitter step of the Mach-Zehnder sequence increasing the power
of the third laser k3 ( the barrier) with a phase which assure a balanced (z=0) configuration
and up to a value that provide negligible tunneling.
Note that, unlike from Fig. 5.1, in our first beam splitter we don’t start with z=1 and don’t
equally populate the left and right mode lowering the barrier for a time Ts, exploiting Rabi
oscillations. The reason behind this choice is that directly splitting the condensate raising
up the barrier as fast as possible help to be more insensitive to the external noise.
Indeed, external noise introduce energy imbalance δ between the left and right mode of each
double well. To parametrize it we can add an extra term in the Bose-Hubbard Hamiltonian
with ϕ = 0 (for now we take the non interacting case).

H = −JN
2
√

1− z2 + Nδz (5.5)

The presence of an energy mismatch δ changes the ground state of the system, making more
favourable for the atoms to populate only the spatial mode with lower energy, left or right
depending on the sign of δ. This means that, if I ramp up the barrier adiabatically to end
near a state with negligible tunnelling, I will have a final population imbalance near ±1.
The idea is then to perform a splitting fast enough to broke the adiabaticity, so that we don’t
reach the ground state with J ≈ 0 but we froze the population of the two modes to have
z=0 as final configuration. Of course we are limited in the rapidity of this procedure by the
excitation of the system, since the depth of the initial 10µm spaced BNSL set the energy
separation of the two lowest states from the excited ones. According to simulations, we can’t
ramp faster than 10 ms.
In Fig. 5.5 imbalances fluctuations of three zi after the splitting with a slow ramp (Ts =
200ms) and a faster one (Ts = 10ms) are reported. The fluctuations after 10 ms, as expected,
are lower than that after 200 ms.
We can look now at the dynamical effect of this noisy term δ.
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Figure 5.5: Comparison of fluctuations of three zi after the splitting with a slow ramp (Ts =
200ms) and a faster one (Ts = 10ms).

After the first beam splitter, tunnelling is negligible, and the state can be described by a
linear combination of Fock states |n⟩ = |N2 − n⟩L|N2 + n⟩R [96], where the relation between n
and z is always n=Nz/2:

|Ψ⟩ =
N∑

n=0
N e− n2

2∆n2 |n⟩ (5.6)

where N is a normalizing factor and ∆n =
√

N/2 is the width of coefficients distribution
centred at n=0 (this is the shot noise limit we met in par.1.2).
The only term left in the Bose-Hubbard is 2δn, which is diagonal on the basis |n⟩, so the evolu-
tion operator will be U(t)=eiδnt/ℏ, where δ chances from experiment to experiment. Because
of this, during the interrogation time the phase relations between the states |n⟩ are lost (i.e.
we have dephasing). In the end, because of the noise, interrogation time is limited by T< ℏ/δ.

Second beam splitter

The second Beam splitter is realized exploiting the Rabi oscillation between the left and
right modes of each double well. In Fig. 5.6 it is shown how the barrier depth is changed as
a function of time to get a final imbalance of z≈ 0, starting with all the atoms loaded in the
left mode (z=1).
Again, to avoid exciting the system, we don’t change the barrier depth too fast but with
two subsequent smooth ramps of about 10 ms each. During the first 10 ms I lower the
barrier letting the tunnelling increases, and then I raise it up again with the same velocity.
Experimentally, after setting the lower value of the barrier depth, I finely change the lower-
ing/raising time Tbs looking at the output imbalance. In Fig. 5.7 are shown the imbalances
zi at the output of the procedure schematized in Fig. 5.6.
Once we optimize the Tbs we can implement this beam splitter to follow the first one after an
interrogation time T and so complete the Mach-Zehnder interferometer. Note, our sequence
has a minimum duration of 30 ms due to the finite time we need to perform the two beam
splitter.

Read out

In Fig. 5.8 I report the latest measurements of the output of a complete Mach-Zehnder
interferometer for a BEC loaded in three BNSL double wells. Each trace refers to a dif-

86



5.2. Complete Mach-Zehnder sequence

tu
nn

el
in

g 
J 

(H
z)

ba
rr

ie
r 

de
pt

h 
 (

nK
)

im
ba

la
nc

e 
zi 1

0.5

0

0

60

time (ms)
10 200

10 200

10 200

time (ms)

time (ms)

220

100

Figure 5.6: Numerical simulation of the Second Beam splitter. Barrier depth is changed as
function of time, and the tunnelling change accordingly. Final imbalance is z=0.009.

0 5 10 15 20 25 30 35
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
splitting T

s
=200ms

z1
z2
z3

Figure 5.7: Fluctuations of three zi after the Beam splitter of Fig. 5.6

ferent interrogation time T=0,20,50,100,200 ms which separate the two beam splitter steps.
None external force F is applied during time T. The purpose of these preliminary measures
is studying the coherence time of this sensor, and try to get information about entity of the
noise acting on it.

First point to remember is that the fluctuations on the observables zi at the output of the
interferometer are due to phase fluctuations ∆ϕi. Ideally speaking, with no energy imbalance
applied during the interrogation time T, i.e. no phase accumulation ϕi, the three imbalances
zi = sinϕi after the read out should be stay around z=0. Instead even for T=0, which means
performing the two beam splitters with no delay in between, we can observe a large noise.
This means that in 30 ms, which is the time we need to make the two beams splitter in a
row, noise is sufficiently large to cause dephasing.
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Figure 5.8: Fluctuations of three zi after the the whole Mach-Zehnder sequence for different
interrogation time T. We measure large phase noise even for short T, but we also observe
some degree of correlation between the three independent zi.

For T>0 phase noise is large enough to make the observables zi assumes all values in [-1,1].
Good news is, that we observe correlations between the outputs of the three double wells,
persisting for tens of ms of interrogation times. This means we can try to make the three
sensor work simultaneously and perform differential analysis to subtract the common noise
affecting them.

5.3 Differential Analysis
Let’s focus on the outputs z1 and z2 of only two double wells after a Mach-Zehender interfer-
ometer sequence. Since in Fig. 5.8 interferometers output look correlated, we can describe
the phase accumulated by each one of them as ϵ + ϕi. Here, ϵ is the phase term due to
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common noise δ, while ϕi is the interferometric phase. Lets focus on only a couple of them,
z1 and z2.

z1 = sin(ϵ)
z2 = sin(ϵ+ ∆ϕ1,2)

(5.7)

For simplicity, I introduce in this description the phase difference ∆ϕ1,2 = ϕ1 − ϕ2. Eq. 5.7
are the parametric equations of an ellipse in the plane z1 and z2. In this picture, the role of
ϵ is to place data points around the ellipse, whose ellipticity is instead a function of ∆ϕ1,2.
The idea is then plot z1 vs z2 and, and to make an elliptic Fit to derive ∆ϕ1,2. As said at the
beginning of this chapter, in the MZ double well interferometer ϕi = ∆EiT/ℏ, where ∆Ei is
the energy difference between left and right mode of i-th double well (the physical quantity
we want to measure) and T is the interrogation time. Then ∆ϕ1,2 = (∆E1 − ∆E2)T/ℏ, so
we expect that the ellipticity grows with time T.
In this description we don’t take into account the uncorrelated sources of noise which, unlike
ϵ, spread data point in whole z1 z2 plane, increasing the error on the fit we want to perform.
In Fig. 5.9 I show the output (red dot) z1 (left double well) as function of z2 (central double
well) and z3 (right double well) as function of z2. Each trace refers to different interrogation
times T=0,20,50,100,200 ms.
At T=0, ∆ϕ1,2 = 0 so we don’t expect an ellipse, but a linear dependence of the two outputs.
For T> 0 data appear to be placed along ellipses whose ellipticity grows with time.
In Fig. 5.9 are also reported elliptic fits (blue solid curves). For the theory of elliptic fit I
refers to appendix A. Our fit function is

cxxx2 + cyyy2 + cxyxy + cxx + cyy − 1 = 0 (5.8)

where x and y here stand for different zi. Note, to be physically significant fit curves need to
be entirely within the bounds zi ∈[-1 1] for both axis. The relation between the parameters
in Eq. 5.8 and ∆ϕi,j ( where i̸=j, i,j=1,2,3) is

∆ϕi,j = acos
(
− cxy

2√cxxcyy

)
(5.9)

where x=zi and y=zj . From fit in Fig. 5.9 I derive ∆ϕ1,2 and ∆ϕ3,2 which are shown as a
function of interrogation time T in Fig. 5.10.
∆ϕ1,2 and ∆ϕ3,2 seems to grow both linearly with time T, as expected, and with the same
velocity, so it means that the unknown ∆Ei are such that |∆E1 − ∆E2| ≈ |∆E3 − ∆E2|.
We can try to make some consideration to understand the origin of those unknown (and
unwanted) ∆Ei.
A linear gradient F·x, where F is a constant Force and x is the position coordinate along
double well array, would create an equal energy imbalance ∆E = Fd between the left and
right mode of each double well, where d is their spatial separation. So, ∆ϕi,j would be zero,
and this it’s not consistent with what we see.
Instead, let’s assume the presence of a harmonic potential V = 1

2maω
2x2 We suppose our

central double well centred respect to V (∆E2 = 0). The energy mismatch of left and right
modes (separated by distance d/2) of the double well at distance d from the bottom of V
is ∆E1 = 1

2maω
2d2 (for us d=d− = 10µm). In the same way, the energy mismatch for the

double well placed at distance -d will be ∆E3 = −1
2maω

2d2.
Then, ∆ϕ1,2 = 1

2maω
2d2T/ℏ and ∆ϕ3,2 = −1

2maω
2d2T/ℏ, which show the linear dependence

by T we observed in Fig. 5.10. Note, we can not retrieve information about the sign of the
phase with our analysis, since we derive it from the ellipticity, which is a positive quantity.
We can anyway obtain information about ω by a linear model fit of data in Fig. 5.10.
In future experiments I plan to apply a known and controllable harmonic potential on my
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Figure 5.9: On the left, z1 vs z2 (red dots) for different interrogation time T=0,20,50,100,200
ms. On the right same plot for z3 vs z2. Blue solid line elliptic fit on such data.
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Figure 5.10: ∆ϕ1,2 and ∆ϕ3,2 obtained from fit of data in Fig. 5.9

system in order to change the phases ∆ϕ1,2 and ∆ϕ3,2, and so the ellipticity of my ellipses.
If I manage to demonstrate such control, I will prove to have an operative trapped atom
gradiometer.

5.4 Noise reduction by atom interactions

A second set of experiments performed with our array of double well potential concerns the
possibility to introduce repulsive interaction to reduce fluctuations of population imbalances
due to external noise, as mention in par.1.2 where it was shown that the variance of the atom
number difference of the modes is 1

2

√
EJ

Ec+4EJ/N2 .
With the same initial condition of the first beam splitter step, we now try to split a positive
interacting BEC raising up the barrier with a slow ramp (200 ms). In Fig. 5.11 are reported
imbalance fluctuations from experiment to experiment in presence of different values of two
body scattering length as = 0, 0.35, 1.5, 3, 4.5a0, where a0 is the Bohr radius.
Unlike the case with no interaction we observe a clear reduction of imbalance fluctuation for
increasing values of the scattering length. Intuitively, with reference to par.1.2, the response
of the system to an energy mismatch of the two separated modes is to adapt the relative
atomic population such that the chemical potential in the two modes is equal [97]. So even
in presence of δ the configuration with large imbalances would be less favourable.

In Fig. 5.12 the standard deviation of imbalance fluctuation reported in Fig. 5.11 as function
of scattering length as is shown. As one can see, σz decreases as interaction increase, as
expected. Dashed black line represent the shot noise limit for an average atom number
∼4*103 in each double well. We are currently doing dynamical numerical simulations with
the Bose-Hubbard to understand how far we are from the shot noise.
However, a first question is if the 200 ms ramp we use to raise up the barrier is slow enough
to be adiabatic. Keeping this raising time τ fixed means that the energy scale of the system,
defined by the plasma frequency ωp in Eq. 1.38 in the interacting case, is set. We are
adiabatic if

τ > 1/ωp = 1
/√

EJ

(
Ec + 4EJ

N2

)
(5.10)

If τ is fixed and ωp reduces with the tunnelling term Ej while raising up the barrier, then I
need higher interaction term Ec to meet the condition in 5.9 (or I have to take larger time τ).
Once the adiabaticity is broken, the state of the system remains in the state characterized
by the value of Ej , reached at the moment of the adiabaticity breaking, and the variance of
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Figure 5.11: Plots show how the imbalance fluctuations zi reduce for increasing values the
scattering length of the condensate, setted before raising up the barrier in 200 ms to separate
it.

atom number difference can’t reach the shot noise unless increasing Ec.
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Figure 5.12: standard deviation of imbalance fluctuation reported in Fig. 5.11 as function
of scattering length as. Dashed black line represent the shot noise limit for an average atom
number ∼4*103 in each double well
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Chapter 6

Conclusions and Perspective

In conclusion, the core of this thesis is the realization of a novel superlattice based on the
beat-note between two retroreflected laser beams with commensurate wavelengths, which I
study both numerically and analytically.
I characterize the spectrum of such lattice exploiting the oscillation of the center of mass of
a non interacting BEC loaded in a single effective site of the BNSL, showing that measure-
ments match numerical predictions. I observed a non monotonic behaviour in the spectrum,
which allow us to identify two regions: a range of depths for which the resulting potential is
equivalent to a large-spacing single-wavelength optical lattice (small depth regime); outside
that, BNSLs can’t be described by an effective large spacing lattice, but can be potentially
used to create arrays of atomic ensembles with negligible tunnelling between the sites. The
passage between these two regimes occurs when the tunnelling between the sites of the two
starting lattices become comparable with the energy gap of the effective lattice, then the
wavefunction starts to localize inside the wells of the two starting lattices.
I implemented a 10µm BNSL in a horizontal Bloch oscillation interferometer, where I start
with a non interacting BEC loaded in a single site of the effective potential. In presence
of small external forces and finite tunnelling we manage to observe a coherent oscillation in
the size of the condensate, i.e. in the population transferred in the neighbouring sites 10µm
far from the starting one. The observed dynamics exhibits a coherence up to 1 s, which to
my knowledge is one of the longest coherent evolutions ever reported for a BEC trapped in
spatial modes separated by tens of microns. This proves the intrinsic stability of the BNSL,
that make it a valuable tool for the precise manipulation of atoms at large distances, which
is of interest for quantum simulation experiments and for improving sensitivity of trapped
atom interferometers.
In a second experiment I exploit a 5µm BNSL to performed a proof-of-principle demonstra-
tion of a horizontal multimode interferometer in a harmonic trap based on Kapitza-Dirac
diffraction pulses. Here, the harmonic potential has the function to close the trajectories
and prevents the spatial spread of wavepackets. Importantly, all the momentum components
generated by diffraction spatially recombine at the trap minimum only if the potential is
harmonic over their oscillation amplitude. Here the purpose of using BNSL is take advan-
tage of a large-spacing optical lattice, that reduces the recoil velocity, hence the oscillation
amplitude, by a factor of 10, with respect to the commonplace lattice spacing of 0.5 µm. In
this way we make sure we stay in the harmonic region of our optical trap. Anyway, even if in
our system we reach a sensitivity a factor 40 away from the Cramér-Rao bound, mainly due
to the instabilities of optical trap, in this scheme it is potentially easy to enhance the sensi-
tivity by enlarging the spatial separation between the modes involved. Indeed, this can be
done by reducing the harmonic trapping frequency, and increasing the number of momentum
components with KD pulses of enhanced intensity and/or duration (of course provide that
we still stay in a harmonic region of the trapping potential).
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In the experiment I’m currently working on I realize a horizontal arrays of double wells po-
tentials with two collinear BNSLs with a periodicity of one twice the other (10µm and 5µm),
and to do this I need only three commensurate wavelengths. Changing the frequency of one
of the three lasers I can match the relative phase condition I need between the three starting
lattices to center the barrier. In my system I can count the in-situ atom number difference
(zi) between the two spatial modes of i-th double well, which tells me about the presence of
an eventual energy difference between them. I studied and observed the effects on the array
of non perfectly commensurate wavelengths, which introduce on the system confining/anti
confining harmonic potentials, making eventually the zi of the three double wells different
one from the others. Luckily, this is something I can fix changing the frequency of one of the
three lasers, and I can exploit it also to correct the presence of an external residual harmonic
potential on the system.
Another control parameter is the depth of one of the three lattices, which allow us to set the
height of the barrier, and so the tunnelling between the left and right mode in each double
well.
To get information about the tunnelling energy I can study Rabi oscillations occurring in the
atom number difference of the two spatial modes of each double well. Observing the same
Rabi frequency (in a range of 60 HZ to 4 Hz) in the three double wells, with a complete inver-
sion of the population of the two modes, assures us that the three double wells are identical,
and that we manage to cancel the two body interaction on a good level. So, on this basis,
we can perform three beam splitters simultaneously.
Each one of this double well then represents a sensor I can exploit to make a Mach-Zehnder
interferometer. A preliminary set of measurements, with no external perturbation applied
during the interrogation time, shows correlations between the outputs of each Mach-Zehnder,
even in presence of large noise. Having more than one correlated interferometers is possible
to perform differential analysis between the outputs to subtract common noise, and so realize
an operative trapped atom gradiometer. A first trial of this differential analysis seems to
reveal that a residual curvature on our system is present.
In this direction, the next step will be to apply a controlled external harmonic potential
to induce a known interferometric phases on each sensor, and so test the sensitivity of the
gradiometer. A last series of measures performed with our array of double well potential
concerns the possibility to introduce repulsive interactions during a beam splitter to reduce
fluctuations of zi. About this, we observed a reduction of the variance of such fluctuation
changing the two body scattering length as in a range of few Bohr radius (0-4.5 a0), split-
ting our condensate raising up the barrier in 200 ms. We don’t reach the shot noise limit,
so dynamical numerical simulation with the Bose-Hubbard Hamiltonian are currently under
study to justify this behaviour. Having a more clear understanding of our system in pres-
ence of inter-atomic interactions will, as a long term goal, allow us to realize non-classical
states (number squeezed state), to enhance the sensitivity of the sensor beyond the standard
quantum limit.
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Appendix A

Elliptic Fit theory

A.0.1 Least squares model fit

Lets consider N independent data xi, each normally distributed with the same mean µ but
different variances σ2

i . Since µ is unknown, we can define the following weighted sum

χ2 =
N∑

i=1

(xi − µ̄)2

σ2
i

(A.1)

where µ̄ is the best estimator of xT . Least squares method [98] has the purpose to find µ̄
which minimize χ2. The least squares estimator is thus given by

µ̄ =
(
∂χ2

∂µ

)
µ=µ̄

= −2
N∑

i=1

(xi − µ̄)
σ2

i

= 0 −→ µ̄ =
∑

i
xi

σ2
i∑

i
1

σ2
i

(A.2)

χ2 in Eq.A.1 has N-1 degree of freedom. Thus, if we were to repeat the identical experiment
many times, the values of χ2 obtained would be distributed as a Chi-squares distribution of
(N-1), assuming that the probability density function of xi was correct. If this is the case,
then we can proceed estimating the variance of µ̄:

V[µ̄] =
∑(

∂µ̄

∂xi

)2
Var[xi] = 1∑

i
1

σ2
i

(A.3)

Above we had a number of measurements of a fixed quantity. Now let us suppose that we
have a number of measurements yi of a quantity y which depends on some other quantity x
(i.e., a function). For each xi, y is measured to be yi with expected error σi. Assume, for
now, that the values xi are known exactly, and that we have a model for predict y as function
of x :

y(x) = θ1h1(x) + θ2h2(x)...+ θjhj(x) (A.4)

This is the curve which we fit to the data. y(x) is linear in the parameters, θi, that are to be
estimated, while the single-valued and distinguishable functions hj(x) are known.
We want to determine the values of the θj for which the model Eq.A.4 best fits the measure-
ments. We assume that any deviation of a point yi from this curve is due to measurement
error (something we don’t have control over).
Thus, due to the error, we assume that the actual measurements are described by

yi = y(xi) = θ1h1(xi) + θ2h2(xi)...+ θjhj(xi) + ϵi (A.5)
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where ϵi are the error which introduce a certain distance between the point yi and the
hypothesized curve (residuals), which has zero mean and variance σ2

i . Further, we assume
for simplicity that each yi is an independent measurement.
The problem now is to determinate the best value of parameters θj from N measurements
(xi,yi). The meaning of least squares above is just that of minimizes the sum of the distances
of data points from its expected values, here defined by ϵi, to obtain the estimate of θi.
Therefore the χ2 1 to minimize will be

χ2 =
N∑

i=1

ϵ2i
σ2

i

=
N∑

i=1

1
σ2

i

yi −
∑

j

θjhj(xi)

2

(A.6)

Imposing ∂χ2

∂θj
= 0 we get a set of k (where k is the range of index j) linear equations in k

unknowns, which is a problem way easier to solve in matrix form.
Lets call y = Hθ+ ϵ, where y and ϵ are respectively the vectors of the N measurements yi and
N residuals ϵj , θ the vector of k unknowns parameters and H a (N×k) matrix with elements
Hi,j = hj=1...k(xi=1...N). The errors σ2

i can also be incorporated in a N×N matrix, V[y] which
is diagonal given our assumption of independent measurements with elements V[y]i,i = σ2

i .
Then the χ2 becomes

χ2 =
(
y −Hθ

)T
V[y]

(
y −Hθ

)
(A.7)

With this notations, the solution θ which solve the system ∂χ2

∂θj
= 0 is [98]

θ̂ =
(
HT V−1[y]H

)−1
HT V−1[y]y (A.8)

where the apex "T " means the transposed matrix.
It can be shown also that the covariance matrix of the estimators is given by

V [θ̂] = HT V[y]H. (A.9)

If the covariance matrix V[y] is only known up to an overall constant, V[y] = σ2W, with σ2

unknown, then this latter can be estimated as [98]

σ2 = Q2
min

N− k (A.10)

where Qmin is the minimum value of χ2 in Eq.A.7 in terms of W and with θ = θ̂ and where
N-k are the degree of freedom of χ2.

A.0.2 Elliptic Fit

An ellipse is a multi-valued function which can be written in the form

F(x⃗, c⃗) = cxxx
2 + cyyy

2 + cxyxy + cxx+ cyy − 1 (A.11)

where we call c⃗ = (cxx, cyy, cxy, cx, cy) the vector of the ellipse parameters, and
x⃗ = (x2, y2, xy, x, y)T the vector of our observables. Before using this function to fit our data,
we have to face the problem that this model is not linear in the parameters as Eq.A.4. So,

1this is a real χ2, distributed with a chi-squares p.d.f, if the ϵi are normally distributed, but this is not
mandatory
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Appendix A. Elliptic Fit theory

in order to apply the least squares method, I need first to define the distance between the
points and our model (i.e. the residuals).
If I knew the vector of best parameters ⃗̂c then the best choice would be the Euclidean distance,
i.e. the perpendicular segment which connects a point to the ellipse. If this is not the case,
then I’m valuing the residuals from a wrong ellipse. To find the right one, I should evaluate
every residuals of every possible ellipse to find the one with the minimum distance.
A more suitable option is estimate the better parameters indirectly. This technique is called
Parametric Least Squares (or adjustment of indirect observations [99]), which is a special
case of the "Combined Least Squares" correction model [100].
Following [101], the idea is take ⃗̂c = c⃗ + δ⃗c as the best estimators of parameters , such that
F(⃗̂x, ⃗̂c)=0 (here ⃗̂x are the k points which I exploit to build the ellipse described by parameters
⃗̂c).
One can see δ⃗c as the vector of correction, which gives the distance between the vector of our
initial parameter c⃗ and ⃗̂c. In the same way we can define ⃗̂x = x⃗ − r⃗, where r⃗ is a vector of
residuals.
Again, since we don’t know the covariance matrix of x⃗ and c⃗ we can replace them with
Vx = σ2

xWx and Vc = σ2
c Wc, where σ2

x and σ2
c are unknown. We then approximate each one

of the k observation equations F(⃗̂x, ⃗̂c)=0 around x⃗ and c⃗ with Taylor expansion, neglecting
second order terms, obtaining

−F(x⃗, c⃗) =
(
dF
d⃗̂x

)
x⃗,⃗c

(⃗̂x− x⃗) +
(
dF
d⃗̂c

)
x⃗,⃗c

(⃗̂c− c⃗) → w = Br⃗ + Aδ⃗c (A.12)

where:
A is a k×5 matrix whose i-th row corresponds to i-th set x⃗i = (x2, y2, xy, x, y)
B is a k×n matrix, with n=2k, whose elements are in the form ∂Fi

xj
,∂Fi

∂yj
with i,j=1...k.

The partial derivates reads:
∂Fi
∂xj

= ∂Fi
∂yj

= 0 if i ̸=j, ∂Fi
∂xi

= 2cxxxi + cxyyi + cx, ∂Fi
∂yi

= 2cyyyi + cxyxi + cy.
w is a k×1 vector with elements wi = −F(x⃗i, c⃗i).
After many passages ([99]), one can find the least squares solution of Eq.A.12, i.e., the solu-
tion which makes the sums of the squares of the weighted residuals a minimum.

δc⃗ =
(
AT

(
BW−1

x BT
)

A
)−1

AT
(
BW−1

x BT
)

w

r⃗ =W−1
x BT

(
BW−1

x BT
)−1

(w−Aδc⃗)
(A.13)

So, in the beginning we said that the best parameters was ⃗̂c = c⃗ + δc⃗. Imagine, at the
beginning of the iterative process we want to build, that ⃗̂c equals the a priori estimates c⃗1
and a set of corrections δc⃗1 is computed thanks to the method reported above. These then
are added to c⃗1 to give an updated set c⃗2. A and B are recalculated and a new weight matrix
Wx. The corrections are computed again, and the whole process cycles through until the
corrections reach some predetermined value, which terminates the process.
In the end, we can estimate σ2

x = σ2
0 = r⃗T W−1r⃗

n−k , where n-k are the degree off freedom. With
σ2

x I can build the covariance matrix Vx and then the covariance matrix of the parameters
as in Eq.A.9

Vc = σ2
0

[
AT

(
BW−1

x BT
)
A
]−1

(A.14)
Note, changing the representation of the ellipse, for example choosing a different set of pa-
rameters as s⃗ = (txtyaxayθ)T , doesn’t change the results above, it simply requires a transfor-
mation of Vc to get the covariance matrix of parameters s⃗. In particular, Vs=JVcJ

T , where
J is the Jacobian matrix of transformation, which only need to know how s⃗ depends on s⃗.
This is useful if, for instance, one needs information about the centre of the ellipse (tx, ty),
about the semi-axis ax, ay or its inclination θ.
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